
A Concept Design for Interacting with Change Repre-
sentations in Web-based Collaborative Writing Systems

Chien-Ting Weng

University of Tampere
Department of Computer Sciences
Interactive Technology
M.Sc. thesis
Supervisor: Roope Raisamo
May 2009

University of Tampere
Department of Computer Sciences
Interactive Technology
A Concept Design for Interacting with Change Representations in Web-based
Collaborative Writing Systems
M.Sc. thesis, 47 pages, 4 index pages
May 2009

i

Collaborative writing is an interest area in the study of computer supported
cooperative work (CSCW) and groupware raised in mid 1980s. Among variant
aspects of CSCW, collaborative writing emphasizes on a group editing environment
for synchronous and asynchronous collaborative document development. For
tools supporting collaborative writing, studies and pioneered applications have
suggested required functions: roles, communication support, permission control,
track changes, change representations, version control, comment, and revision
history. Among them, few efforts have been done in the representations of changes.
This thesis intends to design a way to better represent changes of documents, and
for subjects in collaborative writing to better interact with changes of documents.
The result is represented as GUI mockups, which visualizes differences between
revisions.

Keywords: Change representations, collaborative writing, groupware, cscw

Contents

1. Introduction 1
2. Version Control Mechanisms in Collaborative Writing 6
 2.1 The Role of Change Representations in Collaborative Writing

6
 2.2 Scenarios of Using Change Representations 7
3. Designs of Change Representations 9
 3.1 Change Representations in Desktop Applications 9
 3.1.1 Diff 10
 3.1.2 Quilt 14
 3.1.3 PREP 16
 3.1.4 Microsoft Word 20
 3.1.5 FrameMaker 22
 3.1.6 Summary of Desktop Applications 23
 3.2 Web-based Collaborative Writing Tools 25
 3.2.1 Wikis 26
 3.2.2 Google Docs 29
 3.3 Summary 30
4. The Concept Design 32
 4.1 The Concept Design in Detail 32
 4.1.1	 The	Benefit	of	Pop-up	Window	 32
 4.1.2 Display Changes by Paragraph 34
 4.2 Technical Analysis 37
 4.2.1 Front End 37
 4.2.2 Back End 38
5. Pilot Usability Evaluation and Discussion 39
 5.1 The Pilot Test 39
 5.1.2 Introduction to the Pilot Test Plan 39
 5.1.3 ViewRevision and its Users 40
 5.2 Usability Testing 40
 5.2.1 Technical Context 40
 5.2.2 Participants 41
 5.2.3 Test Tasks 41
 5.2.4 Interview 42
 5.2.5 Collecting and Analyzing the Data 42
 5.3 Report of the Pilot Test 42
 5.3.1 Task 1 42
 5.3.2 Task 2 42
 5.3.3 Task 3 43
 5.3.4 Interview Analysis 43
 5.3.5 Conclusion 44

ii

 5.4 Discussion 44
 5.4.1 Limitation of the Pop-up Window 44
 5.4.2 Position of the Pop-up Window 45
 5.4.3 Change Bars or Color Coding on the Changed Text 45
 5.4.4 Alternatives to Displaying Changes on the Pop-up Win-
 dow 46
6. Conclusion 47
References 48

iii

 �

1.	 Introduction

The term “computer supported cooperative work” (CSCW) was coined by Paul
Cashman and Irene Grief in 1984; with aims to understand how people work and
how technology could support them [Grudin, 1994]. This trend was due to the
success	of	individual	office	applications	such	as	spreadsheet	and	word	processor,	
and	development	of	networks.	The	 success	of	 individual	office	applications	 for	
single users proved that technology can help people in work, while networked
PCs and workstations suggested a potential user base that enabled researchers and
developer could further imagine tools supporting not just single users, but groups.
Therefore, the CSCW research inevitably involves some form of collaboration.

Technically, the goal is to create systems that can support the work of groups
and organizations in more sophisticated and interactive ways. However, with the
lack of precise requirements, it requires knowledge from social psychologists,
organizational	theorists,	educators	and	many	other	fields	to	gain	an	understanding	
on group activity before diving into practical design. This characteristic makes
CSCW	a	 research	field	 crossing	multiple	 disciplines.	However,	 if	we	 look	 into	
the	 history	 of	CSCW	 research	 and	 development,	 the	fields	 of	 computer-human	
interaction and information systems played the major roles.

In	 addition	 to	 the	 ambiguity	 of	 research	 fields,	 there	 have	 been	 different	
opinions of the term “computer support cooperative work”. Other preferred terms
include “computer supported collaboration (CSC)”, “Workgroup computing” and
“groupware”. Nowadays, CSCW and groupware are the most widely adopted
terms. Grudin relied on the term CSCW to describe the research and groupware for
the technology. There are more labels other than groupware, such as: collaborative
computing, workgroup computing, multiuser applications, and CSCW applications
[Grudin, 1994]. In this thesis, CSCW is used to describe the research and groupware
is used to describe the CSCW applications.

CSCW applications considered under the groupware umbrella vary a lot, but
the key examples include the following: desktop conferencing, video conferencing,
coauthoring features and applications, email and bulletin boards, meeting support
systems,	voice	applications,	workflow	systems,	and	group	calendars.	

Despite of the diverseness, Grudin proposed a groupware typology, which is
a variant of space and time categorization from DeSanctis and Gallupe [DeSanctis
and Gallupe, 1987]. In the typology, there are three factors in each dimension, thus
forming nine CSCW research domains. The table is shown as Table 1. Judging
from	the	map,	collaborative	writing	 is	 identified	as	a	kind	of	groupware	with	a	
different and unpredictable time and a different but predictable place.

Before the term CSCW was coined, there had been attempts at developing
computer tools to assist collaborative writing in the 1970s [Newman and Newman,
1993].	Now	it	is	a	research	field	included	within	the	CSCW	umbrella.	Studies	on	
collaborative writing activity began in the late 1980s; the purpose was to study how

�

collaborative writing activity is conducted within a group and an organization.
Collaborative writing involves two or more people working together to

produce a document [Miles et al., 1993]. By “different but predictable place”,
it means the collaborative writing activity is carried out in several places that
are	known	to	the	participants.	The	examples	are:	email	exchanges,	specific	IRC	
channels,	and	specific	web	URLs.	By	“different	and	unpredictable	time”,	it	means	
that the activity can be carried out at different times that are unpredictable. An
open-ended collaborative project like Wikipedia is an example of “different and
unpredictable time” collaborative writing.

Grudin’s categorization of collaborative writing activity can be further
divided into synchronous and asynchronous. If the writing activity happens at the
same time, which means more than two people are working on the same document
at the same time, it is synchronous. For example, people get together face to face
in	a	fixed	room	or	place	to	work	on	one	document,	or	using	shared	editor	to	edit	
the same document at the same time. On the other hand, if more than two people
work on the same document at different times, then it is asynchronous writing. For
example,	one	writes	part	of	the	content	and	sends	the	file	through	email	to	others	
afterwards.

Noël and Robert [2004] analyzed 12 previous studies from 1989 to 2002 on
collaborative activities, giving us an overview about different research interests of
collaborative writing. Researches on collaborative writing do not focus only on
writing, but also activities and tools related to completing a collaborative writing
project.	Therefore,	collaborative	writing	research	itself	can	be	further	classified.	For	
this part, Posner and Baecker created a taxonomy of collaborative writing based
on	 their	 research	 on	 finding	 similarities	 among	 collaborative	writing	 processes	
[Posner and Baecker, 1992]. There are four categories in the taxonomy: roles,
activities, document control methods, and writing strategies.

Roles	 in	 collaborative	writing	 systems	 are	meant	 to	 support	 the	 definition	
of social roles in a collaborative writing project, because a collaborative writing
group	 is	 usually	 composed	of	 different	 people	 fulfilling	 several	 different	 social	
roles.	 Defining	 roles	 reduces	 the	 coordination	 problem	 by	 specifying	 proper	

T I M E		
Same Different	but	

predictable
Different	and	
unpredictable

Same Meeting facilitation Work shifts Team rooms
Different	but	
predictable

Teleconferencing

Videoconferencing

Desktop conferencing

E-mail

Collaborative

writing

Different	and	
unpredictable

Interactive multicasting

seminar

Computer boards Work	flow

Table 1. 3x3 map of groupware options [Grudin, 1994]

P
L
A
C
E

 �

access privileges to each role. Fox example, Quilt [Fish et al., 1988; Leland et
al., 1988] provides three default roles -- co-author, commenter, reader, and user-
defined	roles.	A	co-author	has	full	rights	to	a	document:	read,	write,	modify	other	
co-author’s text, and give comments. A commenter cannot modify the content
directly, but can give comments. A reader can only read the document, but cannot
do anything else. Other common roles in collaborative writing projects are editors,
proofreaders, reviewer or visual designer. The functions of roles vary in groups:
editors	in	a	scientific	paper-writing	group,	student	report	group,	journalism	may	
be given different duties.

Activities include not only writing but also other activities for participants
in a collaborative writing project. Ede and Lunsford divided the collaborative
writing activities into several related activities, including brainstorming, note
taking, organizational planning, writing, revising, and editing [Ede and Lunsford,
1990]. The roles that the participants play and the activities that they perform in
a collaborative writing project are closely related, however, one individual in a
single role can perform several activities.

Writing strategies and document control methods are closely related. Different
document control methods are used to support different writing strategies. Common
writing strategies are the following: single writer, separate writers and joint writing
strategy. In single writer strategy, there is only one member who is in charge of
writing the document with help from other members. Such strategy usually comes
with centralized document control method, the writer maintains the document,
and other members have the privilege to read or comment on it. In separate writer
strategy, a document is divided into parts and different participants are responsible
of writing various parts. The document control methods used for separate writer
strategy vary. Shared control method allows every co-author to have equal rights
to the document at the same time, but the co-author does not modify the parts that
belong to the other co-author. Or every co-author only has full rights to their own
parts,	but	specific	co-authors	have	full	access	to	everyone’s	work	to	do	the	final	
integration. In joint writing strategy, several participants compose the document
together, there is no clear separation on who writes which parts. Shared control
method is usually applied to this writing strategy.

From taxonomies and empirical studies, we can derive the requirements for
developing collaborative writing systems (Table 2). Even now, it is still hard for
a	 collaborative	 writing	 tool	 to	 fulfill	 all	 requirements	 proposed	 by	 Posner	 and	
Baecker;	different	tools	fulfill	partial	requirements.

While collaborative writing can be synchronous and asynchronous, Posner
and Baecker found that writing usually proceeds asynchronously. Therefore,
collaborative systems provide more advantages at the reviewing phase than the
composing phase. Requirements derived from later studies support the same
conclusion [Kim and Eklundh, 1998; Noël and Robert, 2004]. Noël and Robert
summarized the basic functions from their empirical study as: track changes,

�

version control, add comments and identify the contributor. Kim and Eklundh
intended	to	find	out	the	common	collaborative	writing	practices	while	particularly	
focusing	on	 reviewing	documents.	They	proposed	five	 aspects	of	 the	design	of	

collaborative writing tools: centralized document control, commenting function,
maintenance of revision history, change representation and need for good network-
centric user interfaces [Kim and Eklundh, 2000].

There	 are	 similarities	 in	 the	 two	 findings:	 version	 control	 can	 achieve	
centralized document control, maintenance of revision history can help to identify
the contributor, and change representation is related to track changes.

Modern	 version	 control	 systems	 provide	 functions	 that	 can	 fulfill	 the	
requirements proposed by the researchers mentioned. However, because version
control systems were originally developed for software development, they do not
satisfy the needs of collaborative writing well. The issue “interacting with change
representations” I am addressing in this thesis, is a part of version control systems
related to visualizing differences between two revisions. Although modern desktop
word processors improve the way for users to interact with change representations,
those improvements are not applied to web-based collaborative writing systems
yet.

In Chapter 2, I will introduce the role of version control in collaborative writing,
the role of change representations in version control systems, and the functions of
change representations in collaborative writing. In Chapter 3, I will go through the
existing approaches to change representations, and analyze their pros and cons.
In Chapter 4, I will propose my approach to interact with change representations

Taxonomy Design	Requirements
General 1. Preserve Collaborator identities.

2. Support communication among collaborators — document annota-

tions, synchronous interactions, and asynchronous messages.
Roles 3. Make collaborator roles explicit
Activities 4. Support the six primary writing activities: brainstorming, researching,

planning, writing, editing, reviewing.

5. Support transitions between activities.

6. Provide access to relevant information.

7. Make plans explicit — process and outline plans.

8. Provide version control mechanisms — change indicators.
Document Control

Methods

9. Support concurrent and sequential document access.

10. Support several document access methods: write, comment, read.

11. Support separate document segments.
Writing Strategies 12. Support one and several writers.

13. Support synchronous and asynchronous writing.

Table 2: Design Requirements Proposed by Posner and Baecker [1992]

 �

in web-based collaborative writing tools. In Chapter 5, I will discuss the possible
further development of this approach. In Chapter 6, I will give a summary of this
thesis.

�

2.	 Version	Control	Mechanisms	in	Collaborative	
Writing

Version control systems originate from tools designed for software development
management [Hawley, 2003]. During the development of software, no matter the
number	of	developers,	the	structures	and	code	are	modified	frequently	especially	
in the early phase. Version control tools help the management and consistency of
code, which are important for the development of software projects.

The	 first	 notable	 program	 to	 offer	 version	 control	 was	 the	 Source	 Code	
Control System (SCCS) written by Marc Rochkind at AT&T Bell Labs in the
1970s. Then the Revision Control System (RCS) designed by Walter F. Tichy and
developed at the Department of Computer Science at Purdue University came out
in 1982. Both systems feature versioning and the ability for multiple developers on
a single system to work together. In 1992, Brian Berliner and Jeff Polk developed
Concurrent	Version	Control	 (CVS),	which	 is	 the	 first	 notable	 program	 to	 offer	
network-capable version control. With the network capability, developers can
access the CVS system via Internet, so they can work on the same project at the
same time or different time from different places. Led by Karl Fogel, the CVS
development team developed Subversion (SVN), the replacement of CVS in 2002.
RCS, CVS and SVN are used in the software development world nowadays.

Take CVS for example, CVS features include: repository, a central place in
where the documents are stored; revisions, versioning mechanism; branching and
merging, diverging / rejoining development of a project; history browsing or logs,
viewing	history	of	files,	what	files	have	been	changed,	when,	how,	and	by	whom.	

Looking at version control from the perspective of collaborative writing, the
reasons for having version control in collaborative writing can be derived from
Noël and Robert’s empirical study: the users wanted to be able to, for example, view
the changes made to the document by the different writers, make sure everyone is
working on the same version of the document, add comment to the content of the
document, and identify the contributors [Noël and Robert, 2004].

Those requirements can be addressed by repository, revisions and history-
browsing features provided by version control systems. However, the ability to
view changes made to the documents -- also known as change representations -- in
version control systems has another term called diff, which is also a program used
by the version control system to generate changes -- diff.

2.1	 The	Role	of	Change	Representations	in	Collaborative	
Writing

In a collaborative writing project, depending on each participant’s role in the project,
participants can modify the content created by other participants. Therefore, the
ability to follow which changes are made and why they are made to a revised

 �

document in a collaborative writing system has been pointed out in different
studies about collaborative writing [Cross, 1990; Neuwirth et al., 1992; Posner
and Baecker, 1992; Kim and Eklundh, 2001; Noël and Robert, 2004]. Noël and
Robert [2004] found that the participants tended to discuss when they intended to
modify the content written by other members. In addition, the participants said
their favorite function in collaborative writing tools was the one that lets them
follow the changes made to a document. In Cross’ study of eight writers working
on an annual report, it was observed that each writer “omitted, added, highlighted
or	modified”	 the	 text	 to	agree	with	his	or	her	preconceptions,	with	unexplained	
changes that caused “considerable frustration” for other writers.

2.2	 Scenarios	of	Using	Change	Representations

The following scenarios help to understand how change representations are used
in collaborative writing processes. One of them is in a synchronous context, the
second is in an asynchronous context, and the third is in a review context.

Consider the hypothetical case of three students, A, B and C, working together
on	a	final	report	for	a	course.	They	all	have	access	to	computers	and	Internet,	and	
everyone has the same privileges to the working document.

In a synchronous writing context, A starts writing the document while C
is	also	working	on	it.	When	C	finishes	his	writing,	he	saves	the	document	back	
to	repository	while	A	is	still	writing.	When	A	finishes	her	writing	and	saves	the	
document	back	to	repository,	she	is	notified	by	the	system	that	there	has	been	a	
version saved beforehand, so she has to merge this saved version and her version
before she can save her document. The system produces a change report for A
to compare the differences between her version of document and C’s version of
document. A can see the differences between the two versions, decide whether to
accept	or	reject	changes	made	by	C,	and	add	comments	to	modifications	she	makes.	
After A completes merging her version with C’s version, she can save the merged
document back to repository. Next time, when A, B or C opens the document, they
will all receive the merged version.

In asynchronous writing context, B opens the document to write, the revision
history	shows	that	the	document	was	modified	by	C.	B	wants	to	know	what	changes	
C made to the document, she can either just view the current version written by C,
or, if there are many changes, she can use the system to produce a change report
that displays the differences between her last revision and C’s version, and read the
comments	from	C	to	know	why	he	made	such	modifications.

After the draft of the document was done, the three agree that B is in charge
of the reviewing work. So B reviews the document, and makes changes and
comments to the document. C reads the document revised by B, he uses the change
representations to follow the changes and comments made by B, and incorporates
her comments to the newly revised version, then passes it to A. A does the same

�

work	as	C	did,	so	the	final	report	is	finally	done.
Therefore, the functions of change representations are not just to represent

changes between two revisions, but to help co-authors cope with changes, especially
understand why the other person made them. Producing differences between two
documents is a technical issue that has received much attention and research results,
but with change representations -- how to represent the differences produced by
the difference-generating tool -- there have been only a few studies on the design
of change representation functions [Kim and Eklundh, 2001], especially studies
from the user interface design point of view.

In the next chapter, I will go through the major designs that have been done
on change representations in collaborative writing systems.

 �

3.	 Designs	of	Change	Representations

In this chapter, an overview on the major studies that have been done on change
representations and the designs of interacting with change representations is
presented. It examines the applications used for collaborative writing projects,
focusing on how they deal with change representations, and their pros and cons.

Before diving into the evolution of the design of change representations, I
would like to point out a phenomenon observed among the studies. Most studies
on collaborative writing were conducted in late 1980s and early 1990s. At which
time Internet and World Wide Web (shortened to the web or the WWW) were
not popular among general users. So the applications developed for collaborative
writing were desktop applications instead of web-based applications.

However, with the popularity of the World Wide Web, varying web services
have emerged since mid-1990s, for example, web mail, web forum, discussion
group, web chatting room. Web services still require a browser, which is a desktop
application, but unlike other desktop applications, users can access and operate
different applications via a single web browser. Before the WWW, users of personal
computers installed and used different desktop applications for accessing different
services on the Internet. Take following applications as examples: mail client
application to receive / send emails and manage mailing list, news groups; IRC
client applications to connect to IRC server; document processor or editor to write
and edit documents. But with web-based services, users can access the mentioned
services via a browser without installing extra applications on their computers.

Changes	 of	 tools	 and	 environment	 will	 influence	 the	 way	 people	 do	 the	
same thing, such is the challenge faced by designers and developers when
porting desktop applications to web-based services. From the technological
aspect, are the approaches developed for desktop applications also available on
web-based programming techniques? From the user experience point of view,
are the interactions designed for desktop applications still valid for web-based
applications? Because there are few studies about web-based collaborative writing
systems, these issues are rarely discussed, not to mention change representations.

This Chapter begins from desktop collaborative writing software, summarizing
their approaches, and then proceeds to the web-based collaborative writing
services.

3.1	 Change	Representations	in	Desktop	Applications

The need of a differential program comes from the need to distinguish the difference
between	 two	files.	When	 the	 research	on	diff	utility	began,	 it	was	considered	a	
problem	in	the	algorithm	field.	The	researchers	focused	on	how	to	use	space	and	
time	efficiently	to	compare	the	difference	between	two	files.	Gradually,	this	feature	
is integrated into word processors to support collaborative writing work.

�0

3.1.1	 Diff

As	mentioned,	the	ability	to	tell	differences	between	two	files	was	first	considered	
as an algorithm challenge, so it is easy to assume that representation was not a main
concern	at	that	time.	When	Unix	Diff	was	officially	released	in	1974,	it	displayed	
the	changes	made	per	line	for	text	files	with	simple	visualization.	

As a command line tool, the change report generated by Diff is a plain text
file,	which	 lists	only	 the	changes	between	 two	files	vertically,	 see	Figure	1	and	
Figure	2	for	examples.	When	a	user	wants	to	use	Diff	to	compare	two	files,	the	
command	is	“diff	[parameters]	old_file	new_file”.	The	default	output	is	terminal,	

This part of the
document has stayed the
same from version to
version. It shouldn’t
be shown if it doesn’t
change. Otherwise, that
would not be helping to
compress the size of the
changes.

It is important to spell
check this dokument. On
the other hand, a
misspelled word isn’t
the end of the world.
Nothing in the rest of
this paragraph needs to
be changed. Things can

This paragraph contains
text that is outdated.
It will be deleted in the
near future.

be added after it.

This is an important
notice! It should
therefore be located at
the beginning of this
document!

This part of the
document has stayed the
same from version to
version. It shouldn’t
be shown if it doesn’t
change. Otherwise, that
would not be helping to
compress anything.

It is important to spell
check this document. On
the other hand, a
misspelled word isn’t
the end of the world.
Nothing in the rest of
this paragraph needs to
be changed. Things can
be added after it.

This paragraph contains
important new additions
to this document.

Figure 1. Original document Figure 2. Revised document

 ��

and the result is as shown in Figure 3.
There are three types of changes: added, deleted and changed text. For added

and deleted text, the change representation in the change report includes two parts:
a line describing the change type and the position where the change is made, the
added or deleted text. For changed text, the change representation in the change
report includes four parts: a line describing the change type and the position where
the change is made, the original texts, the separation mark “---”, and the revised
text.

The	one-line	description	is	at	the	beginning	of	every	modified	part,	“a”	stands	
for	added,	“d”	for	deleted	and	“c”	for	changed.	Line	numbers	of	the	original	file	
appear	 before	 a/d/c	 and	 those	 of	 the	modified	 file	 appear	 after.	Angle	 brackets	
appear at the beginning of lines that are added, deleted or changed, “>” means
the text is added, “<” means deleted texts. Addition lines are those added to the
original	file	 to	appear	 in	 the	new	file.	Deletion	 lines	are	 those	deleted	 from	the	
original	file	to	be	missing	in	the	new	file.

There has not been much improvement on the Diff algorithm since its release,
but there have been efforts on providing more formats of the change report to make
it suitable for various needs. In addition to the default option that reports all changes
made to the document, Diff provides other formats for the users to indicate what
changes	to	report	in	the	change	report.	In	a	“diff	[parameters]	old_file	new_file”	
command, the format of the change report is decided by parameters: “-e” means
to display only the edited part in the report, without the original text; “-c” means
context format which not only reports all changes but adds more description to
the changes between two documents, which not only gives more readability for

Figure 3. A default change report produced by Diff, divided into two columns.

0a1,6
> This is an important
> notice! It should
> therefore be located at
> the beginning of this
> document!
>
8,9c14
< compress the size of the
< changes.

> compress anything.
12c17
< check this dokument. On

> check this document. On
18c23,24
< be changed. Things can

> be changed. Things can
> be added after it.
21,23c27,28
< text that is outdated.
< It will be deleted in the
< near future.

> important new additions
> to this document.
25d29
< be added after it.

��

humans, but also helps Unix program Patch to apply patches to a program; “-u”
means	unified	format	which	is	improved	from	context	format	and	is	used	mostly	
for Unix program Patch.

In the edited script format, for added and changed text, there is a line describing
the change type and the position where the change is made on the old document;
following the description is the edited content in the new document. But for deleted
text, there is no following content after the description because the deleted part is
meant to be invisible in the new document.

In the context format, any changed lines are shown alongside unchanged lines
before and after. The inclusion of unchanged lines provides a context to the reader.
The context consists of lines that have not changed between the two documents,
so	it	can	be	used	as	a	reference	to	locate	the	position	of	cchunks	in	the	modified	
documents.

The	user	can	define	the	number	of	unchanged	lines	shown	above	and	below	
a change chunk, three lines is typically the default. If the context of unchanged
lines in a chunk overlaps with an adjacent chunk, Diff will avoid duplicating the
unchanged lines and merge the chunks into a single chunk.

There is a two-line header at the beginning of the change report, which

Figure 4. Diff change report in context format, divided into three columns.

*** temp00.txt 2009-05-11
13:42:03.000000000 +0300
--- temp01.txt 2009-05-11
13:41:22.000000000 +0300

*** 1,3 ****
--- 1,9 ----
+ This is an important
+ notice! It should
+ therefore be located at
+ the beginning of this
+ document!
+
 This part of the
 document has stayed the
 same from version to

*** 5,25 ****
 be shown if it doesn’t
 change. Otherwise, that

 would not be helping to
! compress the size of the
! changes.

 It is important to spell
! check this dokument. On
 the other hand, a
 misspelled word isn’t
 the end of the world.
 Nothing in the rest of
 this paragraph needs to
! be changed. Things can

 This paragraph contains
! text that is outdated.
! It will be deleted in the
! near future.

- be added after it.

--- 11,29 ----
 be shown if it doesn’t
 change. Otherwise, that
 would not be helping to
! compress anything.

 It is important to spell
! check this document. On
 the other hand, a
 misspelled word isn’t
 the end of the world.
 Nothing in the rest of
 this paragraph needs to
! be changed. Things can
! be added after it.

 This paragraph contains
! important new additions
! to this document.

 ��

includes the paths to the old and new documents and their timestamps respectively.
There	are	five	parts	in	a	cchunk:	a	line	of	asterisk	marks	(*)	as	an	indication	of	
the beginning of a cchunk; a line that tells the change information in the original
document; the changed content alongside unchanged content before and after in
the	 original	 document;	 a	 line	 that	 tells	 the	 change	 information	 in	 the	modified	
document; the changed content alongside unchanged content before and after in
the	modified	document.

In	 the	 line	 that	 tells	 the	 information	 of	 changes	 in	 the	 document,	 the	 first	
number is the line number indicating where the change begins in the document;
the second number is the range of the change. The line that begins and ends with
three asterisks refers to the original document, while the line that begins and ends
with	 three	dashes	(–)	 refers	 to	 the	modified	document.	 In	 the	change	chunk,	an	
exclamation mark (!) represents a change between lines that correspond in the two
files,	a	plus	sign	(+)	represents	the	addition	of	a	line,	while	a	blank	space	represents	
an unchanged line. The illustration is in Figure 4.

The	unified	format	starts	with	the	same	two-line	header	as	the	context	format,	
except	 that	 the	original	document	 is	preceded	by	three	dashes	and	the	modified	
document is preceded by three plus signs. Following this are one or more cchunks
that	contain	the	line	differences	in	the	file.	There	are	two	parts	in	a	cchunk:	a	line	
begins with two at marks (@) telling the information of the changed content.

The format of the change information line is “@@ -R +R @@”. The one
preceded by a minus sign (-) tells the change information in the original document,
and	the	change	information	in	the	modified	document	is	preceded	by	a	plus	sign.	
Each	cchunk	range,	R,	contains	two	numbers,	the	first	number	is	the	starting	line	

Figure	5.	Diff	change	report	in	unified	format,	divided	into	three	columns.

--- temp00.txt 2009-05-11
13:42:03.000000000 +0300
+++ temp01.txt 2009-05-
11 13:41:22.000000000
+0300
@@ -1,3 +1,9 @@
+This is an important
+notice! It should
+therefore be located at
+the beginning of this
+document!
+
 This part of the
 document has stayed the
 same from version to

@@ -5,21 +11,19 @@
 be shown if it doesn’t
 change. Otherwise, that
 would not be helping to
-compress the size of the
-changes.
+compress anything.

 It is important to spell
-check this dokument. On
+check this document. On
 the other hand, a
 misspelled word isn’t
 the end of the world.
 Nothing in the rest of

 this paragraph needs to
-be changed. Things can
+be changed. Things can
+be added after it.

 This paragraph contains
-text that is outdated.
-It will be deleted in the
-near future.
+important new additions
+to this document.

-be added after it.

��

number of the change, and the second number is the number of lines of the change.
In the change content, a space character precedes the unchanged, contextual lines,
addition lines are preceded by a plus sign, and deletion lines are preceded by a
minus sign. The illustration is in Figure 5.

Line-based	changes	means	the	program	parses	a	text	file	by	newlines,	which	
is	 proper	 for	 comparing	 two	program	files,	 because	programmers	usually	write	
one program sequence per line. In plain text documents such as essays or articles,
newlines are usually used for separating paragraph. In an article level, although
separation	by	paragraph	fits	the	cognitive	understanding	of	an	article,	with	a	long	
paragraph it adds cognitive load to readers. Although an improved front-end
program	Wdiff,	which	can	compare	files	on	a	word	per	word	basis.	The	output	is	
still plain text. Plain text output does not provide good readability of the report.
Readers have to know the meaning of numerous keywords and signs so to know
what the change is.

In sum, the change report produced by Diff is lacking readability, which
makes	it	not	only	difficult	for	the	readers	to	know	the	reasoning	behind	changes,	
but	also	difficult	to	figure	out	what	changes	were	made.

3.1.2	 Quilt

Quilt was a collaborative writing tool developed in 1988 [Fish et al., 1988]. Unlike
collaborative writing tools developed at the same time period which concentrated
mainly on document access control for multiple authors, the Quilt team thought that
all types of documents and degrees of collaboration require communication among
the collaborators, and that co-authors need communication to maintain a pleasant
and productive working relationship. Therefore, in addition to access control, Quilt
provides structured mechanisms for annotation of document, including revision
suggestions, public comments, and direct or private messages.

Quilt relies on roles and collaboration styles to support collaborative
writing	projects.	Roles	are	predefined	and	cannot	be	changed;	they	are	co-author,	
commenter and reader. In addition to three default collaboration styles: exclusive,
shared,	and	editor,	the	project	creator	can	also	customize	predefined	styles	or	define	
new collaboration styles from scratch. The style of collaboration determines the
types of annotations permitted on documents and the social roles played by the
collaborators.

A draft of the document in Quilt consists of three elements: a current base
document, which is the text and other material that the writers consider can be
publicly visible portion of their work; suggestions for revision in a form that
users with appropriate permissions can swap with a current paragraph in the
base document; voice or text comments. Although there is no comprehensive
versioning system in Quilt, but for better coordination and communication, in
addition to creating and reading drafts, users can save a history version of the base
document, complete with its associated links. Quilt automatically records the date

 ��

and time a co-author changes the document and can automatically compare the
versions before and after the changes. Through an automatic process of paragraph
comparison, readers can use the history version to see side-by-side comparisons of
changes between versions of a draft. If there is a revision suggestion, Quilt allows
examination of the difference between the two versions and swapping in of the
revised version.

There are not explicit illustrations demonstrating how Quilt displays
differences between two versions, the only clear part is that the users can see “side-
by-side” comparisons of changes. But from examples provided by the published
paper [Leland[Leland et al., 1988], we can derive a rough idea. In the reading mode, when, we can derive a rough idea. In the reading mode, when
a co-author accesses a draft via Quilt with proper permissions and reads through
the draft, if there are annotations, the annotation list is displayed on a side window.
See Figure 6 for an example.

If the co-author selects an annotation from the annotation list, another side
window appears with the content of selected annotation. See Figure 7 for an
example.

Figure 6. Quilt in reading mode [Leland et al., 1988]

Figure 7. The selected annotation is displayed in another side window [Leland et al., 1988]

Figure 8. Quilt in reading mode with a revision as an annotation, based on material from [Leland et al.,
1988]

��

Following this design convention, if there are revisions in a draft, the
information will be displayed at the side window as illustrated in Figure 8.

When the co-author selects a revision from the side window, another side
window appears next to the annotation side window. The content of the selected
revision with change representations is displayed in the side window for the co-
author to read and accept / reject contents. See Figure 9 for an example.

3.1.3	 PREP

PREP was developed in 1994. It was basically for asynchronous collaborative
writing [Neuwirth et al., 1994]. Inheriting from the idea of Quilt, PREP as well
emphasized social communication issues in collaborative writing, especially co-
authoring and commenting. There are three issues that the PREP team intended to
address: support for social interactions among co-authors and commenters, support
for cognitive aspect of co-authoring and external commenting, and support for
practicality in both types of interaction [Neuwirth et al., 1990].

PREP	agrees	with	 the	 function	of	 roles	and	flexible	collaboration	styles	 in	
Quilt,	but	 the	 team	also	observed	 the	 insufficiency	of	Quilt.	Roles	such	as	“co-
author” and “commenter” substantially underspecify the activities involved in
coordinating complex tasks such as collaborative writing. Writers also need support
for coordination activities that fall outside role boundaries. An acute example is
support for the communication about comments. Comments are meant to help co-
authors understand the comments from commenter, however, comments are not
always easy to understand, and moreover, the lack of consistency in comments and
contradictory comments can be frustrating to authors.

At the co-authoring part, it has been observed that “edit-review-incorporate”
cycle is one of the most common events in a co-authoring relationship. The cycle
is described in the scenario in Chapter 2. Because unexpected and unexplained
changes to texts can cause frustration for co-authors, to solve this, communication
about changes to texts should be supported by collaborative writing systems.

PREP	 focused	 on	 the	 design	 of	 interfaces,	 specifically	 on	 the	 visual	
representation of the draft, and interaction with the draft to achieve its goal to
support communication on co-authoring and commenting. Based on the purpose,
a critical concept developed by PREP is versioning, which allows revisions to
exist as distinct versions of the draft. Though versioning and history log are not

Figure 9. Possible side-by-side comparisons of changes in Quilt, based on material from [Leland et al.,
1988]

 ��

new	concepts	in	developing	collaborative	writing	systems,	PREP	is	the	first	one	
that not only implements the versioning mechanism, but also devotes effort in
designing and developing interfaces for representing differences between revisions
for collaborative writing systems [Neuwirth et al., 1992; Kim and Eklundh, 2001].
The design features of PREP such as comment history and the pinpointing of
change representations are still used by nowadays word processors.

A	 flexible	 text	 differencing	 system	 “flexible	 diff”,	 allowing	 collaborative	
authors to customize change reports to their various social and cognitive needs,
is embedded in the PREP editor. Flexible diff intends to answer three questions
about change reports: what changes should be reported, how should changes that
are reported be pinpointed, and what should the user interface to the change report
be like.

Regarding “which changes should be reported”, instead of “reporting all
changes”, Nachbar argued that for some tasks, reporting all changes is inappropriate
[Nachbar, 1988]. Neuwirth et al.	argued	that	there	are	factors	that	influence	how	
co-authors think of what changes should be reported. The trust level the writer has
toward co-authors and reviewers is one of the factors. If a more trusted member
reviews the draft, the writer may not want to review all changes. Another is the
development phase of the document. If a document is at early-drafting phase,
the changes may be dramatical every time it is revised. Some writers may prefer
reporting all changes at this phase because they want to see what happened to
especially their written parts, but some writers may have opposite preference,
because reporting huge amount of dramatical changes with improper change
representation can be distracting and can reduce the readability of the document.
At some point, the writers may want to see only the added parts, the deleted parts
or	the	moved	sentences	or	paragraphs,	depending	on	if	they	find	the	reports	useful	
or not. Since trust level, distraction level and usefulness level are hard to evaluate
objectively,	a	differencing	program	for	collaborative	writing	should	be	flexible,	to	
allow writers and readers to specify what changes to ignore.

For “how should changes that are reported be pinpointed”, it is considered
whether the changes should be pinpointed at its exact position, or pinpointed
according to the number, density and complexity of changes. Again, for the
readability and distraction level when a reader reads a revised document, the
flexibility	to	represent	changes	is	required	for	collaborative	writing	systems.

To	 offer	 flexibility	 on	 change	 reports	 to	 users	 of	 the	 collaborative	writing	
system, PREP applies heuristics and parameters to its differencing program. The
co-author can set a “change threshold”, so that differences between two units are
ignored if some percentage of their parts are equal. Setting the percentage to 100%
will report all changes. Other parameters are for determining how changes in a
text	are	pinpointed.	The	“coarseness”	defines	at	which	level	the	changes	are	to	be	
pinpointed: character, word, phrase, sentence, or paragraph. Three parameters are
used	to	define	how	precisely	replacements	are	pinpointed:	maximum	distance	to	

��

look for commonalities, maximum percent of differences, and maximum distance
to concatenate.

The	 PREP	 team	 implemented	 an	 interface	 for	 the	 flexible	 diff,	 which	 is	
embedded in the PREP editor. The interface supports side-by-side columns of text,
with horizontal alignment that enables “at a glance” viewing of large numbers of
annotations and related texts. The “side-by-side” design is the same as in Quilt,
but the horizontal annotation history is pioneering. As shown in Figure 10, there
are	four	columns	when	a	change	report	is	produced,	starting	from	the	left:	the	first	
column is the original text, the second is the revision, the third is the comparison,
a.k.a the change report, the fourth is the explanation to the changes made to the
original text. PREP reports changes sentence by sentence, so every sentence is a
row with four columns.

For readers accustomed to horizontal reading and writing, displaying changes
in	a	side	column	fits	to	their	cognitive	process	when	dealing	with	reading	tasks.	
Compared to traditional Unix diff that displays changes by line [Hunt et al., 1975],
cchunking and displaying changes by sentence is more logical for an article, and it
helps readers to understand the meanings and context in an article.

Ideally,	a	fine-tuned	combination	of	change	threshold	and	parameters	that	are	
appropriate to reader’s cognitive and social needs can help readers understand a
revised	document	more	effectively	and	efficiently.	Therefore,	the	users	should	have	
the motivation to adjust various parameters according to their needs. However, as
Noël and Robert revealed in their empirical study on collaborative writing, too
many	difficult	 functions	offered	by	collaborative	writing	systems	 is	 ironically	a	
cause that stops people from using them [Noël and Robert, 2004], so is the PREP
users’ attitude toward complicated parameters. To compensate for this shortcoming,
PREP	 provides	 default	 parameters	 for	 its	 flexible	 differencing	 program	 based	

Figure 10. Side by side change report in PREP [Neuwith et al., 1992]

 ��

on	 predefined	 heuristics.	
Neuwirth et al. [1992] also
recognize that most users do
not change the defaults.

From the perspective
of	 cognitive	 load,	 figuring	
out how to adjust various
parameters and change
thresholds maybe more
distractive to users, and
require more cognitive
effort than understanding the
context of changes; because
it takes time and trials for
co-authors	 to	 find	 out	 the	
best	 configurations	 for	 their	
needs.

For the visual cue to
represent changed text in the
change report of PREP, PREP
uses italic text for inserted
texts and underlined text for
deleted texts, as shown in
Figure 10. This is a bit odd
format because in English
writing, italic text has its own
function. The convention
used in the models of reading
process is that strike-through
corresponds to deleted texts
and underline corresponds
to inserted texts, as shown in
Figure 11.

Instead of developing a
new system for collaborative
writing from scratch, Malcolm and Gaines hypothesized that the main potential
users of collaborative writing systems would be current users of standard
commercial word processors. Therefore, the other approach is to develop
functions that support collaborative writing on existing word processors
[Malcolm and Gaines, 1991].

Based on the hypothesis, the advantage of merging collaborative writing
support into standard word processors is obvious. The potential users of

Figure 11. An example revision and change report with
all changes reported [Neuwirth et al., 1992; Samuels and
Kamil, 1984]

�0

collaborative writing systems are already used to the writing environment and
functions available in the word processors they are using currently, therefore, they
would not be ready to accept any degradation in facilities in using an experimental
system and neither would they be willing to make major changes in their work
practice in a short term. In addition, the rich formatting functions in the word
processor can help with the representations of changes in the change report.

The	 specifications	 of	 requirements	 for	 supporting	 collaborative	 writing	 in	
word processors focus on version control, document control methods that support
synchronous writing, and communication that supports comments, annotations
and their logs. Commercial products such as Adobe FrameMaker and Microsoft
Word do adopt this approach by adding collaborative writing functions to their
products.

A study on reviewing practice in collaborative writing supports this
hypothesis	 and	 approach	 as	well.	 In	Kim	 and	Eklundh’s	 study	 toward	 fifteen	
collaborative writing groups, seven groups used Microsoft Word as their writing
tool,	 five	 groups	 used	 Latex	 and	 three	 used	 Adobe	 FrameMaker	 [Kim	 and	
Eklundh, 2001].

3.1.4	 Microsoft	Word

In Microsoft® Word 2008 for Mac, the interaction functions with changes and
change representation are called “Track Changes”, which can be found under
Tools	on	the	menu	bar.	There	are	three	change	representation	functions.	The	first	
one is the function called “Highlight Changes” by which users can start or stop
recording changes of text, and make the changes shown on the screen or hidden
while editing.

Microsoft Word does not have versioning. When the user activates “Track
changes while editing” in “Highlight Changes”, all changes are logged on one
single document without revision number; in other words, there is not a related
version saved for every revision of the document. If “Track changes while editing”
is off, then, no changes will be recorded in the document. If the user activates
“Highlight changes on screen” as well in “Highlight Changes”, both recorded
changes	and	modifications	that	are	being	edited	are	displayed	on	the	document,	
there is indication at the border of each line that is changed. Hovering on the
changed text will bring up a small pop-up box with information: changed by who
if	the	User	Information	is	available	from	Word	configuration,	when	the	change	is	
made, and change type (deleted or inserted).

The second function in “Track Changes” is “Accept or Reject Changes”,
which enables the user to accept or reject a change that has been made. To accept
or reject a change, hover on the changed text, choose “Accept or Reject Changes”
from “Track Changes” on menu bar, which brings out a dialogue box as shown in
Figure 12. The user can then choose whether to accept or reject a change from the

 ��

dialogue	box,	and	find	previous	or	next	changes	on	the	document.	For	an	accepted	
change, the format of changed text will become the same as the general text, no
longer highlighted as changed text; for a rejected change, the changed text will
disappear from the document, the result is similar to undoing a change.

The third option in “Track Changes” is “Compare Documents”, which allows
the user to compare two documents. The result is displayed as a new Word document
with all contents, where differences are highlighted. “Accept or Reject changes” is
also available on the document generated by “Compare Documents”.

Without saving every revision as an individual document, the user is not able
to	view	a	revision	made	by	a	specific	co-author.	In	addition,	comments	are	separate	
from changes, so the user is not able to read a change and add a comment to the
change at the same time. One can argue that in reviewing a revised document it
is more important what changes was made, not who made changes. In that way,
logging all changes in the same document makes it convenient for the co-author
to see what changes are made. It is still possible to get the co-author information
by hovering on the changes.

For the representation of changed text, Word uses color to indicate changes
made by different co-authors. There are two types of changes: inserted and deleted.
For inserted texts, the default style of text is underlined with color; for deleted
text, the default style of the text is strike-through with color. Both styles can be
configured	in	Word	preferences.	Especially	for	deleted	texts,	there	is	a	style	called	
“hidden”, which allows the deleted texts to be hidden from the document.

Although it is easy to position the changed text in a Word document, however,
the clutter of texts with mixed colors and strikethroughs like in Figure 12 may
cause	difficulties	in	reading	and	revising	a	revised	document.	Because	in	order	to	

Figure 12. Options of “Accept or Reject Changes” in Word

��

revise	a	document,	one	has	to	sense	the	flow	of	the	text	to	feel	how	the	parts	to	
be	revised	harmonize	with	the	unchanged	text,	but	scattered	texts	make	it	difficult	
to extract meaning from original context -- especially for a document which has
been reviewed back and forth for a few times. A subject said that he alternatively
switched on and off the mode of “Highlight Changes” on the screen about ten times
so that he could avoid the problem of cluttering text [Kim and Eklundh, 2002].

3.1.5	 FrameMaker

As a desktop publishing program and word processor for professional publishing,
Adobe FrameMaker is equiped with various features. In Adobe FrameMaker, there
are three functions related to changes on document revisions: “change bars” under
“Format	→	Document”	or	“Format	→	Style”	menu,	“compare	documents”	under	
“File	→	Utility”	menu,	and	“track	text	edit”	under	“Special”	menu.	

A change bar is a vertical line (usually in the margin of a column) that visually
identifies	new	or	revised	text	on	the	document.	The	user	can	choose	whether	to	
automatically indicate all changes made on the document with change bars or
manually	add	change	bars	to	specific	changes	(texts	or	paragraphs),	so	the	user	can	
flag	only	the	most	important	changes	to	the	document	rather	than	flag	every	change.	
This can be considered as a corresponding implementation to the parameters of
“what to report in a change report” in PREP, but with simpler interactions.

Unlike Word, change bars do not display changes word by word, but only
indicate	 which	 part	 of	 text	 has	 been	 modified.	 The	 function	 corresponding	 to	
“Highlight changes” of Word is “Track Text Edit”. When “Track Text Edit” is
activated, the added and deleted text is highlighted for visual distinction. The user
can	navigate	 through	the	edited	sections	and	accept	or	reject	specific	edits.	The	
user	can	also	preview	the	document	to	see	its	original	or	final	state.	By	default,	this	
function can only be activated by editor and reviewer.

Like in Microsoft Word, the user can compare two documents with “Compare
documents” function to receive a detailed change report. When running “Compare

Figure13. Change indications with Change bars in FrameMaker

 ��

Documents” function, FrameMaker generates two documents as results: composite
document and summary document.

The composite document is a conditional document that combines the newer
and older versions; it shows the differences side by side. The co-author can specify
the	condition	tag	to	apply	to	changed	text,	and	whether	changes	should	be	flagged	
with change bars. A conditional document in FrameMaker is a document containing
conditional texts that are output selectively by the author.

The summary document contains a general summary and a revision list for
each type of item being compared. The co-author can then create the summary as
a hypertext document, with links to the actual pages where the changes occurred.
By creating a hypertext summary document, the co-author can quickly display
changed pages for reading or editing.

For the visual representation of changes, when working with “Change Bars”,
the co-author can decide the style of change bars, including: thickness, color, and
the distance from the column of text to the change bar.

When working with “Track Text Edit”, if the co-author starts typing text in a
document where the “Track Text Edit” feature is switched on, the string “(FM8_
TRACK_CHANGES_ADDED)” or “(FM8_TRACK_CHANGES_DELETED)”
appears on the left side of the status bar of the document window. Text additions
appear in a green color, and deletions appear in a red color with a strikethrough.

When comparing documents, there are three parameters for the user to
choose on how and what changes should be reported: Mark Insertions With, Mark
Deletion With, and Mark Changes with Change Bars. For example, if the co-author
wants to see only inserted texts, it can be achieved by specifying how to display
inserted text in the Mark Insertions With area, then specifying “Replacement Text”
in	the	Mark	Deletion	With	area	and	leaving	the	text	box	empty.	If	not	specified,	the	
inserted texts are marked by default condition tag (Inserted) while the deleted texts
are marked by default deletion tag (Deleted).

FrameMaker is ambitious to support variant scenarios in collaborative
writing: change bars to indicate changes but not disturb the context of writing,
track text edit to display all changes for revising and reviewing process, separated
change list for an overview of changes. However, different functions have to be
activated from different menus and with different procedures. The lack of grouping
related functions constructs a barrier for the users to effectively use them.

3.1.6	 Summary	of	Desktop	Applications

To sum up from the applications discussed, there are three aspects related to the
interaction with change representations: which changes to report, how to represent
changes, and how to interact with changes.

For what to report, it was argued that under certain circumstances, not all
changes should be reported. But still, the instinctive answer to the question is

��

that all changes should be reported. Therefore, the control of what to report is
not common on collaborative writing systems. PREP supports it with a heuristic
-- differences between two units are ignored if some percentage of their parts are
equal and lets the user decide the percentage. FrameMaker lets the user to decide
the place where the changes should be reported. The former may work well with
a good setting, but it is not straightforward for the user, and the result is not easy
to predict. The way FrameMaker provides for the user to choose what changes to
report is easier. Because for every change, the user can manually decide whether
to report it or not, the user does not have to predict the result. But it may be too
much	work:	if	the	document	is	long,	there	may	be	many	changes	to	be	flagged.

Representing changes includes two parts: highlighting and layout. How to
highlight changes has been a debating issue. There are pros and cons for both
representation by indication (such as change bars in FrameMaker) and representation
by display (such as highlight changes in Word). The indication mode is suitable
for reading the whole document but not so helpful in understanding and checking
changes in detail. On the other hand, display mode works well in understanding
and checking changes, but its effectiveness decreases as the amount of changes
increases. For a document, especially a draft in the early stage, with over three
revisions,	the	clutter	of	text	makes	it	not	only	difficult	to	read,	but	also	difficult	
to track the relation among changes. Kim and Eklundh concluded from their
interview that the users actually have different purpose for the two representation
modes [Kim and Eklundh, 2002].

When the co-author wants to read a whole text or paragraphs, indication
mode is favored, because it gives fewer disturbances in reading and understanding
the context of a document. For example, indication mode can be suitable when
revising	 a	 rough	draft	 that	 requires	many	modifications,	 because	understanding	
every change in detail may not be so important at this stage, but understanding
the	flow	 and	 structure	 of	 text	 is	more	 valued.	On	 the	 other	 hand,	 if	 content	 in	
the document is almost set, display mode is useful for proofreading, reviewing or
editing. Because the density of changes is low, it is clear to see the changes and
track how the changes are made.

PREP favors display mode, because it helps understand the changes. It seems
that both FrameMaker and Word support two mode at the same time, therefore the
user can choose the mode they need according to their needs. In Word, the user
can either choose Balloon, or change the representation settings to achieve display
mode. But Balloon mode still displays all changes, just some text are moved to
the balloon at the side of the document, which is even more disturbing than usual.
Both FrameMaker and Word allow the user to choose the visual cues of the changes
from	a	set	of	predefined	parameters	such	as	color,	bold,	italic,	underline,	strike-
through, none, or hidden...etc.

For	“how	to	represent	changes?”	early	Diff	omitted	the	unmodified	text	in	the	
report, and vertically displays only the original text and changed text. Although

 ��

it provides the line number so the user can identify the changed position in the
original	document,	still	it	is	difficult	to	understand	the	context	of	changes	without	
the ability to see full documents conveniently.

Sdiff, Quilt and PREP provide side-by-side columns. One column displays
the original text, another displays the changed text with changes highlighted, and
more columns displaying other information such as annotation and comments. The
argument here is that the readers accustomed to horizontal writing read faster in the
horizontal direction than in the vertical. The problem with side-by-side columns is,
that when revising a document, extra columns reduce the space of writing on the
current document. In that way, it is not so preferred by word processors, because
full screen is considered less distracting for writing. Nowadays, side-by-side
columns are visible in version control systems, and web-based interfaces, but not
common in word processors with collaborative writing functions.

As for interaction with changes, three interactions are considered: browse a
series of change histories, accept a change, and reject a change. Change histories
means being able to browse the evolution of a change on every revision of a
document. It is obvious that now the information that comes with a change is not
the change itself, but with the time, the name of the co-author / reviewers who made
the change, and comment to the made change. In a collaborative writing process,
change histories with assistant information helps both co-authors and reviewers
to understand the context how changes are made, and form conventions on how
to develop the document. To achieve this purpose, a version control system that
stores every revision identically is required. PREP is equipped with such design
but it is not further developed in other collaborative writing systems.

Almost all systems recognize the importance of the ability to accept and
reject a change that is made in the previous revisions, FrameMaker and Word use a
dialogue	box	to	find,	accept	and	reject	changes,	Quilt	and	PREP	use	menu	options	
to swap changes. However, with normal version control systems such as CVS or
Subversion, the user has to manually merge documents.

3.2	 Web-based	Collaborative	Writing	Tools

Tim Berners-Lee created the idea of World Wide Web, which refers to a system
of interlinked hypertext documents accessed via the Internet [Berners-Lee and
Fischetti, 1997], in 1989. The tool to access the data on the WWW is a web
browser, which allows the user view web pages that contain text, images, videos,
and other multimedia and navigates among them using hyperlinks. The release
of	the	first	web	browser	in	1992	opened	the	door	of	the	prosperity	of	web.	Ever	
since then, a variety of services has emerged around web, including collaborative
writing tools.

3.2.1	 Wikis

The barrier of conducting collaborative writing on the web is how to write web

��

pages. For a long time, it was required to understand HTML in order to write
web	pages.	The	user	had	to	firstly	write	HTML	code	with	a	text	editor,	save	the	
document, and then upload the document to a web server. So the content could be
seen	from	a	web	browser.	The	idea	of	“Wiki	Wiki	Web”	(now	simplified	to	“Wiki”)	
-- writable web, was created by Ward Cunningham in 1995 [Leuf and Cunningham,
2001]. A wiki is a web-based software that allows all viewers to change the content
by editing the page and to add new pages online in a browser. Only a common web
browser is required in order to do so, and the user does not have to download any
special plug-ins or software, as the text is edited in a common HTML <textarea>.
The user does not have to know any HTML syntax to write a wiki page, plain text
or simple wiki markup language can do the trick.

The simplicity and convenience of wiki turn the web into a desirable tool for
collaborative work on text and hypertext. The trend can be seen from an analysis
of	 the	usage	of	CoWeb,	an	early	wiki	system.	CoWeb	identifies	four	categories	
of how it is used: collaborative artifact creation, review activities, case library
creation, and distributing information [Dieberger and Guzdial, 2002].

There has been a lot of enhancements and improvements on wiki systems
since	 the	 first	Wiki	web	was	 created	 in	 1995.	 Similarly,	 the	 requirements	 of	 a	
wiki system have evolved from simple “writable web” to a platform for numerous
collaborative missions on web upon the goals of the users. So far, there have been
110 wiki software registered in wikimatrix.org. Despite the varieties, there are
common characteristics among wikis summarized by researchers: editing, history,
links, recent changes, sandbox, and search functions [Ebersbach et al., 2008].

Editing. In general, there is an edit button on every wiki page. The edit button
on a wiki page indicates that “this is page is editable”, so the users know they can
write on it. With permission control, not all wiki pages are by default editable,
only users with proper permissions can access correspondent wiki pages, this is the
same concept of roles in collaborative writing systems.

History. This function is similar to revisions in a versioning system, which
basically saves all revisions of a wiki page. Clicking on the “history” button will
bring	a	page	with	available	revisions	of	a	specified	wiki	page.	Every	revision	can	
be opened, edited and saved again. Saving a previous revision of a wiki page
means to revert the content of the page to its previous version. In this way, the
history function allows users to accept and reject changes made to a wiki page.
More advanced wiki systems provide “Diff” function with history, so the user can
compare two revisions and view their differences with visual representations

Links. In	a	wiki	system,	each	page	can	be	linked	to	other	pages	with	specified	
wiki markup languages. The link is like a hypertext link on the web. If a respective
linked page within a wiki does not yet exist, clicking on that link will bring the user
to an edit window for creating content of the empty page.

Recent Changes. This function varies in wiki systems. For some wiki systems,
“recent changes” provides a list of certain number of recent changes to a wiki

 ��

system.	For	other	wiki	systems,	it	provides	a	list	of	all	changes	within	a	predefined	
time period. The list is produced automatically and cannot be changed by users.

SandBox. Wikis provide SandBox or PlayGround for newbie to learn how
to use the wiki syntax and try the results without having to use a regular page. A
Sandbox	is	just	a	predefined	wiki	page	without	particular	content,	and	its	content	
is cleared regularly.

Search function. Search function is provided for the user to search either full-
text or titles within a wiki site. So the user can access a wiki page quickly.

Due	to	the	variety	of	wikis,	it	is	impossible	to	find	one	wiki	to	represent	all	
wiki systems. MediaWiki is used in this thesis, bacause it is one of the most popular
wikis used on the web. Other wiki systems are mentioned as comparisons.

As described before, a typical editable wiki page has an “Edit” button on the
page. When the user clicks on it, the content of the page becomes a <textarea>
element in HTML standard, which allows the user to edit content within it. In
MediaWiki, this button is “Edit this page”. In addition to “Edit” button, there is
another button called “History”, which lists all revisions of the page. See Figure
14 for an example. The “History” button may be called “Revisions” in other wiki
systems. The information displayed on the history page changes with different
wiki systems.

For MediaWiki, a history list contains the following information: time when
the	page	was	modified,	the	user	who	modified	the	page,	size	of	the	page,	comment	
from	the	user,	and	undo	function	which	enables	the	user	to	revert	back	to	a	specific	
revision. To view changes between two revisions, the user can select them and
click “Compare selected versions” to read the differences of the revisions. See
Figure 15 in the next page for an example.

Diff is the most common algorithm and program used by wiki systems. For the
three issues that are relevant to change representations, the change report displays
all changes; there are no options for the user to choose what to report. The changes

Figure 14. A typical wiki page in edit mode, “edit” and “history” buttons are at top.

��

are represented with two columns and the output format is the context format in
Diff, where any changed paragraphs are shown alongside unchanged paragraphs
before and after. The left column is the original text, while the right column is
the changed text. For the visual highlight, the background color of the changed
paragraph in the original page is light yellow, while it is light green in the revised
version. The color of the texts that are exactly changed is red.

There is a “Previous edit” link above the text in the left column, clicking on
it	will	move	the	comparing	revision	one	revision	older	if	it	is	not	the	first	revision	
and display the change report. Similarly, there is a “Next edit” link above the text
in the right column, and a click on it will move the comparing revision one revision
newer if it is not the last revision and display the change report. An example is
given as Figure 16.

Wiki as a web-based collaborative writing tool has changed the usual
understanding about collaborative writing. The wiki way favors: content over
form, open editing over security and control, free form content over structured
content, and incremental growth over upfront design [Désilets et al., 2005]. It
seems	conflicting	to	some	requirements	of	collaborative	writing	systems,	however,	
with	the	improvement	of	wiki	systems,	the	conflicting	parts	are	solved.	Permission	

Figure 15. History of a page in MediaWiki

Figure 16. Change report of MediaWiki

 ��

control allows control on editing content; with careful design and control, the
structure of content can be maintained. The wiki way may favor doing collaborative
writing in some way, but it doesn’t mean that the user cannot do collaborative
writing in the traditional ways.

Despite of the conceptual challenges, there are challenges in using wiki
systems. Before web, users have been accustomed to standalone word processors,
and switching to web browser means switching from a familiar environment to a
new one. For example, edit button may sound simple but it is actually a barrier
for using wikis, especially to wiki novices. The procedure to edit a document with
word	processors	is	open	the	file,	then	edit.	But	with	wikis,	the	procedure	is:	open	
the link to the document, click edit button, then edit. It is a pity that there are
few studies focusing on wiki usability, and among them, even fewer concern the
change representations in wiki systems [Désilets et al., 2004; Reitmayr, 2006;
Paul, 2006].

One observation by Wei et al.[2005] is related to change representations:
wiki editing can also intimidate users new to the collaborative environment. If
collaborative writers and editors are accustomed to the visual cues offered by
Microsoft Word as they edit documents using tracking and comment boxes, the
opaque nature of these activities in wiki editing may be unsettling. It may take
demonstrations to reassure the novice editor that edits are recorded, if not denoted
visually, and can be compared in the revision history [Wei et al., 2005].

3.2.2	 Google	Docs

Google intends to solve this usability gap by providing user interfaces similar to
Microsoft Word for its web-based collaborative writing service: Google Docs.
When the user opens a document in Google Docs, it is editable already; no “Edit”
button is required, as shown in Figure 17. Google Docs provides the common
formatting functions available on Word to Google Docs users as well. However,
there is not much improvement in the change representations.

Figure 17. Google Docs provides UIs similar to Microsoft Word.

�0

The change representation functions are accessed from “Revision History”
in “Tools” on the menu bar. Like in general wiki systems, a list of revisions is
displayed after clicking on “Revision history” (Figure 18). The information
displayed on the list for every revision includes: revision number, the time the
revision is made, the user who edits this revision, and the changed text. The user
can choose two arbitrary revisions and see their difference by clicking “Compare
Checked”.

Unlike the two-column comparison report in wikis, Google Docs generates
the change report similar to a Word document with “Highlight changes on screen”
option switched on (Figure 19). There are few interactions with a change report.
To compare with other revisions, the user has to go back to the Revision history
page,	to	revert	to	a	specific	revision;	the	user	then	opens	that	revision	and	saves	
it.

3.3	 Summary

Observing the interaction with change representations in desktop collaborative
writing systems and web-based collaborative writing systems in detail, it is obvious
that the main problem of change representation in web-based collaborative systems
is how to write a document with change representations at the same time. The
users are not able to view changes while editing a document whether it is a wiki
page or a Google Docs document. This is very different from the way of revising
a document with desktop collaborative writing applications.

In general wiki systems, the user has to explicitly click “Edit” or “Edit this

Figure 18. Revision history list in Google Docs

Figure 19. Changes report in Google Docs

 ��

page” to edit a wiki page, which brings the user away from the original list of
revision history or the change reports generated by the compare function. In Google
Docs, after reading a change report, the user has to go back to the Google Docs
homepage, and select the document again in order to edit it. During the editing or
reviewing process, there are no functions to see the changed text unless the user
opens another browser window or browser tab. In this way, the performance of
change representation in collaborative writing is weakened, which is the reason
why I derived the concept design of interacting with change representation in web-
based collaborative writing systems. The goal of my design is to make it possible
for the users to access the change report and edit a document at the same time
within the same browser window in a web-based collaborative writing tool.

In the next chapter, I will explain this concept design in detail.

��

4.	 The	Concept	Design

As discussed in the previous chapter, lacking the possibility to view the change
report and edit a document simultaneously in a web-based collaborative writing
environment is a weakness for collaboration in the web-based environment.
Thus, the design proposed here is aimed at compensating for this weakness in
current web-based collaborative writing systems, providing a more intuitive
way for the user to browse changes between revisions while editing a document
simultaneously. This goal can be easily achieved on nowadays-desktop word
processors	with	collaborative	writing	features,	but	is	difficult	to	achieve	in	a	web-
based environment.

4.1	 The	Concept	Design	in	Detail

My approach is to add change bars and pop-up windows to the current edit area
in the web-based collaborative writing environment. When the user wants to
edit a page/document, clicking on the “Edit” button or double clicking on the
document will bring the currents of the current window to a browser window in
which the texts are editable within the <textarea>. If there are revisions before the
current version, change bars are displayed at the left side of the paragraphs that
have	been	modified.	Clicking	on	the	change	bar	will	bring	out	a	pop-up	window,	
which displays the change report of that selected paragraph compared to the latest
revision.

The change representation in the change report is to display all changed text
like the one in Microsoft Word with “Highlight changes on screen” option turned
on: inserted texts are indicated by color with underline style, deleted text are
represented by color with strike-through style. In addition to changed text, there is
information about the compared revision on the pop-up window: author, comment
to the changes, and revision number.

For interactions, there are two buttons in the pop-up window: previous revision
and next revision. If the currently compared revision is neither the latest one nor
the	first	one,	both	buttons	are	clickable.	Clicking	on	the	“Previous	revision”	button	
will compare the currently edited revision to the revision which precedes than the
current one and display the new change report. Clicking on the “Next revision”
button will compare the currently edited revision to the revision that follows the
current one and display the new change report.

In general collaborative writing, especially back and forth reviewing process,
what the co-author/reviewer wants to know is the differences between the current
revision and its previous (few) revisions, so there may not be much help with the
ability to browse difference reports among all revisions. But it can help if the user
wants to know the evolution of a document with time.

4.1.1	 The	Benefit	of	Pop-up	Window

 ��

Since there are different purposes for indicating changes and displaying changes,
it has been suggested that there should be easy transition between indication and
display mode in representing changes [Kim and Eklundh, 2002]. The pop-up
window	is	aimed	to	fulfill	the	requirement	of	easy	transition.	This	idea	is	from	the	
dialogue box in desktop word processors. A dialogue box is a small window or
message box that appears temporarily in a GUI (graphical user interface) to alert
the user to a condition and/or to request information. Microsoft Word deploys
a	 dialogue	 box	 to	 help	 users	 find	 changes	 in	 a	 revised	 document.	 In	 the	 web	
environment, a pop-up window can function as a dialogue box in the Windows
environment.

Displaying the change report in a pop-up window enables users to access
the change report of the currently edited document at the same time, and within
the same main window, so it can provide a similar user experience as revising a
document with word processors in the Windows environment. In this way, it is
error	preventing,	less	distracting	and	more	efficient	for	users	when	they	need	to	
see the change report while reviewing or editing a document online.

Under the design of Wikipedia and Google Doc, if users want to see the
change report of a document that is being edited, they have to explicitly open
another browser window or tab that displays the revision history, and then choose
the desired revisions to gain the compared change report. Take MediaWiki for
example, clicking on the “History” button will immediately change the current
editing page to the page of a revision history, without saving the content or asking
the	user	to	confirm	such	operation	beforehand.	Therefore	the	user	suffers	from	the	
loss of content that has not been saved.

The way to keep a change report available while editing is to either open
another browser window, or another tab within the same browser window, and
use this window / tab to manipulate revision history. In this way, the user has to
switch between windows / tabs; this approach not only increases the operations
but	also	distracts	the	users’	concentration.	The	following	figures	display	the	steps	
for accessing a change report while editing a document in the web environment
with MediaWiki (5 steps), Google Docs (6 steps) and my design (3 steps)
respectively.

The reason to adopt change bars (highlight changes by indication) in the

Figure 20. Steps to access to change report while editing in MediaWiki

��

<textarea> is to reduce the distraction to co-authors or reviewers when they are
reading the document. As it is known that the “edit-review-incorporate” cycle
is common in a co-authoring relationship, it is reasonable to assume that a co-
author reads a text before making changes to it. When the user wants to further
understand the rationales of changes, the purpose can be reached by clicking on the
change bar to read the changes in detail from the pop-up window. If the user simply
wants to revise the document without putting too much attention on understanding
the changes, change bars are less annoying than displaying all changes, but still
provide the possibility for the user to check changes in case he or she wants to. In
this way, the design supports both needs of representing changes by indication and
by display [Kim and Eklundh, 2002].

4.1.2	 Display	Changes	by	Paragraph

As for the unit of granularity of changed text, there are several choices: by word,
by sentence, by paragraph, and others. The paragraph is considered suitable
when dealing with documents [Malcolm and Gaines, 1991]. The basic structure
of a document consists of word, sentences, paragraphs, sections and chapters, in
which paragraph is a natural conceptual unit [Halliday and Hasan, 1976]. From
the cognitive point of view, a paragraph can provide enough information for the
reader to understand the context of a piece of writing without being too long, so
that it prevents the pop-up window from occupying too much space on the browser
window. In addition to cognitive advantage, because the difference programs used
by existing wiki systems are either line-based (diff) or word-based (wdiff), it

Figure 21. Steps to access to change report while editing in Google Docs

Figure 22. Steps to access to change report while editing with my design

 ��

requires more effort to develop a sentence-based, section-based or chapter-based
difference program. The Diff program decides the ending of a line by an escaped
character	called	“new	line”,	which	is	defined	as	“\n”	in	programming	languages.	
When	the	user	presses	an	“Enter”	to	start	a	new	paragraph,		“\n”	is	added	to	the	
document. Therefore, it is easier to parse a document into paragraphs than to parse
it into sentences or other structures.

Figure 23. Wiki page at editing condition

Figure 24. A Wiki page at editing condition and a pop-up window. When a change bar is
clicked, the pop-up window appears and displays the change report of that selected para-
graph compared to the latest revision. The inactive “Next revision” button indicates there
is no newer revision, while the active “previous revision” button indicates there are older
revisions.

��

Figure 25. A Wiki page at editing condition and a pop-up window. When the “Previous revi-
sion” button is clicked, the system compares the currently edited revision to the revision which
precedes than the current one and display the new change report in the pop-up window. The
inactive “Previous revision” button indicates there is no older revision, while the active “Next
revision”	button	indicates	there	are	newer	revisions.	The	filed	at	 top	of	the	pop-up	windows	
displays the information of revisions.

Figure 26. A Wiki page at editing condition and a pop-up window. When the “Next revision”
button is clicked, the system compare the currently edited revision to the revision that follows
the current one and display the new change report in the pop-up window. The inactive “Next
revision” button indicates there is no newer revision, while the active “Previous revision” but-
ton	 indicates	 there	 are	older	 revisions.	The	filed	 at	 top	of	 the	pop-up	windows	displays	 the	
information of revisions.

 ��

The mockups of the web pages at every step are illustrated as following:
It is important to keep in mind that this design is not meant to replace the

function of “History”; its aim is to provide extra functionality that cannot be
achieved by the current “History” function. The revision history keeps a revision
as	a	whole	without	any	changes	 recorded;	 it	 fulfills	 the	 requirement	 if	 the	user	
wants	to	read	a	revision	of	a	specific	page/document.	The	pop-up	window	displays	
the	change	report	of	a	specific	paragraph	in	a	page/document	that	is	being	edited	
on	the	fly;	it	fulfills	the	requirement	if	the	co-author/reviewer	wants	to	know	the	
change history of a paragraph while modifying a page/document.

4.2	 Technical	Analysis

To implement this design, there are several technical challenges to overcome.
Although the actual implementation is beyond the scope of this thesis, the following
analysis provides necessary information to accomplish the implementation.

4.2.1	 Front	End

Making change bars visible and clickable in a wiki page under edit mode is a
challenge for implementation, because most wiki pages are edited with plain text.
For a wiki page, it is straightforward to think of representing change bars with
the standard HTML (HyperText Markup Language) and CSS (Cascading Style
Sheet). However, although visual codes and formatting are common in current
WYSIWYG (What You See is What You Get) editors, they are not widely available
in wiki systems.

Figure 27. A Wiki page at editing condition. Clicking the x symbol in the pop-up window closes
the pop-up window and brings back the Wiki page at editing condition.

��

The traditional way to edit a wiki page is to edit the content within a <textarea>
element,	in	which	all	texts	are	plain	text	without	visual	effects;	specific	wiki	markup	
is used if the user wants to add formats or hypertext to the content. The visual
effects and formats are only visible after the user clicks “Preview” or “Save”. The
wiki markup will be converted to HTML format and rendered as HTML pages.
The visual effects are not available in a wiki page under edit mode.

Current web development technologies have made it possible. The <textarea>
used to receive input can be substituted by a frame element. HTML allows a browser
window to be split into several frames. Each of these frames forms a window of its
own within the content window (or within other frames). In this way, content in a
frame is displayed as html format instead of plain text, with the help of JavaScript
and DOM (Document Object Model); the content in a frame can be set to editable
and retains its formatted representation.

A common approach is to use an iframe as a container of the content, then set
iframe.document.designMode = “on” in JavaScript, which controls the behavior
of the iframe. Control of mouse event on the change bars and actions within the
pop-up window should be possible as well via JavaScript.

4.2.2	 Back	End

Other challenges are the data structure of the document, and the structure of
the document version. The ability to view differences of a single paragraph in a
document implies that the Diff program is applied to a paragraph in a document,
not a whole document. However, this is not how the Diff program works. The
Diff	program	reads	two	files	and	compares	differences	between	them,	it	does	not	
compare	specific	parts	in	the	files,	but	compares	the	whole	files.	

To solve this problem, a data structure to store every document revision by
paragraph is required, so that every individual paragraph can be retrieved by the
system, and can be sent as input to the Diff program for comparison.

Following the document structure is the structure of document versions. Every
paragraph has to know its previous revision and next revision if it has revisions, so
the system knows where to obtain the target for comparing.

Since design and development of data structures for this purpose is beyond my
goal, I do not go further into this. For those who are interested in the data structure
design and development, a data structure for solving this problem proposed by
Malcolm and Gaines can be considered as a reference [Malcolm and Gaines,
1991].

 ��

5.	 Pilot	Usability	Evaluation	and	Discussion

A small pilot usability evaluation was conducted to gain feedback on the concept
design.	This	chapter	will	briefly	describe	the	pilot	test,	its	results,	discussion	and	
possible alternatives to the design.

5.1	 The	Pilot	Test

The pilot test was done with a front-end prototype called ViewRevision without
actual data, because the backend data structure was not available. There were four
participants; two were computer science students, and two were general users with
basic computer operation knowledge. The subjects were asked to complete three
tasks:	 choose	 a	 document,	 find	 any	 part	 of	 the	 document	 they	were	 interested	
in and browse its changes, and view changes in older revisions of the chosen
paragraph. An interview was conducted after the usability test.

As for the result, all participants gave positive support to the idea. The
participants	 had	 no	 difficulty	 clicking	 on	 change	 bars	 to	 bring	 up	 the	 pop-up	
window. However two participants found it confusing to relate the text in the edit
window to the text in the pop-up window: one reason was because of the position
of the pop-up window, the other reason was because of the text in the pop-up
window. One participant suggested that instead of displaying the changes report
directly to the users, the system should display a list of revisions for the users to
choose which revision they want to compare.

5.1.2	 Introduction	to	the	Pilot	Test	Plan

In the Pilot Usability evaluation of ViewRevision, the usability of ViewRevision
(a stand-along program) was evaluated. Especially, the evaluation focused on the
convenience of browsing changes of selected paragraphs in different versions of
one document. The usability of this program was evaluated using usability testing.
The	goal	of	the	evaluation	was	to	find	out	whether	it	is	useful	to	users	browsing	
revisions as well as ideas for developing the program to be more usable.

In the usability test, the users were provided with pre-formulated test tasks
(prepared so that they will target the issues that are on the focus of the evaluation).
Think-aloud approach was used to illustrate the problem descriptions. In addition,
data	was	collected	via	interviews	with	predefined	questions.		

The measures that were used to evaluate different aspects of the usability of
ViewRevision	are	effectiveness,	efficiency	and	satisfaction,	described	as	follows:	
1. Effectiveness

	 ●	 %	of	tasks	successfully	completed
2.	 Efficiency

	 ●	 Task	times
	 ●	 Errors	per	task	and	the	time	that	is	spent	overcoming	the	errors

�0

3. Subjective satisfaction
	 ●	 How	often	and	in	which	circumstances	does	the	participant	ex-	

 press signs of frustration or pleasantness (the behavior of the par-
 ticipant)?

These	 three	 measures	 were	 decided	 based	 on	 the	 definition	 of	 usability	
provided by ISO 9241-11[1998]. Depending on the goals of the evaluation, there
are other measures available for usability evaluation.

5.1.3	 ViewRevision	and	its	Users

ViewRevision is a method for users to browse differences between revisions of the
same document. There are mainly four functions:

1.	Users	choose	the	file	and	revision	they	want	to	view.	The	program	displays	the	
chosen version and compares it with the last version, and highlights different parts
with change bars.
2. When the user moves the mouse to the change bar, the cursor changes to a
clickable image for the user to click. When the user clicks on the change bar, it
brings up a pop-up window; the paragraph chosen by the user will be displayed
in the pop-up window. There are two buttons in the pop-up window: Previous and
Next.
3. When the user clicks on the “Previous” button, the window should display the
paragraph of the previous revision.
4. When the user clicks on the “Next” button, the window should display the
paragraph of the next revision.

The target user groups of ViewRevision are those whose work is related
to collaboratively written documents, for instance: authors, proofreaders, and
editors.

For a document that is to be published, it has to be reviewed and revised by
other editors and/or co-authors, so there will be revisions of the same document; if
there are more editors, reviewers and authors, then there will be more revisions.

However, the testers in this pilot evaluation test would be general users.

5.2	 Usability	Testing

The pilot test was conducted on Wednesday, November 22nd, 2006 in the computer
room of the Department of Computer Sciences of the University of Tampere.

5.2.1	 Technical	Context

The operating system used in the test was Windows XP in the computer room. The
size of the screen was 15 inches and the resolution of the screen was 1024x768.

 ��

5.2.2	 Participants

Test participant 1: A (male), a technical writer with computer sciences
background, who is also familiar with wiki and version control systems.
Test participant 2: B (female), communication background, who has basic
computer operation knowledge and working experience in media.
Test participant 3: C (male), general end users.
Test participant 4: D (female), computer sciences student.

5.2.3	 Test	Tasks

Practice	task Find news about Finland today
Start	state No application open
Rationale The purpose of this task is to practice test procedure in general. The

task is not related to the evaluated system.ask is not related to the evaluated system.
End	state The moderator closes the Web browser and the test can begin. If the

participant	does	not	find	the	information,	the	moderator	will	show	

where the information can be found from.
Estimated	task	time Less than 3 minutes.

Task	0 Open iTunes and play a song
Start	state No application open
Rationale The purpose of this task is to relax the participant.
End	state iTunes plays a song.
Estimated	task	time Less than 1 minute.

Task	1 Find a document and revision you want to read.
Start	state Main window of ViewRevision
Rationale The	purpose	of	this	task	is	to	find	out	how	the	users	will	choose	the	

file.
End	state Document with the version chosen by the user is displayed on main

window.
Estimated	task	time Less than 30 seconds.

Task	2 Find	a	modified	part	on	the	document	you	are	interested	in	and	

browse its changes.
Start	state Main window with the document.
Rationale The purpose of this task is to know if the user can click on the

change bar to bring the pop-up window.
End	state Pop-up window shows on the screen.
Estimated	task	time Less than 1 minute.

��

5.2.4	 Interview

Following the usability test, the users were interviewed. The type of the interview
was face-to-face interview with pre-prepared questionnaires, but the participants
did not have the questionnaire. The interview took 10 minutes at most.

The questions were:
 1. What did you like about the project?
 2. What did you not like about the project?
	 3.	 What	was	difficult	to	use	during	the	exercise?
	 4.	 What	did	you	find	confusing?
 5. What can be done to improve upon the project?

5.2.5	 Collecting	and	Analyzing	the	Data

The	data	was	collected	through	interviews	with	predefined	questions.	The	interviewer	
took notes about the test to support the analysis. Quantitative (numerical) data was
presented as graphs.

5.3	 Report	of	the	Pilot	Test

This report is on the pilot usability evaluation of ViewRevision, the result is
described in the following sections.

5.3.1	 Task	1

This	task	required	the	users	to	find	a	document	and	revision	they	want	to	read.	The	
purpose	was	to	find	out	how	the	users	would	choose	the	file	and	the	estimated	time	
period	for	the	task	was	30	seconds.	Two	participants	finished	within	27	seconds,	
one participant within 22 seconds and another participant used 30 seconds.

5.3.2	 Task	2

In	task	2	the	users	were	asked	to	find	any	part	of	the	document	they	were	interested	
in and browse its changes. The purpose was to know if the user could click on
the change bar to bring up the pop-up window. One minute was allocated to this
task.	Three	participants	finished	within	50	seconds,	and	one	participant	used	51	
seconds.

Task	3 Find other versions of the paragraph.
Start	state Pop-up window with the paragraph chosen by the user.
Rationale The purpose of this task is to know if the user can use Previous and/

or Next buttons on the pop-up window.
End	state Pop-up window with the paragraph in another revision.
Estimated	task	time Less than 1 minute.

 ��

5.3.3	 Task	3

Task	3	required	users	to	find	other	revisions	of	the	chosen	paragraph.	The	purpose	
of the task was to know the users’ ability to use the Previous and Next buttons
on the pop-up window. The results show complete 100% task completion. Two
participants	finished	within	20	seconds,	one	within	10	seconds	and	the	other	used	
15 seconds.

5.3.4	 Interview	Analysis	

In addition to the usability test, an interview was conducted. Questions asked
were:

 1. What did you like about the project?
 2. What did you not like about the project?
	 3.	 What	was	difficult	to	use	during	the	exercise?
	 4.	 What	did	you	find	confusing?
 5. What can be done to improve upon the project?
All the four participants said that what they liked about the design was the

idea,	and	they	found	nothing	difficult	in	using	it.
However, two participants complained about the same thing. The appearance

of the selected text in the pop-up window was confusing: there seemed to be no
connection between where the text was selected and where it appeared in the pop-
up window.

Regarding the question what to do to improve on the project. three participants
said that the idea is good so they hoped such a thing could come into existence.

One	participant	suggested	that	it	would	be	good	if	there	could	be	modifications	
to the UI. There is redundant use of words between the main title and the subtitle
of	the	UI.	In	addition,	the	revision	button	should	be	inactive	until	a	file	is	selected,	
and when there is only one version the button should not be active at all.

Figure	28.	The	time	taken	by	every	subject	to	finish	each	task.

��

Another suggestion was that instead of displaying changes directly to the
user, display a list of revisions for the users to choose which revision to compare.

5.3.5	 Conclusion

The analysis shows that all the participants completed the tasks within the estimated
given	time.	This	shows	an	achievement	of	both	efficiency	and	effectiveness.	The	
chart on top of this page tells the time used to complete every task.

5.4	 Discussion

The goal of the concept design was to improve the usability of interacting with the
change representations in web-based collaborative writing systems. As analyzed in
Chapter 3, two modern and well-known web-based collaborative writing systems
are MediaWiki and Google Doc. For both systems, if the user wants to view thhe
change report of a currently edited document, and edit the document at the same
time, the user has to open one more browser window/tab and switch between two
browser windows/tabs to achieve the purpose (as described in Chapter 4).

The	design	intends	to	increase	the	effectiveness	and	efficiency	by	reducing	
the steps of accessing the change report. By adopting the idea of pop-up windows
from desktop word processors, the design reduces the number of steps required
to	access	the	change	report	from	at	least	five	steps	to	three	steps.	In	addition,	it	
as well reduces the number of steps required to view change reports of different
revisions.

However, because it is only a concept design and is only evaluated with the
pilot usability test, there is room to improve on this design. From the feedback
of the pilot usability test, it is clear that there are more detailed issues about this
design worth further studies as well.

Changing the design from a full web page to a pop-up window may cause
some	functions	lost	in	the	pop-up	window,	for	example,	choosing	a	specific	revision	
to compare by user name. The pop-up window can help users access the change
report	more	efficiently,	but	the	improvement	to	its	context-awareness	is	required.	
To improve the context-awareness, three aspects can be considered: position of the
pop-up window, visual cues of changes in edit window, and alternatives to display
changes in the pop-up window.

5.4.1	 Limitation	of	the	Pop-up	Window

By adopting the pop-up window to display the change report and provide interaction
with changes to users of web-based collaborative writing systems, the user can
view differences of a paragraph of a document between two revisions immediately,
without losing the ability to edit the document within the same browser window.
This concept is inspired by the desktop word processor: Microsoft Word uses the
pop-up window to let users choose which changes to accept or reject. In addition
to simplify the procedures for accessing the change report, the pop-up window

 ��

reduces the user’s cognitive load as well, because the user does not have to switch
between tabs or windows to view differences and edit a document.

What is neglected here is that the changing of the design restricts the way the
user can do in the traditional design, for instance, access the revision history, or
select	a	revision	by	specific	criteria.	In	my	opinion,	access	to	the	revision	history	
and access to the change report between revisions are separate functions, so there
should be different user interfaces designed for them respectively. The pop-up
window is for access to the change report, not for access to the revision history.

5.4.2	 Position	of	the	Pop-up	Window

In	the	pilot	test,	the	position	of	the	pop-up	window	was	fixed	to	the	up-right	corner	
of the edit window as shown in Figure 29. But the edit area was actually in the
middle of the window; therefore it caused confusion. Ideally, the pop-up window
should be near the target paragraph but should not overlap, so it is within the
user’s visual range but it does not stop the user from reading on the edit window.
But whether the pop-up window should be right above, right below the target
paragraph, or to the down right corner or to the down left corner of the target
paragraph remains unanswered. Previous researches proposed that side-by-side is
cognitively	fit	to	users	who	are	accustomed	to	writing	from	left	to	right.	Therefore	
I would assume that positioning the pop-up window to the down right corner of
the target paragraph is a suitable choice. Still, more tests need to be done to verify
this.

5.4.3	 Change	Bars	or	Color	Coding	on	the	Changed	Text

The change indications on the edit window have space for improvement as well.
The change bar indicates there are changes in the paragraph, but it can not point

Figure 29. The position of the pop-up window in the pilot usability test

��

out the exact position where the change happens. Therefore, when there is a long
paragraph	with	many	modifications	in	different	sentences,	the	user	may	not	be	able	
to see the connection between the texts on the edit window and the texts on the
pop-up window. Should the position of change bars be changed from paragraphs
to sentences? Or should the color-coding be used on changed texts to substitute for
change	bars?	Because	the	first	priority	is	to	keep	the	integrity	of	the	flow	of	the	text	
so it helps reading and revising the text, so it is not suggested to display all changes
on the edit window.

Instead of displaying change bars at the side of the changed paragraph, it is
also possible to apply color-coding to the changed text. In that way, it is easier for
the co-authors to tell the location of the changes in a paragraph they are focusing
on in both the edit window and the pop-up window. However, it requires more
effort	to	find	a	better	solution.

5.4.4	 Alternatives	to	Displaying	Changes	on	the	Pop-up	Window

The last issue worth further investigation is the usage with revisions, which is related
to the interaction with representing changes on the pop-up window. The requirement
for the version control mechanism is the ability to gain changes between revisions
[Posner and Baecker, 1992]. Therefore, the current design assumes that what the
user expects to see is the differences between the currently edited document and
its last revision. But it does not consider the frequency of usage of even older
revisions. A more recent study actually shows that the revisions are used for reuse
of deleted parts although the frequency of reusing them is low, but it gives the
users feeling of security. On the other hand, six out of eleven interviewees in the
study expressed their idea of the uselessness of playback function, which means
being able to review revisions back and forth. Three out of the eleven interviewees
expressed	that	they	had	difficulty	to	conceptualize	the	use	of	playback	functions	
[Kim and Eklundh, 2001].

Is it really required to have “Previous revisions” and “Next revisions” on the
pop-up window? Or is it necessary to allow the users to retrieve the change report
between random revisions? Studies on how participants in collaborative writing
projects use revisions can help solve the questions.

 ��

6.	 Conclusion

The goal of this thesis was to present a design for interacting with change
representations on web-based collaborative writing systems such as wiki or Google
Docs, and to explain in which part they improve the use of those systems.

The	 design	 aims	 to	 improve	 the	 efficiency	 of	 browsing	 the	 change	 report	
while editing a document at the same time for users of web-based collaborative
writing systems. Compared to traditional design, which requires the users to open
another browser window or tab in order to see change differences during editing a
document online, the design introduces a pop-up window on the editing window
to support the requirement of interacting with change reports.

By adopting a pop-up window, the steps to display a change report of a currently
edited document on a web-based collaborative writing system are reduced, which
implies	the	improvement	of	efficiency.	Moreover,	this	design	transplants	the	user	
experience on current desktop word processor software to web-based collaborative
writing systems; therefore it is expected to increase the familiarity of desktop users
when they are transformed to web-based environment.

The technical challenges and possible solutions are analyzed for reference to
evaluate the possibility to implement the design in the real world. A pilot test was
conducted to evaluate the usability and to collect user feedbacks; participants gave
positive feedback to the design idea, but had opinions on improvements as well.

Based on the feedbacks and observations from the pilot test, few questions are
proposed for further study on the design of interacting with change representations:
position of the pop-up window, indication of the change parts on edit area, and the
usage of revisions in real contexts.

It is expected that this thesis can contribute to better design and development
of change representations in web-based collaborative systems.

��

References

[Berners-Lee and Fischetti, 1997] Berners-Lee, T. and Fischetti, M. Weaving the
Web. Harper San Francisco, 1997.

[Cross, 1990] Cross, G. A. A Bkhtinian exploration of factors affecting the col-
laborative writing of an executive letter of an annual report. In Research in the
Teaching of English 24 (2), 1990, 173–203.

[DeSanctis and Gallupe, 1897] Desanctis, G. and Gallupe, R. B. A foundation for
the study of group decision support systems. Manage. Sci. 33 (5), 1987, 589–609.

[Désilets et al., 2005] Désilets, A., Paquet, S., and Vinson, N.G. Are Wikis Us-
able? In The 2005 International Symposium on Wikis. October 17-18, 2005. San
Diego, California, USA. NRC 48272.

[Dieberger and Guzdial, 2002] Dieberger, A. and Guzdial, M. CoWeb – Experi-
ences with Collaborative Web Spaces. In From Usenet to CoWebs: Interacting
with Social Information Spaces. Springer-Verlag, 2002.

[Ebersbach et al., 2008] Ebersbach, A., Glaser, M., and Heigl, R. Wiki Web
Collaboration. Springer, 2008.

[Ede and Lunsford, 1990] Ede, L. and Lunsford, A. Singular Texts/Plural Au-
thors: Perspectives on Collaborative Writing. Southern Illinois University Press,
1990.

[Fish et al., 1988] Fish, R.S., Kraut, R.E., Leland, M.D.P., and Cohen, M. Quilt:
a Collaborative Tool for Cooperative Writing. In Proceedings of COIS'88, 1987,
30–37.

[Grudin, 1994] Grudin, J. Groupware and Social Dynamics: Eight Challenges for
Developers. Communications of the ACM 37 (1), 1994, 92–105.

[Hawley, 2003] Hawley, A. A Manual to the GNU Revision Control System
(RCS): https://agave.garden.org/~aaronh/rcs/manual/html/

[Halliday and Hasan, 1976] Halliday, M.A.K. and Hasan, R. Cohesion in
English. London: Longmans, 1976.

[Hunt et al., 1975] Hunt, J. W., and McIlroy, M.D. An Algorithm for Differential
File Comparison, Bell Laboratories, N.J., Computing Science Technical Report

 ��

41, 1975.

[Kim and Eklundh, 1998] Kim, E. and K. Severinson Eklundh. How Academ-
ics Co-ordinate their Documentation Work and Communicate about Reviewing
in Collaborative Writing. Interaction and Presentation Laboratory, Department
of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm University. Technical Report TRITA-NA-P9815, NADA, August
1998.

[Kim and Eklundh, 2000] Kim, E. and K. Severinson Eklundh. Change Rep-
resentations in Collaborative Writing. Interaction and Presentation Laboratory,
Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, Stockholm University. Technical Report TRITA-NA-P0005, NADA,
March 2000.

[Kim and Eklundh, 2001] Kim, H. C. and Severinson Eklundh, K. Reviewing
practices in collaborative writing. Computer Supported Cooperative Work: The
Journal of Collaborative Computing 10	(2), 247–259.

[Kim and Eklundh, 2002] Kim, H. and Eklundh, K. Collaboration between Writer
and Reviewer through Change Representation Tools. In Proceedings of the 35th
Annual Hawaii international Conference on System Sciences (Hicss’02)-Volume
1 - Volume 1 (January 07 - 10, 2002). HICSS. IEEE Computer Society, Washing-
ton, DC, 39.

[Leland et al., 1988] Leland, M. D. P., Fish, R.S. and Kraut, R.E. (1988). Col-
laborative document preparation using Quilt. In Proceedings of the Conference
on Computer-Supported Cooperative Work, 1988, 206–215. Portland, Oregon
(September).

[Leuf and Cunningham, 2001] Leuf, B. and W. Cunningham. The Wiki Way --
Quick Collaboration on the Web. Boston, MA, Addison-Wesley, 2001.

[Malcolm and Gaines, 1991] Malcolm, N. and Gaines, B. R. A minimalist ap-
proach to the development of a word processor supporting group writing activi-
ties. SIGOIS Bull. 12, 1991, 2–3, 147–152. DOI= http://doi.acm.org/10.1145/127
769.122846

[Nachbar, 1988] Nachbar, D. Spiff – A Program for Making Controlled Ap-
proximate Comparisons of Files. In Proceedigns of the Summer 1988 USENIX
Conference, 1988, 73–84.

�0

[Newman and Newman, 1993] Newman, R. and Newman, J. Social writing:
Premises and Practices in computerized contexts. In Sharples, M. (Ed.) Computer
Supported Collaborative Writing. London: Springer-Verlag, 1993, 29–40.

[Neuwirth et al., 1990] Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Mor-
ris, J. H. Issues in the design of computer support for co-authoring and com-
menting. In Proceedings of the 1990 ACM Conference on Computer-Supported
Cooperative Work (Los Angeles, California, United States, October 07 - 10,
1990). CSCW ‘90. ACM, New York, NY, 183–195. DOI= http://doi.acm.
org/10.1145/99332.99354

[Neuwirth et al., 1992] Neuwirth, C. M., Chandhok, R., Kaufer, D. S., Erion, P.,
Morris, J. and Miller, D. Flexible Diff-ing in a Collaborative Writing System. In
Proceedings of CSCW ‘92, 1992, 147–154.

[Neuwirth et al., 1994] Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Mor-
ris,	J.	Computer	Support	for	Distributed	Collaborative	Writing:	Defining	Param-
eters of Interaction. In Proceedings of CSCW ‘94, 1994, 145–152.

[Noël and Robert, 2004] Noël, S. and Robert, Jean-Marc. Empirical Study on
Collaborative Writing: What Do Co-authors Do, Use, and Like? In Computer
Supported Cooperative Work. 13, 2004, 63–89.

[Paul, 2006] Paul, L. C. Wikipedia Usability Presentation. In WikiMania Hacking
Days, August, 2006.

[Posner and Baecker, 1992] Posner, I.R., & Baecker, R.M. How people write
togethr. In Proceedings of the 25th Hawaii International Conference on System
Sciences, Vol. 4, Hawaii, 1992.

[Reitmayr, 2006] Reitmayr, E. Usability Test Results: Editing Information in the
German Wikipedia. In http://www.openusability.org, March, 2006.

[Samuels and Kamil, 1984] Samuels, S.J,, and Kamil, M.L. Models of the read-
ing process. In Handbook of Reading Research, D. P. Pearson, Ed. Longman Inc.,
N. Y., 1984,
pp. 185-224.

[Miles et al., 1993] Miles, V.C., J.C. McCarthy, A.J. Dix, M.D. Harrison and
A.F. Monk. Reviewing Designs for a Synchronous-Asynchronous Group Editing
Environment. In M. Sharples (ed.) Computer Supported Collaborative Writing.
London: Springer-Verlag, 137–160.

 ��

[Wei et al., 2005] Wei, C., Maust, B., Barrick, J., Cuddihy, E., and Spyridaki, J.
H. Wikis for Supporting Distributed Collaborative Writing. In Proceedings of the
Society for Technical Communication 52nd Annual Conference, Seattle, 2005.

Diff on Wikipedia: http://en.wikipedia.org/wiki/Diff

ECMAScirpt	Specification:	http://www.ecma-international.org/publications/stan-
dards/Ecma-262.htm

Help Manual of Adobe Framemaker: http://help.adobe.com/en_US/FrameMak
er/8.0/help.html?content=Chap14-Revision-Mgmt_03.html

ISO Standards 9241-11: http://www.iso.org/iso/iso_catalogue/catalogue_tc/cata-
logue_detail.htm?csnumber=16883

W3C	DOM	Specification:	http://www.w3.org/DOM/

Wdiff Website: http://www.gnu.org/software/wdiff/

