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Abstract

In statistics, dimension reduction is a method to reduce the number of vari-
ables, which will then be considered in the future analysis of the data. Often
the new variables are just suitably chosen linear combinations of the original
variables X1, ...,Xp. Well known dimension reduction techniques are principal
component analysis (PCA), factor analysis (FA) and independent component
analysis (ICA), for example. Sliced inverse regression (SIR) is a dimension re-
duction method proposed by Li (1991). In sliced inverse regression it is assumed
that the new variables are used to explain the variation of a response variable
Y , and this is taken into account in the dimension reduction process. The in-
verse regression function is used to find an estimate of the so called central
dimension reduction subspace (central DRS). This thesis presents main theo-
retical results behind SIR and reports the results of an extensive simulation
study.

In our simulation study, the performance of three dimension reduction meth-
ods, sliced inverse regression, sliced average variance estimate (SAVE) and
principal hessian directions (PHD), are compared under various experimen-
tal settings. We consider four different choices of dimensions of a vector-valued
explanatory variable X, four choices of distributions of X, four different choices
of sample sizes, seven different models for the dependence, and two different
levels of noise.

Finally, a real data set from a study on coronary heart disease risk factors
is analyzed using the three different dimension reduction techniques.

Keywords: inverse regression, dimension reduction, dimension reduction sub-
space, conditional independence
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Notation and Symbols

′ transpose
Ω sample space∈ belongs to⊆ subset of (or equal to)∣∣ ⋅ ∣∣ vector norm� orthogonal complement⊕ direct sum of subspaces◻ end of proof
∂ partial derivative∼ distributed as
rank(⋅) rank of a matrix
i.e. id est, that is
Ip p × p identity matrix
P projector matrix
C (⋅) column space
CY ∣X central dimension reduction subspace (central DRS)
CY ∣Z standardized central dimension reduction subspace (standardized central DRS),

where E(Z) = 0 and cov(Z) = Ip
CE(X∣Y ) inverse regression subspace
CE(Z∣Y ) standardized inverse regression subspace
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1 Introduction

Dimensionality is a major concern in analyzing large data sets. Dimension re-
duction for regression, as pioneered by such authors as Li & Duan (1989), Duan
& Li (1991), Li (1991, 1992) and Cook & Weisberg (1991), is aimed at reducing
the dimension of a vector-valued explanatory variable X = (X1, . . . ,Xp)′, while
preserving its regression relation with a response Y .

Searching for dependencies between variables in the data often begins with
looking at scatter plots of the data set. Computers are well equipped to han-
dle one-, two- and three-dimensional graphics, but visualizing high dimensional
data sets becomes difficult. If there is no specific prior information about the
dependence between Y and X, we could proceed, for example, with parametric
regression, say linear regression. The problem of variable selection arises when
we want to decide which variables to include in the model. If there are no
persuasive models available, nonparametric regression might offer a solution.
However, high dimensional data are difficult to work with due to `the curse of
dimensionality'. Unless we have an extremely large sample size, the sparseness
of the data points causes nonparametric regression methods to break down. (Li
1991; Li 2000; Wand & Jones 1995.) In this case, it would be very useful to
reduce the dimension of X without loss of information about the dependence
between X and Y . Even if parametric regression was able to handle the high
dimensional case, reducing the dimension helps the calculations and the inter-
pretation of the coefficients. Also, if the dimension could be reduced to one or
two, then a two- or three-dimensional scatter plot consisting of Y and X would
contain all the information about the dependencies within the data. Being able
to visualize the data set might give clue to what kind of model or approach
would be feasible.

Sliced inverse regression (SIR) is a dimension reduction method introduced
by Li (1991). It is applicable in a regression situation, where we have a response
variable Y and possibly a high dimensional vector X of explanatory variables.
A traditional dimension reduction technique is to apply principal component
analysis (PCA) on X first and then use the first few principal components to
explain Y . This is known as principal component regression (PCR). However,
the dimension reduction in PCR does not take Y into consideration at all.
Therefore, if for two different data sets the distribution of the vector-valued
explanatory variables X1 and X2 were the same, the data sets would reduce
to the same linear combinations (see Appendix A). This would happen even if
the dependence between Y and Xi (i = 1,2) was not the same for the two data
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sets.
SIR is a useful dimension reduction technique in high-dimensional regression

problems where the response variable Y depends on K (≤ p) unknown linear
combinations of the explanatory variables X1, . . . ,Xp, but K and the exact
form of dependence are unknown. This thesis presents the core of the theory
behind SIR and studies its applicability using a large simulation study and a
real data example. In Chapter 2, the idea of dimension reduction in regression is
presented. Chapter 3 discusses SIR and more advanced definitions of dimension
reduction. In Chapter 4 we conduct a simulation study and present the essential
results. Finally, in Chapter 5 we apply SIR along with two other dimension
reduction methods to a real data.
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2 Dimension reduction in regression

We start this chapter by discussing the concept of regression – one of the four
words in the title On Sliced Inverse Regression.

2.1 Regression

Typically, the theory of regression is concerned with the prediction of one ran-
dom variable Y , a response variable, using other random variables X1, . . . ,Xp,
that are called explanatory variables. It will be convenient to write p-variate
random variables as random column vectors X = (X1, . . . ,Xp)′ of p compo-
nents, where the prime denotes the operation of transposing a row to a column.
Random variables are represented by capital letters, and their realizations by
lowercase letters. For example, Y is a random variable and y denotes its ob-
served value. The value of Y varies in the marginal sample space ΩY of Y , i.e.
y ∈ ΩY ⊆ R, where the symbols ∈ and ⊆ denote `belongs to' and `subset of (or
is included in)', respectively. Vectors are denoted by boldface letters X and x.
The value of X varies in the marginal sample space ΩX of X, i.e. x ∈ ΩX ⊆ Rp.

Since Y and X are random, they have a joint distribution. The conditional
distribution of Y given X = x is possibly a different probability distribution for
each value of x. When we wish to describe this entire family, we will say `the
distribution of Y ∣X', and the phrase `the distribution of Y ∣(X = x)' refers to
a single conditional distribution of Y given X = x.

The goal of regression is to study the conditional distribution of the response
variable Y given the p-dimensional random vector X of explanatory variables.
In other words, how does the distribution of Y ∣(X = x) change as a function of
x. If we wish to determine a function m(x) for predicting a future observation
of a response Y at a given value of x, the mean square error E(Y −m(x))2
is minimized by choosing m(x) = E(Y ∣X = x), the mean of the conditional
distribution of Y ∣(X = x) ∶

E(Y ∣X1 = x1, . . . ,Xp = xp) =m(x1, . . . , xp).
Although traditionally attention is restricted to the mean function E(Y ∣X =

x) and perhaps to the variance function var(Y ∣X = x) of the conditional distri-
bution of Y ∣(X = x), in full generality the object of interest is the conditional
distribution of Y ∣(X = x).

The study of conditional distributions is often made using the mean func-
tion. In the p-dimensional case, E(Y ∣X = x) denotes the mean function, which
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is a function of x. In the case of p = 1, the mean E(Y ∣X = x) is a function of x.
We shall write the definition of E(Y ∣X = x) in the case of continuous random
variables. Let f(y,x), f(y∣x) and fX(x) denote the joint density function of Y
and X, the conditional density function of Y given X = x and the marginal
density function of X, respectively. Then the conditional expected value of Y
given X = x can be written as

E(Y ∣X = x) = ∫ yf(y∣x)dy,
where the conditional density function f(y∣x) of Y given X = x is the function
of y defined by f(y∣x) = f(x, y)/fX(x) for any x such that fX(x) > 0. (Casella
& Berger 1990.) Then E(Y ∣X = x) is the mean of the conditional distribution
of Y given X = x.

There is a very useful connection between the population mean E(Y ) and
E(Y ∣X). Note that E(Y ∣X) is a random variable, whose observed value is
E(Y ∣X = x) when the observed value of X is x. Then we have

E(E(Y ∣X)) = ∫ E(Y ∣X = x)fX(x)dx
= ∫ (∫ yf(y∣x)dy)fX(x)dx
= ∫ ∫ y f(x, y)

fX(x) fX(x)dy dx = ∫ ∫ yf(x, y)dy dx
= ∫ y (∫ f(x, y)dx)dy = ∫ yfY (y)dy
= E(Y ),

provided that the expectations exist (Casella & Berger 1990, p. 154). Here
fY (y) denotes the marginal density function of Y . The identity E(E(Y ∣X)) =
E(Y ) is often needed in theoretical derivations.

2.2 Simple linear regression

The simple linear regression model is usually written as

(2.1) Y = β0 + β1x + ε,
where β0 and β1 are unknown fixed parameters, Y is a random variable, x is
a known constant and ε is a random variable with E(ε) = 0. To emphasize
the fact that our inferences about the relationship between Y and x assume
knowledge of x, we could write (2.1) as

(2.2) E(Y ∣x) = β0 + β1x.

12



If the explanatory variable is random instead of fixed, as will be the case in
this thesis, we write

(2.3) Y = β0 + β1X + ε,
where X and ε are assumed to be independent and E(ε) = 0. Then the condi-
tional expected value

E(Y ∣X) = β0 + β1X

is a random variable. Let X take any value x ∈ ΩX and let us focus on E(Y ∣X =
x). One such model is the bivariate normal model, where (X,Y ) follows the
bivariate normal distribution with means E(X) and E(Y ), variances σ2

X and σ2

Y

and covariance σXY . For a bivariate normal model the conditional distribution
of Y given X = x is normal and

E(Y ∣X = x) = E(Y ) + σXY
σ2

X

(x −E(X)) = (E(Y ) − σXY
σ2

X

E(X)) + (σXY
σ2

X

)x.
Consequently, the bivariate normal model implies a linear regression function.

On the other hand, suppose that random variables X and Y have a joint
density function, but the joint density function is not necessarily normal. Then
the linear hypothesis (2.2), that is, E(Y ∣X = x) = β0 + β1x for some β0, β1 ∈ R

implies that

(2.4) E(Y ∣X = x) = E(Y ) + σXY
σ2

X

(x −E(X)).
The identity (2.4) follows straightforwardly, since by definition

E(Y ∣X = x) = ∫ yf(y∣x)dy = ∫ y f(x, y)
fX(x) dy = β0 + β1x,

and therefore

(2.5) ∫ yf(x, y)dy = β0fX(x) + β1xfX(x),
for all x ∈ ΩX . This gives

∫ ∫ yf(x, y)dy dx = β0∫ fX(x)dx + β1∫ xfX(x)dx,
which is equivalent to

(2.6) E(Y ) = β0 + β1E(X).
Now, multiplying (2.5) by x and integrating both sides, we obtain

∫ ∫ xy f(x, y)dy dx = β0∫ xfX(x)dx + β1∫ x2fX(x)dx,

13



which is equivalent to

(2.7) E(XY ) = β0E(X) + β1E(X2).
Solving (2.6) and (2.7) for β0 and β1, we get

(2.8) β1 = E(XY ) −E(X)E(Y )
E(X2) −E(X)2 = σXY

σ2

X

and

β0 = E(Y ) − σXY
σX
E(X).

Consequently, the result (2.4) follows.

2.3 Multiple linear regression

The multiple linear regression model is similar to the previous model, except
that it has multiple explanatory variables. If the explanatory variables are fixed,
say x1, . . . , xp, we write

Y = β0 + β1x1 + β2x2 + ⋅ ⋅ ⋅ + βpxp + ε,
which is an extension of the model (2.1). If the explanatory variable is a p-
dimensional random vector, X = (X1, . . . ,Xp)′, we write

Y = β0 + β1X1 + β2X2 + ⋅ ⋅ ⋅ + βpXp + ε
or simply

(2.9) Y = β0 +β′X + ε,
where β = (β1, . . . , βp)′ is a fixed unknown parameter vector, X and ε are inde-
pendent and E(ε) = 0. The model (2.9) is a generalization of the model (2.3).
The conditional expectation of Y given X under (2.9) is

(2.10) E(Y ∣X) = β0 +β′X.
Suppose that the p + 1 random vector (Y,X′)′ has a joint distribution, not
necessarily normal, with mean vector (E(Y ),E(X)′)′ and covariance matrix

( σ2

Y ΣYX

ΣXY Σ
) ,

where σ2

Y = var(Y ), ΣXY = (σX1Y , . . . , σXpY )′ and Σ = cov(X). Then the coef-
ficients of the linear predictor (2.10) take the form (Johnson & Wichern 2002,
Section 7.8)
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(2.11) β =Σ−1ΣXY and β0 = E(Y ) −β′E(X).
This generalizes the identity (2.4) of the previous section to the case of p
explanatory variables.

Furthermore, if the joint distribution of (Y,X′)′ is normal, then the con-
ditional expectation of Y given X is also linear, given by (2.10), with coeffi-
cients (2.11) (Johnson & Wichern 2002, Section 4.2).

2.4 Dimension reduction

Dimension reduction is motivated by the hope that high dimensional data
would be retrievable by observations in lower dimensions without losing any
information about the dependence between X and Y . Li (1991) introduced the
model

(2.12) Y = g(β′1X,β′2X, . . . ,β′KX, ε)
to describe such a situation. Here Y is a univariate random variable, X =(X1, . . . ,Xp)′ is a p-dimensional random column vector and ε is a random
error independent of X and its probability distribution is unknown. The p-
dimensional column vectors β1, . . . ,βK , dimension K (K ≤ p) and the function
g are all unknown.

Let us now compare the model (2.12) to the model written as

(2.13) Y = f(X1, . . . ,Xp, ε).
In model (2.13), function f has all the original explanatory variables as inputs.
The key difference between the models (2.12) and (2.13) is that the function
g uses variables β′

1
X, . . . ,β′KX, which are linear combinations of the original

explanatory variables. These K linear combinations are the new explanatory
variables. The smaller the value of K, the greater the dimension reduction.
It is assumed in model (2.12), that variables β′

1
X, . . . ,β′KX hold the same

regression information as X1, . . . ,Xp, so there is no loss of information switching
from (2.13) to (2.12). (Li 2000.)

We take three examples to demonstrate what the model (2.12) might look
like.

Example 2.1. The first model

Y = 5 +X1 +X2 +X3 + 0X4 + 0X5 + ε
is linear. In this case, p = 5 and X = (X1, . . . ,X5)′. Now one can choose K = 1,
β = β1 = (1,1,1,0,0)′ and g(β′

1
X, ε) = 5 +β′

1
X + ε.
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Example 2.2. Assume that X is as in Example 2.1. Our model is

Y = X1

0.5 + (X2 + 1.5)2 + ε.
Now one can chooseK = 2, β1 = (1,0,0,0,0)′, β2 = (0,1,0,0,0)′ and g(β′

1
X,β′

2
X, ε) =

β′
1
X/(0.5 + (β′

2
X + 1.5)2) + ε. In this example Y can not be presented by only

one linear combination of the Xi’s (i = 1, . . . ,5), but two linear combinations
of Xi’s are needed.

Example 2.3. Assume that X is as in Examples 2.1 and 2.2. Our model is

Y =X2

1 +X2

2 σε.

Now one can chooseK = 2, β1 = (1,0,0,0,0)′, β2 = (0,1,0,0,0)′ and g(β′
1
X,β′

2
X, ε) =(β′

1
X)2 + (β′

2
X)2 σε.

In Examples 2.1, 2.2 and 2.3 dimension K, vectors β1 and β2 and function g
are given by the fixed model. Example 2.1 presents a multiple linear regression
model, where the parameter vector β1 is (1,1,1,0,0)′. In traditional multiple
linear regression analysis it is assumed that K = 1, the function g is known
and the aim is to estimate β1. As mentioned before, Li’s model (2.12) differs
completely from this situation, because in Li’s model the function g, vectors
β1, . . . ,βK and K are all unknown.

Model (2.12) is essential in sliced inverse regression – SIR is a dimension
reduction method which seeks the unknown vectors β1, . . . ,βK , or more specif-
ically, the space spanned by these vectors. This is a key point in SIR, because
the individual vectors β1, . . . ,βK in model (2.12) cannot be identified since
the function g is unknown. Thus, we are interested in estimating the sub-
space C (B), the linear space spanned by the columns β1, . . . ,βK of the matrix
B = (β1 ∶ ⋅ ⋅ ⋅ ∶ βK). Example 2.4 illustrates this situation.

Note that the model (2.12) is not well defined in the sense that if Y =
g(β′

1
X, . . . ,β′KX, ε), then for any nonsingular K ×K matrix H, there exists a

function g∗ and a matrix G = BH such that Y = g∗(γ′
1
X, . . . ,γ′KX, ε), where

γ1, . . . ,γK are the column vectors of G (Halmos 1958).

Example 2.4. Assume that we have the following model:

Y = X1X2 + ε
= (β′1X)(β′2X) + ε,

where K = 2, β1 = (1,0,0,0,0)′, β2 = (0,1,0,0,0)′, X = (X1, . . . ,X5)′ and ε is
a random error independent of X. Now B = (β1 ∶ β2) is a 5 × 2 matrix, where
the column vectors are β1 and β2. Since rank(B) = 2, C (B) is a plane in R5.

Let us choose a nonsingular matrix

H = (1 1
1 −1)
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and perform the matrix multiplication G = BH. This yields a 5 × 2 matrix
G with two linearly independent column vectors, γ1 = (1,1,0,0,0)′ and γ2 =(1,−1,0,0,0)′. Since C (B) = C (G) (Halmos 1958), the column vectors of G

generate the same plane in R5 as the column vectors of B.
Now we can write Y in two different ways:

Y = X1X2 + ε
= (β′1X)(β′2X) + ε
= g(β′1X,β′2X, ε)

and

Y = [(X1 +X2)2 − (X1 −X2)2]/4 + ε
= [(γ′1X)2 − (γ′2X)2]/4 + ε
= g∗(γ′1X,γ′2X, ε).

Example 2.1 shows that the model presented in the first row of the example
can be reparameterized by a different pair of independent parameter vectors(γ1 ∶ γ2) ≠ (β1 ∶ β2), provided that the function g is changed from g to g∗

correspondingly.
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3 Sliced inverse regression

In Section 2.4 we introduced the idea of dimension reduction and tentatively
the aim of SIR. In this chapter we will introduce the theoretical basics of SIR
and illustrate the key results in a way that helps to understand the procedure.
Then we will present the SIR algorithm to compute the SIR estimate for a
practical data set.

3.1 Inverse regression

The usual forward regression Y ∣X was introduced in Section 2.1. In the inverse
regression X∣Y the roles of X and Y are reversed. Instead of using E(Y ∣X), SIR
uses E(X∣Y ), which naturally has the expected value E(E(X∣Y )) = E(X). The
benefit of the change of roles comes from the fact that X∣Y is composed of p
simple regressions, Xj ∣Y, j = 1, . . . , p. Due to `the curse of dimensionality', the
response surface E(Y ∣X = x) is very difficult to estimate directly. For realistic
sample sizes, standard nonparametric regression methods such as kernel meth-
ods, nearest neighbor methods or smoothing splines break down quickly, when
the dimension p is larger than two (Duan & Li 1991). The conditional expecta-
tion E(X∣Y = y) on the other hand can be estimated taking one coordinate at a
time. This way the estimation of E(X∣Y = y) comes down to a one-dimensional
case. That is, we can write E(X∣Y = y) as (E(X1∣Y = y), . . . ,E(Xp∣Y = y))′
and estimate each term separately. Thus we obtain p one-dimensional curve
smoothing problems.

Whether or not the change of roles of Y and X feels natural, it offers a way
to circumvent the dimensionality problem. In some cases, the inverse regression
might be of interest on its own. For example, inverse regression was used in
calibration problems in Krutchkoff (1967, 1969).

3.2 Dimension reduction subspace

Consider a regression problem consisting of a univariate response variable Y
and a p-dimensional vector X of random explanatory variables with a joint
cumulative distribution function (cdf) F (y,x). The goal of a regression analysis
is to infer how the cdf F (y∣x) of the conditional distribution of Y given X = x

changes as the value of x varies in the sample space.

The motivation of dimension reduction was presented at the beginning of
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Section 2.4. Let

(3.1) Y ⊥⊥X∣B′X,
where B = (β1 ∶ ⋅ ⋅ ⋅ ∶ βK) is a p ×K matrix (K ≤ p). Statement (3.1) indicates
that Y and X are conditionally independent given any value for the random
vector B′X (see Appendix C). Cook (1998) introduced the following important
concept.

Definition 3.1. If (3.1) holds, then the subspace C (B) is a dimension reduc-
tion subspace (DRS) for the regression of Y on X, where the columns β1, . . . ,βK
of the p ×K matrix B form a basis for the DRS.

To be exact, C (B) is a subspace of Rp, i.e. C (B) ⊆ Rp, and it is defined as
C (B) = {z ∶ z = a1β1+⋅ ⋅ ⋅+aKβK , for some a1, . . . , aK ∈ R}. The statement (3.1)
is equivalent to FY ∣X(y∣x) = FY ∣B′X(y∣B′x) for all values of x in the sample
space. This means that the p-dimensional vector X of explanatory variables
can be replaced by the K-dimensional vector B′X of explanatory variables
without loss of information about the dependence between Y and X. Such a B

always exists, because (3.1) is trivially true when B = Ip, where Ip denotes the
p × p identity matrix. (Cook 1998.)

A fundamental goal here is to reduce the dimension of X. Hence the idea
of the smallest dimension arises naturally.

Definition 3.2. A subspace of Rp is said to be a minimum DRS for the re-
gression of Y on X if it is a DRS with the smallest dimension within all DRSs.

Minimum DRSs always exist, but they are not necessarily unique (Cook
1994). The following example presents a case of a non-unique minimum DRS.

Example 3.1. (Cook 1998, p.105) Let p = 2 and let X = (X1,X2)′ be uniformly
distributed on the unit circle, ∣∣X∣∣ = 1, where ∣∣ ∣∣ denotes a vector norm. Set
Y =X2

1
+ε, where ε is an independent error. Therefore we have Y ⊥⊥X∣(1,0)X.

It follows from X2

1
= 1−X2

2
that Y = X2

1
+ε = (1−X2

2
)+ε, and consequently also

Y ⊥⊥X∣(0,1)X. Therefore C ((1,0)′) and C ((0,1)′) are both minimum DRSs.

Note that, in Example 3.1, X is not a genuinely bivariate random variable.
If we change the Cartesian coordinate system to the polar coordinate system
and write X = (cosV, sinV )′, then Y = cos2V + ε. Therefore, the model for Y
can be written simply as a function of the univariate random variable V and a
bivariate random vector is not necessarily needed.

The intersection of all DRSs is a subspace of Rp (Halmos 1958, p.17), but
it is not necessarily a DRS. In the Example 3.1, C ((1,0)′) and C ((0,1)′) are
both DRSs, but their intersection {(0,0)’} is not a DRS. It turns out that the
intersection of all DRSs is a DRS under various reasonable conditions (Cook
1994, 1996, 1998). The following definition introduces an essential concept of
dimension reduction.
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Definition 3.3. If the intersection of all DRSs is a DRS, it is the central DRS
and denoted by CY ∣X.

Cook (1994, 1996, 1998) introduced the concept of the central DRS and
proved that it is the unique minimum DRS (Cook 1998, Proposition 6.2).

Any vector in the central DRS is called an effective dimension reduction
(e.d.r.) direction. In this thesis from now on we will assume that the central
DRS exists.

3.3 Models for dimension reduction

Let CY ∣X be the central DRS with basis B = (β1 ∶ ⋅ ⋅ ⋅ ∶ βK) and dimension K.
Then the statement

(3.2) Y ⊥⊥X∣B′X
can be thought of as a dimension reduction model. Here CY ∣X is well-defined
and unique. The parameter of a dimension reduction model is the central DRS
CY ∣X.

Duan & Li (1991) and Li (1991, 1992) represented dimension reduction in
the following way:

(3.3) Y = g(β′1X, . . . ,β′KX, ε),
where function g and vectors β1, . . . ,βK are unknown and X and ε are indepen-
dent. Model (3.3) was introduced without addressing existence or uniqueness
issues. When the central DRS exists, the dimension reduction models (3.2)
and (3.3) are technically equivalent and they can be connected by requiring
that B = (β1 ∶ ⋅ ⋅ ⋅ ∶ βK) is a basis for CY ∣X (Cook 1998, p.114).

Example 3.2. (Cook 1998, p.187) Suppose that (Y,X′)′ follows a multivariate
normal distribution, where cov(X) = Σ, cov(Y,X) = ΣYX and var(Y ) = σ2.
Assuming that the conditional distribution of Y conditioned on X depends on
X only through the conditional expectation of Y ∣X, then

E(Y ∣X) = E(Y ) +ΣYXΣ−1(X −E(X))
and β = Σ−1ΣXY spans CY ∣X, where ΣXY = Σ′YX

. The inverse regression func-
tion is

E(X∣Y ) = E(X) +ΣXY σ
−2(Y −E(Y ))

= E(X) +Σβσ−2(Y −E(Y )).
Thus the values of the centered inverse regression function E(X∣Y = y)−E(X)
fall in the one-dimensional subspace of C (Σβ) as the value of Y = y ranges
over ΩY . Note that C (Σβ) =ΣCY ∣X.
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It turns out that important characteristics of this example can be preserved
when multivariate normality does not hold, but the following condition is as-
sumed.

Condition 3.1. (L.D.C.) Linear Design Condition. For any b ∈ Rp the condi-
tional expectation E(b′X∣β′

1
X, . . . ,β′KX) = c0 + c1β′1X + ⋅ ⋅ ⋅ + cKβ′KX for some

constants ci ∈ R, i = 0,1, . . . ,K, where vectors β1, . . . ,βK are defined as in (3.2).

The L.D.C. condition is fulfilled when the distribution of X is elliptic. For
example, the L.D.C. condition holds for the multivariate normal distribution.
However, the distribution of X does not have to be elliptic in order to fulfill
the L.D.C. condition, as will be seen in the simulation study.

As mentioned before, the concept of inverse regression is essential in SIR.
Let CE(X∣Y ) denote the subspace spanned by {E(X∣Y = y) − E(X)∣y ∈ ΩY }.
The subspace CE(X∣Y ) is called the inverse regression subspace.

The following result is called the main theorem of SIR.

Theorem 3.2. Under the model (3.2) and the Linear Design Condition 3.1,
CE(X∣Y ) ⊆ C (ΣB) = ΣCY ∣X, where B is defined as in (3.2) and Σ = cov(X) is
positive definite.

Let Z denote the vector of standardized explanatory variables.

Z =Σ−1/2(X −E(X)).
Clearly, E(Z) = 0 and cov(Z) = Ip. Working in terms of the vector of standard-
ized explanatory variables involves no loss of generality, because we can always
back-transform to the original scale. Also, since Z is a 1 - 1 linear transforma-
tion of X,

(3.4) Y ⊥⊥X∣B′X⇐⇒ Y ⊥⊥ Z∣T′Z,
where T = (θ1 ∶ ⋅ ⋅ ⋅ ∶ θK) = Σ1/2B and θi = Σ1/2βi, i = 1, . . . ,K. The vectors
θ1, . . . ,θK are called standardized e.d.r. directions and CY ∣Z is called the stan-
dardized central DRS. Under the assumption that the central DRS exists, the
models (3.2) and (3.3) are equivalent. Hence by (3.4) we can rewrite (3.3) as

(3.5) Y = g(θ′1Z, . . . ,θ′KZ, ε),
where the function g is not the same as in (3.3), but it is simply written as g
to denote some unknown function.

Corollary 3.1. Assume that (L.D.C.) holds. Then for model (3.5), the stan-
dardized inverse regression subspace, denoted by CE(Z∣Y ), is a subspace of the
standardized central DRS CY ∣Z.
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As a random vector, E(Z∣Y ) has a covariance matrix cov[E(Z∣Y )]. By
Corollary 3.1, CE(Z∣Y ) ⊆ CY ∣Z. This does not guarantee equality between CE(Z∣Y )

and CY ∣Z, and thus inference about CE(Z∣Y ) possibly covers only a part of CY ∣Z.
The next theorem provides a rationale that the estimate of cov[E(Z∣Y )] serves
to estimate CE(Z∣Y ) (see Cook 1998, Proposition 11.1).

Theorem 3.3. Let Z = Σ−1/2(X − E(X)) and CE(Z∣Y ) the inverse regression
space. Then

C {cov[E(Z∣Y )]} = CE(Z∣Y ).

Proof. By the projection theorem (Halmos 1958, p.129), Rp = CE(Z∣Y )⊕C
�
E(Z∣Y )

,
where � denotes the orthogonal complement and ⊕ denotes the direct sum of
subspaces.

1° Suppose that a ∈ C �
E(Z∣Y )

. Then we have E(a′Z∣Y ) = a′E(Z∣Y ) = 0. But

cov[E(Z∣Y )] = E[E(Z∣Y )E(Z′∣Y )]
and hence

cov[E(Z∣Y )]a = E[E(Z∣Y )E(a′Z∣Y )] = 0,

if a ∈ C �
E(Z∣Y )

and consequently a ∈ C {cov[E(Z∣Y )]}�.
2° If a ∈ C {cov[E(Z∣Y )]}�, then cov[E(Z∣Y )]a = 0 and

(3.6) a′cov[E(Z∣Y )]a = E[E(a′Z∣Y )E(a′Z∣Y )] = var[E(a′Z∣Y )] = 0.

Since E[E(a′Z∣Y )] = E(a′Z) = 0, it follows from (3.6) that a′E(Z∣Y ) =
E(a′Z∣Y ) = 0 (with probability 1), and hence a ∈ C

�
E(Z∣Y )

.

We have proved that C
�
E(Z∣Y )

= C {cov[E(Z∣Y )]}� and hence we may con-

clude that CE(Z∣Y ) = C {cov[E(Z∣Y )]}.
We find a basis for C {cov[E(Z∣Y )]}, and consequently also for CE(Z∣Y ), by

constructing the eigenvalue decomposition of matrix cov[E(Z∣Y )]:

(3.7) cov[E(Z∣Y )]ti = λiti (i = 1, . . . , p, λ1 ≥ ⋅ ⋅ ⋅ ≥ λp),
where λ1, . . . , λp are the eigenvalues of cov[E(Z∣Y )] and t1, . . . , tp are the cor-
responding eigenvectors. Since CE(Z∣Y ) ⊆ CY ∣Z, (3.7) must give at most K
nonzero eigenvalues. The eigenvectors t1, . . . , tK−d, where d denotes the number
of nonzero eigenvalues, corresponding to the nonzero eigenvalues form the basis
of CE(Z∣Y ). The value of d determines whether CE(Z∣Y ) is a subspace of CY ∣Z or
if it is equal to it. The possible values of d are 0, . . . ,K, and for d = 0 we have
CE(Z∣Y ) = CY ∣Z, and we would be able to determine the standardized central
DRS. However, the possible equality between CE(Z∣Y ) and CY ∣Z and the value
of d are unknown.
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Since we are originally interested in the central DRS rather than in the
standardized central DRS, we must transform the eigenvectors t1, . . . , tK−d to
obtain a basis of CE(X∣Y ). From (3.4) we obtained the equalities θi = Σ1/2βi, i =
1, . . . ,K. By this result the vectors bi = Σ−1/2 ti (j = 1, . . . ,K − d) form a basis
of CE(X∣Y ) so that CE(X∣Y ) ⊆ CY ∣X. Therefore we are able to obtain a subspace
of the central DRS, but we cannot infer the possible equality of the subspaces.

3.4 Proof of the main theorem of SIR

We write the proof of the main theorem in SIR (Theorem 3.2) and clarify several
steps from the proof given by Li (2000). The proof in this thesis is given in the
case of K = 1, which is the core of the proof, but it can be extended to K > 1
using matrix notations (see Li 2000).

We may assume without loss of generality that X is centered, i.e. E(X) = 0.
Let us write first E(X∣β′X) componentwise as

E(X∣β′X) = (E(X1∣β′X), . . . ,E(Xp∣β′X))′.
By the L.D.C. condition there exists constants ci0, ci1, such that

(3.8) E(Xi∣β′X) = ci0 + ci1β′X, i = 1, . . . , p.

Since

E(E(Xi∣β′X)) = E(ci0 + ci1β′X) = ci0 + ci1β′E(X) = ci0,
and on the other hand (Casella & Berger 1990, Theorem 4.4.1)

E(E(Xi∣β′X)) = E(Xi) = 0

for all i = 1, . . . , p. Thus c10 = ⋅ ⋅ ⋅ = cp0 = 0.
The expectations E(Xi∣β′X), i = 1, . . . , p are linear and hence by (2.8)

ci1 = cov(Xi,β′X)
var(β′X) , i = 1, . . . , p.

This yields

(3.9) (c11, . . . , cp1)′ = cov(X,β′X)
var(β′X) =Σβ/β′Σβ,

since

cov(X,β′X) = cov(X)β =Σβ and var(β′X) = β′Σβ.
Due to (3.8) and (3.9) we have
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E(X∣β′X) = (Σβ/β′Σβ)β′X.
Since E(X∣Y = y) = E(E(X∣β′X)∣Y = y) by Proposition 1 in Appendix B, we
have

(3.10) E(X∣Y = y) = E((Σβ/β′Σβ)β′X∣Y = y).
Since Σβ/β′Σβ is constant, we may rewrite (3.10) as

E(X∣Y = y) =ΣβE(β′X∣Y = y)/β′Σβ.
If we denote m(y) = E(β′X∣Y = y)/β′Σβ, a scalar function of y, then

E(X∣Y = y) =m(y)Σβ.
Hence E(X∣Y = y) ∈ C (Σβ), as was to be proved.

3.5 SIR algorithm

So far in this thesis we have explained two words of the title On Sliced Inverse
Regression, that is, inverse regression. The meaning of the second word, Sliced,
becomes evident in this section. We argued in Section 3.1 the ease of estimation
of the inverse regression function E(X∣Y = y) compared to the forward regres-
sion function E(Y ∣X = x). There are several nonparametric regression methods
to estimate the inverse regression function, such as kernel, nearest neighbor or
smoothing splines, but SIR uses slicing because of its simplicity (Li 1991).

When Y is continuous, Li (1991) suggested replacing Y with a discrete
version Ỹ based on partitioning the observed range of Y into S fixed, non-
overlapping slices Hs, s = 1, . . . , S. Let us define Ỹ = s, when Ỹ ∈ Hs. Because
Ỹ is a function of Y , it follows (Cook 1998, Proposition 4.5) that Ỹ ⊥⊥X∣B′X,
where B is a basis for CY ∣X. Thus the central DRS CỸ ∣X from the regression of

Ỹ on X provides information about CY ∣X:

(3.11) CỸ ∣X ⊆ CY ∣X.

We can hope that CỸ ∣X = CY ∣X. Applying the Theorem 3.3 to Z∣Ỹ yields the
identity

(3.12) C {cov[E(Z∣Ỹ )]} = CE(Z∣Ỹ ).

On the other hand, by Corollary 3.1 CE(Z∣Ỹ ) ⊆ CỸ ∣Z, and by (3.11) CỸ ∣Z ⊆ CY ∣Z.
Then we have the string of relationships

C (cov[E(Z∣Ỹ )]) = CE(Z∣Ỹ ) ⊆ CỸ ∣Z ⊆ CY ∣Z

24



(Cook 1998, p.204).
The relationship (3.12) shows that the inverse regression subspace CE(Z∣Ỹ )

is spanned by the eigenvectors corresponding to the nonzero eigenvalues of
cov[E(Z∣Ỹ )]. A central idea of SIR is to construct an estimate of CE(Z∣Ỹ ) from

an estimate of cov[E(Z∣Ỹ )]. This is done by constructing the SIR algorithm
(Li 1991):

Let (y1,x1), . . . , (yn,xn) be the original data set with p+1 variables (x and y)
and n cases. The SIR algorithm goes as follows:

1. Center and standardize x to get zi = Σ̂−1/2(xi − x̄) (i = 1, . . . , n), where
Σ̂ and x̄ are, respectively, the sample covariance matrix and the sample mean
of x.

2. Order and reindex the data using variable y so that y1 ≤ ⋅ ⋅ ⋅ ≤ yn:
y1 z1 = (z11, z12, . . . , z1p)′
y2 z2 = (z21, z22, . . . , z2p)′

⋮
yn zn = (zn1, zn2, . . . , znp)′

3. Use the ordered data to divide the data into S non overlapping slices Hs
so that the number of observations in each slice is as equal as possible.

4. Estimate E(Z∣Y ∈ Hs) by computing the sample mean of z within each
slice:

z̄s = n−1

s

n∑
i=1

ziIHs(yi),
where s = 1, . . . , S is the index of slices, ns is the number of observations in
slice Hs and the indicator IHs = 1 if ys ∈ Hs and zero otherwise. The data are
displayed by writing

z̄1 = (z̄11, z̄12, . . . , z̄1p)′
z̄2 = (z̄21, z̄22, . . . , z̄2p)′
⋮

z̄S = (z̄S1, z̄S2, . . . , z̄Sp)′.
5. Estimate cov(E(Z∣Ỹ )) by calculating the covariance matrix

V̂ = n−1

S∑
s=1

nsz̄sz̄
′
s.

6. Estimate CỸ ∣X by conducting a principal component analysis by forming
the following eigenvalue decomposition

Γ̂′Λ̂Γ̂ = V̂,
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where Λ̂ contains the eigenvalues λ̂1 ≥ ⋅ ⋅ ⋅ ≥ λ̂p and Γ̂ the corresponding eigen-
vectors η̂1, . . . , η̂p. The first few eigenvectors corresponding to the K (K ≤ p)
largest eigenvalues can be used as estimators for the standardized e.d.r. direc-
tions.

7. Compute the estimators for the original e.d.r. directions:

β̂k = Σ̂−1/2η̂k, k = 1, . . . ,K

As we have mentioned earlier in this thesis, in practice K is unknown and we
have to estimate it. As soon as the value of K is selected, C (β̂1 ∶ ⋅ ⋅ ⋅ ∶ β̂K)
provides an estimate of CY ∣X. In the next chapter (Subsections 4.4.2 and 4.4.3)
we discuss two procedures to estimate K.
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4 Simulations

In this chapter we report on an extensive simulation study of the perfor-
mance of three dimension reduction methods. For purposes of comparison, we
included the following three dimension reduction methods: sliced inverse re-
gression (SIR), sliced average variance estimate (SAVE) and principal hessian
directions (PHD). SAVE and PHD are introduced in the following section. The
aim of the study is to compare SIR, SAVE and PHD in a large number of
different settings.

In our simulation study, we consider four different choices of dimensions,
p = 5,10,20,40, of X, four different choices of distributions of X, four different
choices of sample sizes, N = 100,200,400,800, seven different models, and two
different levels of noise, σ = 0.5,1.

In the simulations we used the R 2.9.0 software (R Development Core Team
2009) and the R-packages dr, lattice, vcd and mvtnorm (see Weisberg 2008,
Sarkar 2009, Meyer et al. 2009 and Genz et al. 2009).

4.1 SAVE and PHD

In this section we will briefly introduce two alternative dimension reduction
methods to SIR: SAVE and PHD. The simulation study conducted in this
thesis gives a very useful insight into the performance of each of the three
methods in the various settings.

4.1.1 SAVE

SAVE was introduced by Cook & Weisberg (1991) in the discussion initiated by
Li (1991). As Li, Cook and Weisberg pointed out, SIR is not a valid method for
every situation. In particular, SIR is known to fail when the response surface
is symmetric about origin. One of the models used in this paper describes this
situation (M3 in Subsection 4.2.2). Whereas SIR uses only the first moment,
E(X∣Y ), SAVE uses the second moment, cov(X∣Y ), and can therefore detect,
for example, symmetric dependence more efficiently than SIR. SAVE is not very
efficient in estimating monotone trends for small to moderate sample sizes.

The objective of SAVE is to estimate the central DRS by estimating the
SAVE matrix

E(Ip − cov(Z∣Y ))2,
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its eigenvalues and the corresponding eigenvectors. (Cook & Weisberg 1991.)
More information about SAVE can be found in literature (see for example

Cook & Weisberg 1991 and Cook 1998).

4.1.2 PHD

PHD is a dimension reduction method introduced by Li (1992). Li was well
aware of the deficiency of SIR in the case of symmetric dependence, but PHD
is a method which can handle many symmetric cases for finding the central
DRS. PHD uses the Hessian matrix

HX(x) = ((∂2/∂xi∂xj)f(x)), i, j = 1, . . . , p

of the regression function f(x) = E(Y ∣X = x), where ∂ denotes the partial
derivative. The motivation is that HX(x) is degenerate along any directions
that are orthogonal to CY ∣X, which is defined as in (3.2). The principal hessian
directions with respect to the distribution of X are defined as the eigenvectors
b1, . . . ,bp of the matrix E(HX(X))Σ:

E(HX(X))Σbj = λjbj, j = 1, . . . , p

where Σ is the covariance matrix of X. (Li 1992.)
PHD can be conducted using two different methods: the response-based

method or the residual-based method. In the simulation studies we have used
the residual based method.

More information about PHD can be found in the literature (see for example
Li 1992, 2000 and Cook 1998).

4.2 Models

In the simulation study conducted in this thesis, data are generated from seven
different models, which are presented in this section. The models are selected
from four papers (Cook & Weisberg 1991; Li 1992; Li 2000; Zhu & Zhu 2007) in
such a way, that for SIR there are at least two models for which it should work,
for PHD there are at least two models for which it should work and for SAVE
there are at least three models for which it should work. That is, for SIR there
are two models from Li (2000), for SAVE there are two models from Cook &
Weisberg (1991) and one model from Zhu & Zhu (2007), and for PHD there
are two models from Li (1992). In other words, each model has been selected
from a paper in which the method in question was developed by the author or
authors, except Zhu & Zhu (2007). In addition, each of these groups contain
models of two different dimensions of the central DRS (K = 1,2).

In the following subsections we introduce the models used in the simulation
study. Each subsection is named according to the method suitable for the mod-
els introduced in the corresponding subsection, so that it is easier to compare
the performance of different methods. Let us emphasize, however, that all three
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methods are applied to every model. It is convenient to mention at this point
that for every model ε ∼ N(0,1) and σ = 0.5,1, where the symbol ∼ denotes
`distributed as'.

4.2.1 Models suitable for SIR

We consider the following models, which we introduced in Section 2.4, suitable
for SIR:

M1: Y = 5 +β′X + σε
M2: Y = β′

1
X

0.5 + (β′
2
X + 1.5)2 + σε

For M1, K = 1 and β = (1,1,1,0, . . . ,0)′. For M2, K = 2, β1 = (1,0, . . . ,0)′ and
β2 = (0,1,0, . . . ,0)′.
4.2.2 Models suitable for SAVE

The models suitable for SAVE are:

M3: Y = (β′X)2 + σε
M4: Y = (µ +√2β′X)2 + σε
M5: Y = (β′1X)2 + (β′2X)2 σε

For M3, K = 1 and β = (1,0, . . . ,0)′. For M4, K = 1 and β = (1,1,0, . . . ,0)′.
For M5, K = 2, β1 = (1,0, . . . ,0)′ and β2 = (0,1,0, . . . ,0)′.
4.2.3 Models suitable for PHD

The models suitable for PHD are:

M6: Y = β′X sin(2β′X) + σε
M7: Y = cos(2β′1X) − cos(β′2X) + σε

For M6, K = 1 and β = (1,0, . . . ,0)′. For M7, K = 2, β1 = (1,0, . . . ,0)′ and
β2 = (0,1,0, . . . ,0)′.

4.3 Distributions of X

We use four different distributions of X = (X1, . . . ,Xp)′ in the simulation study.
These distributions are presented in the following subsections.
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4.3.1 Distributional setting D1

The first distribution is a multivariate normal distribution

X ∼ Np(0, Ip),
which is elliptic and the L.D.C. condition is fulfilled.

4.3.2 Distributional setting D2

The second distribution is a multivariate t-distribution

X ∼ Tp(0, Ip),
with 5 degrees of freedom. The distribution is elliptic and the L.D.C. condition
is fulfilled. The multivariate t-distribution has heavier tails than the normal
distribution and the components are uncorrelated, but not independent.

4.3.3 Distributional setting D3

The third distribution is constructed such that

X1 ∼ (V − 2)/8,with V ∼ Γ(2,2)
X2 ∼ √3/5 × t(5)
X3 ∼ U(−√3,

√
3),

where Γ(2,2) denotes the gamma distribution with the shape parameter 2 and
the scale parameter 2, t(5) denotes the t-distribution with 5 degrees of freedom
and U(−√3,

√
3) denotes the uniform distribution on (−√3,

√
3). The rest of

the variables, denoted by Xp−3 = (X4, . . . ,Xp)′, are distributed as

Xp−3 ∼ Np−3(0, Ip−3).
The distribution of X is not elliptic and it is related to an independent com-
ponent model (IC model) (see Hyvärinen, Karhunen & Oja 2001). Notice that
X1, the first component of the distributional setting D3, is skew, whereas the
other components are symmetric. All the components have E(Xi) = 0 and
var(Xi) = 1.

4.3.4 Distributional setting D4

The fourth distribution is inspired by Velilla (1998). The paper introduces some
examples of distributions of X which are not elliptic, but the L.D.C. condition
is still fulfilled. We expand these special cases and conduct a general way to
construct distributions of this type.

Let B = (β1 ∶ ⋅ ⋅ ⋅ ∶ βK) be a p ×K matrix, where vectors β1, . . . ,βK are de-
fined as in (3.2). Since vectors β1, . . . ,βK are linearly independent, rank(B) =
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K, where rank denotes the rank of a matrix. We want to find a p × (p −K)
matrix C such that rank(C) = p−K and C′B = 0. Velilla (1998) showed, that
when X is constructed as

(4.1) X =Cv +B(B′B)−1w,

where v and w are two independent random vectors of appropriate dimensions,
then the distribution of X is not elliptic but the L.D.C. condition is still fulfilled.

Let us choose a p × p matrix

PI−B = I −B(B′B)−1B′,

which is the projector to the orthocomplement of B. Because rank(PB) =
rank(B) =K, we have rank(PI−B) = p −K. Since PI−B is the projector to the
orthocomplement of B, we have PI−BB = 0. Because rank(PI−B) = p−K, ma-
trix PI−B has p−K linearly independent column vectors. We find those linearly
independent column vectors by constructing the eigenvalue decomposition of
PI−B:

TDT′ = TD1/2D1/2T′ = PI−B,

where the diagonal matrix D contains the eigenvalues and T contains the cor-
responding eigenvectors of matrix PI−B. Again, since rank(PI−B) = p −K and
PI−B is a projector, p−K diagonal elements of D are nonzero and K diagonal
elements are zero. By calculating TD we obtain a p × p matrix, denoted by
C∗, which has p −K nonzero column vectors and K zero column vectors. Lets
choose the p −K nonzero column vectors from C∗ and construct a p × (p −K)
matrix C. Matrix C has the desired properties rank(C) = p −K and C′B = 0.
Finally, we construct X as in (4.1).

In the simulations we have chosen v ∼ U(−4,4) and depending on whether
we have a model with K = 1 or K = 2 [w = w1 or w = (w1,w2)′], we have chosen
w1 ∼ 0.5N(0,4) + 0.5N(0,16) and w2 ∼ U(−4,4) (see Velilla 1998).

Figures 4.1- 4.4 show the graphs of the four distributional settings, when
p = 5 andN = 200. The figures demonstrate the differences between the different
settings. Both the normal and the T5 data have the same spherical shape, but
the T5 data has much heavier tails. In the IC data in Figure 4.3 however,
the different pairwise scatter plots show that some components are clearly not
elliptic and that the first component is skew. The distribution D4 in Figure 4.4
looks quite different from the other distributions. All pairwise scatter plots are
clearly not elliptical. For model D4, B is in this case (1,1,1,0,0)′.
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Figure 4.1. Scatterplot matrix for a data set of 200 observations, gen-
erated from the multivariate normal distibution N5(0, I5) (the setting
D1).
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Figure 4.2. Scatterplot matrix for a data set of 200 observations, gen-
erated from the multivariate t-distibution T5(0, I5) (the setting D2).
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Figure 4.3. Scatterplot matrix for a data set of 200 observations, gener-
ated from a distribution under the distributional setting D3 with p = 5.
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Figure 4.4. Scatterplot matrix for a data set of 200 observations, gen-
erated from a distribution under the distributional setting D4, where
matrix B = (1,1,1,0,0)′ is constructed under the model M1 with p = 5.
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4.4 The objective of the simulation study

The objective of the simulation study is to compare the performance of the
dimension reduction methods SIR, SAVE and PHD in the large number of
different settings. Our investigations concentrate on two points: 1. How close the
estimated e.d.r. directions are to the true e.d.r. directions when the dimension
K of the central DRS is known and 2. How many times K is estimated correctly
when K is unknown. Criteria to evaluate these objectives are discussed in the
following subsections.

4.4.1 The R2 criterion

The closeness of the estimated and true e.d.r. directions when K is known
is measured by using the R2 criterion introduced by Li (1991). For K = 1,
the criterion calculates the squared multiple correlation coefficient between the
projected variable b′X and the ideally reduced variables β′

1
X, . . . ,β′KX and

can be written as

R2(b) =max
(b′Σβ)2

b′Σb ⋅β′Σβ ,
where β ∈ C (β1 ∶ ⋅ ⋅ ⋅ ∶ βK) and Σ is the covariance matrix of X. When K >
1, we use the squared trace correlation, denoted by R2(B), i.e. the average
of the squared canonical correlation coefficients between b′

1
X, . . . ,b′KX and

β′
1
X, . . . ,β′KX.

The R2 criterion takes values between [0,1], where 0 is total failure and 1
is the perfect estimate. The values of R2 from the simulation results are shown
using boxplots. The criterion is used for each of the methods SIR, SAVE and
PHD.

4.4.2 χ2-test

In practice we do not know K, but we must estimate it. In this study we dis-
tinguish the three cases: underestimation, correct result and overestimation.
The estimation is done by using two procedures: a χ2-statistic and a BIC
(Bayesian information criterion) criterion to be introduced in the next sub-
section. Li (1991) introduced a χ2-statistic for SIR to estimate the dimension
K. Li (1992) also introduced a different χ2-statistic for PHD. Shao, Cook &
Weisberg (2007) introduced a χ2-statistic for SAVE. There are many versions
of χ2-statistic in the literature for estimating the dimension K, of which some
assume normality of X and some do not. In this thesis we use procedures which
assume normality of X, since these procedures are implemented in the dr pack-
age for SIR, SAVE and PHD. Next, we will introduce the χ2-statistic for SIR
and leave the χ2-statistics for SAVE and PHD for the reader to be found from
the literature.
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Li proposes the next theorem, where λ̄p−K is the average of the p−K smallest
eigenvalues and S is the number of slices:

Theorem 4.1. If X is normally distributed, then n(p−K)λ̄(p−K) follows asymp-
totically a χ2-distribution with (p −K)(S −K − 1) degrees of freedom.

Using Theorem 4.1, we can assess how many linear combinations should be
chosen. That is, we estimate the value of K. This can be done by using the
criterion

p-valuej = P (χ2

(p−j)(S−j−1)
≥ n(n − p)λ̄(p−j)),

presented by Li (2000).
The idea is to construct a sequence of p-values starting from j = 0. If p-

valuej is less than 0.05 for example, we can conclude that the dimension of
the central DRS is at least j + 1. Then increase the value of j until the first
`too large' p-value indicates that we should choose j −1 as the estimate of the
dimension of the central DRS (K = j − 1). In the simulation study we tested
only up to K = 4 for computational reasons and since this is enough for our
purposes.

In summary, three different χ2-tests are applied in the simulation study -
one for each dimension reduction method. The results of the χ2-estimates for
SIR, SAVE and PHD are visualized using barplots.

4.4.3 BIC

We selected K also using the BIC type criterion of Zhu, Miao & Peng (2006).
It is defined as follows: let

log Lk = n
2

p∑
i=1+min(τ,k)

(log θ̂i + 1 − θ̂i),
where θ̂i is defined as θ̂i = λ̂i + 1, where λ̂i are the eigenvalues of the estimate
for cov(E(X∣Y )), τ is the number of θ̂i’s that are greater than 1 and k is the
number of e.d.r. directions. Let

G(k) = logLk − Cnk(2p − k + 1)
2

,

where p is the dimension of X. In our simulations we have used the penalty
constant Cn = c−1Wn, where c is the number of data points in each slice. Ac-
cording to results in Zhu et al. (2006), Wn can be selected in a fairly wide
range. We have chosen Wn = (0.5 log(n) + 0.1n1/3)/2, which performs best over
all Wn’s used in the simulation studies in Zhu et al. (2006).

The estimator ofK is defined as the maximizer K̂ ofG(k) over k ∈ (0, . . . , p−
1), that is,

G(K̂) = max0≥k≥p−1G(k).
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The BIC procedure is applied to SIR only and the results are visualized in the
same barplots as the results from the χ2-procedures. Therefore, the accuracy of
the estimation of the e.d.r. directions of SIR is being measured by using both
the χ2 procedure suitable for SIR and the BIC procedure. For methods SAVE
and PHD, only the χ2-technique suitable for each method is applied.

4.5 Results

In this section we summarize the essential simulation results. We report the
method that works the best for each model and observe graphs that include
interesting information. The graphs do not necessarily present the general ten-
dency in the results for a specific model, but may show some surprising re-
sults. The values of the R2 criterion are visualized using boxplots and the
barplots display the three possible estimation results: underestimation, correct
estimation and overestimation, which are presented by three shades of grey.
Underestimation is shown in light grey, correct estimation is shown in grey and
overestimation is shown in dark grey. Note that only a small fraction of the
results are displayed in figures. All extensive simulation summaries and figures
are available upon request from the author.

4.5.1 Accuracy of subspace estimation assuming K known

Model M1

Figure 4.5 shows the values of the R2 criterion under the model M1 for the
distributional setting D1, when the standard deviation of ε is σ = 0.5. SIR
works well throughout every value of p and N , except when p = 40 and N = 100.
SAVE works well when p is 5 and 10, but it needs a large number of data points.
When p is 5 or 10, PHD takes values from the whole range [0,1], which indicates
its inability to detect a proper DRS. For p = 20,40, PHD does not work at all.
In the case of D2, SIR deteriorates and SAVE and PHD do not work at all. For
D3, SIR is the only method that works, but for D4 also SAVE works when p
is small and/or N is large.

When σ is increased to 1, the methods become unable to detect a proper
DRS, that is, the range of values ofR2 becomes wider. It is interesting to observe
that for D1 SAVE collapses totally when σ = 1. All in all, SIR is superior to
SAVE and PHD in this setting.
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Figure 4.5. Boxplot for the R2 criterion under the setting M1, D1,
σ = 0.5.
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Model M2

For M2, SIR does not work as well as it did for M1, but it works better than
SAVE or PHD. It is best for D1 and D4. Figure 4.6 shows that for large dimen-
sions SIR needs a large value of N in order to work. SAVE works only when
p is small and N is large. However, the most interesting finding is that PHD
does almost as well as SIR for every distributional setting.

When σ = 1, SIR and PHD have a wider range of values, and SAVE collapses
totally.
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Figure 4.6. Boxplot for the R2 criterion under the setting M2, D4,
σ = 0.5.
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Model M3

Figure 4.7 shows that under M3 SIR is not good for D1, because it takes values
from the whole range of R2. SAVE works when p/N is small. The overall per-
formance of PHD is superior to other methods under the setting in Figure 4.7.
For D2, no method work well except SAVE, when p = 5 and N = 800. For D3,
both SIR and PHD perform well for all values of p when N is at least 200. The
results for D4 are very close to the results for D1, except that SAVE works
better for D4 than it does for D1.

In the case of σ = 1, the results deteriorate very little if at all.
R

2

0.0

0.2

0.4

0.6

0.8

1.0
N=100

p=5
N=200

p=5
N=400

p=5
N=800

p=5

N=100
p=10

N=200
p=10

N=400
p=10

0.0

0.2

0.4

0.6

0.8

1.0
N=800
p=10

0.0

0.2

0.4

0.6

0.8

1.0
N=100
p=20

N=200
p=20

N=400
p=20

N=800
p=20

SIR SAVE PHD

N=100
p=40

SIR SAVE PHD

N=200
p=40

SIR SAVE PHD

N=400
p=40

SIR SAVE PHD

0.0

0.2

0.4

0.6

0.8

1.0
N=800
p=40

Figure 4.7. Boxplot for the R2 criterion under the setting M3, D1,
σ = 0.5.
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Model M4

The results for M4 are quite similar to M3. In general, SIR does not work, but
for D1 with p = 5 and N = 800 it performs decently, and for D3 it collapses
totally. For SAVE and PHD the results are very similar to M3, that is, PHD
performs a little bit better than SAVE. An interesting result is that none of
the methods perform well for D2, although the distribution is elliptic. This can
be seen in Figure 4.8.

The results for σ = 1 are very close to those for σ = 0.5.
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Figure 4.8. Boxplot for the R2 criterion under the setting M4, D2,
σ = 1.
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Model M5

The overall performance of SAVE is superior to other methods under M5, but
only when p is small and N is large. In general, SIR does not work at all, but
for D3 the results are interesting: when N is large, SIR gets the majority of its
values above 0.5 (see Figure 4.9). The results for PHD are quite similar to SIR.

When σ = 1, the results do not change significantly.
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Figure 4.9. Boxplot for the R2 criterion under the setting M5, D3,
σ = 0.5.
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Model M6

Under M6 no method is superior to the other methods. However, the perfor-
mance of SAVE seems to be the best. For D1, SAVE and PHD work well only
if N = 800 and also for p = 5,N = 400. For D2, none of the methods work. For
D3, neither SAVE or PHD work and for D4 SAVE works only when p/N is
small. PHD collapses totally for D4. SIR does not work for the majority of the
cases under M6. It is unable to detect a proper DRS, as it takes values from
the whole range of R2. However, for D3 when N = 800, SIR works very well
and is superior to SAVE and PHD (see Figure 4.10).

When σ = 1, SAVE collapses for D1. For D3, SIR and PHD take values from
the whole range of R2.
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Figure 4.10. Boxplot for the R2 criterion under the setting M6, D3,
σ = 0.5.
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Model M7

For M7, SIR works for no settings and SAVE works only for D1 and D3, when
N is large and p is small. The performance of PHD is superior to the other
methods for D1 when p/N is small, as can be seen in Figure 4.11. A similar
result holds for D3.

When σ = 1, the results for SAVE and PHD deteriorate so that they perform
well only for D1, when N = 800 and p = 5. PHD performs well also when N = 800
and p = 10.
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Figure 4.11. Boxplot for the R2 criterion under the setting M7, D1,
σ = 0.5.
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4.5.2 Accuracy of subspace estimation assuming K unknown

Model M1

Figure 4.12 shows that for D1, χ2

SIR estimates the dimension K correctly in
the majority of the cases. BICSIR tends to overestimate, whereas χ2

PHD under-
estimates. χ2

SAV E estimates correctly only when p is small and N is large. In
other cases it underestimates.

For D4 the results are quite similar to D1, but for D2 and D3 the results
move towards overestimation. The results change very little when σ = 1.
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Figure 4.12. Barplot for the estimate of the dimension of the central
DRS under the setting M1, D1, σ = 0.5.
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Model M2

Compared to M1, the results for M2 are poorer. Figure 4.13 shows the difference
from D2 quite clearly. χ2

SIR estimates correctly in just a few cases and otherwise
overestimates. All of the other methods are worse than χ2

SIR and overestimate
radically. An interesting tendency is that for a fixed N , increasing p makes
the results move towards underestimation, whereas for a fixed p, increasing N
makes the results move towards overestimation.

It is also interesting that for σ = 1 the results are better than for σ = 0.5,
because there is a lot less overestimation.
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Figure 4.13. Barplot for the estimate of the dimension of the central
DRS under the setting M2, D2, σ = 0.5.
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Model M3

Figure 4.14 shows that χ2

SIR works very well for D3. BICSIR tends to overesti-
mate, whereas χ2

SAV E underestimates. However, χ2

PHD is the best. For D1, D2
and D4, χ2

SIR underestimates. χ2

SAV E works for D1 and D4 when p/N . BICSIR
does not work for any distributional setting. χ2

PHD works the best for D1 and
D4 as well as for D3, but none of the methods work for D2.

The results for σ = 1 differ very little from those for σ = 0.5.

N
=

80
0

U
nd

er

C
or

re
ct

O
ve

r

U
nd

er

C
or

re
ct

O
ve

r

U
nd

er

C
or

re
ct

O
ve

r

χPHD
2

U
nd

er

C
or

re
ct

O
ve

r

χSAVE
2

BICSIR

χSIR
2

N
=

40
0

χPHD
2

χSAVE
2

BICSIR

χSIR
2

N
=

20
0

χPHD
2

χSAVE
2

BICSIR

χSIR
2

N
=

10
0

p=5 p=10 p=20 p=40

χPHD
2

χSAVE
2

BICSIR

χSIR
2

Figure 4.14. Barplot for the estimate of the dimension of the central
DRS under the setting M3, D3, σ = 0.5.
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Model M4

The results for M4 are quite similar to those for M3. The largest deviance
between the results is that χ2

SIR works for D1 as well as for D3, as long as N
is large (see Figure 4.15). Also, χ2

PHD does not work for D3, and consequently
χ2

SIR is the best for D3.
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Figure 4.15. Barplot for the estimate of the dimension of the central
DRS under the setting M4, D1, σ = 0.5.
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Model M5

Figure 4.16 shows the following tendency of the results for M5: χ2

SIR under-
estimates dramatically, BICSIR estimates fall rather uniformly into the three
possible estimation outcomes, χ2

SAV E underestimates and χ2

PHD does very well.
The results for σ = 1 differ very little from the results for σ = 0.5.
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Figure 4.16. Barplot for the estimate of the dimension of the central
DRS under the setting M5, D4, σ = 0.5.
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Model M6

The results for M6 are quite similar to those for M5, Figure 4.17 showing
the general pattern of the results. χ2

SIR underestimates dramatically, BICSIR
estimates distribute equally between the three outcomes, χ2

SAV E underestimates
and χ2

PHD is the best-working method.
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Figure 4.17. Barplot for the estimate of the dimension of the central
DRS under the setting M6, D1, σ = 0.5.
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Model M7

No methods seem to work for M7. The results are best for D4 – χ2

PHD performs
well when p/N is small, χ2

SIR and χ2

SAV E underestimate, and BICSIR gives
estimates equally into each outcome category (see Figure 4.18).
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Figure 4.18. Barplot for the estimate of the dimension of the central
DRS under the setting M7, D4, σ = 0.5.
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4.6 Summary of the simulation study

When K is known, SIR is superior to SAVE and PHD for models M1 and M2,
but for the rest of the models SIR performs worse than SAVE and PHD. PHD
is superior to SIR and SAVE for models M3, M4, M5 and M7. SAVE is not
really superior to both SIR and PHD for any model. For model M6 none of the
methods seem to perform well.

In the more realistic case when K is unknown, SIR still performs best for
models M1 and M2, but for the rest of the models PHD is quite superior to
SIR and SAVE.

For both cases, when K is known and the more realistic case of K being
unknown, the ratio of p/N seems important. Overall, the results are best for
distributions D1 and D4, and worse for distribution D2.
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5 Example

In this chapter we apply SIR, SAVE and PHD (residual-based) to a hemody-
namic data set1, which was analyzed for example in Tahvanainen et al. (2009).
In short, the data is from the LASERI (Lasten Sepelvaltimotaudin Riskitekijät)
study, where each of the 179 subjects was first 5 minutes in a supine position
and then moved upwords for 5 minutes, and again tilted down for 5 minutes.
Our data consists of the averages of the second and fifth minute for each phase.
A more detailed description of the data can be found in Tahvanainen et al.
(2009).

Our objective is to model the average difference to the tilt for the augmen-
tation index AIx, which is defined as

Y = (AIxT3 +AIxT4)/2 − (AIxT1 +AIxT2)/2,
where T1, T2, T3 and T4 are the first four time points.

The number of quantitative explanatory variables is 22 and the number of
categorical explanatory variables is 1 (SEX). All of the variables are introduced
in Appendix D. Since the number of explanatory variables is large, we wish to
reduce the dimension of the vector of explanatory variables. We use SIR, SAVE
and PHD to study if they can find the central DRS by applying χ2-tests suitable
for each dimension reduction method.

It is worth mentioning that in Tahvanainen et al. (2009), a linear robust
MM-regression model was fitted. This suggests that the dimension K of the
central DRS was believed to be 1.

In a practical situation it is often of interest to keep only the variables really
needed in the model to have an easier interpretation of the effects of different
variables on the response. In this example also the categorical variable SEX
should be considered when trying to reduce the dimension. These two issues
will be addressed in the context of SIR in the following two sections.

5.1 Marginal coordinate tests

Marginal coordinate tests were proposed by Cook (2004). Suppose that CY ∣X

represents the central DRS with basis given by the columns of a p ×K matrix
B, as defined in (3.2). Coordinate tests allow testing hypotheses that CY ∣X is

1The data was kindly provided by Professor Ilkka Pörsti, Department of Internal Medicine,
Tampere University Hospital, Tampere, Finland.
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orthogonal to one (or more linear combinations) of the explanatory variables;
were this so, we could achieve dimension reduction simply by dropping these
explanatory variables.

Let us partition X′ = (X′
1
,X′

2
) and B′ = (B′

1
,B′

2
) according to the partition

of X. Consider a typical application to test the hypothesis that only r selected
explanatory variables X1 contribute to the regression. By definition of CY ∣X we
have Y ⊥⊥X∣B′X. We wish to test the hypothesis Y ⊥⊥X∣B′

1
X1.

Define a hypothesis matrix H. The marginal coordinate hypotheses are

(I −PH)B = 0 versus (I −PH)B ≠ 0,

where PH is the projection on H. In short, we are studying if all vectors in
CY ∣X can be represented as linear combinations of the columns of H.

Marginal coordinate tests are currently defined in the dr package for SIR
and SAVE, but not for PHD. Therefore, for PHD we do not apply marginal
coordinate tests.

5.2 Categorical explanatory variables

Suppose we have also a categorical explanatory variable or grouping variable
G with g levels, that might influence Y . Chiaromonte, Cook & Li (2002) de-
scribed how such a categorical explanatory variable could be included in a di-
mension reduction regression problem. The basic idea is to divide the problem
into g regression problems, and define the central DRS as the union of the sub-
spaces for the regression problems (Y ∣X,G = 1), (Y ∣X,G = 2), . . . , (Y ∣X,G = g).
Chiaromonte et al. (2002) called this partial sir.

Categorical explanatory variables in a dimension reduction regression prob-
lem are currently defined in the dr package for SIR and SAVE, but not for
PHD. Therefore, for PHD we do not use the categorical variable SEX.

5.3 Results for the hemodynamic data example

5.3.1 SIR

Ignoring at the beginning the variable SEX and using only the quantitative
variables, the results suggest 0 as the dimension of the central DRS. Therefore,
if the central DRS exists, SIR cannot find an estimate for it.

We continue by using marginal coordinate tests – dropping explanatory
variables that have the largest p-value one by one. After each time the variable
with the largest p-value is dropped, a new SIR is performed. Proceeding in this
manner we end up with five variables, from which all but one have p-values
less than 0.05. Performing SIR using these five variables produce results, which
suggest 1 as the dimension of the central DRS.

Next, we consider the starting point of our dimension reduction procedure
with all of the 22 variables, but we add the categorical variable SEX as an
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explanatory variable. The results suggest 2 as the dimension of the central
DRS.

In Tahvanainen et al. (2009), doctors with subject knowledge in the hemody-
namic data presumed that there are only 12 relevant quantitative explanatory
variables (SAPr, DAPr, Waist, Hip, Cornell, CRP, Hkr, HDL, LDL, Trigly,
AIx, Age) out of the 22 variables, along with variable GFR, which is defined
as follows

GFR = ⎧⎪⎪⎨⎪⎪⎩
((140 −Age) ∗Weight)/Krea ∗ 1.23, SEX = male,

((140 −Age) ∗Weight)/Krea ∗ 1.04, SEX = female.

We will continue by applying SIR to these 13 variables. SIR is performed to the
whole data and to both sexes separately. SAVE and PHD will not be applied to
these 13 variables, but only to the original 22 variables. Furthermore, SAVE will
be applied to the categorical variable SEX. Note that performing a dimension
reduction method to a subset of different sexes deviates from the situation
where we have a categorical explanatory variable SEX in the model.

SIR strongly suggests 0 as the dimension of the central DRS for the whole
data and for both subsets of sexes.

Previous studies have shown that SIR is sensitive to outliers (Gather, Hilker
& Becker 2002). This is of relevance, because Tahvanainen et al. (2009) point
out that this data might contain many outliers, since the measurements are
for example sensitive to small movements of the subjects. To explore this, we
show in Figures 5.1 and 5.2 Chi-square QQ-Plots for the different sexes, where
the robust distances are based on the MCD-scatter matrix. As can be seen
from these figures, both groups seem to have very heavy tails and seem not
normally distributed. If the groups were in fact normally distributed, then all
points would lie on the dashed line.

54



2.0 2.5 3.0 3.5 4.0 4.5 5.0

5
10

15

Chisquare QQ−Plot

Square root of the quantiles of the chi−squared distribution

R
ob

us
t d

is
ta

nc
e

198133136451
205515382765

144649

42

5

57

30

Figure 5.1. Chi-square Quantile-Quantile (QQ) Plot for evaluating the
normality of the male subset of the data.
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Figure 5.2. Chi-square Quantile-Quantile (QQ) Plot for evaluating the
normality of the female subset of the data.
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To get an idea of SIR in the clean data, we proceed by removing observa-
tions that have a robust distance larger than 5 and also observations that have
missing values for any of the 13 variables. After this procedure we end up with
127 subjects. The results still suggest 0 as the dimension of the central DRS
for the whole data and for both subsets of sexes, but the results especially for
the whole data and for the subset of females are very close to suggesting 1 as
the dimension of the central DRS.

We mentioned earlier that in Tahvanainen et al. (2009), a linear robust MM-
regression model was fitted and therefore K was believed to be 1. By cleaning
the data from outliers, we pursued normality. If these objectives were actually
reached, we could make an interesting comparison to our simulation results
for model M1, distribution D1 (see Figure 4.12). For the setting p = 10 and
N = 100, namely, which is the setting closest to our situation, χ2

SIR estimates
K very efficiently.

5.3.2 SAVE and PHD

Applying SAVE and PHD to the 22 variables, the results suggest 0 as the
dimension of the central DRS. Therefore, if the central DRS exists, then SAVE
cannot find an estimate for it.

By using the marginal coordinate tests we end up with five variables, from
which all but one have p-values larger than 0.05. Therefore, it seems that all
variables except one seem to be orthogonal to the central DRS. After adding
SEX as an explanatory variable, the results suggest 0 as the dimension of the
central DRS.

For PHD, the estimate of the dimension of the central DRS is 0.
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6 Conclusions

This thesis discusses sliced inverse regression (SIR). We begin by studying the
basics of regression and dimension reduction, which are needed to build a foun-
dation for SIR. Chapter 3 introduces the important concept of inverse regres-
sion. The other sections of Chapter 3 discuss the dimension reduction subspace
(DRS), the key concept of central dimension reduction subspace (central DRS)
and the main theorem of SIR, followed by the SIR algorithm based on the
theory of SIR. The SIR algorithm provides a tool to obtain an estimate of the
central DRS of a finite sample. We continue by comparing SIR to two other
dimension reduction methods, sliced average variance estimate (SAVE) and
principal hessian directions (PHD), in an extensive simulation study. Finally,
we apply SIR, SAVE and PHD to a real data set.

One strength of this thesis is the extensive simulation study, which widens
the view on the applicative scope of dimension reduction. Our study considers
four different dimensions of the vector-valued explanatory variable X, from 5
up to 40, four different distributions of X, four different sample sizes, seven dif-
ferent models, and two different levels of noise. Moreover, the way we compare
the methods is very extensive – we use the R2 criterion, where the dimension
K of the central DRS is assumed to be known, and three different χ2-tests, one
for each method, and a BIC type criterion for SIR to estimate K when it is
unknown.

The results show that none of the three dimension reduction methods is
superior to the others in all settings. However, SIR is superior to SAVE and
PHD, when the dependence between the response Y and X is linear. When
the dependence is symmetric, then SIR often underestimates the dimension of
the central DRS and therefore performs poorly, SAVE does not work when p
exceeds 10 and PHD works better for larger values of p as well. Although SIR
usually performs poorly when the dependence is symmetric, for some distribu-
tional settings SIR is actually superior to SAVE and PHD. All in all, in the
case of symmetric dependence, PHD is superior to SIR and SAVE. We pro-
grammed the BIC criterion to estimate the dimension K, and it turns out that
this method tends to overestimate the dimension. Adding noise increases the
range of values of the R2 criterion or it does not affect much at all. In one case
it strangely improves the estimation of K.

As a consequence from this simulation study we can point out that in a
practical situation, the choice of dimension reduction technique will matter
and its performance will depend on the underlying dependence structure as
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well as on the distribution of X. If one has some prior information about the
dependence between the response and the vector of explanatory variables, the
results in this thesis might help to select the right dimension reduction method.
The ratio p/N also seems to be relevant. On the basis of the simulation results
as a whole, PHD is superior to SIR and SAVE. However, for linear depen-
dence between the response and the explanatory variables we suggest SIR. For
symmetric dependence we suggest PHD.

Applying SIR, SAVE and PHD to a real data example does not yield an
estimate of the central DRS. This is because the central DRS does not exist or
these methods cannot find it.

Future studies might consist of expanding the simulation study by increas-
ing dimension p, sample size N and the level of noise. For the estimation of K,
it would be interesting to see how much each of the methods overestimate or
underestimate, instead of only studying if a method underestimates or overes-
timates. Also, more accurate methods for estimating K would be of interest,
since in practise it is usually unknown. Furthermore, as the analyses of the
example data show, also robust dimension reduction methods are needed.
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Appendix A: Principal component

analysis

We present principal component analysis by following the results from Schott
(2005, p.107).

Let X be an p× 1 random vector having the covariance matrix Σ. Suppose
that we wish to find the p × 1 vector a1 so as to make the variance of a′

1
X as

large as possible. The variance of a′
1
X is

var(a′1X) = a′1{cov(X)}a1 = a′1Σa1.

Clearly, we can make this variance arbitrarily large by taking a1 = αc for some
scalar α and some vector c ≠ 0 and then let α Ð→ ∞. We will remove this
effect of the scale of a1 by imposing the constraint a′

1
a1 = 1. In this case, we are

searching for the one direction in Rp that is the line for which the variability
of observations of X projected onto that line is maximized. It can be proved
(see Schott 2005, Theorem 3.17) that this direction is given by the normalized
eigenvector of Σ corresponding to its largest eigenvalue. Suppose we also wish
to find a second direction, given by a2 and orthogonal to a1, where a′

2
a2 = 1 and

var(a′
2
X) is maximized. It can be shown (see Schott 2005, Theorem 3.17), that

this second direction is given by the normalized eigenvector of Σ corresponding
to its second largest eigenvalue. Continuing in this fashion, we would obtain
p directions identified by the set a1, . . . ,ap of orthonormal eigenvectors of Σ.
Effectively, what we have done is to find a rotation of the original axes to a new
set of orthogonal axes, where each successive axis is selected so as to maximize
the dispersion among the observations of X along that axis. Note that the
components of the transformed vector (a′

1
X, . . . ,a′pX)′, which are called the

principal components of Σ, are uncorrelated because for i ≠ j,
cov(a′iX,a′jX) = a′iΣaj = a′i(λjaj) = λja′iaj = 0,

where λj ’s j = 1, . . . , p are the eigenvalues of Σ.
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Appendix B: Conditional expectation

Let X,Y and Z be univariate random variables. We write E(X ∣Y = y,Z =
z), f(x∣y, z), f(x, y, z), f(z∣y), f(y, z), f(x, y), f(x∣y), fY (y) and E(X ∣Y = y),
respectively, to denote the expected value of X given Y = y and Z = z, the
conditional density function of X given Y = y and Z = z, the joint density
function of X,Y and Z, the conditional density function of Z given Y = y, the
joint density function of Y and Z, the joint density function of X and Y , the
conditional density function of X given Y = y, the marginal density function of
Y and the expected value of X given Y = y. Now the following useful identity
holds, providing that the expectations exist:

(1) E(E(X ∣Y,Z)∣Y ) = E(X ∣Y ).
To prove (1) we need to compute E(E(X ∣Y,Z)∣Y = y). E(X ∣Y,Z) is a random
variable, and for Y = y its possible values are E(X ∣Y = y,Z = z), where z varies
over the range of Z. Now

E(E(X ∣Y,Z)∣Y = y) = ∫ E(X ∣Y = y,Z = z)f(z∣y)dx
= ∫ ∫ xf(x∣y, z)f(z∣y)dxdz
= ∫ ∫ xf(x, y, z)

f(y, z)
f(z, y)
fY (y) dxdz

= ∫ ∫ xf(x, y, z)
fY (y) dxdz

= ∫ xf(x, y)
fY (y) dx

= ∫ xf(x∣y)dx
= E(X ∣Y = y).

This proves (1).

Proposition 1. If the conditional independence Y ⊥⊥X∣Z holds, then

(2) E(X∣Y ) = E(E(X∣Z)∣Y ).
We prove Proposition 1 in the case of p = 1.
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Proof. It is sufficient to prove the identity E(E(X ∣Y,Z)∣Y ) = E(E(X ∣Z)∣Y ),
since then our claim (2) follows by (1). We have by direct calculation

E(E(X ∣Y,Z)∣Y = y) = ∫ E(X ∣Y = y,Z = z)f(z∣y)dz
= ∫ ∫ xf(x∣y, z)f(z∣y)dxdz
= ∫ ∫ xf(x, y, z)

f(y, z)
f(z, y)
fY (y) dxdz

= ∫ ∫ xf(x, y, z)
fY (y) dxdz.

Since f(x, y, z) = fZ(z)f(x, y∣z) and f(x, y∣z) = f(x∣z)f(y∣z) by conditional
independence Y ⊥⊥X ∣Z (see identity (5) in Appendix C), we obtain

∫ ∫ xf(x, y, z)
fY (y) dxdz = ∫ ∫ x

fZ(z)f(x∣z)f(y∣z)
fY (y) dxdz

= ∫ ∫ xfZ(z)f(x∣z)
fY (y)

f(y, z)
fZ(z) dxdz

= ∫ ∫ xf(x∣z)f(y, z)
fY (y) dxdz

= ∫ ∫ xf(x∣z)f(z∣y)dxdz
= ∫ E(X ∣Z = z)f(z∣y)dz
= ∫ E(E(X ∣Z)∣Y = y),

which yields the required result. Here E(X ∣Y = y,Z = z), f(x∣y, z), fZ(z),
f(x∣z), f(y∣z),E(X ∣Z = z) and E(E(X ∣Z)∣Y = y) denote, respectively, the
expected value of X given Y = y and Z = z, the conditional density function of
X given Y = y and Z = z, the marginal density function of Z, the conditional
density function of X given Z = z, the conditional density function of Y given
Z = z, the expected value of X given Z = z and the expected value of E(X ∣Z)
given Y = y.
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Appendix C: Independence and

conditional independence

The bulk of the following results are from Dawid (1979).

Introduction

Consider three continuous random variables A,B and C, and their probability
functions f(a), f(b) and f(c), respectively, for any values A = a, B = b and
C = c. The joint probability function of the three variables can be written as

f(a, b, c) = f(a)f(b, c∣a) = f(a)f(c∣a)f(b∣a, c).
As we can see from the latter form, C is conditional on A and B is condi-

tional on A and C. This situation is presented in Figure 1.

A B

C

Figure 1. B is conditional on A and C.

If however B is conditionally independent of C given A, we could write
f(b∣a, c) = f(b∣a). In this case we could remove the arrow going from C to B
from Figure 1:
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A B

C

Figure 2. B is conditionally independent of C given A.

Independence

Let X and Y be univariate and continuous variables and denote f(x, y), f(x∣y)
and f(x), respectively, the joint density function of X and Y , conditional den-
sity function of X given Y and the marginal density function of X. We write
X ⊥⊥ Y to denote that X and Y are independent. That is,

f(x, y) = fX(x)fY (y), for all values of x and y.

Let’s examine the conditional density function f(x∣y). If X and Y are inde-
pendent, that is, if any information about Y does not change the uncertainty
about X, we have for fY (y) > 0 that

f(x∣y) = f(x, y)
fY (y) =

fX(x)fY (y)
fY (y) = fX(x),

which is the marginal density function of X.

Conditional independence

Now we introduce a third variable Z, which is also univariate and continuous.
We write X ⊥⊥ Y ∣Z to denote that X and Y are conditionally independent given
Z. Let us first write the joint density function of X,Y and Z as

f(x, y, z) = f(z)f(x, y∣z).
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Let us study more closely the expression f(x, y∣z). We can write this in
another way by first introducing expressions

(3) f(x∣y, z) = f(x, y, z)
f(y, z)

and

(4) f(y∣z) = f(y, z)
fZ(z) .

for f(y, z) > 0 and fZ(z) > 0, respectively.
Multiplying (3) by (4) yields

f(x∣y, z)f(y∣z) = f(x, y, z)
f(y, z)

f(y, z)
f(z) =

f(x, y, z)
f(z) = f(x, y∣z).

Now we have

f(x, y, z) = fZ(z)f(x, y∣z) = fZ(z)f(y∣z)f(x∣y, z).
Lets study the expression f(x∣y, z). By definition, X is conditionally inde-

pendent of Y given Z if the distribution of X is completely determined by Z
alone, Y being superfluous. Then we can write

(5) f(x, y∣z) = f(y∣z)f(x∣y, z) = f(y∣z)f(x∣z),
which is a also a notation for X ⊥⊥ Y ∣Z along with solely the expression

f(x∣y, z) = f(x∣z).
And finally, in the case of conditional independence, the joint density function
of X,Y and Z can be written as

f(x, y, z) = fZ(z)f(x, y∣z) = fZ(z)f(y∣z)f(x∣y, z) = fZ(z)f(y∣z)f(x∣z).
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Appendix D: Variables in the

hemodynamic data

Table 1. Categorical variables in the data.

Variable Total number of subjects Female Male
SEX 179 109 70

Table 2. Quantitative variables in the data.

Variable Median (Quartiles)
Age (years) 43.00 (33.50, 51.00)
Weight (kg) 73.7 (65.0, 86.2)
Height (cm) 170.8 (165.0, 178.0)
Waist (cm) 86.00 (77.25, 98.75)
Hip (cm) 100 (96, 107)
Cornell (Cornell voltage product (ms × mm)) 108.0 (100.0, 116.8)
Hkr (Hematocrit (% of blood volume formed by blood cells)) 0.4100 (0.3900, 0.4400)
Krea (Creatinine (µmol/l)) 73.00 (65.00, 82.00)
CRP (C-reactive protein (mmol/l)) 0.800 (0.500, 1.500)
Trigly (Triglycerides (mmol/l)) 0.960 (0.650, 1.420)
HDL (HDL-cholesterol (mmol/l)) 1.59 (1.30, 1.90)
LDL (LDL-cholesterol (mmol/l)) 2.700 (2.100, 3.300)
HR (Heart rate: baseline) 61.75 (56.17, 69.82)
CI (Cardiac index: baseline) 2.839 (2.450, 3.196)
SVRI (Systemic vascular resistance index: baseline) 2168 (1837, 2537)
SI (Stroke index: baseline) 45.04 (40.02, 50.81)
SAPr (Systolic blood pressure) 132.5 (122.3, 138.7)
DAPr (Diastolic blood pressure) 80.67 (74.42, 86.58)
PPa (Pulse pressure at the aortic level) 36.84 (32.17, 42.43)
TRa (Time of pressure wave reflection in the aorta) 148.5 (140.4, 162.6)
AIx (Augmentation index: baseline) 20.79 (11.27, 29.00)
PWV (Pulse wave velocity: baseline) 9.577 (8.560, 11.640)
GFR (Glomerular filtration rate) 110.70 (96.74, 130.30)

68


	Introduction
	Dimension reduction in regression
	Regression
	Simple linear regression
	Multiple linear regression
	Dimension reduction

	Sliced inverse regression
	Inverse regression
	Dimension reduction subspace
	Models for dimension reduction
	Proof of the main theorem of SIR
	SIR algorithm

	Simulations
	SAVE and PHD
	SAVE
	PHD

	Models
	Models suitable for SIR
	Models suitable for SAVE
	Models suitable for PHD

	Distributions of X
	Distributional setting D1
	Distributional setting D2
	Distributional setting D3
	Distributional setting D4

	The objective of the simulation study
	The R2 criterion
	2-test
	BIC

	Results
	Accuracy of subspace estimation assuming K known
	Accuracy of subspace estimation assuming K unknown

	Summary of the simulation study

	Example
	Marginal coordinate tests
	Categorical explanatory variables
	Results for the hemodynamic data example
	SIR
	SAVE and PHD


	Conclusions
	Bibliography
	Appendix A: Principal component analysis
	Appendix B: Conditional expectation
	Appendix C: Independence and conditional independence
	Introduction
	Independence
	Conditional independence

	Appendix D: Variables in the hemodynamic data

