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Abstract 

Background and aims: Genes and proteins involved in immune system are called 
immunome. A network is a system where nodes are connected to each other by edges. In 
gene network genes are nodes and tissues are edges, and vice versa in tissue networks. 
Network theory helps to find out the features of the network, such as degree, closeness 
and community structure of the network. The main aim of this study was to find out the 
patterns of gene expression in the immunome. Other aims were to find out the correlation 
between immunome gene expression and protein-protein interactions and the 
evolutionary age of important genes. 

Methods: Immunome gene and tissue networks were created. Gene and tissue 
communities were mined from the networks with two community analyses. Common 
gene and tissue clusters were collected from these two community analyses. Degree and 
closeness values of clustered genes were compared to degree and closeness of immunome 
protein-protein interactions. The evolutionary age of clustered genes was studied. The 
correlation between degree in the tissue network and the number of genes in that tissue in 
the gene network was checked.   

Results: The most important result was the discovery of 88 immunome gene clusters 
holding together 547 genes. The genes in the clusters have similar gene expression 
patterns. There is no correlation between immunome gene clusters and immunome PPI 
data. Degree and closeness values are divided evenly to different evolutionary levels. The 
tissue network yielded 203 immunome cluster tissues, which have similar sets of genes 
expressed in them. There is a strong correlation between degree of a tissue in tissue 
network and the number of genes in that tissue in gene network.  

Conclusions: Gene and tissue networks were created and common gene and tissue 
clusters found successfully with help of two community analyses. The main aim was 
reached by finding 547 immunome clustered genes. Tissue analysis revealed 203 
immunome cluster tissues. There was no apparent correlation between clustered genes 
and immunome PPIs or the evolutionary age of the gene. 
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Tiivistelmä 

Tutkimuksen tausta ja tavoitteet: Immuunijärjestelmän geenejä ja proteiineja kutsutaan 
immunomiksi. Verkko on systeemi, jossa solmut yhdistyvät toisiinsa kaarilla. 
Geeniverkossa geenit ovat solmuja ja ilmentymiskudokset kaaria, kudosverkossa 
päinvastoin. Verkkoteorian avulla voidaan löytää verkon ominaisuuksia, kuten aste, 
läheisyys ja verkon sisäinen rakenne. Tämän tutkimuksen päätavoite oli löytää 
immunomin geenien ilmentymisryväksiä. Lisäksi tavoitteena oli tutkia korrelaatiota 
immunomin geenien ilmentymisen ja proteiini-proteiini-vuorovaikutusten sekä tutkia 
tärkeiden geenien evolutionaarista ikää.  

Tutkimusmenetelmät: Työssä luotiin immunomin geeni- ja kudosverkot sekä etsittiin 
niiden sisäisiä rakenteita kahdella eri menetelmällä. Yhteiset geeni- ja kudosryväkset, 
jotka saatiin menetelmien avulla, kerättiin talteen. Ryväsgeenien asteita ja läheisyyksiä 
verrattiin proteiini-proteiiniverkon asteisiin ja läheisyyksiin. Tutkittiin myös 
ryväsgeenien evolutionaarista ikää sekä korrelaatiota kudosverkon asteiden ja 
geeniverkon geenien lukumäärän välillä.  

Tutkimustulokset: Tutkimuksen tärkein tulos oli 88 immunomin geeniryvästä, joissa on 
yhteensä 547 geeniä. Ryväksen geeneillä on samankaltainen ilmentyminen. Immunomin 
geeniryväksillä ja proteiini-proteiini-vuorovaikutuksilla ei havaittu korrelaatiota. Asteet 
ja läheisyydet olivat jakautuneet tasaisesti eri evolutionaarisille tasoille. Kudosverkosta 
saatiin 203 immunomin ryväskudosta, joilla on samankaltainen geenien ilmentyminen. 
Kudosverkon kudosten asteilla ja geeniverkon geenien lukumäärien välillä oli vahva 
korrelaatio. 

Johtopäätökset: Työssä luotiin geeni- ja kudosverkot, joista löydettiin sisäisiä rakenteita 
sekä yleisiä geeni- ja kudosryväksiä. Tutkimuksen päätavoite saavutettiin löytämällä 547 
immunomin ryväsgeeniä. Kudosverkosta löydettiin 203 immunomin ryväskudosta. 
Immunomin ryväsgeeneillä ja proteiini-proteiini-vuorovaikutuksilla tai geenien 
evolutionaarisella iällä ei havaittu korrelaatiota.   
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1. Introduction 

1.1. The human immune system 

The immune system is a complex network of cells, tissues and organs that protect 

organisms against different kinds of foreign molecules and pathogens. It works by 

identifying and removing various types of viruses, bacteria, parasitic worms etc. Immune 

system is one of the most complex biological systems, because it has to be able to 

recognize and attack against so many different types of pathogens which in addition to 

variation evolve with the time. Immune system is able to sort body’s own tissues from 

pathogenic intruders.  

There are two types of immune responses; innate and adaptive, which work together to 

form active and efficient immune response (Chaplin, 2006). Innate immune responses 

include antimicrobial peptides, phagocytes and the alternative complement pathway. 

They are activated instantly after infection and prevent the replication of the infecting 

pathogen. Innate immune responses do not alter on repeated exposure to an infectious 

agent, because they are encoded in the germline genes of the host. Adaptive immune 

responses participate by clonal selection and expansion of lymphocytes. It takes from 

three to five days for a sufficient number of clones to be produced and to differentiate 

into effector cells. Adaptive immune response is highly specific for a particular pathogen 

and it improves each time it faces the same pathogen. Immune responses are produced 

primarily by leukocytes of which there are several different types. 

Immune responses take place in the cells which are organized into tissues and organs, 

which are called the lymphoid system. The lymphoid system consists of lymphocytes, 

accessory cells (macrophages and antigen-presenting cells) and in some tissues, epithelial 

cells. It works in capsulated organs or diffuse lymphoid tissues. The major lymphoid 

organs and tissues are classified as either primary (central) or secondary (peripheral). 

Primary lymphoid organs are the major sites of lymphopoiesis (lymphocyte 

development). Lymphocytes differentiate in primary lymphoid organs from lymphoid 

stem cells, proliferate, and mature into functional cells. T cells mature in the thymus and 
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B cells in the fetal liver and adult bone marrow in mammals. Lymphocytes obtain their 

repertoire of specific antigen receptors to fight against the antigens they meet in their life. 

The cells are tolerant to autoantigens and recognize only non-self antigens in the 

periphery. Secondary lymphoid organs include spleen, lymph nodes and mucosa-

associated tissues, including the tonsils and Peyer`s patches of the gut. Lymphocytes 

interact with each other, with accessory cells, and with antigens in secondary lymphoid 

tissues, which spread the immune response. Immune responses in secondary lymphoid 

tissues call for phagocytic macrophages, antigen-presenting cells, and mature T and B 

cells (Male et al., 2006). 

The immune system defends the body against foreign pathogens, but the original role of 

immunity was not to fight infections. This role it has adopted during evolution 

(Rinkevich, 2004). One of the original roles of immunity has been mate selection in 

jawed vertebrates. The extreme diversity of the Major histocompatibility complex (MHC) 

genes is the result of mating preferences. Many studies show that humans tend to choose 

MHC-dissimilar mates by odor (Havlicek and Roberts, 2008). Interestingly, mate 

selection does not seem to aim at maximum MHC-dissimilarity, but to optimal 

dissimilarity. Heterozygosity at the MHC may enhance the immunity in progeny and 

function to avoid inbreeding.  

RAG (Recombination activating gene) transposition caused the structure of 

immunoglobulin, which lead to the development of the adaptive immune system in the 

jawed vertebrates soon after their evolutionary differentiation from jawless vertebrates 

(Agrawal et al., 1998). This change in immunity function may sometimes make it work 

incorrectly (Rinkevich, 2004). Overactivity of the immune system causes autoimmune 

diseases, such as Diabetes mellitus type 1 and Addison's disease, where the immune 

system is attacking against tissues of the body. In immunodeficiency, immune system has 

decreased or totally absent ability to fight pathogens. Immunodeficiency patients are 

more vulnerable to the pathogens. Primary immmunodeficiencies usually result from 

genetic mutations. Acquired immunodeficiencies are results of malnutrition, aging or 

medications (for example chemotherapy, immunosuppressive drugs). Many diseases 

attack the immune system. Cancers involved with bone marrow and blood cells 

(leukemia, lymphoma, multiple myeloma) cause immunodeficiency. HIV (human 
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immunodeficiency virus) attacks the immune system and in the last stage of virus 

infection causes AIDS (acquired immunodeficiency syndrome).  

1.1.1. Systems biology of immune system 

Traditional reductionistic biology, practiced by many generations of scientists before us, 

has focused on identifying individual genes, proteins, and specific functions of cell. 

Systems biology is instead studying an organism as a network of genes, proteins and 

biochemical reactions. System biology concentrates on all the components and the 

interactions between them as one system. These interactions ultimately form the life in 

cells.   

Aderem (Aderem, 2004) urges for revealing immunomic relations by the methods of 

systems biology. Traditional approaches are reductionistic and do not consider the 

complexity of the immune system. By using new computational approaches we can 

understand these complex biological processes. 

Many methods of systems biology have been used to study immune system (Louzoun, 

2007). One of the most extreme studies is the creation of the computational immune 

system that behaves analogous to the natural immune system (Forrest and Beauchemin, 

2007). It is possible to study with this artificial “immune system” how the immune 

system works and get new data of the natural immune system. It is much easier to 

perform experiments on the in silico model than on living system. The artificial “immune 

system” also can be used to solve practical engineering problems such as computer 

security (Forrest and Beauchemin, 2007).  

Cohen ponders the problem of modelling the immune system (Cohen, 2007). 

Characteristic behaviours of living organisms are emergent properties where the whole is 

more than the sum of its parts. Information is dynamic: gene activation, the proteome, 

signalling pathways, enzymatic pathways, replication and death. Biologic systems never 

rest; everything is on the move. The same applies to the immune system and causes 

requirements for ideal models.  
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1.1.2. Immunome 

Immunome means the genes and proteins involved in the immune system. The 

immunome can be defined in various ways.  

One earlier attempt to define human immunome is Immunogenetic Related Information 

Source (IRIS), which has 1562 immune genes (Kelley et al., 2005). Kelley et al. defined 

the immune gene as a complete gene that produces a functional transcript and 

demonstrates at least one defense characteristic (Kelley et al., 2005): 

-    Known or putative function in innate or adaptive immunity 

-    Participates in the development or maturation of immune system components 

-    Induced by immunomodulators 

-    Encodes a protein expressed primarily in immune tissues 

-    Participates in an immune pathway that results in the expression of defense molecules 

-    Produces a protein that interacts directly with pathogens or their products 

Immunome database (Ortutay et al., 2007A) defines the immunome in a different way 

and includes 847 genes. These genes and their corresponding proteins were collected 

from research articles, textbooks and electronic information sources. The focus was on 

genes and proteins that are directly involved in immunological processes. In addition to 

clearly defined groups, such as clusters of differentiation (CD) molecules, chemokines, 

and their receptors, other essential genes were included. The genes that were undoubtedly 

needed for immunology were included. Immunodeficiency genes were taken from the 

ImmunoDeficiency Resource (Samarghitean et al., 2007) and IDbases (Piirilä et al., 

2006). Proteins that are expressed in nearly all cells were excluded, although their 

function is needed also in immunity related cells and tissues. Only full-length genes were 

included; thus, the gene segments of immunoglobulins, B and T cell receptors and MHCs 

were excluded. In the case of signalling molecules, only those involved in immunity-

related cascades were included. 

To analyze the emergence of immunological processes, they studied the appearance and 

accumulation of genes in the evolutionary levels (Ortutay et al., 2007B). Three types of 

ortholog distributions were identified. These results indicate that most proteins in the 

human immune system have orthologs only in other mammals. These genes and proteins 
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are mainly involved in adaptive immunity. It seems that these three types of orthologs 

arise from three different evolutionary routes. 

In the first type, 15-30 % of the proteins have orthologs from Eukaryota stage (Ortutay et 

al., 2007B). Generally after Chordata, a few new genes appear on every level till taxon 

Mammalia, where almost all of the proteins have orthologs. This is the most general type 

of distribution: examples include antigen presentation, exogenous antigen and chemokine 

activity. The original proteins were not related to immune functions, but modified their 

functions and became involved in defense mechanisms (Ortutay et al., 2007B).  

In the second type of distribution, orthologs emerge at a certain level, and then, in one or 

two levels, almost all of the proteins have orthologs. This type includes T cell activation 

and T cell receptor complex. These proteins may have resulted from the molecular 

appearance of the mammals. These proteins mostly arose with the appearance of 

mammals and represent relatively young defence strategies.  

In the third type, the number of proteins with orthologs rises from level to level without a 

well-defined jump. This type is represented e.g. by integrin complex and blood 

coagulation. These proteins represent classical processes in which gradually more and 

more proteins became involved. 

Vertebrates, the four largest ortholog groups are complement activation, alternative 

pathway, integrin complex, integrin-mediated signalling pathway and blood coagulation. 

In all the analyzed groups, 60 % of the human genes have orthologs. Thus we can assume 

that these functions already existed when vertebrates appeared (Ortutay et al., 2007A). 

Hutton et al. defined the mouse immunome having 360 genes (Hutton et al., 2004). They 

used 8638 element microarray and probed with mRNA prepared from 65 normal adult 

and fetal tissues. At the first stage, they selected genes that were more highly expressed 

in one or more of 6 immunome tissues (lymph nodes from normal and antigen stimulated 

mice, thymus, activated T cells, spleen, peripheral blood mononuclear cells). At the 

second stage, they eliminated from 680 genes those with 2-fold or greater expression in 

brain, spinal cord, heart, kidney, pancreas or stomach, because they do not play role in 

the immune response. At the third stage, resulting 483 genes were examined by 

hierarchical cluster analysis. Immune genes were restricted to the ones expressing two-

fold or greater in at least one of stimulated or unstimulated lymph nodes, activated T 
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cells, or thymus, in order to exclude proteins of immature erythroid cells and polynuclear 

leukocytes encoded in spleen and peripheral blood mononuclear cells. 

Hutton et al. defined genes that were highly expressed based on their normalized 

expression (Hutton et al., 2004) being at least 4 times higher in an individual immune 

tissue relative to their normal expression. They examined highly expressed mouse genes 

and their human orthologs for the presence of clusters of tissue factor (TF) binding sites, 

with the additional constraint that at least one of the cis elements present in the cluster 

was a lymphoid element. The numbers of mouse genes in different tissues were 17 in 

activated T cells, 7 in thymus and 4 in stimulated lymph node. 

1.1.3. Genes of immunome  

Current (May 2009) number of immunome genes in Immunome database is 893. In the 

time the expression data was collected for immunome genes the number was 847. There 

are so many genes in the immunome that it is not possible to present them all here. 

Instead just two samples were picked to represent immunome genes: WAS and TNFRSF9. 

WAS (Wiskott-Aldrich syndrome) gene, also known as THC, IMD2 and WASP, is located 

in chromosome X in Xp11.4-p11.21 (Maglott et al., 2005). Mutations in the WAS gene 

results faulty actin polymeration and cause Wiskott-Aldrich syndrome and X-linked 

thrombocytopenia (XLT) (Imai et al., 2003), which are primary immunodeficiency 

disorders. Wiskott-Aldrich syndrome is associated with combined immunodeficiency, 

thrombocytopenia, small platelets, eczema and increased susceptibility to autoimmune 

disorders and cancers.  

Mutation in the different parts of WAS cause varying defects. WAS mutation may cause 

defects in NK (natural killer) cells and this may cause the disease (Orange et al., 2002). 

WAS mutation confuses actin polymeration, which in turn disturb TCR endocytosis 

(McGavin et al., 2001). WAS mutation causes impaired formation in the structure of 

phagocytic cup (Tsuboi et al., 2007). 

TNFRSF9 (tumor necrosis factor receptor superfamily, member 9) gene, aliases ILA, 4-

1BB, CD137, CDW137 and MGC2172, is located in the first chromosome at 1p36 

(Maglott et al., 2005). TNFRSF9 protein is a member of the TNF-receptor superfamily. 

This receptor contributes to the clonal expansion, survival, and development of T cells. 
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TNFRSF9 regulates the proliferation and survival of CD8+ T cells (Laderach et al., 2002, 

Kim et al., 2008). It has been observed that levels of TNFRSF9 correlate with the 

rheumatoid arthritis symptoms (Jung et al., 2003). TNFRSF9 gene might play also a role 

in interaction among human brain cells (Reali et al., 2003). Neurons, astrocytes and 

microglia of human brain express TNFRSF9.  

Genes of the immunome can be divided into nine functional categories (Ortutay and 

Vihinen, 2007A). Genes can belong to more than one category. Two of the biggest 

categories are “CD molecules” with 292 genes and “Chemokines and their receptors” 

with 243 genes. Other remarkable categories by immune system function are 

“Inflammation” (131 genes), “Adaptive immunity” (103 genes) and “Innate immunity” 

(100 genes).  

1.1.4. Microarray expression data 

Microarray is a high-throughput method which works by utilizing the ability of the given 

probe mRNA to hybridize to the polynucleotide template target from which it originated. 

It is possible to determine the expression levels of thousands of genes within a cell in a 

single experiment by measuring the amount of mRNA bound to the array. The 

hybridization of the target to the probe is usually detected with fluorescence-based 

detection. Microarrays can be used to measure changes in expression levels or to detect 

single nucleotide polymorphisms (SNPs). The first microarrays for gene expression 

profiling were by Schena et al. (Schena et al., 1995). They made differential expression 

measurements of 45 Arabidopsis genes. The first whole genome microarray experiment 

was done on yeast (Lashkari et al., 1997). Microarrays were used to examine gene 

expression in yeast grown under a variety of different conditions: heat shock, cold shock, 

steady-state galactose and glucose.  

Churchill divides two-color microarray experiments into three layers (Churchill, 2002). 

The top layer is biological variation, which is affected by genetic and environmental 

factors, and also whether samples are pooled or individual. The middle layer is technical 

variation during extraction, labelling and hybridization. The bottom layer is the 

measurement error in reading the fluorescent signals, which can be result of dust on the 

array. According to van Bakel et al., the problem of evaluating microarray technology 

                                                                    7                                                                                                        



 

reliability is that there is no single microarray technology, but it is mixture of many 

different techniques (van Bakel and Holstege, 2004). Two parameters of data quality are 

accuracy, which refers to how close a measurement is to a real value, and precision, 

which describes how often the measurement gives the same result. Usually with 

microarray experiments, the focus is on precision, as in Churchill's article. van Bakel and 

Holstege are trying to focus on accuracy in their work by using external RNA controls 

(van Bakel and Holstege, 2004).  

1.2. The world of networks 

Natural and social sciences have been separated from each other having different 

principles and tools for their studies. This separation has only increased during the last 

centuries when different fields have fragmented gradually to small isolated islets. The 

general systems theory (von Bertalanffy, 1950) was one of the first attempts to unify 

different sciences and find similar properties between different fields. Evolved 

interdisciplinary network theory developed this idea to practice. The network theory can 

be applied to many fields of natural and social sciences. In the future, some other 

properties arising from network theory might bring natural and social sciences closer to 

each other and even some type of universal systems theory might be found to unify the 

basis of all the sciences.   

A network is a system where nodes or vertices are connected to each other by edges or 

links. Network models can be classified to three main groups: random (Erdős and Rényi, 

1960), small world (Milgram, 1967) and scale-free (Barabási and Albert, 1999). Different 

networks have the same topological features. Degree (Shaw, 1954) simply shows how 

many edges a node has to other nodes. Degree distribution P(k), gives the probability that 

a node has k links. For P(k) the number of nodes with edges is counted and divided by 

the total number of nodes. Degree centrality shows the effect that a node has on the 

network. Closeness (Freeman, 1979) centrality of a node shows the centrality of a node 

based on how close it is to other nodes in the network. Nodes with high closeness have 

the small total distance to other nodes. The distance between two nodes is the length of 

the shortest path between them. The closeness centrality for a node is calculated by the 
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inverted sum of distances from other nodes in the network. The topological features of 

networks, which have been developed in physics, can also be used to generate a model of 

how the function of a cell is organized (Barabási and Oltvai, 2004).  

Random networks have edges distributed randomly, which means quite evenly, through 

the network, so each node has about the same number of edges. A random network is 

obtained by setting n nodes and adding edges between them at random. The node degrees 

follow a Poisson distribution, in other words most nodes have roughly the same number 

of edges. These random networks are purely theoretical models.  

Small world means that everything/everybody is connected with each other. Stanley 

Milgram´s famous "small world" experiment revealed that any person is connected to any 

other through a short chain of social ties, the average chain length being six people 

(Milgram, 1967). Most people have heard the phrase “Six degrees of separation”, but 

actually Milgram himself did not use it, it has become established later. Systems are 

organized into small world structures, because it is efficient in transforming information, 

for example infectious diseases spread more easily in small world networks than in 

regular lattices (Watts and Strogatz, 1998).  

Another useful property that shows up from networks is the robustness of scale-free 

networks, which means that scale-free networks display surprisingly high degree of 

tolerance against random failures. Although key components regularly malfunction, local 

failures rarely lead to the loss of the global information-carrying ability of the network. 

The error tolerance comes at the expense of attack survivability: the diameter of these 

networks increases rapidly, and they break into many isolated fragments when the most 

connected nodes are targeted (Albert et al., 2000). Fortuna and Melian (Fortuna and 

Melian, 2007) showed that scale-free regulatory network allows a larger active network 

size than random ones by compiled the network of software packages with regulatory 

interactions (dependences and conflicts) from Debian GNU/Linux operating system. 

They suggested that this result might have implications for the number of expressed 

genes at steady state. Small genomes with scale-free regulatory topologies could allow 

much more expression than large genomes with exponential topologies. This may have 

implications for the dynamics, robustness and evolution of genomes. 
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Social ties which form social networks are helping in job hunting, as most of the jobs are 

found through personal contacts than by the application. The strength of interpersonal ties 

varies from a person who we meet once a year or less to very close friends and family 

members. Interestingly the weak ties are stronger in transforming information, because 

those to whom we are weakly tied are more likely to move in circles different from what 

we are (Granovetter, 1973).  

In scale-free networks, some nodes have only one or few edges, while some have many. 

These important nodes having many edges to other nodes and thus having high degree are 

called hubs. Scale-free networks have the probability P(k) that a vertex in the network 

interacts with k other vertices decays as a power in law, following P(k)~k-γ, where γ is the 

degree exponent. The value γ determines many properties of the system. The smaller the 

value γ, the more important the role of the hubs is in the network (Barabási and Albert, 

1999). Most of the existing social, technological and biological networks in the world are 

scale-free networks. Just to give a brief demonstration of these different networks, there 

are some interesting examples following. Dekker studied the Eurovision song contest as a 

friendship network, how countries casted their votes to other countries and formed blocks 

(Dekker, 2007). An example of technological network is the study of transportation 

system of the subway and buses in Boston and the network they form (Latora and 

Marchiori, 2002). An example of biological network is the gene-interaction network 

created to find out genes associated to prostate cancer (Özgűr et al., 2008). They find out 

that highest degree, eigenvector, closeness and betweenness genes in the gene-interaction 

network were most likely to be related with the disease. There are also many attempts to 

capture a part of human protein-protein interaction (PPI) networks in order to model the 

function of the body. An example of this kind of network is by Ewing at al. using mass 

spectrometry for finding new PPIs (Ewing et al., 2007). There are also some specialized 

PPI networks, for example the network of human inherited ataxia-causing proteins (Lim 

et al., 2006). 

1.2.1. Communities in networks 

Communities in networks have groups of nodes that are connected to each other with 

more edges than the rest of the network. Random graphs do not have a community 
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structure. Many real world small world and scale-free networks have community 

structure. For example the biggest community groups Santa Fe Institute scientist 

collaboration network has are Structure of RNA, Statistical Physics, Mathematical 

Ecology and Agent-based Models (Girvan and Newman, 2002). This study revealed that 

scientists are grouped together by similar research topic or method.  

Modularity (Newman, 2004) is a property of a network and a specific proposed division 

of that network into communities. In high modularity network there are many edges 

within communities and only a few between them. Modularity is a measure of the quality 

of a particular division of a network. The modularity value is between 0 and 1. If the 

number of within-community edges is random, we will get 0. Values approaching 1 

indicate networks with the strong community structure (Newman and Girvan, 2004). 

Divisive methods are relatively little studied. They start with the network of interest and 

attempt to find least similar connected pairs of vertices and then remove the edges 

between them. By doing this repeatedly the network is divided into smaller and smaller 

components, and the process can be stopped at any stage for taking the components at 

that stage to be the network communities. Difficulty of the algorithm is the relatively 

high computational demand (Newman and Girvan, 2004). One of the divisive methods is 

called edge betweenness community, which tries to find the edges that are most 

“between” communities. Communities are exposed gradually when these edges are 

removed one by one. The edge betweenness community algorithm first calculates the 

betweenness for all the edges in the network and then removes the edge with the highest 

betweenness. Next it recalculates betweenness for all edges affected by the removal and 

removes the edge with the highest betweenness. It repeats these calculating and removing 

steps until no edges remain. The speed of the algorithm is rather slow, which makes it 

impractical for large networks (Girvan and Newman, 2002). 

Fast greedy community analysis has another approach for finding community structures. 

It is a hierarchical agglomeration algorithm, which works by greedily optimizing 

modularity. The general idea in optimizing modularity is to repeatedly join together two 

communities whose amalgamation produces the largest increase in modularity. This 

method is considerably faster than most previous general algorithms and can be used for 

very large networks as well (Clauset et al., 2004).  



 

2. Objectives 

The main objective of this study was to identify immunome gene groups with similar 

tissue expression pattern using gene networks with immunome gene expression data and 

various net analysis tools. Parts of this objective were: 

 collecting immunome expression data 

 finding gene clusters in the immunome gene network  

 doing ontology analysis on the clusters 

 seeing if there is any correlation in degree and closeness values between the 

immunome gene and the protein interaction network. If so, which genes have high 

values in both networks? 

 seeing the correlation in degree and closeness values with the evolutionary age of 

genes. Are the central genes in this network more ancient?  

 finding tissue clusters in the immunome tissue network 

 finding out the correlation between degree of these tissues in the immunome 

tissue network and the number of genes expressed in them in the gene expression 

data 

 finding out the most important tissues (with high degree or/and closeness) 
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3. Materials and methods 

3.1. The stages of this thesis 

The ultimate goal of this work was to find out the gene expression pattern of the human 

immunome. 

1. The work was done with the expression data collection from HPA and SOURCE 

databases for the genes of the immunome. The matching anatomy ontology terms 

for the tissues of expression were also collected to the table. These first steps were 

done with Microsoft Excel. The data in these tables was transformed to R (R 

Development Core Team, 2005), because the work continued with R. 

2. The next stage was to generate immunome gene networks with genes as nodes 

and tissues as edges. Immunome gene networks were created from expression 

data from the SOURCE database, the HPA database and their unified data. Two 

community analyses, edge betweenness and fast greedy, were used to find 

community structures of the network data. These two community analyses were 

used to collect common gene clusters. Top 20 genes were also collected by their 

high degree and closeness. Data on the gene cluster data table was compared to 

the immunome PPI data and the evolutionary age of the immunome genes 

(Ortutay and Vihinen, 2008). 

3. Tissue networks, where tissues were nodes and genes were edges, were generated 

similarly to gene networks. Community analyses were done the same way as for 

gene data and gave the tissue clusters. The achieved information of degree of 

tissues was combined with the original expression data of the number of genes in 

that tissue to see the correlation. Top 20 tissues were collected by their high 

degree and closeness.  

Figure 1 depicts of the steps of this thesis. 
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Figure1: Diagram of the study. Salmon color in the up left shows the original expression data 
collected for immunome genes and the added data of anatomy ontology terms. Light turquoise 
color shows the gene network analysis: creation of gene networks, community analyses and 
collecting immunome gene clusters. Light yellow color shows gene cluster data which was added 
immunome PPI and evolutionary levels data. Pink color shows tissue network analysis. Blue 
color in the middle checks the correlation between degree of a tissue in tissue network and the 
number of genes in that tissue in gene network. Bright green color shows the top 20 genes and 
tissue collected from gene and tissue networks.   



 

3.2. Materials  

3.2.1. Expression data for immunome genes 

There were 847 genes in human immunome (Ortutay and Vihinen, 2007A) in immunome 

database. The expression data for these immunome proteins and genes was collected 

from Human Protein Atlas (HPA) (Table 1) (Uhlen et al., 2005) and SOURCE (Table 2) 

(Diehn et al., 2003) database, between January and March 2007. HPA database had 

expression data for only 175 proteins. SOURCE database had expression data for all 847 

immunome genes. The expression data from these databases was collected manually, 

because there was not any ready database with the needed expression data or a script for 

collecting the data easily. 

HPA expression data is based on antibody proteomics. Affinity purified antibodies are 

used for protein profiling in various tissues and cell types assembled in tissue 

microarrays. Human Protein Resource (HPR) center, which is located in Stockholm and 

Uppsala, Sweden, runs this program. The used Atlas version was 2.0, which was updated 

30th Oct 2006. At that point Atlas had 1514 antibodies and 1,238,760 images of 

tissues/cell types. 

SOURCE is a unification database which collects data from many databases, including 

the genetics and molecular biology of genes from the genomes of Homo sapiens, Mus 

musculus, Rattus norvegicus. Gene expression data of SOURCE is collected from 

UniGene (Wheeler et al., 2008), Swiss-Prot (The UniProt Consortium, 2009), 

GeneMap99 (Deloukas et al., 1998), Rhdb (Rodriguez-Tomé and Lijnzaad, 2001) and 

LocusLink (Wheeler et al., 2003). SOURCE is provided by the Genetics Department, 

Stanford University. 

The PPI data for immunome proteins were collected from Human Protein Reference 

Database (HPRD) (Peri et al., 2004), which collects information about human proteins. It 

includes PPIs, post-translational modifications, enzyme-substrate relationships and 

disease associations. Information in HPRD is collected manually from published 

literature by expert biologists and by bioinformatics analyses of the protein sequence 
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Table 1: An example of the immunome gene expression data collected from SOURCE 
database. On the left column are tissue types in the order of how many immunome genes 
are expressed in them. Next column presents the number of expressed genes in that 
tissue. In the following columns are number of genes by gene groups. The last columns 
give the names of genes that are expressed in the tissue (this table does not show them all, 
because this is a piece of the original table).  
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GENES 

Breast 
cancer 

31 12 12     6 5   3   CD2 IL2RA CD28 

Pooled 31 9 18 1   10 5   11   CD3D TNFS
F5 

CD48 

leukocyte 28 15 4     4 8   2   PSTPI
P1 

CD3E CD7 

Lympho-
cyte 

28 13 17 1 2 7 4 1 3   CD6 ITGAX IL2RA 

Spleen 25 5 9 2 1 5 2   4   CD7 CR2 FCER
2 

myeloid 
cells, 18 
pooled 
CML cases 

22 4 2 2   1 5   7   MS4A
3 

CEAC
AM8 

C5R1 

thymus 20 11 4   2 5 4 2 2 5 CD1A CD1B CD1C 

Leukophe-
resis 

19 7 4   1 4 3     1 ITGAL ITGAX MS4A
1 

spleen 19 12 6     2 4 1 6 1 CD5L CD8A ITGB2 
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Table 2: An example of the extensive expression data collected from the HPA database. 
Columns are for tissues and cell types. S in cell type means strong staining and M 
medium staining. On the left of the table there are gene categories and then numbers of 
expressed genes in the cell type of the tissue. 

Adrenal gland 
Appendix 

 
Tissue 

Cortical 
cells S 

Cortical 
cells M 

Medullar 
cells S 

Medul-
lar 

cells 
M 

Glandular 
cells S 

Glandu-
lar cells 

M 

Lymp-
hoid 
tissue 

S 

Lymp-
hoid 
tissue 

M 

CD 
molecules 

3 18 0 0 6 12 22 14 

Chemokines 
and reseptors 

4 8 1 0 1 10 3 6 

Complement 
system 

1 1 0 0 1 2 2 3 

Transcription 
factors 

2 2 0 0 1 2 1 5 

Humoral 
immunity 

0 2 0 0 0 1 3 6 

Cellular 
immunity 

1 5 0 0 2 1 5 2 

Phagosytosis 0 1 0 0 0 1 2 1 

Inflammation 2 5 0 0 0 7 1 8 

Gene 
catego

ry 

Antigen 0 1 0 0 1 1 2 2 

NCAM1 CD9 IL1RAPL1 NP ITGB1 CD9 CD3E CD2 

LAMP2 ITGAM  G6PD CEACAM5 TNFRSF8 CD4 ITGAM GENES 

ABCB1 CD14   CEACAM5  CD6 CD22 
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3.2.2. R and Igraph 

R (R Development Core Team, 2005) was used for creating immunome gene and tissue 

networks and performing the community analysis on them, and finding common 

immunome gene clusters. R was used for comparing the gene network data to PPI and 

evolutionary level data. R was used for making figures. The used R algorithms are 

written as pseudo code. Anyone interested to use the original R codes, can contact the 

author. 

R is a complete system with language, statistical computation and graphics. The R 

version used was 2.6.0. Additional libraries are available for a variety of specific 

purposes.  

Igraph library version 0.4.4. was used for this work (Csárdi, 2008). Igraph is a tool for 

graph and network analysis. It makes possible to handle large graphs and to generate 

random and regular graphs, visualize graphs etc. 

3.2.3. CBIL (Center for Bioinformatics Controlled Vocabularies) 

CBIL shows the vocabulary of anatomy terms hierarchically for tissues. The vocabulary 

bases on anatomy terms taken from the Mouse Gene Expression Database at the Jackson 

Laboratory (Smith et al., 2007). It has been expanded with human anatomy and modified 

in many areas, especially the haematolymphoid system, based on the 37th edition of 

Gray's Anatomy (Williams et al., 1996), and the brain, by the contributions of Dr. 

Jonathan Nissanov of Drexel University. Each anatomy term has been mapped onto the 

relevant set of Expressed Sequence Tag (EST) libraries in dbEST, a division of GenBank 

that contains sequence data and other information (Boguski et al., 1993) to increase the 

reliability of the data. CBIL vocabulary, last updated February 07, 2005, was used on 17th 

September 2007 in http://www.cbil.upenn.edu/anatomy.php3   
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3.3. Preliminary work  

3.3.1. Anatomy ontology files 

The matching anatomy ontology terms for the tissues collected from SOURCE 

expression data and HPA expression data were picked from CBIL vocabulary to unify 

unclear names of tissues. 

The anatomy ontology term tables were formatted in Microsoft Office Excel. Most 

specific anatomy category by tissue and cell type was added to data from HPA database. 

The same was done to data from SOURCE database, although it turned out to be more 

problematic because SOURCE data had many cancer tissues and tissues from other 

diseases which did not have a match in anatomy terms. All the disease linked tissues were 

removed. Tables were changed to Comma Separated Values (CSV) format which is a 

table file format for storage of data. One line in the CSV file corresponds to a row in the 

table. Within a line, columns are separated by commas. CSV files are often used for 

moving tabular data between different computer programs. In this case CSV was used to 

move data from Microsoft Office Excel to R. The final SOURCE data table had tissue 

and ontology terms and HPA data table contained tissue, cell type and ontology terms. 

3.3.2. Ontology tables 

The anatomy ontology files for tissues were used to produce ontology tables for data 

from SOURCE and HPA databases. Anatomy ontology terms were added to SOURCE 

and HPA expression data tables. These tables were then merged to get a unified table.  

The SOURCE ontology table had tissue, gene and ontology term. The HPA ontology 

table had tissue, cell type, gene and anatomy ontology term information. The unified data 

table of SOURCE and HPA data had only gene and ontology. 

Algorithm: 

 Open gene data and ontology term tables for SOURCE and HPA  

 Put in a table gene expression data 

 Add ontology terms to a new column in a table  
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 Merge SOURCE and HPA data to get unified table 

3.3.3. Reformatting gene expression data for R 

The collected expression data from HPA and SOURCE databases were formatted with 

Microsoft Office Excel to simpler form, by removing extra data, to facilitate R analyses. 

The reformatted HPA data has 3 columns: Tissue, Cell type and Gene. The data shows 

genes and in which tissues and cell types they are expressed. The reformatted SOURCE 

data has in the similar way two columns: Tissue and Gene. Both files were saved in CSV 

format for the following R analyses. 

3.4. Gene network analysis 

3.4.1. Generating the gene network 

In this project the gene network was created purely for statistical analysis. Hence the 

immunome gene network is artificial and does not exist in the cells or have any common 

function. The gene network enables finding clusters of genes which are expressed in the 

same tissues.  

The gene expression data was modified to CSV format which R interprets. Immunome 

gene networks were generated of data from SOURCE database, HPA database and their 

unified data. 

Algorithm: 

 Load igraph library 

 Open the data file 

 Create an empty graph 

 Add genes from file as vertices 

 Add tissues from file as edges 

HPA expression data needed an extra step compared to SOURCE expression data, when 

tissues and cell types of HPA were combined. This was done because the HPA 

expression information cannot be recognized only by the tissue nor by the cell types; the 

                                                                    20                                                                                                      



 

same tissue can have many cell types, and also the same cell type can be present in many 

tissues. In the following analyses, HPA and SOURCE expression data must have the 

same number of columns for creating their unified data.  

3.4.2. Adding degree and closeness to the vertices 

Degree (Shaw, 1954) of a node is the number of edges it has in the network. Closeness 

(Freeman, 1978) centrality measures how many steps are required to access every other 

node from a given node. The closeness centrality of a node is defined by the inverse of 

the average length of the shortest paths to/from other nodes in the graph. 

Information about degree and closeness of nodes was added for each gene, because they 

are needed in the further analysis. 

Algorithm: 

 Simplify the graph by removing nodes´ loops to themselves and multiple edges 

 Count degree and closeness for the nodes 

 Add the degree and closeness as attributes to the nodes 

Immunome gene networks were simplified by removing its edges to itself, which is a 

sensible, because otherwise they would interfere with the results. Multiple edges between 

nodes, which appear when two or more genes are expressed in the same tissue, were also 

removed. It would have been sensible to keep these edges, as they represent the real 

biological phenomenon, but community analyses did not work with multiple loops, so 

they had to be removed.  

3.4.3. Community analysis 

Two different types of community analyses were used to uncover the community 

structures of the gene networks. Edge betweenness community is a divisive method, 

which finds the edges that are most “between” communities and their removal one by one 

reveals the communities. Fast greedy community is a hierarchical agglomeration 

algorithm, which reveals communities by greedily optimizing modularity. In this study, 

community analyses were used to reveal the gene clusters which are expressed in the 

same tissue.  
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Community to membership methods can be performed varying number of times, which 

are called steps. Different numbers of steps in community to membership was tested to 

find out the maximum number of communities. The maximum number was set to loop 

which counted the ideal modularity (Newman and Girvan, 2004), which is the point 

where modularity is at its maximum. Modularity presents the division of the network into 

communities. The modularity value is between 0 and 1. The bigger the value of 

modularity, the clearer is the community structure of the network. The values of 

maximum modularities were collected to a table.  

Edge betweenness community (Girvan and Newman, 2002) and fast greedy community 

(Clauset et al., 2004) analyses were performed in the similar manner.   

Algorithm: 

 Calculate edge betweenness/fast greedy communities 

 Create memberships to communities 

 Calculate the maximum modularity 

 Set the maximum modularity to community to membership 

 Set edge betweenness/fast greedy values as vertex attributes 

3.4.4. Gene data tables 

All the data accumulated from the immunome gene network analyses was stored to the 

tables. Information about of different node attributes: degree, closeness, edge 

betweenness community groups and fast greedy community groups was collected to these 

tables.  

3.4.5. Finding common clusters from edge betweenness community groups 

and fast greedy community groups 

The information about edge betweenness community and fast greedy community 

analyses for gene networks of SOURCE expression data, HPA expression data and their 

unified data was collected to gene data tables. The next step was to find the common 

gene clusters of these two community analyses. It was not possible to do gene cluster 

analysis for HPA data, because community analysis methods were not able to find any 
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community structures from HPA data. Edge betweenness community gave no community 

groups for HPA data and fast greedy community gave only one big group to which a gene 

either belonged or not. Finding common clusters was done only for SOURCE and unified 

data. In the cluster finding algorithm, were first collected all the possible gene pairs from 

inside each edge betweenness community group. It was than checked if these pairs 

appeared together in some of the fast greedy groups. The created gene cluster tables 

included information about common genes and their degree, closeness edge betweenness 

community groups and fast greedy community groups. 

Algorithm: 

 Put in a table gene data 

 Add column numbers and use them in the following steps instead of genes  

 Make pairs of all the combinations of edge betweenness group genes 

 Collect pairs of edge betweenness to a table  

 Collect the pairs which appear together in some fast greedy group to a table 

 Remove duplicates from the table 

 Make a new table without gene numbers  

3.4.6. Correlation between gene network and PPI network 

Previously collected immunome PPI data (Ortutay and Vihinen, 2008) were used to find 

out if there existed a correlation between immunome gene and PPI network. Immunome 

PPI data had information about protein vulnerability, closeness and degree.  

Immunome proteins used in PPI data derive also from the same Immunome database 

(Ortutay et al., 2007A) as the genes. PPIs were collected from the Human Protein 

Reference Database (HPRD) (Peri, 2004). Since only interactions between the 

immunome proteins were taken into account, no new nodes were added, but proteins 

without interactions were eliminated from the dataset. The final PPI network had 584 

nodes out of the 847 original proteins, forming altogether 1349 interactions (Ortutay et 

al., 2007A). Interactions which appeared more than once were simplified to single edges.  
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The vulnerability of the protein network was calculated using the efficiency 

characteristics of the network. The vulnerability, Vi, of a network associated with the i:th 

node:  

Vi = (E-Ei)/E 

where E is the global efficiency of the network without the node i and all of its 

interactions. 

Immunome gene data and PPI data tables were combined to see whether there is the 

correlation between gene and PPI networks. This correlation analysis was done for 

SOURCE and unified gene cluster data.  

Algorithm: 

 Open protein and gene data tables 

 Merge tables 

 Change small closeness values (under 5*10-3) to NA 

 Make a plot of the table 

3.4.7. Evolutionary levels  

Evolutionary levels (Ortutay et al., 2008) table (Table 3), was created according to the 

hierarchy in the NCBI taxonomy database (Wheeler et al., 2008). Evolutionary level 

showed the evolutionary age of the gene. The branches of the taxonomic tree were 

numbered from Homo sapiens, level 0 to Eukaryota, level 9.  

Earlier collected data about the evolutionary levels of immunome genes (Ortutay et al., 

2008) were combined to the data about immunome gene clusters and PPIs. The 

immunome evolutionary levels table had gene names and their evolutionary levels.  
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Table 3: Evolutionary levels. 

Evolutionary level Number 
Homo sapiens 0 
Mammalia 1 
Amniota 2 
Tetrapoda 3 
Vertebrata 4 
Chordata 5 
Coelomata 6 
Bilateria 7 
Fungi/Metazoa 8 
Eukaryota 9 

3.4.8. List of top genes 

Top 20 immunome genes were collected by their degree and closeness to find out if they 

have some common properties. These top immunome genes were collected from 

SOURCE network, HPA network, and unified data. 

3.5. Tissue network analysis 

3.5.1. Generating the tissue network 

The tissue network differs from the gene network by having tissues as nodes and genes as 

edges. The generated immunome tissue networks had tissues as nodes and immunome 

genes as edges. Immunome tissue networks were created from the expression data from 

SOURCE database, HPA database and their unified data. 

Algorithm: 

 Open the data files SOURCE and HPA 

 Create an empty graph 

 Add tissues from file as vertices 

 Add genes from file as edges 

                                                                    25                                                                                                      



 

                                                                    26                                                                                                      

3.5.2. Edge betweenness and fast greedy community analyses and finding 

common clusters from tissue data  

Edge betweenness and fast greedy community analyses were performed the same way as 

the immunome gene network  

The immunome tissue data table was created the same way as the immunome gene data 

table. The tissue data table included data of degree, closeness, edge betweenness 

community groups and fast greedy community groups.  

Finding common immunome tissue groups from edge betweenness and fast greedy 

community groups was done the same way in pairs (Chapter 3.4.5) as with immunome 

gene groups.  

3.5.3. Correlation between degree of the tissue and the number of genes  

The correlation between degree of the tissue in the immunome tissue network and how 

many immunome genes were expressed in that tissue was checked next. These two values 

should be near each other, but it is worthwhile to find out if this is true.  

The number of genes in the original expression data was counted and then combined to 

data of degrees of the tissues from immunome tissue networks. The newly created tables 

had data of tissue, number of genes and degree. This correlation analysis was done for 

data from SOURCE and HPA database.  

3.5.4. List of top tissues  

Top 20 immunome tissues were collected, similar to immunome genes, by their degree 

and closeness. This was done in order to find out if these tissues have common features. 

Top immunome tissues were collected from SOURCE tissue network, HPA tissue 

network and their unified data.  

 



 

4. Results 

 

Figure 2: Immunome gene network generated from expression data collected from 
SOURCE database. Immunome genes are nodes (spots) and tissues are the connecting 
edges (links). The edges have different lengths just for pleasing the eye and revealing the 
community structure of the network. A large cluster of immunome genes is shown in the 
middle of the picture. The circle around the cluster is formed by individual immunome 
genes which are not expressed in any tissues (by SOURCE expression data) and thus do 
not have edges.  
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4.1. Gene network analysis 

Immunome gene network analysis was done to find out common immunome gene 

clusters that have similar gene expression. First immunome gene networks were created. 

Next two community analyses were done on the gene networks and common clusters 

were found from their community groups. These collected immunome gene clusters were 

the main results of this study, because their characteristics can be studied further. The 

immunome gene cluster results were compared to immunome the PPI results and the 

information about evolutionary age of the genes to see if there is correlation. Gene 

network analysis yielded degree and closeness values for genes and enabled collecting 

top immunome genes by their degree and closeness.  

4.1.1. Gene networks 

Immunome gene networks have immunome genes as nodes and tissues that they are 

expressed as edges (Figure 2). Gene networks were done using data from SOURCE 

database, HPA database and their unified expression data. Gene networks enabled the 

finding of common gene expression patterns out of large expression data. 

4.1.2. Values of maximum modularities 

Maximum modularities, expressing how networks are divided to communities, were 

collected as the byproduct of edge betweenness and fast greedy community analyses. The 

higher modularity values with immunome gene network data from SOURCE stand for 

higher division to communities than with gene network data from HPA (Table 4). 

Table 4: Maximum modularities in edge betweenness and fast greedy communities of 
gene network data from SOURCE database, HPA database and unified data.  

Community analysis SOURCE HPA UNIFIED 

Edge betweenness community 0.50 0.0011 0.25 

Fast greedy community 0.47 0.044 0.28 
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4.1.3. Gene data 

Degree, closeness, edge betweenness and fast greedy community groups for the 

immunome genes was revealed from the collected immunome data. The edge 

betweenness and fast greedy community analyses revealed the community structures of 

gene networks from SOURCE expression data and unified data, and the lack of 

community structure in the gene network from HPA expression data. Figure 3 present the 

division of groups inside these two community analyses.  

 

Figure 3: Division of immunome genes in immunome gene network to edge betweenness 
and fast greedy community groups. Each spot represent a community group in gene 
network. 
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4.1.4. Common gene clusters from edge betweenness groups and fast 

greedy groups 

Common immunome gene clusters were found by searching for gene pairs that appear 

together in the same community group in both edge betweenness and fast greedy 

community analyses. This method revealed 547 clustered genes in data from SOURCE 

database and 566 clustered genes in unified data, thus only about 300 genes were 

eliminated this way. The immunome clustered genes were divided into 88 gene clusters 

(Table 5) with sizes varying from 2 to 32 genes. Genes belonging to the same cluster 

have similar gene expression patterns which can be looked at more detailed. For example, 

cluster number 8 (Table 5) has 15 genes, which are expressed mostly in leukopheresis 

and lymph node. 

Table 5: 88 immunome gene clusters from the gene network created from SOURCE 
expression data. 
Cluster Immunome clustered genes 

1     
C5R1 CAMP CD300E CEACAM8 CLEC12A CLEC4A CLEC4D CLEC5A CTSG CXCL3 DEFA1 DEFA4 
EPX FCAR FCER1A FCRL5 IFIT1L IGSF2 IL18RAP IRAK2 LILRA3 LTFLY86 LYZ MPO MS4A3 PFC 
PGLYRP1 PIK3CG PRG2 RHAG TRAF6 

2       CARD15 CCL2 CCL20 CCL4 CCL4L2 CCL5 CCL7 CCR4 CCRL2 CD160 CD3D CD48 CD69 CD83 
CLEC7A CSF3R FCER1G IFNG IL17F IL2 IL22 IL4 IL8 KLRB1 KLRC1 KLRD1 LCP2 TNFSF5 

3     ACE C2 C4BPA C5 C6 C8A C8B C8G CCRN4L CD209L CFHR1 CFHR2 CFHR5 CRP CXCL2 HAMP 
IL13 IL5RA MBL2 RFXAP RNASE7 TNFSF11TNFSF4 

4     BST1 C1QTNF5 CD3Z CD7 CD72 CMTM3 CXCL6 CXCR3 FCER2 IKBKG IL11RA IL12A IL15RA 
KLRK1 LCK LTB4R PLA2G7 PTPRCAP SOCS1 TBX21 TNFRSF13B TRADD WAS  

5     CCR3 CCR6 CD244 CD300LB CD300LF CD33 CD3E CD5 CD84 CMRF-35H GZMB GZMK ICAM2 
IL2RB LAIR1 LILRB1 LY9 NCR1 NCR3 PDCD1 SIGLEC5 ZAP70 

6     BATF CCL22 CCL3 CD28 CD6 CD86 IL10 IL2RA KIR3DL1 KLRC2 PSTPIP1 SLAMF1 SOCS3 STAT4 
TNFRSF4 TNFRSF9 TNFSF8 XCL1 

7   BLR1 CCL11 CCL3L1 CCL3L3 CCR7 CISH CXCL11 GNLY IL7R IRAK4 ITGAX JAK3 LAX1 PPBP 
RAG2 TNFRSF8 

8   ADAM8 CCR5 CD164L2 CR1 CRADD CSF1R CSF2RB GP5 HLA-DOA IL28RA ITGA2B ITGAL 
MHC2TA MS4A1 TLR9 

9   CASP10 CCL15 CD38 CLEC10A CMTM8 DEFB1 FGFR2 GZMA IL18R1 IL1RAPL2 MASP1 MME 
NFATC1 SELE TNFSF6 

10   CCL19 CCL25 CD1A CD1B CD1C CD1E CD2 CD209 CD8B1 IL21R ITGA4 PRSS16 RAG1 TCF7 

11   CHUK IL17D IL1R1 ITGB3 JAK2 KDR PDGFRA PDGFRB PLXNC1 SH2D1A TCF8 TLR3 TNFSF10 
TNFSF7 
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12   C1QBP CD248 CD34 FCGR3A FCGR3B GUSB HLA-C IL11 IL12RB1 LIFR MARCO NBS1 SELP 
WASF3 

13   C1QG CLEC4E CMRF35 CSF2 CXCL5 ICOS ICSBP1 IL1F9 IL23A IL6 PLAUR PTPNS1 TNF TRAF1 

14  AIRE CASP2 DEFB119 DEFB123 GP1BA HRH4 IL12B IL17 IL21 IL26 IL3 IL5 IL9 XCR1 

15   CCL21 CD53 CD79B CD80 CTLA4 CXCL13 FOXP3 HLA-DOB HLA-DQB2 HLA-DRA IL24 NCF1 
TNFRSF13C TNFRSF17 

16   CASP8 CCR2 CMKLR1 CXCR6 CYSLTR1 GYPE IL18BP LAG3 RIPK1 SDC1 SLAMF6 TFRC TLR5 

17  ABCB1 CCL18 CCR1 CD109 CD59 GZMM PLAA PSME2 TNFSF13B 

18  CD200R2 DEFB106A FCAMR IL27 IL28A IL29 LILRA5 NCR2 PPIA 

19 CCL14 CD302 CD47 FADD IL17RB KIT NP TNFRSF18 

20 IGLL1 IL1A IL1RAP ITGB4 PILRA PSIP1 PSMB8 RFXANK 

21 CCL24 CD97 IL8RA ITGB2 LILRA6 LILRB3 LTA SELL 

22 BANK1 CXCL10 CXCL9 IGJ IL7 IRF1 POU2AF1 THBD 

23 ANPEP CEACAM5 IL10RB NOS2A PSMF1 SDFR1 TRAF5 

24 CD226 CD3G IL1R2 LY64 PTPN22 PTPRC PTPRJ 

25 ERGIC2 IL17RE IL1RL2 IL31RA TLR1 YWHAZ 

26 CASP1 CD58 HLA-DRB4 IL9R LTB PAFAH2 

27 CCL16 CRLF1 CXCL12 KEL MASP2 TIRAP 

28 C1QTNF3 IL18 IL1RN ISGF3G PSMB6 S100A8 

29 CEACAM3 IL22RA2 PSG1 SEMA7A SIGLEC6 

30 AICDA CD79A CXCR4 NCF4 SPN 

31 CD9 HLA-DQB1 IFI27 MAPK14 MYLK 

32 IL12RB2 SIVA STAT2 TNFRSF10B TNFRSF1B 

33 CD320 IFITM1 PTDSR TLR2 TNFRSF6 

34 HRH2 MBP SOCS6 SOCS7 

35 CSF2RA IGSF8 IL17RD PROCR 

36 ALK GYPA GYPB RHD 

37 CCL1 CCL27 IL17C MPL 

38 APS CEACAM1 CX3CL1 CYBA 

39 IRAK1BP1 ITGA2 TRAF3 WASF1 

40 CHL1 COLEC12 EBF FY 

41 CLEC4C GP9 ICAM1 IL1RL1 

42 HLA-DMB IL10RA RFX1 TCN2 

43 CCBP2 CD274 IL17B LAIR2 
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44 C1QTNF7 CD200R1 LPO PROM1 

45 CCL23 MS4A5 PGLYRP2 

46 IL6R NFATC2 PLK3 

47 IGF1R IL20RA TNFRSF14 

48 CD24 MIF TNFRSF1A 

49 G6PD LIG4 NCAM1 

50 ENC1 FOXK2 ITGAE 

51 INSR MSR1 SMARCAL1 

52 C1QA CYLN2 SIGIRR 

53 DDR1 FGFR3 IL4R 

54 C1QL3 EBF2 IL1RAPL1 

55 ITFG1 PSMB9 PVRL1 

56 C1QL4 CLCF1 TNFRSF12A 

57 CCRL1 IRF2 LAMP3 

58 CDW92 CMTM6 MX1 

59 CCL28 CRLF3 ITGAV 

60 CD19 DEFA6 FLT3 

61 CMKOR1 SDF2L1 TRAF3IP1 

62 C3AR1 IF SLAMF7 

63 ENG LU TNFRSF10C 

64 PDCD1LG2 TNFRSF11A 

65 C4BPB CMTM2 

66 CSF1 MR1 

67 IL23R RHCE 

68 CLU IL13RA2 

69 CD22 IL8RB 

70 CD4 CD74 

71 CD33L3 CSF3 

72 BF NDUFS3 

73 IL1F7 PDGFB 

74 A2ML1 IL1F6 

75 EPO LYG2 

76 ANP32B MRC1 
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77 LAMP2 TM4SF2 

78 CXCL14 DCLRE1C 

79 HLA-E NFATC4 

80 C1RL ISG20 

81 L1CAM SN 

82 CD3EAP PECAM1 

83 HLA-F IL27RA 

84 CXCL1 MST1R 

85 EBI2 PPP3R1 

86 CASP7 PPP3CA 

87 PLA2R1 SCARB2 

88 ITGB1 TNFSF14 

4.1.5. Correlation between gene network and PPI network 

Correlation between immunome gene cluster data and PPI data was checked by using 

network features degree, closeness and vulnerability. This analysis was done for clustered 

genes from the gene network of SOURCE database expression data (Figure 4) and the 

gene network of unified data (Figure 5).  

Results show that there is a very weak correlation between vulnerability, closeness and 

degree inside the immunome PPI data (Figure 4, Figure 5). There is a high correlation 

between degree and closeness values in immunome clustered genes from the gene 

network of SOURCE database expression data (Figure 4), as in immunome clustered 

genes from gene network of HPA database expression data (Figure 5). When comparing 

vulnerability, closeness or degree of immunome PPI data to degree or closeness values of 

immunome clustered genes from the gene network based on SOURCE data (Figure 4), 

one cannot see the clear correlation. The same is true in the immunome clustered genes 

from gene network of HPA data (Figure 5). In conclusion, there is no significant 

correlation between the immunome gene network and the PPI network.  
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Figure 4: Correlation between immunome clustered genes from the gene network of 
SOURCE database expression data and PPI data. Three upper values vul (vulnerability), 
clos (closeness) and deg (degree) are from immunome PPI data. The degree and 
closeness are from immunome gene cluster data of data from SOURCE database. 

 

 

 

 

                                                                    34                                                                                                      



 

 

Figure 5: Correlation between immunome clustered genes from the gene network of 
unified expression data and PPI data. Three upper values vul (vulnerability), clos 
(closeness) and deg (degree) are from immunome PPI data. The degree and closeness are 
from immunome clustered genes from gene network of unified expression data. 

 

4.1.6. Correlation of degree and closeness values with the evolutionary age 

of the genes 

Information about the evolutionary age of immunome genes based on their emergence 

was added to gene cluster and PPI data. The evolutionary age of a gene can be expressed 

by evolutionary levels, with numbers ranging from 1 (Homo sapiens) to 9 (Eukaryota) 
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(Table 3). Evolutionary levels were used to find out if degree or closeness values from 

immunome gene network vary with the evolutionary age of the genes. 

Degree and closeness values for clustered genes from SOURCE expression data are on 

top panels and unified data on bottom panels in Figure 6. The idea of the correlation 

analysis was to see if there is a trend between degree or closeness and evolution level. 

The results (Figure 6) indicate that the location and importance of a gene in the gene 

network are independent of the evolutionary age of the gene. 

Figure 6: Evolutionary levels (Table 5) by degree and closeness express the evolutionary 
age of immunome genes.   

4.1.7. Genes with the highest degree or closeness 

Genes with the highest degree and closeness in the gene network were collected to Table 

6. The genes with the high degree and closeness values are the most central in the gene 

network, indicating of having the most related genes with similar gene expression 
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patterns. For example TNFRSF9 is in highest degree in SOURCE expression data and in 

high degree and closeness in unified expression data. WAS is in highest degree and 

closeness in both SOURCE and unified expression data. There is a high correlation 

between degree and closeness (Figures 4 and 5), and thus many same genes are shared in 

the different columns of the table 6. 

 

Table 6: Immunome genes with highest degree and closeness. 
The table has data of genes with highest degree and closeness in gene networks of 
SOURCE expression data and unified data. The two genes with gray color are present in 
many of these highest groups.  

SOURCE data UNIFIED data 

degree closeness degree closeness 

EPX IL18RAP CASP10 CASP10 

IL10 XCL1 CASP2 CASP2 

TNFRSF9 BLR1 CCR2 CCR3 

XCL1 IL7R CCR7 CD2AP 

BLR1 CLEC7A CD2AP CHUK 

IL7R IL8 CD86 CXCR3 

CLEC7A KLRB1 CHUK FOXP3 

KLRB1 NCR1 CXCR3 G6PD 

LY9 PPBP FOXP3 IL12A 

NCR1 KIR3DL1 IL12A IL23A 

PPBP CCR5 IL23A ITGB1 

KIR3DL1 ICOS ITGB1 PTDSR 

SLAMF6 SLAMF6 NP TNFRSF9 

LAX1 LAX1 PTDSR TRAF1 

GZMK GZMK TNFRSF9 TRAF6 

SIGLEC5 SIGLEC5 TRAF1 WAS 

CD28 CD28 TRAF6 ZAP70 

IL2RA IL2RA WAS   

CD7 CD7 ZAP70   

WAS WAS     
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Figure 7: The tissue network of data from SOURCE database has tissues of expression as 

nodes and immunome genes as edges. 
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4.2. Tissue network analysis 

The idea of the immunome tissue network analysis was to find out the central immunome 

tissues. First the immunome tissue network was generated and similar community 

analyses were performed as to the immunome gene network. The community analyses 

revealed tissue clusters. 

4.2.1. Tissue network 

Immunome tissue networks were the opposite of immunome gene networks by having 

tissues of expression as nodes and the immunome genes as edges (Figure 7). 

4.2.2. Tissue data 

Edge betweenness and fast greedy community analyses were performed to the 

immunome tissue network in a similar fashion as to immunome gene networks. The 

following results show the division into communities by the analysis of data from 

SOURCE and unified data (Figure 8). 

4.2.3. Common tissue clusters from edge betweenness community groups 

and fast greedy community groups 

The two community analyses found 203 immunome tissues from SOURCE expression 

data and 547 immunome tissues from unified data. However these results have less 

relevance than immunome gene clusters in this study, because important tissues in the 

immune system are well studied already and this result does not lead to any new 

experiments. 
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Figure 8: Division of immunome tissues in the immunome tissue network into edge 
betweenness and fast greedy community groups. 
 

4.2.4. Correlation between degree of tissue and number of genes 

The following plots (Figure 9) show the correlation between the degree in the immunome 

tissue network and the corresponding number of genes in the immunome gene network. 

There seems to be a high correlation between degree and number of genes in data from 

SOURCE database (Figure 9A), while degree and number of genes has a weaker 

correlation in data from HPA database (Figure 9B).  
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Figure 9: Picture A shows the 0.927 correlation between degree in tissue network and 
number of genes in the gene network in data from SOURCE database. Picture B shows 
the 0.347 correlation between degree in tissue network and number of genes in the gene 
network in data from HPA database (degrees under 100 are excluded). 
 

4.2.5. Tissues with highest degree or closeness 

Immunome tissues with highest degree and closeness were collected in the table (Table 

7). Lymph, bone marrow and spleen have high degree and closeness in immunome tissue 

networks from SOURCE expression data and unified data.  

Table 7: Immunome tissues with highest degree and closeness 

SOURCE expression data Unified expression data 

degree closeness degree closeness 

lymph lymph bronchus surface 
epithelial cells 

colon glandular cells  

lymphocyte follicular lymphoma colon glandular cells  rectum glandular cells  

natural killer cells, cell 
line 

lymphocyte rectum glandular cells  stomach 2 glandular cells 

spleen natural killer cells, cell 
line 

stomach 2 glandular 
cells 

cervix, uterine glandular 
cells  

alveolar macrophage spleen cervix, uterine 
glandular cells 

kidney cells in tubuli  
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SOURCE expression data Unified expression data 

breast cancer alveolar macrophage bone marrow bone 
marrow poetic cells 

bone marrow bone 
marrow poetic cells 

leukocyte breast cancer bone marrow bone 
marrow poetic cells 

bone marrow bone 
marrow poetic cells 

leukopheresis leukocyte breast glandular cells  breast glandular cells  

subchondral bone leukopheresis duodenum glandular 
cell 

duodenum glandular cell  

thymus thymus epidydimis glandular 
cells 

endometrium 2 cells in 
endometrial stroma/ecm 

thymus thymus fallopian tube 
glandular cells 

epidydimis glandular 
cells  

pooled pooled lung macrophages  fallopian tube glandular 
cells  

spleen spleen lymph node follicle 
cells (cortex) 

lung macrophages  

prostate prostate lymph node non-
follicle cells 

lymph node follicle cells 
(cortex)  

corresponding non 
cancerous liver tissue 

fetal liver soft tissue 1 
mesenchymal cells 

lymph node non-follicle 
cells (paracortex)  

synovial membrane 
tissue from rheumatoid 

synovial membrane tissue 
from rheumatoid arthritis

soft tissue 2 
mesenchymal cells 

soft tissue 1 
mesenchymal cells 

bone marrow bone marrow spleen cells in red pulp  soft tissue 2 
mesenchymal cells 

myeloid cells, 18 
pooled cml cases, 

myeloid cells, 18 pooled 
cml cases, bcr/abl 

tonsil follicle cells 
(cortex)

spleen cells in red pulp  

lymphoma, follicular 
mixed small and large 

lymphoma, follicular 
mixed small and large 

tonsil non-follicle cells 
(paracortex) 

tonsil follicle cells 
(cortex) 

  urinary bladder surface 
epithelial cells 

tonsil non-follicle cells 
(paracortex)  

   urinary bladder surface 
epithelial cells 



 

5. Discussion 

Immunome gene clusters (Table 5) are the main harvest of this study (Figure 1). 

Information of the gene clusters was gained by immunome gene network and network 

analyses. Immunome clustered genes are in relevant part in the function of immune 

system and could be studied more. 

The study started with expression data from HPA (Uhlen et al., 2005) and SOURCE 

(Diehn et al., 2003) databases. Unfortunately, HPA database did not hold all the 

immunome genes and expression data for them when this data was collected, and this 

limited the analysis. HPA expression data is growing all the time, and thus in the future 

this same analysis could be done with more immunome genes. SOURCE database 

contained expression data for all the immunome genes. The weakness with SOURCE 

expression data is that it is collected from various resources and the quality of the data 

can vary. Errors in microarray expression data can result from the selection of samples, as 

well as from technical and measuring errors (Churchill, 2002). SOURCE expression data 

from different sources can base on different techniques and samples (van Bakel and 

Holstege, 2004). SOURCE expression data cannot be considered as the final truth, it is 

more like directional data. SOURCE database was the widest at the time of collecting 

expression, because it covered all the immunome genes. Microarray expression data is 

increasing rapidly, and in the future this study can be done with supplemental microarray 

expression data. HPA expression data (Uhlen et al., 2005) is carefully checked by experts 

and is thus more reliable than SOURCE expression data. Reliability of the expression 

data depends of the quality of used antibodies too, but the biggest problem is the small 

size of HPA database. 

Gene networks, network theory and features of networks were widely used in this study. 

Gene networks are scale-free networks, meaning that some nodes have only one or few 

edges, while some have many. This kind of network structure makes it possible to find 

out many features of gene network, such as degree, closeness and communities of the 

network. These features were helping on the way to find out the common immunome 
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gene clusters, which are expressed in the similar way. Immunome gene networks were 

created from the expression data from SOURCE database, HPA database and their 

unified data. Modularity of a gene describes its division to communities (Newman and 

Girvan, 2004). The immunome gene network of SOURCE expression data had strong 

community structure by its modularity, while the immunome gene network of HPA 

expression data had a poorer community structure. The poor community structure in the 

immunome gene network of HPA expression data is due to the fact that genes in the gene 

network of HPA data are mostly expressed in the same tissues. The community structure 

of the unified network from SOURCE and HPA expression data is somewhere in the 

middle of the two individual networks. Edge betweenness and fast greedy community 

analyses revealed the community structures of the immunome gene networks from 

SOURCE expression data and unified data, and the lack of community structure in 

immunome gene network from HPA expression data. Edge betweenness groups of 

immunome gene networks from SOURCE expression and unified data are divided 

equally into different groups, each having less than 40 genes, with the exception of one 

group with over 100 genes. Fast greedy groups of immunome gene networks from 

SOURCE expression and unified data are divided into groups of sizes varying up to 90 

genes. The reason why unified data results look the same as those of the SOURCE 

expression data is that the SOURCE expression data have more effect on the results than 

the HPA expression data. These two community analysis methods were the only ones in 

R that worked with this data, so it was not possible to expand the study to other methods. 

There are coming new features to R all the time and in the future it probably will be 

possible to use more community analysis methods and compare those results.  

The next step was to reach the main aim: to find out immunome gene clusters. The 

method for searching immunome gene clusters from these differently divided community 

groups was to take each gene pair from every edge betweenness group and check if it 

appears in some fast greedy group. This method uncovered 547 clustered genes from the 

immunome gene network from SOURCE expression data and 566 clustered genes in the 

unified data, so only 300 genes were eliminated from the original 847 immunome genes. 

Immunome gene clusters vary in size from 2 to 32 and there are 88 clusters altogether. 

Genes inside the same cluster have similar gene expression patterns, in other words they 
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are expressed in the same tissues, which is significant. These discovered immunome gene 

clusters could be used for further studies to find out their common properties and to 

research their roles in the tissues that they are commonly expressed in. Their common 

properties could be studied by checking if they have common ontologies. Some extra data 

collected from literature might illuminate why these genes appear together. 

The immunome gene cluster data was compared to immunome PPI data by their degree, 

closeness and vulnerability. Immunome gene cluster data of SOURCE and unified data, 

degree and closeness correlated with each other. Inside the immunome PPI network there 

is no clear correlation. There was no noticeable correlation between the immunome gene 

network and the PPI network. Degree and closeness values of immunome clustered genes 

were also compared to their evolutionary age to find out if they are correlated. This 

analysis did not uncover any trend. Immunome genes are evenly distributed to 

evolutionary levels, meaning that the importance of an immunome gene is independent 

from its evolutionary age.  

Immunome genes with highest degree or closeness were collected. These important nodes 

having high degree in the network are called hubs, and removing or disturbing them 

affects the network. For example, Özgűr et al. (Özgűr et al., 2008) find out that highest 

degree, closeness and betweenness genes in the disease gene interaction network were 

most likely to be related with prostate cancer. Many of the highest degree and closeness 

immunome genes were overlapping, because there is a strong correlation between degree 

and closeness. These immunome hub genes have the most central position in the gene 

networks and thus have most related genes with similar gene expression patterns. One of 

the main immunome hub genes in this study appeared to be WAS. Central role of WAS is 

supported (Maglott et al., 2005) by the fact that mutations in the gene affect actin 

polymerization and cause Wiskott-Aldrich syndrome. Hutton et al. (Hutton et al., 2004) 

made the similar analysis defining highly expressed genes of the mouse immunome. 

Mouse immunome hub genes were by tissue: activated T cells, 17 genes: CTSZ, KPNB1, 

TNFRSF9, TNFRSF4, MYC, MCM2, MCM5, MCM6, MCM7, GZMB, NCF4, GAPD, 

CCl4, PCNA, RPl13, CD86, ICSBP1; thymus, 7 genes: SATB1, HDAC7A, SGPl1, 

ABCA1, PRSS16, ABCG1, C1QG; stimulated lymph node, 4 genes: STK10, IRF5, CXCl9, 
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TNFRSF1 (Hutton et al., 2004). When you compare these to human immunome hub 

genes, only two common genes are found: TNFRSF9 and CD86. Mouse and human are 

not so far from each other in the history of evolution and they should have common 

orthologs. Different results could simply be the result of different methods or unreliable 

results of one or both of the studies. 

Immunome tissue networks were created, in which tissues are nodes and immunome 

genes are edges. Edge betweenness and fast greedy community methods revealed the 

community structures of tissue networks. Edge betweenness community of SOURCE 

expression data and unified data revealed communities in which tissues are evenly 

distributed, with the exception of one bigger group having over 40 tissues. Fast greedy 

community of SOURCE expression data and unified data has fewer groups and they vary 

more in size. The tissue clusters were found with same method than the gene clusters. 

There were 203 immunome tissues from SOURCE expression data, and 547 immunome 

tissues from unified data. Tissue clusters are however a less significant part of this study 

than gene clusters, because important tissues of the immune system are already common 

knowledge. Results indicate that immunome genes are expressed in a wide variety of 

tissues. Tissues with highest degree and closeness were also overlapping. Lymph, bone 

marrow and spleen turned out to be the immunome hub tissues. Bone marrow is known to 

be the place of B cell maturation in mammals, while spleen and lymph nodes are 

secondary lymphoid organs (Male et al., 2006).  

There is a correlation between the degree of a tissue in the immunome tissue network and 

the number of genes with that tissue in the immunome gene network. This is not a 

surprise as the degree of a tissue in a tissue network shows how many genes are 

expressed in that tissue, and the number of genes in a tissue in the gene network should 

express the same thing. The correlation is stronger in networks of SOURCE expression 

data than with HPA expression data.  

This type of a large scale study of human immunome gene clusters has not been done 

before and all the achieved results are novel. Methods developed in this search of 

immunome gene clusters could be used likewise for other types of analyses. After this 
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study I would recommend to use additional expression data and other methods to verify 

or reject these results. HPA is still growing and it could be used when there is data for all 

the immunome genes. Properties of R are increasing promptly and there could also be 

other computational methods to use for this kind of study.  

There is still plenty to study something as fascinating and complex as the human immune 

system. This study is one part of exposing the mysteries of the immune system. It has 

been a pleasure to be involved in this kind of a project. Perhaps in the future it is possible 

to build a realistic working model of the human immune system with all the immune 

system parts involved and all the affecting forces considered. This can be far in the 

future, but I will enthusiastically follow development of clarifying the immune system 

function.  



 

6. Conclusion 

The main aim of this project was to find out immunome gene clusters. The first part 

started by creating immunome gene networks of the expression data from HPA and 

SOURCE databases and their unified data. Modularities of these networks revealed the 

strong community structure in the network created from SOURCE expression data and 

the lack of it in network created from HPA expression data. The network created from 

unified data had modularity between these two. Edge betweenness and fast greedy 

community analyses were used to reveal community structures of the networks. The 

network created from HPA expression data was excluded, because it did not have a clear 

community structure. Common immunome gene clusters were found by searching for 

gene pairs which appear together in the same community group in both community 

analyses. There were 547 clustered genes in data from SOURCE database and 566 

clustered genes in unified data, so only about 300 genes were eliminated this way. 

Immunome clustered genes were divided to 88 gene clusters with varying size from 2 to 

32 genes. This was the main yield of this study. Genes belonging to the same cluster have 

similar gene expression patterns and they can be studied further. 

Immunome gene cluster data was compared to earlier achieved data of immunome PPI 

data and the evolutionary age of the genes. Degree and closeness values between 

immunome clusters genes and immunome PPIs had no apparent correlation, while there 

was a high correlation between degree and closeness values in immunome clustered 

genes. There was no trend between degree or closeness and evolution level, which 

indicated that the location and importance of a gene in the gene network are independent 

of the evolutionary age of the gene. 

The second part started by creating immunome tissue networks of the expression data 

from HPA and SOURCE databases and their unified data. Edge betweenness and fast 

greedy community analyses were used to reveal the community structure of tissue 

networks. Common gene clusters from these two community analyses resulted in 203 

immunome tissues from SOURCE expression data and 547 immunome tissues from 

unified data. These results have, however, less relevance than immunome gene clusters in 
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this study, because the important tissues of immune system are already common 

knowledge. 

Next the correlation between the degree in the immunome tissue network and the 

corresponding number of genes in the immunome gene network was checked. There 

should be a strong correlation between them and that indeed was found to be true. 

Immunome hub genes with the highest degree and closeness in the gene network were 

collected. These central genes of the gene network have most related genes with similar 

gene expression patterns. Two of the most central genes were WAS and TNFRSF9. 

Immunome hub tissues in this analysis were lymph node, bone marrow and spleen, 

having high degree and closeness in immunome tissue networks from SOURCE 

expression data and unified data.  

An aim of this study was to find tissue ontologies for immunome tissues. They were not 

utilized in this work, but they could be used further for these results in order to find out 

information about important immunological tissues. 

The main objective of this study was to identify immunome gene groups with similar 

tissue specificity pattern in their gene expression using these various network analysis 

tools. This objective was reached successfully by finding 88 immunome gene clusters 

with 507 genes. Each cluster has genes from two to 32 which are expressed in the same 

tissues. We could further look for evidence in the literature about the expression of these 

clustered genes. 
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