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Abstract 

Background and aims: Prostate and breast cancers are the most prevalent types of cancer in 

all Western countries including Finland. For both cancer types, there is a ―missing 

heritability‖ - the genetic defects predisposing individuals to the cancers remain unknown. 

Copy number variations (CNVs) have recently been implicated in predisposition to complex 

diseases including cancer. To this end, this genome-wide association study was aimed at 

evaluating the role of CNV in prostate and breast cancer susceptibility in the Finnish 

population. 

 

Methods:  Four algorithms were used in identifying CNVs in Illumina genotyped prostate 

and breast cancer samples; called CNVs were compared with CNVs published in the 

Database of Genomic Variants (DGV) in order to identify novel CNVs. Genes located within 

or close to the regions of CNVs were queried against the genes listed in OMIM to identify 

CNVs which warrant further investigation. Case-control association test was carried out using 

Fisher’s exact test to identify CNVs associated with the cancer types in question.  

 

Results: A total of 359 and 764 CNVs were identified in the breast and prostate cancers 

datasets, respectively; while the average number of CNVs per sample is higher in the prostate 

cancer (male genome), the size of CNVs in breast cancer dataset is double the size in prostate 

cancer. Three susceptibility loci were associated to prostate cancer: 2p25.3, 3p26.1 and 

10q11.22. While 3p26 has previously been reported, 2p25.3 and 10q11.22 are novel. Several 

of the genes affected by CNVs in the datasets had already been implicated in different 

cancers. 

 

Conclusion: This study is the first to compare CNVs in male and female genomes. The data 

suggests that several genes located within the identified CNVs may contribute to cancer 

predisposition in this small cohort of samples, and this trend needs to be confirmed in larger 

population samples. 
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1 Introduction 

Rare mutations have been found underlying about two thousand Mendelian diseases; more 

recently, it has become possible to assess the contribution of common single nucleotide 

polymorphisms (SNPs) to complex diseases (McCarroll and Altshuler 2007). The known role 

of copy-number alterations in sporadic genomic disorders, combined with emerging 

information about inherited copy-number variation, indicate the importance of systematically 

assessing copy-number variants (CNVs), including common copy-number polymorphisms 

(CNPs), in disease. In addition to such sporadic diseases, inherited CNVs have been found to 

underlie Mendelian diseases in several families (Padiath et al. 2006; Le et al. 2006, and Lee 

and Lupski 2006). 

Chromosomal abnormalities such as germ line and somatic alterations are the leading causes 

of developmental defects and cancer respectively. The presence of CNVs in humans has been 

reported by several large scale studies, suggesting that CNVs may account for a significant 

proportion of human phenotypic variation, including disease susceptibility (Feuk et al. 2006; 

Freeman et al. 2006; and Eichler et al. 2007). 

Furthermore, the role of CNVs in complex diseases, such as autism, rheumatoid arthritis and 

cancer to mention but a few, has been successfully evaluated by applying high throughput 

analysis at genome-wide level (Bae et al. 2008; Bassett et al. 2008 and Ionita-Laza et al. 

2008). 

Like other types of genetic variation, some CNVs have been associated with susceptibility or 

resistance to disease. Copy number variation has recently been implicated in predisposition to 

complex diseases including cancer; gene copy number can be elevated in cancer cells. For 

instance, the EGFR copy number can be higher than normal in non-small cell lung cancer 

(Cappuzzo et al. 2005). In addition, a higher copy number of CCL3L1 has been associated 

with lower susceptibility to HIV infection (Gonzalez et al. 2005). 

Breast and prostate cancers are the most prevalent female and male cancers respectively in all 

western countries. In Finland, the number of reported cases is constantly increasing according 

to the Finnish Cancer Registry’s statistics (www.cancerregistry.fi).  For both cancer types, 

there is ―missing heritability‖, which means that although many susceptibility loci have been 

identified, for the majority of the cases even with strong familial background of the disease 

the genetic defect is still unknown. 
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In Finnish familial breast cancer, research has shown that only 10% and 11% of cases are 

attributable to mutations at BRCA1 and BRCA2 loci as against 52% and 32% respectively in 

other parts of the world (Vehmanen et al. 1997). Similar statistics have been observed in 

Southern Sweden (Håkansson et al. 1997). Whereas mutations in high-penetrance 

susceptibility genes have been identified in familial breast cancer and several single 

nucleotide polymorphisms (SNPs) have been shown to be associated with both familial and 

sporadic breast cancer risk, the impact of genomic copy number variants (CNVs) on breast 

cancer risk has so far poorly been studied. 

Copy number variations are duplications or deletions of chromosomal segments that are 

greater than 1kb (Feuk et al. 2006; Itsara et al. 2009). CNV identification algorithms differ in 

their sensitivities and accuracies; while some identify CNVs on an individual level, others 

combine information from multiple samples hence the need to use different methods in CNV 

identification.  

To this end, the present genome-wide association study (GWAS) was aimed at using different 

CNV identification algorithms, PennCNV, QuantiSNP, cnvPartition and CNstream, to assess 

genome-wide CNVs in familial breast and prostate cancers, in a bid to unraveling the 

contribution of CNVs to the cancer types in question. 

 

 

 

 

 

 

 

 

 



10 
 

2 Review of Related Literature 

 

2.1 Genetic Variations 

Genetic variation refers to variation in the alleles of genes, occurring both within and among 

populations. Genetic variation among individuals within a population can be identified at a 

variety of levels. It is possible to identify genetic variation from observations of phenotypic 

variation in either quantitative traits or discrete traits. There are three primary sources of 

genetic variation: mutations, gene flow and recombination in sexual reproduction; however, 

the ultimate source of new genetic variation in populations is via mutations, new mutations 

give rise to new allele. This could be point mutation or chromosomal mutation. While point 

mutations affect only one or a few nucleotides within a gene, chromosomal mutations change 

the number of chromosomes or the number or arrangement of genes in a chromosome 

(change in chromosome structure). 

Although studies carried out by Lander et al (2001) show that any two humans are 99.9% 

identical at the nucleotide sequence level, many phenotypic differences are apparent in 

individuals within the same and from distinct human populations. Genetic diversity 

underlying the remaining 0.1% nucleotide differences has been postulated to contribute to 

phenotypic diversity among humans, and to population-specific susceptibility to disease and 

variability in the response to pharmacological treatments (Bamshad et al. 2004; Daar and 

Singer 2005). The different prevalence of Mendelian diseases reflects variability in allele 

frequencies for specific genes and haplotypes, and the relevance of ethnic background in the 

susceptibility to disease is recognized for several disorders (Botstein and Risch 2003), 

including cystic fibrosis (Bobadilla et al. 2002), sickle cell anaemia, and deafness (Gasparini 

et al. 2000), among many others. Similarly, there are differences in the prevalence of 

common disorders and associated genetic variants in human populations, such as the factor V 

Leiden (venous thromboembolic disease) (Ridker et al. 1997), variants in the CARD15 gene 

(Crohn's disease) (Hugot et al. 2001), the CCR5–Δ32 variant (human immunodeficiency 

virus (HIV) infection and progression) (Stephens et al. 1998), and APOE e4 (Alzheimer's 

disease) (Farrer et al. 1997). There may be multiple variants of any given gene in the human 

population (alleles), leading to polymorphism; however, many genes have only one allele 

present in the population. 
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2.1.1 Polymorphisms 

Polymorphism, defined as a genetic variant that occurs in at least 1% of a population, differs 

from mutations, a heritable genetic variant present in <1% of the population. The term 

mutation is usually used for a rare deleterious genetic change that can cause disease. Some 

polymorphisms could contribute to predisposition to disease; examples include human ABO 

blood groups, human Rh factor, and human major histocompatibility complex (MHC). 

Polymorphic sequence variants usually do not cause overt debilitating diseases. Many are 

found outside of genes and are completely neutral in effect. Others may be found within 

genes, but may influence characteristics such as height and hair colour rather than 

characteristics of medical importance. However, polymorphic sequence variation does 

contribute to disease susceptibility and can also influence drug responses. 

 

2.1.2 Single Nucleotide Polymorphisms 

The most common type of variation in the human genome is the single nucleotide 

polymorphism (SNP), where a single base differs between individuals (Figure 1). SNPs occur 

about once every 1000 base pairs in the genome, making up the bulk of the three million 

variations found in the genome, and the frequency of a particular polymorphism tends to 

remain stable in the population. Unlike the other, rarer, kinds of variations, many SNPs occur 

in genes and in the surrounding regions of the genome that control their expression.  

Single nucleotide polymorphisms (SNPs) are common biallelic variations that are widely 

used as genetic markers in linkage analyses and association studies (Sachidanandam et al. 

2001). Most human SNPs satisfy the Hardy-Weinberg equilibrium (HWE), the condition of 

allelic independence, in which allele frequencies and genotype frequencies do not change 

over generations (Hardy 1908 cited in Lee et al. 2008). 

 

2.1.3 Copy Number Variations 

Copy number variation (CNV), one of the recently discovered classes of genetic variation, 
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Figure 1 Diagrammatic representation of Single Nucleotide Polymorphism. DNA molecule 1 

differs from DNA molecule 2 at a single base-pair location (a C/T polymorphism) (modified 

from en.wikipedia.org/wiki/Single-nucleotide_polymorphism). 

 

refers to alterations in DNA fragments larger than 1kb in length when compared to a 

reference genome. When such alterations (insertions and deletions) are less than 1kb, they are 

called INDELs. CNVs correspond to relatively large regions of the genome that have been 

deleted (fewer than the normal number) or duplicated (more than the normal number) on 

certain chromosomes. CNVs differ from SNPs, which affect only one single nucleotide base. 

A vast majority of CNVs are inherited; however, some are caused by de novo mutations (Lee 

et al. 2007). Cytogenetic techniques such as fluorescent in situ hybridization, comparative 

genomic hybridization, array comparative genomic hybridization, and virtual karyotyping 

with SNP arrays have been effectively applied in the detection of CNVs. Moreover, recent 

advances in DNA sequencing technology have further enabled the identification of CNVs by 

next-generation sequencing (Korbel et al. 2007; Mills et al. 2011). 

CNVs can be limited to a single gene or include a contiguous set of genes. It can result in 

having either too many or too few dosage-sensitive genes, which may be responsible for a 

substantial amount of human phenotypic variability, complex behavioural traits and disease 

susceptibility (Redon et al. 2006; Freeman et al. 2006).  

First discovered in 2004 (Iafrate et al. 2004; Sebat et al. 2004), CNVs have since received 

much attention because of their potential implication in common disease susceptibility. When 
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the variant frequency is larger than 1% in a population, it is called a copy number 

polymorphism (CNP). In some contexts, CNV stands for copy number variants (Korbel et al. 

2007), which refers to individuals whose copy number is different from the majority in a 

population. Copy number polymorphisms (CNPs) are of interest as they segregate at an 

appreciable frequency in the general population (> 1%) and are potentially implicated in the 

genetic basis of common diseases.     

Studies have shown that about 12 - 15% of the human genome is covered by copy number 

variations (Redon et al. 2006; Sebat et al. 2004). Furthermore, about 56% of the CNVs 

identified by Iafrate et al. (2004) and Zogopoulos et al. (2007) were in known genes. The 

large proportion of CNVs in the genome indicates that a significant number of SNPs may fall 

in these regions. Nguyen et al. showed that SNPs are significantly enriched in known human 

CNVs (Nguyen et al. 2006).  

Copy number variants (CNVs) can arise both meiotically and somatically, as shown by the 

finding that identical twins can have different CNVs (Bruder et al. 2008) and that repeated 

sequences in different organs and tissues from the same individual can vary in copy number 

(Piotrowski et al. 2008). The non-homologous recombination events that underlie changes in 

copy number also allow generation of new combinations of exons between different genes by 

translocation, insertion or deletion (Rotger et al. 2007; Feng et al. 2009), so that proteins 

might acquire new domains, and hence new or modified activities. 

 

2.2 Mechanisms of CNV formation 

CNVs form at rates far outstripping other kinds of mutagenesis, and appear to do so by 

similar mechanisms in bacteria, yeast, and human. Change in copy number involves change 

in the structure of the chromosomes and the mechanisms of all structural changes are the 

same as those that cause CNV. There are two general mechanisms that produce changes in 

the structure of chromosomes: homologous recombination (HR) and nonhomologous 

recombination. 
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2.2.1 Homologous Recombination 

HR requires extensive DNA sequence identity (about 50bp in E. coli
 
(Lovett et al. 2002), to 

as many as 300bp in mammalian cells and human (Liskay et al. 1987)) and most mechanisms 

also require a strand exchange protein, RecA in prokaryotes and its orthologue Rad51 in 

eukaryotes. HR underlies many DNA repair processes, and is also responsible for ordered 

segregation of chromosomes and for generating new combinations of linked alleles at 

meiosis. HR is used in repair of DNA breaks and gaps. The best studied mechanism of HR is 

double-strand break (DSB)-induced recombination. DSB repair can take place when either 

two double-stranded ends are present, or when there is only one. Either of these can lead to or 

avoid generation of copy-number variation.  When two double-stranded ends are involved, 

DSB repair can happen either by double Holliday junction model or by synthesis-dependent 

strand annealing model. While double Holliday junction DSB repair leads to gene conversion 

and crossing over, synthesis-dependent strand-annealing (SDSA) does not generate 

crossovers. Crossing-over between homologous chromosomes can lead to loss of 

heterozygosity (LOH) if the chromatids carrying the same alleles segregate together at 

mitosis. Duplication and deletion of sequence result from the formation of crossovers 

between homologies in non-allelic positions on the same chromosome (NAHR). 

CNVs can result from HR either via non-allelic homologous recombination (NAHR), break-

induced replication (BIR) or single-stranded annealing. NAHR is a recombination repair 

event that uses a direct repeat as homology. A crossover outcome from this event leads to 

products that are reciprocally duplicated and deleted for sequence between the repeats. These 

might segregate from each other at the next cell division, thus changing the copy number in 

both daughter cells (Figure 2A (i)). 

Another form of NAHR is BIR. In BIR, broken molecule uses ectopic homology to restart the 

replication fork. BIR forms duplications and deletions in separate events (Figure 2A (ii)). 

SSA does not require RecA/Rad51, but requires the annealing protein Rad52. SSA happens 

when neither end at a two-ended double-strand break invades homologous sequence. In this 

case, erosion of the 5′ ends continues, exposing substantial lengths of single-stranded 3′ ends. 

If this process exposes complementary sequences in the two single strands, annealing can 

occur. After removal of the flaps and ligation, the broken molecule has been repaired, but all 
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sequence between the repeat sequence and one of the repeats themselves have been deleted 

(Figure 2B). 

 
Figure 2 Change in copy number by homologous recombination. A (i) Non-allelic 

homologous recombination (NAHR). A (ii) Break-induced replication (BIR). B Single-strand 

annealing (SSA) (Hastings et al. 2009).  

 

2.2.2 Nonhomologous Recombination 

In contrast to HR, nonhomologous recombination mechanisms use only microhomology of a 

few complementary base pairs or no homology. Nonhomologous mechanisms can be divided 

into replicative and non-replicative mechanisms. 
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2.2.2.1 Non-Replicative Mechanisms 

Non-replicative mechanisms do not require homology or need very short microhomologies 

for repair. There are two sub-categories: Nonhomologous end joining and Breakage-fusion-

bridge cycle. Nonhomologous end joining is a type of DSB repair that either does not require 

homology or requires very short microhomologies for repair. There are two variants of this: 

nonhomologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ) 

(Lieber 2008). While NHEJ rejoins DSB ends accurately or leads to small 1-4 bp deletions, 

and also in some cases to insertion of free DNA, often from mitochondria or retrotransposons 

(Haviv-Chesner et al. 2007), MMEJ uses 5 to 25 bp long homologies to anneal to ends of 

DSBs and, like SSA, leads to deletions of sequences between annealed microhomologies. 

The second distinction between these pathways is that they require different proteins. Key 

proteins involved in NHEJ (Ku70/Ku80) are not required for MMEJ. Also the strand-

annealing protein Rad52 is not required for MMEJ, which distinguishes this pathway from 

SSA. 

In the Breakage-fusion-bridge cycle however, an unreplicated chromosome suffers a double-

strand break so that it loses a telomere. Upon replication, both sister chromatids lack 

telomeres. These two ends are proposed to fuse, forming a dicentric chromosome. At 

anaphase, the two centromeres of the dicentric chromosome are pulled apart, initially forming 

a bridge between the telophase nuclei. Eventually the bridge is broken in a random position. 

This inevitably leads to the formation of a large inverted duplication and process is repeated 

until the end acquires a telomere from another source. 

 

2.2.2.2 Replicative Mechanisms 

They are nonhomologous mechanisms that depend solely on replicative stress. Several 

studies (Kuo et al. 1994; Coquelle et al. 1997; Rozier et al. 2002) have shown that 

aphidicolin, an inhibitor of replicative DNA polymerases, induces CNV both at chromosomal 

fragile sites, and throughout the genome. Replicative mechanisms include: Replication 

slippage or template switching; Fork stalling and template switching; and Microhomology-

mediated break-induced replication. 

In replicative slippage, the length of lagging-strand template becomes exposed as a single 

strand during replication. Whether or not due to secondary structures in the lagging-strand 



17 
 

template, the 3′ primer end can move to another sequence showing a short length of 

homology on the exposed template and continue synthesis after having failed to copy part of 

the template. This results in a deletion (Figure 3A). Several variations on this mechanism can 

also produce a duplication of a length of DNA sequence with or without sister chromatid 

exchange (Lovett 2004).  

In Fork stalling and template switching (FoSTeS) (Lee et al. 2007) however, exposed single-

stranded lagging strand template might acquire secondary structures which can block the 

progress of the replication fork. The 3′ primer ends then become free from their templates, 

and might then alight on other exposed single-stranded-template sequence on another 

replication fork that shares microhomology, thus causing duplication, deletion, inversion or 

translocation depending on the relative position of the other replication fork. Fork stalling can 

be caused by other situations, such as lesions in the template strand or shortage of 

deoxynucleotide triphosphates (Figure 3B). 

Microhomology-mediated break-induced replication (MMBIR) occurs when replication fork 

collapse, and there is a break off of one arm of the fork. The collapse can be as result of the 

fork encountering a nick on a template strand, or can be caused by endonuclease. When this 

happens, the 5′ end of the broken molecule will be recessed from the break, exposing a 3′ tail. 

When insufficient RecA or Rad51 is present to allow invasion of homologous duplex, the 3′ 

tail will anneal to any exposed single stranded DNA that shares microhomology (Figure 3C).  

 

2.3 Copy Number Variations and Diseases 

Like other types of genetic variation, some CNVs have been associated with susceptibility or 

resistance to disease. Several studies have reported and assessed the role of CNVs in complex 

diseases including neurological disorders and leukaemia (Iafrate et al. 2004; Sebat et al. 

2004), autism, rheumatoid arthritis and idiopathic learning disability (Knight et al. 1999; Bae 

et al. 2008; Bassett et al. 2008; Ionita-Laza et al. 2008). Copy number of genes can be 

elevated in cancer cells. Studies carried out by Cappuzzo et al. (2005) reported a higher copy 

number of EGFR in non-small cell lung cancer. In addition, a higher copy number of 

CCL3L1 has been associated with lower susceptibility to HIV infection, and a low copy  
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Figure 3 Replicative mechanisms for nonhomologous structural change. A. Replication 

slippage. B. Fork stalling and template switching (FoSTeS). C. Microhomology-mediated 

break-induced replication (MMBIR) (Hastings et al. 2009). 
 

 

number of FCGR3B (the CD16 cell surface immunoglobulin receptor) can increase 

susceptibility to systemic lupus erythematosus and similar inflammatory autoimmune 

disorders (Gonzalez et al. 2005; Aitman et al. 2006). 
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Although most copy number variants exist in healthy individuals, these variants are however 

hypothesized to cause diseases through several mechanisms. First, copy number variants can 

directly influence gene dosage through insertions or deletions, which can result in altered 

gene expression and potentially cause genetic diseases. Gene dosage describes the number of 

copies of a gene in a cell, and gene expression can be influenced by higher and lower gene 

dosages. Deletions can also result in the unmasking of a recessive allele that would normally 

not be expressed. Structural variants that overlap a gene can reduce or prevent the expression 

of the gene through inversions, deletions, or translocations. Variants can also affect a gene's 

expression indirectly by interacting with regulatory elements (position effect). For instance, if 

a regulatory element is deleted, a dosage-sensitive gene might have a lower or higher 

expression than normal. Sometimes, the combination of two or more copy number variants 

can produce a complex disease, whereas individually the changes produce no effect. Some 

variants are flanked by homologous repeats, which can make genes within the copy number 

variant susceptible to non-allelic homologous recombination and can predispose individuals 

or their descendants to a disease (Freeman et al. 2006). Additionally, complex diseases might 

occur when copy number variants are combined with other genetic and environmental factors 

(Feuk et al. 2006). 

 

2.4 CNV Identification Algorithms 

Detection of chromosomal copy number changes in the human genome has been conducted 

using array-based technologies. Recent studies have identified numerous copy number 

variants (CNV) and some are common polymorphisms that may play a role in disease 

susceptibility. CNVs have been identified as a potential factor responsible for a significant 

proportion of human phenotypic variability that remains unexplained (McCarroll and 

Altshuler 2007; Ionita-Laza et al. 2009). Several technologies such as multiple ligation-

dependent probe amplification and array comparative genomic hybridization can be used to 

characterize CNV genotypes.  There are several CNV detection methods; however, 

differences in CNV call threshold and characteristics exist. 

Experimental techniques used in detecting CNVs include bacterial artificial chromosome 

(BAC) arrays, paired end mapping, fluorescent in situ hybridization, representational 

oligonucleotide microarray analysis (ROMA) and whole genome single nucleotide 

polymorphism (SNP) arrays (Iafrate et al. 2004). As the use of genome-wide association 
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studies (GWAS) increase, SNP arrays with high density (>300,000 SNPs) have become a 

convenient tool for studying CNVs. Accurate CNV detection in SNP arrays require 

sophisticated algorithms or statistical methods. Several factors including robustness of the 

statistical method, batch effect, population stratification and differences between experiments 

influence the accuracy of CNV boundaries derived from SNP arrays. 

To date, there are several detection methods available for identifying CNVs from genome-

wide SNP array data, and the statistical methods underlying these approaches include Hidden 

Markov Models (HMMs) (Colella et al. 2007; Wang et al. 2007), segmentation algorithms 

(Hupé et al. 2004; Olshen et al. 2004), t-tests and standard deviation (SDs) of the log R Ratio 

(LRR) (Fiegler et al. 2006). 

 

2.4.1 Sample-based CNV Calling Algorithms 

Sample-based algorithms otherwise referred to as non-segmenting algorithms, perform CNV 

identification on an individual level. Most algorithms in this category are based on the 

differences in the Log R Ratio (LRR), a measure of the normalised total signal intensity, and 

B-Allele frequency (BAF), a measure of the normalised allelic intensity ratio measurements 

between samples and a model learned from a reference set. They perform well for large 

deletions and amplifications but are sensitive to intensity noise. 

 

2.4.1.1 PennCNV 

PennCNV is an integrated Hidden Markov Model (HMM) algorithm for detecting CNVs with 

high resolution using the Illumina Infinium assay. Hidden Markov Model is a statistical 

technique that models a Markov process, where the probability of observing a particular state 

at a particular time point only depends on the states at previous time points. HMM provides a 

natural statistical framework for modelling dependence structures between copy numbers at 

nearby SNPs. To detect CNVs, PennCNV uses the first-order HMM that assumes that the 

hidden copy number state at each SNP depends only on the copy number state of the most 

preceding SNP (Wang et al. 2007).  

PennCNV models LRR and BAF, and developed more realistic models for state transition 

between different copy number states. Additionally, PennCNV incorporates the population 
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allele frequency for each SNP and the distance between adjacent SNPs. Unlike many other 

algorithms that use conventional ―loss‖, ―normal‖, and ―gain‖ to model CNV states, 

PennCNV uses a six-state definition (Colella et al. 2007) to model CNV events more 

precisely (Table 1). GenomeStudio software from Illumina displays two summary measures 

for a genotype signal at each SNP:  LRR and BAF. The patterns of LRR and BAF in regions 

with copy number changes are demonstrated in Figure 4. The combination of LRR and BAF 

can be used together to determine several different copy numbers and to differentiate copy-

neutral LOH (loss of heterozygosity) regions from normal state regions, supporting the utility 

of six distinct copy number states in the modelling strategy. 

PennCNV however provides quality filtering criteria for removing unreliable calls so as to 

reduce false discovery rate. A confidence score of 10 with the CNV spanning at least 3SNPs 

have been suggested. Moreover, family information could be incorporated in the analysis and 

helps to eliminate CNVs that are incompatible with Mendelian inheritance, thus improve the 

accuracy of the CNV calling and boundary prediction. Figure 5 outlines the procedure for 

CNV identification in PennCNV. 

 

Table 1 Hidden states, copy numbers, and their description 

 

Copy no. 

State 

Total 

copy no. 

Description 

(for autosome) CNV genotypes 

1 0 Deletion of two copies Null 

2 1 Deletion of one copy A, B 

3 2 Normal state AA, AB, BB 

4 2 Copy-neutral with LOH AA, BB 

5 3 Single copy duplication AAA, AAB, ABB, BBB 

6 4 Double copy duplication AAAA, AAAB, AABB, ABBB, BBBB 

Each state has a different distribution of CNV genotypes 
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Figure 4 An illustration of log R Ratio (LRR) and B Allele Freq (BAF) values for the chromosome 

15 q-arm of an individual. A normal chromosome region has three BAF genotype clusters, 

represented as AA, AB, and BB genotypes in boxes and with LRR values centred around zero. The 

copy-neutral LOH region has normal LRR values, but without the AB genotype cluster. The increased 

copy number for a CNV region can be detected based on an increased number of peaks in the BAF 

distribution, as well as increased LRR values. The patterns of LRR and BAF for different CNV 

regions, normal regions, and copy-neutral LOH regions are distinct from each other, thus the 

combination of LRR and BAF can be used to generate CNV calls (Wang et al. 2007). 

 

 

2.4.1.2 QuantiSNP 

QuantiSNP is a novel computational framework for detecting regions of copy number 

variation from Bead Array™ SNP genotyping data using an Objective Bayes Hidden-Markov 

Model (OB-HMM) (Colella, et al. 2007). Objective Bayes measures are used to set certain 

hyperparameters in the priors using a novel re-sampling framework to calibrate the model to 

a fixed Type I (false positive) error rate. Other parameters are set via maximum marginal 

likelihood to prior training data of known structure. QuantiSNP provides probabilistic 

quantification of state classifications and significantly improves the accuracy of segmental 

aneuploidy identification and mapping. QuantiSNP and PennCNV use different HMMs. 

While PennCNV uses a first-order HMM, QuantiSNP uses an Objective Hidden Markov 

Model (OB-HMM) to infer copy number variation. In the model, the hidden states are the 

(unknown) copy number at each SNP. The states are inferred in terms of LRR and BAF for 

each SNP. Table 2 lists the hidden states used in QuantiSNP’s HMM. In Bayesian inference, 
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Figure 4 A flowchart outlining the procedure for CNV calling from genotyping data. The 

first step for LRR and BAF calculation can be alternatively performed by the BeadStudio 

software, given a clustering file containing canonical genotype cluster positions. The HMM 

integrates several sources of information to give CNV calls. When genotype data are 

available for family members, the pedigree information can be incorporated to model CNV 

events more accurately (Wang et al. 2007). 

 

 

 

prior probability models are developed for unknown parameters and these prior beliefs are 

then updated in light of new data, using Bayes’ Rule, to give posterior probability 

distributions for the parameters. In a subjective Bayesian approach, prior distributions are 

elicited using expert knowledge or personal beliefs, and the Bayesian framework provides a 

powerful means by which to incorporate such information into an inference problem.  

In QuantiSNP, model parameters are learnt from the data using an Expectation Maximization 

(EM) algorithm. QuantiSNP assigns a Bayes Factor (BF) to each region of copy number 
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variation detected. Bayes Factor provides a probability measure of the strength of evidence 

from the data for the presence of copy number variant in a region versus the null hypothesis 

that there is no variant. The greater the value of BF, the stronger the evidence for the 

existence of a copy number variant. Table 3 shows the relationship between log Bayes Factor 

and false discovery. To reduce the number of false positive calls, a BF value of 10 has been 

suggested appropriate for filtering identified CNVs by QuantiSNP  

. 

Table 2 Hidden states, associated copy numbers and biological interpretation in QuantiSNP 

Hidden 

state, z 

Copy number, 

c(z) 

Number of 

genotypes, K(z) Description 

1 0 0 Full deletion 

2 1 1 Single copy deletion 

3 2 2 Normal (heterozygote) 

4 2 3 Normal (homozygote) 

5 3 4 Single copy duplication 

6 4 5 Double copy duplication 

 

 

While QuantiSNP uses a fixed rate of heterozygosity for each SNP, PennCNV generates a 

hidden state for copy neutral loss of heterozygosity (LOH) and uses each population-based 

BAF of the SNP to infer CNVs. 

Table 3 Log Bayes Factor and False Discovery used in filtering identified CNVs 

Log Bayes Factor  False CNVs per/sample 

0 10.84 

5 0.84 

10 <1 

 

 

2.4.1.3 cnvPartition 

cnvPartition, developed by Illumina, is available as a plug-in in the GenomeStudio software. 

It is based on the assumption that majority of the CNV vary between 0 and 4 copies, thus 

yielding five options: homozygous deletion, heterozygous deletion, dizygous (normal state), 

trizygous (one extra copy), and tetrazygous (two extra copies) (Table 4). cnvPartition models 
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LRR and BAF as a simple bivariate Gaussian distribution for each of the 14 possible 

genotypes. cnvPartition implemented in the Illumina GenomeStudio software uses an 

undocumented method of CNV detection. However, the program provides confidence score 

(threshold) for filtering the identified CNVs. Based on experience, a score of 10 is 

appropriate for the filtering. 

 

Table 4 Copy numbers and states used in cnvPartition 

Copy 

Number State Description 

0 Homozygous  Single copy deletion 

1 Heterozygous Double copy deletion 

2 Dizygous Normal state 

3 Trizygous Single copy duplication 

4 Tetrazygous Double copy duplication 

 

 

2.4.2 Segment-based CNV Identification Algorithms: CNstream 

Segment-based algorithms, otherwise called segmentation algorithms, take information at the 

same locus from multiple samples to perform CNV identification. Although the primary raw 

data used for detecting CNVs from SNP arrays are the SNP intensity measured by LRR, 

some methods also use BAF to enhance detection. Circular Binary Segmentation (CBS) 

(Olshen et al. 2004), Nexus 4.1 Rank and Nexus 4.1 SNPRank use the same segmentation 

algorithm that recursively divides chromosomes into segments of common intensity 

distribution functions. However, while CBS has no inherent method of determining segment 

significance, Nexus uses an undocumented equation to compute segment significance. 

CNstream is an R-statistical software package for whole-genome CNV discovery and 

genotyping specifically adapted for Illumina arrays, thus, the required data for the analysis 

can be directly extracted from GenomeStudio without any formatting step. It is an algorithm 

for detecting whole-genome copy number polymorphisms (CNP) (Alonso et al. 2010). It is 

based on a robust single locus scoring algorithm followed by a segment-based genotyping 

algorithm – multilocus calling. It performs a joint calling at each probe of multiple samples 
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and increases the accuracy of the CNP calls by considering the scores of nearby and 

consecutive markers. Fully implemented of R statistical software, the CNstream method is 

publicly available. The algorithm takes the X and Y channel intensities (measuring A and B 

alleles, respectively) as arguments. 

CNstream performs CNP identification in four major steps: Pre-processing, SNP genotyping, 

Single-locus scoring, and Segment-based calling (Figure 6). Pre-processing is an optional 

step as the data are normalised by Illumina genotyping software. However, in order to reduce 

inter-plate variability, CNstream performs per-plate normalisation if the user includes the 

plate number of each sample. By applying a clustering algorithm, the algorithm determines 

the SNP genotype. Copy number scores for each probe are computed by combining the 

estimated number of copies of each intensity channel for each sample using a single-locus 

scoring approach. After single-locus scoring, CNstream analyses the scores obtained for each 

sample along a set of consecutive and nearby probes, referred to as segments. It outputs all 

the probe segments in which copy number frequency exceeds the frequency threshold 

(default=1%).  

 

2.5 Prostate Cancer 

Prostate cancer is cancer that starts in the prostate gland. The prostate is a small, walnut-sized 

structure that makes up part of a man's reproductive system. It wraps around the urethra, the 

tube that carries urine out of the body. Although most prostate cancers are slow growing, 

there are cases of aggressive prostate cancer. In 2009, Sam Lister reported that about two-

thirds of cases are slow growing, the other third more aggressive and fast developing (Lister 

2009). Studies carried out by Siegel et al. (2011) shows that the more aggressive prostate 

cancers account for more cancer-related mortality than any other cancer except lung cancer. 

The cancer cells may spread from the prostate to other parts of the body, and it may cause 

pain, difficulty in urinating, problems during sexual intercourse, or erectile dysfunction.  The 

development of prostate starts before birth and it grows rapidly during puberty, accelerated 

by male hormones (androgens) in the body. Prostate cancer is the most common cause of 

death from cancer in men over age 75 and it is rarely found in men younger than 40. People 

who are at higher risk include: African-American men, who are also likely to develop cancer 

at every age, men who are older than 60 and men who have a father or brother affected with 

prostate cancer.  
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Figure 6 Flowchart of CNstream processing steps. Data processing with CNstream is 

organized into four functional modules: Pre-processing, SNP genotyping, Single-locus 

scoring and Segment-based calling (Alonso et al. 2010). 

 

As of 2011, prostate cancer is the second most frequently diagnosed cancer and the sixth 

leading cause of cancer death in males worldwide (Jemal et al. 2011). Rates of prostate 

cancer vary widely across the world. Although the rates vary widely between countries, it is 

least common in South and East Asia, more common in Europe, and most common in the 

United States (Parkin et al. 1997).  
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Epidemiological and genetic studies have reported familial clustering of prostate and breast 

cancers. Causes of prostate cancer are essentially unknown. Several epidemiological studies 

have suggested various factors that might play a role in prostate cancer risk. These factors 

include history of benign prostate hyperplasia (BPH) (Chokkalingam et al. 2003; Guess 

2001), history of high-grade prostatic intraepithelial neoplasia (PIN) (Bostwick and Qian 

2004), and alcohol consumption (Sommer et al. 2004) to mention but a few. However, a lot 

of inconsistencies have been observed in these results. Age, ethnicity and family history are 

the only well-documented risk factors for prostate cancer (Crawford 2003). Furthermore, 

many factors, including genetics and diet, have been implicated in the development of 

prostate cancer. The presence of prostate cancer may be indicated by symptoms, physical 

examination, prostate-specific antigen (PSA), or biopsy. 

Defining the full range of molecular genetic alterations in prostate cancer should provide 

improved understanding and new targets for prevention and treatment. The molecular 

alterations underlying prostate cancer are partially understood (DeMarzo et al. 2003; Shen 

and Abate-Shen 2010). Common events include deletion of tumor suppressors, including 

CDKN1B (p27/KIP1), RB1, TP53, PTEN and the prostate-specific homeobox transcription 

factor NKX3-1. Amplification of the MYC oncogene is also frequent. In addition, oncogenic 

fusions driving ETS-family oncogenic transcription factors (ERG, ETV1, ETV4 and ETV5), 

most commonly as TMPRSS2-ERG, have been identified in approximately half of prostate 

cancers. Androgen receptor alterations, including amplification and rearrangement, can also 

occur in castration-recurrent prostate cancer. More recently, genomic profiling by 

comparative genomic hybridization (CGH) and single-nucleotide polymorphism arrays have 

provided comprehensive views of DNA copy number alterations in prostate cancer (Lapointe 

et al. 2004; Kim et al. 2007; Robbins et al. 2011), and have led to the nomination of new 

prostate cancer genes, for example, NCOA2 (Taylor et al. 2010). Next-generation genome 

sequencing is also now beginning to reveal the full landscape of somatic rearrangements 

(Berger et al. 2011). Although several susceptibility loci have been identified by various 

research groups worldwide, yet the genetic defect underlying prostate cancer is unknown. 

Over the years, there have been many published reports of possible linkage of prostate cancer 

susceptibility to different chromosomes, but the results have not always been reproducible 

between studies (Table 5). 
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2.6 Breast Cancer 

Breast cancer is a malignant tumor that starts in the cells of the breast. A malignant tumor is a 

group of cancer cells that can invade surrounding tissues or spread (metastasize) to distant 

areas of the body. The disease occurs almost entirely in women, but men can get it, too. The 

female breast is made up mainly of lobules (milk-producing glands), ducts (tiny tubes that 

carry the milk from the lobules to the nipple), and stroma (fatty tissue and connective tissue 

surrounding the ducts and lobules, blood vessels, and lymphatic vessels). Most breast cancers 

begin in the cells that line the ducts (ductal cancers). Some begin in the cells that line the 

lobules (lobular cancers), while a small number start in other tissues (Sariego 2010). Studies 

have shown that breast cancer comprises 22.9% of all cancers (excluding non-melanoma skin 

cancers) in women. In 2008, breast cancer caused 458,503 deaths worldwide (13.7% of 

cancer deaths in women). Breast cancer is more than 100 times more common in women than 

 

Table 5 Putative prostate cancer susceptibility loci (modified from omim.org). 

Location Gene/Locus Ensembl Gene ID References 

1q25.3 RNASEL ENSG00000135828 Smith et al. 1996 

1q42.2-q43 PCAP NA Berthon et al. 1998 

3p26 HPC5 NA Rokman et al. 2005 

7p22.3 MAD1L1 ENSG00000002822 Tsukasaki et al. 2001 

7p11-q21 HPC4 NA Friedrichsen et al. 2004 

7q11.23 HIP1 ENSG00000127946 Rao et al. 2002 

8p22 MSR1 ENSG00000038945 Xu et al. 2001 

10p15.1 KLF6 ENSG00000067082 Narla et al. 2001 

10q23.31 PTEN ENSG00000171862 Cairns et al. 1997 

10q25.2 MXI1 ENSG00000119950 Eagle et al. 1995 

11p11.2 CD82 ENSG00000085117 Dong et al. 1995 

13q13.1 BRCA2 ENSG00000139618 Gronberg et al. 2001 

16q22.1 CDH1 ENSG00000039068 Jonsson et al. 2004 

16q22.2-q22.3 ZFHX3 ENSG00000140836 Sun et al. 2005 

17p12 ELAC2 ENSG00000006744 Rokman et al. 2001 

19q HPCQTL19 NA Witte et al. 2000 

20q13 HPC3   NA Berry et al. 2000 

22q12.1 CHEK2 ENSG00000183765 Dong et al. 2003 

22q12.3 HPC6 NA Xu et al. 2005 

Xq12 AR ENSG00000169083 Gaddipati et al. 1994 
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in men, although males tend to have poorer outcomes due to delays in diagnosis (World 

cancer report).  

The first noticeable symptom of breast cancer is typically a lump that feels different from the 

rest of the breast tissue. Research has shown that more than 80% of breast cancer cases are 

discovered when the woman feels a lump. The earliest breast cancers are detected by a 

mammogram. Lumps found in lymph nodes located in the armpits can also indicate breast 

cancer (Merck Manual of Diagnosis and Therapy, 2003). Indications of breast cancer other 

than a lump may include changes in breast size or shape, skin dimpling, nipple inversion, or 

spontaneous single-nipple discharge. Pain is an unreliable tool in determining the presence or 

absence of breast cancer, but may be indicative of other breast health issues.  

The primary risk factors for breast cancer are female sex (Giordano et al. 2004), age,
 
lack of 

childbearing or breastfeeding (Collaborative Group on Hormonal Factors in Breast Cancer 

2002), higher hormone levels (Yager and Davidson 2006; Santoro et al. 2009), race, 

economic status and dietary iodine deficiency (Venturi 2001; Aceves et al. 2005). The 

incidence of breast cancer varies greatly around the world: it is lowest in less-developed 

countries and highest in the more-developed countries. The number of reported cases has 

witnessed a significantly increase since the 1970s, a phenomenon partly attributed to the 

modern lifestyles. Breast cancer is strongly related to age with only 5% of all breast cancers 

occurring in women under 40 years old (Breast Cancer, 2006). 

To date, 22 common breast cancer susceptibility loci have been identified accounting for 

~8% of the heritability of the disease (Table 6). Only a very small fraction of cases in the 

general population, however, can be explained by high-penetrance breast cancer 

susceptibility genes, such as BRCA1 and BRCA2, besides, little mutations have been found at 

these loci in the Finnish population. 

In 2002, Thompson et al evaluated the contribution of the BRCA3 locus on 13q21 to breast 

cancer susceptibility in 128 high-risk breast cancer families of western European ancestry 

with no identified BRCA1 or BRCA2 mutations. No evidence of linkage was found. They 

therefore concluded that, if a susceptibility gene does exist at 13q21, it can account for only a 

small proportion of non-BRCA1/2 families with multiple cases of early-onset breast cancer 

(Thompson et al. 2002). 
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Table 6 Putative breast cancer susceptibility loci (modified from omim.org). 

Location Gene/Locus Ensembl Gene ID References 

1p34.1  RAD54L ENSG00000085999 Matsuda et al. 1999 

2q33.1 CASP8 ENSG00000064012 MacPherson et al. 2004 

2q35 BARD1 ENSG00000138376 Thai et al. 1998 

3q26.32 PIK3CA ENSG00000121879 Lee et al. 2005 

5q34 HMMR ENSG00000072571 Pujana et al. 2007 

6p25.2 NQO2 ENSG00000124588 Yu et al. 2009 

8q11.23 RB1CC1 ENSG00000023287 Chano et al. 2002 

11p15.4 SLC22A1L ENSG00000110628 Gallagher et al. 2006 

11p15.1 TSG101 ENSG00000074319 Steiner et al. 1997 

11q22.3 ATM ENSG00000149311 Broeks et al. 2000 

12p12.1 KRAS ENSG00000133703 Yanez et al. 1987 

13q13.1 BRCA2 ENSG00000139618 Healey et al. 2000 

14q32.33 XRCC3 ENSG00000126215 Kuschel et al. 2002 

14q32.33 AKT1 ENSG00000142208 Carpten et al. 2007 

15q15.1 RAD51A ENSG00000051180 Wang et al. 1999 

16p12.2 PALB2 ENSG00000083093 Erkko et al. 2007 

16q22.1 CDH1 ENSG00000039068 Berx et al. 1995 

17p13.1 TP53 ENSG00000141510 Borresen et al. 1992 

17q21.33 PHB ENSG00000167085 Jupe et al. 2001 

17q23.2 PPM1D ENSG00000170836 Li et al. 2002 

17q23.2 BRIP1 ENSG00000136492 Cantor et al. 2001 

22q12.1 CHEK2 ENSG00000183765 Walsh et al. 2006 
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3 Study Objectives 

The present genome-wide association study (GWAS) was carried out with the following aims 

and objectives: 

1. To study CNVs’ contribution to genetic diseases using familial prostate and breast 

cancers as case studies 

2. To assess and compare the performance of different CNV calling algorithms with the 

aim of knowing the degree of agreement between the different algorithms used in the 

study 

3. To study heritability of CNVs in a bid to unravelling the genetic predisposition to 

cancer types in question.   
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4 Materials and Methods 

 

4.1 Study Objects 

4.1.1 HPC Families 

In the present GWAS, 31 Hereditary Prostate Cancer (HPC) families consisting 102 cases, 33 

controls, and 7 mothers from different families, were genotyped using Illumina 

HumanOmniExpress-12v1 genotyping microarray with approximately 700,000 markers 

(SNPs) per sample covering the entire genome. The families were evaluated by the number of 

affected individuals in the family and the number of relatives from whom blood sample was 

available for genotyping. 

The families selected had at least three first or second-degree relatives affected and at least 

two affected individuals were genotyped from each family. Table 7 shows the characteristics 

of the 31 HPC families. 

 

4.1.2 Breast Cancer Families 

In the case of the breast cancer (BrCa) dataset, 84 and 36 cases and controls samples 

respectively were genotyped using Illumina HumanCytoSNP-12 genotyping microarray 

(HUMAN_CYTO_SNP-12V2) with approximately 300,000 markers (SNPs) per sample 

covering the entire genome. The samples have been tested negative for BRCA1/BRCA2 

mutation. Each of the cases and controls was selected from different families and as such, the 

BrCa data was treated as a case-control study. 

LRR, BAF, channel X and Y intensities from each sample were exported from the 

normalized Illumina data through the GenomeStudio software (GSGTv1.7.4) to perform 

CNV identification. 
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4.2 Methods 

4.2.1 Quality Control Measures 

The genotypings using Illumina HumanOmniExpress (OmniExpress) and HumanCytoSNP-

12 BeadChips for PrCa and BrCa samples respectively were done according to the 

manufacturer’s protocol. Filtering criteria adopted by Singapore Genome Variation Project 

(SGVP) were applied to remove unsuitable samples  (Teo et al. 2009b). 

 

4.2.1.1 Pre-CNV Identification 

This was carried out to remove unsuitable samples based on genotype call rates before CNV 

calling. All samples have call rates greater than 99.5% and thus were all included in the CNV 

calling.   

 

4.2.1.2 Post-CNV Identification 

Applying a set of filtering criteria as recommended by PennCNV, individuals not meeting at 

least one of the CNV specific quality control metrics were excluded from further analysis: 

LRR-Standard Deviation>0.25, 0.45>BAF-median>0.55, BAF-drift>0.002, and –0.04>Wave 

Factor >0.04 (Wang et al. 2007). Consequently, 81 cases and 35 controls samples from the 

BrCa data and all the samples from the PrCa data were suitable for this analysis.   

 

4.2.2 CNV Identification and Construction of CNV Loci 

Three sample-based algorithms and one segment-based algorithms were applied: cnvPartition 

[v3.1.6], PennCNV [2009Aug27] (Wang et al. 2007), QuantiSNP [v2.3] (Colella et al. 2007), 

and CNstream [v1.0] (Alonso et al. 2010).  

The underlying statistical models for the four CNV identification algorithms differ by varying 

degrees. The primary raw data used for detecting CNVs from SNP arrays are the SNP 

intensity measured by LRR. Some methods also use BAF to enhance detection. CNstream on 

the other hand uses the channel X and Y intensities of each sample.  
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Table 7 Characteristics of the 31 HPC families 

 

FamilyID TotalAffected
a 

TotalGenotyped
b 

NumberCases
c
  NumberControls

d 

2015 7 4 3 1 

2017 - 2 - 2 

2033 4 3 3 - 

*2062 7 5 4 - 

2074 4 4 2 2 

2145 4 4 3 1 

2232 3 4 2 2 

*2241 3 4 3 - 

2248 4 3 2 1 

2275 5 4 3 1 

*2279 4 5 4 - 

2283 7 3 2 1 

2292 4 5 4 1 

2308 6 5 5 - 

2374 3 4 3 1 

2375 6 7 5 2 

2386 6 4 3 1 

2394 5 4 3 1 

2396 5 5 5              - 

2399 4 5 3 2 

2401 4 5 3 2 

2414 3 5 3 2 

2421 4 5 3 2 

2427 6 6 5 1 

*2429 4 6 3 2 

2431 5 3 3 - 

2435 4 3 3 - 

2442 5 4 3 1 

2449 8 8 7 1 

*2450 4 5 3 1 

**2455 5 8 4 2 
a
TotalAffected column (Total number of individuals affected in the family), 

b
TotalGenotyped 

column (Total number of individuals genotyped from the family), 
c
NumberCases column 

(Number of affected individuals genotyped), 
d
NumberControls column (Number of 

unaffected individuals genotyped). Asterisked families are the families with genotyped 

mothers. The number of asterisks corresponds to the number of mother genotyped in the 

family. 

 

 

cnvPartition, developed by Illumina, is available as a plug-in in the GenomeStudio software. 

It is based on the assumption that majority of the CNV vary between 0 and 4 copies, thus 
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yielding five options: homozygous deletion, heterozygous deletion, dizygous (normal state), 

trizygous (one extra copy), and tetrazygous (two extra copies). cnvPartition models LRR and 

BAF as a simple bivariate Gaussian distribution for each of the 14 possible genotypes. 

PennCNV and QuantiSNP algorithms use different Hidden Markov Models (HMMs). The 

PennCNV uses the combined LRR and BAF of the SNP to infer CNVs, while the QuantiSNP 

treats them independently. 

All the three sample-based algorithms utilized in this GWAS provide confidence score to 

allow the filtering of CNV and limit false positive calls. In the case of QuantiSNP, the 

confidence score is the Log Bayes Factor (LBF). The score is a measure of the likelihood that 

the region harbours an abnormal copy number. A score of 10 or larger has been suggested as 

a threshold to classify reliable CNV calls (Colella et al. 2007). PennCNV also provides 

similar score in term of confidence threshold. Consequently, a score of 10 was used as 

threshold for PennCNV and the same value was used for cnvPartition and QuantiSNP (from 

experience). 

CNV regions identified by the sample-based algorithms were merged into discrete, non-

overlapping loci with boundaries of each locus determined by the union of all CNV regions 

that belong to that particular locus, using ―anyOverlap‖ criterion (Redon et al. 2006). In the 

event that both duplications and deletions were observed in a particular locus, two separate 

loci were identified for each form of CNV. 

 

4.2.3 Case-Control Association Test 

Having constructed the CNV loci, the proportion (number) of cases and controls harbouring a 

CNV at a particular locus was estimated and a fisher’s exact test was carried out to obtain the 

p-value and odds ratio. In order to handle the exception of non-numerical p-value as a result 

of zero denominators in calculating odds ratio, VCD package was loaded and implemented 

on R to estimate numerical values of odds ratio. VCD handles this by adding a factor of 0.5 to 

both the denominators and numerators thus yielding a numerical value of odds ratio as 

against ―Inf‖ returned by fisher’s exact test. 

In the case of CNstream, a status file was supplied and the association test was carried out. A 

status file is a plain text file where each line corresponds to the status of one sample (0 for 
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controls and 1 for cases). The samples must be sorted in the same way as the input signal 

intensity file. With this file supplied, CNstream performs a chi-square test for each CNP 

segment and includes in the results file some informative fields such as the p-value and odds 

ratio.     

 

4.2.4 Novel CNV Loci 

In order to identify novel CNV loci, non-overlapping CNV loci obtained in this study were 

compared with CNV loci published in the Database of Genomic Variants [DGV] (Iafrate et 

al. 2004). Latest version of DGV in Build 36 of the human genome – hg18 

(variation.hg18.v10.nov.2010.txt) was downloaded from the DGV website 

(http://projects.tcag.ca/variation/). This was done because the genotyping was done with 

Build 36 of the human genome. A CNV locus was declared novel CNV if it does not share at 

least 50% of its length with any established CNV loci in the DGV database. The 

―scan_region.pl‖ script of the PennCNV was very resourceful in accomplishing this task. The 

novel CNVs identified in this study were used in the comparison to return a list of putative 

novel loci common to the two datasets. 

 

4.2.5 Mapping against Annotated Genes and Disease-Associated CNV Loci 

In order to identify genes that are located within or partially overlap with the CNV loci, the 

CNV loci were queried for overlap against Refseq genes annotation. In the case of intergenic 

CNVs, the loci were expanded both upstream and downstream to identify the neighbouring 

genes with the corresponding distance.  

To identify loci that warrant further investigation for their roles in complex disease, identified 

loci were queried for overlap against the genes listed in the Online Mendelian Inheritance in 

Man (OMIM) Morbid Map (http://www.ncbi.nlm.nih.gov/omim/).  
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4.2.6 Enrichment Analysis 

Enrichment analysis was done using Gene Set Analysis ToolkitV2 – webGestalt 

(http://bioinfo.vanderbilt.edu/webgestalt/) provided by Bing Zhang (Zhang  2005; Duncan 

2010). The following enrichment analysis were carried out:  Gene Ontology (GO), KEGG 

pathways, Pathway Commons, and Wikipathways. 

The Gene Ontology project (The Gene Ontology Consortium 2008) is a major bioinformatics 

initiative with the aim of standardizing the representation of gene and gene product attributes 

across species and databases. The project provides a controlled vocabulary of terms for 

describing gene product characteristics and gene product annotation data from GO 

Consortium members, as well as tools to access and process this data. The Gene Ontology 

project provides an ontology of defined terms representing gene product properties. The 

ontology covers three domains: cellular component, the parts of a cell or its extracellular 

environment; molecular function, the elemental activities of a gene product at the molecular 

level, such as binding or catalysis; and biological process, operations or sets of molecular 

events with a defined beginning and end, pertinent to the functioning of integrated living 

units: cells, tissues, organs, and organisms. 

The KEGG Pathway Analysis component can be used to find clusters of co-expressed genes 

sharing the same pathway. KEGG, which stands for Kyoto Encyclopedia of Genes and 

Genomes, has become a major resource for pathway analysis and contains a wealth of data 

associated with pathways, genes, genomes, chemical compounds and reaction information, in 

addition to links to outside resources such as PubMed (Kanehisa et al. 2006).  

The Pathway Commons (Cerami et al. 2006) ontology contains data on pathways from 

multiple sources. Pathways include biochemical reactions, complex assembly, transport and 

catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules 

and complexes. 

WikiPathways (Pico et al. 2008) is an open, collaborative platform dedicated to the curation 

of biological pathways It provides a graphical pathway editing tool and integrated databases 

covering major gene, protein, and small-molecule systems. 

Due to the size and nature of the data, the gene lists used in gene ontology were generated 

using varying criteria: odds ratio greater than 1 and 2. This was done in order not to lose 
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meaningful information since statistical significance does not guarantee biological 

significance.   

 

4.2.7 CNV Mapping 

Ensembl’s karyograph tool was used in generating the karyograph of the identified CNVs 

(http://may2009.archive.ensembl.org/Homo_sapiens/Location/Genome/). This was the latest 

version in Build 36 of the human genome.   

In addition to the methods described above, a family-based analysis was carried out on the 

PrCa dataset. In this analysis, CNVs overlapping genomic regions were analysed for 

enrichment in certain families. Using the total number of cases in the family, number of cases 

(affected individuals) genotyped in the family and number of cases harbouring the variation 

(CNV), the percentage of case CNV in each family was estimated. Enrichment was declared 

if at least 50% of the total number of cases in the family and/or cases genotyped harbours the 

variation. 
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5 Results 

5.1 Characteristics CNV Regions and Loci 

In this genome-wide analysis study, both CNVs and INDELs (insertions and deletions < 1kb) 

were obtained in PrCa dataset. The study focuses only on CNVs; however, the INDELs were 

also noted. 

After applying series of CNV quality filtering criteria as recommended by the different 

algorithms on the PrCa dataset, a total of 544, 639, 509 and 385 CNVs with a median size of 

15.0kb, 13.8kb, 23.8kb and 22.1kb were detected by PennCNV, QuantiSNP, cnvPartition and 

CNstream respectively (Figures 9). Majority of the CNVs detected in this GWAS were 

distributed within 10-50kb, however, the individual-based CNV calling programs (PennCNV, 

QuantiSNP) with the exception of cnvPartition have a larger number of their variants within 

1-10kb. Figure 5 and Table 8 show the frequency distribution of CNV sizes as detected by 

the various algorithms in PrCa dataset. 

Merging the CNV loci detected by the sample-based CNV calling algorithms yielded a total 

of 764 non-overlapping loci of which 51.3% (392/764) overlap with RefSeq genes.  

CNstream detected only 32.1% (245/764) and 30.4% (119/392) of the total CNVs and CNVs 

overlapping RefSeq genes respectively.  

In the case of BrCa dataset however, a total of 273, 295, 211 and 404 CNVs with a median 

size of 50.5kb, 55.5kb, 90.4kb and 35.3kb were detected by PennCNV, QuantiSNP, 

cnvPartition and CNstream respectively (Figure 10). Majority of the CNVs identified in this 

GWAS were distributed within 10 - 50kb. Figure 6 and Table 9 show the distribution of CNV 

sizes detected by various algorithms in the BrCa dataset. 

Comparing and merging the CNV loci from PennCNV, QuantiSNP and CNstream, a total of 

359 non-overlapping loci were obtained with 59.6% (214/359) overlapping with Refseq 

genes. CNstream detected only 27.3% (98/359) and 25.2% (54/214) of the total merged 

CNVs and CNVs overlapping Refseq genes respectively. The ratio of deletions to 

duplications is approximately 3:2 and 1:1 for PrCa and BrCa datasets respectively (see Table 

10, Figures 11 and 12). The majority of the individuals have 17 - 22 and 4 - 7 CNVs in the 

PrCa and BrCa datasets respectively (Table 10).   
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Table 8 Frequency distribution of CNV sizes in prostate cancer dataset 

 

  PennCNV QuantiSNP cnvPartition CNstream 

Size (kb) (%) (%) (%) (%) 

>1-10kb 218 (40.1) 270(42.3) 150(29.5) 70(18.8) 

>10-50kb 189(34.7) 212(33.2) 192(37.8) 255(66.2) 

>50-100kb 59(10.8) 65(10.2) 55(10.8) 43(11.2) 

>100-150kb 29(5.3) 26(4.1) 31(6.1) 11(2.9) 

>150-200kb 16(2.9) 17(2.7) 18(3.5) 3(0.8) 

>0.2-1Mb 31(5.7) 47(7.4) 56(11.0) 3(0.8) 

>1Mb 2(0.4) 2(0.3) 7(1.4) 0(0.0) 

TOTAL 544 639 509 385 

 

 

 

 

Figure 7 Bar chart of CNVs size distribution in prostate cancer  
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Table 9 Frequency distribution of CNV sizes in breast cancer dataset 

  PennCNV QuantiSNP cnvPartition Cnstream 

Size (kb) (%) (%) (%) (%) 

>1-10kb 14(5.1) 32(10.8) 6(2.8) 9(2.2) 

>10-50kb 122(44.7) 106(35.9) 63(29.9) 273(67.6) 

>50-100kb 62(22.7) 57(19.3) 40(18.9) 104(25.7) 

>100-150kb 24(8.8) 22(7.5) 17(8.1) 16(3.9) 

>150-200kb 16(5.9) 17(5.8) 13(6.2) 2(0.5) 

>0.2-1Mb 33(12.1) 57(19.3) 66(31.3) 0(0.0) 

>1Mb 2(0.7) 4(1.4) 6(2.8) 0(0.0) 

TOTAL 273 295 211 404 

 

 

 

Figure 9 Bar chart of CNVs size distribution in prostate cancer  
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Table 10 Summary statistics of CNVs as detected by the different algorithms in the two 

datasets. 

 

     ALGORITHM       

PARAMETER PennCNV QuantiSNP cnvPartition 

CNV PrCa BrCa PrCa BrCa PrCa BrCa 

 Total Number 2724 545 3033 802 2397 472 

 Avg. No of CNVs/sample 19.2 4.7 21.4 6.9 16.9 4.1 

 Avg. Size of CNV (Kb) 44.1 86.5 57.4 114.6 79.2 187.6 

 Median size of CNVs (Kb) 12.4 51.5 13.8 57.3 19.8 89.3 

 Number of gain 846 245 888 345 652 206 

 Number of loss 1878 300 2145 457 1745 266 

 Ratio (Loss/Gain) 2.2 1.2 2.4 1.3 2.6 1.3 

CNV region           

 Total number 544 273 639 295 509 211 

 Avg. No of CNVs/sample 3.8 2.4 4.5 2.5 3.5 1.8 

 Avg. Size of CNVs (Kb) 57.8 99.9 64.3 135.2 77.4 206.9 

 Median size of CNVs (Kb) 15.1 50.5 13.8 55.5 23.8 90.4 

 Number of gain 205 142 211 144 191 107 

 Number of loss 339 131 428 151 318 104 

 Ratio (Loss/Gain) 1.7 0.92 2 1.04 1.7 0.97 

Common CNVs (frequency)         

 Freq.>1% (%) 371(68.2) 72(26.4) 394(61.7) 98(33.2) 327(64.2) 65(30.8) 

 Freq.>2.5% (%) 197(36.2) 42(15.4) 209(32.7) 65(22.0) 180(35.4) 42(19.9) 

 Freq.>5% (%) 96(16.4) 18(6.6) 105(16.4) 28(9.5) 89(17.5) 21(9.9) 

 CNVs (OR>1.5) (%) 138(21.8) 31(11.4) 139(21.8) 36(12.2) 118(23.2) 23(10.9) 

CNV, copy number variations. PrCa, prostate cancer (n=142). BrCa, breast cancer (n=116) 

 

5.2 Novel CNVs 

59.03% (451/764) and 14.79% (113/764) of the CNVs identified in PrCa overlap with CNVs 

reported in DGV at ―anyOverlap‖ and 50% query-database-ratio criteria (-minquerydbratio 

0.5) respectively. Swapping these values implies that 40.94% (313/764) and 85.21% 

(651/764) are novel CNVs at ―anyOverlap‖ and 50% query-database ratio criteria 

respectively. 47.28% (148/313) and 47.31 (308/651) of the ―anyOverlap‖ and 50% query-

database ratio novel CNV loci respectively are genomic. 
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Figure 9 Venn diagram illustrating the agreement of the algorithms in detecting CNVs in the 

prostate cancer dataset. 

 

 

Figure 10 Venn diagram illustrating the agreement of the algorithms in detecting CNVs in 

the breast cancer dataset. 
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Figure 11 Proportion of deletions and duplications as detected by the different algorithms in 

prostate cancer 

 

 

 
 

Figure 12 Proportion of deletions and duplications as detected by the different algorithms in 

breast cancer 
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For the BrCa dataset, however, 85.5% (307/359) and 23.1% (83/359) of the identified CNVs 

overlap with DGV loci at ―anyOverlap‖ and 50% query-database ratio criteria respectively. 

Swapping these values implies that 14.5% (52/359) and 76.88% (276/359) are novel CNV 

loci at the two criteria respectively. 53.8% (28/52) and 57.2% (158/276) of the ―anyOverlap‖ 

and 50% query-database ratio novel loci respectively are genomic. Figures 13 and 14 show 

the proportion of the overlap of the identified CNV loci with the DGV loci as detected by the 

different algorithms for the two datasets. 

 

Figure 13 Proportion of CNVs in PrCa dataset already reported in DGV 

 

  Figure 14 Proportion of CNVs in BrCa dataset already reported in DGV 
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Table 11 Common Novel CNV Region in the two datasets 

Region Locus RefSeq Gene Event Dataset 

chr1:1647686-1670079 1p36.33 SLC35E2 Dup Both 

chr1:1647686-1661642 1p36.33 SLC35E2 Del BrCa only 

chr1:12598434-12615712 1p36.22-36.21 DHRS3 Dup Both 

chr1:12698721-12743160 1p36.21 AADACL3,C1orf158 Dup Both 

chr1:12871327-12874361 1p36.21 Intergenic Del Both 

chr1:49930749-49964737 1p33 AGBL4 Del Both 

chr2:49535856-49537795 2p16.3 Intergenic Del Both 

chr2:76941049-76949101 2p12 LRRTM4 Del Both 

chr2:87428677-87730750 2p11.2 MIR4435-1,MIR4435-2,NCRNA00152 Dup Both 

chr2:87482067-87633978 2p11.2 NCRNA00152 Del BrCa only 

chr2:212404169-212412738 2q34 ERBB4 Del Both 

chr3:8826396-8832963 3p25.3 Intergenic Dup Both 

chr5:32144879-32159517 5p13.3 PDZD2 Dup Both 

chr5:97075236-97099320 5q15 Intergenic Del Both 

chr6:95424156-95578465 6q16.1 Intergenic Dup BrCa only 

chr6:95424156-95578465 6q16.1 Intergenic Del Both 

chr7:9097947-9102563 7p21.3 Intergenic Del Both 

chr7:12781543-12788046 7p21.3 Intergenic Del Both 

chr7:29678716-29687522 7p15.1 LOC646762,MIR550A3 Del PrCa only 

chr7:29678716-29687522 7p15.1 LOC646762,MIR550A3 Dup Both 

chr7:57495829-57524352 7p11.1 ZNF716 Dup Both 

chr7:61852895-62326882 7q11.21 Intergenic Dup Both 

chr7:62035570-62047108 7q11.21 Intergenic Del Both 

chr7:62154874-62159926 7q11.21 Intergenic Del Both 

chr7:76432653-76453285 7q11.23 PMS2P11 Dup Both 

chr8:16010913-16021468 8p22 MSR1 Del PrCa only 

chr8:16010913-16021468 8p22 MSR1 Dup BrCa only 

chr9:196132-234457 9p24.3 C9orf66,DOCK8 Dup Both 

chr10:20850624-20857365 10p12.31 Intergenic Dup PrCa only 

chr10:20850624-20857365 10p12.31 Intergenic Del Both 

chr10:68078481-68091312 10q21.3 CTNNA3 Del Both 

chr10:90944216-90945756 10q23.31 Intergenic Del Both 

chr12:8000336-8014573 12p13.31 Intergenic Dup Both 

chr12:31266287-31292645 12p11.21 Intergenic Dup Both 

chr15:22299434-22320561 15q11.2 Intergenic Del Both 

chr15:32509892-32514341 15q14 GOLGA8A Dup PrCa only 

chr15:32509892-32595143 15q14 GOLGA8A Del Both 

chr16:16098032-16162264 16p13.11 ABCC1,ABCC6 Dup Both 

chr16:28733106-28825145 16p11.2 ATP2A1,ATXN2L,MIR4721,RABEP2,SH2B1,TUFM Dup Both 

chr16:32137965-32165782 16p11.2 Intergenic Del Both 

chr16:32511914-32648969 16p11.2 LOC653550,TP53TG3,TP53TG3B Del Both 

chr16:32511914-32648969 16p11.2 LOC653550,TP53TG3,TP53TG3B Dup BrCa only 

chr19:20664930-20715228 19p13.12 Intergenic Del Both 
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5.3 Mapping against Annotated Genes and Disease-Associated CNV Loci 

51.3% (392/764) of the total CNVs identified in the PrCa dataset overlap with RefSeq genes. 

For the BrCa dataset on the other hand, 59.6% (214/359) overlap with RefSeq genes. 126 and 

108 genes overlapping with RefSeq genes in the PrCa and BrCa datasets respectively are 

found in the OMIM genes and produce 55 and 36 disorders (phenotypes) respectively ( 

Tables S1 and S2  in the supplementary attachments). Figure 15 shows a deletion at MSR1 

locus found in a family. 

 

Figure 15 Deletion at MSR1 (8p22) locus found in a family 

 

5.4 Enrichment Analysis 

Various GO terms and pathways were found enriched in the two datasets with varying criteria 

used in generating the gene lists for the ontology. Some ontologies with p-values greater than 

0.05 were included in the table because of their role in cancer pathways.  

With these criteria, a total of 224 and 85 RefSeq genes with odds ratio greater than 1 and 2 

respectively were included in the GO analysis from the PrCa dataset. Out of these, 

WebGestalt identified a total of 195 and 79 genes with unique user Entrez IDs for the two 

criteria respectively; consequently, enrichment analyses were based on 195 and 79 genes 

respectively (see Tables S3 and S4 in the supplementary attachments). 
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For the BrCa dataset, however, a total of 220 out of 407 Refseq genes were included in the 

GO analysis. Out of these, WebGestalt identified a total of 194 Unique User Entrez IDs; 

consequently, enrichment analyses were based on 194 genes (see Tables S3 and S4 in the 

supplementary attachments). 

 

5.5 Case-control Association Test 

Different algorithms yielded different association results in term of coordinates and p-value; 

however, there are similarities in the cytogenetic bands or loci.  

PennCNV detected 10q11.22 (chr10:47543322-47703869) with a p-value of 0.0156; 

QuantiSNP detected 3p26.1 (chr3:6649648-6654060), 10q11.22 (chr10:47049547-47940417) 

and 2p25.3 (chr2:4213378-4222144) with a p-value of 0.016, 0.021 and 0.026 respectively; 

cnvPartition detected 3p26.1 (chr3:6649648-6654060) and 10q11.22 (chr10:47109571-

47703869) with a p-value of 0.0213 and 0.0213 respectively.  

A case-control association test with CNstream yielded five consecutive segments with 

significant p-values. These segments correspond to 2p25.3 (chr2:4211781-4228747) with a p-

value and odds ratio of 0.035835 and 6.857143 respectively. This same locus was detected by 

QuantiSNP but with a different p-value. Mention must however be made that majority of the 

associated loci are intergenic with the exception of 10q11.22 that harbours some genes. 

In the case of the BrCa dataset, 9.88% (8/81) of cases have intronic deletions at EPHA3 locus 

(chr3:89485137-89499754- 3p11.1) with a p-value of 0.050628, which is slightly higher than 

0.05. Mention must however be made that none of the controls have alterations at this locus. 

 

Table 12 Summary of association result 

 

  p-value     

locus PennCNV QuantiSNP cnvPatition Cnstream 

2p25.3 - 0.026 - 0.035 

3p26.1 - 0.016 0.0213 - 

10q11.22 0.015 0.021 0.0213 - 
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Figure 16 Map of Identified CNV Loci in Prostate Cancer Dataset 

 

 

 

Figure 17 Map of Identified CNV Loci in Breast Cancer Dataset 
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5.6 CNV maps 

Few CNPs were observed in the BrCa dataset as against the PrCa dataset that contains several 

common CNVs on different chromosomes. Although most studies on heritability of CNVs 

were done on trios comprising the father, mother and a child from the family; this probably 

suggests that closely related individuals have higher heritability than distant individuals. The 

BrCa families (cases) were chosen from different unrelated family members as against the 

PrCa families (cases) with at least two members from the same family. Consequently, more 

CNPs were observed in the PrCa dataset (see Figures 16 and 17). 

The family-wise analysis on the PrCa dataset shows significant enrichment of some CNVs in 

certain families (Table 13).  

 

Table 13 Family-wise analysis. 

 

Locus Gene Event % TAF % TCGF Family ID 

1p36.22 SPSB1 Del 83.3 100 2427 

1p36.11 RHCE,TMEM57 Del 50 - 66.7 66.7 - 80 2308, 2399, 

1q21.2 ARNT,CTSK,SETDB1 Del 40 - 75 66.7 - 100 2062, 2374, 2442, 2145,2279 

1q31.3 PTPRC Dup 50 60 2308 

1q32.1 SLC45A3 Del 50 66.7 2399 

1q32.2 PLXNA2 Del 100 100 2374 

2p22.1 MORN2 Dup 60 - 75 75 2455, 2292 

2p12 LRRTM4 Del 60 100 2275 

2q34 ERBB4 Del 37.5 - 50 42.8 - 66.7 2421, 2455, 2449 

2q35 ABCA12 Del 50 66.7 2429 

3p22.2 CTDSPL,MIR26A1 Del 40 - 50 66.7 2394, 2429, 2442 

3p21.1 SFMBT1 Del 60 - 66.7 60 - 66.7 2241, 2396 

3p11.1 EPHA3 Del 50 60 - 66.7 2421, 2427 

3q26.1 PPM1L Del 50 60 2427 

3q28 TP63 dcDel 75 75 2279 

4p15.31 GPR125 Del 100 100 2414 

4p13 GRXCR1 Del 66.7 - 75 66.7 - 100 2145, 2414 

4q27 TNIP3 Del 40 - 50 66.7 2145, 2442 

4q31.3 FAM160A1 Del 40 - 60 66.7 - 100 2431, 2442 

5p15.2 SEMA5A,SNORD123 Dup 66.7 80 2375 

5p15.2 LOC285692 Dup 66.7 80 2375 

5p13.3 PDZD2 Dup 50 - 100 66.7 - 100 2074, 2145, 2232 

5q31.3 PCDHA11 Del 50 -100 60 - 100 2414, 2427 

6p22.1 HCG4,LOC554223 Del 60 100 2442 

6p21.33 CCHCR1 dcDel 75 100 2429 

6q22.2 SLC35F1 Del 75 100 2401 
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Table 13 Family-wise analysis (continued). 

7q11.23 PMS2P11 Dup 100 100 2241 

7q22.1 MUC17 Del 75 100 2421 

7q31.1 IMMP2L,LRRN3 Del 66.7 80 2427 

7q31.1 DOCK4 Del 75 75 2279 

7q36.1 ABCF2 Del 60 100 2394 

7q36.2 DPP6 Dup 50 100 2386 

8p23.2 CSMD1 Del 50 66.7 2401, 2435 

8p23.1 TNKS Dup 50 50 2292 

8p22 MSR1 Del 50 50 2279 

8p21.3 PEBP4 Dup 66.7 66.7 2414 

8p21.2 ADRA1A Dup 66.7 66.7 2414 

8p12 NRG1 Dup 100 100 2414 

8q21.3 OTUD6B Del 75 100 2429 

8q22.2 OSR2 Dup 50 50 2279 

10p15.3 ZMYND11 Dup 75 75 2292 

10q11.21 ALOX5,MARCH8 Dup 50 60 2427 

10q21.3 CTNNA3 Del 50 50 2292 

10q23.1 NRG3 Del 40 - 75 66.7 - 100 2435, 2431 

10q23.1 NRG3 Dup 50 66.66667 2421 

10q23.33 CYP2C19 Del 50 60 - 66.7 2399, 2427 

12p13.33 CACNA1C Del 75 100 2429 

12q21.31 ACSS3 Dup 100 100 2232 

12q21.31 MIR548T Del 50 57.1 2449 

12q23.1 UHRF1BP1L Del 75 100 2399 

12q23.2 ARL1,SPIC,UTP20 Dup 75 75 2279 

12q24.33 

ANKLE2,PGAM5, 

POLE,PXMP2 Del 66.7 66.7 2374 

13q13.1 KL Del 50 - 66.7 50 - 66.7 2241, 2279 

13q21.33 KLHL1 Del 50 - 75 66.7 - 100 2421, 2427, 2442, 2435 

14q11.2 

ANG,EDDM3A, 

EDDM3B,RNASE1, 

RNASE4,RNASE6 Dup 50 50 2292 

14q21.3 MDGA2 Del 75 75 2279 

15q12 GABRA5 Dup 50 66.7 2435, 2421 

15q14 GOLGA8A Del 75 100 2399 

16p12.3 GPR139 Del 50 50 2292 

16p11.2 EIF3C Dup 60 - 66.7 100 2248, 2442 

17p11.2 ALDH3A2,SLC47A2 Del 50 66.7 2421, 2429 

18p11.21 FAM38B Del 100 100 2414 

18q12.1 FAM59A,MEP1B Dup 50 100 2386 

19p13.3 REXO1 Del 50 60 2427 

19p12 ZNF626 Del 50 66.7 - 100 2074, 2379 

19q13.32 EMP3,TMEM143 Dup 50 50 - 60 2292, 2375 

21q22.3 TMPRSS2 Dup 66.7 66.7 2414 

Del – deletion; Dup – duplication; dcDel – double copy deletion; %TAF – percentage of total affected 

individuals in the family; %TCGF – percentage of the total cases (affected individuals) genotyped in the family 
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6 Discussion and Conclusion 

Recently, several studies have reported CNVs as relevant contributors to human diversity and 

disease susceptibility including cancer (Sebat et al. 2004; Sharp et al. 2005; Feuk et al. 2006). 

With the recent advancements on SNP array technology, it is now possible to detect 

previously elusive genetic variations with high resolution.  

In the present GWAS, four CNV identification algorithms were used in assessing copy 

number variation in the Finnish familial prostate and female breast cancers genotyped using 

Illumina HumanOmniExpress-12v1 with approximately 700,000 markers (SNPs) per sample 

and Illumina HumanCytoSNP-12 with approximately 300,000 markers per sample 

respectively. By default, the degree of overlapping of the SNPs in the HumanOmniExpress-

12v1 platform is higher than in the other platform, however, both platforms cover the whole 

genome. Consequently, INDELs were identified in the prostate cancer dataset, though the 

study focuses on CNVs. More CNVs were observed in prostate cancer than in breast cancer 

with an average of 20 CNVs and 5 CNVs per sample respectively. Average size of CNVs in 

breast cancer is twice as large as the size obtained in the prostate cancer dataset. However, 

the ratio of deletions to duplication is 3:2 in the prostate cancer dataset as against 

approximately 1:1 in the breast cancer dataset (see Table 10). This discrepancy could be due 

to different genotyping platforms as well as experimental set up. However, it is not certain 

that the factors mentioned above are the primary factors responsible for the differences. To 

date, no work has been done comparing copy number variations in males and females, and 

until it is proven otherwise, the present study provides evidence that there are more structural 

variations (CNV) in male genomes than in the female genome. The study also provides 

evidence that the female genome is more stable than the male genome in term of deletions, 

though; the size of such events is larger in the female genome.    

On the agreement of the algorithms, about 54% and 70% of the CNVs identified in the 

prostate cancer were detected by at least three and two of the individual-based algorithms 

respectively and about 30%  (231/764) detected by only one of the three algorithms. 20% 

(47/231), 51% (118/231) and 28% (66/231) of the CNVs identified by only one of the 

individual-based algorithms were detected by PennCNV, QuantiSNP, and cnvPartition 

respectively. 11% (13/118) of the CNVs identified by QuantiSNP only were identified by 

CNstream (an algorithm for the detection and identification of copy number polymorphisms). 

In the case of cnvPartition, 10.6% (7/66) of the CNVs are CNPs. For PennCNV, however, 
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only 0.02% (1/47) of the CNVs identified by PennCNV only is a CNP (see Figure 7). A 

simple majority vote of 2/3 would have help to handle this in a more robust manner, but it 

might result in loss of biologically meaningful variants. 

For the breast cancer however, 54.5% (196/359), 70% (251/359) and 30% (108/359) of the 

total CNVs identified in the breast cancer dataset were detected by three, two and only one of 

the three individual-based algorithms used in the study. The same statistics in term of 

perform and agreement of the algorithms was obtained in the two datasets (see Figure 10).  

In term of performance, QuantiSNP performed best among the three algorithms sample-based 

algorithms. The three susceptibility loci identified in this study were identified by 

QuantiSNP.  cnvPartition detected only two while PennCNV identified only one locus. Each 

of the loci was detected by at least two of the four algorithms used in the study. The 

susceptibility locus at 2p25.3 was detected by both QuantiSNP and CNstream. However, 

none of the other two sample-based algorithms detected this locus. The fact that the locus was 

detected by CNstream is a simple prove to justify that it is not a false positive. cnvPartition 

performs better in detecting CNVs of large sizes. The degree of agreement between the three 

sample-based algorithms is only about 55% and about 70% between any two algorithms (see 

Figures 9 and 10). This helps to justify the need for experimental (laboratory) validation of 

the CNVs detected by the algorithms. 

  

Breast Cancer  

The lower frequency of mutations at BRCA1/BRCA2 loci in the Finnish and Southern 

Swedish populations as against the statistics obtained in other parts of the world probably 

suggests that there are susceptibility loci that could be peculiar to the Nordic population and 

are yet to be discovered. It was hypothesized that if BRCA1/BRCA2 mutations could account 

for only about 30% of the breast cancer cases, then BRCAX should exist. In the present study 

with 84 BRCA1/BRCA2-mutation negative familial breast cancer cases, BRCA1 variation was 

found in 0.012% (1/81) despite the fact that the families (cases) are negative for 

BRCA1/BRCA2 mutations. This variation involves the deletion of exons 1 – 12 of BRCA1 in 

the sample and was detected by all the four algorithms. The fact that it was detected by the 

four algorithms is a proof that the event is not a false positive. 
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CNstream’s, a method for the detection of copy number polymorphisms (CNP), result clearly 

reveals that the samples are not closely related since they share only 29 common loci. 

Majority of the common loci have a frequency of 1.7% (2/116). The enrichment analysis 

(pathway commons) shows that both BRCA1 and BCL2L1 function in ATM-mediated 

response to DNA double-strand break. BCL2L1 with some β-defensins was amplified at 

20q11.21 locus in one sample. Ontology results show that EPHA3 and the β-defensins have 

common function. Deletions at chromosome 8p locus harboring some β-defensins have been 

associated with prostate cancer (Klaus et al. 2008). The p-arm of chromosome 8 is frequently 

deleted and associated with disease progression in human cancers, including breast cancer 

(BrCa). The present study shows the deletion of TUSC3 locus and amplification of MSR1 

locus in different individuals. Deletions at MSR1 however, have been associated with 

hereditary prostate cancer.  EPHA3, MSR1, ERBB4 (close member of the ERBB2 family) and 

GPR142 together with other genes shown on the enrichment results, all have receptor 

activities,  yet none of the loci is statistically significant in the study.  

It could therefore be that multiple factors are responsible for the unexplained proportion of 

BrCa cases in the population in question. However, it could also be that the data does not 

support the hypothesis. Moreover, with larger sample sizes, it is possible to obtain significant 

statistics. 

 

Prostate Cancer 

The present GWAS, aimed at unraveling genetic predisposition to prostate cancer, identified 

three loci associated with prostate cancer: 2p25.3, 3p26.1 and 10q11.22; with each loci 

identified as being significant by at least two of the four algorithms used in the study. 

However, no gene was found in the loci. 

2p25.3 deletion was found in 17.6% (18/102) of the cases and it involves six consecutive 

SNPs (rs1175867 – rs1175854). It spans 8,767bp and overlaps with known CNV in the 

Database of Genomic Variant (DGV) at ―anyOverlap‖ criterion only, but with a higher 

frequency. The functional effect of this CNV is not clear because no known gene resides in 

the region of the deletion. However, a hypothetical protein LOC727982 is found located 

within 450kb of this CNV. At the moment, little is known about this protein.  
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Liu reported a deletion at 2p24.3 associated with aggressive prostate cancer (Liu et al. 2009). 

Like 2p25.3, no known gene was found in this locus and it also spans six SNPs. The 

significance of both loci is yet to be understood as both harbour no known gene. This calls for 

further research in the p-arm of chromosome 2. 

3p26.1 deletion was found in 13.7% (14/102) of the cases and it involves four SNPs 

(rs1043364 – rs1704538). It does not overlap with any known CNV in the DGV at the two 

criteria used in this study. GRM7 is located approximately 250kb away from the CNV. GRM7 

has been associated with age-related hearing impairment (Friedman et al. 2009).  No clear 

association has been established between hearing and prostate cancer. Thus, the functional 

effect of this variation could not be established yet. Mention must however be made that 3p26 

has earlier been associated with hereditary prostate cancer (HPC) (Rokman, Ikonen, et al. 

2001).  

600kb amplification at 10q11.22 was observed in 12.7% (13/102) of the cases and it involves 

several genes, yet none of them is known to play an important role in tumorigenesis. 

10q11.22 together with 2p25.3 has not been reported previously. 

Deletion at 1q21.2 (chr1:149039930-149060682) was found in 66-100% of the total cases 

genotyped and 42-75 % of the total cases in the family in five different families. This deletion 

involves ARNT and CTSK; ARNT plays a major role in cancer pathway. Variations in ARNT 

and CTSK have been associated with leukemia, acute myeloblastic and pycnodysostosis 

respectively. The deletion at 1q21 involves the deletion of SETDB1 in families 2145 and 

2279. SETDB1 has been associated with breast cancer (Genetic Association Database - GAD) 

(http://geneticassociationdb.nih.gov/). ARNT and CTSK have also been implicated in different 

cancers (GAD). A 74kb 1q21.1 deletion was observed in 8.6% (7/81) of the breast cancer 

dataset (cases) with a p-value of 0.072. 1q21 therefore could be said to be a potential 

susceptibility locus to prostate cancer.  

A family with five genotyped cases has her SPSB1 locus (1p36.22 - chr1:9321241-9400868) 

amplified in 100% of the cases genotyped. Overexpression of SPSB1 increased HGF-induced 

reporter gene expression and ERK phosphorylation in HEK293 cells. The ERK signaling 

pathway plays a role in several steps of tumor development (Kim et.al, 2010). A review 

carried out by Gonzalo Rodríguez-Berriguete et al. (2011) suggested that MAPK transduction 

pathways are involved in prostate cancer development. Mention must however be made that 
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the mother does not carry the variation though it was found in another mother from a 

different family but never in any of the other family members. 

Amplification in PDZD2 (Activated in Prostate cancer - 5p13.3) locus was observed in 66.7-

100% and 50-100% of the total cases genotyped and total cases in the family respectively in 

three families. Chaib et al. (2001) suggested that accumulation of the PDZD2 protein may be 

associated with the initiation or early promotion of prostate tumorigenesis. This amplification 

was observed also in the breast cancer dataset. 

Deletion at ERBB4 locus (2q34) was observed in 43-67% and 38-50% of the total cases 

genotyped and total cases in the family respectively in three families. ERBB4 is a 

transmembrane receptor tyrosine kinase that regulates cell proliferation and differentiation 

and it has been associated with different cancer types including colorectal and lungs cancer 

(GAD). 

Deletion at CTDSPL locus (3p22.2) was observed in 67% and 40-50% of the total cases 

genotyped and total cases in the family respectively in three families (2394, 2429 & 2442). 

Kashuba et al. (2004) found that the CTDSPL gene was homozygously deleted in about 15% 

of major epithelial cancers. Expression of the CTDSPL gene was reduced more than 20-fold 

in 11 of 12 carcinoma cell lines and in 3 of 8 tumor biopsies. Chang et al. (2008) found that 

intron 5 of the CTDSPL gene contains the microRNA MIRN26A1. This deletion at 3p22.2 

also involves the MIRN26A1. MicroRNA-26a (miR-26a) is a tumor suppressor that is 

reduced in hepatocellular carcinoma (HCC). MicroRNAs (miRNA) are a diverse class of 

small, non–protein-coding RNAs that function as critical gene regulators. Several 

bioinformatics analyses indicate that each miRNA regulates hundreds of target genes, 

underscoring the potential influences of miRNAs on almost every biological pathway 

(Ambros 2004; Barte 2004). Recent evidence has shown that about half of the human 

miRNAs are located in cancer-associated genomic regions and can function as tumor 

suppressor genes or oncogenes depending on their targets (Calin et al. 2004; Calin and Croce 

2006; Esquela-Kerscher and Slack 2006). 

P63 was detected in a variety of human and mouse tissues, including proliferating basal cells 

of epithelial layers in the epidermis, cervix, urothelium, and prostate. Unlike p53, the p63 

gene encodes multiple isotypes with remarkably divergent abilities to transactivate p53 

reporter genes and induce apoptosis. Double copy deletion of TP63 locus (3q28), involving 
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the mother, was observed in 75% of the total affected in a family. This variation was not 

found in any other sample or family.  

Variations at CSMD1 (8p23.2), CYP2C19 (10q23.33), KL (13q13.1) and EMP3 (19q13.32) 

loci were found in at least 50% of the total affected in two different families each. All of 

these genes have been associated with different types of cancer including breast cancer 

(CYP2C19, KL), prostate cancer (EMP3, CYP2C19) and lung cancer (CYP2C19) to mention 

but a few.  

Furthermore, variations at DOCK4 (7q31.1), DPP6 (7q36.2), TNKS (8p23.1), MSR1 (8p22), 

ADRA1A (8p21.2), ALOX5 (10q11.21), POLE (12q24.33), RNASE1 (14q11.2), and 

TMPRSS2 (21q22.3) loci were found also in at least 50% of the total affected in one family 

each. All of these genes have also been implicated in different cancer types including: 

prostate cancer (RNASE1, MSR1, TMPRSS2, ADRA1A and ALOX5 – prostatic neoplasm), 

breast cancer (TNKS, POLE), and colorectal cancer (ALOX5); amongst other.  

It is worth mentioning that none of the above-mentioned loci (genes) is statistically 

significant based on the case-control association test, the future challenge will be to expand 

sample sizes and to follow co-segregation of given CNVs with cancer phenotype within 

families to identify which of the genes involved in the CNVs might contribute to familial 

breast and prostate cancer predisposition. 

 

Conclusion 

This genome-wide association study was carried out with three objectives:  

1. To study CNVs’ contribution to genetic diseases using familial Prostate and Breast 

cancers as case studies 

2. To assess and compare the performance of different CNV calling algorithms with the 

aim of knowing the degree of agreement between the different algorithms used in the 

study 

3. To study heritability of CNVs in a bid to unravelling the genetic predisposition to 

cancer types in question 



59 
 

The result of the study suggests that CNVs are important predisposing factors to the cancer 

types in question, though this still needs to be confirmed in a larger population. Although 

most studies on heritability of CNVs were done on trios comprising the father, mother and a 

child from the family; which probably suggests that closely related individuals have higher 

heritability than distant individuals. Several of CNVs identified in this study were found 

enriched in certain families. This result supports previous findings that CNVs are heritable. 

The degree of agreement between the three sample-based algorithms used in this study is 

only about 50%. This further justifies the need for experimental validation of CNVs 

identified by the algorithms. 

In conclusion, the result of the current genome-wide scan reveals that there are several loci 

and genes that play important role in predisposing an individual to the cancer types in 

question. Some of these however, could be peculiar to certain populations.  

 

Next Step 

Having carried out a brute-force-genome-wide scan for susceptibility loci to prostate and 

breast cancers and with the various interesting results obtained in the study, it is expedient to 

follow up on the results by expanding the sample size and with the use of a more efficient 

approach. This could be in form of targeted sequencing or exome sequencing of certain 

genes. While loci such as 1p21, 2p25, 3p26 and 10q11 are potential loci for further 

investigation, ARNT, CTSK, SETDB1, SPSB1, TP63, EPHA3, KL, CYP2C19 and EMP3 are 

good candidate for targeted sequencing or exome sequencing.  
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8 Appendices 

 

Table S1 Genes Associated with Mendelian Disorders in Prostate Cancer Dataset 

GENE Locus 

Gene MIM 

ID Disorder / OMIM Phenotype 

Phenotype 

MIM ID 

ANG 14q11.2 105850 Amyotrophic lateral sclerosis 9 611895 

ATP2A1 16p11.2 108730 Brody myopathy 601003 

RHCE 1p36.11 111700 Rh-null disease, amorph type    

RHCE 1p36.11 111700 Blood group, Rhesus   

CACNA1C 12p13.33 114205 Brugada syndrome 3 611875 

CACNA1C 12p13.33 114205 Timothy syndrome 601005 

CYP2C19 10q23.33 124020 Clopidogrel, impaired responsiveness to 609535 

CYP2C19 10q23.33 124020 Mephenytoin poor metabolizer 609535 

CYP2C19 10q23.33 124020 Opremazole poor metabolizer,  609535 

CYP2C19 10q23.33 124020 Proguanil poor metabolizer 609535 

ARNT 1q21.3 126110 Leukemia, acute myeloblastic    

DPP6 7q36.2 126141 Ventricular fibrillation, paroxysmal familial 612956 

PTPRC 1q31.3-q32.1 151460 

Severe combined immunodeficiency, T 

cell-negative, B-cell/natural killer-cell 

positive 608971 

PTPRC 1q31.3-q32.1 151460 Hepatitic C virus, susceptibility to 609532 

ALOX5 10q11.21 152390 

Asthma, diminished response to 

antileukotriene treatment in 600807 

ALOX5 10q11.21 152390 Atherosclerosis, susceptibility to   

MSR1 8p22 153622 

Barrett esophagus/esophageal 

adenocarcinoma 614266 

MSR1 8p22 153622 Prostate cancer, hereditary 176807 

PNP 14q11.2 164050 

Immunodeficiency due to purine nucleoside 

phosphorylase deficiency 613179 

PRKCA 17q24.2 176960 Pituitary tumor, invasive   

LHX3 9q34.3 600577 Pituitary hormone deficiency, combined, 3 221750 

LPP 3q27-q28 600700 Leukemia, acute myeloid 601626 

LPP 3q27-q28 600700 Lipoma   

CTSK 1q21.3 601105 Pycnodysostosis 265800 

MYO1A 12q13.3 601478 Deafness, autosomal dominant 48 607841 

NDN 15q11.2 602117 Prader-Willi syndrome 176270 

TUFM 16p11.2 602389 

Combined oxidative phosphorylation 

deficiency 4 610678 

RAD51C 17q22 602774 Fanconi anemia, complementation group 0 613390 

RAD51C 17q22 602774 

Breast-ovarian cancer, familial, 

susceptibility to, 3 613399 

TP63 3q28 603273 ADULT syndrome 103285 

TP63 3q28 603273 

Ectrodactyly, ectodermal dysplasia, and 

cleft lip/palate syndrome 3 604292 

TP63 3q28 603273 Hay-Wells syndrome 106260 

TP63 3q28 603273 Limb-mammary syndrome 603543 
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Table S1 Genes Associated with Mendelian Disorders in Prostate Cancer Dataset (continued) 

TP63 3q28 603273 Orofacial cleft 8 129400 

TP63 3q28 603273 Rapp-Hodgkin syndrome 129400 

TP63 3q28 603273 Split-hand/foot malformation 4 605289 

DYNC2H1 11q22.3 603297 Asphyxiating thoracic dystrophy 3 613091 

DYNC2H1 11q22.3 603297 

Short rib-polydactyly syndrome, type II, 

digenic 263520 

DYNC2H1 11q22.3 603297 Short rib-polydactyly syndrome, type III 263510 

KL 13q13.1 604824 Tumoral calcinosis, hyperphosphatemic 211900 

KL 13q13.1 604824 Coronary artery disease, susceptibility to   

TUBA8 22q11.21 605742 Polymicrogyria with optic nerve hypoplasia 613180 

PRODH 22q11.21 606810 Hyperprolinemia, type I 239500 

PRODH 22q11.21 606810 Schizophrenia, susceptibility to, 4 600850 

NIPA1 15q11.2 608145 Spastic paraplegia-6 600363 

ATCAY 19p13.3 608179 Ataxia, cerebellar, Cayman type 601238 

ASL 7q11.21 608310 Argininosuccinic aciduria 207900 

PEX26 22q11.21 608666 Adrenoleukodystrophy, neonatal 202370 

PEX26 22q11.21 608666 Refsum disease, infantile 266510 

PEX26 22q11.21 608666 Zellweger syndrome 214100 

PITPNM3 17p13.2 608921 Cone-rod dystrophy 5 600977 

ALDH3A2 17p11.2 609523 Sjogren-Larsson syndrome 270200 

ATXN10 22q13.31 611150 Spinocerebellar ataxia 10 603516 

GUSB 7q11.21 611499 Mucopolysaccharidosis VII 253220 

GRXCR1 4p13 613283 Deafness, autosomal recessive 25 613285 
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Table S2 Genes Associated with Mendelian Disorders in Breast Cancer Dataset 

GENE Locus 

Gene MIM 

ID Disorder / OMIM Phenotype 

Phenotype 

MIM ID 

ATP2A1 16p11.2 108730 Brody myopathy 601003 

RHD 1p36.11 111680 Rh-negative blood type   

BRCA1 17q21.31 113705 Breast-ovarian cancer, familial, 1 604370 

BRCA1 17q21.31 113705 Pancreatic cancer, susceptibility to, 4 614320 

CACNA1C 12p13.33 114205 Brugada syndrome 3 611875 

CACNA1C 12p13.33 114205 Timothy syndrome 601005 

CHRNA7 15q13.3 118511 Schizophrenia, neurophysiologic defect in    

SLC1A1 9p24.2 133550 ?Dicarboxylicaminoaciduria 222730 

MSR1 8p22 153622 Barrett esophagus/esophageal adenocarcinoma 614266 

MSR1 8p22 153622 Prostate cancer, hereditary 176807 

PROS1 3q11.1 176880 Thrombophilia due to protein S deficiency 612336 

EPCAM 2p21 185535 Colorectal cancer, hereditary nonpolyposis, type I 613244 

EPCAM 2p21 185535 Diarrhea 5, with tufting enteropathy, congenital 613217 

HNF1B 17q12 189907 Diabetes mellitus, noninsulin-dependent 125853 

HNF1B 17q12 189907 Renal cysts and diabetes syndrome 137920 

HNF1B 17q12 189907 Renal cell carcinoma 144700 

ACACA 17q12 200350 Acetyl-CoA carboxylase deficiency 613933 

TUSC3 8p22 601385 Mental retardation, autosomal recessive 7 611093 

FGF10 5p12 602115 Aplasia of lacrimal and salivary glands 180920 

FGF10 5p12 602115 LADD syndrome 149730 

TUFM 16p11.2 602389 Combined oxidative phosphorylation deficiency 4 610678 

PARK2 6q26 602544 Adenocarcinoma of lung, somatic 211980 

PARK2 6q26 602544 Adenocarcinoma, ovarian, somatic 167000 

PARK2 6q26 602544 Parkinson disease, juvenile, type 2 600116 

PARK2 6q26 602544 Leprosy, susceptibility to 607572 

DNAI2 17q25.1 605483 

Ciliary dyskinesia, primary, 9, with or without situs 

inversus 612444 

EHMT1 9q34.3 607001 Kleefstra syndrome 610253 

KANK1 9p24.3 607704 Cerebral palsy, spastic quadriplegic, 2 612900 

COX4I2 20q11.21 607976 

Exocrine pancreatic insufficiency, 

dyserythropoietic anemia, and calvarial 

hyperostosis 612714 

GLIS3 9p24.2 610192 

Diabetes mellitus, neonatal, with congenital 

hypothyroidism 610199 

PFKM 12q13.11 610681 Glycogen storage disease VII 232800 

DOCK8 9p24.3 611432 

Hyper-IgE recurrent infection syndrome, autosomal 

recessive 243700 

DOCK8 9p24.3 611432 Mental retardation, autosomal dominant 2 614113 

MBD5 2q23.1 611472 Mental retardation, autosomal dominant 1 156200 

LIPA 10q23.31 613497 Cholesteryl ester storage disease 278000 

LIPA 10q23.31 613497 Wolman disease 278000 
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Table S3 Enrichment analysis result for gene list with odds ratio >1 in the PrCa dataset. 

GO ANALYSIS_ODDSRATIO>1 

GO TERM GENES P-

VALUE 

Biological process 

GO:0007156 homophilic cell 

adhesion 

CDH4,PCDHA4,PCDHA11,PCDHA1,PCDHA5,PCDHA

9,PCDHA8,PCDHA6,PCDHA7,PCDHA10,PCDHA12,P

CDH9,PCDHA3,PCDHA2 

6.00E-09 

GO:0016337 cell-cell adhesion CDH4,CTNNA3,PTPRC,PCDHA4,PCDHA1,PCDHA8,P

CDHA6,PCDHA7,PCDHA11,PCDHA9,PCDHA5,PCDH

A10,PCDH9,PCDHA12,PCDHA3,PCDHA2 

9.20E-07 

GO:0007155 cell adhesion DGCR6,CDH4,CTNNA3,LPP,NRXN3,SEMA5A,PTPRC,

PCDHA4,PCDHA1,PCDHA8,PCDHA6,PCDHA7,PCD

HA11,PCDHA9,PCDHA5,PCDHA10,PCDHA12,PCDH

9,PCDHA3,PCDHA2 

1.30E-03 

GO:0022610 biological adhesion CDH4,SEMA5A,PCDHA4,PCDHA1,CTNNA3,PCDHA8,

PCDHA6,PCDHA7,DGCR6,PTPRC,NRXN3,PCDHA11,

PCDHA9,PCDHA5,PCDHA10,PCDHA12,PCDH9,PCD

HA3,LPP,PCDHA2 

1.30E-03 

GO:0007399 nervous system 

development 

TP63,KLHL1,PRKCA,ALDH1A2,MDGA2,NAIP,NDN,C

DH4,PCDHA4,PCDHA1,PCDHA8,PCDHA6,PCDHA7,

SEMA5A,NRXN3,PCDHA11,PCDHA5,ATXN10,PCDHA

10,GABRA5,PCDHA3,ALDH3A2,PCDHA2 

1.40E-03 

Molecular function 

GO:0004522 pancreatic 

ribonuclease 

activity 

ANG,RNASE1,RNASE11,RNASE12,RNASE6,RNASE9,R

NASE4,RNASE10 

1.56E-11 

GO:0016894 endonuclease 

activity, active with 

either ribo- or 

deoxyribonucleic 

acids and producing 

3'-

phosphomonoesters 

RAD51C,ANG,RNASE1,RNASE11,RNASE12,RNASE6,R

NASE9,RNASE4,RNASE10 

1.56E-11 

GO:0016892 endoribonuclease 

activity, producing 

3'-

phosphomonoesters 

RNASE1,ANG,RNASE11,RNASE12,RNASE6,RNASE9,R

NASE4,RNASE10 

4.53E-11 

GO:0004521 endoribonuclease 

activity 

APEX1,RNASE1,ANG,RNASE11,RNASE12,RNASE6,RN

ASE9,RNASE4,RNASE10 

4.54E-09 

GO:0004540 ribonuclease 

activity 

ANG,RNASE1,APEX1,RNASE11,RNASE12,RNASE6,RN

ASE9,RNASE4,RNASE10 

9.89E-08 

GO:0004519 endonuclease 

activity 

RAD51C,RNASE1,APEX1,ANG,RNASE11,RNASE12,RN

ASE6,RNASE9,RNASE4,RNASE10 

2.13E-07 

GO:0004518 nuclease activity RAD51C,RNASE1,APEX1,ANG,RNASE11,REXO1,RNAS

E12,RNASE6,RNASE9,RNASE4,RNASE10 

1.81E-06 
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Table S3 Enrichment analysis result for gene list with odds ratio >1 in the PrCa dataset (continued) 

GO:0005509 calcium ion binding ATP2A1,CDH4,PCDHA4,PITPNM3,PCDHA1,PCDHA8,

PCDHA6,PCDHA7,PRKCA,ALOX5,PCDHA11,NRXN3,

CACNA1C,PCDHA5,PCDHA9,PLCG2,PCDHA10,PCD

HA12,PCDH9,PCDHA3,PCDHA2 

5.00E-04 

GO:0016787 hydrolase activity TMPRSS2,IMMP2L,AGBL4,TMEM55B,AADACL4,NAIP

,RNASE10,PAPPA2,ANG,RNASE11,ARL1,PLCG2,DYN

C2H1,C3AR1,RNASE1,DPP6,APEX1,GUSB,USP18,RN

ASE6,TUFM,OSGEP,RNASE9,ATP2A1,CTSK,KL,PTPR

C,MYO1A,RAD51C,ATAD3B,DUSP16,REXO1,RNASE1

2,TUBA8,RNASE4,NDST4,AADACL3 

7.00E-04 

GO:0016788 hydrolase activity, 

acting on ester 

bonds 

C3AR1,PLCG2,RNASE1,APEX1,USP18,RNASE6,AADA

CL4,RNASE9,RNASE10,PTPRC,RAD51C,RNASE11,AN

G,DUSP16,REXO1,RNASE12,RNASE4 

1.20E-03 

Cellular component 

GO:0031226 intrinsic to plasma 

membrane 

TMPRSS2,MSR1,NRG3,CDH4,PCDHA4,PCDHA1,RHC

E,PCDHA8,PCDHA6,HCN2,PCDHA7,KL,PTPRC,PCD

HA11,NRXN3,PCDHA5,GABRA5,PCDHA10,PCDHA3,

PRKD1,PCDHA2,C3AR1 

3.70E-02 

GO:0005887 integral to plasma 

membrane 

TMPRSS2,MSR1,NRG3,CDH4,PCDHA4,PCDHA1,RHC

E,PCDHA8,PCDHA6,HCN2,PCDHA7,KL,PTPRC,PCD

HA11,NRXN3,PCDHA5,GABRA5,PCDHA10,PCDHA3,

PRKD1,PCDHA2,C3AR1 

3.70E-02 

        

KEGG PATHWAY ANALYSIS ODDS RATIO > 1 

KEGG ID KEGG pathway GENES P-

VALUE 

830 Retinol metabolism CYP2C19,DHRS3,ALDH1A2 4.20E-02 

330 Arginine and 

proline metabolism 

PRODH,ALDH3A2,ASL 

4.20E-02 

4666 Fc gamma R-

mediated 

phagocytosis 

PTPRC,PRKCA,PLCG2 

4.50E-02 

1100 Metabolic pathways ALOX5,PRODH,GUSB,ALDH1A2,CYP2C19,PLCG2,SG

MS1,ASL,NDST4,DHRS3,ALDH3A2 

4.50E-02 

4012 ErbB signaling 

pathway 

NRG3,PRKCA,PLCG2 

4.50E-02 

4020 Calcium signaling 

pathway 

CACNA1C,PRKCA,ATP2A1,PLCG2 

4.50E-02 

        

  PATHWAY COMMONS ANALYSIS ODDS RATIO > 1   

PATHWAY 

ID 

NAME GENES P-

VALUE 

DB_ID:769 Proline catabolism PRODH,ASL 1.60E-02 

DB_ID:206 Platelet activation 

triggers 

PRKCA,PLCG2 

3.70E-02 
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Table S4 Enrichment analysis result for gene list with odds ratio > 2 in the PrCa dataset 

  GO ANALYSIS ODDS RATIO > 2   

GO TERM GENES P-VALUE 

Biological process 

GO:0008361 regulation of cell 

size 

EMP3,CDH4,NRG3,TP63,NDN,SGMS1,PAPPA2 9.00E-04 

GO:0016049 cell growth TP63,NRG3,EMP3,CDH4,NDN,SGMS1,PAPPA2 9.00E-04 

GO:0032535 regulation of 

cellular component 

size 

SGMS1,PAPPA2,TP63,NRG3,EMP3,CDH4,NDN 2.20E-03 

GO:0090066 regulation of 

anatomical 

structure size 

CDH4,SEMA5A,PCDHA4,PCDHA1,CTNNA3,PCDHA8,

PCDHA6,PCDHA7,DGCR6,PTPRC,NRXN3,PCDHA11,

PCDHA9,PCDHA5,PCDHA10,PCDHA12,PCDH9,PCD

HA3,LPP,PCDHA2 

5.20E-03 

GO:0065008 regulation of 

biological quality 

ARNT,PTPRC,CDH4,NRG3,TP63,NDN,SGMS1,EMP3,

HCN2,GRXCR1,CTSK,PAPPA2,C3AR1 

5.40E-03 

GO:0040007 growth SGMS1,PAPPA2,TP63,NRG3,EMP3,CDH4,NDN 1.35E-02 

        

  KEGG PATHWAY ANALYSIS ODDS RATIO > 2   

KEGG ID KEGG pathway GENES P-

VALUE 

4514 Cell adhesion 

molecules (CAMs) 

PTPRC,CDH4 

6.90E-02 

4010 MAPK signaling 

pathway 

DUSP16,FGF22 

1.10E-01 

5200 Pathways in cancer ARNT,FGF22 1.10E-01 

        

PATHWAY COMMONS ANALYSIS ODDS RATIO > 2 

PATHWAY 

ID 

NAME GENES P-

VALUE 

DB_ID:1045 Glypican pathway PTPRC,DUSP16 1.70E-01 

DB_ID:916 Transcription EIF3C,POLRMT 1.70E-01 

DB_ID:1031 Glypican 1 network PTPRC,DUSP16 1.70E-01 
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Table S5 Enrichment analysis result of gene list with odds ratio > 1 in the BrCa dataset 

 
  GO ANALYSIS OF GENE LIST WITH OR > 1   

GO TERM GENES P-VALUE 

  Biological process    

GO:0042742 defense response to 

bacterium 

DEFB115, DEFB123, DEFB121, DEFB116, 

DEFB124, DEFB119, DEFB118 

1.95E-02 

GO:0009617 response to bacterium DEFB115, DEFB123, DEFB121, DEFB116, 

DEFB124, DEFB119, DEFB118, EPHA3 

4.52E-02 

  Molecular function     

GO:0004872 receptor activity CHRNA7, EPHA3, LOC619207, GPR142, ROBO1, 

MSR1, OR4M1, CD300E, CD300C, OR4Q3, 

ERBB4, GRM8, SEMA5A, OR4K5, GRM5, OR4N4, 

CD300LD, OR4K2, OR4N2, OR4K1, CD300A, 

TAS2R1, CD300LB, GPCRLTM7, SEMA4B, 

OR4M2 

3.21E-02 

GO:0004035 alkaline phosphatase activity ALPPL2, ALPP 3.21E-02 

GO:0004888 transmembrane receptor 

activity 

CHRNA7, EPHA3, LOC619207, GPR142, ROBO1, 

MSR1, OR4M1, CD300C, OR4Q3, ERBB4, GRM8, 

SEMA5A, OR4K5, GRM5, OR4N4, OR4K2, 

OR4N2, OR4K1, TAS2R1, GPCRLTM7, OR4M2 

3.21E-02 

GO:0008046 axon guidance receptor 

activity 

SEMA5A, ROBO1 3.21E-02 

GO:0060089 molecular transducer activity CHRNA7, EPHA3, LAT, LOC619207, GPR142, 

ROBO1, MSR1, OR4M1, CD300E, CD300C, 

OR4Q3, ERBB4, GRM8, SEMA5A, OR4K5, GRM5, 

OR4N4, CD300LD, CHN2, OR4K2, CLNK, SH2B1, 

R4N2, OR4K1, CD300A, TAS2R1, CD300LB, 

GPCRLTM7, SEMA4B, OR4M2 

3.21E-02 

GO:0004871 signal transducer activity CHRNA7, EPHA3, LAT, LOC619207, GPR142, 

ROBO1, MSR1, OR4M1, CD300E, CD300C, 

OR4Q3, ERBB4, GRM8, SEMA5A, OR4K5, GRM5, 

OR4N4, CD300LD, CHN2, OR4K2, CLNK, SH2B1, 

R4N2, OR4K1, CD300A, TAS2R1, CD300LB, 

GPCRLTM7, SEMA4B, OR4M2 

3.21E-02 

      

  KEGG PATHWAY ANALYSIS   

KEGG ID KEGG pathway GENES P-VALUE 

4020 Calcium signaling pathway CHRNA7, CAMK2D, CACNA1C, ATP2A1, ERBB4, 

GRM5 

1.30E-03 
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Table S5 Enrichment analysis result of gene list with odds ratio > 1 in the BrCa dataset (continued) 

4740 Olfactory transduction CAMK2D, OR4K2, OR4N2, OR4K1, OR4M1, 

OR4Q3, OR4M2, OR4K5, OR4N4 

1.30E-03 

790 Folate biosynthesis ALPPL2, ALPP 6.30E-03 

310 Lysine degradation WHSC1, BBOX1, EHMT1 6.30E-03 

4360 Axon guidance EPHA3, SEMA4B, SEMA5A, ROBO1 1.20E-02 

4720 Long-term potentiation CAMK2D, CACNA1C, GRM5 1.42E-02 

4520 Adherens junction MLLT4, CTNNA3, IQGAP1 1.61E-02 

970 Aminoacyl-tRNA 

biosynthesis 

FARS2, TARSL2 4.19E-02 

4722 Neurotrophin signaling 

pathway 

CAMK2D, YWHAE, SH2B1 4.75E-02 

      

  WIKIPATHWAYS ANALYSIS   

GENE SET 

ID 

GENE SET NAME GENES P-VALUE 

WP501 GPCRs, Class C 

Metabotropic glutamate, 

pheromone 

GRM8, GRM5 1.26E-02 

WP716 Retinol metabolism 

(BiGCaT, NuGO) 

DHRS3, CYP2E1 3.85E-02 

      

  PATHWAY COMMONS ANALYSIS   

PATHWAY 

ID 

NAME GENES P-VALUE 

DB_ID:433 Homologous recombination 

repair of replication-

independent double-strand 

breaks 

BCL2L1, BRCA1 2.75E-02 

DB_ID:1035 Lissencephaly gene (LIS1) in 

neuronal migration and 

development 

YWHAE, IQGAP1 2.75E-02 

DB_ID:435 ATM mediated response to 

DNA double-strand break 

BCL2L1, BRCA1 2.75E-02 

DB_ID:432 Homologous Recombination 

Repair 

BCL2L1, BRCA1 2.75E-02 

DB_ID:767 Double-Strand Break Repair BCL2L1, BRCA1 3.12E-02 

DB_ID:707 Post-translational protein 

modification 

PROS1, PIGW 4.07E-02 
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Table S6 Enrichment analysis result of gene list with odds ratio > 2 in the BrCa dataset 

  GO ANALYSIS     

GO TERM GENES P_VALUE 

  Biological process     

GO:0007565 female pregnancy PSG11, PSG4, PSG2, PSG5, PSG9, 

PSG1, PSG7, PSG6 

1.86E-09 

GO:0051704 multi-organism process EPHA3, PSG11, PSG4, PSG5, PSG1, 

PSG7, PSG2, PSG9, PSG6 

2.00E-04 

GO:0022414 reproductive process PSG11, PSG4, PSG2, PSG5, PSG9, 

PSG1, PSG7, PSG6 

1.60E-03 

GO:0000003 reproduction PSG11, PSG4, PSG2, PSG5, PSG9, 

PSG1, PSG7, PSG6 

1.60E-03 

  Molecular function     

GO:0016814 hydrolase activity, acting 

on carbon-nitrogen (but 

not peptide) bonds, in 

cyclic amidines 

APOBEC3B, APOBEC3A 4.18E-02 

 

 
 


