

 Requirements Specification for Open Source Software Selection

Ying Yang

University of Tampere
Department of Computer Sciences
Computer Science
M.Sc. thesis
Supervisor: Zheying Zhang
June 2008

 - i -

University of Tampere
Department of Computer Sciences
Ying Yang: Requirements Specification for Open Source Software Selection
M.Sc. thesis, 64 pages, 13 index and appendix pages
June 2008

Open source software has been widely used. The software world is enjoying the
advantages of collaboration and cooperation in software development and use with the
advent of open source movement. However, little research is concerned about the
practical guidelines of OSS selection. It is hard for an organization to make a decision
whether they should use the OSS or not, and to select an appropriate one from a number
of OSS candidates. This thesis studies how to select an open source software from
requirements engineering perspective. It covers the introduction of open source
software and requirements engineering. According to the literature review, a software
requirements specification template and a selection model are built. These are further
verified in a case study of media player selection.

Key words and terms: open source, open source software, license, requirements
engineering, software requirements specification, open source software selection.

- ii -

Contents
1. Introduction.. 1

1.1. Research Questions.. 3

1.2. Research Methods.. 4

1.2.1. Literature .. 4

1.2.2. Template and Model ... 4

1.2.3. Case Study .. 4

1.3. The Structure of the Thesis .. 5

2. Open Source Software... 6

2.1. History of Open Source Software .. 6

2.2. The Categories of Software.. 8

2.2.1. FOSS ... 9

2.2.2. Non-FOSS... 13

2.2.3. Comparison between OSS and proprietary software 14

2.3. Open Source Software License .. 15

2.3.1. GNU GPL and LGPL Licenses... 16

2.3.2. The MIT License... 17

2.3.3. Copyleft... 17

2.3.4. Licenses Compatibility ... 18

2.3.5. Summary ... 19

3. Software Requirements Specification ... 20

3.1. Requirements Engineering ... 21

3.2. Software Requirements Specification .. 23

3.3. Characteristics of A Good Software Requirements Specification 24

4. Software Requirements Specification for OSS Selection 26

4.1. Factors Affecting OSS Selection ... 26

4.2. Requirements specification template for OSS selection 31

5. Open Source Software Selection Model... 33

5.1. Getting candidates .. 34

5.2. Pre-selection... 34

5.3. Evaluation .. 34

5.3.1. Community.. 35

5.3.2. Cost ... 36

5.3.3. Development group... 36

5.3.4. Documentation .. 36

5.3.5. Functionality ... 36

5.3.6. License .. 36

5.3.7. Lifecycle ... 37

- iii -

5.3.8. Market Share ... 37

5.3.9. Security ... 37

5.3.10. Supporting Service.. 37

5.3.11. Usability .. 37

5.4. Summary .. 37

6. Case Studies: Media Player.. 39

6.1. Getting Candidates ... 39

6.2. Pre-selection... 40

6.3. Evaluation .. 41

6.4. Results .. 43

7. Conclusions.. 44

7.1. Research Results .. 44

7.2. Contribution ... 46

7.3. Limitations and Future Work ... 46

References ... 47

Appendix A: IEEE Requirements document structure..................................... 52

Appendix B: SRS template for OSS selection ... 53

Appendix C: SRS for Media Player Selection ... 58

Appendix D: List of Media Players .. 63

Appendix E: The description of each candidate .. 64

 1

1. Introduction
Open source software (OSS) was a revolutionary concept among computer
programmers and users [Kumar, 2007]. It is becoming more popular among developers
and users community throughout the world. The software world is enjoying the
advantages of collaboration and cooperation in software development and use with the
advent of open source (OS) movement [Kumar, 2007]. It gives everyone an opportunity
to participate in the development of the software project. Everyone can change the
instructions, behaviour and functionality of the OSS programs. A number of OSS
programs are built and maintained by a large network of volunteer programmers
[Wikipedia-Open source, 2007]. And the Internet enabled OS projects to form and grow
[Weber, 2004, p.83]. In practice, a website of an OSS project supports all information
for the project, such as documentation, source code and bug databases.

Briefly, OSS is a program whose license gives users the freedom to run it for any
purpose, to study and modify the program, and to redistribute copies of either the
original or modified program without having to pay royalties to previous developers
[Wheeler, 2007]. Well-known examples of OS products include Mozilla Firefox
[Firefox, 2008] and Linux [Linux, 2008] operation system. A number of enterprises
have OSS projects, such as Nokia [Nokia, 2008], IBM [IBM, 2008]. Meanwhile, OSS
becomes option that replaces the commercial proprietary software for enterprises and
single users.

There are several advantages of using OSS. First of all, almost all OSS products’
price is lower than the proprietary software counterparts’. For example, Comparing
with the full version Windows XP Home Edition for which customers have to pay $199,
customer can order an Ubuntu/Linux operation system from Internet free of charge.
They even do not need to pay the delivery fee. Besides, Computer Economics
[Computer Economics, 2008] conducted a survey, which offered respondents a choice
of five advantages for OSS. The survey results are shown in Figure 1.

0% 10% 20% 30% 40% 50%

Less dependence on vendors

Lower cost

Easier to customize

Better security

No addvantage

Figure 1. The advantage in use of OSS [Computer Economics, 2008]

 2

According to the survey result, the most important advantage in use of OSS is less
dependence on vendors. This indicates that software users want more independence
from the vendors. They desire freedom. The OSS can give them the freedom. For
example, they do not need to rely on the vendors from whom they bought the OSS
products. They can select a proper vendor to supply the maintenance and support
servers.

There are also some disadvantages of OSS, especially for small OSS projects. First,
some OSS programs have to be complied before using. Second, some OSS programs
require the experienced users to use. Third, some OSS programs only run in Linux.
Finally, some OSS programs lack document and maintenance support. Useers never
like to use the unfriendly and unstable OSS products; even the products are free of
charge. In addition, the characteristics of free of charge are not exclusive to OSS. The
proprietary software is available in similar ways, such as Visual Studio Express
Edition1.

Although there are some disadvantages, using OSS products could be a good choice
for users. European commission sums up the reasons for choosing OSS in various
organizations [IDABC, 2007], as shown below.

Political aspect
Issues related to governmental tasks, goals and responsibilities. OSS allows everyone to
use, study, modify and distribute, regardless of a person’s status, wealth, social status
etc [Kumar, 2007].

Economical aspect
A number of studies and user experiences testify various cost reductions when using
OSS. The upfront costs of commercial software are not included in the OSS. In general,
users get full version of the OSS product, rather than time limited trials [Morgan, 2004].

Social aspect
OSS is a community-based activity. Anybody can join and contribute to the social
group.

Technical aspect
OSS is often of a higher quality than its closed or commercial counterparts. Because the
source code of OSS products is available, it becomes increasingly easier to study and
understand its workings. It forms a big advantage for using OSS.

1 Visual Studio Express Edition: http://www.microsoft.com/express/

 3

Legal aspect
OSS license strictly ensures the users freedom to use, modify, and distribute the
programs.

Although the OSS has gotten much attention to the customers, OS was not an idea
decreed from the top. The OS movement is a genuine grass roots revolution [O'Reilly,
1999]. Moreover, not all customers have the background knowledge of software
development; neither can easily understand the complex license issues. OSS requires a
greater degree of computing responsibility than proprietary software [Morgan, 2006].
These restrictions baffle the spread of OSS. It is hard for an organization to make a
decision whether they should use the OSS or not, and to select an appropriate one from
a number of OSS candidates. To solve this problem, a method for OSS selection is
needed. There have been several investigations into the OSS selection. Barbara and
Bernd [2006] described an experience in selecting an OS E-Learning tool in their article.
They introduced the process of selecting the E-Learning tool. However, they did not
explain requirements for OSS selection and how to specify those requirements. Kumar
[2007] discussed the factors affecting the OS libraries software selection, installation
and maintenance. He did not explain why and how these factors affect the OS libraries
selection installation and maintenance. In addition, the factors just affect the OS
libraries selection, installation and maintenance. They are not generalized for different
OSS selection. Moreover, little research is concerned about the practical guidelines of
developing requirements for OSS selection.

OSS and proprietary software have different licenses, different business models,
development processes, etc. The requirements engineering (RE) process for OSS
selection model is different from the conventional RE for proprietary software
development. A key difference is that the information available for OSS is, normally,
more than for proprietary software. The OSS has more public information about the
software than the proprietary software, such as the software product, the program's
source code and so on. Thereby, for OSS selection requirements acquisition can be
intertwined with the product evaluation [Barbara and Bernd, 2006]. For example, the
users of OSS products can try the products before buying, and there is no time-limited.
During the trying, users can evaluate the products and select the one that meets their
needs.

1.1. Research Questions
As we have mentioned there are a number of reasons for choosing OSS. Our main
concern is how the customers choose a proper OSS product according to their special
needs. Therefore, the scope of this thesis is to study how to select an OSS product. In

 4

this study, we adapt the standard software requirements specification (SRS) to describe
the customers’ needs. The research question addressed in this thesis is the following:

How to specify requirements for OSS selection?

To answer this question, the following subquestions are taken into account:

1. Which factors affect the OSS selection?

2. How are these factors reflected in SRS template?

3. How these factors could be evaluated?

In order to answer these questions, OSS definition, OSS license, RE and SRS will

be studied. Through the study, will know factors affecting the OSS selection. With the
knowledge a SRS template for OSS selection is created. The template will give insights
on the factors’ importance. Answers to the second question define the basic elements to
create the SRS template. The last question is used for putting the study into practice. It
examines how this template works in OSS selection.

1.2. Research Methods
The methods used to conduct this study include: literature review, template and model
construction and case study.

1.2.1. Literature

There are plenty of articles written about requirements engineering. Through the RE
study, a basic knowledge about requirements and RE process model should be built.
OSS is a relatively new field of study. In order to get the criteria, which are applied in
the OSS selection, the characteristics of OSS should carefully be studied.

1.2.2. Template and Model
According to the specific characteristics of OSS, this study creates a SRS template for
OSS selection. In order to evaluate the SRS template in this study, a model for OSS
selection should be built. It introduces the steps for OSS selection and the associated
aspects for requirements specification.

1.2.3. Case Study
The media player is basic software in our life. In this thesis, the case study will be
performed on media player products. First, we will use the SRS template to create the
SRS for Media Player selection. Then, according to the SRS, we get the proper

 5

candidates list and evaluate all of them. Finally, the highest scoring product will be
selected. The selection process will follow the selection model. Each criterion will be
evaluated. According to the evaluation result, the best media player is selected.

1.3. The Structure of the Thesis
The thesis consists of seven chapters. Chapter 1 provides an overview of his studies by
discussing the motivation, the research problems, and research methods. Chapters 2 and
3 introduce the respective background. More specifically, Chapter 2 introduces the
basic concepts of OSS, discusses the importance of OSS license in OSS selection, and
studies the license compatibility. Chapter 3 presents the concepts of requirements
engineering with an emphasis on requirements and the specification. The background
discussion leads to studies on requirements specification for OSS selection in the
follow-up chapters. Chapter 4 analyses a variety of factors that influence the selection
of OSS, and adapts the standard IEEE requirements specification structure for OSS
selection. Chapter 5 presents the process model for OSS selection and discusses the use
of requirements specification at different stages of the process. Chapter 6 reports a case
study, which applies the requirements specification template in the process of selecting
an OSS media player for an individual user. Finally, Chapter 7 summarizes the findings
and limitations of the thesis work.

 6

2. Open Source Software

What is open source software (OSS)? Although OSS has existed since the 1960’s
[Weber, 2004], only in the last few years has it been paid much attention. In order to
give a thorough explanation of the concept, we introduce a few terms related to OSS.
Firstly, what is software? Software is a general term used to describe a collection of
computer programs, procedures and documentation that perform some task on a
computer system [Wikipedia - Software, 2007]. Simply speaking, it is an integration of
programs and related documents. Programs are written in programming languages, such
as C, C++ and Java. Most high-level programming languages look like general English.
They are relatively easy to understand. The related documents consist of contents,
introduction, licenses, and so on.

Secondly, what is source? Here, the source in the context of software development
means the source code of software. Software source code composes of functions and
directions of a program. The programmer can add or change instructions to adjust the
program’s behaviour and add functionality [Weber, 2004].

Traditionally, the source code of the software is not available to the users, as it has
special value to the software producing companies. Only the producing companies have
the right to read and modify the source code. The users also have to get the permission
from the vendor if they want to get the source code. Unfortunately, almost all the
producers companies never grant the permission to users. Usually, the users need to buy
the source code if they want to get it. Sometimes, they can not even get the source code
at all. This is the origination of the closed source software. As a result, the software
becomes proprietary that is non-free or semi-free. That kind of software is called
proprietary or closed source software.

Since the restriction of the source code, users lost the right to study and modify the
software. Therefore, the “openness” of source code is a desire. The users want more
freedom for the software. They want the permission to read, study and modify the
source code. However, it does not mean that software, whose source code is available,
is OSS. As an OSS, the users must have the right to modify and redistribute it with or
without modification for any purpose and to any person. The Open Source Initiative 1-
(OSI) gives a clear definition. It will be introduced in section 2.2.3.

2.1. History of Open Source Software
Although all the stories related to software are obviously short when comparing them to
human civilization, OSS is one of the longest amongst them [Gonzalez-Barahona,

1 OSI: Open Source Initiative http://www.opensource.org/

 7

2000]. In fact, it could be said that in the beginning of 1950s, there was only free
software or OSS. Later on, proprietary software was born, and it quickly dominated the
software landscape [Working Group in Libre Software, 2000]. Until recently, the
software industry considered OSS as an optional software development approach again.

In early 1950s, when people talked about computer technology, they meant large
mainframe computers, which they were often used in military domains. The computer
companies supplied the software with the computers. The users did not need to buy the
software. And the source code of the software was accessible to the users. The software
was widely shared, and programmers collaborated regardless of their employers. The
programmers enjoyed learning and tinkering the software [NETC, 2007]. The software
products were free of charge, the source code was available, and the programmers could
modify the source code. It was very similar to the open source model, but nobody called
it, at that time [NETC, 2007], OSS.

In the early 80's, a programmer named Richard Stallman1 worked for MIT. He once
said “Free software is a matter of liberty, not price. To understand the concept, the users
should think of free speech, not free beer [Free Software, 2008]." Eventually, he
founded the Free Software Foundation2 (FSF) in 1985 to do just that. Some of the most
popular products to come out of the FSF were the GNU3 suites of free products. His
greatest contribution to the computer world is the GNU General Public License (GPL).
This license created an avenue and protected people who wanted to create free software
[Hart, 2003]. Although FSF had released much free software, it always did not have its
own operating system. They began to make it, but its development was slowed down by
a number of reasons. And its software was mainly used only in academic circles. By
1990, a GNU OS seemed like it was never going to be released. Linus Torvalds4, a
student at Helsinki University filled this void.

In 1991, Linus got his first computer. He didn’t like MS-DOS operation system,
and the other Unix’s systems were all commercial based. That was beyond his means as
a student. He wanted an Unix-like operating system that was fun to work on. Since
programming was his forte, he began writing his own operating system for fun. This
emphasis on fun is a key for understanding why people use and develop OSS. Linus
posted his work on Usenet5 groups and slowly other people started to notice. They
looked at the code and started suggesting changes and submitted patches. Linus took
these ideas and put them into his project and gave credit where it was due. Later that

1 Richard Stallman http://www.stallman.org/
2 Free Software Foundation: http://www.fsf.org/
3 GNU: http://www.gnu.org/
4 Linus Torvalds: http://en.wikipedia.org/wiki/Linus_Torvalds
5 Usenet: Usenet is a worldwide-distributed Internet discussion system.

 8

year, Linus released version 0.1 of the Linux kernel. A kernel is the foundation of an
operating system that controls base functions that make the computer work. Programs
like the GNU C Compiler and Emacs are the programs, which round out the Linux OS.
Linux gained in popularity and by 1994, when version 1.0 was released, it had over 1
million users [Pavlicek, 2000].

In 1998, a group of individuals advocated that the term free software should be
replaced by OSS as an expression, which is less ambiguous and more comfortable for
the corporate world [Raymond, 1998]. Then, Eric S. Raymond and Bruce Perens [2008]
formed the OSI in February 1998. It is a non-profit corporation formed to educate about
and advocate for the benefits of OS and to build bridges among different constituencies
in the OS community [OSI, 2008]. It gives the intense definition of OS, and has
approved a number of OS licenses. All of them are listed on the homepage of OSI.

2.2. The Categories of Software
According to different criteria, software can be divided into different categories. For
example, the software can be divided into commercial software and non-commercial
software. Commercial software is software being developed by a business, which aims
to make money from the use of the software. Although most commercial software is
proprietary, “commercial” and “proprietary” is not the same thing. OSS and free
software can be commercial software too, and proprietary software can also be non-
commercial software. According to the use field or purpose of the software, it can be
sorted as follow: [Wikipedia - Software, 2007]:

• Application software: office suites, word processors, spreadsheets, etc.

• System software: operating systems, device drivers, desktop environments, etc.

• Programming tools: assemblers, compilers, linkers, etc.

Figure 2 is quoted from GNU. It shows that most free software is OSS and most

OSS falls into the free software category, as most free software and OSS use same
license. Twenty-six OSI-approved licenses have been analyzed by the FSF, and only
two of these, the Original Artistic License and the Reciprocal Public License, are
regarded as non-free licenses [Chen, 2006]. Generally speaking, the licenses of free
software are more restrictive than the licenses of OSS. The difference between them
will not affect so much on this study; we will not deliberately distinguish them. In fact,
they agree more or less on the practical recommendations, and do work together on a
number of specific projects, although they have different basic principles [Richard,
2007]. For example, the FSF and the OSI agree on the classification of Free Open
Source Software (FOSS) and non-FOSS licenses.

 9

Figure 2. Software Categories [SC, 2007]
In this thesis, the software is sorted into two categories, FOSS and non-FOSS

software. The FOSS includes free software and OSS, which can be further divided into
Copylefted, GPL'ed, Public domain and Xfree86 Style software. The non-FOSS
software includes proprietary software, which can be further divided into Closed
software and Shareware.

2.2.1. FOSS
FOSS is an inclusive term generally synonymous with both free software and OSS. It is
liberally licensed to grant the right of users to study, change, and improve its design
through the availability of its source code [FOSS, 2008].

Free Software
Free software is a matter of freedom, not price. People should be free to use software in
all the ways [GNU, 2007a]. The word `free' in free software has a similar meaning as in
free speech, free people and free country, and should not be confused with its other
meaning associated with zero-cost. It does not mean free of charge, although much free
software is free of charge. In particular, free software is software that gives users the
freedom to share, study and modify it, either gratis or for a fee. GNU summarizes four
kinds of freedom, and explains them precisely [GNU, 2007b]:

• The freedom to run the program, for any purpose .

• The freedom to study how the program works, and adapt it to users’ needs.
Access to the source code is a precondition for this.

• The freedom to redistribute copies so users can help their neighbour.

 10

• The freedom to improve the program, and release the improvements to the
public, so that the whole community benefits. Access to the source code is a
precondition for this.

“The freedom to run the program means the freedom for any kind of person or

organization to use it on any kind of computer system, for any kind of overall job and
purpose, without being required to communicate about it with the developer or any
other specific entity. In this freedom, it is the users’ purpose that matters, not the
developer's purpose; users are free to run a program for their purposes, and if they
distribute it to someone else, she is then free to run it for her purposes, but they are not
entitled to impose their purposes on her.”

“The freedom to redistribute copies must include binary or executable forms of the
program, as well as source code, for both modified and unmodified versions.
(Distributing programs in runnable form is necessary for conveniently installable free
operating systems.) It is ok if there is no way to produce a binary or executable form for
a certain program (since some languages don't support that feature), but users must have
the freedom to redistribute such forms should they find or develop a way to make
them.”

“In order for the freedoms to make changes, and to publish improved versions, to be
meaningful, users must have access to the source code of the program. Therefore,
accessibility of source code is a necessary condition for free software.”

“A program is free software if users have all of these freedoms. Thus, users should
be free to redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere. Being free to do these things means
(among other things) that users do not have to ask or pay for permission.”

Open Source Software
Open Source does not just mean access to the source code. OSI gives an intensive
definition of OSS and explanation of it. The distribution terms of OSS must comply
with the following criteria [OSS-Definition, 2007]:

Free Redistribution
The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several
different sources. The license shall not require a royalty or other fee for such sale. By
constraining the license to require free redistribution, we eliminate the temptation to
throw away a number of long-term gains in order to make a few short-term sales dollars.
If we didn't do this, there would be lots of pressure for co-operators to defect.

 11

Source Code
The program must include source code, and must allow distribution in source code as
well as compiled form. Where some form of a product is not distributed with source
code, there must be a well-publicized means of obtaining the source code for no more
than a reasonable reproduction cost preferably, downloading via the Internet without
charge. The source code must be the preferred form in which a programmer would
modify the program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a pre-processor or translator are not allowed. We require
access to un-obfuscated source code because users can't evolve programs without
modifying them. Since our purpose is to make evolution easy, we require that
modification be made easy.

Derived Works
The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software. The mere
ability to read source isn't enough to support independent peer review and rapid
evolutionary selection. For rapid evolution to happen, people need to be able to
experiment with and redistribute modifications.

Integrity of Author’s Source Code
The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of "patch files" with the source code for the purpose of
modifying the program at build time. The license must explicitly permit distribution of
the software built from modified source code. The license may require derived works to
carry a different name or version number from the original software. Encouraging lots
of improvement is a good thing, but users have a right to know who is responsible for
the software they are using. Authors and maintainers have reciprocal right to know
what they're being asked to support and protect their reputations.

No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons. In order to
get the maximum benefit from the process, the maximum diversity of persons and
groups should be equally eligible to contribute to open sources. Therefore we forbid
any open-source license from locking anybody out of the process.

Some countries, including the United States, have export restrictions for certain
types of software. An OSD-conformant license may warn licenses of applicable
restrictions and remind them that they are obliged to obey the law; however, it may not
incorporate such restrictions itself.

 12

No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field
of endeavour. For example, it may not restrict the program from being used in a
business, or from being used for genetic research. The major intention of this clause is
to prohibit license traps that prevent open source from being used commercially. We
want commercial users to join our community, not feel excluded from it.

Distribution of License
The rights attached to the program must apply to all to whom the program is
redistributed without the need for execution of an additional license by those parties.
This clause is intended to forbid closing up software by indirect means such as
requiring a non-disclosure agreement.

License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program's being part of a
particular software distribution. If the program is extracted from that distribution and
used or distributed within the terms of the program's license, all parties to whom the
program is redistributed should have the same rights as those that are granted in
conjunction with the original software distribution. This clause forecloses yet another
class of license traps.

License Must Not Restrict Other Software
The license must not place restrictions on other software that is distributed along with
the licensed software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software. Distributors of open-
source software have the right to make their own choices about their own software.

License Must Be Technology-Neutral
No provision of the license may be predicated on any individual technology or style of
interface. This provision is aimed specifically at licenses, which require an explicit
gesture of assent in order to establish a contract between licensor and licensee.
Provisions mandating so-called "click-wrap" may conflict with important methods of
software distribution such as FTP download, CD-ROM anthologies, and web mirroring;
such provisions may also hinder code re-use. Conformant licenses must allow for the
possibility that (a) redistribution of the software will take place over non-Web channels
that do not support click-wrapping of the download, and that (b) the covered code (or
re-used portions of covered code) may run in a non-GUI environment that cannot
support popup dialogues.

 13

Copylefted Software
Copylefted software is FOSS software whose distribution terms do not let redistributors
add any additional restrictions when they redistribute or modify the software. This
means that every copy of the software, even if it has been modified, must be free
software [GNU, 2007a].

But non-copylefted free software also exists. Non-copylefted free software comes
from the author with permission to redistribute and modify, and also to add additional
restrictions to it [GNU, 2007a]. If a program is free but not copylefted, then some
copies or modified versions may not be free at all. For example, a software company
can compile the program, with or without modifications, and distribute the executable
file as a proprietary software product.

GPL’ed Software
GPL’ed software is the one whose license is under GNU GPL. GPL’ed software is
copylefted software.

Public Domain Software
Public domain software is software that is not copyrighted. It is a special case of non-
copylefted free software, whose source code is in the public domain. The copies or
modified versions of public domain software may not be free at all.

Xfree86 Style
The XFree86 Project, Inc is a global volunteer organization, which produces XFree86®,
the freely redistributable open-source implementation of the X Window System
continuously since 1992 [XFree86 2007]. All products of Xfree86 are under Xfree86
license.

XFree86 runs primarily on UNIX® and UNIX-like operating systems like Linux,
all of the BSD variants, Sun Solaris both native 32 and 64 bit support, Solaris x86, Mac
OS X as well as other platforms like OS/2 and Cygwin.

2.2.2. Non-FOSS
In this study, non-FOSS equals to proprietary software. Proprietary software is software
that is not free or semi-free. Its use, redistribution or modification is prohibited, or
requires the users to ask for permission, or is restricted so much that the users
effectively can't do it freely [GNU, 2007a]. The source code of proprietary software has
always kept as a secret. Usually, an individual or a company who developed it owns the
source code. Software under this category includes closed software and shareware.

 14

In figure 3, it shows that proprietary software also can be free download. But, the
source code is not available. Even if the source code of proprietary software is available,
users have no permission to modify and redistribute it, which distinguishs it from the
OSS.

Closed Software
Closed software is software whose source code is unavailable.

Shareware
“Shareware is software which comes with permission for people to redistribute copies,
but says that anyone who continues to use a copy is required to pay a license fee.”
Shareware is not free software, or even semi-free. There are two reasons:

1. For most shareware, source code is not available; thus, the users cannot modify
the program at all.

2. Shareware does not come with permission to make a copy and install it without
paying a license fee, not even for individuals engaging in non-profit activity.

2.2.3. Comparison between OSS and proprietary software
Although some OSS programs are developed by developers' interesting, and free to use,
distribute, and modify, it does not mean OSS is anti commercial. Both proprietary
software and OSS can be commercial software. The motivation for money (commercial
or non-commercial) cannot be a difference between them.

In figure 2, it shows that not all free software and OSS can be freely downloaded
and part of the proprietary software can be freely downloaded. The concept “free
download” can not distinguish between the free software, OSS and proprietary software.

According to the definitions of OSS and proprietary software, the main difference
between OSS and proprietary software is whether the source code of software is
available and free to modify, whether the software is free to redistribute. Obviously, the
proprietary software does not give the users that permission to read and modify the
source code and redistribute the software. Although part of the proprietary software is
source code available, and free to download and use, it is not OSS.

Except the difference of the definition, the cost of using OSS and proprietary
software is different. Usually, the price of an OSS program is far less than a comparable
proprietary program. But, it is the initial price of the software. Here, we will talk about
the total cost of ownership (TCO) of them. According to the Northwest Educational

 15

Technology Consortium1 (NETC), the TCO includes the sale price (initial fee), any
hardware and software upgrades, maintenance and technical support, and training (or
re-training) [NETC, 2008]. Time and frustration may be hard to measure.

As we have mentioned, the price of an OSS program is usually far less than a
comparable proprietary program. Unfortunately it's not clear whether the TCO of OSS
is really lower than the comparable proprietary software. Proprietary software
companies claim their TCO is lower while OSS companies argue the opposite. One
long-term study of Web server deployments found a lower TCO for Linux over
Microsoft Windows and Sun Solaris [Orzech, 2002]. But Microsoft alleges lower TCO
with its "comprehensive, integrated, easy-to-use stack of technologies" and has its own
favourable studies [Cooper, 2003]. The Figure 3 comes from NETC. It shows the
opinions both of them.

Figure-3 Total Cost of Ownership [TCO, 2008]

Usually, OSS programs may require more skill to deploy and maintain, compared to

proprietary programs. For a skilled customer, he/she only needs to pay the price of
product. Thus, the TCO of OSS is less than TCO of proprietary software, according to
either OS proponents or proprietary companies.

2.3. Open Source Software License
The license under a program is used to define exactly the rights that users have. For
example, in most proprietary programs the license withdraws the rights of copying,
modification, lending, renting and using in several machines. Usually, licenses under

1 NETC: Northwest Educational Technology Consortium http://www.netc.org/

 16

proprietary programs specify the users only have the restricted rights to use the program
[Gonzalez-Barahona, 2000]. In contrast, the OSS license complies with the terms of the
open source definition and is used to specify several goals, like:

• Guaranteeing some basic freedoms of redistribution, modification and use to
the users;

• Ensuring some conditions imposed by the authors, for instance, citation of the
author in derived works; and

• Guaranteeing that derived works are also OSS.

The authors of software products can choose the different licenses to protect their

programs. Most popular and sometimes considered normative OSS licenses are those
approved by the OSI based on their Open Source Definition, such as GPL Version 3,
LGPL Version 3 and the MIT License. There are a lot of different OSS licences out
there, and it can sometimes be a bit confusing if the users are not intimate with the
details of each one. Therefore, if the user wants to modify and redistribute his work
derived from an OSS program, he has to carefully study the license of the OSS program.
Fortunately, although each author could use a different license for his program, the fact
is that almost all OSS programs use one of the common licenses, GPL Version 3
[GPLv3, 2007], LGPL Version 3 [LGPLv3, 2007]. Basically, the users just have to
study those two licenses. And we will introduce those two licenses and another license
MIT in later sections.

2.3.1. GNU GPL and LGPL Licenses
GPL is abbreviation of General Public License. Richard Stallman originally wrote it for
the GNU project. Although it was designed for free software, it has approved by OSI.
Now, it is a widely used free software and OSS license.

The GPL was carefully designed to promote the production of more free software,
and because of that, it explicitly forbids some actions on the software, which could lead
to the integration of GPL software in proprietary software. The main characteristics of
the GPL are the following [Gonzalez-Barahona, 2000]:

• It allows binary redistribution, but only if source code availability is also
guaranteed.

• It allows source redistribution (and enforces it in case of binary distribution).
• It allows modification without restrictions (if the derived work is also covered

by GPL).

 17

• Complete integration with other software is only possible if that other software
is also covered by GPL.

The GPL allows selling of the copies of software for money, and also allows

charging a fee for downloading the software from an Internet site. The fee may be
whatever the distributor wishes, however, the source code must be provided. The author
also can modify the GPL software to a new software, and then sell it for money, but it
must be under the terms of GPL (GPL is copylefted). Therefore, if a company want to
make profit by selling the GPL software, it would be quite impossible. Because the
users are free to release the software to public. A famous GPL software is the Linux
kernel.

The Lesser or Library General Public License (LGPL) is a modified GPL. It is more
permissive and less restrictive than GPL. It is especially useful for some software
libraries. This makes it possible to combine free software and OSS with proprietary
software (GPL does not permit). For example, a project AB is combined with an OSS
program A and a proprietary program B. If program A is licensed under the GPL, the
derived work program AB is required to be licensed under the GPL. Obviously, it is
inconsistent with the license permission of proprietary program B. It is why a number
of proprietary software companies call GPL “virus”. However, if A is under LGPL, the
derived work AB does not need to be under LGPL. The LGPL encourages greater use
of free libraries even in proprietary software projects.

2.3.2. The MIT License
The MIT license is a free software license originating at the Massachusetts Institute of
Technology (MIT). It states more explicitly the rights given to the end-user, including
the right to use, copy, modify, merge, publish, distribute, sub-license, and/or sell the
software. The one condition is that the copyright notice and the permission notice shall
be included in all copies or substantial portions of the software.

2.3.3. Copyleft
Copyleft is a play on the word copyright and is the practice of using copyright law to
remove restrictions on distributing copies and modified versions of a work for others
and requiring that the same freedoms be preserved in modified versions [Wikipedia,
2007e]. GNU gives a formal definition of Copyleft. It is a general method for making a
program or other work free, and requiring all modified and extended versions of the
program to be free as well [GNU, 2007c]. In general, copyright law allows an author to
prohibit others from reproducing, adapting, or distributing copies of the author's work.
On the contrary, an author may, through a copyleft licensing scheme, give every person
who receives a copy of a work permission to reproduce, adapt or distribute the work as

 18

long as any resulting copies or adaptations are also bound by the same copyleft
licensing scheme. It prevents FOSS becoming proprietary.

There are two broad categories of FOSS licences, copyleft licenses and non-copyleft
licenses For example, GPL is copyleft license and MIT is not copyleft license. If the
users want to modify the product and convert the product into proprietary or require
derived works under the same license, they have to know if the license is copyleft or
not.

Derived product Original work license

Same license Proprietary

GPL (Copyleft license) Yes No

MIT (Non-copyleft license) No Yes

Table. 1 Licenses of the original product and derived products

In Table 1, it shows that if the original product is under coplyleft license, such as

GPL, the derived product has to be under the same license, and can not be converted
into proprietary product; if the original product is under non-copyleft license, such as
MIT, the product need not to be under the same license, and may be converted into
proprietary product.

2.3.4. Licenses Compatibility
Different license must have more or less different requirements. If the licenses contain
contradictory requirements it impossible to combine source code from such packages in
order to create new software packages [O'Riordan, 2006]. For example, if one licence
says "modified versions must mention the developers in any advertising materials", and
another licence says "modified versions cannot contain additional attribution
requirements", then, if someone combined a software package which uses one licence
with a software package which uses the other, it would be impossible to distribute the
combination because the two requirements cannot be simultaneously fulfilled [Stallman,
2007]. When two OSS projects have incompatible licenses, they can't share code.

There are a large number of OSS licenses, but only a few are widely used. Figure 4
makes it easy to see when common licenses can be combined [Wheeler, 2007]:

 19

Figure 4 License Compatible [LC, 2007]

In Figure 4, blue rectangles are the names of different OSS licenses. An arrow from box
A to box B means that license A is compatible to license B. In other words, users can
combine software with these licenses; the combined result has the license of B. To see
if software can be combined, just start at their respective licenses, and find a common
box the users can reach following the arrows. For example, MIT/X11 licensed software
and LGPLv3 licensed software can both reach “GPLv3 or GPLv3+”, they can be
combined using GPLv3 or GPLv3+.

Further more, if one product is under GPLv3, the other product is proprietary
software, the combination product is under GPLv3. Then, the proprietary software has
to convert into OSS. This is why OSS is called “virus”. To solve the problem, the user
can use the LGPLv3. LGPLv3 allows the users combine LGPLv3 product with
proprietary software, without converting the proprietary software into LGPLv3
software. But any changes to the LGPLv3 product itself must be released under the
LGPLv3.

2.3.5. Summary
As we mentioned in previous sections, when selecting the OSS product, users should
check whether the license of the product satisfies their needs. When they want to
convert an OSS product into a proprietary software product, they should ensure that the
license of the product can not be a copyleft license. When they want combine two OSS
products, they should check whether the two licenses of the products are compatible or
not. If the two licenses are not compatible, users can not share the source code of the
two products, and can not combine them.

 20

3. Software Requirements Specification
Every software system can fulfil some purpose. The early stage of a software
development project is to understand of the purpose of the system in some detail. This
process is requirements engineering. Broadly speaking, RE is the process of
discovering that purpose, by identifying stakeholders and their needs, and documenting
these in a form that is amenable to analysis, communication, and subsequent
implementation. In details, requirements engineering can be characterized as an
iterative process of discovery and analysis, designed to produce an agreed-upon set of
clear, complete, and consistent system requirements [Robinson and Pawlowski, 1999].

The RE of a software project is vital to its success. It sets the criteria to evaluate
whether the software meets the purpose for which it was intended. All follow-up
development activities are influenced or driven by it. RE is, arguably, the most
important activity performed during the development of software intensive systems. As
the bad requirements, a number of systems have been delivered late and over budget
[Kotonya and Sommerville, 1998]. Deficient requirements are the single biggest cause
of software projects failures. From studying several hundred organizations, Capers
Jones [1996] discovered that RE is deficient in more than 75% of all enterprises.
Furthermore, the cost of repairing requirements-related problems dramatically increases
as the software development process progresses [Boehm and Papaccio, 1988]. It is
therefore evident that, getting requirements right might be the single most important
and difficult part of a software project.

Before introducing the requirements engineering process, we have to know what
are requirements. Requirements are a specification of what should be implemented.
They are descriptions of how the system should behave, or of a system property or
attribute. They may be a constraint on the development process of the system
[Sommerville and Sawyer, 1997].

Requirements include a set of functional requirements and non-functional
requirements. The functional requirements describe the behaviour of the system, such
as what the users want a system to do, which can be modelled with use case [Zhang,
2007b]. Sometimes, functional requirements are called behavioural or operational
requirements. They specify the inputs to the system and the outputs from the system
and the behavioural relationships between them. The important point to note is that
WHAT is wanted is specified, and not HOW it will be delivered. The non-functional
requirements are the ones, which impose constraints on the design or implementation,
such as performance engineering requirements, quality standards, or design constraints.

Meanwhile, the requirements can be sorted according to the abstraction level. There
are four levels, business requirements, user requiements, system requirments and
software requiements.

 21

Business requirements
Business requirements are derived from business goals or objectives. They are the
essential activities of an enterprise and the reason for developing systems and software
in the first place. If the system does not support the business requirements effectively
and efficiently, they have no reason for being -- Businesses exist to make money [Kasse
Initiatives, 2004]. The business requirements should articulate how the product’s
developers and their customers will benefit from this product, and what organization or
customer request the system. Business requirements include vision and scope document.
A short vision statement describes what the product could ultimately become. The
scope description should summarize the major features included in the initial release
and subsequent releases.

User requirements
User requirements are written for customers in natural language with diagrams. They
provide the services and the operational constraints, for example, user case or scenario
descriptions.

System requirements
System requirements are the detailed descriptions of the system services. For example,
testing, quality assurance, project management. And the schedule and budget can be
estimated in system requirements documents.

Software requirements
Software requirements are written for developers. They provide detailed software
description, which can serve as a basis for a design or implementation.

3.1. Requirements Engineering
Different organizations tackle RE in radically different ways [Kotonya and
Sommerville, 1998]. Although there is little uniformity in authors’ terminology or
decomposition, a number of RE process phases/activities have been proposed. A
process model is a simplified description of the RE process. But, no single model offers
a complete understanding of the process. When describing processes in detail it is usual
to produce several different types of models giving different process information. At an
abstract level, the Linear RE Process Model shown in Figure 5 can describe most
requirements engineering processes.

 22

Figure 5. Linear RE Process Model [Kotonya and Sommerville, 1998, p32]

Kotonya and Sommerville [1998, p32] describe the activities in the RE process as
follows:

Requirements elicitation
The system requirements are discovered through consultation with stakeholders, from
system documents, domain knowledge and market studies. Other names for this process
are requirements acquisition or requirements discovery.

Requirement analysis and negotiation
The requirements are analyzed in detail and different stakeholders negotiate to decide
which requirements are to be accepted. This process is necessary because there are
inevitably conflicts between the requirements from different sources, information may
be incomplete or the requirements expressed may be incompatible with the budget
available to develop the system. There is usually some flexibility in requirements, and
negotiation is necessary to decide on the set of agreed requirements for the system.

Requirements documentation
The agreed requirements are documented at an appropriate level of detail. In general,
there needs to be a requirements document, which is understandable by all system
stakeholders. This usually means that the requirements must be documented using
natural language and diagrams. More detailed system documentation such as system
models may also be produced.

 23

Requirements validation
There should be a careful check of the requirements for consistency and completeness.
This process is intended to detect problems in the requirements document before it is
used as a basis for system development.

In this study, we focus on the activity of requirements documentation (requirements
specification). We will create a SRS template for OSS selection.

3.2. Software Requirements Specification
SRS is a document that contains statements of requirements. In different organizations,
this document may have different names, such as Requirements document, Functional
specification or SRS. In this study, we use SRS to represent the document that specifies
requirements.

In software development, SRS provides a representation of the software for the
customer’s review and approval. It sets out what the software should do without
specifying how it should be done. According to Kotonya and Sommerville [1998, p15]
it describes the following:

1. The services and functions, which the system should provide.

2. The constraints under which the system must operate.

3. Overall properties of the system, i.e. constraints on the system’s emergent
properties.

4. Definitions of other systems, which the system must integrate with.

5. Information about the application domain of the system, e.g. how to carry out
particular types of computation.

6. Constraints on the process used to develop the system.

There are some SRS templates; for example, the IEEE/ANSI 830-1998 standard

Requirements document structure [IEEE Std 830, 1998]. It is available in Appendix A.
The IEEE standard structure contains 6 chapters, introduction, overall description,
external interface requirements, communications interfaces, other non-functional
requirements and other requirements. Chapter 1 introduction contains the purpose,
conventions, intended audience and reference of the SRS, and the scope of the product.
Chapter 2 overall description describes the general factors that affect the product and its
requirements. This chapter does not state specific requirements. Instead, it provides a
background for those requirements, which are defined in detail in Chapter 3, Chapter 4,
Chapter 5 and Chapter 6 of the SRS. Those chapters include external interface
requirements, communications interfaces, other non-functional requirements and other
requirements of the SRS. They should contain all of the software requirements to a

 24

level of detail sufficient to enable designers to design a system to satisfy those
requirements, and testers to test that the system satisfies those requirements.

The IEEE standard structure is a generic standard, which is intended apply to a
wide range of requirements documents. In general, not all parts of the standard are
required for all requirements documents. Each organization should adapt the standard
depending on the type of systems it develops.

3.3. Characteristics of A Good Software Requirements Specification
Requirements play a driving role during product creation. The requirements are
captured in a requirements specification. A good SRS clearly communicates to the
stakeholders that the software features described in the document meet the needs of the
business [Software Requirements Inc, 2008]. Stakeholders form the requirements
source and they include a wider range more than human beings, but also others such as
the (physical) environments [Zhang, 2007a].

A SRS should be clear, concise, consistent and unambiguous. It's important to note
that an SRS contains functional and non-functional requirements only; it doesn't offer
design suggestions, possible solutions to technology or business issues, or any other
information other than what the development team understands the customer's system
requirements to be. A well-designed SRS has the following characteristics [Donn Le
Vie, 2007]:

Complete
SRS defines precisely all the go-live situations that will be encountered and the
system's capability to successfully address them.

Consistent
SRS capability functions and performance levels are compatible, and the required
quality features (security, reliability, etc.) do not negate those capability functions. For
example, the only electric hedge trimmer that is safe is one that is stored in a box and
not connected to any electrical cords or outlets.

Accurate
RS precisely defines the system's capability in a real-world environment, as well as how
it interfaces and interacts with it. This aspect of requirements is a significant problem
area for a number of SRSs.

 25

Modifiable
The logical, hierarchical structure of the SRS should facilitate any necessary
modifications (grouping related issues together and separating them from unrelated
issues makes the SRS easier to modify).

Ranked
Individual requirements of an SRS are hierarchically arranged according to stability,
security, perceived ease/difficulty of implementation, or other parameter that helps in
the design of that and subsequent documents.

Testable
An SRS must be stated in such a manner that unambiguous assessment criteria
(pass/fail or some quantitative measure) can be derived from the SRS itself.

Traceable
Each requirement in an SRS must be uniquely identified to a source (use case,
government requirement, industry standard, etc.)

Unambiguous
SRS must contain requirements statements that can be interpreted in one way only. This
is another area that creates significant problems for SRS development because of the
use of natural language.

Valid
A valid SRS is one in which all parties and project participants can understand, analyze,
accept, or approve it. This is one of the main reasons SRSs are written using natural
language.

Verifiable
A verifiable SRS is consistent from one level of abstraction to another. Most attributes
of a specification are subjective and a conclusive assessment of quality requires a
technical review by domain experts. Using indicators of strength and weakness provide
some evidence that preferred attributes are or are not present.

 26

4. Software Requirements Specification for OSS Selection
In this study, the SRS is used for OSS selection rather than software development. The
goals, users, abstraction levels are different from a typical software requirements
specification.

In software development, SRS is used for providing a representation of the software
for the customer’s review and approval, and communicating the requirements to
customers, engineers and managers. SRS for OSS selection is for selecting an OSS
product from all candidates. It forms criteria for evaluating all candidates. It shows
WHAT will be evaluated, not HOW will be evaluated.

In software development, SRS is used for two parties. Party A: The person who will
buy or use the software, such as software customer and user. Party B: The person who
will sell or develop the software, such as software sale staff, project managers, software
engineers, software test engineers, software maintenance and support staff, document
writer and training personnel. SRS for OSS selection is used for the person who will
buy or use the software. It is only one party, i.e. customers and users.

In software development, SRS is designed for a certain product. It explains what the
product will do, where the product will work and how well the product will run.
Besides the high-level business requirements and user requirements, an important
component of SRS is the detailed functional software requirements and non-functional
requirements. The detailed software requirements provide developers important
information of what shall be implemented, and how the implementation behaves. SRS
for OSS selection is designed for an uncertain product. It is used to evaluate what and
how all candidates’ products have already done. The specification is therefore not
specific for application developers, and can remain at a relatively high abstraction level,
i.e. user requirements might be detailed enough for OSS selection.

Moreover, the OSS selection specification may include components different from
conventional SRS. For example, conventional SRS does not conclude the cost of the
product (usually, it is in project plan). However, the cost is an important factor affecting
the selection. In SRS for OSS selection, it belongs to business requirements. However,
the IEEE standard Requirements document structure is still useful. We will modify it
according to our needs. Next, we will analyse the factors, which affect the OSS
selection.

4.1. Factors Affecting OSS Selection
There are a number of factors that affect the OSS selection. As we mentioned in
Chapter 1, Kumar [2007] gave factors, which affect the OS libraries software selection,
installation and maintenance in his article, such as OSS licenses, functional modules,
stable releases, developers and users community, user interface and documentation.
However, those are specially used for OS libraries selection. In this study, we analyze

 27

the factors affecting a generic OSS products selection. According to Metcalfe [2008]
and IDABC [2007], we describe the following factors by alpha sort, cost, community,
development group, documentation, functionality, license, lifecycle, market share,
security, supporting service and usability, and explain why these factors are important
for OSS selection.

Community
One of the most important aspects of OS is the community [Golden, 2005, p.21]. It does
most of the testing and provides quality feedback. Unlike the proprietary software,
which uses financial resources to test the software, the community is the resource for
OSS testing.

The community includes user community and developer community. The user
community consists of the people who use the software and participate in some way,
such as reporting bugs or other problem of the software, giving feedback on
functionality that the software does not work well or the user need. The developers can
modify and improve the software according to user requirements. There is no explicit
line between the user community and the developer community, and the role of the
community member can change from a user to a developer, and vice versa.

A large and active community often indicates the acceptance of the software and its
quality. If the software was not good enough to use, there would not be so a number of
people who cared about its development [Duijnhouwer and Widdows, 2003].

The community can give the free support to the users. The user can ask question
and find answers in community by using mailing list or forums. It is especially
important for an individual user, if he/she wants to seek free support from the
community.

Cost
Obviously, cost is an important issue for every user. In this study, the cost is total cost
of ownership. It includes the purchase cost and any other cost related to the product.
Sometimes, the installation of large OSS is hard for customers, especially for the users
who do not have an experience of similar software. Therefore, they may need the help.
In general, the cost of installing a large OSS is more than a normal proprietary software.
For example, large Linux installations need between 25 percent and 40 percent more
full-time support resources than Windows or commercial Unix systems. Making
financial matters worse, high-demand Linux experts can charge premiums as high as 40
percent more than what their Windows and Unix competitors charge [Joch, 2004].

Usually, most OSS products do not cost anything to get, or have a relatively
nominal acquisition cost (e.g. a fee for a boxed CD-ROM set or delivery fee). The
purchase cost may be the total cost for a single user. However, for enterprise users, they

 28

have to consider the total cost of ownership, which includes the purchase cost, and
ongoing cost for support, such as installation cost, training cost, and maintenance cost.

Development group
The development group is also important for the OSS. The skilled and experienced
developers are important factors for OSS quality. And the developers’ motivation is
another affecting the OSS quality. The motivation behind a certain project can explain
the rationale for intended use and how serious the developers are about the project
[Golden, 2005].

Documentation
OSS documentation is often lagging behind the status of the application, since
especially user documentation is often written only after functionality is created
[Scacchi, 2002]. User documentation, including tutorial and frequently asked question
(FAQ), explains how to install and to use the software. In addition, the developer
documentation is another important OSS documentation. It contains developing
information. It provides the insight into the OSS. If the user wants to modify the source
code, the developer documentation can explain what a section of code does, how to use
and change it and why it works like it does. The user also can find the history of bug
fixes, feature changes of the product, etc. When we select OSS product, we should
check if the project’s site of the product has the documentation.

Functionality
The most basic reason why the customers select the OSS is that the software does what
they want it to do. The functional requirements show capabilities of the software.
Therefore, when users select software, they have to check, if the software provides the
needed functions or services. Usually, a number of OSS products have a brief
description of the capabilities. However, there is not ideal software, which provides all
users’ expecting functionalities. It often needs to add the missing functionalities. OSS
has a unique option; the customers can add the missing functionalities by modifying the
source code. Thus, when the customers want to add the missing functionalities, they
should consider the possibility and cost.

License
As mentioned before, OSS gives the users more freedom than proprietary software. The
freedom comes from the OSS licenses. The OSS licenses give the users permission to
modify, redistribute the software. However, different developers may use different
licenses, which are determined by their motivations. The users have to pay attention to
licenses issues, when they select the OSS products. For individual users who use OSS

 29

products without any further modification and redistribution, they do not need to care
about the license issues much. For users who will combine, modify and redistribute the
OSS applications, especially for the ones who convert the OSS product into a
proprietary product, the license issues shall be taken into account carefully. For
example, the copyleft’ed software can not be converted into proprietary software, and if
the licenses of two products are not compatible, the two products can not be share the
source code each other.

OSS Lifecycle
A status of an OSS in its lifecycle indicates a product’s stability. A product at its early
development stage is usually full of bugs [Golden, 2005, p.103]. The older a project, the
less likely the developers will suddenly stop [Duijnhouwer and Widdows, 2003]. It,
however, does not mean the older the better. It also depends on the release status.
Whether the software is released regularly and whether the new version uses the new
technologies and method.

It is often considered impossible to write completely bug-free software of any real
complexity [Software Bug, 2008]. Successful software needs to fix the bugs and release
the new version. Typically a product needs to reach its 1.0 release prior to being
considered for enterprise use. This is not to say that a number of pre-1.0 versions of
software are not very good indeed, e.g. Mozilla's 0.8 release of its FireFox browser was
polished and mature [Metcalfe, 2008]. For enterprise users, they need the most recent
stable release of the software. They also can fix the bugs by themselves, since the
source code of the software is available. But, they have to consider the cost, time and
possibility.

 Market Share
If the users get the OSS from the website like SourceForge1, which provides the
statistics of the each product, the users should know how a number of times it has been
downloaded. Sometimes, it is important to know how popular the OSS is. Most
successful OSS should have a number of users. A product with a large installed base
(Apache for example) provides additional stimulus to form communities. For popular
OSS product, there are a number of third parties can provide the support.

Security
OSS gives both attackers and defenders great power over system security [Cowan,
2003]. The characteristic of “source available” is a double blade. It makes the source
code available to attackers too. OSS is neither more nor less secure than closed source

1 SourceForge: http://sourceforge.net/index.php

 30

software. There are famously secure examples of both OSS and closed source software
just as there are infamously insecure examples of both open source software and closed
source software [Yeates, 2005]. The user has to balance the security requirements with
other requirements, when he/she selects OSS product.

Supporting service
There are two types of support, free support and paid support. Usually, the community
give the free support. User can ask question and give feedback through the community.
The common ways are mailing list and forum. When a user selects an OSS product,
he/she should consider how active the community is?

Besides community support, professional support can also be purchased. Unlike the
conventional proprietary software, the users have to choose the support from the
vendors of the products; the OSS user may have several choices. Paid support is
available from a diversity of companies, ranging from large corporations such as IBM
and Sun Microsystems, to specialist OS organizations such as Red Hat and MySQL, to
local firms and independent contractors [Metcalfe, 2008].

Usability
Open source communities have successfully developed a great deal of software
although most computer users only use proprietary applications. The usability of OSS is
often regarded as one reason for this limited distribution. [Nichols and Twidale, 2002].
The usability includes how easy the OSS is to install and use. A highly usability
program is easy to learn and use. Generally, a graphical user interface (GUI) is friendly
interface. However, the usability depends on who are the end users. For example, for
some senior software developers they may appropriate the command line interface for
certain tasks.

These factors form resources of requirements and are comprised as an important
part of SRS template for OSS selection. In this thesis, the SRS template includes three
types of requirements: Business requirements, Functional requirements and Non-
functional requirements. Business requirements are derived from business goals or
objectives. They are the essential activities of an enterprise and the reason for
developing systems and software in the first place [Kasse Initiatives, 2004]. They form
the reason for selecting systems and software in first place, and include cost and market
share of the product. Traditionally, the functional requirements describe the
functionalities, which the software will be implemented. In this study, however the
functional requirements describe functionalities available to meet users’ needs.
According to the functional requirements, users can evaluate an existing candidate, and
know what functionalities are ready-made, what functionalities are missing, what
functionalities are wanted and what functionalities are un-wanted. Non-functional

 31

requirements are requirements, which specify criteria that can be used to judge the
operation of software, rather than specific behaviours [Non-functional requirements,
2008]. In this study, the non-functional requirements contain community, developers
group, documentation, license, security, support, usability and version.

4.2. Requirements specification template for OSS selection
The purpose of the SRS is to select a software application rather than to implement it.
Accordingly, we will adapt the IEEE SRS structure to meet our purpose. As mentioned
in section 3.2, conventional SRS is to reduce the gap between the customers and
developers. It lets the customers know what are the features they really want, and let the
developers know what they will develop. However, the SRS for OSS selection is
designed for the customers, and help them to clarify what they want.

The SRS for OSS selection describes the general factors that affect the product
selection. It does not state specific software requirements for the designers. The specific
software requirements are designed for designers to design a system to satisfy those
requirements, and testers to test that the system satisfies those requirements. Instead, it
provides the general user requirements, and makes them easier to understand in OSS
selection.

The SRS template includes four parts, Introduction, General description,
Requirements and Appendix. The following is the structure of the SRS template. The
details can be found in Appendix B.

1. Introduction

1.1. Purpose
1.2. Scope
1.3. Definitions, acronyms and abbreviations
1.4. References

2. General Description
2.1. Product Features
2.2. Operating Environment
2.3. User Characteristics

3. User Requirements
3.1. Functional Requirements
3.2. Non-functional Requirements

4. Appendix

Chapter 1 is the introduction of the SRS and product. It introduces the purpose of
the SRS, the scope of the product, the definitions, acronyms, and abbreviations and the
references of the SRS. According to the study of Chapter 1, users can select the OSS

 32

candidates from a number of sources. Chapter 2 presents the general description of the
product. It explains what main features the product has, where the product run and the
users characteristics of the product. According to the general description of the product,
users can do the pre-selection, and eliminate the unqualified candidates. Chapter 3 gives
the user requirements. It presents the detailed functional requirements and non-
functional requirements of the product. Those requirements form the criteria for
evaluating the remained candidates. The last chapter of the SRS is Appendix. It makes
the SRS easier to use.

 33

5. Open Source Software Selection Model
SRS describes WHAT should be taken into account when selecting an OSS. In this
chapter, we further discuss how the selection process is performed, and how the factors
mentioned in the prior chapter can be evaluated in practice.

The basic steps for evaluating all programs, both OSS and proprietary, are
essentially the same [Wheeler, 2007]. Both processes include identifying the candidates,
comparing the candidates, analysing the top candidates and making the decision.
However, the details in each step are different. A key difference is that the available
information for OSS is usually more than for proprietary software. For example, source
code, analysis by others of the program design, discussion between users and
developers on how well it is working, and so on [Wheeler, 2007]. Therefore, when the
customers select an OSS, they should consider all information related to the OSS
product. For example, the following criteria can be adopted for OSS libraries selection;
functionality, cost, developer and user community, user interface, stable releases,
Documentation and so on [Kumar 2007].

In this thesis, the selection and evaluation of OSS is from the RE viewpoint. The
requirements form the selection criteria. Figure 6 shows the process model.

Figure 6. RE for OSS selection model

Pre-selection

Evaluation

Getting
Candidates

OSS
Sources

SRS General
Description

SRS User
Requirements

Selected
Product

SRS
Introduction

 34

In Figure 6, the ellipses are inputs and outputs. The input contains OSS sources and
SRS introduction, general description and user requirements, which come from the SRS
of the product. The output is the selected product. The rectangles are processes of the
model. There are three stages, getting candidates, pre-selection and evaluation.

5.1. Getting candidates
When evaluating software, a small list of candidates is needed. The process of getting
candidates will complete this object. In Figure 6, it shows that, there are two inputs of
this process, OSS sources and SRS introduction. The SRS introduction provides the
business requirements of the product. According to the business requirements from SRS
Introduction, we select the candidates from a variety of sources. There are five
approaches that can be used to find candidates [Golden, 2005]:

• Search Open Source Project Portals – for example SourceForge and Fresh-
Meat1

• Search the Web – this can also give pages about projects and user opinions

• Ask Open Source Developers

• Post to Mailing Lists

• Ask Vendors

At last, we will get M (M >= 1) candidates. These M candidates are the input of the
next process pre-selection.

5.2. Pre-selection
In order to decrease the evaluation efforts, we do the pre-selection according to the
general description of the product. The candidates who do not meet the needs of general
description of the product will be eliminated. At last, the proper N (N<=M) candidates
are selected. In Figure 6, it shows that, this process has two inputs, one is the M
candidates, the other one is the general description which comes from the SRS of the
product. At last, we will get N candidates. These N candidates are the input of the next
process evaluation.

5.3. Evaluation
The last process of the process model is evaluation. In this process, the N candidates
will be evaluated according to the requirements of the product. In Figure 6, it shows
that, this process has two inputs, N candidates and user requirements. According to the

1 FreshMeat: http://freshmeat.net/

 35

user requirements, the N candidates will be evaluated. The out of this process is the
selected product that is the highest score candidate.

Linear weighted attribute model is a commonly used approach for software
selection. In this model a number of attributes are used and each package gets a
performance rating for each attribute. Weights are assigned to the attributes, which
defines the compensatory nature of this model. The final score of each package is
defined by the equation:

∑
=

=
m

j

WjAijQi
1

 [Anderson, 1990]
In this study, we will use this model to evaluate the candidates. Qi is the score of
candidate i, Wj is the weight assigned to requirement j and Aij is the score of candidate
i for criterion j. Thus the final score for a candidate is the sum of the scores of m
requirements. Here, the all requirements come from the user requirements of SRS of the
product. The highest score one the selected product. In next sections, we will discuss
how to evaluate each requirement.

The weight of each requirement depends on customers’ needs. Different customers
may have different needs. For example, a single customer who will not modify the
source code of a product may think the functionality is more important than the issue of
license. However, for enterprise customers who will modify the source code of the
product and redistribute the modified version, they may think the license issue is most
important.

The score of each requirement depends on how each requirement satisfies the
customers’ need. In next section, we will discuss how to evaluate each requirement.

5.3.1. Community
The community is the driving force behind an Open Source project. It reflects the
activity and other areas of the project such as support and documentation. When we
evaluate a community, the following should be taken into account:

Number of posts: How a number of topics and replies are posted per period and all
time.

Number of Users: How a number of users have registered, how a number of them
are online regularly, and how a number of them are active users?

Response: How soon the user questions can be answered, and the quality of the
answers.

 36

Friendliness: How friendly the community is towards each other, especially to
newcomers.

We also need check whether or not all posts are kept or archived and whether or not the
community has the search functionality. Sometimes, the users can find the answers in
the old posts.

5.3.2. Cost
As we have mentioned, the cost is not only purchase cost, but also all cost related to the
OSS product, such as the support, maintenance and training. When we evaluate it, we
should consider about the TCO of the product. Its score depends on the budget of the
user.

5.3.3. Development group
The experienced developers are important factor for guaranteeing OSS quality. When
we evaluate the development group, we should check the reputation of it. Do they have
any other successful OSS products? Besides, we should know the motivation of them
developing the product. Do they develop the product just for fun?

5.3.4. Documentation
Documentation contains user documentation and developer documentation. It can help
user to install, use and develop the product. We should check whether the product has
the sufficient user documentation and developer documentation on the project’s site,
and the available developer documents if they are clear on how to develop the software
and how to join the developer community [Wheeler, 2007]. Additional documentation
may include descriptions of the main features, ‘How-Tos’ and/or tutorials with
instructions [Duijnhouwer and Widdows, 2003].

5.3.5. Functionality
A list of functional requirements for the goal of use of the software can be used to
check if the needed functionality is available. In this study, the functional requirements
come from the SRS. When comparing functionality, those features that are part of the
functional requirements should take priority. If there is something missing, there is
always the option to build it.

5.3.6. License
When evaluate the license of a product, we should check whether it is an OSI approved
license or not. If the product uses a different license, we have to read it carefully, and
check whether it is in line with the intended use.

 37

5.3.7. Lifecycle
Lifecycle is a measurement of a product’s stability. When we evaluate it, we should
check the age and version number of a product. Besides, if the product is very old, we
should check whether it is compatible with the new technology.

5.3.8. Market Share
We should check who are the main users of the product and the percentage of it in the
total available market. If the product comes from SourceForge, we should check how a
number of time it have been downloaded.

5.3.9. Security
OSS security is the measure of assurance or guarantee in the freedom from danger, risk,
etc in an OSS system [Wikipedia- security, 2008]. We should check how a number of
bugs are there, and how soon the bugs were fixed in a new version. It can show how
serious the project is about the security.

5.3.10. Supporting Service
The supporting service includes free support and paid support. The free support for
OSS is in most cases handled by the community. The community’s support areas are
invaluable resources for solving problems [Golden, 2005]. We should check whether
the project has a forum or mailing list providing the free support, and how active they
are.

Mature products often have paid support options as well if more help or the security
of a support contract is required. Usually, the development group can provide the paid
support. However, we also should check whether there are any third parties who have
given their opinion about the quality of this support. One of the strong signs of maturity
of OSS is the availability of third party support: companies that offer commercial
support services for OS products [Duijnhouwer and Widdows, 2003].

5.3.11. Usability
Usability is the measure that assesses how easy user interfaces are to use. When we
evaluate it, we should check how easy it is for users to accomplish basic tasks at the
first time, and how pleasant it is to use the product.

5.4. Summary
In this chapter, we introduced the process model for OSS selection. It has three
processes, getting candidates, pre-selection and evaluation. The candidates come from
the OSS sources, such as open source project portals. The introduction of SRS is the
criteria for getting candidates. The general description of SRS is the criteria for pre-

 38

selection. The user requirements of SRS are criteria for evaluation. The eleven factors,
cost, community, development group, documentation, functionality, license, lifecycle,
market share, security, supporting service and usability, form the user requirements of
the SRS.

 39

6. Case Studies: Media Player
A number of people often watch movie or listen music on computer. The media player
is basic software in our life. Except the Windows Media Player, there are a number of
other OSS media players. Parts of them are better than Windows Media Player. In this
case, the OSS media players will be tested. The customer and user of it are same person,
who is an experienced and skilled computer user. He wants an OSS media player which
can plays common types of movie files and music files. In addition, it should be free to
download and use.

In Chapter 4 and Chapter 5, the RSR template for OSS selection and the selection
model have been defined. Now, we apply them to a real OSS products selection. Media
Player is chosen as the target product. First, we will use the SRS template to create the
SRS for Media Player selection. Then, according to the SRS, we get the proper
candidates list and evaluate all of them. Finally, the highest scoring product will be
selected. The SRS for Media Player selection can be found in Appendix C.

6.1. Getting Candidates
As we have mentioned in Chapter 5, there are two inputs, OSS sources and SRS
introduction of this process. In this case, we get the all candidates come from Website
of Wikipedia searching by “Media Player”. The list of media players is Appendix D. In
the introduction of SRS, we get the business requirements, the media player can play
video and audio, and must be an OSS product and free to download and use. According
to it, we get the following candidates from the whole list. They can be found in Table 6-
1.

Candidates Website

Kantaris Media Player http://www.kantaris.org/

KMPlayer http://www.kmplayer.com/forums/index.php?

MPC – Homecinema http://sourceforge.net/projects/mpc-hc/

Mplayer http://www.mplayerhq.hu/design7/news.html

VLC media player http://www.videolan.org/vlc/

Table 6-1 Case study candidates

 40

6.2. Pre-selection
The pre-selection is based on the General Description of SRS for Media Player
selection. It uses General Description of Media Player to eliminate those candidates that
do not conform the basic requirements of the general description. There are three basic
requirements in this General Description of SRS:

• License – The Media Player should be under GPL or GPL compatible license, and

free to download.

• Support files – The Media Player can play following types of files, mp3, mp4, avi
and Mpeg.

• Support OS – The Media Player can be run on Windows Xp, and Ubuntu/Linux.

According the description of each candidate, we can test whether it conforms the

basic functional requirements or not. The description of each candidate can be found in
Appendix E. Table 6-2 shows the result of the pre-selection.

Candidates License Support files Support OS Result

Kantaris Media layer Yes No No No

KMPlayer Yes Yes No No

MPC – Homecinema Yes Yes No No

Mplayer Yes Yes Yes Yes

VLC media player Yes Yes Yes Yes

Table 6-2 Pre-selection

If a candidate that conforms the requirement of “Support files”, it will be marked as
“Yes” under column “Support files”, else as “No”. If a candidate that conforms the
requirement of “Support OS ”, it will be marked as “Yes” under column “Support OS”,
else as “No”. If a candidate that conforms the requirement of “License”, it will be
marked as “Yes” under column “License”, else as “No”. If a candidate conforms all of
the three requirements, it will be marked as “Yes” under column “Result”, else as “No”.

According the result, those candidates which do not conform the two basic
requirements will be eliminated. At last, we got two conformed candidates, Mplayer
and VLC media player. In next chapter, we will evaluate them according the business

 41

requirements, functional requirements and non-functional requirements, which can be
found in SRS for Media Player selection.

6.3. Evaluation
The two candidates resulted by the pre-selection will be evaluated: Mplayer and VLC
media player.

Mplayer
MPlayer is a free and OS media player distributed under the GNU GPL. It can run on a
number of systems, including Linux and other Unix-like systems, Microsoft Windows
and Mac OS X. It is available in English, Hungarian, Polish, Russian and Spanish. The
initial release was in 2000.

VLC media player
VLC media player is an OSS cross-platform media player and streaming server
distributed under the GNU GPL. It can run on Mac OS X, Windows, BeOS, Linux,
FreeBSD and WinCE. The initial release was in 2001.

Scores ranging from 1 to 10 are given on all criterions for each product. One is
given when it does not fulfil any of the wanted characteristics of the criterion, and ten
when that the software ideally complies with the criterion. The weights of each criterion
are distributed by the importance of them. The evaluating party can define the
importance of each criterion according his/her requirements. If the ideal product's score
is 1000, then every criterion for the product' score is 10. Therefore, the sum of the
weights should be 100.

In this case study, all criterions come from business requirements, functional
requirements and non-functional requirements. The most important criterion is
functionality. It was give a weight of 30 and the remaining 70 points were distributed
evenly by level of importance, resulting in the following weight distribution:

• Cost – 10

• Community– 15

• Documentation – 15

• Functionality – 30

• Lifecycle – 5

• Usability – 25

 42

Cost
If the candidate is free to download, it will be scored 10. Else, the score depends on the
cost of it. Both of the two products are free to download.

Community
If the candidate does not have forums or mailing lists, it will be scored 0. Else, the score
is according the activity of the community, such as the number of topics and/or posts in
forums or mailing lists. The Mplayer has four kind of mailing lists, General, for users,
for developers and other. It does not have user Forum. The VLC media player does not
have the mailing lists. It has user Wiki and Forum, and the forum is very active.

Documentation
The score of documentation depends on whether the candidate has the Wiki or tutorial.
The Mplayer has English supporting material and part of Chinese supporting material.
The VLC media player has German, English, Spanish, French and Italian supporting
material.

Functionality
In order to check the functionality, the two candidates should be downloaded. Then,
evaluate each candidate according to the functional requirements. The Mplayer satisfies
part of the functional requirements, and the VCL media player can satisfies all the
functional requirements.

Lifecycle
If the candidate has more than two years old, it will be scored 10. Else, it will be scored
[10 – (24-months)*0.1]. Both of them are more than two years old and release regularly.

Usability
The score of usability depends on the user’s personal habit. The Mplayer is command
user interface media player, it is difficult to use for the inexperienced users. The VCL
has a good graphic user interface, and it is easy to use and learn. The scores are shown
in table 6-3.

 43

Criterion Weight Mplayer VCL media player

Cost 10 10 10

Community 15 8 9

Documentation 15 8 9

Functionality 30 6 10

Lifecycle 5 10 10

Usability 25 7 9

Total scores 845 945

Table 6-3 Scores

In table 6-3, we can find that the VCL media player is more competitive than the
Mplayer. Therefore, the final selected product is VCL media player.

6.4. Results
In the previous chapters, a SRS template and a model were defined to use for OSS
selection. In this chapter, the case study that was performed using that template and
model were described. The goal of the case study was to see whether the template and
the model are useable for real software.

The SRS template was used to create SRS for media player selection. Through the
model, the requirements of the SRS were used to evaluate media player, starting with 5
candidates, and finally evaluating two candidates. According to the user requirements
of SRS, VCL media player is the final selected product. The template was well
applicable to these candidates. It has complete and unambiguous requirements. The
requirements are consistent. The structure of SRS makes the requirements easily to
modify.

 44

7. Conclusions
This thesis studied the OSS from RE point of view in order to create a SRS for OSS
selection. It includes a case study to test this SRS template on real software. In this final
chapter the results of this research are discussed by answering the research question and
subquestions posed in the first chapter.

7.1. Research Results
In this thesis the unique characteristics of OSS were investigated to construct a model
for OSS selection. In the first chapter the research question and subquestions were
formed. In order to answer the research question, the subquestions should be answered
firstly. The answers to those subquestions will now be given by briefly recapitulating
the main issues addressed in this thesis.

The first subquestion is: What factors affect the OSS selection?

A number of characteristics were found in relation to OSS selection. The following
eleven factors were found using literature on OSS:

Cost
The cost of OSS product is not only the purchase cost but also any costs related to the
product, such as support and training costs.

Community
The community of an OSS project is the driving force behind the project.

Development Group
Skilled and experienced developer is a guarantee for quality of OSS product.

Documentation
Documentation is very important for user to use or modify the OSS program.

Functionality
User can download the OSS product and evaluate it. The functionalities can be checked
during the evaluation.

License
The license needs to fit with the intended use. Usually, the common licenses are
preferable, such as GNU GPL and LGPL.

 45

Lifecycle
The lifecycle is measurement of a product’s stability. The successful product should
release regularly.

Market Share
Market share reflects how popular the product is. For a popular OSS product, there are
a number of third parties can provide supports for it.

Security
As the source code is available for both user and attacker. Security needs to be
considered seriously.

Support
Support contains free support and paid support. The common free support includes
mailing list and user forum. Usually, the development group provides the paid support
for its product.

Usability
A highly usability program is easy to learn and use. It is an important factor affecting
OSS selection.

The second subquestion is: How these factors are reflected in SRS template?

The answer to this question can be found in the user requirements of SRS template. All
factors are grouped into three kinds of requirements, business requirements, functional
requirements and non-functional requirements. Business requirements include the
factors of cost and market share. Functional requirements include the factors of
functionality. Non-functional requirements include community, development group,
documentation, functionality, license, lifecycle, security, support and usability.

The third subquestion is: How to evaluate these factors?

Using the selection model, this question can be answered. For each factor a description
of the selection process and the information necessary to establish a score can be found
in this thesis. According to the Anderson’s model, we can get the total score of each
candidate.
Now, the main question can be answered:

How to specify requirements for OSS selection?

 46

The answer to this question is using the SRS template for OSS selection. It was defined
using various literature and was well applicable, and followed to come to a satisfactory
result in the case of Media Player.

7.2. Contribution
In this thesis, a SRS for OSS selection and selection model were produced. They can
help the users, who want to use OSS but are not familiar with the characteristics of OSS,
to select proper software from a list of candidates.

The field of OSS in scientific research is still small. With the growing interest of
the business world in OSS, the scientific research is growing as well, though it is still
behind in many respects. This thesis can add to this research field. It gives insights into
OSS from a business use perspective.

7.3. Limitations and Future Work
The study offers a starting point to further the research in the area of OSS selection.
This relatively new area does still leave much to explore. There are a number of
extended areas that require further consideration and study. In the selection model, each
requirement was scored, but it could still use a better way score each requirements. For
example, each functional requirement could be given a priority, and a more statistical
approach could be taken into account to score the non-functional requirements, such as
community. In order to check whether the template works or not, a case study was
conducted on Media Player. However, the user of it is single user. As the single user
has different requirements from the enterprise user, the template should be tested to see
how it works for enterprise user.

There are also other existing models for OSS selection, such as Business Readiness
Rating™ (BRR) and Open Source Maturity Model (OSMM). BRR was developed by
Spikesource, Carnegie MellonWest and Intel [BRR, 2008]. It is being proposed as a
new standard model for rating OSS. It is intended to enable the entire community
(enterprise adopters and developers) to rate software in an open and standardized way.
OSMM was developed by Navica [2008]. It was developed to help IT procurement
managers to better compare and assess OSS. The two models show many similarities to
the model that is proposed here. Both of them assess and weight the factors, which
affect the OSS selection. Depending upon how well the software meets users needs,
each factor is scored. The highest score one is the final selection candidate. However,
the OSMM is largely the work of one man, and the BRR favours an evolving
community-development model. Whereas the SRS template is designed from the
requirements engineering point of view, both single user and multi users can use it.

 47

References
[Anderson, 1990] Anderson. Choice Models for the Evaluation and Selection of

Software Packages. Management Information Systems, 6 (4), 1990, 123–138.
[Boehm and Papaccio, 1988] Boehm, B. W and Papaccio, P. N, Understanding and

Controlling Software Cost. IN: Proc .of IEEE Transactions on Software
Engineering, Vol. 14, No. 10, 1462-1477.

[Barbara and Bernd 2006] Barbara Paech and Bernd Reuschenbach, Open Source
Requirements Engineering. In: Proc. of the 14th IEEE International
Requirements Engineering Conference.

[BRR. Business Readiness Rating for Open source; A Proposed Open Standard to
Facilitate Assesment and Adoption of Open Source Software, RFC1, 2005.
http://www.openbrr.org/docs/BRR_whitepaper_2005RFC1.pdf. (checked
23,05,2008)

[Chen, 2006] Shun-ling Chen, Free And Open Source Software Licensing Primer.
UNDP-APDIP, Elsevier, 2006, p. 29.

[C. Jones, 1996] C. Jones, Applied Software Measurement: Assuring Productivity and
Quality, McGraw-Hill, New York, 1996.

[Computer Economics, 2008] Computer Economics website,
http://www.computereconomics.com/ (Checked 25.05.2008)

[Cooper, 2003] Charles Cooper, Microsoft shows Linux some respect.
http://zdnet.com.com/2100-1104-981552.html (Checked 15.05.2008)

[COTS-Wikipedia, 2007] Wikipedia website, Commercial off- the-shelf,
http://en.wikipedia.org/wiki/Commercial_off-the-shelf (Checked 25.11.2007)

[Cowan, 2003] Crispin Cowan, Software Security for Open-Source Systems. In: Proc.
of Security & Privacy Magazine, IEEE, 1(1): 2003, 38–45.

[Davies and Hsia, 1994] A. M. Davies and P. Hsia, Giving Voice To Requirements
Engineering, In: Proc. of IEEE Software, Vol. 11, No. 2, March 1994, 12-15.

[Duijnhouwer and Widdows, 2003] Duijnhouwer and C. Widdows Capgemini, Open
Source Maturity Model.
http://pascal.case.unibz.it/retrieve/1097/GB_Expert_Letter_Open_Source_Maturit
y_Model_1.5.31.pdf (Checked 12.4.2008)

[Donn Le Vie, 2007] Donn Le Vie, Jr, Writing Software Requirements Specifications.
http://www.techwr-
l.com/techwhirl/magazine/writing/softwarerequirementspecs.html (Checked
15.06.2007)

[Firefox, 2008] Mozilla Firefox website. http://www.mozilla.com/en-US/firefox/
(Checked 12.5.2008)

[FFmpeg , 2008] Ffmpeg website. http://ffmpeg.mplayerhq.hu/ (Checked 12.11.2007)

 48

[FOSS, 2008] Wikipedia website, Free Software and Open Source Software.
http://en.wikipedia.org/wiki/Free_and_open-source_software (Checked 12.4.2008)

[Free software, 2008] Free software, 2008. http://www.fsf.org/licensing/essays/free-
sw.html

[FSF 2007] Free Software Foundation. http://www.fsf.org/ (Checked 20.7.2007)
[GNU 2007a] GNU website, Categories of Free and Non-Free Software.

http://www.gnu.org/philosophy/categories.html (Accessed 20.7.2007)
[GNU, 2007b] GNU website, Free Software Definition.

http://www.gnu.org/philosophy/free-sw.html (Checked 20.7.2007)
[GNU, 2007c] GNU website, Copyleft. http://www.gnu.org/copyleft/copyleft.html

(Checked 15.9.2007)
[GNU, 2007d] GNU website, Why Free Software Is Better Than Open Source.

http://www.gnu.org/philosophy/free-software-for-freedom.html (Checked
20.10.2007)

[GNU, 2007e] GNU website, Why Free software is better than Open source software?
http://www.gnu.org/philosophy/free-software-for-freedom.html (Checked
20.10.2007)

[Golden, 2005] B. Golden, Succeeding with Open Source. Addison-Wesley Pearson
Education, 2005. ISBN 0-321-26853-9, 94-96.

[Gonzalez-Barahona, 2000] Jesus M. Gonzalez-Barahona, A Brief History of Open
Source Software. http://eu.conecta.it/paper/brief_history_open_source.html
(Checked 20.10.2007)

[GPLv3, 2007] GNU General Public License Version 3.
http://www.fsf.org/licensing/licenses/gpl.html (Checked 10.11.2007)

[Hart, 2003] Timothy D. Hart, Open Source in Edution.
http://portfolio.umaine.edu/~hartt/OS%20in%20Education.pdf (Checked
05.09.2007)

[IBM, 2008] Open Source at IBM. http://www-
03.ibm.com/linux/opensource/index.shtml (Checked 20.5.2008)

[IDABC, 2007] IDABC, The A number of Aspects of Open Source.
http://ec.europa.eu/idabc/en/document/1744/468 (Checked 20.11.2007)

[IEEE Std 830, 1998] IEEE Std 830, IEEE Recommended Practice for Software
Requirements Specifications. In: Proc. of Software Engineering Standards
Committee of the IEEE Computer Society, p. 31.

[Joch, 2004] Alan Joch, The Real Cost of Open Source.
http://www.fcw.com/print/10_43/news/84599-1.html (Checked 20.05.2008)

[Kasse Initiatives, 2004] Kasse Initiatives, LLC, Requirements Engineering.
http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEnginee
ring/KISE06RequirementsEngineeringv3.pdf (Checked 21.05.2008)

 49

[Kotonya and Sommerville, 1998] Grald Kotonya and Ian Sommerville, Requirments
Engineering, John Wiley & Sons, UK, 1998, p.8.

[Kruchten, 2000] P. Kruchten, The Rational Unified Process. Second Edition, Addison-
Wesley, 2000, p.298.

[Kumar, 2007] Vimal Kumar, Selection and Management of Open Source Software in
Libraries. In: Proc. of 5th International Convention on Automation of Libraries in
Education and Research Institutions, Chandigarh, India, 1-5.

[LC, 2007] David A. Wheeler, The Free-Libre / Open Source Software (FLOSS)
License Slide. http://www.dwheeler.com/essays/floss-license-slide.html (Checked
28.10.2007).

[LGPLv3, 2007] GNU Lesser General Public License version 3.
http://www.fsf.org/licensing/licenses/lgpl.html (Checked 10.11.2007)

[Linux, 2008] Linux Operation System Website. http://www.linux.org/ (Checked
10.11.2007)

[Macaulay, 1996] Macaulay, L. A, Requirements Engineering, Springer-Verlag.
[Massey, 2002] Bart Massey, Where Do Open Source Requirements Come From (And

What Should We Do About It)? In Proc. 2nd Workshop On Open-Source
Software Engineering, Orlando, FL, May 2002

[Metcalfe, 2008] Randy Metcalfe, Top Tips for Selecting Open Source Software.
http://www.oss-watch.ac.uk/resources/tips.xml (Checked 13.04.2008)

[Morgan, 2004] Eric Lease Morgan, Open Source Software in Liraries.
http://infomotions.com/musings/biblioacid/ (Checked 22,10.2007)

[Morgan, 2004] Eric Lease Morgan, Open Source Software for Libraries in 30 minutes.
http://infomotions.com/musings/oss-in-thirty-minutes/ (Checked 22.10.2007)

[Navica, 2008] Navica Open Source Maturity Model.
http://www.navicasoft.com/pages/osmm.htm (Checked 13.04.2008)

[NETC, 2007] Northwest Educational Technology Consortium, This Brief History
Illustrates the Origins and Major Events in Open Source.
http://www.netc.org/openoptions/background/history.html (Checked 26.7.2007)

[NETC, 2008] Northwest Educational Technology Consortium, 2008. Total Cost of
Ownership. http://www.netc.org/openoptions/pros_cons/tco.html (Checked
12.6.2008)

[Nichols and Twidale] David M. Nichols and Michael B Twidale, The Usability of
Open Source Software. http://www.firstmonday.org/Issues/issue8_1/nichols/
(Checked 20.5.2008)

[Nokia, 2008] Open Source at Nokia. http://opensource.nokia.com/ (Checked 20.5.2008)
[Non-functional requirements, 2008] Non-functional Requirements, Wikipeida Website.

http://en.wikipedia.org/wiki/Non-functional_requirement (Checked 12.5.2008)

 50

[Nuseibeh and Easterbrook 2004] Nuseibeh and Easterbrook, RE: A Roadmap. In: Proc.
Proceedings of the Conference on The Future of Software Engineering, 35 – 46

[OSS-Definition, 2007] OSI Website, The Open Source. Definition.
http://www.opensource.org/docs/definition.php (Checked 20.7.2007)

[OSI, 2008] Open Source Initiative. http://www.opensource.org/ (Checked 12.04.2008)
[Orzech, 2002] Orzech, D, CIN: Linux TCO: Less than Half the Cost of Windows.

http://linuxtoday.com/it_management/2002100801926NWBZMR (Checked
13.05.2008)

[O'Riordan, 2006] Ciaran O'Riordan, How GPLv3 Tackles License Proliferation.
http://www.linuxdevices.com/articles/AT7188273245.html (Checked 23.11.2007)

[Pavliced 2000] Pavlicek Russell, Embracing Insanity: Open Source Software
Development. Indianapolis: SAMA, 2000.

[Perens, 2008] Bruce Perens. http://en.wikipedia.org/wiki/Bruce_Perens (Checked
23.11.2007)

[Raymond, 1998] Eric S. Raymond (1998-02-08). Goodbye, “free software”; hello
“open source”.

[Richard 2007] Richard Stallman, Why “Open Source” misses the point of Free
Software. http://www.gnu.org/philosophy/open-source-misses-the-point.html
(Checked 30.10.2007)

[Richard, 2007] Stallman Richard 2007. Why “Free software is better than Open
Source”. Philosophy of the GNU Project.

[Robinson and Pawlowski, 1999] W.N. Robinson and S.D. Pawlowski, Managing
Requirements Inconsistency with Development Goal Monitors. In: Prco. of
IEEE Trans. Software Eng. 25, 1999, 816-835.

[SC, 2007] Software Categories. Categories of Free and Non-Free Software.
http://www.gnu.org/philosophy/categories.html (Checked 20.7.2007)

[Scacchi, 2002] Walt. Scacchi, Understanding the Requirements for Developing Open
Source Software Systems. In: Prco. Of Software, volume 149, pages 24–29, 2002.

[Software Bug, 2008] Software bug, Wikipedia website.
http://en.wikipedia.org/wiki/Software_bug (Checked 25.2.2008).

[Software Requirements Inc, 2008] Software Requirements Inc website, What Makes a
Good Software Requirements Specification.
http://www.softreq.com/answer.cfm?question_id=4 (Checked 12.06.2008)

[Sommerville and Sawyer, 1997] Ian Sommerville and Pete Sawyer, Requirements
Engineering: A Good Practice Guide, Wiley, 1997.

[Stallman, 2002] Richard M. Stallman, Why “Free Software” is better than “Open
Source”. http://www.gnu.org/philosophy/free-software-for-
freedom.html#relationship (Checked 25.11.2007).

 51

[Stallman, 2007] Richard M. Stallman, Stallman explains licence compatibility while
discussing GPLv3.

[TCO, 2008] Northwest Educational Technology Consortium, Total Cost of Ownership.
http://www.netc.org/openoptions/pros_cons/tco.html (Checked 20.4.2008)

[Tim O'Reilly, 1999] Tim O'Reilly, Open Source: Voices from the Open Source
Revolution, 1st edition January 1999.

[Weber, 2004] S. Weber, The Success of Open Source. Harvard University Press, 2004.
ISBN 0674012925.

[Wheeler, 2007] David A. Wheeler, How to evaluate Open Source Software / Free
Software Programs. http://www.dwheeler.com/oss_fs_eval.html (Checked
28.10.2007).

[Wheeler, 2007] David A. Wheeler, Open Source Software / Free Software (OSS/FS)
References. http://www.dwheeler.com/oss_fs_refs.html (Checked 28.10.2007).

[Wikipedia- security, 2008] Wikipedia Website, Open Source Software Security.
http://en.wikipedia.org/wiki/Open_source_software_security (Checked 20.3.2008)

[Wikipedia - Software, 2007] Wikipedia Website, Computer software.
http://en.wikipedia.org/wiki/Software (Checked 24.9.2007)

[XFree86 2007] XFree86, The XFree86 Project, Inc. http://www.xfree86.org/ (Checked
1.11.2007)

[Yeates, 2005] Stuart Yeates, Open Source Software and Security http://www.oss-
watch.ac.uk/resources/security.xml (Checked 10.01.2008).

[Zave, 1997] P. Zave, Classification of Research Efforts in Requirements Engineering,
ACM Computing Surveys, 29(4), 1997.

[Zhang, 2007a] Zheying Zhang, “Effective Requirements Development - A
Comparison of Requirements Elicitation techniques”, INSPIRE, 2007.

[Zhang, 2007b] Zheying Zhang, Requirements Engineering Lecture Notes, University
of Tampere, Fall 2007, http://www.cs.uta.fi/re/L2_fall.pdf (Checked 24.3.2008)

 52

Appendix A: IEEE Requirements document structure [IEEE Std 830,
1998]

1. Introduction
1.1 Purpose
1.2 Document Conventions
1.3 Intended Audience and Reading Suggestions
1.4 Product Scope
1.5 References

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User classes and characteristics
2.4 Operating environments
2.5 Design and implementation constraints
2.5 Assumptions and dependencies

3. External interface requirements
3.1 User interfaces
3.2 Hardware interfaces
3.3 Software interfaces
3.4 Communications interfaces

4. System Features
4.x System feature X

4.x.1 Description and priority
4.x.2 Stimulus/Response sequences
4.x.3 Functional requirements

5. Other non-functional requirements
5.1 Performance requirements
5.2 Safety requirements
5.3 Security requirements
5.4 Software quality attributes
5.5 Business rules
5.6 User documentation

6. Other requirements
Appendix A: Glossary
Appendix B: Analysis Models
Appendix C: To-Be-Determined List

 53

Appendix B: SRS template for OSS selection

Software Requirements Specification
For

<Product>
Selection

Version: X.X
Author: XXX

Date:(mm/dd/yyyy)

 54

Contents
Revision History ... 54
1. Introduction... 55

1.1. Purpose .. 55
1.2. Scope ... 55
1.3. Definitions, acronyms and abbreviations .. 55
1.4. References ... 55

2. General Description .. 55
2.1. Product Features.. 55
2.2. Operating Environment ... 55
2.3. User Characteristics .. 56

3. User Requirements .. 56
3.1. Business Requirements ...错误！未定义书签。
3.2. Functional Requirements .. 56
3.3. Non-functional Requirements ... 56

4. Appendix.. 57

Revision History
Name Date Reason For Changes Version

 55

1. Introduction
The following subsections of the Software Requirements Specifications (SRS) should
provide an overview of the entire SRS.

1.1. Purpose
Specify the purpose of this SRS and its intended audience.

1.2. Scope

1. Explain what the wanted product will, and if necessary, will not do. This
should be an executive-level summary. Do not enumerate the whole
requirements list here.

2. Identify the all candidate products to be selected by name

1.3. Definitions, acronyms and abbreviations
Provide the definitions of all terms, acronyms, and abbreviations required to properly
interpret the SRS. This information may be provided by reference to one or more
appendixes in the SRS or by reference to other documents

1.4. References
List any other documents or Web addresses to which this SRS refers. Provide enough
information so that the reader could access a copy of each reference, including title,
author, version number, date, and source or location.

2. General Description

Describe the main features of the selected product should have.

2.1. Product Features
Summarize the major features the product contains or the significant functions that it
performs or lets the user perform. Details will be provided in Chapter 3, so only a high
level summary is needed here.

2.2. Operating Environment
Describe the environment in which the software will operate, including the hardware
platform, operating system and versions, and any other software components or
applications with which it must peacefully coexist.

 56

2.3. User Characteristics
Describe those general characteristics of the intended users of the product including
educational level, experience, and technical expertise. Their experience and comfort
with technology will actually influence selection of the product.

3. User Requirements
Cover business, functional and non-functional requirements.

3.1. Functional Requirements
Provide a summary of the functionalities that the selected software can perform. The
functionalities are described in the language of the customer.

For clarity:

1. The functions should be organized in a way that makes the list of functions
understandable to the customer or to anyone else reading the document for the
first time.

2. Textual or graphic methods can be used to show the different functions and
their relationships.

3.2. Non-functional Requirements
There are a number of attributes of software that can serve as non-functional
requirements. The following items provide a partial list of examples.

Community,
Developers group,
Documentation,
License,
Lifecycle,
Security,
Supporting service,
Usability,

 57

4. Appendix
The appendixes are not always considered part of the actual SRS and are not always
necessary. They may include

a) Sample input/output formats, descriptions of cost analysis studies, or results of
user surveys;
b) Supporting or background information that can help the readers of the SRS;
c) A description of the problems to be solved by the software;
d) Special packaging instructions for the code and the media to meet security,
export, initial loading, or other requirements.

When appendixes are included, the SRS should explicitly state whether or not the

appendixes are to be considered part of the requirements.

 58

Appendix C: SRS for Media Player Selection

Software Requirements Specification
For

<Media Player>
Selection

Version: 0.1

Author: Ying Yang
Date:(06/06/2008)

 59

Contents
Revision History ... 54
1. Introduction... 55

1.1. Purpose .. 55
1.2. Scope ... 55
1.3. Definitions, acronyms and abbreviations .. 55
1.4. References ... 55

2. General Description .. 55
2.1. Product Features.. 55
2.2. Operating Environment ... 55
2.3. User Characteristics .. 56

3. User Requirements .. 56
3.1. Functional Requirements .. 56
3.2. Non-functional Requirements ... 56

4. Appendix.. 57

Revision History
Name Date Reason For Changes Version

 60

1. Introduction
The following subsections provide an overview of the entire Software Requirements
Specification (SRS) for Media Player selection.

1.1. Purpose
The purpose of this SRS is specifying the requirements of a customer wanted an OSS
Media Player. It is free to download and use. According to those requirements, all
Media Player candidates will be evaluated. And the highest score one is the final
selected product.

The intended audience includes single customer and user.

1.2. Scope
This is a requirements specification for selecting OSS product. It describes the
requirements, which need to be evaluated during the selection.

The all candidate products are:

Kantaris Media Player,
KMPlayer,
MPC – Homecinema,
Mplayer,

VLC Media Player.

1.3. Definitions, acronyms and abbreviations
 GUI: Graphic user interface

OS: Operation System

Single Customer: The customer who will not buy the commercial supports.

SRS: Software Requirements Specification

1.4. References

Kantaris Media Player: http://www.kantaris.org/
KMPlayer: http://www.kmplayer.com/forums/index.php?
MPC – Homecinema: http://sourceforge.net/projects/mpc-hc/
Mplayer: http://www.mplayerhq.hu/design7/news.html
VLC media player: http://www.videolan.org/vlc/

 61

2. General Description
Describe the main features of the selected product should have.

2.1. Product Features
The Media Player can play following types of file, mp3, mp4, avi and Mpeg.

2.2. Operating Environment
The Media Player can run on Windows XP and Ubuntu/Linux OS

2.3. User Characteristics
The user has experience with computer, and has a computer at home.

3. User Requirements
Cover functional and non-functional requirements.

3.1. Functional Requirements
3.1.1. Play a file

The Media Player can play following types of file, mp3, mp4, avi and Mpeg.

3.1.2. Play a CD/DVD/VCD

The Media Player can play CD/DVD/VCD from a drive.

3.1.3. Play a network stream
The Media Player can play WebRadio and WebTV.

3.1.4. Play from an acquisition card
The Media Player can play include webcams card.

3.1.5. Playlist
·The Media Player can store a list of several files to play one after the other
·The Media Player allows user to append an item at the end of the playlist (its
playback won't start immediately), to save the playlist as a M3U or PLS file, or to
import a playlist file.
·The Media Player allows you to sort the playlist according to several criteria.

3.1.6. Hotkeys
The Media Player supports the hotkeys:

 62

Jump 10 seconds backwards: Alt + Left

Jump 10 seconds forwards: Alt + Right

Jump 1 minute backwards: Ctrl + Left

Jump 1 minute forwards: Ctrl + Right

Quit: Alt + q or Alt + F4

Volume up: Ctrl + Up

Volume down: Ctrl + Down

3.2. Non-functional Requirements

3.2.1. Community
The Media Player should have active Mailing list and Forum.

.3.2.2. Developers group
None.

.3.2.3. Documentation
The Media Player should Wiki and tutorial.

.3.2.4. License
The Media Player should be under GPL license, or GPL compatible license.

3.2.5. Lifecycle
The Media Player should have more than 2 years old.

3.2.6. Security
None

3.2.7. Support
No special support.

3.2.8. Usability
The Media Player should have friendly graphic user interface (GUI) not command line
interface. The user can control it by mouse.

4. Appendix
None.

 63

Appendix D: List of Media Players

 64

Appendix E: The description of each candidate

Kantaris Media Player

Support files: AVI, MPEG, MGEG-AVC, WMV, MOV, MKV, quicktime, matroska,
divx, xvid, H264, MP3, WMA and OGG.

Support OS: Windows 2000, XP and Vista.

KMPlayer

Support files: AVI, ASF, WMV, AVS, FLV, MKV, MOV, 3GP, MP4, MPG, MPEG,
DAT, OGM, VOB, RM, RMVB, TS, TP, IFO, NSV, MP3, AAC, WAV, WMA, CDA,
FLAC, M4A, MID, MKA, MP2, MPA, MPC, APE, OFR, OGG, RA, WV, TTA, AC3
AND DTS.

Support OS: Windows 2000/ XP/Vista

MPC – Homecinema

Support files: AVI, OGM, MK, MPG, VOB, MP4, 3GP, MP3, OGG, MKA, MP4 and
AAC

Support OS: Windows 95,98,NT, XP and Vista.

MPlayer

Support files: MPEG, AVI, ASF/WMV, QuickTime/MOV, VIVO, FLI, RealMedia,
NuppelVideo, MP4, yuv4mpeg, FILM, RoQ, OGG/OGM, SDP, PVA, NSV, Matroska,
NUT, GIF, MP3, OGG/OGM (Vorbis), CD audio and XMMS.

Support OS: Microsoft Windows, Mac OS X, Linux and other Unix-like systems.

VLC media player

Support files: MPEG (ES, PS, TS, PVA, MP3), AVI, MP4 / MOV / 3GP, FLV (Flash),
ASF / WMV / WMA and WAV (including DTS).

Support OS: Windows 2000, Xp and Vista, Mac OS, Debian/Linux, Ubuntu/Linux,
Rethat/Linux and BeOS.

The all information comes from the homepage of each candidate.

