
A Prolog-based Approach for Analyzing XML Documents and Their
Structure

Maria Salo

University of Tampere
School of Information Sciences
Computer Science
M.Sc. Thesis
Supervisor: Timo Niemi
November 2011

University of Tampere
School of Information Sciences
Computer Science
Maria Salo: A Prolog-based Approach for Analyzing XML Documents and Their
Structure
M.Sc. Thesis, 48 pages + 7 appendices pages
November 2011

Since the first version of XML was defined in 1998, it has become the most common
tool for sharing and transferring data between applications in the Internet. It is also
becoming more and more popular as a means to store and describe data. However, it
seems there is a need for a tool that can help those people that have to query large and
mostly unknown XML documents. Traditional query languages such as XPath and
XQuery require the user to know – at least to some extent – the structure of the
document they are handling.

This thesis introduces a Prolog-based approach for analyzing XML documents. It
features predicates with which the user can analyze the structure and content of XML
documents without any previous knowledge of their purpose. The prototype described
here uses the XML relation as a foundation. With a tool such as the one introduced here
the user can easily check if a document is of interest to them as well as use the tool
together with traditional path-oriented query languages.

Keywords and phrases: XML, Prolog, XML relation, XML analysis, dataspaces, XML-
based dataspacing

Table of Contents
1. Introduction...1
2. XML..4

2.1. Basics of XML..4
2.2. DTD, XML schema, RDF...7

3. Problems related to the manipulation of XML..10
4. The XML relation..13

4.1. Constructor algebra...13
4.2. Example..15

5. XML relation in logic programming...19
6. Reasons for analysis..23
7. Example...26

7.1. Example document..26
7.2. Predicates for structure analysis..27
7.3. Predicates for content analysis..29
7.4. Predicates for aggregation analysis...32

8. Comparison with traditional query languages...36
8.1. XPath and XQuery syntaxes..36
8.2. Comparisons..37

9. Further development...39
10. Discussion...41
11. Conclusion...44
References...45
Appendix 1..49
Appendix 2..52

1. Introduction

XML (Extensible Markup Language) [Bray et al., 1998] is a markup language designed
to describe the structure and content of documents. It is similar to HTML (HyperText
Markup Language) [Raggett et al., 1999] except that with HTML the purpose is to
support the displaying of the content of the document, whereas XML is used to support
the semantic interpretation of the document. Since the first version of XML was defined
in 1998, it has become the most common tool for sharing and transferring data between
applications in the Internet. It is also becoming more and more popular as a means to
store and describe data.

Corporations need to transfer large amounts of data with their partners in order to
conduct business. Especially large companies, which can have millions of data transfers
a day, realized long ago that transferring the data electronically is not only faster but
also more reliable, secure and traceable than doing the same data transfers by phone or
fax. [Bussler, 2001] For example, transportation companies need to let their partners
know of new transports that require pickup or transports that are coming into a terminal.

There are several standards that were developed for Business-to-Business (B2B) data
exchange. One of the widely used ones is EDI (Electronic Data Interchange). However,
because of its syntax, an EDI message is not very readable (see Illustration 1). This is
one of the reasons why XML is starting to become popular also in B2B applications.
XML is much more readable than EDI and it is also easily manipulated to other forms.
Most businesses can handle XML documents whereas EDI messages always require
changes in a company's systems. XML also provides easy definition and
implementation of documents and messages exchanged over the Internet. [Bussler,
2001]

1

Currently the most popular ways to handle XML documents are to use languages such
as XPath or XQuery. XPath's primary purpose is to address parts of an XML document.
It also provides ways to manipulate strings, numbers and booleans. [Clark and DeRose,
1999] XQuery, like its name suggests, is an XML query language. Its purpose is to
provide a way to retrieve and interpret information in XML documents. [Boag et al.,
2007] Both of these language rely heavily on the user's knowledge of the structure of the
document they are querying and as such are not the optimal tools for situations where
the user does not know the content or structure of the documents.

All data is either unstructured, semistructured or structured. Most of the data we
encounter is unstructured. For example, e-mails are unstructured data, because the body
of the message is just freeform text. Unstructured data has no identifiable structure
although a person can extract any relevant information from it. Images, videos and
audio files are also unstructured data. Structured data, however, has identifiable
structure. An example of structured data could be a typical database. The information in
a database has to be organized based on its data model. It is also searchable by data
type. Similar entities are grouped together and similar entities in the same group have
the same descriptions. Lastly, semistructured data is data that has some sort of structure
but that structure is not necessarily always the same. For structured data a schema level

2

Illustration 1: On the left, an example of an EDI
message (IFTMIN or instruction message). On the right,
explanations for each line of the message example. [EAN,
2002]

definition can be made that the instance level data conform to, whereas semistructured
data are irregular and incomplete and whose structure is frequently changing in an
unpredictable way. Therefore is is typical of semistructured data that in it data
belonging to the schema and instance levels are mixed.

Data in XML format fall into the semistructured category. The tagged format of XML
documents gives the data some structure but the order of elements might not be the
same or the elements might not have all the same attributes.

The purpose of this thesis is to present another way to look at XML documents.
Because the documents are typically semistructured, there is a need to handle
documents where the structure is unknown. In complex and large documents, which are
previously unfamiliar to the user, it is a hard task for the user to find out manually (i.e.
by reading textual documents) the content and structure of the document of interest.

This thesis introduces a Prolog-based prototype for analyzing XML documents where
their contents and structures are not known beforehand. The user has a set of logic
programming predicates to use, with which he can analyze the structure and content of
any XML document without having to browse through the document.

The structure of the thesis is as follows. Chapter 2 discusses the basics of XML and
DTD, XML schemas and RDF. Chapter 3 is about the problems related to the
manipulation of XML. The fourth chapter describes the XML relation, which is the
foundation on which the prototype in this thesis was created. Chapter 5 discusses how
the XML relation and logic programming can be used together and in Chapter 6 the
reasons for developing a tool for XML analysis are explained. In Chapter 7 an example
document is given and the use of the analysis predicates is demonstrated. Chapter 8
features a comparison of traditional query languages with the prototype. Ideas for
further development of the prototype are given in Chapter 9. Discussion of other work
on XML representation and XML query languages is presented in Chapter 10 and
Chapter 11 contains the conclusions of this thesis.

3

2. XML

2.1. Basics of XML

An XML document is composed of data items called attributes and elements. The data
items are named and a specific data item may have several instances within an XML
document.

An element consists of start and end tags, which declare the nature of the data between
them. There are no predefined tags; they can all be defined by the user, thus making the
language extensible. XML tags differ from, for example, HTML tags in that they
describe the semantics of data – not their presentation style. In other words, XML is
self-describing and this helps applications on the web understand XML documents
made by other applications [Gou and Chirkova, 2007]. However, understanding the
semantics of a document can also include analyzing its structure. Depending on its place
in the document, the tag <title> can relate either to an album or to a single song.

For example, if an XML document contains information on a book, the start tag could
be <book> and the end tag </book>. The start and end tags must be named exactly the
same, except that a forward slash is added to the end tag. This includes case sensitivity,
i.e. <book> is not the same as <Book>. The tags also cannot contain white spaces.

An element can contain text or other elements. Typically an XML document contains
elements within other elements, i.e. nested elements. Nested elements are used to
describe the hierarchical relationships between elements. For example,

<book>
<chapter>Chapter1</chapter>
<chapter>Chapter2</chapter>

</book>

describes a book that contains two chapters. More nested elements can be added to gain
the desired detail:

<book>
<title>Book of XML</title>
<chapter>

<title>Basics of XML</title>
</chapter>
<chapter>

<title>Advanced XML</title>
<pages>23</pages>

</chapter>

4

</book>

An attribute is information in terms of which a property related to a specific element is
expressed. Sometimes attributes can also be called name/value pairs, because they
consist of a name and a value in quotes. [Keogh and Davidson, 2005] Attributes are
placed inside an element's start tag and unlike elements, they cannot be nested. There is
no limit to the amount of attributes that an element can have. However, each attribute
within an element's start tag must have a unique name. Continuing with our previous
example:

<book published=”2011” totalPages=”50”>
<title>Book of XML</title>
<chapter startPage=”1”>

<title>Basics of XML</title>
</chapter>
<chapter startPage=”27”>

<title>Advanced XML</title>
<pages>23</pages>

</chapter>
</book>

The attributes that were added to the example add information to the document. The
added information might as well have been described with elements, but some
developers prefer using attributes for certain information either for the sake of
readability or because the information concerns the whole element.

An XML document has a certain hierarchy. Each document must have one root element,
i.e. an element that contains all other element occurrences in the document. In other
words, the root element has only one instance in any XML document. The root is also
the parent of all the other elements. Parent, child and sibling are terms that are used to
describe the relationships of the elements. In our example, <book> is the root element.
The elements within the <book> element are its children, of which there are three in this
case: one <title> and two <chapter> element occurrences. On the other hand, the
<book> element is the parent of these element occurrences. Both <chapter> element
occurrences also have children. The first one has one while the second has two. Element
occurrences that are immediately dependant on the same element occurrence are called
siblings.

As the term root might imply, XML documents can also be seen as tree structures.
When the tree is actually drawn, it is usually drawn upside down with the root element
at the top. The child elements are visualized as branches. Elements without any child
elements are visualized as leaves. The example used above is illustrated below
(Illustration 2). Attributes are drawn the same way as elements, but they are marked

5

with a prefix @, for example @totalpages. The tree in Illustration 2 is based on the
node-labeled model, which labels the nodes. Another model is the edge-labeled model,
where the labels are associated with the edges [Gou and Chirkova, 2007]. In Illustration
2 an example of a branch element would be title and all the values, e.g. 'Book of
XML', are leaf nodes.

One of the great advantages of XML is its flexibility. There is no need to set fixed
length constraints on the data, because the start and end tags express where a specific
piece of data starts and ends. In contrast, position based documents require strict
constraints on the length of each data field, because the whole document will become
unmanageable if the start point of a specific data is not where it should be.

The example above also illustrates another kind of flexibility that XML provides. It is
semistructured as discussed earlier, so each instance of an element in an XML
document can be organized differently. The example has two chapter elements. The first
one has only one child element, while the second has two. This irregularity is very
common in XML documents.

Because an XML document is plain text, it can be handled by any system capable of
handling text. XML is a language made to represent information, not to query or
manipulate it. The document itself does not do anything, but a program is needed for
manipulating the data in the XML file. An XML file can be quite easily transformed to
another form using XSLT (Extensible Stylesheet Language Transformations) [Clark,
1999]. This cannot be said of text documents in general. In XML the tags provide start
and end points to the text between them. By finding tags <name> and </name> the exact
locations with that name can be found and the data extracted. In a plain text document
this would not be possible.

6

Illustration 2: Data tree of the example XML document.

2.2. DTD, XML schema, RDF

Because of its simplicity and versability, XML has become very popular in transferring
information between businesses. Because different companies have different ways and
applications to handle their data, XML is useful, because it provides a format that can
be read with any text processor. Unlike other markup languages, such as HTML, XML
does not have a single standard that is used for all documents. Companies can create a
standard of their own to use in business to business communication between them. This
can be done by using a DTD (Document Type Definition) [Bosak et al., 1998].

A DTD is used to define the content and potential structural alternatives in a specific
XML document or a collection of XML documents. It declares which element and
attribute instances may appear in which mutual relationships in the document. It does
not necessarily define the exact structure of the document, is just tells us what the
structure may be. An example of a DTD is shown below (Illustration 3).

The companies doing business together agree on some rules for the structure of the
XML documents they exchange as well as the names for different elements. These rules
are represented based on the DTD. All partners can then use the DTD to verify the
validity of the documents they receive from each other. If several businesses in the same
field share information, the DTDs they use form a sort of vocabulary for this industry
sector. Because the specific words or phrases have to be used in the XML documents to
communicate with other businesses, they gradually become the terms used in other
communication as well. However, A DTD does not in any way define the values in the
element or attribute occurrences, it only names the data units and defines potential
interrelationships among their instances.

An alternative for using DTDs is the XML schema [Fallside and Walmsley, 2004]. The
schema is created with the XML schema language or XML schema definition (XSD).
Everything that can be done with a DTD can also be done using an XML schema and
the schema also provides more functionality. The DTD example that was used earlier

7

Illustration 3: An example of a DTD [W3Schools.com].

can be made into a schema as shown in Illustration 4. Whereas DTDs can be used to
define the structure of the XML document, schemas can be used to also define the type
of data in the document. For example, an XML schema can define that the data within
the <Birthday> tags is of the type date. This way the element can only contain data that
confirms to the definition of the date datatype.

Yet another way to describe relationships between data units is RDF (Resource
Description Framework) [Klyne and Carroll, 2004]. It is a standard framework for
representing information in the Semantic Web. It uses triples that consist of a subject
(the information resource to be described), a predicate (a property) and an object (the
value of the property). A set of triples forms an RDF graph, which can be illustrated by
a node and directed-arc diagram (Illustration 5) or in the standard RDF/XML format
(Illustration 6). RDF is one of the most popular ways of describing data in the Semantic
Web. It is used to define the relationships between different data units within an XML
document. Unlike DTD and schemas, it is not used to validate the document, just to add
more metadata and to help the user make sense of the document at hand.

8

Illustration 4: An example of a schema [W3Schools.com].

DTDs and XML schemas can be used to validate XML documents, in which case the
document must confirm to the rules of the DTD or schema. However, the DTDs and
schemas can be constructed so that they are more like instructions. The presence of
either does not guarantee that the documents that use them will necessarily follow the
rules.

9

Illustration 5: An example of an RDF graph
[Tauberer, 2006].

Illustration 6: The RDF/XML representation of the RDF graph example
[Tauberer, 2006].

3. Problems related to the manipulation of XML

There is a need to consider XML documents from several perspectives. At the moment
there are two basic ways to handle XML documents: data-centric and document-centric.
The data-centric approach is used to handle highly structured documents where the
focus is on the data itself and not so much on the order of elements and attributes in the
document. Document-centric approaches on the other hand are used to handle
documents that are very unstructured and the order of elements is important [Lu et al.,
2006]. Kamps et al. state in their paper [2006] that while query languages such as XPath
and XQuery can be very effective for querying data-centric XML, another approach
seems to be needed for querying document-centric XML.

At the moment XML languages such as XPath and XQuery require the user to be
familiar with the structure and content of the document because of their path-oriented
nature. To get the needed information out of the document, the user has to know the
path to its exact location in the document. This is especially problematic with large
XML sources, especially if some data are repeated on different hierarchical levels.
Some files have a DTD to help with defining the structure but in many cases the DTD is
too long and complex so that it is of no help. Some DTDs can also be incomplete and
thus fail in their purpose.

According to Niemi and Järvelin [2006] the traditional way to handle unknown
structures and contents is to use plain keyword search. The problem with this approach
is the way keyword-based searches produce inexact results to complex information
needs. Searching with the word ”master” in a document that contains data about the
university can bring up results that contain information about master's degree studies as
well as information about people with a master's degree that work at the university. In
some cases the word ”master” might even occur in course titles. Erwig [2003] also
states that search engines based on keywords are not powerful enough to exploit the
structure that the XML format contributes to data.

The problem with path-oriented XML languages in general is that they are not suitable
for ordinary end users. As Erwig states in his paper [2003], it cannot be expected that
end users will be able or willing to learn sophisticated XML query languages. End users
need a query language that is easy to use and does not require detailed knowledge of the
document's structure. XML is used in so many business areas, that most of the end users
that query XML documents for information are not necessarily very adept with

10

computers. This leads to them not being able to quickly look at a document and
decipher the path to the needed knowledge. Also, the pattern matching mechanism
related to path-oriented querying and manipulation is one of the biggest obstacles for
the usual end user. It requires an understanding of procedural variables and the ability to
use them, which are not skills that most end users possess.

Even if the document has a DTD that is not incomplete or too complex, the DTD does
not give any information on the values used in the elements or attributes. Using
acronyms such as DOB as element names can create problems in these cases. One
person may quickly understand DOB to stand for ”date of birth” while another may
have no idea what it means. In business to business communication this can become a
problem also because communication might be conducted in English while the end
users are not native English speakers. By looking at the values in the DOB elements, it
might become easier for the user to interpret the semantics of the DOB elements. The
values in the elements can reveal a lof of the semantics of the document that is not
explicitly expressed in it. For example, if a document handling music has a data item
named ”composer” and the values in the instances of that data item are names of
classical composers, it implicitly reveals that the document handles classical music even
if this is not explicitly mentioned in the document.

Another problem arises from the way information is stored. Relational databases are
capable of storing and processing large volumes of data [Florescu et al., 2000]. Because
of this relational databases are the common way to store data, while XML is the most
common way to transfer data. Therefore there is often the need to convert the data from
the XML documents to the relational database.

The data in a database has to be structured. The data in documents, however, is often
not as structured. Niemi and Järvelin say in their paper [2006] that data in documents is
often irregular, incomplete and with a changing structure. The transformation of data in
a relational database to an XML-based document is relatively easy, whereas converting
XML documents unambiguosly to data in a database is not easy at all. Usually the order
of the elements is lost in the conversion from the XML document to the relational
database and as a result, it is very hard to restore an XML document with its original
structure from a relational database [Lu et al., 2006].

From the document-centric view, an easy way would be to store the whole document in
one single data item. That would, however, mean that the document would always have
to be handled as a whole. From the data-centric view, the document could be broken

11

into pieces which would then be stored as separate data items. This way the pieces
could be manipulated but storing the document and also restoring it to its document
form would require quite a lot of effort. [Fiebig et al., 2002]

The problem with restoring documents back to their original form can be solved by
using the XML relation representation created by Niemi and Järvelin. Based on their
notion of the relation it is possible to define the transformation process from textual
XML data in a document to relationally organized losslessly, i.e. no information about
the structure is lost. Every data item name instance and a single word in its value has a
unique index in the XML representation. Due to this property, the XML representation
of a document can easily be restored to its original textual form.

12

4. The XML relation

Niemi and Järvelin [2006] presented a novel way to represent XML data, because they
felt that the traditional way of representing XML documents as directed labeled graphs
led to numerous undesirable features. The traditional approach includes, among others,
complex path-oriented XML query languages as well as the mismatch between XML
data and relational databases. Niemi and Järvelin proposed that each XML document
would be represented as an XML relation with the schema D(C, T, I). In the schema D
is the name of the document, C is a component in the document, T describes its type
and I is its unique index.

Components include each element name occurrence, attribute name occurrence and
values in element or attribute occurrences. If a value is a string consisting of multiple
words, then each word is treated as a separate component. The type of a component can
be element, attribute or value expressed by the letters 'e', 'a' and 'v', respectively. Each of
the components has an unambiguous index, which indicates the location of the
component within the document. This way, the relation can be converted back into the
original textual representation because the structural information is retained in the
indices. In fact, the path to a specific piece of information is still stored in the index,
although the user cannot see it.

4.1. Constructor algebra

Niemi and Järvelin give the constructor algebra for the XML relations in their paper
[2006]. The two main features of the algebra are that it yields a relational representation
for any XML document and that the operations automatically re-index the indices to
reflect the structure of the result document. Furthermore, the algebra has the closure
property, i.e. each of its operations produces the XML relation which can be used as an
operand in other operations.

Before the definition of the algebra, we need to address some basic notations used in it:

1. The length of a tuple t is denoted by len(t). For example, len((a, b, c)) = 3.
2. The index ind is represented between angle brackets and it is divided into two
parts as follows: ind = <part1 part2>⊥ . Part1 refers to those elements which belong
to the first part in ind whereas part2 is the index consisting of the rest of the

13

components. In the context of indices a letter refers only to a single index component
whereas the symbol ξ is used to refer to one or more index components. For example, if
ind = <1, 3, 1, 4> then the expression <i ξ> means that ⊥ i refers to the first component
in ind, i.e. i = 1 and ξ is the index <3, 1, 4>. Thus, the expression < ξ j> applied to⊥
ind yields ξ = <1, 3, 1, 4> and j = 4.

Definition 1: An XML relation is constructed recursively by finite application of the
following rules:

(1) Let c denote the value of an attribute or an element. If the value at hand consists
of words, then c denotes a single word in it. In these cases c is represented as an XML
relation {(c, 'v', <1>)}. In the tuple 'v' indicates that c is a value or belongs to some
value. In the latter case c is a word in some value.

(2) An attribute name an is represented as an XML relation {(an, 'a', <1>)}. In the
tuple 'a' indicates that an is an attribute name.

(3) An element name en is presented as an XML relation {(en, 'e', <1>)}. In the
tuple 'e' expresses that en is an element name.

(4) If R1 and R2 are two XML relations, then the concatenation constructor R1 <> R2

constructs an XML relation

R1 index_transformation(maxfirst(R∪ 1), R2)

where

maxfirst(R) = | {(c, t, ind) | (c, t, ind) R: len(ind)=1} |∈

i.e. maxfirst(R) expresses the number of those indices in R whose length is 1.

index_transformation (int, R) = { (c, t, <i + int ξ>) | (c, t, <i ξ>) ⊥ ⊥ ∈ R}

i.e., the function index_transformation re-indexes the tuples in R by summing integer
int with the first element of an index. In the above formula t denotes any component
type, i.e. t {'a', 'e', 'v'}.∈

14

(5) If A represents an attribute name as an XML relation (see rule (2) above) and R
its content as an XML relation, then the attribute constructor denoted by A ϴ R
constructs an XML relation A {(c, t, <1 ind>) | (c, t, ind) ∪ ⊥ ∈ R}. In other words the
length of each index in R is added by one by inserting '1' as the first component in the
indices.

(6) If E represents an element name as an XML relation (see the rule (3) above) and
R its content with possibly (nested) substructure as an XML relation, then the element
constructor denoted by E ω R constructs an XML relation E {(c, t, <1 ind>) | (c, t,∪ ⊥
ind) ∈ R}.

4.2. Example

To illustrate how an XML document is transformed into the corresponding XML
relation representation, we use the following very small XML document (called
Sample).

<dvds>
<dvd discs=”2” run_time=”177”>

<name> Kamelot - One Cold Winter's Night </name>
<genre> Music </genre>

</dvd>
</dvds>

Based on the first three rules of the algebra, in Table 1 we give the basic information for
structuring the XML relation. We also give each component a notational abbreviation to
help with the rest of the demonstration.

15

Element names Attribute names Values

E1 = {('dvds', 'e', <1>)} A1 = {('discs', 'a', <1>)} V1 = {('2', 'v', '<1>')}

E2 = {('dvd', 'e', <1>)} A2 = {('run_time', 'a', <1>)} V2 = {('177', 'v', <1>)}

E3 = {('name', 'e', <1>)} V3 = {('Kamelot', 'v', <1>)}

E4 = {('genre', 'e', <1>)} V4 = {('-', 'v', <1>)}

V5 = {('One', 'v', <1>)}

V6 = {('Cold', 'v', <1>)}

V7 = {('Winter's', 'v', <1>)}

V8 = {('Night', 'v', <1>)}

V9 = {('Music', 'v', <1>)}

Table 1: Basic components related to the example document, Sample.

In terms of the constructor algebra we can produce the XML relation representation
corresponding to the example document by the following sequence:

E1 ω (
E2 ω (

(A1 ϴ V1) <>
(A2 ϴ V2) <>
E3 ω (

V3 <> V4 <> V5 <> V6 <> V7 <> V8
) <>
E4 ω V9

)
)

Now we consider its construction by starting from the innermost part of the sequence,

V3 <> V4 <> V5 <> V6 <> V7 <> V8 (denoted by I).

By applying rule 4 for evaluating V3 <> V4 means that the expression

V3 ∪ index_transformation(maxfirst(V3), V4)

has to be performed. In it maxfirst(V3) returns 1 as the result. Based on this value the
function

index_transformation(1, V4)

16

yields the set

{('-', 'v', <2>)}.

After the evaluation of all the construction operations in I, we get the XML relation
described in Table 2. As can be seen from Table 2, the indices have re-indexed to
express the order of single words in the value, or in this case the order of the words in
the DVD name.

{('Kamelot', 'v', <1>),

('-', 'v', <2>),

('One', 'v', <3>),

('Cold', 'v', <4>),

('Winter's', 'v', <5>),

('Night', 'v', <6>)}

Table 2: The XML relation (denoted by II) yielded by the operation sequence I.

The next part in the sequence is

E3 ω (II) <> E4 ω V9 (denoted by III).

In the evaluation of this sequence the sixth rule of the algebra is also needed. The
evaluation gives the XML relation in Table 3.

{('name', 'e', <1>), ('Kamelot', 'v', <1, 1>),

('genre', 'e', <2>), ('-', 'v', <1, 2>),

('One', 'v', <1, 3>),

('Cold', 'v', <1, 4>),

('Winter's', 'v', <1, 5>),

('Night', 'v', <1, 6>),

('Music', 'v', <2, 1>)}

Table 3: The XML relation achieved by the operation sequence III.

17

The constructor expression

(A2 ϴ V2)

yields the XML relation

{('run_time', 'a', <1>), ('177', 'v', <1, 1>)}.

The rest of the operations in our original sequence are evaluated analogously and it
produces the XML relation representation for our sample document Sample in Table 4.

Sample('dvds', 'e', <1>)

Sample('dvd', 'e', <1, 1>)

Sample('discs', 'a', <1, 1, 1>)

Sample('2', 'v', '<1, 1, 1, 1>')

Sample('run_time', 'a', <1, 1, 2>)

Sample('177', 'v', <1, 1, 2, 1>)

Sample('name', 'e', <1, 1, 3>)

Sample('Kamelot', 'v', <1, 1, 3, 1>)

Sample('-', 'v', <1, 1, 3, 2>)

Sample('One', 'v', <1, 1, 3, 3>)

Sample('Cold', 'v', <1, 1, 3, 4>)

Sample('Winter's', 'v', <1, 1, 3, 5>)

Sample('Night', 'v', <1, 1, 3, 6>)

Sample('genre', 'e', <1, 1, 4>)

Sample('Music', 'v', <1, 1, 4, 1>)

Table 4: The XML relation representation of the example document.

18

5. XML relation in logic programming

Prolog [Colmerauer, 1990] is the main logic programming language. A program is a set
of axioms or rules, which define the relations between objects. The program is used by
running a query over the relations. If the query is found to be true, it is a logical
consequence of the program.

Prolog has only one data type, which is called the term. Terms can be constants,
variables or compound terms. A constant is an atom or a number. Atoms begin with a
lower-case letter or they are in single quotes. Some examples of constants are 2, x and
'Kirk'. Variables always begin with an upper-case letter, which is why atoms beginning
with an upper-case letter have to be separated from variables by single quotes. Variables
are any objects, that have not been explicitly expressed, in the closed world represented
in a Prolog program. A compound term is composed of a functor name and a number of
arguments. The name of the functor has to be an atom and the arguments are terms.
Complex objects in Prolog are represented by nesting terms of different types.

In a logical sense, a Prolog program consists of Horn clauses. There are three types of
clauses: rules, facts and queries. A rule is of the form

Head :- Body.

This means that Head is true if Body is true. The Body consists of goals, which are calls
to predicates. An example of a rule is

father(X, Y) :- parent(X, Y), male(X).

The above rule could be interpreted as follows: “X is Y's father if X is Y's parent and X
is male”.

A fact is a clause without a body. An example of a fact is

male(john).

In it the Prolog programmer wants to express explicitly that John (an object) is male
(i.e. a property related to John).

19

In this research an XML document is converted first into an XML relation by applying
the constructor algebra discussed earlier and after that the data are stored in a
PostgreSQL database. One might argue that because the data are now in a relational
database, SQL (Structured Query Language) [Chamberlin and Boyce, 1974] can be used
to gather information rather than creating a whole other way of doing it. However, SQL
was tailored to extract and select data from previously familiar relations – not to analyze
previously unfamiliar relations. In addition, XML data are fundamentally different than
relational data and therefore SQL is not appropriate for XML [Deutsch et al., 1999].

The main difference between data in XML and data in a relational database is that XML
is not rigidly structured. In a relational database, every data instance has a schema,
which describes its content and structure. The instance level has been organized
according to this schema. In other words, data are represented at two abstraction levels.
In XML, however, the schema is represented with element and attribute names, which
are mixed with their values. This makes XML data self-describing and it can model
irregularities unlike the relational model. Thus a query language that is designed for
relational, structured data is not as useful with semistructured XML data as a language
or tool created for use with XML, although it can be used to some extent.

To use the XML relation with logic programming, it has to be presented in a format that
can be handled with Prolog. First the data must be retrieved from the database. Prolog
itself cannot be used to access the database and retrieve the data, so a short Java
[Gosling et al., 2005] program had to be written to achieve this. Prolog and Java can be
used together by using a library called JPL [Singleton et al., 2004]. JPL is a
bidirectional Java/Prolog interface. Using JPL enables the user to embed Prolog in Java
code or Java in Prolog code. The latter was used here so that the Java program could be
called from the Prolog main program.

The following is the code for the retrieval of the data from the database by calling the
Java program from the Prolog main program. The first get_facts predicate is used,
when everything goes well and the connection to the database is achieved. The second
predicate is there only to notify the user, if the connection fails and the information
cannot be retrieved.

get_facts(Table) :- clear_all_facts, jpl_new('DBAccess', [],
DBA), jpl_call(DBA, getConn, [], ConnOk),
jpl_is_true(ConnOk), jpl_call(DBA, getAllData, [Table],
AllData), jpl_call(DBA, closeConn, [], _),
jpl_array_to_list(AllData, ADList), retract_in_use,
assertz(in_use(Table)), process(ADList), !.

20

get_facts(_) :- clear_all_facts, jpl_new('DBAccess', [],
DBA), jpl_call(DBA, getConn, [], ConnOk),
jpl_is_false(ConnOk), write('Could not get connection.'), nl.

To begin analyzing the document, the user calls the Prolog predicate
get_facts(Table). Because the prototype can only handle one document at a time,
first all facts from a possible previous document are cleared (using the predicate
clear_all_facts). To use the Java code from Prolog, an instance of the Java class has
to be created from Prolog. For this, the system predicate jpl_new is used with the
classname (in this case DBAccess), any parameters for the constructor (none here,
which is why there is an empty list) and a variable that will be bound to the new
reference (DBA here). Next, the predicate jpl_call is used to call the getConn
method, this time using the variable created in the previous step. The getConn method
is used to open to connection to the database. Again there are no parameters to pass to
the Java method, but this time the method returns a truth value through the variable
ConnOk. If the truth value is true, the program moves on to the next goal. However, if
ConnOk is not true, the program moves to the second get_facts rule and notifies the
user of the connection failure.

If the connection is open, then the method getAllData actually retrieves the data. The
parameter Table is the name of the document (and thus, the name of the table in the
database) to be analyzed. The Java method then simply gets the data from the given
table. After that the data is converted from the query result into a form that is easier to
handle with Prolog and then returned to the main Prolog program.

The data is returned by initializing the AllData variable as an array. The connection to
the database is then closed and the array is converted into a Prolog list. The predicate
retract_in_use removes any fact in the form of in_use(table) and assertz adds
the new in_use fact to memory. This fact is used to store the name of the document at
hand. Finally the data is transformed into a collection of facts with the following
structure:

table_name(component, type, index).

The facts are stored in memory. Each fact contains the information related to one row
(tuple) of the XML relation. In other words, the number of facts in memory is the same
as the number of rows in the XML relation. This collection of facts is used to analyze
the underlying XML document.

21

To illustrate, let's use the same example that was used in the previous chapter. The
name of the small XML document is Sample, so the call to retrieve that document from
the database would be the following:

get_facts('Sample').

The resulting data collection that would be stored in memory and not shown to the user
is the same as in Table 4:

sample('dvds', 'e', <1>)
sample('dvd', 'e', <1, 1>)
sample('discs', 'a', <1, 1, 1>)
sample('2', 'v', '<1, 1, 1, 1>')
sample('run_time', 'a', <1, 1, 2>)
sample('177', 'v', <1, 1, 2, 1>)
sample('name', 'e', <1, 1, 3>)
sample('Kamelot', 'v', <1, 1, 3, 1>)
sample('-', 'v', <1, 1, 3, 2>)
sample('One', 'v', <1, 1, 3, 3>)
sample('Cold', 'v', <1, 1, 3, 4>)
sample('Winter's', 'v', <1, 1, 3, 5>)
sample('Night', 'v', <1, 1, 3, 6>)
sample('genre', 'e', <1, 1, 4>)
sample('Music', 'v', <1, 1, 4, 1>).

22

6. Reasons for analysis

As XML is increasingly popular as a means of data transfer, more and more people with
no particular knowledge of XML find themselves in situations where they are required
to handle XML documents. They do not master XML query languages such as XPath or
XQuery but are required to retrieve data from some available unfamiliar documents,
that can be quite large and complicated. In addition, even users familiar with XML
query languages need to have some knowledge of the document structure to be able to
use the languages to query previously unfamiliar documents.

There is a need for a tool in terms of which it is possible to analyze the structures and
contents of XML documents that have no definition, such as a DTD or schema, or have
a definition of some sort that is too complicated. In addition, documents can be so large
that comprehending the purpose of the document requires a tool to help understand the
structure and semantics of the document. For this reason in this thesis a set of Prolog
predicates is developed to analyze XML documents based on their XML relation
representations.

The predicates can be divided into three categories:

1. Analysis of structure. These predicates are used to analyze the structure of the
document. They give information about the elements and attributes in the
document, e.g. the amount of occurrences of an element with a specific name in
the document or a listing of all the different attribute names.

2. Analysis of content. These predicates provide information about the values, i.e.
the actual data of the document. They can be used for example to determine the
maximum value of an attribute or if all the values in a certain element or
attribute are presented uniformly. In addition, they can be used to help
understand the semantics of the document. These predicates would be used to
examine the values to check whether or not the document contains information
that the user is interested in.

3. Aggregate. The structure analysis predicates can be used together with the
content analysis predicates to gather information that is not directly given in the
document. For example, percentages and average values for numerical values of
elements or attributes can be calculated this way.

23

If the user does not know the structure of the document beforehand, its utilization is
difficult, and often impossible. With the traditional, path-oriented query languages the
user has to be familiar with the content and structure of the documents they are
handling. This means that they would have to read the defining DTD or schema, which
in turn means that they would have to be able to understand them. If no DTD is
available, the user would need to browse the document itself, which is a major task if
the XML document is a large one or if the user is handling a collection of documents.
Thus, even if the user would be familiar with XPath or XQuery, without an accurate
understanding of how the data is structured in the document, the user would be unable
to issue meaningful queries [Barg and Wong, 2003]. Even with the use of wildcards, i.e.
characters used to replace any element (usually an asterisk (*)), the user has to know the
name of the destination element. In addition, when using, for example, XPath, the user
has to know if the information they are looking for is in an element or an attribute. This
is one example of a situation where even someone familiar with XPath would find the
analysis predicates above useful.

With the predicates characterized above, the user can find out what elements, attributes
and values the XML document consists of and how they relate to each other without
having to go through the document manually. Using this information they can then
further analyze the underlying document. If a certain element or attribute name seems
ambiguous or the name is an unfamiliar acronym, the user can look at the values in that
element or attribute to get more intuition on the semantics related to the attribute or
element name. With the data they can gather of the document using the predicates they
can then move on to use XPath or XQuery with more ease, if needed.

All of this relates closely to the concept of dataspaces [Franklin et al., 2005]. In their
paper introducing the idea of dataspaces, Franklin and his colleagues outline a need to
have a new abstraction for data management. The biggest challenge of information
management today is that organizations rely on a large number of diverse, interrelated
data sources but have no means of managing their dataspaces. For this purpose the idea
of DataSpace Support Platforms (DSSP) is suggested. Instead of data integration,
dataspaces shift the emphasis to data co-existence. The goal of DSSP is to provide base
functionality over all data sources, regardless of how integrated they are. In other words,
although the information is stored in different ways in different data manegement
systems, there should be a way to query or search all of the data in one go. The results
are perhaps not very accurate, but by gradually refining the query the user can locate the
desired answers.

24

The way dataspaces relate to the work in this thesis is that the data in XML documents
can be presented in so many ways that a tool that is able to analyze the documents
structure and content is needed. By using this tool the user's knowledge of the data
grows up to the point where usage of other tools is possible. As more and more data is
stored in XML format or can easily be transformed to XML, the need only grows. The
prototype described here is one example of a tool that could be used to satisfy that need.
It could be said that the prototype can be used like database profiling for XML
documents, i.e. ”XML profiling”. Database profiling can be described as ”analysis of
the structures and properties exposed by an information source” which allows for
assessment of the utility and importance of the database as well as determining the
structure of the database in preparation for specific data applications [Howe et al.,
2008]. This is exactly what the prototype is used for.

25

7. Example

To illustrate the expressive power of the analysis predicates, a short example document
is introduced next.

The example document contains information about DVDs. There are seven DVDs in the
document and each one has some detailing information listed. Each DVD has either a
title or a name. In case of movies, the other information might include the names of the
directors, writers or actors. Also a tagline or genre might be given. Some numeral
information include the number of discs, year of release and running time in minutes.

7.1. Example document

<dvds>
<dvd discs=”1” year=”2005” run_time=”73”>

<title> Corpse Bride </title>
<director> Tim Burton </director>
<actors>

<actor> Johnny Depp </actor>
<actor> Helena Bonham Carter </actor>

</actors>
</dvd>
<dvd discs=”2” year=”1994” genre=”Thriller”>

<title> The Stand </title>
<writers>

<writer> Stephen King </writer>
</writers>
<actors>

<actor> Gary Sinise </actor>
<actor> Molly Ringwald </actor>

</actors>
<tag_line> the end of the world is just the beginning
</tag_line>

</dvd>
<dvd discs=”1” year=”1994” run_time=”137”>

<title> The Shawshank Redemption </title>
<director> Frank Darabont </director>
<genre> Drama </genre>
<writers>

<writer> Frank Darabont </writer>
<writer> Stephen King </writer>

</writers>
<actors>

<actor> Tim Robbins </actor>
<actor> Morgan Freeman </actor>

</actors>
</dvd>
<dvd discs=”2” run_time=”177”>

<name> Kamelot - One Cold Winter's Night </name>
<genre> Music </genre>

</dvd>
<dvd discs=”2” run_time=”240”>

<name> Iron Maiden – Live After Death </name>

26

<genre> Music </genre>
</dvd>
<dvd discs=”1” year=”1998” run_time=”115” genre=”Thriller”>

<title> Blade The Daywalker </title>
<director> Stephen Norrington </director>
<writers>

<writer> David S. Goyer </writer>
</writers>
<actors>

<actor> Wesley Snipes </actor>
<actor> Stephen Dorff </actor>

</actors>
<tag_line> It takes one to kill one </tag_line>

</dvd>
<dvd discs=”1” year=”2008” run_time=”116” genre=”Drama”>

<title> Gran Torino </title>
<director> Clint Eastwood </director>
<actors>

<actor> Clint Eastwood </actor>
<actor> Bee Vang </actor>

</actors>
</dvd>

</dvds>

The collection of facts that is generated from the XML relation corresponding to this
example document can be found in Appendix 1. Let's assume that the name of the
document is info.

The predicates created for the prototype in this thesis can be divided into different
groups based on what they are used to analyze.

7.2. Predicates for structure analysis

If the user does not know anything about the structure, or even content, of the document
of interest, the structure analysis predicates are often a good starting point to get more
information on the underlying document.

With the structure analysis predicates the user gets information about the relationships
among the different components of an XML document. Because XML is a self-
describing language, the names of elements and attributes also shed light on the subject
of the document.

Let us assume that the example document above is totally unknown to the user. S/he
does not know anything of its structure or content. The first thing that might reveal the
nature of the document is the name of the root element of the document. The predicate
used to find this out is called simply root and its usage is similarly simple:

27

Query 1:
root.

The processing of this goal produces the result

dvds

in the context of the sample document. From this we can deduce that the document
concerns DVDs. Of course there can be cases where the root element is named simply
root, which does not say anything about the document. In a case like this the names of
the elements on the second level of the hierarchy could be more useful. For this purpose
the predicate elements_level(Document, Level) has been developed. It returns the
names of all elements on the given level in the given document. Now, the user would
like to know the names of all element occurrences under the root element, which is the
second level. As our document is called info, the query becomes:

Query 2:
elements_level(info, 2).

The result for this query is

[dvd, dvd, dvd, dvd, dvd, dvd, dvd].

From the result of the previous query at least the user now knows that the document
concerns DVDs. By looking at the result more closely, the user can see that the
document at hand contains information about seven DVDs.

Now, a more comprehensive look at the document would tell the user more. He or she
can use show_all_elements to find out what elements and attributes the document
consists of. Like its name suggests, the predicate show_all_elements(Document)
returns all element names found in the document.

Query 3:
show_all_elements(info).

In the context of our sample document it prints the following result:

actor
actors
director
dvd
dvds
genre
name
tag_line

28

title
writer
writers.

If the user wants to find out all attribute names in the document, he or she can use the
predicate show_all_attributes(Document) for this purpose.

Query 4:
show_all_attributes(info).

Based on our sample document it produces the following printing:

discs
genre
run_time
year.

The user can utilize the information gained with the structural analysis predicates in
analysing the content of the XML document.

7.3. Predicates for content analysis

The predicates described in this chapter are useful for content analysis. They are meant
to be used to find out what kind of values are in the different elements and attributes in
the document. Along with structure analysis, content analysis is another good starting
point. From the content the user can see if the document handles the kind of information
they are interested in.

For example, the user might be looking through several documents that contain
information about music. Just by looking at element names, such as title, composer
and genre, the user would not be able to tell what kind of music the documents
concern. By looking at what the values are for the different elements, the semantics of
the document would become clear. Also, because the same element name can be used
for data of different kinds, checking the values is helpful. For example, title can be
used as the element name for the title of a CD as well as the title for a single song.

One of the basic needs of a user is to know what values a certain element or attribute
has. If the user has applied the above structure analysis predicates, he has some idea of
the content of the document, but the actual values in the elements and attributes give a
much clearer idea of it all. It is also possible that the element name is an acronym that
the user does not recognize. Looking at the values the meaning could become clear. For
example, DOB could be an element name. Just the name is a bit obscure but by looking

29

at the values, which would be dates, it could come apparent to the user that DOB stands
for “date of birth”.

In the context of our example document, there might be questions concerning semantics
related to some of the element or attribute names. For example, what exactly is meant
by the attribute name discs? To find this out, the predicate values(Document,
DataItemName, Result) is available. As a parameter the predicate takes the name of
the document to perform the query on as Document and the name of the wanted element
or attribute as DataItemName. As Result the predicate returns a list of the values which
appear in different element/attribute occurrences in the document:

Query 5:
values(info, discs, Result).
Result = [1, 2, 1, 2, 2, 1, 1].

The query returns numbers so the attribute discs probably means the amount of discs
the content is spread out to.

Another version of the values predicate can be used to look at certain
elements/attributes that belong to a specific element. For example, the user can find out
what genres are present among the DVDs by using the predicate values(Document,
ParentElementName, ChildDataItemName, Result). ParentElementName is the
name of the element under which the ChildDataItemName should be found. Result is
a list of the values found in those data items.

Query 6:
values(info, dvd, genre, Result).

In the context of our sample document, the above query returns the following:

Result = ['Thriller', 'Drama', 'Music', 'Music', 'Thriller',
'Drama'].

This predicate can be very useful when the user wants to concentrate on a specific data
item and what kind of values can be found in its occurrences. Also, an attribute with the
same meaning could be named differently in different element occurrences. This DVD
list might consist of elements named movie and live_recording. In a case like this, if
the user was only interested in the movies, s/he could use the above predicate to check
the values of genre that occur under the instances of movie.

30

Let us assume the user is interested in DVDs with the genre “Drama”. With the help of
the structure analysis predicates they can look at the list of element names and see that
there seem to be 2 different elements that might contain the name of the DVD: title
and name. The user wants to check both to see what the drama DVDs are called. For this
purpose there is the predicate get_data(Document, ParentDataItemName,
ChildDataItemName, ChildDataItemValue, ResultDataItems, Result). The
predicate takes five parameters: name of the document at hand (Document), name of the
parent element/attribute (ParentDataItemName), name of the element or attribute to
search for under the parent data item (ChildDataItemName), the desired value for the
named element/attribute (ChildDataItemValue) and a list of the data item names that
the user wants to see the values for (ResultDataItems). Result is a list of the values
for the data items in ResultDataItems. In this case the user wants to see the values of
name and title from DVDs that have “Drama” as their genre in our example document
info:

Query 7:
get_data(info, dvd, genre, 'Drama', [name, title], Result).

After processing this goal (question) the following is returned:

Result = [['Gran', 'Torino'], ['The', 'Shawshank',
'Redemption']].

All of the different DVDs might not contain the same data. This assumption is
supported by the fact that the headings of the DVDs seem to sometimes be in the
element title and other times in the element name. The user might want to find out if
there is some data item that appears in all instances of the given element. The predicate
common_data(Document, DataItemName) has been developed for exactly this
purpose. The parameter DataItemName expresses the name of the targeted element.

Query 8:
common_data(info, dvd).

Based on the example document, the query returns the printing

discs.

Here discs was the only data item found in all instances of dvd. Another related
predicate is get_without(Document, ElementName, DataItemName,
ResultDataItems, Result). It is used to find the instance of ElementName where a

31

specific data item name DataItemName does not appear. For example, is there a DVD
for which the genre has not been listed? We can make the following query to find out:

Query 9:
get_without(info, dvd, genre, [name, title], Result).
Result = [['Corpse', 'Bride']].

In our sample document the names of DVDs have been expressed in the data items
name and title. After processing the query, Result expresses that the only DVD with no
genre is titled “Corpse Bride”.

As it is now apparent that the data related to each DVD is somewhat varied, it might be
interesting to know which DVD has the most data. In other words, the user can check
which element occurrence has the most data items attached to it. For this purpose the
predicate max_data(Document, ElementName, ResultDataItems, Result) can be
used. It returns the values in the data items listed in ResultDataItems for the
occurrence of the wanted element (ElementName) with the most data attached to it.

Query 10:
max_data(info, dvd, [name, title], Result)

gives the solution

Result = [[Blade, The, Daywalker]].

7.4. Predicates for aggregation analysis

Lastly our approach contains the predicates that can be used to gain data that is not
presented explicitly in the document as an element, attribute or value. For example, the
user can realize that the document consists of dvd elements. But how many are there?
With small documents the user might just count the elements manually, but if we think
of a typical DVD collection with tens or hundreds of DVDs, the task would be too time-
consuming to be done by hand. In our approach count(Document, DataItemName,
Result) is a predicate that counts the instances of the given DataItemName:

Query 11:
count(info, dvd, Result).
Result = 7.

32

It seems that there are seven instances of dvd in our sample document, info. Because
the document is so small, this can be verified by actually counting the dvd elements
manually from our textual sample document.

Other basic information the user might be interested in could include the maximum and
minimum values among instances of such a data item whose instances have numeric
values. In terms of the above content analysis predicates the user can find some such
elements/attributes. For example, in our sample document run_time and year are such
kinds of attributes. The predicates max(Document, DataItemName, Result) and
min(Document, DataItemName, Result) are quite self-explanatory, i.e. they return
the maximum and minimum values in the given DataItemName. The maximum run
time, which appears in our sample document, info, can be found out by

Query 12:
max(info, run_time, Result),

which yields

Result = 240.

Correspondingly, the minimum run time can be found with the following query:

Query 13:
min(info, year, Result),

which returns

Result = 1984.

Based on the minimum and maximum predicates it is possible to find the DVD with the
maximum or minimum value of some element or attribute. For example, now we know
that the maximum run time among the DVDs is 240 minutes. If the user wants to know
the name of the DVD with the maximum run time, then the predicate
get_max(Document, ElementName, DataItemName, ResultDataItems, Result)
can be used. The predicate returns the values of data items (ResultDataItems)
belonging to the element (ElementName) with the maximum value of some element or
attribute (DataItemName). The result can be something else than the name of the DVD,
but in this case it seems most appropriate:

Query 14:
get_max(info, dvd, run_time, [name, title], Result).

33

The processing of the above query returns the following:

Result = [['Iron', 'Maiden', -, 'Live', 'After', 'Death']].

In addition to the minimum and maximum values, it is interesting to find out the
average among the numeric values. For this purpose we define the predicate
average(Document, DataItemName, Result), which gives the average (Result) of
the values related to DataItemName in the document Document. In the context of our
sample document, the goal

Query 15:
average(info, run_time, Result)

produces the solution

Result = 143.

The predicate higher_than_average(Document, ElementName, DataItemName,
ResultDataItems, Result) extracts from the underlying document the values of data
items expressed in ResultDataItems, which can be found from element ElementName
instances where the value of data item DataItemName is greater than the average of all
values of this data item. If the user wants to find those DVDs whose run times are
greater than average, s/he can do this by the following query:

Query 16:
higher_than_average(info, dvd, run_time, [name, title],
Result).

Its processing gives the solution

Result = [['Kamelot', -, 'One', 'Cold', 'Winter\'s',
'Night'], ['Iron', 'Maiden', -, 'Live', 'After', 'Death']].

These aggregate predicates as well as some of the other previously described predicates
can also be used together to form more complex queries. These require the user to be
familiar with variables. By using the same variable in different goals of a query, the user
can combine different predicates with each other. As an example, the max_data
predicate could be replaced by using two other predicates, max_info(Document,
DataItemName, Index) and show(Document, Index, ResultDataItems, Result),
together. The predicate max_info gives the index for the DataItemName with the most
data attached to it. This index is shared by the variable Index, which is a parameter for

34

the show predicate. It in turn finds the values of ResultDataItems for that DVD
instance.

Query 17:
max_info(info, dvd, Index), show(info, Index, [name, title],
Result).

Now, because there are in fact two goals in the above query, we also get two solutions:

Index = [[1, 6]],
Result = [['Blade', 'The', 'Daywalker']].

The first result, Index, is the index of the DVD instance with the most data attached to
it. The second result, Result, is the result for the whole query, i.e. the name of the
DVD. When we compare this to the result of Query 10, we can see that they produced
the same result.

As an example of how an even more complex query can be made, let us find out the
percentage of those DVDs in the document that have a tag with the name tag_line. For
this we can use a combination of the predicates developed in this thesis as well as basic
arithmetic predicates available in a typical Prolog environment. It should be noted that
this is a query that requires the user to be familiar with Prolog, but it shows how these
predicates can be used by a user more skilled in Prolog.

Query 18:
count(info, dvd, Total), count(info, tag_line, Tags), Res1 is
Tags/Total, Percentage is Res1*100.

Based on our sample document, we get the following results:

Total = 7,
Tags = 2,
Res1 = 0.285714,
Percentage = 28.5714.

First we get the number of DVDs into the variable Total. Next we need the amount of
tag lines in the document. This info goes to the variable Tags. After that we divide the
amount of tag lines with the amount of DVDs. The result is expressed by the variable
Res1. Finally the instantiated value Res1 is multiplied by a hundred to get a percentage
value for the user. This whole process illustrates that the predicates can be very flexible
tools in the hands of someone who is more familiar with Prolog.

35

8. Comparison with traditional query languages

To illustrate the differences between traditional query languages and the prototype
developed in this thesis, some sample information needs are specified with both
approaches.

For the comparison, the following three queries are considered:
1. Give all writers expressed under the element writers.
2. Give all values in the element director instances.
3. Give all DVDs with 2 discs.

For the purpose of these comparisons, assume that the current context is the root
element of the info document introduced in the previous chapter and that the document
has been saved in the file info.xml.

8.1. XPath and XQuery syntaxes

XPath is a query language that uses paths to select nodes (elements/attributes) from
XML documents. An XPath query is a sequence of alternating axes and tags. Two most
commonly used axes are the child axis / and the descendant axis //. An example of using
the child axis is A/B where child nodes B of parent nodes A are selected. A//B on the
other hand denotes selecting B descendant nodes of A nodes, i.e. all B nodes anywhere
under A. [Gou and Chirkova, 2007]

An absolute path is a path that points to the same location in the document, no matter
what the current context is. A relative path, however, is relative to the current location.
In XML documents the same element name can appear in different locations, so a
relative path can be used to locate that info without explicitly stating the path to it.

XQuery is more expressive than XPath. An XQuery query consists of For-Let-Where-
Return (FLWR) clauses. The For and Let clauses use XPath expressions to bind nodes
to user-defined variables. The Where clauses specify the selection or join predicates on
the variables. The Return clauses operate on variables to format query results in the
XML format. [Gou and Chirkova, 2007]

36

8.2. Comparisons

1. Give all writers expressed under the element writers.

XPath:
Absolute path:

/dvds/dvd/writers/writer
Relative path:

descendant::writers/child::writer

XQuery:
for $x in doc(“info.xml”)/dvds/dvd/writers/writer

return {data($x)}

In our approach:
values(info, writers, writer, Result)

2. Give all values in the element director instances.

XPath:
Absolute path:

/dvds/dvd/director
Relative path:

descendant::director

XQuery:
for $x in doc(“info.xml”)/dvds/dvd/director

return {data($x)}

In our approach:
values(info, director, Result)

3. Give all DVDs with 2 discs.

XPath:
Absolute path:

/dvds/dvd[@discs = 2]/title or /dvds/dvd[@discs = 2]/name
Relative path:

descendant::dvd[attribute::discs = 2]/child::title or
descendant::dvd[attribute::discs = 2]/child::name

37

XQuery:
for $x in doc(“info.xml”)/dvds/dvd/title

where doc(“info.xml”)/dvds/dvd/@discs = 2
return {data($x)}

for $x in doc(“info.xml”)/dvds/dvd/name
where doc(“info.xml”)/dvds/dvd/@discs = 2

return {data($x)}

In our approach:
get_data(info, dvd, discs, 2, [name, title], Result)

As can be seen from the examples above, in our approach the user is not required to be
familiar with the structure of the document, unlike with XPath or XQuery, where the
path to the location of the information is needed. The syntax of both query languages is
also more complex. This applies especially to XQuery, where the user needs to
understand and know how to use variables and be somewhat familiar with coding in
general.

38

9. Further development

Because this is the first prototype for a Prolog-based analysis tool, there are some
suggestions for improvements that could be made to make it simpler to use and more
efficient.

Currently the user has to make the queries in normal Prolog syntax, which can be
somewhat complex, although the goal has been to make the queries as simple as
possible. The syntax could be further simplified by using DCG (Definite Clause
Grammar) [Pereira and Warren, 1980], with which the queries could be made to be
more like natural language. This way the user would find the syntax more natural and
less mistakes would be made. Another option would be to develop a graphical user
interface, such as a form of some kind, where the user would not have to think about the
actual syntax of the query, but concentrate even more on the data they want the query to
return.

One direction for development could also be the addition of graphical visualization of
the underlying XML source to the tool. The user could have a simple graph of the
document, which would show the main elements under the root element, i.e. the next
elements in the hierarchy. Clicking on an element would then expand the view to show
the elements and attributes that are next in hierarchy under that element. This would
give a visual tool for the user to help grasp the structure of the document. It might also
be useful to provide the user with visualizations of different levels of the data which
could then be used to express the user's interest in the data, for example as limits on the
search.

The prototype made for this thesis can only handle one document at a time. Modifying it
to handle multiple documents at one time would add the option of comparing and
matching the documents. For example, if the same name appeared in several
documents, all the information related to that name could be gathered and examined.
Also, the user could compare the way data in different documents are presented.

An improvement to the previous could be to add functionality that would enable the
user to detect data conflicts among heterogeneous data sources. Data conflicts occur
when the same kind of data related to the same object is different in different data
sources. For example, the deadline of some course work is different in a teacher's own
notes than in the web site for the course.

39

The easiest way to improve the prototype would be to develop more analysis predicates.
There is no limit to how many predicates there can be and thus any new analysis ideas
would be useful. As the main purpose of this thesis was to show that an analysis tool
can be developed in a natural way based on logical programming, only some of the
more common analysis needs were considered in this prototype. A broader set of
analysis predicates can be added to further develop the prototype.

There is also the way that the data from a database is returned to the Prolog program. At
the moment a Prolog list is used to hold all of the data until the facts are stored in
memory. However, as a list is also a kind of term, it has a limit on how much data it can
hold. This might cause problems with large documents. It should be researched how
much data a Prolog list can hold and if there is a better way to store the document data
until it is transformed into facts.

Lastly, because the work in this thesis relates closely to dataspaces, the prototype could
be used together with other dataspace tools. With some further development of the tool,
it could be used in a DataSpace Support Platform to ease data management within a
collection of different data sources.

40

10. Discussion

Although there are several papers on different XML query languages, there are only a
few papers on how to improve the analysis of XML documents. Some want to improve
an existing query language, such as XPath or XQuery, while others have come up with
entirely new ways to handle XML documents. Although there are improvements to
either the syntax of the queries or the traditional usage of regular path expressions,
usually the need to know the structure of the document in question still remains.

The XML relation by Niemi and Järvelin that is used in this thesis is a new, alternative
way to represent XML documents and to make them easier to handle and store.
Brabrand et al. [2008] also talk about the need for another syntax for XML. Many XML
languages already permit an alternative XML syntax because it improves the readability
of the documents from the view point of the user. Using the XML relation together with
the predicates developed in this thesis also helps the user make sense of the document.
The user does not have to read through the document, but instead they can use the
predicates to analyze the structure and content, i.e. to get knowledge about an XML
document, which may be completely or partially unknown to them beforehand. This
way they can first get an understanding of the document and decide whether it contains
the information they are looking for or not.

In their paper [2006] Kamps et al. research using free-text queries and queries with
some structural constraints. They find that three quarters of the queries they studied
used some constraints on the context of the elements to be returned, which means that
plain free-text queries would not be able to produce the desired results. However,
Kamps et al. also found that structural constraints are not always needed at all, which
suggests that a query language that can be used both with and without having to define
structural constraints would be the most beneficial. They create NEXI, a query language
based on a part of XPath. Kamps and his colleagues state that the reason they only use a
subset of XPath is that users find it hard to specify their information needs in XPath and
tend to make semantic mistakes in their query formulations. They also say that the
reason for the mistakes is most likely to be that the users have no, or at best, incomplete,
knowledge of the structure of the documents.

Related to the problems end-users have with XPath, the basic problem in using
languages such as XQuery is that the languages rely heavily on path expressions that are
based on pattern matching techniques [Näppilä et al, 2010]. They assume that the user

41

understands pattern matching enough to create the right kind of queries. In addition,
they suppose that the user is familiar with the notion of variable of procedural
languages. An XQuery query can contain several nested expressions that use variables
and can contain complex interrelationships. As Näppilä et al. state, the user of these
kinds of languages has to think like a programmer. End-users rarely possess these kinds
of skills. The approach of this thesis, however, does not require the user to be familiar
with variables. An exception to this is the notion of a shared variable, which is required
if the user wants to combine different predicates to create more complex queries. The
predicates can be constructed in such a way that no knowledge of variables are needed.
At the same time, the predicates can be such that they can be combined together to form
more complex queries if the user has the will to do so.

Although Kamps et al. design the NEXI query language for users with limited
knowledge of the structure of the documents they handle, they do not take into
consideration the users that have absolutely no knowledge of the documents. Using
plain XPath requires the user to be aware of the document's structure. While NEXI was
created to help with this, it also requires the user to have at least a basic knowledge of
the structure of the XML document. This means that the user would have to browse the
document or read the possible DTD or XML schema. The approach described in this
paper, however, is based on the premise that the user does not need to have any prior
knowledge of the documents that are being analyzed. Everything the user needs to know
can be found out by applying the available analysis predicates.

An example of an attempt to move away from the path-oriented way to query XML
documents is XML-GL [Ceri et al., 1999]. XML-GL is a graphical query language for
XML documents, where the user formulates the query using graph-based formalism. It
is not just a graphical user interface over a textual query language, but the query
language itself is graph-based, and its syntax and semantics are defined in terms of
graph structures and operations. XML-GL requires the documents that are being queried
to have a DTD or to be well-formed, i.e. to satisfy a list of syntax rules that are provided
in the XML specification. With the prototype described in this thesis, there are no
similar requirements. The indexing process provides the necessary information about
the structure of the document.

Another visual query language is Xing [Erwig, 2003]. The goals of the language were to
not create another textual language, as well as avoiding the XML syntax. Erwig says in
his paper that because the new language should be as simple as possible, avoiding the
nesting pattern of XML is required. Xing does not require the document to have a DTD,

42

but some knowledge of the tag names is required to be able to use the language. Xing is
based on pattern matching and although it supports the use of wildcards in the queries,
the user has to know what tags to use or the query results can turn out to be very
unrelevant.

XML-QL [Deutsch et al., 1999] is also a query language that utilizes pattern matching.
The user creates a pattern of what he wants the result to look like instead of telling the
query language where to look for it. This way he avoids having to use path expressions.
However, as M. Erwig states in his paper [2003], to use XML-QL the user needs to
know about XML syntax which again brings up the point that not many end users are
necessarily very adept at reading XML nor creating the pattern the result could be found
in. In addition, if using XML-QL with limited or no knowledge of the structure of the
document, it requires the use of regular path expressions [Florescu et al., 2000]. For this
reason one of the developers of XML-QL, Daniela Florescu, decided that the language
should be extended. The motivation for the extended XML-QL [Florescu et al., 2000]
was the same as the motivation for the prototype in this paper: the need for a tool or
language to query XML documents with unknown structure. Florescu's example was
that a user visits a (XML) website and does not know, nor want to know, how the data
is stored on that website. He would still want to find some specific data easily.
Florescu's answer to this is adding keyword search capabilities to the existing XML-QL.
However, as discussed before, keyword searches do not always return the most relevant
results.

One approach to querying semistructured data with no prior knowledge of its structure
is a mechanism for implementing cooperative query processing by Barg and Wong
[2003]. They had also noticed that using path-oriented query languages poses a
substantial problem when the users do not know the structure of the document they are
querying. Barg and Wong point out that with semistructured data it is often appropriate
to return not only the exact query result but also the results that approximately match
the query. The same semantic content can have vastly different structure. In these cases
the user would need to know the exact path to several different locations when using
XPath or XQuery.

43

11. Conclusion

The prototype developed for this thesis can not entirely replace path-oriented XML
query languages because they are not made for the same purposes. XPath and XQuery
are largely used in XSLT (Extensible Stylesheet Language Transformations) to locate
the data that is being transformed whereas the purpose of the approach and prototype in
this thesis were created to help the user to get a better understanding on XML
documents which are unfamiliar with him/her beforehand.

In fact, the information gained through using the prototype in this thesis can be useful
when using path-oriented languages. The end-user can utilize the prototype to find out
what elements and attributes are in the document, as well as gain information about the
structure. After this the usage of XPath or a similar language is much easier as the user
has an idea of the structure of the underlying document. Finding out if the data the user
is looking for can be found in a certain document is more easily done with the help of
the prototype described in this paper than reading through the XML document or its
DTD or XML schema.

Analysis of the data in an unfamiliar XML document is needed before any kind of XML
manipulation or query languages can be used. All of these languages expect the user to
be somewhat familiar with the document they are handling. No such assumption is
made concerning the predicates described in this thesis. With the predicates the user
starts examining the document from “the ground up” by just checking what the name of
the root node is and moving on from there. They do not need to be familiar with
programming to use the predicates but if they wish to do so, the predicates can be
combined together using shared variables in the context of complex queries.

44

References

[Barg and Wong, 2003] Michael Barg and Raymond K. Wong, Cooperative query
answering for semistructured data. ADC '03 Proceedings of the 14th
Australasian database conference. 17 (2003), 209-215.

[Boag et. al., 2007] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie and Jérôme Siméon, XQuery 1.0: An XML Query
Language. W3C Recommendation, available at:
http://www.w3.org/TR/2007/REC-xquery-20070123/ (accessed
5.11.2011). (2007).

[Bosak et al., 1998] Jon Bosak, Tim Bray, Dan Connolly, Eve Maler, Gavin Nicol, C.
Michael Sperberg-McQueen, Lauren Wood and James Clark, Guide to
the W3C XML Specification ("XMLspec") DTD, Version 2.1. Available
at: http://www.w3.org/XML/1998/06/xmlspec-report.htm (accessed
5.11.2011). (1998).

[Brabrand et al., 2008] Claus Brabrand, Anders Møller and Michael I. Schwartzbach,
Dual syntax for XML languages. Information Systems. 33, 4-5 (2008),
385-406.

[Bray et al., 1998] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen, Extensible
Markup Language (XML) 1.0. W3C Recommendation, available at:
http://www.w3.org/TR/1998/REC-xml-19980210 (accessed 5.11.2011).
(1998).

[Bussler, 2001] Cristoph Bussler, B2B Protocol Standards and their Role in Semantic
B2B Integration Engines. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering. 24, 1 (2001), 3-11.

[Ceri et al., 1999] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano
Paraboschi and Letizia Tanca, XML-GL: a graphical language for
querying and restructuring XML documents. Computer Networks. 31,
11-16 (1999), 1171-1187.

45

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/XML/1998/06/xmlspec-report.htm
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/compliancy/Xquery_v1.0.pdf

[Chamberlin and Boyce, 1974] Donald D. Chamberlin and Raymond F. Boyce,
SEQUEL: A structured English query language. SIGFIDET '74
Proceedings of the 1974 ACM SIGFIDET workshop on Data
description, access and control. (1974), 249-264.

[Clark, 1999] James Clark, XML Transformations (XSLT). W3C Recommendation,
available at: http://www.w3.org/TR/1999/REC-xslt-19991116
(accessed 5.11.2011). (1999).

[Clark and DeRose, 1999] James Clark and Steve DeRose, XML Path Language
(XPath). W3C Recommendation, available at:
http://www.w3.org/TR/1999/REC-xpath-19991116/ (accessed
5.11.2011). (1999).

[Colmerauer, 1990] Alain Colmerauer, An Introduction to Prolog III. Communications
of the ACM. 33, 7 (1990), 69-90.

[Deutsch et al., 1999] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy and
Dan Suciu, A query language for XML. Computer Networks. 31, 11-16
(1999), 1155-1169.

[EAN, 2002] EAN, IFTMIN. Available at:
http://www.gs1.se/eancom_2002/ean02s4/user/part2/iftmin/examples.ht
m (accessed 5.11.2011). (2002).

[Erwig, 2003] M. Erwig, Xing: a visual XML query language. Journal of Visual
Languages and Computing. 14, 7 (2003), 5-45.

[Fallside and Walmsley, 2004] David C. Fallside and Priscilla Walmsley, XML Schema
Part 0: Primer Second Edition. W3C Recommendation, available at:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ (accessed
5.11.2011). (2004).

[Fiebig et al., 2002] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido
Moerkoette, Julia Neumann, Robert Till Westmann, Anatomy of a native
XML base management system. The VLDB Journal. 11, 4 (2002), 292-
314.

46

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.gs1.se/eancom_2002/ean02s4/user/part2/iftmin/examples.htm
http://www.gs1.se/eancom_2002/ean02s4/user/part2/iftmin/examples.htm
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xslt-19991116

[Florescu et al., 2000] Daniela Florescu, Donald Kossmann and Ioana Manolescu,
Integrating keyword search into XML query processing. Computer
Networks. 33, 1-6 (2000), 119-135.

[Franklin et al., 2005] Michael Franklin, Alon Halevy and David Maier, From
Databases to Dataspaces: A New Abstraction for Information
Management. ACM SIGMOD Record. 34, 4 (2005), 27-33.

[Gosling et al., 2005] James Gosling, Bill Joy, Guy Steele and Gilad Bracha, The JavaTM

Language Specification Third Edition. (2005), Addison-Wesley.

[Gou and Chirkova, 2007] Gang Gou and Rada Chirkova, Efficiently Querying Large
XML Data Repositories: A Survey. IEEE Transactions on knowledge
and data engineering. 19, 10 (2007), 1381-1403.

[Howe et al., 2008] Bill Howe, David Maier, Nicolas Rayner and James Rucker,
Quarrying Dataspaces: Schemaless Profiling of Unfamiliar Information
Sources. Proceedings of the 2008 IEEE 24th international conference
on data engineering workshop. (2008), 270-277.

[Kamps et al., 2006] Jaap Kamps, Maarten Marx, Maarten de Rijke and Börkur
Sigurbjörnsson, Articulating Information Needs in XML Query
Languages. ACM Transactions on Information Systems. 24, 4 (2006),
407-436.

[Keogh and Davidson, 2005] James Keogh and Ken Davidson, XML Demystified.
(2005), McGraw-Hill Professional Publishing.

[Klyne and Carroll, 2004] Graham Klyne and Jeremy J. Carroll, Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C
Recommendation, available at: http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/ (accessed 5.11.2011). (2004).

[Lu et al., 2006] Eric Jui-Lin Lu, Bo-Chan Wu and Po-Yun Chuang, An empirical study
of XML data management in business information systems. The Journal
of Systems and Software. 79, 7 (2006), 984-1000.

47

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[Niemi and Järvelin, 2006] Timo Niemi and Kalervo Järvelin, Another Look at XML.
(2006), Tampereen Yliopistopaino Oy.

[Näppilä et al., 2010] Turkka Näppilä, Katja Moilanen and Timo Niemi, RXQL: An
SQL-like Query Language for Selecting, Harmonizing, and Aggregating
Data from Heterogeneous XML Data Sources. (2010), Tampereen
Yliopistopaino Oy.

[Pereira and Warren, 1980] Fernando C. N. Pereira and David H. D. Warren, Definite
Clause Grammars for Language analysis – A Survey of the Formalism
and a Comparison with Augmented Transition Networks. Artificial
Intelligence. 13 (1980), 231-278.

[Quass et al., 1995] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman and J. Widom,
Querying semistructured heterogeneous information. Proceedings of
Deductive and Object Oriented Databases. (1995).

[Raggett et al., 1999] Dave Raggett, Arnaud Le Hors and Ian Jacobs, HTML 4.01
Specification. W3C Recommendation, available at:
http://www.w3.org/TR/1999/REC-html401-19991224/ (accessed
5.11.2011). (1999).

[Singleton et al., 2004] Paul Singleton, Fred Dushin and Jan Wielemaker, JPL: A
bidirectional Prolog/Java interface. Available at: http://www.swi-
prolog.org/packages/jpl/ (accessed 5.11.2011). (2004).

[Tauberer, 2006] Joshua Tauberer, What is RDF. Available at:
http://www.xml.com/pub/a/2001/01/24/rdf.html (accessed 5.11.2011).
(2006).

[W3Schools.com] W3Schools.com: XSD How To? Available at:
http://www.w3schools.com/schema/schema_howto.asp (accessed
5.11.2011).

48

http://www.xml.com/pub/a/2001/01/24/rdf.html
http://www.w3schools.com/schema/schema_howto.asp
http://www.swi-prolog.org/packages/jpl/
http://www.swi-prolog.org/packages/jpl/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3schools.com/schema/schema_howto.asp
http://www.w3schools.com/schema/schema_howto.asp

Appendix 1

The collection of facts for the example document in chapter 7.

info(dvds, e, [1])
info(dvd, e, [1, 1])
info(discs, a, [1, 1, 1])
info(1, v, [1, 1, 1, 1])
info(year, a, [1, 1, 2])
info(2005, v, [1, 1, 2, 1])
info(run_time, a, [1, 1, 3])
info(73, v, [1, 1, 3, 1])
info(title, e, [1, 1, 4])
info('Corpse', v, [1, 1, 4, 1])
info('Bride', v, [1, 1, 4, 2])
info(director, e, [1, 1, 5])
info('Tim', v, [1, 1, 5, 1])
info('Burton', v, [1, 1, 5, 2])
info(actors, e, [1, 1, 6])
info(actor, e, [1, 1, 6, 1])
info('Johnny', v, [1, 1, 6, 1, 1])
info('Depp', v, [1, 1, 6, 1, 2])
info(actor, e, [1, 1, 6, 2])
info('Helena', v, [1, 1, 6, 2, 1])
info('Bonham', v, [1, 1, 6, 2, 2])
info('Carter', v, [1, 1, 6, 2, 3])
info(dvd, e, [1, 2])
info(discs, a, [1, 2, 1])
info(2, v, [1, 2, 1, 1])
info(year, a, [1, 2, 2])
info(1984, v, [1, 2, 2, 1])
info(genre, a, [1, 2, 3])
info('Thriller', v, [1, 2, 3, 1])
info(title, e, [1, 2, 4])
info('The', v, [1, 2, 4, 1])
info('Stand', v, [1, 2, 4, 2])
info(writers, e, [1, 2, 5])
info(writer, e, [1, 2, 5, 1])
info('Stephen', v, [1, 2, 5, 1, 1])
info('King', v, [1, 2, 5, 1, 2])
info(actors, e, [1, 2, 6])
info(actor, e, [1, 2, 6, 1])
info('Gary', v, [1, 2, 6, 1, 1])
info('Sinise', v, [1, 2, 6, 1, 2])
info(actor, e, [1, 2, 6, 2])
info('Molly', v, [1, 2, 6, 2, 1])
info('Ringwald', v, [1, 2, 6, 2, 2])
info(tag_line, e, [1, 2, 7])
info(the, v, [1, 2, 7, 1])
info(end, v, [1, 2, 7, 2])
info(of, v, [1, 2, 7, 3])
info(the, v, [1, 2, 7, 4])
info(world, v, [1, 2, 7, 5])
info(is, v, [1, 2, 7, 6])
info(just, v, [1, 2, 7, 7])
info(the, v, [1, 2, 7, 8])
info(beginning, v, [1, 2, 7, 9])
info(dvd, e, [1, 3])
info(discs, a, [1, 3, 1])
info(1, v, [1, 3, 1, 1])
info(year, a, [1, 3, 2])

49

info(1994, v, [1, 3, 2, 1])
info(run_time, a, [1, 3, 3])
info(137, v, [1, 3, 3, 1])
info(title, e, [1, 3, 4])
info('The', v, [1, 3, 4, 1])
info('Shawshank', v, [1, 3, 4, 2])
info('Redemption', v, [1, 3, 4, 3])
info(director, e, [1, 3, 5])
info('Frank', v, [1, 3, 5, 1])
info('Dsrabont', v, [1, 3, 5, 2])
info(genre, e, [1, 3, 6])
info('Drama', v, [1, 3, 6, 1])
info(writers, e, [1, 3, 7])
info(writer, e, [1, 3, 7, 1])
info('Frank', v, [1, 3, 7, 1, 1])
info('Darabont', v, [1, 3, 7, 1, 2])
info(writer, e, [1, 3, 7, 2])
info('Stephen', v, [1, 3, 7, 2, 1])
info('King', v, [1, 3, 7, 2, 2])
info(actors, e, [1, 3, 8])
info(actor, e, [1, 3, 8, 1])
info('Tim', v, [1, 3, 8, 1, 1])
info('Robbins', v, [1, 3, 8, 1, 2])
info(actor, e, [1, 3, 8, 2])
info('Morgan', v, [1, 3, 8, 2, 1])
info('Freeman', v, [1, 3, 8, 2, 2])
info(dvd, e, [1, 4])
info(discs, a, [1, 4, 1])
info(2, v, [1, 4, 1, 1])
info(run_time, a, [1, 4, 2])
info(177, v, [1, 4, 2, 1])
info(name, e, [1, 4, 3])
info('Kamelot', v, [1, 4, 3, 1])
info('-', v, [1, 4, 3, 2])
info('One', v, [1, 4, 3, 3])
info('Cold', v, [1, 4, 3, 4])
info('Winter\'s', v, [1, 4, 3, 5])
info('Night', v, [1, 4, 3, 6])
info(genre, e, [1, 4, 4])
info('Music', v, [1, 4, 4, 1])
info(dvd, e, [1, 5])
info(discs, a, [1, 5, 1])
info(2, v, [1, 5, 1, 1])
info(run_time, a, [1, 5, 2])
info(240, v, [1, 5, 2, 1])
info(name, e, [1, 5, 3])
info('Iron', v, [1, 5, 3, 1])
info('Maiden', v, [1, 5, 3, 2])
info('-', v, [1, 5, 3, 3])
info('Live', v, [1, 5, 3, 4])
info('After', v, [1, 5, 3, 5])
info('Death', v, [1, 5, 3, 6])
info(genre, e, [1, 5, 4])
info('Music', v, [1, 5, 4, 1])
info(dvd, e, [1, 6])
info(discs, a, [1, 6, 1])
info(1, v, [1, 6, 1, 1])
info(year, a, [1, 6, 2])
info(1998, v, [1, 6, 2, 1])
info(run_time, a, [1, 6, 3])
info(115, v, [1, 6, 3, 1])
info(genre, a, [1, 6, 4])
info('Thriller', v, [1, 6, 4, 1])
info(title, e, [1, 6, 5])
info('Blade', v, [1, 6, 5, 1])

50

info('The', v, [1, 6, 5, 2])
info('Daywalker', v, [1, 6, 5, 3])
info(director, e, [1, 6, 6])
info('Stephen', v, [1, 6, 6, 1])
info('Norrington', v, [1, 6, 6, 2])
info(writers, e, [1, 6, 7])
info(writer, e, [1, 6, 7, 1])
info('David', v, [1, 6, 7, 1, 1])
info('S.', v, [1, 6, 7, 1, 2])
info('Goyer', v, [1, 6, 7, 1, 3])
info(actors, e, [1, 6, 8])
info(actor, e, [1, 6, 8, 1])
info('Wesley', v, [1, 6, 8, 1, 1])
info('Snipes', v, [1, 6, 8, 1, 2])
info(actor, e, [1, 6, 8, 2])
info('Stephen', v, [1, 6, 8, 2, 1])
info('Dorff', v, [1, 6, 8, 2, 2])
info(tag_line, e, [1, 6, 9])
info('It', v, [1, 6, 9, 1])
info('takes', v, [1, 6, 9, 2])
info('One', v, [1, 6, 9, 3])
info('to', v, [1, 6, 9, 4])
info('kill', v, [1, 6, 9, 5])
info('One', v, [1, 6, 9, 6])
info(dvd, e, [1, 7])
info(discs, a, [1, 7, 1])
info(1, v, [1, 7, 1, 1])
info(year, a, [1, 7, 2])
info(2008, v, [1, 7, 2, 1])
info(run_time, a, [1, 7, 3])
info(116, v, [1, 7, 3, 1])
info(genre, a, [1, 7, 4])
info('Drama', v, [1, 7, 4, 1])
info(title, e, [1, 7, 5])
info('Gran', v, [1, 7, 5, 1])
info('Torino', v, [1, 7, 5, 2])
info(director, e, [1, 7, 6])
info('Clint', v, [1, 7, 6, 1])
info('Eastwood', v, [1, 7, 6, 2])
info(actors, e, [1, 7, 7])
info(actor, e, [1, 7, 7, 1])
info('Clint', v, [1, 7, 7, 1, 1])
info('Eastwood', v, [1, 7, 7, 1, 2])
info(actor, e, [1, 7, 7, 2])
info('Bee', v, [1, 7, 7, 2, 1])
info('Vang', v, [1, 7, 7, 2, 2])

51

Appendix 2

Sample definitions for some of the analysis predicates.

values(Document, DataItemName, Result)

Values is a predicate that gives all the values (Result) in the data item DataItemName
that exist in the document Document.

values(Document, DataItemName, Result) :- tag_indices(Document,
DataItemName, IndexList), get_sub_values(Document, IndexList, Result).
values(Document, DataItemName, _) :- functor(Func, Document, 3),
arg(1, Func, DataItemName), \+Func, write('The element/attribute does
not exist.'), !.

The predicate takes the element or attribute name as a parameter (DataItemName) and
returns a list of the values of all the instances of that element or attribute in the
document Document. The function tag_indices is used to get a list of the indices of all
elements and attributes with the name given in DataItemName.

tag_indices(Document, DataItemName, Result) :- get_findall(Document,
DataItemName, e, _, 3, IndexList1), get_findall(Document, Document, a,
_, 3, IndexList2), append(IndexList1, IndexList2, Result), !.

The predicate get_findall is used to first create lists of the indices of all attributes and
elements with the given name.

get_findall(Document, _, Type, Index, 1, Result) :- functor(Func,
Document, 3), arg(1, Func, Component), arg(2, Func, Type), arg(3,
Func, Index), findall(Component, Func, Result).
get_findall(Document, Component, _, Index, 2, Result) :- functor(Func,
Document, 3), arg(1, Func, Component), arg(2, Func, Type), arg(3,
Func, Index), findall(Type, Func, Result).
get_findall(Document, Component, Type, _, 3, Result) :- functor(Func,
Document, 3), arg(1, Func, Component), arg(2, Func, Type), arg(3,
Func, Index), findall(Index, Func, Result).

The predicate takes five parameters. From these the predicate makes a functor of the
form Document(Component, Type, Index). Based on the fifth component, it then
uses the system predicate findall to find all components, types or indexes in the
document Document. The resulting list is returned in Result.

In tag_indices, get_findall is used to get all indices of DataItemName that are
elements or attributes. The index lists are then combined and all of the values for those

52

attributes and elements are gathered into the result list which is returned to values. In
terms of another predicate, get_sub_values, the final list of values is created.

get_sub_values(_, [], []) :- !.
get_sub_values(Document, [X|Xs], List) :- append(X, _, XList),
get_findall(Document, _, v, XList, 1, ValueList),
get_sub_values(Document, Xs, ValueList2), append(ValueList,
ValueList2, List), !.

Get_sub_values takes the document name and the index list as a parameter and returns
a list of values that are found by adding one number to the given indices. The function
append is used to find all possible indices. X is the first index in the list given as a
parameter. By using _ we tell append to add anything to the index to create a new one
(XList). After this, get_findall is again used to find all of the values with the newly
created index. The rest of the index list, Xs, is used to call get_sub_values recursively.
The recursive execution of the query ends when the first version of get_sub_values
finds a match, or in other words, when the list of indices is empty, which would mean
that all of the given indices have been handled. Finally, the value found in the first step
of the process is combined to a list with the other values returned by the later
get_sub_values call. The resulting list is returned to the user.

The second version of values is used only when the first one fails. It checks the
existence of any fact with the given tag, DataItemName. System predicates functor and
arg are used to do this. The predicate functor creates a functor named Document that
has 3 arguments in the variable Func. The predicate arg says that the first argument in
Func is DataItemName. Func is then used to check if any fact of the form
Document(DataItemName, _, _) can be found. If none is found, an error message is
printed and the execution of the query ends.

get_without(Document, ElementName, DataItemName,
ResultDataItems, Result)

Get_without is a predicate that returns ResultDataItems of the ElementName
instance in the document Document that does not have a data item with the name given
in DataItemName as a parameter.

get_without(Document, ElementName, DataItemName, ResultDataItems,
Result) :- tag_indices(Document, DataItemName, Res1),
get_findall(Document, ElementName, e, _, 3, IndexList),
remove_matches(IndexList, Res1, Res2), show(Document, Res2,
ResultDataItems, Result).

53

First all indices for an element or attribute with the name given in DataItemName in the
document Document are found with the predicate tag_indices, which was described in
detail earlier. Get_findall is then used to create a list of indices of all the
ElementName instances. Next another predicate, remove_matches, is used to remove all
of the ElementName indices which can be found as the beginning of the indices in the
list of indices for the given DataItemName. In other words, we take a list of the
ElementName instances and a list of the data items. We then eliminate all ElementName
instances that have the element or attribute.

remove_matches(List, [], List) :- !.
remove_matches(List, [X|Xs], CheckedList) :-
remove_matches_actual(List, X, CList1), remove_matches(CList1, Xs,
CheckedList).

remove_matches_actual([], _, []) :- !.
remove_matches_actual([X|Xs], Ind, Rest) :- append(X, _, Ind),
remove_matches_actual(Xs, Ind, Rest), !.
remove_matches_actual([X|Xs], Ind, Result) :- \+append(X, _, Ind),
remove_matches_actual(Xs, Ind, Res1), append([X], Res1, Result).

Remove_matches takes the list of indices for the named elements and the first index for
the wanted attribute or element and calls the predicate that will actually remove the
matches from the list of indices, remove_matches_actual. Remove_matches_actual
uses the append predicate to check if the index for an element is the first part of an
index for the given attribute or element. The second remove_matches_actual is for the
case when a match can be found. In this case the element index is ignored and left out of
the result list by calling the predicate recursively with the rest of the indices and leaving
the current index out of the result list. The third remove_matches_actual instance is
used for the case when no match can be found. Again the predicate is called recursively
but in this case the current index is added to the rest of the results. The execution of the
query ends when the list of element indices is empty. Remove_matches calls
remove_matches_actual recursively also until the list of element/attribute indices is
empty. When the final list of element indices is returned to get_without, the predicate
show is called. The final list of indices is given as parameter (Res2) as well as the name
of the document (Document) and a list of the wanted results (ResultDataItems).

show(_, [], _, []) :- !.
show(Document, [X|Xs], DataItem, Result) :- functor(Func, Document,
3), arg(3, Func, X), Func, show(Document, X, DataItem, Res1),
show(Document, Xs, DataItem, Res2), append([Res1], Res2, Result), !.
show(Document, Index, [DI|DataItems], Result) :- show(Document, Index,
DI, Res1), show(Document, Index, DatItems, Res2), append(Res1, Res2,
Result), !.
show(Document, Index, DataItem, []) :- functor(Func, Document, 3),
arg(1, Func, DataItem), \+Func, !.
show(Document, Index, DataItem, Result) :- append(Index, _, Index2),
functor(Func, Document, 3), arg(1, Func, DataItem), arg(3, Func,

54

Index2), Func, get_value_list(Document, [Index2], Result), !.
show(_, Index, DataItem, []) :- !.

In show, the first index in Res2 (second version of predicate show) and the first data
item in ResultDataItems (third version of show) are chosen and show is called
recursively. The system predicates functor and arg are again used in the fourth version
of show to create a functor of the type Document(DataItem, _, _), which is used to
check if a fact of that form exists. The fourth version is used when such a fact does not
exist and there is nothing to return. The fifth show uses append to create any index for
the given data item and to find the values of the data item with the predicate
get_value_list. The last version of show is used when an index for the given
DataItem cannot be found and there is nothing to return. The predicate
get_value_list used in the fifth version of show is similar to the predicate values,
that was described earlier, except it returns only values that are found under the given
index, i.e. they are children of that index. It returns the values to show, which combines
the results for each index and data item given in Res2 and ResultDataItems and
returns the list to get_without.

55

	1. Introduction
	2. XML
	2.1. Basics of XML
	2.2. DTD, XML schema, RDF

	3. Problems related to the manipulation of XML
	4. The XML relation
	4.1. Constructor algebra
	4.2. Example

	5. XML relation in logic programming
	6. Reasons for analysis
	7. Example
	7.1. Example document
	7.2. Predicates for structure analysis
	7.3. Predicates for content analysis
	7.4. Predicates for aggregation analysis

	8. Comparison with traditional query languages
	8.1. XPath and XQuery syntaxes
	8.2. Comparisons

	9. Further development
	10. Discussion
	11. Conclusion

