
An evaluation of four reverse engineering tools for C++
applications

Tung Doan

University of Tampere
Department of Computer Sciences
Computer Sciences
M. Sc. thesis
Supervisor: Eleni Berki
October 2008

ii

University of Tampere
Department of Computer Sciences
Computer Sciences
Tung Doan: An evaluation of four reverse engineering tools for C++
applications
M. Sc. thesis, 75 pages + 1 appendix
October 2008

Abstract
By using reverse engineering tools , the software developer is able to generate the

structure of a software system in graphical reports such as hierarchy tree s, call graphs,

flow charts, class diagrams and then export reports into various formats such as HTML,

XML, XMI (Xml Metadata Interchange) or the formats of other reverse engineering

tools. C++ programming language supports object -oriented programming and there are

more reverse engineering tools supporting this language than other languages such as C#

and Java. However, there have been a few evaluation works in comparing, contrasting

and thoroughly identifying the capabilities of reverse engineering tools for C++

applications. Therefore, in this thesis, four widely used reverse engineering tools which

support C++ are chosen to be examined, namely Rigi, Columbus/CAN, Imagix 4D, and

Understand. The tools are evaluated by using them to examine two different types of C++

application: a small game and a large library written in Visual C++. After evaluating

them and considering other related research work on evaluation, I outline and comment

on the features and capabilities of the tools, along with their strengths and limitations.

Last but not least, I provide the reader with some suggestions for designing and

implementing an efficient reverse engineering tool for C++ applications.

Keywords: Reverse Engineering, C++, CASE tools, Software quality management,

Software maintenance, Reusability.

iii

Table of contents
1. Introduction 1

1.1. Overview................................ 1
1.2. Research problems 2
1.3. Research questions 3
1.4. Research methods 4
1.5. Outline of the thesis 5

2. Background 6
2.1. Definition of reverse engineering of software 6
2.2. Sub-areas of reverse engineering 7
2.3. Objectives of reverse engineering 8
2.4. The generic process of a reverse engineering 10
2.5. Reverse engineering methods and techniques 12
2.6. Challenges 13

3. Literature review 14
3.1 Introduction 14
3.2 Techniques in evaluating the capabiliti es of reverse engineering tools 14
3.3. Assessment criteria for evaluating reverse engineering tools 16
3.4. Results from the previous stu dies in evaluating reverse engineering tools 17
3.5. Conclusions 19

4. An evaluation of the capabilities of the four tools 21
4.1. Overview of tools 21
4.2. The features and functionalities of tools 22
4.3. Assessment criteria 26

4.3.1 Import/Export 27
4.3.2 Analysis................................ 27
4.3.3 Browsing/Editing 28
4.3.4 Representation................................ 29
4.3.5 Other capabilities 30

4.4. Case study 30
4.5. Assessment of tools................................ 32
4.6. An analysis of tools 34
4.7. Discussions 42
4.8. Conclusions 43

5. Discussions 46
5.1. The reflection of the four tools capabilities on the basic of reverse engineering .. 46
5.2. Strengths of the four reverse engineering tools 49

5.2.1. Representation of software at higher levels of abstraction 49
5.2.2. Analysis of software at higher levels of abstraction 50
5.2.3. Documentation generation 51
5.2.4. Software metrics 52
5.2.5. Change analysis 52
5.2.6. Quality checks 53

5.3. Limitations of the four revers e engineering tools 53
5.3.1. Inefficiency of overall architecture of software 53
5.3.2. Insufficiency of graphical views 53

iv

5.3.3. Non-Integration with the IDEs................................ 54
5.3.4. Inefficiency of graphical views with large projects 54
5.3.5. Unavailability of dynamic views 55
5.3.6. Unavailability of dynamic analysis................................ 56

5.4. Suggestions for designing an efficient reverse engineering tool 56
5.4.1. Import/Export 56
5.4.2. Analysis................................ 57
5.4.3. Editing/Browsing 57
5.4.4 Representation................................ 57
5.4.5 Other capabilities 58

6. Conclusions and Future Work 60
References 66
Appendix................................ 70

v

Figures
Figure 1: Forward Engineering, Reverse Engineering and Derivative s [Nelson, 1996] 8
Figure 2: Dragon application in Imagix 4D. 31
Figure 3: LibMusicXML library in Understand 32
Figure 4: The editor/browser of Understand 36
Figure 5: The editor of Imagix 4D 37
Figure 6: The browser of Columbus/CAN................................ 38
Figure 7: Analyze a file in Imagix 4D 39
Figure 8: The result of the parsing process with Columbus/CAN in HTML format 40
Figure 9: Representation of software at higher levels of abstraction in Imagix 4D 50
Figure 10: Generate all functions, files which are relevant to a file in Imagix 4D. 51
Figure 11: Representation in Rigi with a large and complex software system 55

Tables
Table 1: The result of evaluating the four tools with the chosen criteria 34
Table 2: Reverse engineering methods and techniques 48
Table 3: Available reverse engineering tools for C++ applications 70

vi

Acknowledgements

I would like to thank my supervisor, Dr. Eleni Berki, at the Department of Computer

Sciences for her advice during my work in doing this thesis . Her patience, enthusiasm,

responsibility and meaningful guidance helped me very much in directing my thesis to

the final destination.

I would also like to thank my girlfriend, Giang Nguyen, for her encouragement and

language review as well.

Tampere, October 2008

Tung Doan

1

1. Introduction

1.1. Overview
Software maintenance is the last phase in the life cycle of a software development

process which often includes the following phases: requirements specification, design,

implementation, testing, deployment and maintenance. However, this phase plays an

important role because software maintenance activities ensure that a software system still

works well without errors or in new environments after released. Common maintenance

activities include fixing bugs, adapting the system to new environments, add ing new

features for the system to satisfy new requirements from the client, and updating

documentation for the system. In order to do the above tasks, software maintainer s must

understand the structure or architecture of the system. However, it is a hard task for them

while there were some changes in the structure of the system which mak es the system

different from its original version. The documentation of the system is not up -to-date so it

cannot provide explicit knowledge about the system. Source code is the most important

available source to understand the structure of the system.

In the case of code reuse, i f some parts of a new software system can be reused

from existing systems, software developers will save a large amount of money and effort

in developing it. Nowadays, there are a large number of open source communities with a

lot of open source software systems whic h are free for you to reuse in de veloping your

new systems. Therefore, when developing a new system, software developers often find

out similar open source systems and try to reuse some possible parts of them. However,

in order to reuse the source code fro m the open source systems, software developers must

realize their structure and architecture and then understand clearly their features and

functions. Unfortunately, it is also a hard task because open source systems are developed

and contributed by developers from all over the world so they cannot be managed strictly.

As a result, documentation is not produced . Software developers must analyze the source

code in order to understand the structure of these systems.

Reverse engineering tools are very useful i n the above two cases. They help

software maintainers and developers understand the structure of a software system by

analyzing the source code and then presenting the system at higher levels of abstractions

2

such as call graphs, flowcharts, and class diagrams. Like other CASE (Computer Aid

Software Engineering) tools, they are useful in handling large and complex projects

which are difficult for software engineers to reverse manually [Müller et al., 2000]. In

addition, they provide several capabilities such as (i) generating the structure of a

software system in graphical reports such as hierarchy trees, call graphs, flow charts,

class diagrams; (ii) exporting these reports into various form ats such as HTML, XML,

XMI or the formats of other reverse engineeri ng tools; (iii) analyzing the software system

in these graphical reports, (iv) editing source code in the browser/editor of the tool; and

(v) tracking software quality by using software metrics integrated in the tools.

1.2. Research problems
Reverse engineering tools are very useful but they are now not widely used by software

engineers [Müller et al., 2000]. There are some reasons of that . For example, available

reverse engineering tools are not integrated in popular tools such as IDE s (Integrated

Development Environments), unit-testing tools, and code debugging tools which are used

widely by software engineers and especially they lack many necessary features and

capabilities. However, there were a few works which are relevant to evaluating the

capabilities of revere engineering tools for C++. The work of Berndt Bellay and Harald

Gall [Bellay and Gall, 1998] in evaluating the four tools: Rigi, Refine/C, Imagix 4D and

SNiFF+ is valuable but they only evaluate these tools with embedded systems written by

C and Assembly. They did not evaluate other types of software systems written by C++

object-oriented programming language. Especially, their work was done in 1998. It was

ten years ago and recently there have been many changes in these tools with many new

versions which have been released. For example, the version of Imagix 4D which they

evaluated at that time is 2.7 but the newest version of Imagix 4D is 6.3 [Imagix 4D

webpage, 2008].

Árpád Beszédes et al. [Beszédes et al., 1999] evaluate only one tool,

Columbus/CAN. Comlubus/CAN is an efficient tool for reversing large C++ and visual

C++ applications also. Their work is also very valuable when it provided a complete

evaluation about all features and capabilities of this tool but they did not compare this

tool with other similar tools. Additionally, there have been also many changes in this tool

from the time when they evaluate to now.

3

Storey et al. [Storey et al., 1997] in their article proposed an evaluation on only

two types of representation in Rigi: m ultiple windows and SHriMP (Simple Hierarchical

Multi- Perspective) views. It is very specific and does not provide a comprehensive view

about the reverse engineering tools for C++ application. Storey et al. [Storey et al., 2002]

described the applying of a very efficient tool evaluation technique namely collaborative

structured demonstration in evaluating reverse engineering tools in a working session at

the Eighth working conference on reverse engineering. However, the result is very little

because time limitation. They provided only some short sentences about the parser of

Rigi and Columbus/CAN.

1.3. Research questions
The main purpose of my thesis , namely “An evaluation of four reverse engineering tools

for C++ applications”, is to evaluate the latest versions of four reverse engineering tools

for C++ applications which are popular in use: Rigi (version 5.4.1), Columbus/CAN

(version 3.5), Imagix 4D (version 6.2.2), Understand (version 2.0) . My motivation of the

thesis work is to gain deep understanding in the field of reverse engineering and

especially to know the features and capabilities of available reverse engineering tools

which are used widely. In my opinion, experience which I have been obtained from the

thesis work helps me very much in the near future when coming back to work in my

country. Software developers in my country are required to have good software analysis

because we often develop new software systems from free reusing components or

libraries. In addition, a software manager should have know ledge about all phases in a

software development process. By doing the thesis, I have opportunity to study deeply

about these phases. Rigi is a free tool which integrates many technologies in representing

the structure of software systems in graphical rep orts but it has many limitations in its

user interface and parser. Columbus/CAN is a free tool for the purpose of academic

study. It is an efficient tool for reversing large C++ and Visual C++ applications a s well.

Imagix 4D and Understand are commercial t ools which provide many capabilities such as

represent and analyze the structure of software in graphical reports and track software

quality with software metrics. Their capabilities are evaluated in five main categories:

import/export, analysis, browsing/ editing, representation and other capabilities such as

extensibility, change analysis, and software metrics integrated in these tools. Criteria are

4

very important in evaluating the capabilities of tools and affect the result of the work.

Therefore, I created a complete, consistent, and ease of understanding set of criteria

which help me evaluate all necessary features and capabilities of the tools. After

evaluating these tools, conclusions are given, along with their strengths and weaknesses .

Furthermore, I provide my suggestions for designing an efficient reverse engineering tool

for C++ applications. Therefore, my research questions are:

 What are the features and capabilities of the four reverse engineering tools for

C++ applications?

 What are the strengths and weaknesses of the four reverse engineering tools for

C++ applications?

 What should be the features and capabilities of an eff icient reverse engineering

tool for C++ applications?

1.4. Research methods
The types of research which are used in this thesis are evaluation research and

comparative research. Evaluation research in computer science is based on creating

assessment criteria by which an application or a software system can be evaluated for

such qualities as effectiveness, validity and ea se to use. Comparative research in

computer science is based on making comparisons between applications, tools, or

software systems. This type of research is used to compare the features and capabilities of

the four reverse engineering tools and then to find ou t the strengths and weaknesses of

each tool.

There are many techniques that can be efficient in evaluating reverse engineering

tools such as expert reviews, user studies, field observations, case studies and surveys

[Müller et al., 2000]. In this thesis, the case studies technique is chosen. This technique

means we apply a tool to specific systems [Müller et al., 2000]. In my thesis, I create a

case study which includes various kinds of C++ applications such as small pure C++

applications, Visual C++ appli cations and large applications with hundreds of thousands

of lines of source code and then apply the four reverse engineering tools to these

applications.

5

1.5. Outline of the thesis
My thesis is laid out in six chapters. In the nex t chapter (chapter 2), a background

knowledge about reverse engineering is mentioned. They are definition of reverse

engineering, sub-areas of reverse engineering, and objectives of reverse engineering.

Chapter 3 presents a literature review about the previous studies of eva luating reverse

engineering tools for C++ applications: What the other researchers have done and the

strengths and weaknesses of their works. Chapter 4 presents an evaluation work of four

chosen reverse engineering tools: Rigi, Columbus/CAN, Imagix 4D and Understand. In

this chapter, I first describe general information about these tools, along with their

features and capabilities, and then create a set of criteria and a case study in order to

evaluate the capabilities of these tools. Chapter 5 presents my own evaluation about the

strengths and weaknesses of the four tools and then propose some suggestions for

creating an efficient reverse engineering tool. Conclusions are discussed in the last

chapter (chapter 6).

6

2. Background

2.1. Definition of reverse engineering of software
Reverse engineering in software engineering is the opposite of forward engineering

which is offered to indicate a traditional software development process [Nelson, 1996].

The traditional software development process oft en includes four phases: analysis,

design, implementing, and testing. Through those phases, softwa re is developed from the

high level of abstraction (architecture) to the low level of abstraction (source code).

Therefore, reverse engineering is the process which analyzes a software system and then

represents it at the higher level s of abstraction. The following definition which is given

by Chikofsky and Cross II [Chikofski et al., 1990] is widely used:

Reverse engineering is the process of analyzing a subj ect system to

• Identify the system’s components and their interrelationships and

• Create representations of the system in another form or at a higher level of

abstraction.

In order to understand clearly about the reverse engineering term, I compare this

term with other terms: restructuring and reengineering.

Restructuring is the transformation from one representation form to another form

within a same abstraction level [Chikofski et al., 1990] . For example, modify source code

in order to make the structure of source code more clear. This process only takes place in

one abstraction level and its result is the representation of the system in another form

depending on the purpose of software engineers but still in the same abstraction level,

while reverse engineering deals with many abstraction levels and its result is the

representation of the system at a higher level of abstraction. In addition, restructuring

creates changes in the structure of the system, while reverse engineering only examines

the structure of system and does not make any changes in the system.

Reengineering is the examination, alternation and modification of the system in

order to recreate a new system with new functions in another representation form

[Chikofski et al., 1990]. This term is wider than the reverse engineering term because it

often includes both reverse engineering and forward engineering. The first phase in the

reengineering process is using reverse engineering to understand the structure of the old

system and represent it at the higher level of abstraction. At that time, some changes are

7

created at any level of abstraction. The second phase is developing the new system based

on the new requirements or functions which have just been recently created. This phase

follows steps in forward engineering. Hence, reengineering creates a new system with

different features and functionalities from an old system, while reve rse engineering does

not make any changes in the features and functionalities of the system. Reverse

engineering is a process of examination, not a process of modification or replication.

2.2. Sub-areas of reverse engineering
Reverse engineering is a wide area as we mentioned above. Hence, there are many sub -

areas in reverse engineering. Two most common sub -areas are re-documentation and

design recovery.

Re-documentation is the creation or revision of another semantic representation

within the same abstraction level [Chikofski et al., 1990]. The results of this process are

often diagrams reflecting dataflow, code st ructure or control flow. Re-documentation is

considered as the simplest and weakest form of reverse engineering. It aims to provide an

easier and clearer way to recognize and understand relationships among all components

of the system.

Design recovery is the recreation of a design abstraction representation from not

only source code but also other sources such as existing documents, domain and

application knowledge, personal experience [Chikofski et al., 1990]. It aims to help

software engineers understand fully what the system is, how it works , and why.

Below is the figure which explains all above terms in an abstraction way.

8

Figure 1: Forward Engineering, Reverse Engineering and Derivatives [Nelson, 1996]

2.3. Objectives of reverse engineering
Software is developed from the highest level of abstraction (architecture) to the lowest

level of abstraction (source code). It is not easy to understand the structure of the system

in the lowest level of abstraction and only software eng ineers who have skills and

experiences in programming could understand it. The system at higher level s of

abstraction is more understandable. Hence, using reverse engineering tools and methods

is one of the most efficient ways to understand clearly the str ucture of the system if we

only have its source code. When software developers are required to create a new system,

they first often find similar systems which have some same features and functionalities

with the requirements for their new system. By using reverse engineering tools to

examine these systems, they can find reuse functions or components which could be used

for their system. In addition, reverse engineering is very useful for software maintenance.

After a long time of being used and modified, the system probably has errors and needs

to be maintained. However, there have been some changes in the structure of the system

and it probably is different with the original version. Using reverse engineering to create

higher levels of abstraction of the current system could help software maintainers

understand clearly about the system. There are six key objectives of reverse engineering

given by Chikofsky and Cross II [Chikofski et al., 1990]: cope with complexity, generate

9

alternative views, recover lost information, detect side effects, synthesize high

abstractions, and facilitate reuse .

Cope with complexity: Using reverse engineering tools, which can examine and analyze

automatically thousands of lines of source code and then present relationships among the

system’s components and the structure of the system, is an efficient way to deal with

large and complex software systems.

Generate alternative views : Graphical representations are easier for software engineers to

understand the structure of the syste m. Possible alternative views are graphs, structure

charts, data flow diagrams, control flow diagrams, class diagrams, and entity-relationship

diagrams.

Recover lost information : After being used for a long period, the system is different from

its original version. There have been some changes in its source code and hence its old

documents are not up-to-date. Reverse engineering can recover this lost information and

represent the system at higher levels of abstraction.

Detect side effects (ramifications) : In the implementation phase, software developers

implement the system based on the design documents of the system. However, in some

cases, they make some changes in the structure of the system when implementing it. This

will create some ramifications of the system and hence the structure of the real system is

not same as the structure of the system in the design documents. Reverse engineering

process analyzes the source code and therefore will detect these ramifications.

Synthesize high abstractions : The main nature of reverse engineering is representing the

system at higher abstractions. There are various levels of abstraction which are created

and reverse engineering process can synthesizes them. This helps software engineers easy

to understand the structure of the system.

Facilitate reuse: Reverse engineering examines the structure of the system in order to

find out possible reusing components. Using these reusing components to develop new

systems will save a lot of effort, cost and time.

10

2.4. The generic process of a reverse engineering
According to Scott Tilley [Tilley, 1998], the reverse engineering process includes three

main activities: data gathering, knowledge management and information exploration .

Data gathering

We cannot understand about the structure of a software system at higher levels of

abstraction if we do not have information about it. Therefore, data gathering is often the

first step in the reverse engineering process. In this step, many types of data about the

system are gathered such as source code, comments in source code, documents about the

system, and experience of experts. Three techniques of data gathering which are widely

used are system examination, document scanning and experience capture [Tilley, 1998].

System examination is often classified into two contrasting ways: static

examination and dynamic examination. The static examination concentrates on anal yzing

the source code. A source code parser is often used to analyze the source code and then

transfer it to abstract syntax trees [Bellay and Gall, 1998]. In contract, the dynamic

examination focuses on the executing system. It is useful for understanding component -

based systems in which the static examination cannot apply because components do not

come with the source code. Analyzing systems when they are running helps us to have

knowledge about the interactions between components in the system, types of messages

and protocols used and the external resources used by the system [Tilley, 1998].

Distributed, real-time and client-server applications are analyzed efficiently by this

technique.

Document scanning is the process of gathering documents, another type of

information about the system. For example, comments in the source code are useful

sources for understanding the s ystem. However, automatic analysis of the comments is

more difficult as they may be isolated in the source code or they do not provide explicit

information about the source code when they are not updated. Therefore, comments are

often analyzed manually by experts.

Experience capture is the approach to obtain knowledge about the system by interviewing

with people who has developed the system. The knowledge is very useful for

understanding the system. However, it is difficult to find out who developed the sy stem.

11

Knowledge management

Knowledge management in reverse engineering is used to structure gathered data into a

conceptual model of the application domain called a domain model. It includes three

main steps: knowledge organization, knowledge discovery a nd knowledge evolution

[Tilley, 1998].

Knowledge organization describes mechanisms to structure gathered data into a

form called a data model which helps us understand the properties of artifacts and their

interrelationships in a software system [Tilley, 1998]. A data model captures both the

static and dynamic properties of the system. Static properties are objects, their

relationships and their attributes. Dynamic properties are operations on objects, their

relationships and their properties.

Knowledge discovery describes techniques which are used to support information

exploration [Tilley, 1998]. For example, some of the techniques are navigating,

structuring and visualizing the knowledge base that is a collection of objects and their

associations.

Knowledge evolution describes the way in which knowledge is updated during

the reverse engineering process [Tilley, 1998]. Iterative domain modeling is one form of

knowledge evolution. During the reverse engineering process, software engineers

recognize the components and their relationships and then update to the domain model.

Information exploration

The process of information exploration includes three activities: naviga tion, analysis and

presentation [Tilley, 1998].

Navigation is the ability to select, edi t and traverse artifacts in the information

space. Artifacts are selected based on their attributes, their properties, visual and spatial

cues or other criteria. The user also can edit artifacts or their relationships such as add

new artifacts, modify their attributes and properties, or delete existing ones. Finally, the

user can move from one artifact to another one.

Analysis is the activity of analyzing the software system which uses various

techniques such as static analysis, dynamic analysis and impact analysis. Analysis

capabilities are possible in many levels of abstraction such as call graphs, flow charts or

12

class diagrams. We should pay attention to how to balance between automatic, semi -

automatic and manual analysis in order to get high efficiency.

Presentation is the activity to represent the structure of the system at high levels of

abstraction. The user interface of reverse engineering tools provide many views to

represent the structure of the system at various levels of abstraction such as call graphs,

flow charts, control flows, class diagrams and hierarchical graphs. Advanced

visualization techniques are used such as fish -eye views and three-dimensional imaging.

2.5. Reverse engineering methods and techniques
Several techniques have been inven ted and widely used for supporting reverse

engineering activities. According to Tonella et al. [Tonella et al., 2007] and Müller et al.

[Müller et al., 2000], such methods and techniques include code visualization, program

slicing, concept/feature location , design recovery, dependency analysis, clustering, clone

detection, and impact analysis. In the following, brief descriptions of each technique or

method are given.

Code visualization: This technique uses typography, graphic design or animation to

provide the ability to comprehend the large amount of source code [Lanza, 2003]. It can

visualize both static information (the structure of a system) and dynamic information (the

executing system). The process of code visualization in a visualization tool often includes

three steps: gathering and storing of source code in data models, handling gathered data

and representing it in internal representations, and representing the output in graphical

views.

Program slicing: Program slicing is a technique to determine the parts of a program

which affect the values computed by a particular slicing criterion [Tip, 1994]. This is

done by deleting other parts which do not affect the values computed by this criterion.

There are two types of slicing: static and dynamic. In static method, only statically

available information is used for computing slices whereas in dynamic method, the input

is specified before the computing.

Concept/feature location: This method provides the ability to isolate some parts of code

which are responsible for the implementation of a given concept or feature [Tonella et al.,

2007].

13

Design recovery: This method aims to discover the structure or architecture of a software

system. In order to do this, we need information about the system not only so urce code

but also other types of information such as documents and experts’ experience.

Dependency analysis: This techniques aims to discover the dependency of software

artifacts [Systä, 1999]. In reverse engineering, software artifacts are often represen ted in

a dependency graph which helps software developers analyze the dependency of the

system easily.

Clustering: This technique aims to group related methods, variables. For example, all

methods use a specific variable or all methods call a specific meth od [Quigley et al.,

2000].

Clone detection: This technique is used to detect code elements which were replicated by

comparing the abstract syntax trees, the metrics or the descriptions of program elements

[Tonella et al., 2007].

Impact analysis: This technique aims to estimate the effect of changes on the system. For

example, analyze how the system will be changed if there are some changes in some

particular parts. In reverse engineering, this technique is used in analyzing the system at

syntactic level [Tilley, 1998]. In addition, this technique is only useful when the

traceability of the system is high.

2.6. Challenges
The main challenge in reverse engineering is how to store and analyze information about

a software system at various levels of abstrac tion, not only source code and then provide

traceability of software artifacts . The source code often does not contain all information

about the system. There is still much knowledge which is very important to understand

about not only the structure of the system but also the evolution of the system such as

business plan, application domain, architecture description and engineering constraints

[Müller et al., 2000]. Therefore , it is necessary to create models that capture, stores and

handle all information about the system at various levels of abstraction in a consistent

way and to provide an efficient traceability. For example, given a design module, it is

able to point out the code elements that implement it, the functional specification

elements in the requirement specification and other corresponding elements in the other

levels of abstraction.

14

3. Literature review

3.1 Introduction
In this chapter, I describe the literature review work from considering other related

works. I have found only four articles wh ich are closely relevant to evaluating the

capabilities of reverse engineering tools for C++ applications. The first article provides

an evaluation of the four reverse engineering tools: Refine/C, Imagix 4D, SNiFF+, and

Rigi [Bellay and Gall, 1998]. The second article describes a working session at the Eighth

working conference on reverse engineering which is arranged to evaluate the capabilities

of some reverse engineering tools such as Rigi, Columbus/CAN and CodeCrawler

[Storey et al., 2002]. The third article provides an evaluation of only one tool, namely

Columbus/CAN by using it to examine three different types of C++ projects [Beszédes et

al., 1999]. The last article reports the evaluation work of two types of representation :

Multiple windows and SHriMP (Simple Hierarchical Multi - Perspective) views) of the

Rigi tool [Storey et al., 1997].

3.2 Techniques in evaluating the capabilities of reverse
engineering tools
There are several investigative techniques and empir ical studies which are useful for

evaluating the capabilities of reverse engineering tools such as expert reviews, user

studies, field observations, case studies and surveys [Müller et al., 2000]. The authors of

the above articles used one technique or a combination of many techniques.

Berndt Bellay and Harald Gall, two researchers from Technical University of

Vienna, Austria who proposed a complete and systematic an evaluation of reverse

engineering tools in their article “An evaluation of reverse eng ineering tool capabilities”,

used the case studies technique [Bellay and Gall, 1998]. They used a real-world

embedded software system which is a part of the Train Control System as a case study.

This system is written by C and Assembler languages with approximate 150K LOC (Line

of Code) in total. The quality of source code is quite good with a lot of comments

embedded in source code. The documentation of this system is also available for their

work. The main purpose of their work is to evaluate the capabilities of the four tools in

reversing embedded software systems hence their case study is efficient for their work. In

15

addition, a system with 150K LOC is enough complexity for evaluating the usefulness of

these tools.

Árpád Beszédes et al., who proposed an artic le which describes their work from

evaluating the capabilities of the Columbus/ CAN reverse engineering tool, used the case

studies technique [Beszédes et al., 1999]. In their case study, three different types of

applications are chosen. The first one is a large C++ application consisting of about two

hundreds source files with only normal classes. The second one is partial application of

six files with complicated templates. The last one is an application made by MFC library.

Three different types of application make their work more convincin g because they tests

the capabilities of the tool with both small applications and large applications, along with

Visual C++ applications.

Storey et al., who proposed an evaluation on two types of representation in Rigi:

multiple windows and SHriMP (Simple Hierarchical Multi- Perspective) views, used the

user studies technique [Storey et al., 1997]. The authors made a test for a group of twelve

members. They are required to perform some tasks in using two types of representation in

Rigi and then answer some questions and take an informal interview.

Storey et al. in the article , namely “A collaborative demonstration of reverse

engineering tools” described the applying of a tool evaluation technique namely

collaborative structured demonstration in evaluating r everse engineering tools in a

working session at the Eighth working conf erence on reverse engineering [Storey et al.,

2002]. Collaborative demonstration is a technique which evaluates tools by combining

various elements such as experiments, case studies, t echnology demonstration and

benchmarking. In the context of the project proposed in this article, there were six teams

participating in reversing a system which consists of approximately 30 KLOC of C++

code and then proposing an architecture that is up -to-date with changes made during its

evolution. One of the three main goals of the project was to evaluate reverse engineering

tools by comparing them and develop better ones. The teams were expected to use

different tools, techniques to reverse this system a nd each team collaborated and used the

results from other teams. Each team had specific tasks. The first team (KBGE group)

developed a parsing tool and employs approaches to clustering, using hierarchical

algorithms. The second team (RGAI) used CAN/Columbu s parser/analyzer to analyze

16

source code. The third team (Rigi) used Rigi C++ parser and TkSee C++ parser to

analyze source code and use Rigi graph editor to visualize the system. The fourth team

(SWAG) used CPPX parser to analyze source code of the system . The fifth team (SCG)

used SniFF++, Moose, and CodeCrawler tools. The last team used GraphTool for

visualizing the GXL code generated by TkSee C++.

Collaborative demonstration is an efficient technique because it evaluates tools by

combining various elements such as experiments, case studies, technology demonstration

and benchmarking. However, it requires much effort and time. The case studies technique

is the best choice for evaluating tools by one or a small group of people. The user studies

technique is useful because it evaluate tools by various types of knowledge from the user.

3.3. Assessment criteria for evaluating reverse engineering tools
Berndt Bellay and Harald Gall defined a set of assessment criteria in four main

categories: analysis, representation, editing/browsing and general capabilities to evaluate

the capabilities of the above four tools [Bellay and Gall, 1998]. The analysis category

includes criteria used to evaluate the parser of each tool. They are divided into thr ee sub-

categories: source types and project definition, parser functionality and parsing

functionality. There are four criteria in the first sub -categories: parsable source languages

(which source code can be parsed), other importable sources, project definition types and

ease of project definition. The second one includes six criteria: incremental parsing,

reparsing, fault-tolerant parser (ability to parse incomplete and in correct code), define

and undefined, preprocessor command configurable, and support for additional com piler

switches. The third one consists of five criteria: quality of parse error statements, parse

abortable, point and click movement form parse results to source code, parsing results

and parse speed. The representation category includes criteria which ar e used to evaluate

the properties and quality of reports such as: speed of generation, f ilters, scopes, grouping

(ability to present only the part o f the graph) and navigating between reports and between

a report and source code. They divided reports into two kinds: textual one and graphic

one. There is only one criterion used to evaluate the textual one. It is the sorting

capability. Criteria used to evaluate the graphic one are layout algorith ms, view editable,

layered view and SHriMP (Simple Heirachical Multi Perspective) views. The

editing/browsing category includes following criteria: intelligent control of text

17

editor/browser, highlighting of the source code, search function, hypertext capabilities,

and a history of the browsed locations. The last cate gory includes five criteria in

evaluating general capabilities: supported platforms, multi -user support, toolset

extensibility, storing capabilities, and output capabilities. In addition, they used three

methods to assess the quality of each tool in each criterion: an enumeration of possible

types, yes or no (the availability of a capability or not), and a simple four -level scale

(excellent, good, acceptable, and not at all).

Árpád Beszédes et al. also defined assessment criteria for their work from

evaluating Columbus/CAN [Beszédes et al., 1999]. Their criteria are based on the criteria

of Bellay and Gall. They are assigned into five categories : analysis (the capability of

source code parser), import/export (t he capability of importing existing projects and

exporting to various formats of presentation), representation (t he capability of

representing the results of the parsing process), editing/browsing (the capability of

editors/browsers), and general capabilities (user interface, extensibility, storing

capability, multi-user support, among other things).

Criteria defined by Berndt Bellay and Harald Gall , are quite complete since it

covers all aspects of a reverse engineering tool from main features and capabilities

(parsing, representation, browsing/editing) to small features and capabilities (import/

export, the quality of error statements in parsing, search function). The criteria are sorted

and classified clearly into big categories and the categories include sub -categories.

3.4. Results from the previous studies in evaluating reverse
engineering tools
Berndt Bellay and Harald Gall provided their conclusions about the four tools: Rigi,

Refine/C, Imagix 4D, and SNiFF+ [Bellay and Gall, 1998]. The analysis capabilities of

Refine/C are excellent as the resu lts of the parsing process are exact. This is the reason

why it is widely used in the reverse engineering community. It also provides several

capabilities in parsing such as define and undefined per file, exclusion of files. However,

one main limitation of the parser of Refine/C is do not support reparsing. The user

interface of Refine/C is not highly appreciated. It provides only one representation of

each view and the user can not change the position of these representations. Especially, it

does not have an integrated editor and support search engine. There are also limitations in

18

representation capabilities (only the movement of the entities and browsing through the

view is supported). About its extensibility, it provides an API which permits developers

access to its features to build customized analysis tools and to C parser and printer to

enable extensions to grammar, lexical analyzer. Imagix 4D also provides an excellent

parser which supports reparsing, incremental parsing. The project definition capabi lity is

flexible when the user can define a project by file, directory, or makefile. It also supports

the import of additional data sources (graph profile data -gprof and test coverage data-

tcov). The user interface of Imagix 4D is friendly, easy to use and efficient with several

features and capabilities. For example, there are several representations in each view, its

integrated editor is efficient with highlighting and movement in the editor capabilities,

the search capability is quite good, and it provid es filtering, scoping and grouping

capabilities to help the user can narrow the view of the whole system and see some parts

of the complete system. One main strength of Imagix 4D is the capability to

automatically generate documents from the source code. H owever, it also has two main

weaknesses: extensibility and the generation of graphical views in printed form. Rigi

does not have an efficient parser when it only parses functions and struct data type. The

user interface is not friendly and do not provide several capabilities which Imagix 4D

does. The main advantages of this tool are some new features which do not occur in other

tools such as layered views, SHriMP view and layout algorithms. SNiFF+ provides a fast

and tolerant parser. It means that it can pa rse source codes which are incomplete and

incorrect. The user interface of SNiFF+ provides an integrated editor which is as good as

the Imagix 4D’s editor. The view of SNiFF++ is suitable for printing but not for

comprehension. One main limitation of this tool is that it can not be extensible.

The results from evaluating the tools in the working session with the collaborative

demonstration technique were gathered from reports of the teams. The results proposed in

the article are very few [Storey et al., 2002]. In comparing parsers (CAN/Columbus,

CPPX, Rigi and TkSee/SN), the authors concluded that they made different in their level

of detail and output formats: Can/Columbus and CPPX emit facts at the AST level, Rigi

emits RSF (Rigi Stadard Format), TkSee emi ts GXL (the emerging standard format for

exchanging data between reverse engineering tools) at the middle level (external

declaration level). The authors did not mention about the speed and effectiveness of these

19

parsers. In evaluating documenting and visu alizing capabilities, the authors only provided

snapshots when using these tools (CodeCrawler, GraphTool, PBS, and Rigi) but did not

propose any analysis about them.

The results of the evaluation of Columbus/CAN are given in the last section of the

third article [Beszédes et al., 1999]. In terms of analysis capabilities, the user can handle

different programming languages in a single project. Its parser also works well while it

can recognize all C/C++ types, namespaces, nested classes, templates. The relati onship

among the objects of the system is parsed well such as inheritance, aggregation, general

association. The parser can support fault -tolerant, re-extraction but does not support

incremental parsing. In terms of import/export capabilities, it can impor t MS Visual C++

6.0 projects, There are three options for the user when exporting: exporting into an ASCII

file, into a MS Jet Database or into a TDE repository. The user can add new exporters

using the exporter/ extractor API. In addition, TDE/Columbus ca n create documents in

SGML or HTML formats. In terms of representation, the final output is represented in

form of UML diagrams. The user can use filtering capability to see some particular parts

of the whole diagram. The user can filter according to scope s/namespaces, using class

dependencies or manually. The dynamic view is not supported. It means that the user

cannot switch between the representation and the source code. In terms of

editing/browsing, there is not a text editor in Columbus but the user ca n use any external

text editor because TDE acts as an OLE client, and any text editor acts as an OLE server

can access it. In terms of general capabilities, this tool is easy to extend using the APIs,

and supports multi-user.

The results from evaluating two types of representation in Rigi suggested that the

user was more satisfied with SHriMP approach than multiple windows [Storey et al.,

1997].

3.5. Conclusions
There were a few works which are relevant to evaluating the capabilities of revere

engineering tools for C++.

The work of Berndt Bellay and Harald Gall in evaluating the four tools: Rigi,

Refine/C, Imagix 4D and SNiFF+ is valuable but they only evaluate these tools with

embedded systems written by C and Assembly. They did not evaluate other types of

20

software systems written by C++ object -oriented programming language. Especially,

their work was done in 1998. It was ten year ago and now, there have been many changes

in these tools with many new versions which have been released. For example, the

version of Imagix 4D which they evaluated at that time is 2.7 but now, the newest version

of Imagix 4D is 6.3 [Imagix 4D webpage, 2008].

Árpád Beszédes et al. evaluate only one tool, Columbus/CAN. Comlubus/CAN is

an efficient tool for reversing large C++ an d visual C++ applications also. Their work is

also very valuable when it provided a complete evaluation about all features and

capabilities of this tool but they did not compare this tool with other similar tools. One

more thing, there have been also many changes in this tool from the time when they

evaluate to now.

Storey et al. in their article proposed an evaluation on only two types of

representation in Rigi: Multiple windows and SHriMP (Simple Hierarchical Multi -

Perspective) views. It is very specific and does not provide general view about the

reverse engineering tools for C++ application s.

Storey et al. described the applying of a very efficient tool evaluation technique

namely collaborative structured demonstration in evaluating reverse engineerin g tools in

a working session at the Eighth working confer ence on reverse engineering. However, the

result is very little because of the limitations of time. They provided only some short

sentences about the parser of Rigi, Columbus/CAN.

21

4. An evaluation of the capabilities of the four tools

4.1. Overview of tools

Rigi

Rigi is a free reverse engineering tool for understanding legacy systems developed by a

research group in the Department of Computer Science at the University of Victoria,

Canada [Rigi webpage, 2008]. This tool aims to discover higher levels of abstraction of

software systems for maintenance and evolution purposes. It includes three main

components: a parsing subsystem, a repository, and an interactive graph editor [Müller et

al., 1993]. The parsing subsystem now supports C, C+ and COBOL languages. The

repository stores the results of parsing process. It supports multi –user and distributed use.

The graph editor is called “rigiedit” which provides browsing, editing, manipulating,

exploring and managing capabilities [Bellay and Gall, 1998]. The user can view parts of

the whole graph by using filters and can also edit the graph through rigiedit. Rigi runs on

several platforms such as Windows, Linux and Solaris.

Columbus/CAN

Columbus/CAN is a commercial reverse engineering tool developed in corporation

between the Research Group on Artificial Intelligence in Szeged, the Software

Technology Laboratory of the Nokia Research Center and FrontEndART Ltd [Ferenc et

al., 2002], but it is free for the user who would like to use it for academic and educational

purposes. It aims to parse, analyze, filter, and export information embedded in C/C++

source files into various kinds of formats such as ASCII, HTML, and XML [Beszédes et

al., 1999]. This tool comprises a friendly user–interface that looks like integrated

development environments (IDEs) which combines various re verse engineering tasks

such as project handling, data extraction, data representation, data storage, filtering, and

visualization [Beszédes et al., 2005]; a powerful parser which supports incremental and

fault–tolerant parsing, handling of templates; and a database. It runs on Windows

platform.

Imagix 4D

Imagix 4D is a commercial reverse engineering tool released by Imagix Corporation

[Imagix 4D webpage, 2008]. By using this tool, software engineers can speed their work

22

in developing, reusing, testing and maintaining software systems because it is an efficient

tool for checking rapidly and systematically the structure of such systems at an y level of

abstraction, analyzing flow charts and control flow, tracking the quality of the software

system by metrics, and generating automatically documents. The architecture of this tool

comprises three main layers: a view, an exploration engine, and a database [Imagix 4D

webpage, 2008]. The view is where you handle your tasks, see and manipulate the results

such as UML diagrams, flow charts, or software metrics, etc. The exploration engine is a

machine to receive requests from the users through the view layer, access the database to

handle requests and then send answers to the users in the view layer. The database stores

information about the software system such as source code, makefiles, profile results, etc.

You can use this tool for reversing softwar e systems written by C, C++ and Java

languages. It can run on several platforms such as Windows, Linux, and Solaris.

Understand

Understand is a cross-platform, multi-language reverse engineering tool developed by

Scientific Toolworks company [Understand webpage, 2008]. It can analyze source code

written by one of nine programming languages such as C/C++, C#, Java, Pascal and run

on several platforms such as Windows, Linux, and Solaris. Especially, it can analyze

source code written by various programming l anguages at the same time in a single

project. Its IDE (interactive development environment) is very flexible. The user can

create their own workplace to organize windows which view different information such

as source code, metrics, graphs, charts. In add ition, it offers several functionalities such

as several graphical reverse engineering views, code navigation using a detailed cross

reference, a syntax colorizing editor, a lot of metrics [Understand webpage, 2008].

4.2. The features and functionalities o f tools

Rigi

Extensibility: The user can easily extend the core functionalities of Rigi as it does not

provide fixed numbers of techniques for data gathering, analysis, organization and

representation. It is flexible for the user to choose suitable techniq ues for their needs. It

also enables the user to interpolate with other tools in an integrated way to extend its

functionalities [Rigi webpage, 2008].

23

Customization: Rigi enables the user to personalize the user interface. In addition, the

architecture of Rigi is based on a domain-retargetable approach, hence the user can model

application domain [Rigi webpage, 2008].

Representation: Rigi proposes two contrasting approaches for presenting the structure of

software system: multiple windows and SHriMP (Simpl e Hierarchical Multi-

Perspective) views [Storey et al., 1997]. The structure of software system s is often

presented by a hierarchy graph with nodes representing system artifacts such as

functions, datatypes and arcs representing the relationships of artif acts. In the case of the

first approach, this hierarchy is represented by individual and overlapping windows. Each

window displays a specific slice of hierarchy. With this approach, the user cannot see the

whole structure of software system. Therefore, it is not efficient for software systems

with a large structure. In contrast, with the second approach, the user can see the whole

structure of the software system in a nested graph. The algorithm used in this approach is

a fisheye view. The fish eye view means that you can see simultaneously the local detail

and global context of a graph.

Other features:

 Evaluates the precise dependences between two subsystems and the impact of a

change to the source code.

 Provides metrics for cohesion and coupling

 Includes a built – in scripting language and command library.

 Adapts to different programming languages [Rigi webpage, 2008].

Columbus/CAN

Extensibility: The architecture of Columbus is based on plug -ins, hence it is easy to

extend core functionalities. The user can use an easy-to-use plug-in API to write and add

new functionalities into the Columbus system or to connect the system with other tools

[Beszédes et al., 1999].

Project handling: Columbus enables the user to import MS Visual C++ and .NET

projects, to handle huge projects, or to handle several languages in the same project

[Demeyer et al., 1999].

Filtering: Columbus provides four types of filtering as follows [Ferenc et al., 2002]:

24

 Filtering by input source files: Only classes within given input source f iles are

displayed.

 Filtering according to scopes: The user can choose which will be displayed in

classes or namespaces from view-tree browser.

 Filtering using class dependencies (aggregation, inheritance): The user can see all

derived classes from a give class.

 Filtering “by hand”: The user can select/deselect classes to be showed in the IDE.

Exporting: Columbus exports output in several formats such as CPPML (C++ Markup

Language), GXL (Graphic eXchange Language), HTML and especially formats which

can be handled by other reverse engineering tools such as Rigi (RSF format),

CodeCrawler (Famix XMI format), Maisa [Ferenc et al., 2002].

Imagix 4D

Representation: Imagix 4D exports the output in high level abstractions by providing

several abstraction mechanisms: UML class diagrams, UML file diagrams and build -in

abstractions [Imagix 4D webpage, 2008]. UML class diagrams help you view and then

understand the static structure of software with relationships between classes. You can

view just a class with its attri butes and operations or several classes with their

relationships in a class hierarchy. This helps you understand large and complex software.

UML file diagrams display information at the file level such as the location of files, the

elements of files, and their build dependences. You also use # directives for improving

build times and reuse. One of build -in abstraction mechanisms is grouping. You can

choose related classes or methods to form a group.

Browsing: You can see the structure of software at vario us levels of abstraction within

the browser of the Imagix 4D [Imagix 4D webpage, 2008]. A file editor is integrated into

the browser hence you can see both class diagrams and source code. Hence, it is easier

for you to understand the structure of software. The symbols (classes, functions, types

and variables) are color-coded. It also supports source code navigation.

Quality checks: Quality checks help the user to identify potential problems which occur

in the run-time execution of their software. It prov ides capabilities to analyze data flow of

source code in order to find out problems about data access, concurrency control. The

25

user can also review possible conflicts in real -time, embedded, and multi -threaded

systems [Imagix 4D webpage, 2008].

Software metrics: Imagix 4D provides more than seventy metrics in order to measure

various aspects of software such as quantity, quality, com plex, and design of software

[Imagix 4D webpage, 2008]. These metrics are mostly divided into four categories

corresponding with four levels: file (eighteen metrics), class (seventeen metrics), function

(seventeen metrics) and variable (three metrics). Besides common metrics such as lines

of code, line of comments, comment ratio, numbers of statements at both file level and

whole project level, there are specific metrics such as McCabe cyclomatic complexity

and Hastead program difficulty metrics for testability and maintainability purposes or

Chidamber and Kemerer metrics to measure the class coupling and class cohesion of

object-oriented software. Metrics are displayed on metrics windows and the user can list,

sort, rank and compare all symbols based on their attributes.

Document generation: Imagix 4D can automatically generate technical documents from

information in source code and Imagix 4D’s database [Imagix 4D webpage, 2008].

Hence, you save development effort for writing documents. Moreover, you always have

up-to-date documents of your software. Documents are in three formats: ASCII, RTF

(rich text format) and HTML.

Understand

Combined language analysis : Understand provides the capability to examine source

code written by more than one programming language in a single project [Understand

webpage, 2008]. For example, the user is able to reverse Java and C++ source code at the

same time in a project. In addition, this tool supports analysis about the dependence of

parts of the whole system which are written by various programming languages.

Customized interface: The user interface of Understand is friendly, easy to use and

especially looks like an IDE. Furthermore, the user can organize the position of and then

create a specific workplace which they want [Understand webpage, 2008]. The user

interface provides several windows which include information about t he system from

various aspects such as architecture browser, project browser, metri cs, integrated editor

and diagrams.

26

Change analysis: Understand is an efficient tool for maintaining software systems

because of its change analysis capability. The user is able to compare between two files,

two folders in order to know which file or folder is changed from the previous version

[Understand webpage, 2008]. Additionally, the user can compare between two sections in

a file in order to find, for example, why one section of source code run well but another

section of source code does not run well.

Metrics: Understand provides the large number of software metrics (approximately sixty

eight) which include statistics about various aspects of a software system [Understand

webpage, 2008]. These metrics are mostly divided into five categories c orresponding

with five levels: project, f ile (number of files, number of header fil es, number of code

files and among other things), function or program unit (number of program units,

number of local methods, number of local private methods and among other things), class

(number of base classes, number of immediate subclasses, maximum d epth of in

heritance tree and among other things) and variable (number of instance variables,

number of protected instance variables and among other things). In addition, this tool also

provides metrics about the cyclomatic complexity of the system.

4.3. Assessment criteria

This section defines criteria to be used for evaluating the above four tools. The criteria

are based on my experience in using reverse engineering tools and the criteria defined by

Berndt Bellay and Harald Gall [Bellay and Gall, 1998]. They are organized in a clear

hierarchy structure including five main categories: import/export, analysis,

browsing/editing, representation and o ther capabilities. Each category often has sub-

categories. The criteria in the first four categories are used to evaluate all common

features and capabilities of a reverse engineering tool , for instance, importing sources,

parsing source code, representing the results of the parsing process, exporting the results

and analyzing the results directly in the tool s. The criteria in the last category are used to

evaluate other important capabilities such as software metrics, extensi bility, and

supported platforms. The rational of the criteria are as simple as possible but consistent,

complete, effective and precise.

27

4.3.1 Import/Export
The import capability of each reverse engineering tool is significant because importing is

often the first task when using such tools. Furthermore, it defines the typ es of data which

the tool can import. The input of reverse engineering tools often includes source code.

However other types of data such as documents and experts’ knowledge are very use ful

to examine a software system. With tools which support C++, the ability to import source

code written by Visual C++ is also very essential.

The export capability plays an important role in the usability and efficiency of a

reverse engineering tool. If a reverse engineering tool provides the ability to export the

output to various formats or the formats of other CASE tools , it will be highly graded.

This capability helps the software engineer store the results or use them in other tools to

gain better results. As a result, the following is some criteria to be considered for the

import/export capability of a reverse engineering tool.

Importable source code types: This indicates which programming languages of source

code can be imported to parse. We are ev aluating reverse engineering tools for C++

applications, but these tools often support reversing applications written by different

programming languages.

Project definition types: This indicates how a project can be defined in the reverse

engineering tools. There are three common methods of definition: file, directory, and

makefile.

Other importable sources: Some tools can import other sources such as documents in

order to get enough information about applications which will be reversed.

Output formats: This lets us know which format of output can be exported by reverse

engineering tools. For example, formats can be ASCII, HTML, RTF and among others.

Easy of project definition: Evaluate the ease of project definition.

4.3.2 Analysis
The source code parser is the most important subsystem of every reverse engineering

tool. The results of all tasks depend on the result of the parsing process. For example, if

the result of the parsing process is incorrect, the structure of the software system will be

represented incorrectly. The functionalities of a parser such as reparsing, incremental

parsing and fault tolerant parsing are very useful to reduce time and effort for the process.

28

The parsing speech is also important when parsing large and complex software systems.

As a result, the following criteria should be used to evaluate the parser of a reverse

engineering tool.

Incremental parsing: Incremental parsing is the capability to parse only some parts of

the whole source code which are changed from the last parsing. This capability makes the

parsing process reduce the parse time.

Reparsing: During the parsing process, there are always changes and the use of

incremental parsing probably does not make a precise result for the whole source code.

Hence, reparsing the whole source code is the best way to obtain an accurate result.

Fault tolerant parsing: This is the ability to continue the parsing process when some

errors are occurring. It means the ability to parse incorrect or incomplete source code.

Define and undefine: Two types of define and undefine preprocessor commands should

be supported by the parser: define and undefine for the whole project or for each file in

the project.

Quality of error statements: Error statements are very important for the user to

understand where the errors come from and then know how to fix them. Statements

should be understandable, clear and precise.

Capability to abort parsing: The abort capability is also very important to cancel the

parsing process when it runs without termination.

Parsing results: Estimate the result of parsing. It should be correct, complete, and

consistent.

Parsing speed: The speed of parsing is one of the important features to assess a reverse

engineering tool, because C++ applications now are huge projects wit h hundreds of

thousand of line of code.

4.3.3 Browsing/Editing
The browser/editor is necessary for every reverse engineering tool because the software

developer needs not only importing the source code and then exporting the results but

also analyzing the source code or switching between the source code and a high level of

abstraction. Therefore, the capabilities of a browser/editor should be evaluated when

considering reverse engineering tools.

29

Integrated text editor/browser: A text editor/browser is necessary to view and edit

source code before parsed. It also is necessary for the user to switch between source code

level and architecture level.

External editor/browser: Some tools provide external editors/browsers.

Control capabilities of text editor/b rowser: The efficient control capabilities of text

editor/browser are very necessary for the user to handle source code. These capabilities

include, among others, positioning at the right place, counting the appreciate position of

an element in the editor/browser, opening a file for editing or browsing.

The usability of user interface: The user interface should be friendly and easy to use. It

should also look like popular IDEs because the user is always familiar with using IDEs.

Search function: A search function is useful when the user want to find a word in a file

with a lot of words. Search function is therefore necessary for most of browsers/editors.

Highlight capability of source code: The highlight capability makes it easy for the user

to understand the structure of source code in browsers.

Hypertext capabilities: This is the capability to jump from an element to another

element in a file or among files. This capability helps the user to know the relationship

between two elements.

4.3.4 Representation
The representation is also play an important role like the source code parser. A reverse

engineering tools should provide many graphical views for the user can see the structure

of a software system. Dealing with large and complex systems is a challenge for such

tools. Therefore, an efficient tool is one which provides techniques and functionalities for

representing efficiently the structure of the software system. Moreover, the ability to

switch among views is very useful for the user to analyze the syst em.

Static/dynamic views: Dynamic view means that when there are some changes in the

source code, the output report dynamically reflect these changes. This technique is

necessary for using incremental parsing. Static view means that the output report only

reflects changes inside the source code when users reparse the whole source code.

Layered view: The elements of the output report are viewed in different layers in one

window or many windows.

30

Filtering, scoping and grouping: These techniques are very necessary for the user to

narrow entities in the huge output reports. The user can view only some parts of the

whole graph in the reports.

Movement between reports: The ability to navigate from a point in one report to

another point in another report.

Movement from reports to source code: The ability to switch between levels of

abstraction: switching between source code level and architecture level.

4.3.5 Other capabilities
Supported platforms: Tools should run on many platforms in order to attract more

users. For example, the user is using a platform and the tool does not support this

platform, the user will find another tool instead of removing his/her platform and using

another platform.

Integrated metrics: Metrics are important, for example they are used to track the quality

of source code during the development process, to estimate the complexity of the

application.

Change analysis: The ability to compare files in the directory, texts in the files and other

things to realize the difference among various versions.

Extensibility: The architecture of reverse engineering tools should be easy to extend

from core architecture and to link with other tools. The ability to link with other tools

helps the user to use the strength of each tool and then to get bette r results.

4.4. Case study
I choose two different types of C++ projects in the case study for evaluating the

capabilities of the four tools.

The first project is a small and simple game which includes only five f iles (.cpp)

and four classes with about 190 LOC.

31

Figure 2: Dragon application in Imagix 4D .

The second project is a large C++ library, namely LibMusicXML, which includes

a big set of classes that cover the elements defined by the MusicXML 1.0 dtds (an open

XML-based music notion file format). It is an open source project and hosted in the

sourceforge website (http://sourceforge.net/projects/libmusicxml/). The library includes

120 files, 196 classes with about 2 8859 LOC and provided by Visual C++ 6.0.

http://sourceforge.net/projects/libmusicxml/

32

Figure 3: LibMusicXML library in Understand

4.5. Assessment of tools
Each criterion is assessed by one of three methods which I define as follows:

 A list of all possible types of a tool wi thin a particular criterion

 Yes or No to indicate the availability of a feature or capability of each tool

 A four-level scale to evaluate the quality, efficiency of a feature or capability of

each tool. They are:

 “+++”: excellent

 “++”: good

 “+”: satisfactory

 “-“: not at all

The table below shows the results of the assessment process:

33

Assessment
criteria

Rigi Columbus/
CAN

Imagix 4D Understan
d

Import/Export
Importable source
code types

C, C++,
COBOL

C, C++,
MSVC

C, C++, Java,
MSVC

C, C++, C#,
Java, MSVC,
Ada, Pascal,
Fortran,
assembly,
Jovial, PL/M

Project definition
types

File File,
Directory

File, Directory,
Makefile

File,
Directory

Other importable
sources

No Yes Yes No

Output formats No CPPML,
GXL, HTML,
RSF(Rigi
format), UML
XMI, FAMIX
XMI

ASCII, RTF,
HTML, PNG,
VSD (visio
files), ps
(PostScript)

ASCII,
HTML, XML,
VSD(Visio
files), PNG

Ease of project
definition

+ ++ ++ +++

Analysis
Incremental
parsing

No No Yes Yes

Reparsing Yes Yes Yes Yes
Fault tolerant
parsing

No Yes No Yes

Define and
undefine

Project Project Project/File Project/File

Quality of error
statements

++ ++ ++ ++

Capability to
abort parsing

Yes No No Yes

Parsing results + ++ ++ ++
Parsing speed + ++ ++ ++
Browsing/
Editing
Integrated text
editor/browser

- + +++ ++

External
editor/browser

Yes No Yes Yes

Control
capabilities of text

+ ++ +++ +++

The usability of
user interface

+ ++ +++ +++

34

Search function - - +++ +++
Highlight
capability of
source code

No No Yes Yes

Hypertext
capabilities

No No Yes No

Representation
Static or dynamic
views

Static views Static views Static views Static views

Layered view Yes No No No
Filtering, scoping
and grouping

++ No +++ +++

Movement
between reports

No No No No

Movement from
reports to source
code

Yes No Yes Yes

Other
capabilities
Supported
platforms

Multiple
platforms

Windows Multiple
platforms

Multiple
platforms

Integrated metrics - + +++ +++
Change analysis No No No Yes
Extensibility ++ +++ + +

Table 1: The result of evaluating the four tools with the chosen criteria

4.6. An analysis of tools

Import/Export
All four tools support examining C, C++ source code. In particular, Understand supports

several programming languages from C#, Java to Assembly, Pascal. In addition, thr ee of

the four tools (Columbus/CAN, Imagix 4D, Understand) support importing projects

written by Visual C++. It is a useful capability because there are a lot of projects made by

Visual C++, instead of C++.

Understand provides the easiest way to define a project comparing with other

tools. The user only follows steps in the “New project wizard” process to create a new

project and import source code by adding files or just a directory. In the case of Imagix

4D and Columbus/CAN you must create a new project first and then use another menu to

import source code. Rigi only supports defining a new project by file. All tools support

35

updating source code into the project. It means that the user can add new source files for

his/her current project.

Columbus/CAN provides an excellent export capability which generates the result

of the parsing into six different formats. They are efficient for showing both textual (class

descriptions) and graphical reports (class diagrams), along with using the result with

other tools (Rigi, Famix). However, this tool does not provide capability to store reports

hence the user can not view reports in the user interface of the tool. Imagix 4D and

Understand also provide good capability in exporting the result of the source code

parsing. Textual reports are exported into the formats of ASCII, HTML, RTF, whereas

graphical reports are exported into the formats of images (.png) or the Visio tool (.vsd).

The limitation of the Rigi tool is that the user can not export the result of the parsing .

Analysis
The parser of Understand supports most of necessary functionalities such as incremental

parsing, reparsing, fault tolerant parsing, and ability to abort the parsing, whereas three

other tools only support two of the above four functionalities . Rigi does not support

incremental parsing and fault tolerant parsing. Columbus/CAN does not support

incremental parsing and ability to abort the parsing. Imagix 4D does not support fault

tolerant parsing and ability to abort the parsing.

Imagix 4D and Understand support the capability to analyze a single file, along

with analyze the whole project. This is very useful because in some cases, the user need

to analyze deeply a particular file in order to understand more clearly. In addition, with

this capability, the user analyzes a file and continues to find out the files which have

relationships with this file. By this way, from an original clue, the user can know the

relationships among elements in the system. It is also efficient to analyze the role of a file

in the system. Columbus/CAN and Rigi do not support this capability.

The result of the parsing process with Columbus/CAN, Imagix 4D and

Understand are good and better than those in Rigi. This conclusion comes from

comparing the results of the projects in the case study after using the four tools to analyze

them with their architecture and structure which are provided in the project’s documents.

The Rigi’s parser only supports parsing function and data of type “struct” [Bellay and

Gall, 1998]. The parser of Columbus/CAN is highly assessed because of the capabilities

36

to handle templates and to support the precompiled headers technique [Ferenc et al.,

2002] which is efficient in reducing compilation time in large projects. The speed of the

parsing process with Columubus/CAN, Imagix 4D and Understand in large projects are

the same and faster than these in Rigi.

Browsing/Editing
Three of the four tools which are Columbus/CAN, Imagix 4D and Understand, provide

an integrated text editor/browser. The editor of U nderstand is the most efficient one. It

looks like the code browser of the IDE (Integrated Development Environment).

Figure 4: The editor/browser of Understand

In addition to basic capability such as code highlight, line number, text copying

and pasting, it provides capability to jump to a particular function, method or line in a

source file, and to search correctly any word and then to replace by new word. Moreover,

there are other views for the user can see the structure of a fi le, information about scope,

context of the file. The only limitation of this editor is that it does not support hypertext

capabilities. The editor of Imagix 4D supports this capability. It is very useful for the user

37

can jump among words in a source file in order to find out clearly the relationships

among elements in the file, as well as the structure of the file.

Figure 5: The editor of Imagix 4D

The capabilities of this editor is the same as those of Understand, except it doe s

not show line numbers in the first left column of the editor and does not provide more

information about the file.

The browser of Columbus/CAN provides only one capability for the user to view

a source file. It does not provide any other capabilities su ch as code editing, code

highlight, search functionality.

38

Figure 6: The browser of Columbus/CAN

Representation
In this section, I first provide general view about the representation of the four tool s and

then analyze each tool based on the above criteria.

Rigi provides many capabilities in its graph editor. The remarkable characteristic

of this tool is viewing capability in many layers with two approaches: m ultiple windows

and SHriMP (Simple Hierarchical Multi - Perspective) views [Storey et al., 1997]. In

addition, the user can add, edit, delete, modify, and move nodes, arcs in the hierarchy

tree. They also collapse or expand a subsystem. It also provides efficient zooming,

filtering, scaling, and fitting capabilities which are ne cessary to handle the large and

complex structure of the system in graphical reports.

Imagix 4D provides several views about the system in its user interface. For

example, the user can choose to view call graph, file diagrams, class diagrams, and

control flow. It is very efficient for the user can view and handle directly many types of

graphical views at high level of abstraction in the user interface of the tool. Especially, it

provides the capability to analyze a single file and then show many types of its

39

relationships in graphical reports. For example, external functions calling them or

external functions they call. We can see more detail for the figure below.

Figure 7: Analyze a file in Imagix 4D

Understand also supports viewing the results of the parsing process in the user

interface of the tool. It also provides ability to analyze a file and show the results in

graphical reports which are easier for the user to understand. Moreover, the user can

handle directly in graphical reports to generate classes, files, methods which have

relationships with the file.

Columbus/CAN does not support viewing the results of the parsing process in the

tool. Instead of this, it exports the results into six types of format such as HTML, XMI.

The figure below shows the content of a file in the HTML format. It only provides

information about the attributes, methods, and relationships of a class in the file. The user

also see graph, diagrams in other formats such as GXL, XMI. This capability is very

useful for generating documents but there are some limitations as the user cannot view

representations directly in the tool. For example, the user can not modify the graph,

diagram, or use filtering capability to view parts of the whole structure whil e the structure

of the system is large and complex, or the user can not link from a point in the graph or

diagram to a corresponding point in the source code.

40

Figure 8: The result of the parsing process with Columbus/CAN in HTM L format

There is no tool which supports the dynamic view. It means that when there are

some changes in the source code, the reports cannot reflect these changes. In order to

update the report, the user must reparse. This is the limitation of all four too ls although it

is not easy to implement this feature.

Rigi is the only tool which provides the ability to view the results in many layers

with two techniques: multiple windows and SHriMP (Simple Hierarchical Multi -

Perspective) views [Storey et al., 1997]. The second technique is very efficient for

viewing the structure of large projects. T he user can see the whole structure of the

software system in a nested graph. The algorithm used in this approach is a fisheye view.

The fish eye view means that you can see simultaneously the local detail and global

context of a graph.

Rigi provides basic capabilities for filtering objects in the graph reports. The user

can hide or show the names of nodes in order to reduce the visual clutter when there are a

lot of nodes. The user also hides or shows selected groups of nodes, nodes by type or arcs

by type. However, rigi is the efficient tool for viewing large graphs because the user can

use zoom in or zoom out, especially the user can scale the nodes to fit in a window. The

filtering capability of Imagix 4D is also acceptable as it provides ability to hide, isolate

41

selected objects in the call graph. The user also find objects in the call graph by their

attributes (type of file or program elements). The filtering capabil ity of Understand is also

the same as two above tools as the user can hide nodes, sub -nodes or collapse sub-nodes.

This tool also has zooming capability.

All four tools do not support movement between reports but three of them, except

Columbus/CAN, support movement from the reports to source code. The user just click

one item in the reports, the corresponding item in the source code will be pointed or

highlighted. This capability is very useful for clarifying the structure of parts in source

code.

Other capabilities
The ability to run on various platforms makes a tool can be used more widely. Most of

the four tools can run on several popular platforms such as Windows, Solaris, Linux,

except Columbus/CAN which runs only on Windows.

Both Imagix 4D and Understand provide a lot of software metrics which are very

useful in tracking the quality, complexity, and difficulty of software systems. The metrics

measures various aspects of software systems in many levels: project, file, function or

program unit, class and variable. In addition, the two tools also provide metrics which

measure the complexity and difficulty (McCabe cyclomatic complexity and Hastead

program difficulty), especially, there are also metrics which measures the class coupling

and class cohesion of object-oriented software systems [Understand User guide, 2008].

Columbus/CAN also provides many software metrics at three levels: system, class, and

function with the focus on metrics about measuring the class coupling, cohesion and

inheritance. Metrics are exports in a file (.csv) and the user can browse by another tool

such as Excel. It means that the user cannot see metrics from the user interface of the

tool. Rigi provides software metrics for measuring the class coupling and cohesion.

Understand is the only tool from the four tools which supports change analysis

capability [Understand webpage]. This capability is very efficient for the purpose of

maintaining software systems. The user can compare between two files, two folders in

order to know which file or folder is changed from the previous version. In addition, the

user can compare between two sections in a file in order to find, for example, why one

section of source code run well but another section of source code does not run well.

42

Columbus/CAN and Rigi are easy to extend features and capabilities, whereas

Understand and Imagix 4D are not. The architecture of Columbus is based on plug -ins,

hence it is easy to extend core functionalities [Beszédes et al., 1999]. The user can use an

easy-to-use plug-in API to write and add new functionalities into the Columbus system or

to connect the system with other tools. The architecture of Rigi is based on the

architecture namely Programmable Hyper Structure Editor (PHSE) which makes the tool

easy to extend core functionalities [Rigi webpage, 2008]. About the capability to link

with other tools, Columbus is the only tool which generates reports in the formats of

other tools such as Rigi and FAMIX which help the user links more than one tool for

his/her work [Ferenc et al., 2002].

4.7. Discussions

In this section, the evaluation results are discussed by comparing with the previous

studies. In general, the evaluation result of Rigi is the same as the evaluation results in

previous studies. The main advantage of this tool is the capability to represent the

structure of a software system in graphical views. Therefore, it is also considered as a

visualization tool. Because of this, Columbus/CAN provides an ability to export the result

of the parsing process to the format of Rigi (RSF). As a result, the user can use

Columbus/CAN, which provides an efficient parser, to parse the source code of the

software system and then use Rigi to visualize this result. One main difference between

my work and previous studies is th at I concentrate much on evaluating the capabilities of

Rigiedit that is a graph editor. It is where the user can view, edit, and analyze the

structure of the system in a hierarchical tree. Previous studies did not provide results in

evaluating the capabilities of Understand hence the evaluation result of this tool in this

thesis is new and does not relate to previous studies.

Regarding the evaluation result of Columbus/CAN, in the previous studies,

researchers evaluated the previous version of this tool. At that time, it is called

Columbus/TDE. They evaluated the capabilities of Columbus tool in the TDE

environment which provide the capability to visualize software systems. The remarkable

capability of this tool is an efficient parser hence previous studie s focused much on this

capability. The evaluation result of this capability in this thesis is also the same as in

43

previous studies. However, I also concentrate on other features and capabilities of this

tools which are not evaluated much in previous studie s such as import capability,

software metrics, export capability and usability.

Regarding the evaluation result of Imagix 4D, because the version of this tool

used in previous studies is quite old comparing with the version used in my evaluation

work. Therefore, the evaluation result indicates that this tool has been updated with new

features and capabilities. The capabilities of import/export, analysis, editing/browsing

and representation are also better than those of the old version. For instance, the e ditor

provide more capabilities and all of them work well. There are more options for the user

to analyze the structure of the software system in graphical views.

To conclude, the evaluation result in this thesis is more comprehensive and

complete than the results in the previous studies. In general, two results are the same.

Moreover, all four tools are not only evaluated but also compared hence the evaluation

result brings an opportunity to understand deeply and precisely about the four reverse

engineering tools and the strengths and weaknesses of each tool as well.

4.8. Conclusions

Each tool provides various features and capabilities and then has different strengths and

limitations. After evaluating the four tools, I suppose that t here is no single tool which is

the best one in all cases. In this conclusion, I summarize and highlight the main features

and capabilities of each tool and its strengths and weaknesses as well.

Rigi

Rigi is a free tool, released in the forms of research prototypes, provides basis features

and capabilities for the purpose of reverse engineering. Two remarkable capabilities of

this tool are (i) techniques in representation such as layered views, SHriMP view whic h

are very useful in large and complex software systems and (ii) extensibility which makes

it easy to extend with new features or integrate with other tools. However, it has several

limitations in usability, ease to use and efficiency. The user interface is so poor and

difficult to use with no integrated source code editor/browser. The parser only supports

parsing functions and struct data types, hence it only generate s the structure of the

44

software system in functional views (call graph) and cannot generate s in other views such

as class diagrams and control flows. It also pro vides limited numbers of software metrics.

Columbus/CAN

Columbus/CAN is a commercial tool but it also provides a free version for the purpose of

academic studies. The strengths of this tool are efficient parsing, export capability and

extensibility. The CAN parser in this tool is highly graded because of the capabilities to

handle templates and to support the precompiled headers technique [Ferenc et al., 2002]

which is efficient in reducing compilation time in large projects. Addtionally, the speed

of the parsing process is fast. In the case of export capability, it provides an excellent

export capability which generates the result of the parsing process into six different

formats. They are efficient for showing both textual reports (class descriptions) and

graphical reports (class diagrams), along with usi ng the result with other tools such as

Rigi and Famix. In the case of extensibility, the architecture of Columbus is based on

plug-ins, hence it is easy to extend core functionalities. The user can use an e asy-to-use

plug-in API to write and add new functionalities into the Columbus system or to connect

the system with other tools. However, it also has some weaknesses. For example, the user

cannot view the results in the tool, hence they cannot analyze them in higher levels of

abstractions with graphical reports, or it only runs on Windows platform, or the user

interface only provides basis features which do not satisfy the need of the user.

Imagix 4D

Imagix 4D is a commercial tool with many outstanding features and capabilities such as

many views in representation which displays class diagrams, control flows, flow charts

and file diagrams in various windows; analysis capabilities in graphical reports and

movement between source code and these reports; quality track with a lot of software

metrics; an excellent source code editor with all necessary features such as hypertext,

source code highlight, search capability, text control capability, and movement capability

to a specific point in the file; exporting the results to various formats; supporting multiple

platforms and importing Visual ++ projects.

Understand

Understand is also a commercial tool with an excellent user interface which looks like the

IDE of Visual studio. It is customizable, usable, easy to us e, and efficient. The user can

45

create his/her workplace by organizing the position of windows. Other remarkable

capabilities of this tool are reversing combined programming languages and analyzing

change compact. It is also very useful in handling large pr ojects. The parser generates

correct results with high speed. The user can analyze a file and then represent it in

graphical reports. It also provide a lot of software metrics at various levels of a software

system such as project, file, class, method, and variable and other metrics in measuring

the complexity and difficulty of the system. The main limitation of this tool is that it does

not generate the whole structure of the system in graphical reports such as class diagrams

or hierarchy trees.

46

5. Discussions
In this chapter, the reflection of the four reverse engineering tools capabilities on the

basic of reverse engineering is discussed and then the strengths and weaknesses of all

four tools are mentioned, as well as some suggestions for designing an effic ient reverse

engineering tool.

5.1. The reflection of the four tools capabilities on the basic of
reverse engineering
As defined in the second chapter, reverse engineering is a process of examining a

software system to identify its components and their interrelationships and represent ing it

at higher levels of abstraction. In general, all four tools provide support for these tasks

such as (i) parsing the source code of the software system to identify its structure and (ii)

representing the software system at higher levels of abstraction such as hierarchical

graphs, class diagrams, control flows and flow charts. They also provide other

capabilities such as software metrics, cha nge analysis, and quality check to support

software engineers’ tasks. However, the capabilities an d features of the four tools have

limitations hence they satisfy partly the needs of software engineers. These will be

discussed more detailed in the next paragraphs.

Regarding the sub-areas of reverse engineering, the four reverse engineering tools

are useful for the tasks of re-documentation of a software system. By using these tools,

software engineers are easy to represent the structure of the software system at higher

levels of abstraction, even analyze the software system at these levels of abstraction.

However, all four tools provide the insufficient and inefficient capability to recover the

architecture of the software system. For instance, Understand and Columbus/CAN cannot

generate the whole architecture whereas Rigi and Imagix 4D generate inefficiently the

architecture of large and complex systems.

Regarding the objectives of reverse engineering, the capabilities of the four tools

contribute on the achievement of objectives of reverse engineering. They provide support

to (i) coping with the complexity by parsing automatically the large amount of source

code, (ii) generating alternative views such as hierarchical graphs, call graphs and class

diagrams, (iii) recovering lost information by exporting output to various formats such as

HTML, XML, and XMI, (iv) detecting side effects, (v) synthesizing high abstractions and

47

(vi) facilitating reuse by finding out possible reuse components. However, the capabilities

still have limitations. For instance, the four to ols are not efficient with large and complex

software systems as they cannot generate the accurate architecture of such systems. In

addition, they also do not provide techniques to represent the architecture in an efficient

way. Regarding the alternative v iews, they provide a limited numbers of graphical views

which are not enough for the software engineer to understand the system.

Regarding the generic reverse engineering process, the four tools are essential for

tasks in every phase of the process but their contribution is not much. In the first phase

namely “data gathering”, these tools are used to examine statically a software system.

However, they do not provide the ability to examine dynamically the system. It means the

ability to analyze the executing system. In addition, these tools support importing only

the source code not other type of data such as documents and experts’ knowledge.

Therefore, they do not provide the ability to gather sufficiently information of the system.

Because of this, they do not provide ability to manage a large amount of knowledge. The

second phase plays an important role in a generic reverse engineering process because the

comprehensive and consistent management of the large amount of knowledge about the

system leads to the success of a reverse engineering project . However, these tools totally

do not provide support for this phase. In the last phase, namely “information

exploration”, these tools are useful when they provide capabilities to represent, navigate

and analyze the structure of the system at various higher levels of abstraction. However,

these capabilities are applied for static information.

Regarding the reverse engineering methods and techniques, t he four tools do not

provide an efficient support to them. First of all, these tools provide a limited number of

reverse engineering techniques and methods. For example, Imagix 4D and Rigi provide

four techniques, Understand provides three ones and Columbus/CAN provides only two

ones. You can see detailed information in the table below. Some techniques and methods

which are very useful for understanding and maintaining software systems are not

provided by the tools such as concept/feature location, clone detection and impact

analysis. Secondly, the support capabilities of the four tools are also very limited. They

only provide basic capabilities for the user to use the above techniques and methods. For

example, using code visualization and design recovery in the four tools are not efficient

48

when they do not provide an effi cient view for the whole architecture of a system. The

tools provide only a few options for the user. Finally, the tools only support these

techniques and methods in static analysis, not dynamic analysis. The user cannot use

dynamic program slicing, dynami c dependency analysis, and dynamic clustering. This

leads to the inefficiency of the four tools when using them with real -time, embedded, and

client-server applications. In general, Rigi supports code visualization better than other

tools. Columbus/CAN only supports dependency analysis and clustering but has several

limited. Imagix 4D is remarkable with dependency analysis and clustering. Understand is

efficient when using the dependency analysis technique.

Rigi Columbus/CAN Imagix 4D Understand
Code visualization Yes No Yes Yes
Program slicing Yes No No No
Concept/feature
location

No No No No

Design recovery Yes No Yes No
Dependency
analysis

Yes Yes Yes Yes

Clustering No Yes Yes Yes
Clone detection No No No No
Impact analysis No No No No

Table 2: Reverse engineering methods and techniques

In summary, software developers should use the four tools to analyze the source

code of a system and then identify its components and their interrelationships. They also

use them for other tasks such as tracking the quality of the system with software metrics,

and analyzing change impact. Software designers should use them to export the structure

of the system to various formats such as HTML, XML, and XMI. However, the four tools

only provide the capability to analyze statically the system hence they cannot satisfy the

software engineers’ needs. Especially, these tools do not provide an integrated

environment for software engineers to do all their tasks on it. They are only tools, not

frameworks which support the whole generic reverse engineering process. In addition,

software engineers cannot write lines of code and then debug and run on these tools. It

means they support only analyzing code, not synthesizing code.

49

5.2. Strengths of the four reverse engineering tools

5.2.1. Representation of software at higher levels of abstraction
All four tools support the representation of software at higher levels of abstraction. In

particular, Rigi represents the structure of software in a hierarchy tree with nodes and

arcs [Rigi User’s manual, 1998]. Nodes represent for artifacts in software and arcs

represent for their relationships. Columbus/CAN exports the output to the format of UML

diagrams (.xmi) and we can view it by any tools which support handling UML diagrams.

Imagix 4D represents the structure of software at several higher levels of abstractions

such as call graphs, control flows, file diagrams, class diagrams and flow charts as in the

figure below. Understand represents the structure of software in class diagrams, flow

charts.

It is very difficult for the software developers to understand the structure of

software when examining manually source code because of the large amount of source

code and the complexity of software. The structure of the software system will be easier

to understand by the software engineer if it can be represented at higher levels of

abstraction. For example, with class diagrams, the software engineer is easy to find out

all classes in an object-oriented software system and especially, their interrelationships

which build the structure of this software system. Consequently, this capability of all four

tools is essential for understanding the structure of software. It is also a main nation of

reverse engineering tools.

50

Figure 9: Representation of software at higher lev els of abstraction in Imagix 4D

5.2.2. Analysis of software at higher levels of abstraction
Reverse engineering tools provide not only the ability to represent software at highe r

levels of abstraction but also the ability to analyze software at these levels of abstraction.

The software engineer is able to work in graphical reports which display the results of

parsing process such as modifying items or generating new items which are relevant with

the root element. All chosen tools except Columbus/CAN provide the analysis capability

of software at higher levels of abstraction. In particular, by using Rigi, the user is able to

modify nodes or arcs of the hierarchy tree , which represents the structure of software, in a

graphical editor, namely “rigiedit” [Bellay and Gall, 1998]. The user also collapse

subsystems of the whole system. This capability is efficient when handling large and

complex hierarchy trees. By viewing subsystems of s uch these systems, the user is easy

to understand the structure of the software. In the case of Imagix 4D, it provides many

capabilities in handling in graphical reports. For example, in a class diagram, the user can

generate all relationships of a file su ch as external functions it calls, external functions

calling it, it internal call hierarchy (see the figure below). Like two above tools,

Understand provides ability to analyze a file or a class and then generate its relationships .

This is very useful for the user to understand the role of a file or a class in the whole

51

system. It is also very useful when finding out the structure of the whole system from an

original clue which is a file or a class or in handling large and complex systems.

Figure 10: Generate all functions, files which are relevant to a file in Imagix 4D.

5.2.3. Documentation generation
Documentation is one of the most important information and knowledge about a software

system which helps the software engineers understand the software system. Therefore,

creating documentation in software projects is a compulsory task and often takes much

effort and time. However, after a long time being used, there are often some changes in

the system which makes it different from original version. Documentation is not up -to-

date and it does not include explicit knowledge about the system. Hence, the ability to

generate documentation from the source code is one of the remarkable features of reverse

engineering tools. Additionally, understanding the structure of the system from its

documentation is easier than from its source code because documentation includes

knowledge about the system at higher levels of abstraction such as diagrams, charts

which are easier to understand than so urce code which is understandable by software

developers. Three of the four tools (Columbus/CAN, Imagix 4D, Understand) provide the

documentation generation capability. Columbus/CAN is the tool which generates

documents in six types of format such as CPPML, GXL, HTML, RSF (Rigi format),

52

UML XMI, and FAMIX XMI [Ferenc et al., 2002]. As a result, these documents are able

to store and used later by another tool. It also generate documents in the format of other

tools such as Rigi and FAMIX, hence the user can use these tools to analyze the system.

Moreover, it generates documents in both textual and graphical reports. Imagix 4D and

Understand generate documents in the ASCII, HTML, and XML formats [Understand

User guide, 2008]. The user can also save diagrams, charts in the formats of image such

as PNG, BMP and in the format of the Visio tool, a famous tool from the Microsoft

software company. They also provide ability to convert them into printed versions and

the user can choose to print them directly from the t ool.

5.2.4. Software metrics
All four tools provide software metrics which are necessary in tracking the quality,

complexity and difficulty of software systems. However, the numbers of metrics in each

tool are different. Imagix 4D and Understand provide a lot of software metrics to measure

various aspects of software systems in many levels: project, file, function or program

unit, class and variable. In addition, the two tools also provide metrics which measure the

complexity and difficulty of the system (McCabe cyclomatic complexity and Hastead

program difficulty), especially, there are also metrics which measures the class coupling

and class cohesion of object -oriented software systems [Understand User guide, 2008].

Columbus/CAN also provides many softwar e metrics at three levels: system, class, and

function with the focus on metrics about measuring the class coupling, cohesion and

inheritance. Metrics are exported in a file (.csv) and the user can browse by another tool

such as Excel [Ferenc et al., 2002]. It means that the user cannot see metrics from the

user interface of the tool. Rigi only provides software metrics for measuring the class

coupling and cohesion but these metrics are very efficient in measuring object -oriented

software systems [Rigi webpage, 2008].

5.2.5. Change analysis
Understand is the only tool from the four tools which supports change analysis capability

[Understand webpage, 2008]. This capability is very efficient for the purpose of

maintaining software systems. The user can compare between two files, two folders in

order to know which file or folder is changed from the previous version. In addition, the

53

user can compare between two sections in a file in order to find, for example, why one

section of source code run well but another section of source code does not.

5.2.6. Quality checks
Quality checks help the user to identify potential problems which occur in the run -time

execution of their software. It provides capabilities to analyze data flow of the source

code in order to find out problems of data access, concurrency control. The user can also

review possible conflicts in real -time, embedded, and multi -threaded systems. In fact,

Imagix 4D is the only tool which provides this capability [Imagix 4D webpage, 2008].

5.3. Limitations of the four reverse engineering tools

5.3.1. Inefficiency of overall architecture of software
Columbus/CAN, Understand cannot generate the overall architecture of a software

system from its source code. The tools provide ability to generate high levels of

abstraction of each component, file, or class in graphical reports. The user can analyze in

these reports to find out all relationships of a component in the system but he/she cannot

have a comprehensive view about the structure of the whole system. Rigi uses a hierarchy

tree to represent the structure of the system with new techniques such as layered views

and SHriMP views [Storey et al., 1997]. However, it is not efficient in large projects and

it needs much more investigation and research to make it eff icient in the terms of

usability, effectiveness and ease of understand. Imagix 4D also has many weaknesses in

generating the whole structure of software. The result is not correct in some cases and it

lacks many capabilities in handling this case such as f iltering, grouping, scoping,

zooming, and layered view.

5.3.2. Insufficiency of graphical views
All four tools can generate several graphical views such as call graphs, flow charts,

control flows, class diagrams and file diagrams but these views are not sufficient enough

to have a comprehensive view about a software system. Additionally, information in

graphical views is copied from information in the source code. The tools do not generate

additional information in these views.

54

5.3.3. Non-Integration with the IDEs
IDEs (Integrated Development Environment s) are frequently used by software developers

for their daily works in developing software. Therefore, one of the efficient ways for

reverse engineering tools to be widely used is to integrate reverse engin eering tools into

the IDEs. However, all four reverse engineering tools are unable to do this. They can only

provide capabilities to analyze source code, but not to synthesize, debug and build source

code. Software developers must use one of the IDEs for s oftware projects and they are

really familiar with them. Therefore, they often do not want to use other tools such as

reverse engineering tools while they do not have necessary skills for using them and they

do not want to pay much more money for them.

Since software developers are familiar with the user interface of IDEs, reverse

engineering tools will be easy for them to use if their user interfaces are look like those of

IDEs. However, there is only one of the four tools which is Understand with the user

interface is the same as the user interface of Visual Studio, the popular IDE from

Microsoft.

5.3.4. Inefficiency of graphical views with large projects
All four tools do not support efficiently graphical views with large projects although Rigi

provides many techniques in dealing with this problem such as layered views and

SHriMP (Simple Hierarchical Multi - Perspective) views. As you could see in the figure

below, when there are a lot of items in graphical reports, it is hard for the user can

recognize items and their relationships. Filtering an d grouping capabilities are not

efficient in this case either.

55

Figure 11: Representation in Rigi with a large and complex software system

5.3.5. Unavailability of dynamic views
All four tools do not support dynamic views. Dynamic views mean that when there are

some changes in a view, other views will reflect these changes. This feature is very useful

because when the user make some changes in source code, other views such as class

diagrams, control flows, call graphs will cha nge automatically. The user does not need to

care about the consistency of other views. Since all four tools only support static views,

when the user edits something in a source file, he/she must reparse this file in order to

reflect these changes in other views. Moreover, the main limitation of this case is that

when there are some changes one of the following views: class diagrams, control flows,

call graphs, and flow charts, other views cannot reflect these chang es. Therefore, the data

is not consistent in all views. However, it is very difficult to implement this feature in

56

reverse engineering tools because managing traceability among other views is hard to

obtain.

5.3.6. Unavailability of dynamic analysis
All four tools provide the capability to analyze static information such as source code .

They do not provide the capability to analyze executing systems. Analyzing systems

when they are running helps us to have knowledge about the interactions between

components in the system, types of messages and protocols used and the external

resources used by the system [Tilley, 1998]. This is very useful in examining distributed,

real-time and client-server applications. Therefore, the four tools are not efficient in such

types of application.

5.4. Suggestions for designing an efficient reverse engineering
tool

5.4.1. Import/Export
First of all, the import capability of a reverse engineerin g tool should be usable and easy

to use. The user just click on an “import” function in the menu of the tool and a process

will be taken automatically with some steps. In each step, a window will be displayed

which includes not only boxes, buttons for the user to import source code but also

instructions which helps the user know how to do. In additon, it should support importing

source code with several options such as adding all files in a directory, add ing files

having a particular extension, and adding files having a defined starting name or a

particular string in the file name. It is ne cessary because in some cases, software

developers only need to analyze some groups of files, not the whole files of a software

system. One more thing, after importing source code, the tool still provides the ability to

add new files into the project. It s hould also support importing projects created by

frameworks such visual studio, Qt. In summary, the import capability of the reverse

engineering should look like the import capability of IDE tools so that the software

developer does not feel so confused when using it.

The export capability in reverse engineering tools is very essential due to the

purposes of storing and continuous handling the output with other software tools,

especially reverse engineering tools . Therefore, a reverse engineering tool shou ld support

57

exporting the output to various formats: textual formats (description about the results in

detail), graphical formats (diagrams, charts, graph trees, images), standard formats

(XML, HTML, among other things), formats of most popular CASE tools (UML tools,

IDE tools), and formats of other reverse engineering tools.

5.4.2. Analysis
Firstly, the source code parser of a reverse engineering tool should support all effective

functionalities such as incremental parsing, reparsing, fault tolerant parsin g, and

abortable parsing.

Secondly, it should provide an efficient capability to recognize exactly elements

and their interationahips in the source code written by object -oriented programming

languages and other exceptions , for instance, templates in C++. New techniques should

be investigated to improve the speed of the parsing process which is very important in

handling extremely large projects.

Finally, a reverse engineering tool should support the capability to analyze a

single file, along with the whole project. This is very useful because in some cases, the

user need to analyze deeply a particular file in order to understand it more clearly. In

addition, with this capability, the user analyzes a file and continues to find out the files

which have relationships with this file. By this way, from an original clue, the user is able

to know the relationships among elements in the system. It is also efficient to analyze the

role of a file and its impact on the system.

5.4.3. Editing/Browsing
The browser of a reverse engineering tool is not only a place for the user to view source

code but also to edit source code. Therefore, it should look like a code editor in IDEs

with all necessary capabilities such as (i) hypertext capability, (ii) code highlight, (iii)

line number, (iv) text copying and pasting, (v) the capability to jump into a particular

function, method or line in a source file, and (vi) search correctly any word and then

replace by new words. It also provides ability to link to external text editors.

5.4.4 Representation
All four chosen reverse engineering tools do not support dynamic views which are usefut

to improve the traceability among various levels of abstraction. A n efficient tool should

58

support not only movement between source code and a speci fic view but also movement

among different views. For example, the user can switch from one point in a call graph to

a corresponding point in a class diagram, or in control flow. Moreover, whenever there is

a new change in a view, other views should be updated. Regarding the user interface, a

tool should support multiple views. Each view is a highly customizable window. For

instance, the user can generate a call graph, a control flow, a class diagram in various

views and can change the position of these vie ws in order to see all views in the user

interface. With this capability, the user can see changes in each view when there is a

change in another view.

It is very difficult to represent efficiently the whole structure of a large and

complex software system. It can include a lot of items, elements in each view. Hence, a

reverse engineering tool should provide excellent capabilities in filtering, grouping,

scoping and zooming. Using layered views is another way to make complex views more

understandable. Applying the “divide and conquer” algorithm is also a solution in this

case. The whole structure system will be showed by a tree, a diagram or a chart of sub-

systems. The user can click on each sub-system in order to view the structure of this sub -

system in a new view.

5.4.5 Other capabilities
First of all, a reverse engineering tool will be used widely if it supports multiple

platforms. There is now no platform which is satisfied by all users hence they are using

different platforms such as Windows, Solaris, a nd Linux-based platforms. In addition, a

reverse engineering tool should support multiple users in order to be used by more users.

This is efficient in the case of a project team or a software company. Finally, the

architecture of a reverse engineering is easy to extend new features or to integrate with

other popular CASE tools. It should be a component -based architecture with a core

platform.

Secondly, software metrics play an important role in tracking software quality.

Therefore, a reverse engineering tool should provide a lot of software metrics at various

levels of a software system such as project, namespace, file, class, method and variable.

Especially, it should provide metrics in measuring the complexity and difficulty (McCabe

cyclomatic complexity and Hastead program difficulty) of the software system and the

59

class coupling and cohesion which is very important in assessing object -oriented software

system.

Thirdly, for the purpose of software maintenance, a reverse engineering tool

should support change analysis. The user can compare between two files, two folders in

order to know which file or folder is changed from the previous version. In addition, the

user can compare between two sections in a file in order to find out any changes and

differences, for example, why one section of source code run well but another section of

source code does not run well.

Fourthly, It should provide better traceability which helps the user not only realize

the relationships among files in project, classes in the pr oject, and among other things but

also analyze the impact of these relationships. Moreover, a reverse engineering tool

should support traceability in different levels of abstraction. In order to do this, a reverse

engineering tool should support importing other sources about the software system such

as requirement specification, architecture document. A reverse engineering tool will

update automatically these documents by analyzing source code and provide traceability

among elements of software system at va rious levels of abstraction.

Fifthly, it should provide support to reverse engineering methods and techniques

such as program slicing, clone detection, feature/concept location, impact analysis and

especially design recovery. The ability to recover the ar chitecture of the system is very

useful for understanding the system because the architecture often provide a

comprehensive view about the system.

Finally, the support of dynamic analysis methods leads to the efficiency of a

reverse engineering tool when analyzing distributed, real-time and client-server software

systems.

60

6. Conclusions and Future Work
In this thesis, I presented my work from evaluating the capabilities and features of the

four reverse engineering tools for C++ applications: Rigi, Col umbus/CAN, Imagix 4D,

and Understand. I first presented background knowledge about reverse engineering such

as the definition of this term, its sub -areas and objectives and then presente d my work in

literature review. The latter consisted of various revers e engineering tools reviews and

evaluations of their capabilities and features. Bearing in mind these previous reviews, I

evaluated the four tools mentioned above by using them to examine two different types of

C++ applications: a small code application and an extremely large code library.

Moreover, I created evaluation criteria which could evaluate the following support

features of the tools outlined here in main categories: import/export, analysis,

browsing/editing, representation and other capabilities and sub-categories. After

evaluating the capabilities of these tools in the above five categories, I derived the

strengths and limitations of the four tools . Upon those I drew conclusions and outlined

suggestions for designing an efficient reverse engineeri ng tool which would outperform

the existing ones.

The four popular reverse engineering tools which I examined in detail in this

thesis are very useful for the purposes of software maintenance, re -engineering, re-

documentation, and code reuse . They provide designers, programmers and maintainers

who are the tools’ most frequent users with many software quality capabilities for their

work and for documenting their work tasks. These include, for instance, the following: (i)

analyzing automatically the source code of a software system and (ii) representing the

structure of this system at higher levels of abstraction such as call graphs, flow charts,

control flows, and class diagrams. These tools, however, have not been widely used

because of limitations and inefficient features and capabilities they have, as mentioned in

this thesis but also in other earlier scientific works. When searching articles for the

literature review, I found that there have been a few articles which presented the work in

evaluating and comparing the capabilities of such tools. The personal motivation,

therefore, directed the decision to evaluate and compare the capabilities of the four

61

widely used reverse engineering tools , which support C++ programming languages in

order to answer the three main research questions, also outlined below.

The first question was “What are the features and capabilities of the four reverse

engineering tools for C++ applications”. I have found that their features and capabilities

are different. There is no single tool which could be declared the best in my evaluation.

The next paragraphs, though, summarize the evaluation results and provide an answer to

the first research question by comparing and contrasting the findings.

 Two remarkable capabilities of the Rigi tool are its techniques in representation

such as layered views and the SHriMP view which are very useful in the case of large

and complex software systems. E xtensibility is also of outmost importance because it

makes Rigi easy to extend with new features or/and integrate with other tools. In

addition, the particular tool also provides: (i) software metrics for measuring class

cohesion and coupling, (ii) a graph editor for handling graphical reports, and (iii) ability

to customize the user interface.

On the other hand, the remarkable capabilities of the Columbus/CAN tool are (i)

efficient parsing, (ii) export capability and (iii) extensibility. The CAN parser in this tool

has been highly graded because of its capabilities to handle templates and to support the

precompiled headers technique [Ferenc et al., 2002], which is efficient in reducing

compilation time in large projects. In the case of export capability, it provides an

excellent export capability which can generate the result of the parsing process in to six

different formats. They are efficient for showing both textual reports (class descriptions)

and graphical reports (class diagrams), along with using the result with other tools (Rigi,

Famix). In the case of extensibility, the architecture of Columbu s is based on plug-ins,

hence it is easy to extend core functionalit ies. The user can utilize an easy-to-use plug-in

API to write and add new functionalities into the Columbus system or to connect the

system with other tools.

The main features that Imagix 4D provides are outlined next and they consist of

significant help in many functions and tasks of the software developer: (i) many views

which displays class diagrams, control flows, flow charts and file diagrams in various

windows; (ii) analysis capabilities in graphical reports and movement between source

code and these reports; (iii) quality track with a lot of software metrics; (iv) an excellent

62

source code editor with all necessary features such as hypertext, source code highlight,

search capability, text control capability, and movement capability to a specific point in

the file; (v) exporting the results to various formats; and (vi) supporting multiple

platforms and importing Visual ++ projects.

The fourth tool in my selection and evaluation list w as Understand. Firstly, this

tool provides an excellent user interface , which looks like the IDE of Visual studio. It is

customizable, usable, easy to use, and efficient , also according to other reviews and

evaluations. Two other remarkable capabil ities of this tool are combined programming

languages analysis and change analysis. The tool’s features are also very useful in

handling large projects. The parser generates correct results with high speed. The tool

user can analyze a file and then represent it in graphical reports. A lot of software metrics

are provided at various levels of a software system such as project, file, class, method,

and variable and other metrics in measuring the complexity and difficulty of the system.

The second question was “What are the strengths and limitations of the four

reverse engineering tools for C++ applications”. Common strengths of these tools are (i)

representation of software at higher levels of abstraction such as class diagrams, call

graphs, and control flows; (ii) analysis of software at higher levels of abstraction with

ability to work in graphical reports in order to generate related items or move to a

corresponding item in source code; (iii) documentation generation in many formats such

as HTML, XML, and XMI; (iv) tracking software quality with a lot of software metrics at

various levels of a software system such as project, file, class, method and variable; (v)

change analysis with the ability to compare items in different files, files in various

folders; and last but not least (vi) quality checks with ability to identify potential

problems which occur in the run -time execution of their software. In contrast, common

limitations of these tools are (i) inefficiency of overall architecture of software; (ii)

insufficiency of graphical reports with only class diagrams, control flows, flow charts and

call graphs; (iii) non-integration with IDEs; (iv) inefficiency of graphical views with

large projects; (v) unavailability of dynamic views and (v) unavailability of dynamic

analysis.

The last question was “What should be the features and capabilities of an effi cient

reverse engineering tool for C++ applications” . These, according what features exist and

63

according to what desirable features and capabilities could cover current needs, could be

described in the following five main categories: i mport/export, analysis,

editing/browsing, representation and other capabilities. In the case of the import/export

feature, for instance, the import capability of a reverse engi neering tool should be usable

and easy to use. The user only needs to click on an “import” function in the menu and a

process will be taken automatically with some steps. It should also support importing

projects created by frameworks such visual studio and Qt. Moreover, a reverse

engineering tool should support a function that could export the output into various

formats: textual formats (description about the results in detail), graphical formats

(diagrams, charts, graph trees, images), standard formats (XML, HTML, am ong other

things), formats of most popular CASE tools (UML tools, IDE tools), and formats of

other reverse engineering tools. In the case of the analysis capability, a main reverse

engineering function, the source code parser of a reverse engineering tool should support

functionality with all effective capabilities such as incremental parsing, reparsing, fault

tolerant parsing, abortable parsing. An efficient reverse engineering tool should also be

able to parse the structure of the source code written by object-oriented and other

programming languages, and other exceptions such as templates in C++. Moreover, novel

techniques should be investigated to improve the speed of the parsing process which is

very important in handling extremely large software projects. In addition, a reverse

engineering tool should support the capability to analyze a single file, along with to

analyze the whole software projects. In the case of the editing/browsing feature, it should

look like a code editor in IDEs with all necessary capabilities such as hypertext

capability, code highlight, line number, text copying and pasting, capability to jump to a

particular function, method or line in a source file, and search correctly any word s and

then replace with new words. It should also provide the ability to link to external editors.

In the case of the representation capability, a new tool should support not only movement

between source code and a specific view but also movement s among different views.

Moreover, whenever there is a new c hange in a view, other views should be updated. It is

very difficult to represent efficiently the whole structure of a large and complex software

system. It can include a lot of items, elements in each view. Hence, a reverse engineering

tool should provide excellent capabilities in filtering, grouping, scoping and zooming. In

64

the case of other capabilities, a reverse engineering tool will be used widely if it supports

multiple platforms. It also should support multiple users in order to make it be used by

more users. This is efficient in the case of a project team or a software company.

Moreover, the architecture of a reverse engineering should be capable to extend new

features or to integrate with other popular CASE tools. It should be a component -based

architecture with a core platform. Software metrics play an important role in tracking

software quality. Therefore, a reverse engineering tool should provide a lot of software

metrics at various levels of a software system such as project, namespace, file, cl ass,

method and variable. Especially, it should provide metrics in measuring the complexity

and difficulty (McCabe cyclomatic complexity and Ha lstead program difficulty) of the

software system and the class coupling and cohesion which are very important in

assessing object-oriented software systems. For the purpose of software maintenance, a

reverse engineering tool should support change analysis. Moreover, a reverse engineering

should support traceability in various levels of abstraction.

A last comment I would like to draw here as rather as an observation is that the

country of the tool origin indicates the particular software development culture that the

tool is exposed at. The four tools, therefore, addressed very different and very common

needs regarding the national software industry they belong to. In the four chosen tools I

evaluated, Imagix 4D and Understand are made by software companies in United States

whereas Rigi is made by a University in Canada and Columbus/CAN is made by a

commercial company in Hungary. In my opinion, Imagix 4D and Understand are better

than Columbus/CAN in usability and efficiency. The features and capabilities of Imagix

4D and Understand are also many more than those in Columbus/CAN. Rigi also takes

much effort, time to research, implement and test by members at a university in Canada.

Therefore, someone could conclude that reverse engineering tools are constructed and

investigated much more carefully in United States.

This thesis´ aim and motivation have been to provide a valuable, comprehensive

and detailed evaluation and comparison of the capabilities of the four popular in use

reverse engineering tools. The results of this work can be useful for those who want to

find a suitable reverse engineering tool for their software development and maintenance

tasks. The thesis also highlighted the strengths and limitations of the four reverse

65

engineering tools and provided suggestions for designing an efficient reverse engineering

tools.

There are many software tools and reverse e ngineering tools in the market, but

there are not many recent evaluations in their strengths and weaknesses. Trying to

address this need while proceeding with my thesis work, I encountered some problems.

Firstly, evaluating and comparing reverse engineerin g tools seems to be a wide

knowledge topic because it requires the tool evaluator to have enough, at least sufficient

knowledge about many fields in software engineering such as reverse engineering,

object-oriented programming language, UML, code parsers, CASE tools, software

quality, and software maintenance. Secondly, it took a considerable amount of time for

me to find out an open source project which released both source code and documents so

that I could check the results which are generated by reverse engineering tools with the

results in the documents. Last but not least, two of the four chosen tools are commercial

ones. Therefore, I only have had temporary licenses in 15 days to use them.

In the future, I expect more updated works in evaluating the capabilities and

features of reverse engineering tools. Because of the time limitation in the thesis work,

someone cannot evaluate deeply some capabilities such as code parsers, storing

capabilities and representation capabilities with in large projects. I also hope that these

tools would be evaluated with various types of application s. In addition, according to this

and other related research works’ findings, these tools should receive more attention and

investigation, so they could be used widely by improving their capabilities and features .

Such quality features are (i) creating much more views in higher levels of abstraction, (ii)

providing the ability to import other sources such as requirement specification,

architecture, and user interface design and t hen supporting traceability among various

levels of abstraction, (iii) creating a workplace for both software analysis and software

synthesis; (iv) supporting combined programming languages, and (v) recovering the

architecture of software systems.

66

References
[Bellay and Gall, 1998] Bellay, B., Gall, H., An evaluation of reverse engineering tool

capabilities, Journal of Software Maintenance: Research and Practice, Volume 10,

Issue 5, Pages: 305 – 331, John Wiley & Sons, Ltd, 1998.

[Beszédes et al., 1999] Beszédes, Á., Ferenc, R., Gyimóthy, T., Magyar, F., Márton, G.,

Tarkiainen, M., An evaluation of reverse engineering capabilities of the

TDE/Columbus system, Technical Report, University of Szeged, 1999 .

[Beszédes et al., 2005] Beszédes, Á., Ferenc, R., G yimóthy, T., Columbus: A reverse

engineering approach, Pre-Proceedings of the 13th Workshop on Software

Technology and Engineering Practice, Budapest, Hungary, pag es 93-96,

September 24-25, 2005.

[Chikofski et al., 1990] Chikofski, E.J., Cross II, J.H., Re verse engineering and design

recovery: A Taxonomy, IEEE Software, Volume 7, Issue 1, Pages: 13 -17, January

1990.

[Demeyer et al., 1999] Demeyer, S., Ducasse, S., Lanza, M., A hybrid reverse

engineering approach combining metrics and program visualization, In the 6th

Working Conference on Reverse Engineering, 1999.

[Ducasse, 2003] Ducasse, S., Reengineering object oriented applications, Thesis,

University of Bern, Switzerland , 2003.

[Ferenc et al., 2002] Ferenc, R., Beszédes, Á., Gyimóthy, T., Tarkiainen, M. , Columbus –

Reverse engineering tool and schema for C++, International conference on

Software Maintenance, pages: 172 -181, 2002.

[Ferenc et al., 2001] Ferenc, R., Beszédes, Á., Magyar, F., Tarkiainen, M., Kiss, Á.,

Columbus-Tool for reverse engineering la rge object oriented software systems,

2001.

[Gall et al., 1996] Gall, H., Jazayeri, M., Klösch, R., Lugmayr, W., Trausmuth, G.,

Architecture recovery in ARES, Joint proceedings of the second international

software architecture workshop (ISAW -2) and international workshop on multiple

perspectives in software development (Viewpoints '96) on SIGSOFT '96

workshops, Pages:111-115, 1996.

67

[Harris et al., 1995] Harris, D.R., Reubenstein, H.B., Yeh, A.S., Reverse engineering to

architectural level, International Conference on Software Engineering ,

Proceedings of the 17th international conference on Software engineering , Pages:

186 - 195, 1995.

[Imagix 4D User Guide, 2008] Imagix 4D User Guide, 2008.

[Imagix 4D webpage, 2008] Imagix 4D webpage,

http://www.imagix.com/products/products.html , March 2008.

[Jarzabek et al., 1998] Jarzabek, S., Wang, G., Model based - design of reverse

engineering tools, Journal of Software Maintenance: Research and Practice,

Volume 10, Issue 5, Pages: 353-380, 1998.

[Jha et al., 2004] Jha, M., Maheshwaki, P., Phan, T.K.A., A Comparison of four software

architecture reconstruction toolkits, 2004.

[Klösch, 1996] Klösch, R.R., Reverse Engineering: Why and how to reverse engineer

software, 1996.

[Knodel and Pinzger, 2003] Knodel, J., Pinzger, M., Improving fact extraction of

framework-based software systems, 10th Working Conference on Reverse

Engineering, WCRE 2003.

[Koschke, 2005] Koschke, R., What architects should know about reverse engineering

and reengineering, 5 th working conference on Software Architecture, Page(s):4 –

10, IEEE, 2005.

[Lanza, 2003] Lanza, M., CodeCrawler -lessons learned in building a software

visualization tool, In Proceedings of CSMR 2003, 2003.

[Louzado, 2005] Louzado, N., A reverse engineering tool for the analysis and

comprehension of source code, May, 2005.

[Mendelzon and Sametinger, 1995] Mendelzon, A., Sametinger, J., Reverse engineering

by visualizing and querying, Software Concepts and Tools, Vol. 16/4, pp. 170-

182, December 1995.

[Müller et al., 2000] Müller, H.A., Wong, K., Tilley, S.R., Storey, M.A., Jahnke, J.H.,

Smith, D.B., Reverse Engineering: A road map, Proceedings of the Conference on

The Future of Software Engineering, International Conference on Software

Engineering, Pages:47-60, 2000.

http://www.imagix.com/products/products.html

68

[Müller et al., 1993] Müller, H.A., Wong, K., Tilley, S.R., Understanding software

systems using reverse engineering technology, Proceedings of the 1993

conference of the Centre for Advanced Studies on Collaborat ive research:

software engineering - Volume 1, Pages:217-226, 1993.

[Nelson, 1996] Nelson, M.L., A survey of reverse engineering and program

comprehension, April 1996.

[Quigley et al., 2000] Quigley, A.J., Postema, M., Schmidt, H., ReVis: Reverse

engineering by clustering and visual object classification.

[Rigi User’s manual, 1998] Rigi User’s manual version 5.4.4, June 1998.

[Rigi webpage, 2008] Rigi webpage, http://www.rigi.csc.uvic.ca/ , March 2008.

[Setup and user’s guide to Columbus/CAN, 2003] Setup and user’s guide to

Columbus/CAN, 2003.

[Storey et al., 2002] Storey, M.D., Sim, S.E., Wong, K., A collaborative demonstration of

reverse engineering tools, ACM SIGAPP Applied Computing Review, Volume

10, Issue 1, Pages: 18 – 25, 2002.

[Storey et al., 1997] Storey, M.D., Wong, K., Müller, H.A., Rigi: A visualization

environment for reverse engineering, Proceedings of the 19 th International

Conference on Software Engineering, Page(s):606 – 607, May 1997.

[Storey et al., 1996] Storey, M.D., Wong K., Müller, H.A., Fong, P., Hooper D., Hopkins

K., On designing an experiment to evaluate a reverse engineering tool,

Proceedings of the Third Working Conference on Reverse Engineering,

Page(s):31 – 40, November 1996.

[Systä, 1999] Systä, T., On the relationships between static and dynamic models in

reverse engineering java software, Proceedings. Sixth Working Conference on

Reverse Engineering, Page(s):304 – 313, October 1999.

[Systä et al., 2001] Systä, T., Koskimies, K., Mül ler, H., Simba - an environment for

reverse engineering Java software systems, 2001.

[Tilley, 1998] Tilley, S., A reverse engineering environment framework, Technical

Report CMU/SEI, April 1998.

[Tilley et al., 1996] Tilley, S.R., Paul, S., Towards a frame work for program

understanding, Fourth workshop on program comprehension, pages: 19 -28, 1996.

http://www.rigi.csc.uvic.ca/

69

[Tip, 1994] Tip, F., A survey of program slicing techniques, CWI (Centre for

Mathematics and Computer Science), Amsterdam, The Netherlands, 1994.

[Tonella et al., 2007] Tonella, P., Torchiano, M., Bois, B.D., Systä T., Empirical studies

in reverse engineering: state of the art and future trends, Empirical Software

Engineering, Volume 12, Issue 5, Pages: 551 – 571, 2007.

[Understand webpage, 2008] Understand webpage ,

http://www.scitools.com/products/understand/ , July 2008.

[Understand User guide, 2008] Understand User guide and reference manual, version 2.0,

2008.

[Zayour] Zayour, I., Reverse Engineering: A Cognitive approach, a case study and a tool,

Thesis, University of Ottawa.

http://www.scitools.com/products/understand/

70

Appendix
Available reverse engineering tools for C++ software

Tool name Platform Tool URL Comments
Rigi Windows,

Linux,
Solaris, etc

http://www.rigi.csc.uvic.ca/ Free tool

Columbus /
CAN

Windows http://www.frontendart.com./products_c
ol.php

Imagix 4D Windows,
Linux,
Solaris, etc

http://www.imagix.com/products/produc
ts.html

CodeCrawler Every major
platfrom

http://www.inf.unisi.ch/faculty/lanza/co
decrawler.html

Free,
language
independent
tool

Understand Windows,
Linux,
Solaris, etc

http://www.scitools.com/products/under
stand/cpp/product.php

Visustin Windows http://www.aivosto.com/visustin.html
Codesurfer Windows,

Linux
http://www.grammatech.com/products/c
odesurfer/overview.html

C/C++
static source
code
analysis tool

Insight Windows,
Linux

http://www.klocwork.com/products/insi
ght.asp

Static code
analysis tool
for C/C++
and Java

With Class Windows http://microgold.com/
Rational Rose Windows http://www-

306.ibm.com/software/awdtools/develop
er/rose/index.html

SNiFF+ Unix http://www.freedownloadscenter.com/Pr
ogramming/C_and_C___Tools_and_Co
mponents/SNiFF_.html

Crystal Flow
for C++

Windows http://www.sgvsarc.com/product_crys tal
flow.htm

Flowcharts
from C++
source code

Source
Navigator

Linux http://sourcenav.sourceforge.net/ Open source
tool

Code
Visualizer

Windows http://www.codedrawer.com/products/c
odedrawer.html

Table 3: Available reverse engineering tools for C++ applications

http://www.rigi.csc.uvic.ca/
http://www.frontendart.com
http://www.imagix.com/products/produc
http://www.inf.unisi.ch/faculty/lanza/co
http://www.scitools.com/products/under
http://www.aivosto.com/visustin.html
http://www.grammatech.com/products/c
http://www.klocwork.com/products/insi
http://microgold.com/
http://www-
http://www.freedownloadscenter.com/Pr
http://www.sgvsarc.com/product_crystal
http://sourcenav.sourceforge.net/
http://www.codedrawer.com/products/c

