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Application frameworks are a popular way of implementing product line architectures. The Fred 

project was launched in 1997 to tackle the complexity of using frameworks by experimenting with 

the possibilities of programming tool support. During the years a novel method of task-based 

programming was developed and demonstrated by a tool prototype. The tool was able to assist the 

programmer in applying architectural coventions and design patterns by giving detailed context-

sensitive programming instructions. Since the original Fred project, the tool has also been adapted 

to various unanticipated domains such as software maintenance and documentation. This thesis is 

presents a chronological walkthrough of the project and its results in the form of six publications.
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Introduction

This thesis is composed on six papers published during the Fred- and JavaFrames-projects between 

1998 and 2002. The publications communicate the core ideas of these projects to the academic 

community. They have been presented in various conferences and workshops in the Europe and 

U.S.

The Fred project was set set to investigate the possibilities of tool support for object-oriented 

application frameworks [FSJ00] based on the concept of design patterns [Gam95], and the 

JavaFrames project was a straightforward continuation for it. The research was mainly constructive. 

During these projects a programming environment was developed. This tool is able to assist the 

programmer in recurring tasks, such as using a design pattern, a software component or framework. 

This tool was first named Fred, but the name was later changed to JavaFrames. 

The tool works by taking in specifications and providing practical programming assistance based on 

them. The specifications describe recurring programming jobs, and they are specified for the tool 

using a special-purpose editor. Thereafter, the tool is able to assist the programmer in these jobs 

hand-in-hand with the actual programming. The tool does this by generating code, giving 

programming instructions in plain English, and checking the hand-written code against the 

specification. The instructions are given to the programmer in the form of a cookbook-like [Pre95] 

step-list. When the programmer carries out the steps, the tool is able to refine both the generated 

code and any further instructions accordingly.

The Fred tool demonstrates a method for specifying crosscutting software structures as reusable 

components. It is complementary to other means of  reuse, such as software components, object-

orientation, genericity or aspects. The first experiments were carried out to support Java 

programming, but since then the tool has been applied to various other domains, including UML 

and C++.

All the publications in this thesis are aimed on the same thing - introducing Fred to the academic 

audience. They have been presented in various forums, each of which speaks their own tongue. 

Thus, each the authors have had to relate their work against many different backgrounds. Originally, 

the Fred project started in building on top of the concepts of frameworks and design patterns, but 

since then the work has been related with various approaches, including pattern languages and 

feature models [Hak02a], graph grammars [Hak01a], software architectures [Hak01b], aspects 



[HKK04], genericity [Hak99], software maintenance [HaH02], concept lattices [Vil04], and even 

framework documentation [Hak02b]. Each of these domains have borrowed some of  their 

terminology for describing the central concepts of Fred, but never without missunderstandings. 

Thus, throughout the years the Fred terminology has been in constant change. The specifications fed 

to the Fred tool, first called patterns, have also been referred to as templates, contracts, frames, 

recipes, graphs, programs, features, pattern languages and forms. This suggests that Fred has 

succeeded in capturing something central to many approaches, but it also tells about the confusion 

and the lack of a stable viewpoint that has bothered the project group along the way.

The publications of this thesis are organized chronologically. Hence, it is possible to follow the 

evolution of both the ideas and the terminology.

Chapter 2. Pattern-Oriented Framework Engineering Using FRED [Hak98]  introduced the 

Fred approach for the first time. The design patterns and application frameworks serve as the 

conceptual framework for the discussion. The ideas of this paper are sketchy and it is questionable 

whether the paper was able to communicate the early thoughts of the project group.  Moreover, at 

that time there was strong resistance against tool support for design patterns, which made the project 

group rethink about the terminology for the first time.

Chapter 3. Managing Object-Oriented Frameworks with Specialization Templates [Hak99] 

switches the vocabulary from patterns to templates to avoid conflicts with the design pattern 

community. The ideas have matured a lot from the first position paper, but basically it is the same 

story for another audience.

Chapter 4 Task-Based Tool-Support for Framework Specialization [Hak00] describes the 

incremental algorithm that is used by the Fred tool. The paper speaks about generative patterns in an 

attempt to emphasize the creational aspects of the adopted pattern concept in contrast with pattern 

matching and design-patterns in general. This was the first attempt to put down something more 

formal from the inner workings of the tool. At the same time the paper goes through the user user 

experience of the tool. This proved to be significantly better in sharing the vision than trying to 

describe the tool solely in a conceptual level.

Chapter 5. Generating Application Development Environments for Java Frameworks 

[Hak01a] goes through a step-by-step case where the developer is using the tool in specializing a 

small example framework. Thereafter the paper continues in describing the underlying model and 



the required algorithm using the notion of graph grammars [EhT96]. 

Chapter 6. Annotating Reusable Software Architectures with Specialization Patterns 

[Hak01b] communicates pretty much the same issues as the previous one but relating them with a 

different background. It was published soon after, but it emphasized different aspects of the 

approach mainly due to the different audience. The concepts and terminology hadn't changed much 

since the last paper, and it seemed the model was finally passed its early infantry.

The last two of these papers constitute the final results of the original Fred project. Thereafter, the 

project continued under a different name, refining the tool to incorporate more flexibility. This was 

desperately required in order to apply the tool in real-life situations.

Chapter 7. Feature Models, Pattern Languages and Software Patterns: Towards a Unified 

Approach [Hak02a] presents the author's view on the possibilities of the Fred approach, some of 

which has not yet been harnessed. It relates the Fred model with feature models [Kan90] and pattern 

languages [Ale79, MRB98] , and discusses how the model needs to be extended in order to bridge 

the approaches.

Unfortunately, at the time of writing, the model of reuse introduced by the Fred tool is yet 

unfinished and immature. The underlying model works on an abstract level and it has been applied 

over and over to several unanticipated domains. It has been a huge effort to come this far, but the 

model is still lacking flexibility. Most importantly, since it's infantry the model has been plagued 

with strong ties with a particular tool implementation, and the lack of formal background. The best 

formalization of the model is in the form of Java code making up the tool itself.

The second question about Fred is its practicality. In theory there shouldn't be a problem with this as 

the tool has been developed by a group of researches with very practical orientation, aimed to solve 

problems of their own everyday lives as programmers. However, the tool has never been actually 

used by these people in their own work, the very thing the tool was supposed to improve. The 

biggest mistake of Fred may be in its basic unspoken assumption of the world as a clean, organized 

and static environment. In reality, the world is messy, unorganized and dynamic, quite likely to be 

too alive and evolving for the rigid reusability models of Fred to handle. Even more so with the 

emergence of agile processes that take change and code refactoring as the core premises of the 

contemporary software development. It remains to be seen whether the Fred model can be improved 

to better incorporate change.



All this is not to say that there weren't a significant contribution in what has been done within the 

Fred and JavaFrames projects. It is very likely that the Fred model has succeeded in capturing 

essential aspects of forms that keep recurring over and over in the software. However, the attempts 

in introducing the core ideas to the academic community can't be characterized as overly successful. 

Lacking solid foundation, Fred hasn't provided much for the other research groups to build on. It is 

evident that what this line of research urgently needs is a formal model and better evidence of the 

usability of the tool. A formal model would create a well-defined workspace enabling researchers to 

build on top of each others work, debate, argue and relate their findings. Relating this to reality with 

concrete experiments is secondary, and will remain a question of faith unless clear statistics can be 

provided, or the tool will become practical and polished enough to gain wide acceptance amongst 

the developer community.

Several Ph.D. thesis have been published around the subject [Hau05, Vil04, Vil05]. The author's 

own work on Fred has ended, but there are several ongoing projects applying the tool for various 

originally unanticipated domains [Hak02b, HaH02, HKK04].
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Abstract 
Application frameworks are reusable architectures used to improve the software development process. Al-
though design patterns may be used in designing, implementing, and documenting architectural constructs, 
lacking a systematical approach frameworks are still hard to design and reuse. This paper presents the 
methodology and the set of supporting tools that provide a methodical practice for applying design patterns 
in software engineering, especially when constructing reusable designs such as application frameworks. 
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INTRODUCTION 
An application framework is a set of objects that cap-
tures the special expertise in some application domain 
to a reusable form [Lew95]. An application can be 
specialized from this skeleton by adding new features 
to it. 

Frameworks are hard to design and reuse. However, 
design patterns [GHJ95, CoS95] can be used to cap-
ture the knowledge of framework experts in an easily 
accessible way. Design patterns name and explain 
architectural constructs that may be found in number 
of architectures. A design pattern is an abstract solu-
tion to a general design problem, and may be reused 
by individual developers as building blocks for new 
frameworks and applications. [Joh92, BMR96] 

FRED (Framework Editor) is a development environ-
ment, especially designed for framework development 
and specialization. In addition of being a development 
tool, FRED introduces a uniform model of a software 
architecture and software development that makes 
heavy use of generalization of design patterns. 

The FRED environment has been implemented with 
Java programming language [ArG98] and is used in 
developing Java applications and frameworks. How-
ever, the model behind the environment is not tied to 
any specific programming language or tool set. 

FRED is an ongoing project between the departments 
of Computer Science at the University of Tampere and 
University of Helsinki, supported by TEKES (Technol-

ogy Development Centre, Finland) and several Finnish 
industrial partners. 

FRED MODEL 
Both frameworks and applications are software archi-
tectures. FRED, as a development environment, is a 
tool for creating such architectures. In FRED, an archi-
tecture is always created based on another architecture 
or architectures. A typical example is an application 
that is derived from an application framework. 

Designated by the object-oriented domain, each archi-
tecture eventually consists of classes and interfaces, 
which in turn contain fields (Java synonym for attrib-
utes) and methods. Also, the term data type is used to 
refer to both classes and interfaces. 

Data types alone are insufficient to represent architec-
tural constructs when reusability is essentially re-
quired. They do not provide enough documentation for 
the architecture, nor control the specialization of the 
architecture. To meet these two requirements, pattern 
is hereby defined as a description of an arbitrary rela-
tionship between number of classes and interfaces. 
Patterns range from generic design patterns to domain 
and even application specific patterns. A pattern is an 
architectural description, but needs not to be general. 
In this context, general constructs such as those listed 
by Gamma et al. [GHJ95] are called design patterns. 
No distinction between patterns on the basis of their 
generality is made in FRED. 

Patterns are used to couple together arbitrary data 
types that participate in a particular design decision or 



architectural feature. This kind of coupling of data 
types provides structural documentation for the archi-
tecture. Any data type may participate in more than 
one pattern, in which case it plays several roles in the 
architecture.  

Structures 

An architecture is a complex construction of patterns, 
data types and both their static and dynamic relations. 
Structural elements of an architecture, such as pat-
terns, data types, methods and fields are called struc-
tures. Also, the architecture itself is a structure. 
Adopting the general concept of structure simplifies 
both the discussion and internals of the FRED envi-
ronment. 

Structures are divided into composite and leaf struc-
tures. Architectures, patterns and data types are com-
posite structures, which may contain other structures. 
An architecture contains patterns, patterns contain data 
types, and data types in turn contain methods and 
fields, which are leaf structures in the sense that they 
do not contain other structures. 

Based on these relations, a directed acyclic graph can 
be presented for an architecture. Structures of the ar-
chitecture are nodes of this graph, and edges range 
from composite structures towards the leaf structures. 
The graph has single source, namely the architecture 
node, and multiple sinks representing the leaf struc-
tures. As a data type can belong to a number of pat-
terns, the graph is not a tree. In FRED development 
environment, the graph is however visualized with a 
tree-like notation. In this notation, the root equals the 
source of the graph. Furthermore, a data type con-
tained in multiple patterns appears in the tree at each 
containing pattern, but only methods and fields rele-
vant to a particular pattern are shown. Based on this 
notation, a structure containing another structure is 
called a parent of the latter. The parent of a structure 
is naturally not necessarily unam-
biguous. 

An example architecture is shown 
in figure 1 with both graph repre-
sentation and the corresponding 
FRED notation. 

Templates 

All structures may be classified as 
implementations or templates. 

An implementation is a structure 
that is actually implemented in 
the architecture. In a conventional 
application, all structures are essentially implementa-

tions. From the developer's point of a view, an imple-
mentation is a "normal" structure, in contrast to the 
concept of template. 

A template defines a set of possible implementations, 
but does not specify the actual implementation. In a 
way a template is a blueprint of an implementation. 
Providing a template in an architecture means defining 
a gap that must be filled in by the developer deriving 
from the architecture.  

Templates are structures just like implementations. An 
architecture template contains patterns, a pattern tem-
plate contains data types, and data type templates con-
tain methods and fields. Architecture and pattern tem-
plates may contain both templates and implementa-
tions, but data type template contains only templates. 
If a structure contains a template, it is itself a template. 

In FRED, a structure (including architecture) is always 
based on other structures, namely templates; every 
structure is based on corresponding meta-structure and 
in addition to some other templates. There is a meta-
structure for each type of structure. Meta-structures 
are based on themselves. 

Templates are used in creating new structures. This is 
called instantiating the template. The instantiated 
template is called a model in relation to its instance. 
For instantiation purposes a template provides the fol-
lowing properties: 

1. Free-form hyperlinked documentation that guides 
in creating an instance for the template. 

2. Parameterized default implementation that auto-
matically adjusts to the instantiation environment. 

3. Tools for instantiating the template. 

4. Constraints that all its instances must conform to. 

 SomeFramework 
  SomePattern 
   SomeClass 
    someOp 
    someField 
   AnotherClass 
    operation 
  AnotherPattern 
   SomeClass 
    anotherOp 

 SomeFramework 

 SomePattern  AnotherPattern

 AnotherClass  SomeClass

Figure 1. An example architecture as a directed graph and using FRED tree-like notation. 

 someOp  someField  operation  anotherOp



Template is instantiated by introducing a structure (an 
implementation or a new template) that is conformable 
to the model. This instance can be created using the 
documentation, default implementation, and tools pro-
vided by the template. By default the FRED environ-
ment includes tools for creating and editing structures, 
but the architecture developer may also provide spe-
cialized domain-specific tools. 

Once a structure is created the default tool or tools 
suggested by the template can be used to modify the 
structure. Constraints are used to ensure that the in-
stance conforms to the template. For example, a con-
straint may state how many times the template must be 
instantiated with respect to its parent template (cardi-
nality constraint). See appendix A for more examples 
on constraints. 

An automatic template is a template that is instantiated 
automatically whenever its parent structure is instanti-
ated. Instantiating an automatic template may however 
require user interaction, e.g., when all the parameters 
of the default implementation cannot be resolved. 
Automatic or tool-generated structures are updated 
according to the modifications in surrounding code. 
The developer cannot access the automatically main-
tained code fragments unless explicitly requested. 

Patterns Using Templates 

By the earlier definition, a pattern describes a relation-
ship between participating data types. In FRED, a pat-
tern is described using templates. 

A pattern template couples together data type tem-
plates and data type implementations. The constraints 
of the contained templates define the required rela-
tionships between collaborating structures. The default 
implementation makes it easy to instantiate a pattern 
in a software architecture. Hyperlinked documentation 
attached to the templates provides the required docu-
mentation for the pattern and its collabo-
rations. In addition, specialized tools may 
be provided. For example a template 
representing the Interpreter design pat-
tern [GHJ95] may be accompanied with 
a tool that takes a grammar as input and 
parameterizes the default implementation 
with it. 

Instantiating a (design) pattern means 
binding the domain-specific vocabulary 
and implementation. Frameworks usually 
provide only partial implementations for 
design patterns and leave specific parts to 
be supplemented by the specializer. In 
FRED this means providing templates that 
instantiate the original templates of the 

pattern. This instantiation chain may be arbitrary long 
for any structure. Constraints of a template apply to all 
following instances in the chain. Thus constraints cu-
mulate and the set of possible implementations be-
comes smaller in every instantiation. This implies kind 
of inheritance hierarchies for frameworks and design 
patterns. Layered frameworks are discussed for exam-
ple by Koskimies and Mössenböck [KoM95]. 

A BRIEF EXAMPLE 
To illustrate how the FRED model works in practice, a 
simple framework is implemented and an application 
is derived from it. The example is based on the sample 
framelet presented by Pree and Koskimies [PrK98]. In 
their paper they define framelets as small architectural 
building blocks that can be easily understood, modi-
fied, and combined. Here the example framelet ap-
pears somewhat modified. The reader may consult 
appendix B when going through the following exam-
ple. 

Many graphical applications provide list boxes to-
gether with buttons to add items to the list box, and to 
modify and remove them. Typically a separate dialog 
is used to add and modify items. The associated pro-
gramming task can be packed into a small self-
contained framework, called List Box Framelet. The 
framelet class diagram and user interface are shown in 
figure 2. 

The framelet provides a window (ListBoxFrame) to 
display and maintain a list of items. An application 
developer provides item and dialog classes. Item 
classes must implement the Item interface and dialog 
classes must extend the Display base class. Trans-
former class is used internally by the framelet to man-
age the data transfer between FieldAccessor instances, 
namely items and displays. 

Figure 2. Class diagram and user interface for List  Box Framelet. 

ListBoxFrame Transformer

 fromSrcToDest 

Application specific 
dialog (UserDisplay) 

FieldAccessor

getListOfFields 
getVal 
setVal 

Item

createDisplay 

Display

open 
close 

uses 

*

creates 



Creating the Framelet 

In FRED List Box Framelet must be presented with 
structures. In the following example, names of struc-
tures are printed with sans serif font (e.g. ListBoxFrame-
let). 

As an architecture, List Box Framelet must be based 
on another architecture. FRED environment provides a 
special architecture called PatternCatalog, which collects 
arbitrary design patterns by several authors. PatternCata-
log can be expanded by individual developers. The root 
structure of the framelet, an architecture called ListBox-
Framelet, is based on PatternCatalog. 

Among other things the catalog contains patterns Ab-
stractFactoryPattern, SingletonPattern, and BeanComposition. 
The first two are representations of design patterns 
Abstract Factory and Singleton, which are discussed 
by Gamma et al. [GHJ95]. The BeanComposition in turn 
stands for the Bean Composition pattern, which repre-
sents a composition of Java bean components [Sun97] 
and is developed within FRED project. 

After browsing the documentation of the catalog, the 
developer chooses to instantiate AbstractFactoryPattern to 
implement the framelet's behavior. The developer 
names the instance as ItemPattern. To implement the 
created pattern, all of the templates contained in the 
model pattern must be instantiated according to their 
cardinality. AbstractFactoryPattern contains data type 
templates AbstractFactory, ConcreteFactory, AbstractProduct 
and ConcreteProduct. The developer creates the Item in-
terface and the Display class based on the AbstractFactory 
and AbstractProduct templates. Implementation of Con-
creteFactory and ConcreteProduct the developer wants to 
leave to the specializer. For this purpose, the devel-
oper creates templates UserItem and UserDisplay, respec-
tively. 

All structures are also based on the corresponding 
meta-templates. Similarly, ItemPattern is based on meta-
pattern. For this reason, the developer can augment 
ItemPattern by introducing FieldAccessor interface by in-
stantiating it from meta-datatype. Likewise, a number 

of methods and fields can be created that are not based 
on method and field templates contained in AbstractFac-
toryPattern. 

Data types that are not involved in any specific pat-
tern, are contained in a special OtherClasses pattern, 
which is automatically generated for an architecture. 
The developer creates the Transformer class in that pat-
tern, but soon realizes that SingletonPattern may be used 
here. The developer creates a new SingletonPattern in-
stance called TransformerPattern and associates the exist-
ing Transformer class as an instance of the Singleton tem-
plate. Members required by the Singleton template may 
be pointed out similarly from the existing code. The 
created structures and their relations to their models 
are shown in figure 3. 

After creating most of the framelet logic, the devel-
oper begins to implement the user interface. This can 
be done by instantiating BeanComposition pattern, which 
is equipped with a FRED Java Beans builder tool that 
generates appropriate code for the user interface. 

Because the framelet contains a template (ItemPattern) it 
is itself a template which can be instantiated. The de-
veloper chooses to make ItemPattern automatic implying 
that once the framelet is instantiated, the ItemPattern 
template is also instantiated. Finally, the developer 
provides guidance for the framelet specialization by 
documenting the contained templates. 

Specializing the Framelet 

Any architecture that is a template can be derived 
from by another architecture. E.g., List Box Framelet 
can be used to create an application to create, modify, 
and remove customer contact entries. The Contact 
Manager application may be based on multiple archi-
tectures, but for simplicity, only the List Box Framelet 
–based portion is discussed here. 

The developer names the root structure of the applica-
tion as ContactManager. At first the application devel-
oper makes it an instance of ListBoxFramelet. As ItemPat-
tern is an automatic template, the environment auto-

ListBoxFramelet
TransformerPattern

class Transformer

private Transformer ()
static Transformer getInstance ()
void fromSrcToDest (FieldAccessor, FieldAccessor)

 private static Transformer instance

MetaArchitecture
MetaPattern [n]

MetaType [n]

metaMethod [n]

metaField [n]

PatternCatalog
SingletonPattern [n]

class Singleton

private Singleton
static Singleton getUniqueInstance ()

private static Singleton uniqueInstance

Figure 3. TransformerPattern is based on SingletonPattern. All structures are based on the corresponding meta-structures. 



matically creates an instance of it. The developer 
changes the name of the instance to ContactPattern. 

ItemPattern contains template classes UserItem and 
UserDisplay. These are not instantiated automatically. 
Hence, the application developer creates the Contact 
class based on UserItem and ContactDisplay based on 
UserDisplay. Substructures (methods and fields) of the 
templates are instantiated similarly. Template specific 
documentation and constraints guide the developer 
during this instantiation process. 

To implement the user interface, the application de-
veloper may use the BeanComposition pattern. To do this, 
the developer will need to point out the application as 
an instance of PatternCatalog and instantiate the pattern. 
The developer uses the pattern to create user interface 
for ContactDisplay. For this purpose ContactDisplay is made 
an instance of the Composition template. Thereafter Con-
tactDisplay is an instance of two templates. The Java 
Beans builder tool is used to generate the user inter-
face –specific code for the ContactDisplay class. 

As a result, the Contact class represents a contact entry 
and the ContactDisplay dialog is used by the framelet to 
add and modify contacts. Because there are no vio-
lated constraints, the developer chooses to test Contact 
Manager by implementing a class with the required 
main method. The developer creates the class in the 
OtherClasses pattern. 

FRED Tool 

Although the FRED model is not tied to any specific 
tool, the model requires a sophisticated user interface 
in order to lessen cognitive load on the developer. The 
user interface should adjust to the level of abstraction 
of the architecture by hiding the internals of the archi-

tecture and using more specific vocabulary when nec-
essary. For this reason, FRED is as much of a user in-
terface issue as it is a conceptual model, though only 
the latter has been discussed here. 

However, part of the user interface for FRED develop-
ment environment is shown in figure 4. The window is 
divided into three parts. Hierarchies on the left are 
used to browse the architecture from different aspects. 
Structures are modified on the desktop area with the 
template tools, and the lower part displays documenta-
tion for the selected hierarchy item. The same envi-
ronment can be used in developing architectures rang-
ing from applications to frameworks and even abstract 
pattern catalogs. 

In figure 4 the developer is implementing the Contact-
Manager architecture.  The ContactDisplay class has been 
selected on the left. Models of the selected structure 
are listed below with their associated tasks. Tasks are 
user interface representations of unimplemented tem-
plates and broken constraints. UserDisplay is listed as a 
model because ContactDisplay is based on it. The associ-
ated tasks state that the developer has to instantiate the 
getVal and setVal method templates. 

CONCLUSION AND RELATED WORK 
Many design pattern tools (see, e.g., [BFV96], 
[ACL96], and [Wil96]) use macro expansion mecha-
nisms to generate implementation code. This implies 
design – implementation gap [MDE97]: changing 
generated code breaks the connection between design 
patterns and the implementation and any changes that 
involve regeneration of code will force the user to 
manually reintegrate the pattern code to the rest of the 
system. We think that a better way is to use explicit 

representation of (design) patterns that stays at 
the background all the way from design to im-
plementation. 

Furthermore, mere code generation is not 
enough. It is essential to be able to combine 
multiple pattern instances and to annotate ex-
isting code with patterns. Our implementation 
of this role binding functionality is influenced 
by Kim and Benner’s Pattern-Oriented Envi-
ronment (POE) where one can manage and 
validate pattern instances and their role map-
pings [KiB96]. 

Another similar tool is represented by Florijn, 
Meijers, and van Winsen [FMW97]. Their 
model is based on cloneable fragments that 
represent design elements (design patterns, 
charts), implementation entities (classes, meth-
ods), or other objects (comments, arbitrary 

Figure 4. The user interface of the FRED development environment in action. 



text). The system being developed is represented as a 
graph of interrelated fragments of different types. 

Besides supporting development of frameworks, the 
FRED environment also aids framework users. Instan-
tiating any structure in FRED involves customization of 
default implementations within the bounds of con-
straints associated with the structure (in a specialized 
visual or active text [MöK95] editor) guided by the 
associated documentation. This makes, e.g., deriving 
an application from a framework a systematic process. 

One major shortcoming of the adopted model is that 
constraints defined in the templates apply only to 
method and field signatures, data types, and larger 
constructs of the architecture. E.g., FRED environment 
cannot verify that the code within a method body is 
valid while it can ascertain that the method's return 
type is correct. 

As simplicity for the end-user was one of the main 
concerns of FRED, the model is more than adequate. 
Extensive systems involving formalisms like predicate 
logic tend to chase developers away. FRED model 
hopefully provides a relatively easy approach to pat-
tern-oriented software engineering. 

Some of the functionality referred to in this paper is 
not implemented in the current version of the FRED 
environment. In addition to making the FRED envi-
ronment fully operational, future directions of project 
include: 

− Pattern selection wizard to assist the user in finding 
a solution to a design problem. 

− Support for pattern mining by associating an ap-
propriate tool for a pattern template. 

− An automatic mechanism for creating customized 
wizards to assist the user in framework specializa-
tion. 

− Importing Java standard extensions and similar 
popular frameworks (by JavaSoft) into the FRED 
model. 

− Visualization of both static and dynamic relations 
within an architecture. 
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APPENDIX A – FRED NOTATION AND CONSTRAINTS 
In FRED, the structural graph of an architecture is pre-
sented with a tree-like notation consisting architecture, 
pattern, data type, method, and field nodes. Each node 
contains an image indicating the type of the structure 
and the name. Templates come with dark gray images 
and implementations with white ones. Other informa-
tion, such as implementation information or con-
straints may also be presented with a node. 

In the following table, notation for template nodes and 
some of their most important constraints are presented. 
Notation for implementations follows closely the syn-
tax of Java language and is not discussed. Also, more 
specific constraints and parameterized default imple-

mentations are bypassed as they are not included in 
this notation. 

Some of the constraints are interpreted differently in 
an overriding situation. For this purpose, constraint 
signature for a method is defined as collection of con-
straints for return type, parameters, and exceptions. 
When a constraint signature of a method template 
equals a signature or constraint signature of another 
method in any of the supertypes, the method is said to 
override the other method. The signature of its in-
stance should be exactly the same as that of the over-
ridden method (or its instance).  

 

 NOTATION ALLOWED MODIFIERS 

Architecture   name  

Pattern  modifiers name [cardinality] automatic 

Data Type  modifiers kind name [cardinality]  supertypes automatic, public, pckgprivate, abstract, final 

Method  modifiers return_type name [cardinality]  (parameters) exceptions automatic, public, pckgprivate, protected, private, static, abstract, 
final, synchronized, native 

Field  modifiers return_type name [cardinality]  automatic, public, pckgprivate, protected, private, static, final, 
transient, volatile 

cardinality 
Cardinality states how many times a template must be instantiated 
with respect to its parent template. By default, cardinality is one and 
need not to be shown. The notation [n] is a shortcut for [0..n] and 
means that the template can be instantiated any number of times. 

modifiers 

Modifiers are equal to Java-modifiers, supplemented by a few addi-
tional keywords. However, the meaning of a modifier for a template 
is different from the meaning of a modifier for an implementation; 
the existence of a modifier in template sets a constraint on the struc-
ture. E.g., automatic keyword means that the structure is instantiated 
automatically once its parent is instantiated, and private means that 
the instantiated structure must be private. If there are no modifiers 
present, no associated constraints are applied. 

kind 

A special modifier for a data type is its kind. A kind may be class or 
interface. It defines whether the instance data type should be class 
or interface, respectively. If missing, the instance can be either one, 
assuming that other constraints are not violated. 

supertypes 

Required supertypes for an instance may be indicated by extends, 
implements, and inherits clauses. By using the latter alternative, the 
type of inheritance is not fixed and subtypes of the mentioned data 
type are also accepted. 

return_type 

Both methods and fields can be associated with a return type. Exis-
tence of a return type states that the instance should return the men-
tioned type or any of its subtypes. 

parameters 

Formal parameters may be left unconstrained for a method template. 
Similar to the return type constraint, existence of a formal parameter 
states that the method should accept a parameter of the mentioned 
type or any of its subtypes. At the same time the order of parameters 
is fixed. 

exceptions 

Like parameters, a method can be constrained for the exceptions it 
must introduce in its throws clause. Exceptions-constraint follows 
the syntax of throws-clause in Java-language. 
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ContactManager
ContactPattern

class Contact implements Item

Contact ()

Display createDisplay (Frame, String)

String[] getListOfFields ()

Object getVal (String)

void setVal (String, Object)

String toString ()

private String name
private String email
private long customerID

class ContactDisplay extends Display

Display ContactDisplay (Frame, String, boolean)

Object getVal (String)

void setVal (String, Object)

UserInterface
class ContactDisplay extends Display

void init ()

void doOKAction (ActionEvent)

void doCancelAction (ActionEvent)

private Button okButton
private Button cancelButton

class OKButtonAdaptor implements ActionListener

OKButtonAdaptor (ContactDisplay)

void actionPerformed (ActionEvent)

private ContactDisplay adaptee
class CancelButtonAdaptor implements ActionListener

…

OtherClasses
class TestDriver

static void main (String[])

PatternCatalog
AbstractFactoryPattern [n]

AbstractFactory
AbstractProduct createProduct [n]

AbstractProduct

class ConcreteFactory [n] inherits AbstractFactory

AbstractProduct createProduct [n]

class ConcreteProduct [n] inherits AbstractProduct

BeanComposition [n]

class Composition extends Container

void initializer ()

void action [n] (EventObject)

private Component  component [n]

class EventAdaptor [n]

EventAdaptor (Composition)

void eventHandler (EventObject)

private Composition adaptee

SingletonPattern [n]

class Singleton
private Singleton
static Singleton getUniqueInstance ()

private static Singleton uniqueInstance

ListBoxFramelet
automatic ItemPattern [n]

interface FieldAccessor
String [] getListOfFields ()

Object getVal (String)

void setVal (String, Object)

interface Item implements FieldAccessor

Display createDisplay (Frame, String)

abstract class Display extends Dialog implements FieldAccessor

Display (Frame, String, boolean)

String [] getListOfFields ()

boolean getResult ()

Item getItem ()

void open (Item)

void close (boolean)

private Item item
private boolean result

class UserItem implements Item

 UserItem ()

automatic Display createDisplay (Frame, String)

automatic String [] getListOfFields ()

automatic Object getVal (String)

automatic void setVal (String, Object)

private field [n]

class UserDisplay extends Display

UserDisplay (Frame, String, boolean)

Object getVal (String)

void setVal (String, Object)

TransformerPattern
class Transformer

private Transformer ()

static Transformer getInstance ()

void fromSrcToDest (FieldAccessor, FieldAccessor)

static private Transformer instance

UserInterface
…

For simplicity, meta-structures are not shown in this example. 
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Abstract. The concept of a specialization template is introduced. It is shown that specialization templates
are useful in the design and documentation of object-oriented frameworks. A prototype tool for Java
frameworks is implemented based on a formalization of a specialization template. The tool helps a
framework developer to manage the hot spots and the specialization rules of the framework, and an
application developer to specialize the framework. The approach has been applied to a realistic case
study, a Java framework for developing graphical editors.

1 Introduction

Within the object-oriented paradigm, framework has become a popular catchword for
product-line architecture. Nonetheless, frameworks are generally not well understood as
software products. The term framework is used for a wide spectrum of architectures
without always recognizing the features that actually characterize a framework. The
design process of a framework is currently not mastered by software professionals, a
fact harshly revealed by the long, unpredictable and iterative development projects of
frameworks. The use of a framework for producing an application is often problematic
due to the mere size and complexity of the framework, making it hard to understand
exactly which parts must be specialized and how. Tool support for making the develop-
ment and use of frameworks easier is just taking its first steps ([FMW97], [MDE97]).
Taking into account the lack of understanding of the framework concept itself, it is
hardly surprising that the tool support is inadequate so far.

There are both impressive success stories and (less published) crushing catastrophes in
making use of frameworks in the industry. For mainly positive experiences, see e.g.
[Cas95], [SBF96], [Joh92], [Lew95] and [CACM97]. We feel that frameworks have the
potential for truly powerful software reuse, but as everything incompletely understood
they also contain a significant risk. In this paper we will propose a new concept,
specialization template, that helps to understand a framework and its design process.
We also show that this concept can be used as the basis of tool support for frameworks.
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In the next section we will introduce the concepts of design contract and specialization
template as basic design artifacts and documentation means for a framework. In section
3 we discuss the role of specialization templates in the design of a framework. The basic
design of a practical tool that builds on the idea of a specialization template is presented
in section 4. Finally, we summarize the benefits of the approach in section 5.

The tool presented here is FRED (Framework Editor), a recent result of research carried
out at the universities of Helsinki and Tampere. An early, significantly different version
of FRED was reported in [Hak98]. As a realistic case study, FRED has been applied to
JHotDraw, a Java framework for graphical editors [Gam98]. FRED and the JHotDraw
application (along  with  a  tutorial)  are freely  available  at  http://www.cs.helsinki.fi/
research/fred.

2 Design contracts and specialization templates

Basically, a design contract4 is a variant of the contract concept introduced by Holland
[Hol93]. It is also closely related to a design pattern [Gam95]. A design contract is an
application-independent description of a certain OO design aspect. In contrast to a
traditional design pattern, it does not necessarily describe a solution to a frequently
occurring problem (or to any "problem" for that matter). In a sense, a design contract is
a design pattern released from its semantic burden. It describes simply a set of classes,
together with certain attributes, methods and relations. Further, a design contract
specifies the (structural) conditions that any realization of the contract must fulfill.
Naturally any design pattern can be easily converted to a design contract, but not vice
versa.

The idea of a design contract is close to Holland's notion of a contract. Since we want
eventually to use design contracts as the basis of our tool, we must formalize them as a
language, resembling Holland's Contract language. The differences stem from our aim
to support the specialization process using the information in a design contract, rather
than to specify general reusable program fragments. When compared to Holland's
contracts, design contracts are less specific about the method bodies (algorithms).
Further, we introduce static constraints that can be used as guidance in the
specialization phase, rather than run-time invariants. All this means that we consider
contracts as static, structural specifications rather than as semantically meaningful
abstract program fragments.

Because of its character, the informal description of a design contract is more compact
than that of a design pattern. The central parts of a design contract are:

                                                
4 This concept is not directly related to "design-by-contract" as proposed by Meyer.
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• Name: the name that identifies the design contract.
• Base contract: the possible design contract, which this design contract is derived

from.
• Structure: the static structure of the participants of the contract, in terms of a UML

class diagram. The names appearing in the structure are roles, i.e. placeholders that
can be bound to actual code items.

• Constraints: the constraints that must be followed in any realization of the structure,
when the roles of the structure are bound to application specific items.

Often design contracts can be organized into hierarchies in which a more specific
contract extends a more general contract, adding certain classes, attributes, methods
(roles) or constraints. For example, there might be a simple design contract consisting
of two classes with inheritance relationship; this contract could then be extended by
another contract with a structure more specific to it. The possible design contract
serving as the base of extension is given in the "base contract" part. This is equivalent to
Holland's notion of "refinement".

We describe design contracts formally using a textual language called Cola (Contract
language). To get some idea of the flavor of Cola, consider the following (somewhat
simplified) Cola specification of the Composite design contract:

contract Composite {
  single type Component { method operation ; }
  class Leaf inherits <Component C> {
    named "Leaf" + C ;
    single method operation overrides <C~operation O> ;
  }
  single class Composite inherits <Component C> {
    named "Composite" + C ;
    single method operation overrides <C~operation O> {
    }
    single method add {
      takes C child ;
    }
    single method remove {
      takes C child ;
    }
    single method get {
      returns Component ;
      takes int i ;
    }
    single field components {
      returns java.util.Vector ;
    }
  }
}

Since Java is the underlying implementation language in FRED, Cola deliberately
follows Java's syntactic style. The contract includes three top-level roles: Component,
Leaf, and Composite. A main constraint of a role is its cardinality. Cardinality
denotes the number of Java entities that must or can be bound to the role. The modifier
single states the role’s cardinality: one suitable Java type (an interface or a class) must
be bound to the role in every instance of CompositeContract. Component in turn
includes a method role called operation. Its cardinality is relative to the parent role.
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The role has no cardinality modifiers, implying that there must be 1 – n Java methods in
each Java type bound to the role Component.

For example, the role Leaf represents Java classes whose objects cannot have children.
It defines a parameter C of type Component. If a role has a parameter, its cardinality is
relative to the number of Java entities bound to the role referred to by the parameter. In
this case, there must be one Java class bound to the role Leaf for every Java type bound
to the role Component. The parameter can also be used in the constraints associated
with the role as well as in its subroles. The inherits constraint in Leaf specifies that
each Java class playing the role of Leaf must inherit (extend or implement either
directly or indirectly) a Java type bound to the role referred to by the parameter C, i.e.
the role Component. The named constraint says that by default the name begins with
the string constant “Leaf” followed by the name of the Java type bound to the
parameter. These default values can be used e.g. in code generation.

Design contracts are an essential part of specialization templates. A specialization
template is a framework-specific design solution to a particular flexibility requirement.
Using the terminology of Pree [Pre95], a specialization template specifies a hot spot in a
framework. Logically a specialization template corresponds to Holland's concept of
"conformance", although we emphasize different aspects. A specialization template is
based on a design contract: essentially it binds a design contract to a particular
framework and its flexibility requirements. The central parts of a specialization template
are:

• Name: the name of the specialization template.
• Flexibility requirement: the flexibility requirement of the framework, in terms of

application variance, that gives rise to this specialization template.
• Design contract: the design contract this specialization template is based on.
• Structure: the structure of the contract, presented so that the classes that are bound

to actual (Java) classes are shaded. Unbound roles provide placeholders for new
classes and methods.

• Bindings: The bindings between Java items and roles.
• Constraints: the constraints related to the roles.
• Specialization hints: additional hints to guide the application developer in writing

the specialization code (e.g. method bodies).
• Example: a representative example of a particular specialization.

Note that a design contract is framework-independent whereas a specialization template
is framework-dependent. A specialization template binds a part of the contract structure
to certain entities (classes, attributes, and methods) in the Java framework. The more a
specialization template binds, the less freedom is left to the application developer. On
the other hand, if the application developer leaves certain roles unbound, the result is a
new, less general specialization template, associated with a less general framework.



5

Indeed, we consider framework development as a continuum of specialization,
terminating in an executable application (see next section).

As an example, we present a simplified specialization template associated with the
JHotDraw framework. We omit the design contract this template is based on: the
contract is a fairly straightforward reformulation of the Composite design pattern
[GHJV95].

• Name: CompositeFigure.
• Flexibility requirement: It must be possible to define and add new types of figures

appearing as nodes in the graphs manipulated by the editor.
• Design contract: Composite.
• Structure:

Figure

draw

CompositeFigure

draw
add
remove
get

Leaf

draw

componentFigures
*

• Bindings:
Specialization Template Design Contract
Figure → Component
Figure.draw → Component.operation
CompositeFigure → Composite
CompositeFigure.add → Composite.add
CompositeFigure.remove → Composite. remove
CompositeFigure.get → Composite.get

CompositeFigure.componentFigures → Composite.components
CompositeFigure.draw → Composite.operation

• Constraints:
- any number of Java classes can be bound to Leaf
- any class bound to Leaf must override the method bound to operation
- the method bound to operation must implement the drawing of the figure.

• Specialization hints: The figure can be defined also as an icon as follows: …
• Example: Typically, the drawing operation is given as follows: …

Specialization templates are not formally defined using a textual language, but they are
instead constructed interactively using the FRED interface.
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3 Specialization templates in framework design

The crucial part of the analysis phase in framework development is stepwise
generalization ([KoM95], [Sch97]). The process begins with the specification of an
example application in the intended domain of the framework. In each generalization
step, some concepts in the requirement specification are generalized, transforming the
application specification into a framework specification. When this process is
continued, more and more general framework specifications emerge, until eventually a
suitable level of abstraction is reached.

Each generalization of a concept gives rise to a flexibility requirement. Essentially, a
flexibility requirement stores the information concerning a single concept generalization
by specifying the concept that can have variations. Roughly, a generalization of concept
A to concept B gives rise to flexibility requirement "It must be possible to define and
add variants of B" and to example specialization A. Each generalization step in the
analysis stage typically comprises several flexibility requirements.

In the design phase, the most abstract framework specification is first implemented
([KoM95], [Sch97]). Each flexibility requirement associated with the specification is
transformed into a specialization template. Note that the flexibility requirement itself
will be part of the template. An example specialization is also directly available from
analysis. The framework developer then designs an architecture that fulfills the
flexibility requirement, either using an existing design contract or creating a new one.
Possible specialization hints and example specializations are written down. The
framework classes involved in the template are implemented and bound to its roles.

After implementing in this way the most abstract framework, the next more concrete
framework specification is implemented in the same way. In the ideal case the next
framework can be obtained as a specialization of the previous one, exploiting its
specialization templates. This results in a layered framework, with increasing level of
concreteness. The design process is depicted in Figure 1.

This design scheme for frameworks is idealistic in many ways, but we feel that it gives
a useful guideline that the framework developer should have in mind, even though the
scheme were not strictly followed. In particular, we argue that the concepts of a
flexibility requirement and a specialization template are instrumental in framework
design and documentation. However, note that the FRED tool described below does not
care about how the specialization templates are produced.
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Requirement 
specification 
for an application

Flexibility
requirements

Flexibility
requirements

Specialization
templates

Specialization
templates

...
Design
contracts

...

Requirement 
specification 
for a framework

Requirement 
specification 
for a framework

Core framework

Final framework

Application

Generalization

Generalization

Specialization

Specialization

Figure 1. Flexibility requirements, design contracts and specialization templates in
framework design based on stepwise generalization.

4 FRED: Tool support based on specialization templates

FRED is a tool for managing framework-based software development. The basic idea is
to use specialization templates (and design contracts) for active documentation of a
framework. Our vision is that a framework can be specialized under the guidance of
FRED, in the same sense as various kinds of wizards assist the programmer in the case
of, say, GUI frameworks. However, FRED is completely domain-independent: it can be
used to construct a "wizard" for any OO (Java) framework. The basic mechanisms of
FRED take care of managing the bindings of specialization templates to actual source
code, generating default implementations on the basis of example specializations,
keeping track of the remaining tasks that have to be done, displaying informal
instructions for specialization (e.g. specialization hints), enforcing the constraints
defined in the specialization templates, and editing source code. A dedicated source
code editor is integrated with the system so that all modifications of the source text are
immediately checked against the specialization templates (and design contracts they are
based on). A violation automatically generates a new task for the user in which this
violation has to be removed.

The first stage in using FRED is to transform the design contracts into formal Cola
specifications. The Cola compiler is currently under development; so far the Cola
specifications have been manually transformed into the internal representation format of
FRED.

The specialization templates are created through the graphical user interface of FRED.
Within FRED, the specialization templates based on the known design contracts are
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instantiated, and some of the roles are bound to existing Java entities. FRED generates
and automatically maintains a task list for the remaining unbound roles and checks that
the bindings are legal. As a result, a collection of partially bound specialization
templates is created, representing the specialization interface of the framework.

Figure 2 gives an overview of using FRED. The user interface of FRED consists of
structural views of design contracts (left below) and specialization templates with
(partial) bindings (left above), a task list, an info sheet (right below) and a work area.
The icon of an item (role) in a specialization template indicates the type of the item and
whether it is bound or not. The standard tool used in the work area is a source editor.
However, various other tools for more high-level (and possibly domain-oriented) tools
can replace the source editor, using a general tool interface.

Name

Design contract
Flexibility requirement

Structure

Constraints
Specialization hints
Example

Specialization 
template

Analysis

Cola-
compiler

Cola-
specification

FRED framework
model

Task list

Bindings

Info & task list window

Specialization template window

Specialization
template
preparation

Tool workspace
(e.g. source editor)

Design contract window

Figure 2. FRED in the framework specialization process.

In the user interface snapshot of Figure 2, the specialization templates have been created
for JHotDraw, representing the specialization interface for this framework. One can
immediately see that the hot spots in JHotDraw are related with connections (of
figures), figures, initialization, tools (for manipulating figures and connections), and
views/layout. For each template item in the specialization template view, the user can
ask to see the (hierarchical) list of remaining specialization tasks. Each task item can be
executed either by generating a default implementation or by binding some unbound
role in the template to an actual Java entity. In the latter case the system checks whether
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the given Java entity conforms to the structural constraints given in the template (or
actually in the design contract). One can also ask for the information sheet associated
with the template; this is an informal hyperlinked (HTML) description of the template.
When the task list is empty, the user can compile and run the resulting application
through FRED as well.

5 Conclusions

Wrapping a framework up inside FRED yields several benefits. Constructing a
framework becomes more systematic and manageable since FRED forces the designer
to explicitly specify the specialization interface of the framework as specialization
templates. This is particularly useful for white-box frameworks. Common design
contracts can be specified and stored as reusable foundations of specialization
templates. On the other hand, an application developer need not understand the
framework as a whole: the specialization templates give condensed information about
the relevant parts of the framework. The amount of information the user must perceive
is relatively small5, and FRED guides her through the specialization tasks by
maintaining a things-to-do list. Further, FRED guarantees that the specializations follow
the assumptions made by the framework developer, as described in the specialization
templates based on design contracts.

So far FRED is a fairly "syntactic" tool: it takes care of structural aspects of hot spots,
rather than their semantics. A possible future approach is to allow the specification of
methods in the design contracts, for example using pre- and post-conditions. However,
introducing a full-fledged program verification system is beyond the scope of FRED:
we wish to keep FRED as simple as possible. An attractive compromise might be to
apply the idea of "grey-box components" introduced in [BW97], in which a certain
pattern is specified for a method, rather than the black-box semantics (pre- and post-
conditions).
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ABSTRACT 
An idea of providing assistance for framework-specialization by 
the means of interactive task list is presented. A model based on 
the notion of generative patterns is described, that provides 
basis for task-based tool support for framework specialization. 

 

1 INTRODUCTION 
Product line architecture is a system of rules and 
conventions for creating software products for a given 
domain. The broader the domain, the more complex rules 
the architecture embodies.  

This growing complexity leads to a usability problem that 
can seriously hinder the reuse of the architecture. Thus, 
there is a need to promote to the comprehensibility of 
these rules, as well as validate the application of these 
rules. 

Object oriented frameworks are an established way to 
implement product line architectures. The framework 
implements the invariant part of the architecture and 
defines a specialization interface. A new product can be 
derived from the framework by providing the 
application-specific part using the provided interface. 

In frameworks, the features of the implementation 
language are used to express the architectural rules and 
conventions. This most often incorporates inheritance. 

However, only fraction of the rules of the framework can 
be expressed adequately with language constructs. Every 
framework contains rules implied by the implementation 
but not statically checkable by the compiler. 

This emphasizes the importance of the documentation. 
Thus, much effort has been placed on the research on 
framework documentation, as well as technologies and 
tools supporting the framework specialization. 

This paper proposes a task-driven approach to framework 
specialization. The model embodies an algorithm that 
maintains a dynamic “things-to-do”-list in co-operation 
with the framework developer. The idea is to provide 
interactive specialization instructions that adap t to the 
current specialization problem.  

In addition, code generation, and to some extent, 
verification, can be implemented on top of the model.  

Proving the correctness of the specialization is however, 

beyond the scope of this research. Our approach aim s to 
improve specialization process by emphasizing the 
education of the developer beforehand or concurrently 
with the process, rather than validation that usually takes 
place after the code has been produced. 

This model can also be seen as an extension of the notion 
of Framework Cookbooks [Pre95]. However, the task 
driven approach has appeared to be useful also outside 
the scope of framework specialization, e.g. in formalizing 
architectural standards and conventions such as Java 
Beans. 

The suggested model has been implemented in a 
development tool called FRED (Framework Editor). The 
tool has been evaluated in a realistic environment in the 
Finnish industry. 

Chapter 2 describes the task driven programming model. 
Chapter 3 discusses the current implementation of the 
model along with a minimal case study. 

2 TASK DRIVEN MODEL 
Overview 
Nowadays software development rarely starts from 
scratch. Each piece of software is produced against some 
standards, conventions and underlying systems and 
architectures. Most software structures manifest patterns 
that have been invented before. Everyone can agree that 
more than inventing ideas, software engineering is about 
applying ideas.  

Applying an idea means following a plan to manifest that 
idea. The idea of task-based tool support is to model this 
plan as a list of tasks. 

When dealing with complicated structures, which are 
typical for software, this task list cannot be adequately 
expressed by a linear step-by-step list. Making software 
is conceptually harder that making supper. A choice 
made during the process may change the rest of the plan 
completely. That is why cookbooks [Pre95], although a 
step to a right direction, are not enough. 

By doing a task, the developer continues with the plan, 
but also makes choices. There might be several ways to 
do the task, each of which will generate succeeding tasks. 

Technically, there could be two ways to do tasks. The 
developer may either explicitly mark a task as done, or 
the tool may implicitly consider a task as done. 



     

 

The problem with traditional documentation is that it has 
to be written before the specialization takes place. 
Therefore the documentation has to communicate with 
the abstract concepts of the framework, not with the 
concrete concepts of the specialization. By providing 
tasks incrementally, the tool can gather information of 
the specialization and parameterize the documentation 
with the sp ecialized concepts. The same information can 
be used to provide more active assistance in for task, e.g. 
code generation that adapts to the sp ecialization context. 

Pattern Based Model 
In order to provide task-based tool support, we suggest a 
model that builds on the notion of patterns as generative 
descriptions that can be used systematically to produce a 
number of co-similar structures. 

This fits a more traditional way to see a pattern as a 
description of a recurring problem along with a reusable 
solution to that problem within a certain context. 
However, our notion of patterns should not be confused 
with design patterns [Gam95], often associated with strict 
rules on their known uses and the domain of 
applicability. With the goal of providing programming 
assistance using patterns in mind, everything is a 
considered a pattern that contains a structure definable in 
a form described in this chapter. Most design patterns 
seem however to fall into this category. Nevertheless, 
considering our current model, tool support benefits most 
the instantiation of less abstract implementation-oriented 
variants of design patterns. 

One essential part of a pattern definition is the 
description of the pattern structure. Within the scope of 
this research,  we concentrate on the structure and leave 
the other parts open. However, a pattern is not seen as a 
purely declarative description of the solution, but rather a 
description of the process to instantiate the abstract 
solution. A pattern can therefore be seen as an algorithm 
that can be applied in several environments to build the 
same structure. 

Given this informal description, the structure of a pattern 
can be presented as a directed acyclic graph (DAG) that 
can be formalized by the following 4-tuple: 

 P = (R, D, c, S) 

This is called the definition graph. The vertices R of the 
graph are called roles , and the directed edges D are called 
dependencies. A dependency from r to s is an ordered 
pair (r, s), where role r is called the depender, and role s 
is called the dependee.  

Function c is called the cardinality function, and is 
defined as a mapping from a role to an integer range. The 
range is defined by its end points and is called the 
cardinality constraint of the role. The cardinality 
function is defined as follows: 

c : R → {0,1, …, n} × {1,2, …, ∞} 

c(r) = (l, u),  u ≥ l 

The definition graph represents a reusable abstract 
structure. The roles define all the abstract components of 
this structure, whereas the dependencies and cardinality 
constraints define the abstract relationships between 
roles. 

The fourth part of the pattern graph definition is the 
structural constraint set S, which is a set of constraints 
that are used to restrict the instantiation process. 
Different kind of formalisms could be adopted for such 
constraints. E.g. predicate logic could be used to state the 
required properties. We are currently researching 
different alternatives in expressing structural constraints. 
One that has proved to be very useful in practice is what 
we call the path constraint. A path constraint C is defined 
as a set of paths1, which all begin at the same role and 
end to the same role, i.e.: 

C = { (r1, …, rn) | (ri, ri+1) ∈ D } 

∀ (r1, …, rn), (s1, …, sm) ∈ C : r1=s1, rn=sm 

Figure 1 presents an example pattern structure with a 
graphical graph notation, where nodes represent roles and 
edges represent dependencies. The roles are labeled, and 
the cardinality constraint is placed after each role label. 
Below the graph there is a path constraint between roles 
Adapter and Record. The same pattern is examined in 
detail by going through the specialization example in 
Chapter 3. 

 

Record (1,1) 

Attr (1,∞) Adapter (1,1) 

Fields (1,1) 

{(Adapter,Fields,Record), (Adapter,Attr,Record)} 
 

Figure 1. An example pattern definition graph 

Applying a pattern is called instantiation. It results in a 
pattern instance, which describes a concrete structure as 
an instance of the abstract structure defined by the 
pattern. In practice, this correlation is described by 
binding concrete program elements , like classes, 
methods, formal parameters and so on, to the abstract 
roles defined by the pattern. 

At any time during the instantiation, the structure of the 
instance of pattern P = (R, D, c) can be described as a 
DAG as well. It can be presented by a 3-tuple as follows: 

P’ = (R’, D’, s) 
                                                                 
1 A path within a DAG from vertex v1 to vertex vn 
connected with number of edges is defined 
unambiguously as an ordered list of vertices (v1, …, vn) 
on that path. 



     

 

In this instance graph, the vertices R’ are called role 
instances. Each role instance is a manifestation of some 
role in the definition graph. Function m called meta-
function defines this relationship as a mapping from a 
role instance to a role: 

 m : R’ → R 

Similarly, the directed edges D’ between role instances 
are called dependency instances . Each dependency 
instance (x, y) manifests a dependency defined between 
the two roles that the role instances x and y are instances 
of. In other words: 

 ∀ (x, y) ∈ D' : ∃ (m(x), m(y)) ∈ D 

The last component of the instance graph, function s, 
called state function, maps each role instance to a state. 
The function is defined as follows: 

 s : R’ → {mandatory, optional, valid, invalid} 

To understand the state function, we must look at the 
instantiation process.  

The instantiation process is incremental and guided by 
the definition graph of the pattern. The appendix lists an 
algorithm that takes a definition graph P as an input, and 
gradually constructs an instance graph P’ and function m. 
The algorithm assumes a development tool environment 
that works in the interaction with the developer. 

The algorithm works by gradually augmenting the 
instance graph with new role instances. New instances 
are generated based on the dependency and cardinality 
constraint definitions. Each new role instance is 
considered a task to be carried out by the developer. A 
state, either mandatory or optional (with obvious 
semantics), is assigned to the task. Once the user does the 
task, the state of the role instance is changed. The state 
becomes invalid, if the tool is able to judge that the task 
is not properly executed, or valid in other cases.  

In addition, whenever a task becomes done, the algorithm 
may augment the pattern instance with new role 
instances. 

Mandatory, optional and invalid role instances are called 
as tasks. Valid role instances constitute the concrete 
structure that has been instantiat ed from the abstract 
structure defined by the pattern. If the definition graph is 
well formed, and the user follows the ever-changing task 
list, a point is reached where all role instances are either 
valid or optional. As a result, an abstract structure 
defined by the pattern has been specialized in a user-
defined context. 

Figure 2 presents a partial pattern instance and its relation 
to a pattern. The state is indicated by a superscript after 
role instance label and the meta-funct ion is indicated by 
edges between role instances and roles. Path constraints 
are omitted from this figure. 

The definition graph provides syntax for describing 

patterns. To provide useful tool support, the graph has to 
be decorated with tool-specific semant ics. Therefore, a 
practical application of this model extends it in many 
ways. E.g., tool-specific attributes could be defined for 
the roles. Such attributes could include the default 
implementation for the required program element, 
documentation, programming-language specific 
constraints, such as the return type of the method or 
required inheritance, and so on. Provided sufficient 
information exists, the tool can generate context -specific 
instructions for the task, provide automation such as code 
generation, and validate the user actions. 

Record (1,1) 

Attr (1,∞ ) Adapter (1,1) 

Fields (1,1) record1 valid 

attr1 valid 

fields1 mandatory 

attr2 optional 

 
Figure 2. An example pattern instance 

The tool-specific attributes may also include rules and 
heuristics to determine automatically when the user 
completes a certain task. In practice however, the tool 
cannot rely on such heuristics alone. Instead, the user 
should explicitly acknowledge some tasks. By requiring 
explicit commitment from the user, the tool may behave 
in a more predictable way. E.g., if the user is converting 
one of his classes to a Singleton [Gam95], the tool may 
provide assistance much earlier and reliably if the user 
explicitly states his or her intentions. 

Completing a task may require "evidence" to be provided 
by the user. In a development tool, such evidence could 
be part of the produced source code. This program 
element can then be checked against the rules imposed by 
the pattern and any inconsistencies may be reported. This 
equals to enhancing the compiler with architecture-
specific typing checks. Ideally, the tool provides an 
incremental development environment where these 
checks could be re-evaluated whenever the user 
manipulates the source code, thus making it possible for 
the task-list to evolve by itself concurrently with the 
development process. 

3 FRED AND FRAMEWORK S PECIALIZATION 
FRED is a prototype tool implementing the discussed 
model. FRED is implemented in Java and intended for 
providing task-driven assistance for Java programming, 
especially to support specialization of Java frameworks. 
The tool currently being tried out in Finnish software 
industry. A small snapshot of the user interface is shown 
in Figure 3. 



     

 

 
Figure 3. User interface of FRED tool 

As an example of task-driven framework specialization, a 
framelet called Red is used. It comes with FRED 1.1 
release. Framelets [Prk98] are small frameworks 
consisting a handful of classes and used as reusable 
building blocks for creating components. The Red 
framelet is an evolved version of a framelet discussed in 
[Prk98]. 

Red provides user interface facilities to maintain a list of 
Record-objects and edit their fields. A specialization of 
Red typically defines a new Record subclass with some 
application domain –specific fields. Once the user has 
defined this new record type and derived some other 
classes, the framelet can generate the user interface 
automatically. Typical user interface windows provided 
by Red are seen in Figure 4. 

 
Figure 4. Typical views provided by Red framelet 

Through this example, a development tool similar to 
FRED environment (see acknowledges) is assumed, that 
guides in the instantiation process. 

Figure 1 presented a simple pattern definition graph, 
without any tool-specific attributes and semantic 
constraints. The graph describes a pattern with roles 

named Record, Attr , Adapter  and Fields. Let us assume 
that sufficient information, although suppressed from our 
simplified notation, is provided for the tool to interpret 
Record as a description of a class role, Attr as a role for 
class member variable, Fields as a method role, and 
Adapter as a role that describes some piece of code to be 
written within a method. This minimal pattern is a 
simplification of a pattern enclosed in the FRED release, 
to describe creation of a new Record subclass using Red 
framelet. 

Given this description of the pattern, the tool can provide 
a task list for the user. The tool begins by instantiating 
each role that has no dependencies. Therefore, an 
instance of role Record is created. Let us name it 
record1. The state of the instance is set to mandatory, 
which denotes a mandatory task. This task tells the 
developer to provide a class to play the role Record. 
Provided the proper semantic constraints are included, 
this task means that the developer should subclass the 
Record-class provided by the framework. Based on the 
tool-specific attributes associated with the role, most 
notably the free-form documentation, the tool can 
generate textual description for the task as well as 
suggest a skeletal implementation. 

This is the first and only task the tool is able to generate 
at this point. This instance graph at this point is presented 
visually in step 1 of Figure 5.  

To complete the task, the user has to point out a suitable 
class for the tool. This may involve creation of a new 
class, modification of an existing one, or letting the tool 
generate the skeletal default implementation. Suppose the 
developer is specializing Red to store information on 
personnel. For that purpose, the developer creates a new 
Record subclass named Person. If heuristics are provided 
for the pattern to determine every subclass of Record to 
play the role Record in the pattern, the tas k may be 
considered done automatically. If such heuristics are 
unavailable, the user must point out the Person class 
explicitly to adhere the task. 

The Person class may be left empty for the moment. If 
the inheritance constraint is satisfied, the tool changes the 
state of the role from mandatory to valid. The binding 
between the class and the role instance is maintained, so 
that the state can be re-evaluated whenever there are any 
changes in the associated source code. 

After completion of the first task, the tool re-evaluates 
the pattern instance against the definition. No more 
instances of role Record are created because the upper 
bound of the associated cardinality constraint is 1, and an 
instance of Record already exists. However, an optional 
task named attr1 to create a member variable to play role 
Attr is created, along with a dependency instance (attr1, 
record1). The task is mandatory, as the lower bound of 
the associated cardinality constraint is 1, requiring there 
to be at least one instance of Attr for each instance of 
Record. Similarly, an instance of Fields is created. This 



     

 

task corresponds to overriding a method declared in the 
Record-class. Step 2 in Figure 5 presents the instance 
graph at this point. 

Given these two tasks, the user may continue in his or her 
preferred order. Note that the graphical representations 
do not describe any semantics on the structure. Such 
semantics, including the requirement for the expected 
fields and methods to be declared in the class for the 
associated instance of Record, has to be defined by tool-
specific extensions to the model. 
 

Record (1,1)  

Attr (1,∞) Adapter (1,1)  

Fie lds (1,1) record1 mandatory 

Record (1,1)  

Attr (1,∞) Adapter (1,1)  

Fields (1,1) record1 valid 

attr1 mandatory 

fields1 mandatory 

Record (1,1)  

Attr (1,∞) Adapter (1,1)  

Fields (1,1) record1 valid 

attr1 valid 

fields1 valid

adapter1  mandatory attr 2 optional 

Step 1 

Step 2 

Step 3 

 
Figure 5. Some specialization steps for specializing Red 

For task attr1, the developer introduces a new member 
variable in the Person class, and denotes this variable as 
the required program element. For fields1, the developer 

asks the tool to generate the default implementation. Step 
3 of the same figure presents the situation where the 
developer has done both these tasks and the tool has re-
evaluted the pattern instance once again. Two new tasks 
have been created. One concerns creating another 
member variable and is optional. The other instructs the 
developer to type in some adapter code in the overridden 
method. In Red specialization, this adapter code provides 
access to read and write the member variable through the 
Red user interface. Our pattern definition states that such 
adapter code must exist for each member variable 
declared to play the role Attr . 

A mechanism can be provided to undo tasks, providing 
the means to backtrack the instantiation process and 
reconsider the decisions made. In FRED, the source code 
is modified under supervision of the tool, thus earlier 
decisions are refined automatically based on the modified 
source code. Whenever the code no longer complies with 
constraints of the pattern, the associated role instances 
become invalid, reminding the user of the architectural 
rules and conventions. 
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APPENDIX: PATTERN IN STANTIATION ALGORITHM 
The following algorithm UPDATE expects a pattern P = (R, D, c, S) and a pattern instance P' = (R', D', 
s). In addition, it is assumed that all structural constraints in set S are path constraints. The algorithm 
makes also use of the following definitions: 

I(r) = { x | m(x) = r } 

dependees(r) = { s | (r, s) ∈ D }, r ∈ R  

x→r = y, y ∈ I(r), r ∈ R, (x, y) ∈ D’ 

 

The algorithm should be evaluated by a development tool to update P' and the meta-function m, that 
defines the mapping between P' and P. Provided the state function returns valid or invalid for tasks that 
have been done at that time, the algorithm may construct new tasks with either mandatory or optional 
state. Modification of a function or set is denoted by a left-pointing-arrow "←". 

UPDATE is 

 

 For each r ∈ R Do 

 

  { s1, …, sn } ← dependees(r)  

  (l, u) ← c(r) 

 

  For each (d1, …, dn) ∈ I(s1) ×…× I(sn) 

   where ∀ C ∈ S : ∀ (r, a1, …, ap), (r, b1, …, bq) ∈ C : ∃ i, j : 

    d i ∈ I(a1) and dj ∈ I(b1) and di→a2→…→ap = dj→b2→…→bq Do 

 

   X ← { x ∈ I(r) | ∀ i ∃ (x, di) ∈ D’ } 

 

   If |X| < l and not (∃ x ∈ X : s(x)=mandatory or s(x)=optional) Then 

    Let x = new role instance 

    m(x) ← r 

    X ← X ∪ { x } 

    R’ ← R’ ∪ { x } 

    D’ ← D’ ∪ { (x, d1), …, (x, dn) } 

   End 

 

   If ∃ x ∈ X : s(x)=mandatory ∨ s(x)=optional Do 

    If |X| ≤ u Then s(x) ← mandatory 

    Else s(x) ← optional 

   End 

  End 

 End 
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An application framework is a collection of classes implementing the shared
architecture of a family of applications. A technique is proposed for defining
the specialization interface of a framework in such a way that it can be used to
automatically produce a task-driven programming environment for guiding the
application development process. Using the environment, the application
developer can incrementally construct an application that follows the
conventions implied by the framework architecture. The environment provides
specialization instructions adapting automatically to the application-specific
context, and an integrated source code editor which responds to actions that
conflict with the given specialization interface. The main characteristics and
implementation principles of the tool are explained.

1 Introduction

Product line architecture is a collection of patterns, rules and conventions for creating
members of a given family of software products [4, 14, 17]. Object-oriented
frameworks are a popular means to implement product line architectures [10]. An
individual application is developed by specializing a framework with application-
specific code, e.g., as subclasses of the framework base classes. The specialization
interface of a framework defines how the application-specific code should be written
and attached to the framework.

Typically, the documentation provided together with a framework describes
informally the specialization interface of the framework. Usually this is done simply
by giving examples of possible specializations. Unfortunately, such descriptions
cannot be used as the basis of building systematic support for the specialization
process. An attractive approach to solve this problem is to define the specialization
process of a framework as a "cookbook" [8, 18, 22, 23, 25]. Related approaches
include also motifs [19] and hooks [9]. The support offered by these approaches
ranges from improving the understanding of frameworks to providing algorithmic
recipes for separate specialization tasks. Our work continues this line of research, but



we focus on issues that we feel are not adequately addressed so far. In particular,
these issues include:
1. Support for incremental, iterative and interactive specialization process. We

strongly believe that the specialization of a framework, or even its single hot spot,
should not be regarded as a predefined sequence of steps, far less an atomic,
parameterized action. The application developer should be able to execute the
specialization tasks in small portions, see their effect in the produced source code,
and go back to change something, if needed. This kind of working is inherent to
software engineering, and the tool should support it. Therefore, specialization
should be guided by a dynamically adjusting list of specialization steps that
gradually evolves based on the choices made in the preceding steps. In this way,
the application developer has better control and understanding of the process and
of the produced system.

2. Specialized specialization instructions. The problem with traditional framework
documentation is that it has to be written before the specialization takes place.
Therefore the documentation has to be given either with artificial examples or in
terms of the general, abstract concepts of the framework, not with the concrete
concepts of the specialization at hand. In an incremental specialization process the
tool can gather application-specific information (e.g., names of classes, methods
and fields) and gradually "specialize" the documentation as well. This makes the
specialization instructions much easier to follow.

3. Architecture-sensitive source-code editing. In our view, the architectural rules that
must be followed in the specialization can be seen much like a higher level typing
system. In the same sense as the specialization code must conform to the typing
rules of the implementation language, it must conform to the architectural rules
implied by the framework design. A framework-specific programming
environment should therefore enforce not only the static typing rules of the
programming language but also the architectural rules of the framework.

4. Open-ended specialization process. The specialization process should be open-
ended in the sense that it can be resumed even for an already completed
application. We feel that this is important for the future maintenance and extension
of the application.

In this paper we propose a technique to define the specialization interface of a
framework in such a way that it can be used to generate a task-driven application
development environment for framework specialization. We demonstrate our tool
prototype called FRED (FRamework EDitor) that has been implemented in Java and
currently supports frameworks written in Java. The approach is not however tied to a
particular language.

Different techniques to find and define the specialization interfaces for Java
frameworks using FRED have been discussed in [12], summarizing our experiences
with FRED so far. We have applied FRED to two major frameworks: a public domain
graphical editor framework (JHotDraw [15]) and an industrial framework by Nokia
intended for creating GUI components for a family of network management systems.
This paper focuses on the characteristics of the FRED tool and its implementation
principles.

In the next section we will present an overview of the FRED approach. In Section
3 we will discuss the underlying implementation principles of FRED. Related work is
discussed in Section 4. Finally, some concluding remarks are presented in Section 5.



The FRED project has been funded by the National Technology Agency of Finland
and several companies. FRED is freely available at http://practise.cs.tut.fi/fred.

2 Basic Concepts in FRED

A basic concept for defining the specialization interface in FRED is a specialization
pattern. A specialization pattern is an abstract structural description of an extension
point (a hot spot) of a framework. Specialization pattern is typically of the same
granularity as a recipe or hook [9].

In principle, a specialization pattern can be given without referring to a particular
framework; for example, most of the GoF design patterns [11] can be presented as
specialization patterns. However, we have noted that this is usually less profitable for
our purposes: a framework-specific specialization pattern can be often written in a
way that provides much stronger support for the specialization process, even though
the specialization pattern followed one or more general design patterns. This is due to
the fact that the way a design pattern is implemented in a framework affects the exact
specialization rules and instructions associated with that pattern. Hence, for the
purposes of this paper we can assume that a specialization pattern is given for a
particular framework.

A specialization pattern is a specification of a recurring program structure. It can
be instantiated in several contexts to get different kinds of concrete structures. A
specialization pattern is given in terms of roles, to be played by structural elements of
a program, such as classes or methods. We call the commitment of a program element
to play a particular role a contract. Some role is played by exactly one program
element, some can be played by several program elements. Thus, a role can have
multiple contracts. This is indicated by the multiplicity of the role; it defines the mini-
mum and maximum number of contracts that may be created for the role. Combina-
tions are from one to one (1), from zero to one (?), from one to infinity (+), and from
zero to infinity (*). E.g., a specialization pattern may define two roles; a base class
and a derived class, where the base class role must have a single contract, but the
derived class role may have an arbitrary number of contracts. Respectively, a single
program element can have multiple contracts and participate in multiple patterns.

A role is always played by a particular kind of a program element. Consequently,
we can speak of class roles, method roles, field roles etc. For each kind of role, there
is a set of properties that can be associated with the role. For instance, for a class role
there is a property inheritance specifying the required inheritance relationship of each
class associated with that role. Properties like this, specifying requirements for the
concrete program elements playing the role are called constraints. It is the duty of the
tool to keep track of broken constraints and instruct the user to correct the situation.
Other properties affect code generation or user instructions; for instance, most role
kinds support a property default name for specifying the (default) name of the pro-
gram element used when the tool generates a default implementation for the element.

When a specialization pattern is framework-specific, certain roles are played by
fixed, unique program elements of the framework. We say that such roles are bound;
otherwise a role is unbound. Hence, a bound role is a constant that denotes the same
program element in every instantiation of the pattern, while unbound roles are
variables that allow a pattern to be applied in different contexts.



Specialization patterns, together with the contracts for the bound roles and the
framework itself, constitute a developer’s kit delivered for application programmers.
We call the process of creating the rest of the contracts casting. As each contract acts
as a bridge between a role and a suitable program element, casting essentially requires
the specializer to produce specialization-specific code for the contracts. The set of
contracts for a given software system is called a cast. It consists of the contracts
defined by bound roles as well as the contracts established by the framework
specializer. Together, the contracts convey the architectural correspondence between
the source-code and the framework specialization interface. If a pattern defines
relationships between roles, these relationships must manifest in the program
elements that are contracted to the roles. Thus, the connection between framework
and specialization-specific code are made explicit. It is also equally necessary to
define mutual relationships between the different parts of the specialization, an
important aspect often overlooked.

Casting is the central activity of framework specialization. Each contract is a step
required for developing an application as a specialization of a framework. In a sense,
casting can be regarded as the instantiation of specialization patterns. The main
purpose of FRED is to support the programmer in the casting process. This is
achieved by presenting missing and breached contracts as programming tasks that
usually ask the user either to provide or correct some piece of code. Based on the
relationships encoded in the pattern and the contracts already made, the tool is able to
suggest new contracts as the specialization proceeds, leading to an incremental and
interactive process which follows no single predetermined path.

Let us illustrate the concept of a specialization pattern with a simple example.
Suppose there is a graphical framework which can be extended with new graphical
shapes. The framework is designed in such a way that a new shape class must inherit
the framework class Shape and override its draw method. In addition, the new class
must provide a default constructor, and an instance of the new class must be created
and registered for the application in the main method of the application-specific class.

The required specialization pattern is given Table 1. FRED provides a dedicated
tool for defining the specialization patterns. However, we use here an equivalent
textual representation format to facilitate the presentation. In the example, we have
followed the naming convention: if a role is assumed to be played by a unique
program element of the framework (it is bound), it has the same name as that element.

In Table 1, the creator of the pattern has specified some properties for the roles.
Some properties, when not specified, have a default value provided by the tool.
Properties description and task title are exploited in the user interface for a general
description of the role and for the task of creating a contract, respectively (see Figure
1). Properties return type, inheritance and overriding are constraints specifying the
required return type of a method, the required base class of a class, and the method
required to be redefined by a method. Property source gives a default implementation
for a method or for a code fragment, while Insertion tag specifies the tag used in the
source to mark the location where this code fragment should be inserted. Tags are
written inside comments, in the form "#tag". Tags are used only in inserting new code
to an existing method.

Note that the definitions of properties may refer to other roles; such references are
of the form <#r>, where r is the identification of a role. By convention, if <#r>
appears within string-valued property specification (e.g., task title), it is replaced by
the name of the program element playing the role. This facility is used for producing



adaptable textual specialization instructions. In constraints, references to other roles
imply relationships that must be satisfied by the program elements playing the roles.
For example, the class playing the role of SpecificShape must inherit the class playing
the role of Shape. The role SpecificShape is also associated with a multiplicity
symbol "+", meaning that there can be one or more contracts for this role for each
contract of Shape. However, as Shape is bound, it has actually only a single contract.

Table 1. Textual representation of a specialization pattern

Nesting of roles in Table 1 specifies a containment relationship between the roles,
which is an implicit constraint: if role r contains role s, the program element playing
role r must contain the program element playing role s. This makes the specialization
pattern structurally similar to the program it describes.

During casting, new contracts are created for the roles and associated with program
elements. This process is driven by the mutual dependencies of the roles and the
actions of the program developer, including the direct editing of the source code. The
framework cast consists of contracts which bind roles Shape and draw to their
counterparts in the framework. Given this information, FRED is able start by
displaying two mandatory tasks for the specializer. These are based on the roles
SpecificShape and ApplicationMain, since these roles do not depend on other
application-specific roles. The user can carry out the framework specialization by
executing these tasks and further tasks implied by their execution. Eventually there
will be no mandatory tasks to be done, and the specialization is (at least formally)
complete with respect to this extension point.

NewShape  
Bound roles Properties 

Shape : class description Base class for all graphical figures. 
 draw : method description The drawing method. 

Unbound roles Properties 

ApplicationMain : class description The application root class that defines the entry 
point for the application. 

 main : method description The method that starts the application. 
 type void 
 source Canvas c = new Canvas(); 

/* #CanvasInitialization */ 
c.run(); 

  args : parameter type String[] 
 position 1 

  creation : code insertion tag CanvasInitialization 
 description Code creating a prototype instance of 

<#SpecificShape> by invoking constructor 
<#SpecificShape.defaultConstructor>. 

 task title Provide creation code for <#SpecificShape> 
 source c.add(new <#SpecificShape>()); 

SpecificShape+ : class description Defines a graphical figure by extending <#Shape>. 
 task title Provide a new concrete subclass for <#Shape> 
 inheritance <#Shape> 
 default name My<#Shape> 
 defaultConstructor : constructor task title Provide a constructor for <#SpecificShape> 

 draw : method task title Override <#Shape.draw> to draw <#SpecificShape> 
 overriding <#Shape.draw> 



Roughly speaking, FRED generates a task for any contract that can be created at
that point, given the contracts made so far. For example, it is not possible to create a
contract for draw unless there is already a contract for SpecificShape, because draw
depends on SpecificShape. A task prompting the creation of a contract is mandatory if
the lower bound of the multiplicity of the corresponding role is 1, and there are no
previous contracts for the role; otherwise the task is optional. FRED generates a task
prompt also for an existing contract that has been broken (e.g., by editing actions).
We will discuss the process of creating contracts in more detail in Section 3.

The organization of the graphical user interface is essential for the usability of this
kind of tool, and the current form is the result of rather long evolution. We have found
it important that the user can see the entire cast in one glance, and that a task is shown
in its context, rather than as an item in a flat task list. For these reasons the central
part of the user interface shows the current cast structured according to the contain-
ment relationship of the associated roles. Since this relationship corresponds to the
containment relationship of the program elements playing the roles, the given view
looks very much like a conventional structural tree-view of a program. The tasks are
shown with respect to this view: for each contract selected from the cast view, a sepa-
rate task pane shows those tasks that produce or correct contracts under the selected
contract, according to the containment relationship of the corresponding roles. For
example, if a contract has been created for SpecificShape, and this contract is select-
ed, the task pane displays a (mandatory) task for creating a contract for the draw role.

Fig. 1. User interface of FRED

The user interface of FRED is shown in Figure 1. It contains a number of views to
manage Java projects and the casting process. In the figure, the application developer
has opened the Architecture View, which shows the project in terms of subsystems
and instantiated specialization patterns. The Task View shows the existing contracts



in the left pane. Tasks related to a selected contract are shown in the right pane of the
Task View. A small red circle in the left pane indicates that there are mandatory tasks
related to that contract, a white circle indicates an optional task. The lower part of the
right pane shows the instructions associated with the role (that is, given by property
description).

Figure 1 shows the FRED user interface in a situation where the application
developer has already carried out the necessary tasks related to a new subclass Circle.
In addition, the developer has done an optional task for creating yet another sublass
named Square, and the resulting mandatory task for providing its draw method. The
remaining mandatory task is indicated by a red circle. This task is selected in the
figure, and the user is about to let the tool generate the creation code at the
appropriate position.

To carry out the specialization the developer needs to complete all the rest of the
mandatory tasks, and the mandatory tasks resulting from the completion of these
tasks. However, this process need not be a linear one. A mechanism is provided to
undo contracts, providing the means to backtrack the instantiation process and
reconsider the decisions made.

Although the example is very simple, it demonstrates our main objectives. The
specialization of the framework is an interactive, open-ended process where the
application developer gets fine-grained guidance on the necessary specialization tasks
and their implications in the source code. The specialization instructions are adapted
to the application context (see the task title and instructions in Figure 1). The source
editor is tightly integrated with the casting process: for example, if the user accidently
changes the base class of Circle by editing, the tool generates a new task prompting
the user to correct the base class. Therefore, much like a compiler is able to check
language-specific typing, FRED enforces architecture-specific typing rules. If the user
then re-edits the source and fixes the base class, the task automatically disappears.

3 Implementation

To understand how the tool fulfils its responsibilities we have to investigate the
specialization patterns and their interpretation little deeper. A specialization pattern,
as presented in previous chapters, is given as a collection of roles, each defined by its
properties. The approach permits quite arbitrary properties and kinds of roles, and
indeed we consider the independence of exact semantics (provided by these
primitives) as one of the principal strengths of our approach. The current FRED
implementation offers one alternative set of primitives tailored for Java. Changing the
set of primitives it is possible to turn FRED into a development environment for a
different language, a different paradigm or even a different field of engineering.

The properties supported by the current FRED implementation can be roughly
categorized into constraints and templates. A constraint attaches a requirement on a
role or a relationship between two roles. The constraints must be satisfied by the
program elements playing a role, and can be statically verified by FRED. A template
in turn is used for generating text, mostly code, instructions or documentation.
Templates support a form of macro expansion that makes it possible to generate
context-specific text.



Properties can refer to other roles of the pattern. Whenever the definition of role r
refers to role s (at least once) or role r is enclosed in role s, we say there is
dependency from r to s, or that the role r depends on s or has a dependency to s. From
a pattern specification it is possible to construct a directed graph, whose nodes and
edges correspond to roles and dependencies, respectively. In addition, each node of
the graph carries the multiplicity of the associated role. The resulted graph describes
declaratively the process of casting, and is interpreted by the tool to maintain a list of
tasks. Actually, the bound roles and dependencies to them can be omitted from this
graph, as being constant bound roles do not change the course of the casting process.
Likewise, the dependencies that can be deduced from other dependencies can be
discarded from the graph, i.e., a dependency from r to s can be removed if there is
directed path from r to s in the graph.

A graph based on the specialization pattern NewShape, from Chapter 2, is
presented in Figure 2. In this diagram, the boxes denote roles. The label of a node is
made up of the role name and a multiplicity symbol. A dependency is presented by an
arc, or nesting in case the role is nested in the original specification. In addition to
denoting an edge, nesting works as a name scope, as in the original pattern
specification. Different kinds of visual decorations are used on the nodes to denote
their kind. A class role is presented with a thick border and a method role with a
thinner one. A parameter role is circular and a code snippet is denoted with bent
corner. Bound roles are absent from the diagram. Nesting, decorations and omitted
nodes are all just means of compacting the graph and carry no specific semantics in
the discussion to follow.

ApplicationMain SpecificShape+

main defaultConstructor

draw

creation

args

Fig. 2. A diagram of the NewShape specialization pattern

The pattern graph is the basis of casting. The process starts by selecting a pattern and
creating a cast for it. Initially, the cast consists of contracts for bound roles. For each
unbound role, a number of contracts must be eventually established in the cast. The
state of the cast at any point during the casting can be presented as a graph of
contracts. The edges of also this graph are called dependencies, and are implied by the
dependencies of the pattern. To be more precise, if a role r depends on role s, each
contract of role r depends on some unique contract of role s, determined
unambiguously during the casting. In the cast graph, we need to include only
contracts established by the specializer and can thus ignore the contracts for bound
roles and the related dependencies. Likewise, as with pattern graphs we can omit
redundant dependencies.

Figure 3 presents a diagram of an example cast graph (on the left), and its relation
to some specialization-specific source code (on the right). The diagram presents some
point in the middle of casting of NewShape pattern. We use a notation similar to
presenting pattern graphs. In the diagram, the boxes denote contracts, and the arcs and



nesting denote the dependencies. The label of a node refers to the role associated with
the contract. A colon is used before the label to mark that the node doesn’t represent a
role but a contract of the role. Similar to pattern graphs, we use border decorations on
the nodes, depending on the kind of the role the contract stands for. It is easy to read
from the figure which parts of code play which roles in the pattern. The figure also
shows that the dependencies between roles (e.g. from creation role to SpecificShape
role) have implied dependencies between contracts. This is also evident in the nesting
of contracts.

public class MyTool {

public static void main ( String [] args ) {

Canvas c = new Canvas ();
/* # CanvasInitialization */

c.run ();
}

}

public class Circle extends Shape {
...

}

: ApplicationMain

: SpecificShape

: main

: args

:S

Fig. 3. An example of cast that relates specialization code to the roles of the pattern

The function of the development tool can be defined in terms of the pattern graph and
the cast graph. The exact process of casting can be reduced to nondestructive graph
transformations on the cast graph, based on the pattern graph. In fact, the pattern
graph can be seen as a relatively restricted, but compact way of specifying a graph
grammar. This representation can be derived systematically to a more conventional
presentation of a graph grammar [6], a set of transformation rules. We shall now
describe the process of casting more accurately.

A graph grammar can be defined with a start graph and a set of graph
transformation rules. The start graph of a grammar produced from a pattern graph
contains a single node, start role S, that besides acting as a starting point of graph
transformations carries no special meaning. The transformation rules in turn, are
generated by the algorithm in Figure 4.

For each role r in the pattern graph:
R := A graph that contains r and all roles and dependencies on every directed path that

goes from r to a sink of the pattern graph.
If R contains only r then add start role S to R
L := R - r and all dependencies from r.
Add transformation rule L ::= R to the grammar.

End

Fig. 4. An algorithm that generates the transformation rules from a pattern specification

This results in a simple grammar, consisting of a single non-destructive transforma-
tion rule for each role of the original pattern. The rules are expressed in terms of roles



and are responsible in generating a network of contracts, the cast. Moreover, due to
the regularity of the generated rules, an application of any of the rules results in a
single new contract and its dependencies.

In Figure 5 we see a graph grammar that has been produced from the pattern graph
presented in Figure 2. As there were seven roles in the pattern graph, there are seven
numbered rules. The full name of the associated role, along with the multiplicity
symbol is placed above each rule.

ApplicationMain

main

ApplicationMain

main

args

SpecificShape

SpecificShape

draw

SpecificShape

defaultConstructor

ApplicationMain

SpecificShape

main

creation

S

2. SpecificShape+

3. ApplicationMain.main

6. ApplicationMain.main.args

4. SpecificShape.defaultConstructor

5. SpecificShape.draw

7. ApplicationMain.main.creation

S ::=

1. ApplicationMain

S ::=

ApplicationMain ::=

SpecificShape ::=

SpecificShape ::=

::=

ApplicationMainS

ApplicationMain

main

ApplicationMain

SpecificShape

main

::=

Fig. 5. The graph grammar of NewShape, derived from its pattern graph

Casting starts by creating a cast with a special start contract, a contract of start role S.
It's only purpose is to start the casting process and is not bound to any program
element. The transformation rules, whose left hand sides contain only S, are first
applicable. In general, the left hand side of the transformation rule is matched against
the current cast, and the rule is applicable for each found match, i.e., for each suitable
sub-graph of the cast. Then, the matched sub-graph is substituted with the right hand
side of the rule, resulting in a new contract and a set of dependencies in the cast
graph. The multiplicity of a role constrains the number of times the rule can be
applied for each different sub-graph. E.g., the rule 2 above is matched always, rule 5
is matched only once for each contract of SpecificShape, and rule 7 matched for each
pair of contracts of main and SpecificShape.

Whenever a transformation rule is applicable for some match, the tool applies the
rule to produce a new contract for that match. This contract is incomplete as it is not
bound to any program element at that time. An incomplete contract corresponds to a
task in the user interface, shown to the developer as a request to provide a new
program element to complete the contract. The task is either mandatory or optional,



depending on the multiplicity and number of contracts already created for the same
match. Once the contract is completed by a suitable program element, it is added to
the cast making new transformation rules applicable.

As an example, look at Figure 3. At that point the user has already created a class
for SpecificShape, as well as the main class with the main method. At this point, the
user may apply rule 2 to create a new SpecificShape, or rules 4 or 5 to continue with
the existing SpecificShape – the Circle, or with rule 7 to add the intialization code
within the main method. These choices are presented as programming tasks, from
which only the task for rule 2 is optional. Figure 6 presents the situation after
application of transformation rule 7. A new contract has been added to the cast and
made available for matching.

public class MyTool {

public static void main ( String [] args ) {

Canvas c = new Canvas ();
/* # CanvasInitialization */

c.add (new Circle());

c.run ();
}

}

public class Circle extends Shape {
...

}

: ApplicationMain

: SpecificShape

: main

: creation

: args

:S

Fig. 6. Result of an application of a grammatical rule to the cast graph of Figure 3

Code generation, adaptive specialization instructions, constraints and other properties
are evaluated in the context of a single contract, always linked to a graph of contracts
in a way determined by the piecemeal application of grammatical rules. This means
that whenever a property refers to role r, this reference can be unambiguously
substituted by a contract of r obtained by following the dependencies in the cast
graph. Furthermore, this can be substituted by a reference to the associated program
element. E.g., in the case of the contract of for the role creation in Figure 6, all
references to SpecificShape can be substituted with references to the class Circle.
Thus, the constraints can be evaluated separately for each contract and it is possible to
provide contract-specific instructions and default implementation, like the line of code
in this case.

Most contracts are not automatically determined based on the source code, but
instead explicitly established by the developer by carrying out tasks. As a side effect,
some code can be generated, but a contract can also be established for an existing
piece of code, thus allowing a single program element to play several roles. Once a
contract is established for a piece of code, the environment can use this binding for
ensuring that the code corresponds to the constraints of the role. For this purpose,
FRED uses incremental parsing techniques to constantly maintain an abstract syntax
tree of the source code and can thus provide immediate response for any inappropriate
changes to the code.



4 Related Work

To tackle the complexities related to framework development and adaptation we need
means to document, specify, and organize them. The key question in framework
documentation is how to produce adequate information dealing with a specific
specialization problem and how to present this information to the application
developer. A number of solutions have been suggested, including framework
cookbooks [18, 25], smartbooks [23], and patterns [16].

As shown in this paper, an application framework's usage cannot be adequately
expressed as a static and linear step-by-step task list, because a choice made during
the specialization process may change the rest of the list completely. That is why
cookbooks [18, 25], although a step to the right direction, are not enough. Our model
can be seen as an extension of the notion of framework cookbooks.

Another advanced version of cookbooks is the SmartBooks method [23]. It extends
traditional framework documentation with instantiation rules describing the necessary
tasks to be executed in order to specialize the framework. Using these rules, a tool can
be used to generate a sequence of tasks that guide the application developer through
the framework specialization process [22]. This reminds our model, but whereas they
provide a rule-based, feature-driven, and functionality-oriented system, our approach
is pattern-based, architecture-driven and more implementation-oriented.

Froehlich, Hoover, Liu and Sorenson suggest semiformal template on describing
specialization points of frameworks [9] in the form of hooks. A hook presents a recipe
in a form of a semiformal, imperative algorithm. This algorithm is intended to be
read, interpreted and carried out by the framework specializer.

Fontoura, Pree, and Rumpe present a UML extension UML-F to explicitly describe
framework variation points [8]. They use a UML tagged value (a name-value-pair that
can be attached to a modeling element to extend its properties) to identify and
document the hot spots such that each of the variation point types has its own tag.

Framework adaptation is considered to be a very straightforward process in [8].
UML-F descriptions are viewed as a structured cookbook, which can be executed
with a wizard-like framework instantiation tool. This vision resembles closely that of
ours, but we see the framework specialization problem to be more complex. The
proposed implementation technique is based on adapting standard UML case tools,
which does not directly support FRED-like interactivity in framework specialization.

The specification of an architectural unit of a software system as a pattern with
roles bound to actual program elements is not a new idea. One of the earliest works in
this direction is Holland’s thesis [13] where he proposed the notion of a contract. Like
UML's collaborations, and unlike our patterns, Holland’s contracts aimed to describe
run-time collaboration. After the introduction of design patterns [11], various
formalizations have been given to design patterns resembling our pattern concept (for
example, [7, 20, 21, 26]), often in the context of specifying the hot spots of
frameworks. Our contribution is a pragmatic, static interpretation of the pattern
concept and the infrastructure built to support its piecemeal application in realistic
software development. In fact, our patterns can be seen as small pattern languages [2]
for writing software.

In [5] Eden, Hirshfeld, and Lundqvist present LePUS, a symbolic logic language
for the specification of recurring motifs (structural solution aspect of patterns) in
object-oriented architectures. They have implemented a PROLOG based prototype



tool and show how the tool can utilize LePUS formulas to locate pattern instances, to
verify source code structures' compliance with patterns, and even to apply patterns to
generate new code.

In [1] Alencar, Cowan, and Lucena propose another logic-based formalization of
patterns to describe Abstract Data Views (a generalization of the MVC concept).
Their model resembles ours in that they identify the possibility to have (sub)tasks as a
way to define functions needed to implement a pattern. They also define
parameterized product texts corresponding to our code snippets.

We recognize the need for a rigor formal basis for pattern tools, especially for code
validation. We emphasize support for adaptive documentation and automatic code
generation instead of code validation.

5 Conclusions

We have presented a new tool-supported approach to architecture-oriented
programming based on Java frameworks. We anticipate that application development
is increasingly founded on existing platforms like OO frameworks. This development
paradigm differs essentially from conventional software development: the central
problem is to build software according to the rules and mechanisms of the framework.
So far there is relatively little systematic tool support for this kind of software
development. FRED represents a possible approach to produce adequate environ-
ments for framework-centric programming. A framework can be regarded, in a broad
sense, as an application-oriented language, and FRED is a counterpart of a language-
specific programming environment. Our experiences with real frameworks confirm
our belief that the fairly pragmatic approach of FRED matches well with the practical
needs. Our future work includes integration of FRED with contemporary IDEs and
building FRED-based support for standard architectures like Enterprise Java Beans.
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Abstract 
An application framework is a collection of classes 
implementing the shared architecture of a family of 
applications. It is shown how the specialization interface 
(“hot spots”) of a framework can be annotated with 
specialization patterns to provide task-based guidance for 
the framework specialization process. The specialization 
patterns define various structural, semantic, and coding 
constraints over the applications derived from the 
framework. We also present a tool that supports both the 
framework development process and the framework 
specialization process, based on the notion of specializa-
tion patterns. We will outline the basic concepts of the 
tool and discuss techniques to identify and specify 
specialization patterns as required by the tool. These 
techniques have been applied in realistic case studies for 
creating programming environments for application 
frameworks. 
 
 
1. Introduction 

 
An extensible architecture is the cornerstone of large-

scale software reuse. Such an architecture can be 
implemented as an (object-oriented) application frame-
work [1]. Application frameworks are steadily growing in 
industrial importance since they provide a suitable techno-
logy for implementing large-scale architecture-centric 
reusable assets such as product lines [2]. 

An object-oriented framework is a collection of classes 
that implement the shared architecture and the common 
functionality of a family of applications. The interface 
between the common, reusable framework and the app-
lication-specific parts built on top of it is realized as a set 
of extension points, or hot spots [3]. The architecture and 
specialization interface of a framework can be docu-
mented with (design) patterns [4]. Understanding and 

specializing a framework using patterns and hot spots is a 
challenging task for which tool support is of vital impor-
tance (see, e.g., [5] and [6]). According to our vision, 
future frameworks are accompanied by framework-
specific programming environments that both guide and 
control application programmers in creating applications 
according to the conventions of the framework.  

FRED (FRamework EDitor) is a prototype tool in-
tended for generating programming environments for Java 
frameworks [7]. The FRED approach is based on a vision 
of architecture-oriented programming where the speciali-
zation interface of a framework is defined by specializa-
tion patterns. FRED supports both a framework developer 
in creating the specialization patterns for the framework, 
and an application developer in specializing the frame-
work by following a task list generated by the tool, as 
implied by the patterns. The tool guides the application 
developer through the task list, dynamically adjusts the 
list according to the choices made by the adapter, and 
verifies that the syntactic and semantic constraints of the 
framework are not violated. 

FRED provides thus an interactive environment in 
which specialization tasks can be executed incrementally 
in small pieces, allowing the application programmer to 
observe the effect in the source code, to cancel the tasks if 
needed etc. Ideologically, FRED is a descendant of the 
“cookbook” concept [8, 3, 9, 10, 11]. Related approaches 
include also motifs [12] and hooks [13]. The current 
implementation of FRED aims at supporting frameworks 
written in Java, but in principle the approach is not tied to 
any particular language. FRED is freely available at 
http://practise.cs.tut.fi/fred. 

In this paper we will present the conceptual basis of 
FRED and discuss various techniques to apply this app-
roach in practice. These techniques have been developed 
and evaluated in the context of two major case studies 
where we have applied the FRED methodology to realistic 



 

 

Java frameworks. One of them is JHotDraw [14], a 
framework for implementing graphical editors. JHotDraw 
was chosen as an example framework because it is 
commonly known, mature, well structured, relatively large 
(about 150 classes), implemented in Java, and freely 
available. 

Our second case study is a network management GUI 
framework with about 300 classes. This framework was 
developed by Nokia, and the application programming 
environment produced as a result of the case study is 
currently being used within Nokia. 

We proceed as follows. The specialization pattern 
concept is introduced in Section 2. In Section 3 we 
discuss techniques for identifying specialization patterns 
and using the FRED approach in practice. Related work is 
discussed in Section 4. Finally, concluding remarks 
summarizing our experiences and future work topics are 
presented in Section 5. 

 
2. Specialization patterns 

 
Traditionally, software architecting has been under-

stood as a part of the software design phase, and archi-
tectures have been mainly described with standard 
modeling languages (such as UML). To some degree, 
these abstract descriptions make it possible to assess the 
quality of the system at the architectural level and at 
design time, but they fall short in supporting the construc-
tion of the actual executable system based on the archi-
tecture. 

Especially the construction of product families calls for 
systematic architecture-centric methodologies that support 
the implementation of both the reusable core of the family 
and the products derived from it. In particular, we need an 
environment that guarantees that the application-specific 
code conforms to the underlying architecture. 

As the basis of architecture-oriented programming, we 
propose the notion of a specialization pattern. It is a 
specification of a recurring program structure, which can 
be instantiated in several contexts to get different kinds of 
concrete structures. A specialization pattern is given in 
terms of roles, to be played by structural elements of a 
program. We call the commitment of a program element 
to play a particular role a contract. A role may stand for a 
single element, or a set of elements. Thus, a role can have 
multiple contracts, and a program element can play many 
roles through a number of contracts. Multiplicity of a role 
bounds the number of its contracts. 

A role is always played by a particular kind of a 
program element. Consequently, we can speak of class 
roles, method roles, field roles etc. For each kind of a 
role, there is a set of properties that can be associated with 
the role. For instance, for a class role there is an 
inheritance property specifying the required inheritance 

relationship of each class associated with that role. 
Properties like this, specifying requirements for the static 
structure of the concrete program elements playing the 
role are called constraints. 

Unlike constraints, some properties affect code genera-
tion or user instructions. For instance, most role kinds 
support a default name property for specifying the name 
of the program element used when the tool generates a 
default implementation for the element. 

 
2.1. Pattern definition graph 

 
A specialization pattern can be expressed as a directed 

acyclic graph called a pattern definition graph. Figure 1 
shows the definition graph of a pattern representing a 
reusable structure for a class having a number of fields 
and an accessor method for each of them. The nodes in 
the graph represent roles. Class roles are denoted with 
circles, method roles with white squares, and field roles 
with black squares in the figure. 

 

Figure 1. A pattern definition graph 
 
The directed edges between roles are called dependen-

cies (e.g. the edge from Field to Class). If there is a 
dependency from role r to role s then s is called the 
dependee of r. The multiplicity constraint for a role, in 
relation to its dependees, is placed in parentheses after its 
name in Figure 1. Multiplicity can be either exactly one 
(1), from zero to one (?), from one to infinity (+), or from 
zero to infinity (*). 

Some of the properties of the roles are given as labels 
of the associated dependency arrows. They state that 
program elements playing the Field or Getter roles must 
be declared inside the class playing the corresponding 
Class role, and that each getter must return an object 
whose type is compatible with the type playing the Field 
role. 

 
2.2. Casting 

 
Applying a pattern is called casting, and the resulting 

structure is called a cast. Casting means incremental and 
interactive binding of suitable program elements to the 
unbound roles of the pattern. The tool provides the 
developer with a sequence of tasks that guide the devel-
oper in adapting the generic solution proposed by the 
pattern. Production tasks instruct the developer to 
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instantiate and bind a role. Refactoring tasks assist the 
user in modifying a program element bound to a role to 
adhere to the constraints imposed by the role. 

Since a cast is an instance of a specialization pattern it 
can be presented as a directed acyclic graph as well. 
Figure 2 shows a cast graph based on the pattern in 
Figure 1. The nodes in the cast graph represent contracts. 
Each contract is a manifestation of some role in the 
associated definition graph. Contracts are of form ri where 
r is that role and subscript i, as a positive integer, 
identifies the contract amongst all contracts of role r. The 
directed edges between contracts are called dependency 
instances. Each dependency instance between two 
contracts manifests a dependency defined between the two 
corresponding roles. 

Contracts are visible as production tasks within a tool 
environment. That is why each contract has a state. As a 
task, a contract can be done or undone. Furthermore, an 
undone task may be considered as mandatory or optional, 
depending on the multiplicity of the associated role and 
the number of its instances (i.e. contracts). The state of 
each contract is written in superscript after its label. 

 

Figure 2. A cast graph 
 
The casting algorithm implemented in the tool gener-

ates the tasks. The algorithm assumes a definition graph 
and a cast graph, which it augments with new contracts 
whenever possible. The newly created contracts imply 
mandatory or optional production tasks to be carried out 
by the developer. As the user completes a task, the state of 
the corresponding contract is changed to done, and the 
tool re-evaluates the algorithm to determine whether it is 
possible to create new contracts. 

The algorithm processes each role and decides whether 
it is necessary to create new contracts for that role. This is 
determined by first constructing all possible combinations 
of the contracts of the dependee roles. Then the algorithm 
checks if a correct amount of contracts exists for each of 
these combinations. If not, a new contract is created, with 
state set to optional or mandatory, depending on whether 
the lower bound denoted by the multiplicity constraint has 
been exceeded or not. 

Figure 2 above portrays a partial cast, i.e. a pattern 
instance that is in the middle of instantiation. Some tasks 
have been done, resulting in a graph of contracts. The 

interpretation of the graph can be based on the semantic 
outline sketched for the graph in Figure 1. The developer 
has created a class and a field inside it. An unbound 
contract Getter1 is shown to the user as a task to provide a 
getter method for that field. As this is a mandatory task, 
the cast is not yet considered complete. The developer has 
also a choice of continuing with optional tasks, some of 
which may lead to new tasks, even mandatory. 

Figure 3 gives an overview of the whole situation at 
this point. The dashed arrows show how the contracts of 
the current cast are related to the roles in the pattern 
definition graph on the left, and how the bound (done) 
contracts, on the other hand, are also associated to the 
pieces of code on the right. 

 

Figure 3. Pieces of code cast to roles of a pattern 

 
3. Working with specialization patterns 

 
FRED is a prototype tool employing the model dis-

cussed in Section 2. It is implemented in Java and 
provides task-driven assistance for architecture-oriented 
Java programming. Our original motivation was to 
support specialization of Java frameworks, but it has later 
turned out that the approach can be used as well to guide 
programming according to various kinds of other archi-
tectural or coding conventions. As an example, we have 
modeled parts of the JavaBeans architecture as patterns, 
obtaining thus an environment for JavaBeans program-
ming. 

In this section we illustrate how FRED can be used to 
annotate a specialization interface of an object-oriented 
application framework with specialization patterns. We 
use JHotDraw [14] to demonstrate our approach. We will 
not go into the details of FRED or JHotDraw. Instead, we 
give an overview of the framework annotation process. 

The user interface of FRED is shown in Figure 4. It 
contains a number of views to manage Java projects and 
specialization patterns. In the figure, the user is specifying 
specialization patterns for JHotDraw. She writes the 
patterns with Pattern Editor by creating roles and defining 
their properties and dependencies. 

Pattern definitions are typically based on the analysis 
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of the framework source code and its documentation. The 
FRED environment provides a dedicated Java Editor for 
browsing and editing source code. 

Figure 4. The user interface of FRED 
 
The framework developer can also utilize existing 

general patterns from FRED’s Pattern Catalog as 
templates for her framework-specific patterns. The catalog 
contains, for example, versions of many generally 
applicable patterns like the design patterns presented in 
[4]. When the user wants to see her patterns in action, she 
can instantiate them and then examine the instantiated 
patterns in the Architecture View. The Task View, in turn, 
shows the task list for the selected pattern instance (cast). 

 
3.1. Identifying framework hot spots 

 
There are a number of useful heuristics that help in 

identifying and specifying a framework’s hot spots. The 
heuristics we discuss first are most relevant to white-box 
frameworks, which use inheritance as the main specializa-
tion technique. An overview of a more general technique 
is given later on in Section 3.4. 

Here we assume that the framework has a layered 
structure and that its basic concepts are implemented on 
the highest layer as abstract interfaces. In addition, we 
assume that we are annotating a fairly mature framework 
and that we have enough information about the frame-
work’s structure and its intended use. 

Since any framework can be annotated in numerous 
different ways, the framework annotator must decide what 
kind of assistance she wants to give for the framework 

users. Adding constraints will give the user better 
guidance. However, at the same time she will loose some 
of her freedom. The formalization of a framework’s 
specialization interface always reveals only a subset of 
possible implementation variations. We argue that it is 
better first to provide patterns for a quite narrow 
specialization interface, and later modify the patterns and 
add new ones to enable more advanced ways to use the 
framework. 

Template and hook methods are obvious candidates 
when trying to locate the important hot spots of an object-
oriented framework [3, 15]. Most of the hot spots can 
often be found by analyzing overridden methods, because 
polymorphism needed in hook methods is usually imple-
mented using method overriding [16]. 

There are typically hundreds of overriding relation-
ships between methods in any non-trivial application 
framework. That is why it is best to concentrate first on 
the main concepts of the framework and their relation-
ships. The main concepts of the framework usually map 
fairly consistently with the top-level interfaces in the 
framework implementation. 

Figure 5 represents the highest-level interfaces of the 
JHotDraw framework as a UML class diagram. By 
implementing these interfaces directly (or indirectly by 
adapting the default implementations provided with the 
framework) the user can have different kinds of figures, 
handles to grab them, connectors to link them together, 
and tools to manipulate them in her drawing application. 

 

 
Figure 5. A hot spot in the JHotDraw framework 

 
In our case study we needed 10 specialization patterns 

to annotate the main parts of the specialization interface of 
JHotDraw. As an example of a real, although somewhat 
simplified specialization pattern, we look at HandlesFor-
Figures. As its name suggests, its purpose is to assist the 
application developer to define handles for her figure 
objects. This hot spot involves two framework interfaces 
highlighted in Figure 5. 

Before explaining the details of this specialization 
pattern, it is important to distinguish between framework 
roles and application roles. A framework role is a role that 
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will be bound to a framework source code entity by the 
framework developer. Framework roles can be deduced 
from the source code directly. For example, there usually 
exists a one-to-one mapping between a framework 
interface representing a certain framework’s concept and a 
framework role in a pattern describing ways to implement 
that interface. 

An application role, on the other hand, is a role that 
will be bound to an application source code entity later 
on. Application roles typically depend on the framework 
roles and contain constraints that guide the framework 
adapter as she derives her application from the frame-
work. The structure and constraints of application roles 
should condense the available information on the expected 
framework adaptations. This information can be gathered 
from the ready-made default components incorporated in 
the framework itself as well as from the existing applica-
tions already utilizing the framework. 

 
3.2. Specifying class and method roles 

 
Figure 6 represents a more detailed UML class 

diagram describing the hot spot related to the relationship 
between Figure objects and Handle objects in JHotDraw. 
The diagram shows that there can be a number of handles 
for each figure, and that each handle object knows its 
owner figure. The methods, which are relevant to that 
particular relationship and actually implement the 
association, are highlighted in the diagram. 

 

Figure 6. A pattern for defining handles for figures 
 
Below the class diagram in Figure 6 there is a graph 

representation of the HandlesForFigures pattern. A part 

of it is also visible in Pattern Editor in Figure 4. The 
pattern specifies that if the user wishes to have handles in 
her figures she must bind her Figure subclasses to the 
UserFigure role and then provide or generate a method, 
which overrides the handles method declared in Figure 
interface. Similarly, she must override the owner method 
in her Handle subclasses. 

There are two class roles for both basic concepts in-
volved in this hot spot: a framework role and a related 
application role. The framework role is named after the 
framework class it has been derived from (e.g. Figure). 
The corresponding application role (identified with the 
“User” prefix in Figure 6) represents the set of possible 
application-specific subclasses to be derived from the 
framework class. Thus, it has a dependency to the frame-
work role and an associated inheritance constraint. 

There is one method role for each class role in Figure 
6. Those method roles that denote methods that are to be 
declared within framework classes have constraints 
restricting the types of their return values (e.g. Handle’s 
owner method must return a Figure). The application 
method roles, on the other hand, have overriding con-
straints referring to the corresponding framework method 
roles. 

 
3.3. Roles for method implementation 

 
So far we have discussed only class and method roles 

that guide the user to a particular hot spot of the frame-
work. They indicate the classes she must inherit and the 
methods she must override, in order to adapt the frame-
work. Specialization patterns can, however, be used also 
for representing various ways to code the actual imple-
mentation. For instance, we can use patterns to describe 
algorithms defined in method bodies, to show data fields 
that are needed to implement the algorithms, and to 
describe constructors required to initialize the fields. 

In FRED, we describe method bodies and field initiali-
zation clauses with code snippet roles. Figure 6 shows an 
example of a code snippet (creationExpr), which has a 
dependency (creates) to the UserHandle class role. The 
snippet is used here to give the user a possibility to 
generate code for creating a number of concrete Handle 
objects that she can then return in a vector from her 
handles method. 

In general, code snippets can be created under applica-
tion roles as required. There can be many code snippets 
for one role, e.g. to describe algorithmic options. The 
framework developer should specify snippets as generali-
zations of the most representative examples among the 
existing implementations. The guiding roles and con-
straints for method bodies should be specified as sugges-
tions, not as mandatory constraints. The same applies for 
field and constructor roles. On the other hand, selecting 
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the implementation strategy for a hook method to be 
overridden usually fixes the variation possibilities for the 
related fields and constructors, too. 

 
3.4. Goal-oriented identification of hot spots 

 
JHotDraw is a typical example of a framework, which 

uses inheritance and method overriding as a means to 
provide extensibility. FRED can be used also with frame-
works that involve more advanced reuse techniques, such 
as reflection or dynamic object composition. For these 
cases we have come up with a more general way of 
identifying the hot spots of a framework. It is based on an 
analysis of the expected behavior of the framework 
specializer. 

When starting to use a framework, one usually has a 
particular objective in mind or at least a hint of the desired 
outcome. We call such objectives pursued by the frame-
work user as specialization goals. The solution to achieve 
a specialization goal may be well known and documented, 
or it can be found by examining existing applications 
based on the framework and by interviewing the 
framework’s users. This resembles an implementation 
case [17] that describes how functionality for an app-
lication in the framework domain can be implemented 
using the constructs offered by the framework. 

Achieving a specialization goal means that some of the 
framework's extension points must be satisfied. In case of 
specialization goals, these hot spots are not isolated from 
each other; instead, when pursuing the goal, the user may 
struggle with a number of hot spots and their complex 
interactions. The informal framework documentation does 
not necessarily describe these steps precisely, but has a 
more general view about the framework and its use. 

To create goal-oriented specialization patterns the 
framework expert must recognize typical specialization 
goals, analyze the architectural aspects involved in these 
goals, and find the required tasks expected to be carried 
out by the application developer. Typically, from the 
standpoint of the framework user, specialization goals 
constitute a linked structure where achieving one goal 
leads to another. 

As an example, Figure 7 presents specialization goals 
of a framework that is used to derive MVC (Model-View-
Controller) applications. The MVC paradigm was first 
used in Smalltalk environment, and it aims at making a 
standardized separation between the graphical user 
interface and the rest of the application [8]. It divides the 
user interface into three kinds of components: models, 
views, and controllers. A view manages a region of the 
display and keeps it consistent with the state of the model. 
A controller converts user actions into operations between 
the view and the associated model. The example frame-
work provides a skeleton to create such a system and the 

framework expert has identified the specialization goals 
that most probably will interest the framework user. Note 
that the example is slightly simplified; new goals may be 
identified and the goals shown in the figure may be further 
divided into more specific sub goals. 

One method to construct specialization patterns for a 
specific goal is to first derive an example specialization 
that achieves the goal. This example specialization helps 
the pattern modeler to identify the required program 
elements and their interactions. This process is similar to 
object-oriented analysis on the architecture level: central 
concepts of a specialization pattern are identified and 
associated with roles. In this way it is usually easy to find 
class and method roles. However, other aspects of the 
specialization pattern like constraints may be more 
implicit in an example specialization. 

 

 
 

ApplicationFactory  
Provide a factory class to 
create application instances. Controller

Create controllers. 

View  
Implement views. 

MVCApplication  
Make the application a standard 
MVC-application. 

Figure 7. A set of specialization goals 
 
Thus, the pattern modeler creates a set of specialization 

patterns to describe solutions for the identified specializa-
tion goals while the specializer utilizes this knowledge by 
doing tasks generated by FRED. This approach for 
finding specialization patterns was used in the network 
management GUI case study. In this way, we identified 13 
specialization goals for the framework, each giving rise to 
a specialization pattern. 

 
3.5. Pattern initialization 

 
Once the framework developer has specified the 

framework hot spots as specialization patterns, she must 
make the framework annotation ready to be used. This 
pattern initialization means instantiating the specialization 
patterns and associating the framework roles with the 
corresponding framework source code elements. The rest 
of the roles will be left for the application developer to 
bind.  

The Architecture View of FRED displays the instanti-
ated patterns in the current project. In Figure 4, the user 
has selected an instance of the HandlesForFigures pattern 
described above. On the left hand side of the Task View, 



 

 

one can see the current cast with bindings to classes 
Figure and Handle, as well as to method handles. The 
contracts for the application-specific subclasses are not 
bound yet, so they are represented on the right as tasks for 
the user to provide the missing classes. An HTML 
description of the selected task is shown below the task 
list. 

 
3.6. Task-driven framework specialization 

 
After the framework developer has initialized her pat-

terns the framework annotation is finally ready to be used. 
At this point, FRED will create a task list for the frame-
work adapter to systematically derive an application from 
the framework. Each task in the task list represents a 
certain contract and its associated role and constraints. 
The task list is inherently dynamic: solving a task may 
generate additional tasks. For instance, the creation of a 
class for an application role typically implies that some 
(abstract) method inherited from a framework class must 
be overridden and tuned for the specific application. In 
such a case, the creation of the application class is a task, 
which implicitly generates another task for method 
overriding as described in Section 2. 

The generated tasks together with the cast representing 
the already bound roles are shown in FRED’s Task View. 
The tasks can either guide the user in providing program 
elements to be bound to roles or instruct on how to fix 
possible constraint violations the already bound elements 
cause. 

Some of the tasks are mandatory, while some of them 
are optional. Also, some tasks are mutually ordered and 
must be solved in a certain sequence. For example, from 
the pattern shown in Figure 6 FRED generates a list of 
tasks to attach handles for figures in an editor application. 
The list contains, e.g., an optional task for providing a 
class for the role UserFigure (see Figure 4) and, if the 
user carries out this task, a mandatory task for providing a 
method that overrides the handles method inherited from 
the framework class Figure. 

Executable code for realizing the tasks can be provided 
in several ways: by coding from scratch, by introducing a 
binding to a suitable class or method that already exists, 
or by tailoring a default code snippet generated by FRED. 
For these, FRED provides a dedicated Java Editor, which 
parses the source code incrementally as the user types it 
in. Changes in the source code are monitored and their 
validity is continuously checked against the constraints 
specified in the patterns. Possible violations of constraints 
immediately result in new refactoring tasks. Hence, the 
proper use of the framework is constantly validated and 
supervised by the system. Besides the standard Java 
Editor, also more high-level (framework-specific) tools 
can be provided by extending FRED’s general tool API. 

When walking through the task list, the application can 
be developed step-by-step under the interactive guidance 
and documentation provided by FRED. This disciplined 
process makes sure that all the core hot spots of the 
framework are traversed and that the framework is 
extended by concrete code that is necessary to make the 
application complete. FRED keeps track of the status of 
the tasks, and the application is considered complete and 
executable when the user has done all the mandatory 
tasks. 

In addition to following the tasks generated from the 
patterns defined for the framework, the application 
developer can herself instantiate general patterns that are 
suitable for her application and use them for producing 
application code. Typically these patterns would involve 
coding convention patterns like JavaBeans component 
patterns or Singleton design pattern [4]. 

 
4. Related work  

 
4.1. Tool support for framework specialization 

 
To tackle the complexities related to framework devel-

opment and adaptation we need means to document, 
specify, and organize them. The key question in frame-
work documentation is how to produce adequate informa-
tion dealing with a specific specialization problem and 
how to present this information to the application 
developer. A number of solutions have been suggested, 
including framework cookbooks [8, 3] and patterns [5]. 

As emphasized in this paper, instructions for adapting a 
framework cannot be adequately expressed as a static and 
linear step-by-step task list, because a choice made during 
the specialization process may change the rest of the list 
completely. That is why cookbooks, although a step to the 
right direction, are not enough. Our model can be seen as 
an extension of the notion of framework cookbooks. 

Another advanced version of cookbooks is the Smart-
Books method [9]. It extends traditional framework 
documentation with instantiation rules describing the 
necessary tasks to be executed in order to specialize the 
framework. Using these rules, a tool can be used to 
generate a sequence of tasks that guide the application 
developer through the framework specialization process 
[10]. This reminds our model, but while SmartBooks 
method provides a rule-based, feature-driven, and 
functionality-oriented system, our approach is pattern-
based, architecture-driven, and more implementation-
oriented. 

Froehlich, Hoover, Liu, and Sorenson suggest semi-
formal templates for describing specialization points of 
frameworks [13] in the form of hooks. A hook presents a 
recipe as an imperative algorithm. This algorithm is 
intended to be read, interpreted, and carried out by the 



 

 

framework adapter. Tool support has been suggested, but 
as the solution description within a hook is given in 
procedural form it may be hard to support the non-
linearity of software engineering process.  

Fontoura, Pree, and Rumpe present a UML extension 
UML-F to explicitly describe various kinds of framework 
variation points [11]. They use a UML tagged value (a 
name-value-pair that can be attached to a modeling 
element to extend its properties) to identify and document 
the hot spots. Each variation point type has a dedicated 
tag. In addition, there are tags for differentiating between 
static and dynamic variation points (i.e., whether or not 
the variable information is available at compile time) as 
well as for identifying application-specific classes as 
opposed to classes belonging to the framework. 

Fontoura et al. view UML-F descriptions as a struc-
tured cookbook, which can be executed with a wizard-like 
framework instantiation tool. This vision resembles 
closely that of ours. We see the framework specialization 
problem to be more complex than what is implied in [11], 
however. The proposed implementation technique is 
based on adapting standard UML case tools. This does not 
directly support interactivity in framework specialization. 

To manage the complexity of large frameworks they 
should be organized into smaller and more manageable 
units. Framelets provide a way to do exactly that [18]. A 
framelet is a small framework with a clearly defined 
simple interface used for structuring new software 
architectures and especially for reorganizing legacy code. 
We have gained good experiences with annotating 
framelets with FRED patterns to make it easy to adapt and 
combine them into software systems. 

 
4.2. Pattern-based tool support 

 
The specification of an architectural unit of a software 

system as a pattern with roles bound to actual program 
elements is not a new idea. One of the earliest works in 
this direction is Holland’s thesis [19] where he proposed 
the notion of a contract. Like UML’s collaborations, and 
unlike our patterns, Holland’s contracts aimed to describe 
run-time collaboration. After the introduction of design 
patterns [4], various formalizations have been given to 
design patterns resembling our pattern concept (for 
example, [6], [20], [21], and [22]), often in the context of 
specifying the hot spots of frameworks. Our contribution 
is a pragmatic, static interpretation of the pattern concept 
and the infrastructure built to support its piecemeal 
application in realistic software development. 

In [23] Eden, Hirshfeld, and Lundqvist present LePUS, 
a symbolic logic language for the specification of 
recurring motifs (structural solution aspects of patterns) in 
object-oriented architectures. They have implemented a 
PROLOG based prototype tool and show how the tool can 

utilize LePUS formulas to locate pattern instances, to 
verify source code structures’ compliance with patterns, 
and even to apply patterns to generate new code. 

In [24] Alencar, Cowan, and Lucena propose another 
logic-based formalization of patterns to describe Abstract 
Data Views (a generalization of the MVC concept). Their 
model resembles ours in that they identify the possibility 
to have (sub)tasks as a way to define functions needed to 
implement a pattern. They also define parameterized 
product texts corresponding to our code snippets. 

We recognize the need for a rigor formal basis for 
pattern tools, especially for code validation. Our model, 
however, is more analogous with programming languages 
and attribute grammars than with logic formalisms. In 
addition, we emphasize adaptive documentation and 
automatic code generation instead of code validation. 

 
5. Conclusions 

 
We have presented a new tool-supported approach to 

architecture-oriented programming based on Java frame-
works. We envisage application development shifting 
towards using platforms like object-oriented frameworks, 
which support extensive reuse. So far there is relatively 
little tool support for this kind of software development, 
where the central problem is to build software according 
to the rules and mechanisms of the framework. 

FRED represents a possible approach to produce 
adequate environments for framework-centric program-
ming. It supports architecture-oriented programming by 
providing tasks, which guide the adaptation of reusable 
architectures realized as object-oriented application 
frameworks. The tasks are generated dynamically based 
on specialization patterns that specify the specialization 
interface of the framework. 

We are aware of some restrictions in our current spe-
cialization pattern model. For instance, it does not allow 
dependencies between patterns, and it does not provide 
enough modularity within patterns. Also, currently in 
FRED there is no way to check that the user has defined a 
method body as intended by the framework designer. To 
allow more control, FRED could be augmented with a 
richer set of statically verifiable constraints like, for 
example, in CoffeeStrainer [25]. 

In order to further validate and enhance our methodol-
ogy of using specialization patterns, we are going to apply 
it to a range of frameworks of varying sizes and charac-
teristics. At the same time we will investigate ways to 
make it easier to import existing code into FRED for 
systematic management. 

In the current version of FRED, annotating a frame-
work with specialization patterns includes many trivial 
details that could well be automated. For example, many 
roles, dependencies, constraints, and default values could 



 

 

be deduced directly from the framework source code and 
existing example applications using various kinds of 
heuristics. We could also apply the techniques developed 
for automatic discovery of design patterns from source 
code (see, e.g., [26]). 

A possibility to automate trivial (one-to-one) role 
bindings would also greatly ease pattern initialization, i.e. 
the process of binding the specified patterns to the frame-
work entities so as to provide an initial set of annotations 
for the user. 

Also, since new ways of adapting a framework are 
found even in the application development process, the 
tool should make it possible to easily modify the patterns 
during the specialization process. Currently this is not 
possible. A potential solution to this problem is to make 
pattern instances more dynamic, modifiable entities. 

Despite the restrictions mentioned above, our experi-
ences with real frameworks confirm our belief that the 
fairly pragmatic approach of FRED matches well with the 
practical needs. Our future work includes integration of 
FRED with contemporary development environments and 
building FRED-based support for standard architectures 
like Enterprise Java Beans. 
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1 .  I N T R O D U C T I O N  

Feature models [Kan90] and pattern languages [Ale79] are similar ways 
of specifying domain specific languages (DSL). Whereas feature models 
may be used in deriving a matrix computation library from the family of 
matrix computation libraries [CzE00], a pattern language could be used 
in deriving a shopping mall from a family of shopping malls [Ale75]. Both 
approaches are ways of specifying a domain as a language, so that given 
the requirements of a specific application it is possible to derive a 
sentence of that language which leads to a concrete solution. 

Fred [Hak01a, Hak01b] is a programming environment that allows the 
specification of recurring program implementation in a reusable form. 
Fred does not provide full automation in code generation, but it supports 
domains where full automation is unachievable or undesirable, such as in 
the implementation of design patterns and specialization of white-box 
frameworks. 

The way of specifying recurrence in Fred resembles the way DSLs are 
specified by feature models and pattern languages. Whereas feature 
models model the problem space of some domain, Fred captures patterns 
in the solution space. Despite the differing levels of abstraction, the 
approaches are syntactically similar, and thus it might be reasonable to 
investigate the possibility of combining the approaches. Given the code 
generation facilities offered by Fred, a unified approach would allow 
modeling of both the problem and solution spaces of a given domain as a 
single DSL, permitting a seamless tool-supported transition from 
requirements to code. 

We aim in a system that would provide high degree of code generation 
and structural validation, still maintaining its ease of use and applicability 
to a wide range of technologies such object-oriented framework 
specialization, instantiation of design patterns and coding idioms, and 
application of generic architectural styles. The approach in itself is not 
tied to any particular problem or solution domain, although the 
implementation is likely support only a restricted set of programming 
languages. 
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Chapter 2 provides motivation for this paper by discussing the role of 
code generation in software engineering and in particular, arguing that 
full automation is not always enough. Chapter 3 briefly outlines the three 
existing approaches. A sketch for a unified model is constructed in 
Chapter 4. Chapter 5 concludes the paper. 

2 .  A U T O M A T I O N  I N  S O F T W A R E  C O N S T R U C T I O N  

Generative programming aims at full automation in software construction 
[CzE00]. A generative programming tool assumes a high-level program 
specification, and is able to generate a software component based on that 
specification. Typically, the process of writing the input specification is 
separate from generating the output. Thus, generative programming tools 
are black boxes that perform input-output transformations. Like 
compilers, they do not support any interference in between. 
Preprocessors, template programming and program generators all fall 
into this category. 

The classical generative approach results in total isolation from the 
produced code, which is excellent, assuming we get full automation. 
However, sometimes it’s not possible – or even desirable – to achieve full 
automation. This is especially true with software patterns and white-box 
frameworks; it would be nice to get generative support for design 
patterns, but patterns cannot be generated in isolation. Instead, they 
intertwine with the rest of the code. Similarly, white-box frameworks are 
open by their nature. We can’t specialize such a framework by giving a 
featural description, simply because being white-box it supports 
unanticipated features. Still, there is a desperate need for code generation 
for these domains too fuzzy for full automation. Moreover, because of the 
human component, partial code generation must be complemented with 
code validation, and is even harder to achieve than full automation. 

3 .  E X I S T I N G  T E C H N O L O G I E S  

F r e d  

Fred (Framework Editor) is a software development environment 
prototype for Java being developed since 1997 at the Tampere University 
of Technology and University of Helsinki. Fred helps to capture recurring 
textures within software in a form that supports systematic generative 
tool support. Suitable areas of application range from implementation 
patterns to architectural conventions and white-box framework 
specialization [Hau02, Vil01]. The tool has been discussed in [Hak01a, 
Hak01b] and demonstrated in [Hak01c]. It is available for download with 
a tutorial at http://practise.cs.tut.fi/fred. 

In Fred, recurrence is stored in hierarchical structures called patterns. 
Being very implementation-oriented, these should not be confused with 
design patterns, although implementation-oriented variants of design 
patterns can be represented in Fred. 
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A Fred-pattern is essentially a very fine-grained implementation-oriented 
DSL, presented as a tree with cross-references. During software 
development, the user instantiates the pattern by walking through the 
tree under the guidance of the tool, resulting in generated code and 
documentation. Moreover, instructions on instantiating the pattern are 
generated on the fly. As a result, Fred releases the user from tedious 
programming tasks, but at the same time promotes learning by doing. 

A minimal Fred-pattern is depicted in Figure 1. The pattern is used in 
Fred to generate accessor methods for member variables. The pattern 
consists of roles that will be bound to concrete implementation elements 
during the pattern instantiation. Roles have cardinalities and syntactic 
constraints in the form of cross-references. 

 

0..n 

0..1 for each Attribute 1 for each Attribute 

Class 

Attribute 

Setter Getter 
 

Figure 1. A minimal Fred-pattern 

This diagram presents a grammar for a small DSL. Although suppressed 
from the diagram, semantic information is attached to the nodes to 
provide code generation, constraint checking and adaptive 
documentation facilities. E.g. after typing in a string field “name” in a 
class, Fred is able to provide suggestions like “Provide a setter method for 
the field name” to the developer. Like the instructions, source code can be 
generated on demand. Following the tasks provided by Fred eventually 
results in a complete application of the pattern. 

F e a t u r e  M o d e l s  

A feature model represents and classifies instances of a particular concept 
providing a structural representation of the possible properties (i.e. 
features) of the concept instances. Feature models are used in describing 
variability and commonality of software components within a family of 
software artefacts. However, although they model variability within 
software they don’t imply any specific means of implementing that 
variability. Thus, feature models present a convenient way of describing 
software product or system families at a high level of abstraction.  

A feature model is represented as a hierarchically structured diagram. 
The nodes of this diagram are called features, and they present individual 
configuration points within the family. Features range from high-level 
requirements to implementation-specific configuration details. 
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Feature diagrams are used in deriving featural descriptions of instances 
of the family. This process involves traversing through the feature 
diagram in a well-defined manner binding each traversed feature to some 
specific configuration. The traversal must proceed according to the 
syntactic rules of the diagram and each binding must adhere to the 
semantic description of the particular feature. The result is a set of 
bindings that uniquely describes a certain piece of software. 

F e a t u r e  M o d e l s ,  F r e d  a n d  P a t t e r n  
L a n g u a g e s  

Feature diagrams and Fred-patterns are both used in deriving concrete 
software artefacts from generic descriptions. They differ in their level of 
abstraction however; where Fred concerns the recurring implementation 
strategies, feature models attempt to be abstract in this sense.  

Despite this, the methods are syntactically very similar. They provide 
similar means of presenting a hierarchically structured DSL; the tree of 
features effectively corresponds to the tree of roles. Both approaches also 
incorporate grammatical constraints – hard dependencies between the 
elements of the language. 

There are syntactic differences too, most importantly the notion of 
cardinality. This concept essential to Fred is lacking from the feature 
models in an attempt to maintain them independent of any structural 
information of the solution space. 

All in all, the approaches differ in two aspects; 1) their intended use (level 
of abstraction), and 2) the expressive power (i.e. the set of languages they 
can represent). 

There is yet another related approach, however. It has turned out that the 
way patterns are applied in Fred resembles the way pattern languages 
[Ale79] are applied, although Fred-patterns are of much smaller scope 
than pattern languages. In essence, Fred-patterns are fine-grained 
pattern languages, the same way they can be conceived as fine-grained 
feature models. 

The three approaches are far from being identical, but the similarities 
suggest that the works are characterizing a similar phenomenon. Table 1 
outlines these approaches. 

Table 1. Terminology and features of the three related approaches 

 Feature model Fred pattern Pattern 
language 

Primary elements features roles patterns 

Primary structure tree tree graph 

Grammatical 
constraints 

requires and 
mutual-exclusion 
constraints, 
default-dependency rules,

cardinality and 
positive, negative, 
hard and soft 
dependencies,

informal 
annotations 
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alternative and or-features alternative roles* 

Language sentence featural description pattern instance sentence 

Example domain Matrix computation 
components [CzE00] 

Java MVC-framework 
[Hau02] 

Shopping malls 
[Ale75] 

*) Some of the grammatical constraints are not yet implemented in the latest Fred release. 

All the approaches are ways of presenting a grammar for a DSL as a 
graph. Feature models and Fred model some primary structure within the 
graph as a tree, augmenting it with cross-references (Fred-patterns have 
also been described using graphs instead of trees, see [Hak01b]). The 
cross-references are called constraints in feature models and 
dependencies in Fred. 

4 .  U N I F I E D  A P P R O A C H  

Fred has been promising in supporting the reuse of software patterns, 
white-box frameworks and generic architectures such as EJB [HaK02]. 
However, Fred-patterns mostly model recurrence in the solution space 
(the code), instead of the problem space (the requirements). This results 
in the inability to support high-level specifications that would disregard 
the actual implementation. 

Feature models suggest the notion of vertical constraints to map high-
level specification features onto implementation-level features. During 
the Fred project the notion of cardinality has proven to be valuable in 
modeling recurring patterns in the solution space, even though 
cardinality may not play an important role (or it may be circumvented) in 
modeling the problem space. Hence, lacking the concept of cardinality, 
feature models themselves are inadequate in providing support for code 
generation. 

Our vision is to use Fred machinery to support specifications of various 
levels of abstraction. Vertical constraints binding the featural model of the 
problem space to the patterns of the solution space, could serve as a 
foundation for the attempt.  

We are currently carrying out a project that continues the development of 
Fred by generalizing its implementation to support patterns, feature 
models and pattern languages of arbitrary domains and granularity. The 
terminology for the new model is adopted mostly from the field of pattern 
languages, reusing existing Fred-terminology whenever possible. Thus, a 
DSL will be called a pattern language, being composed of patterns. 

The main problem in combining the approaches rises from the fact that 
creating a language capturing a given domain all the way from high-level 
requirements to variable implementation details would be an 
overwhelming effort. The problem could be sized down considerably 
however, by making it possible to reuse existing patterns and pattern 
languages in creating new pattern languages. The reuse mechanisms 
planned for Applause are specialization and dynamic composition of 
pattern languages. 
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P a t t e r n  L a n g u a g e  S p e c i a l i z a t i o n  

A pattern language is a description of a certain domain, such as a system 
or product family. Typically, it is applied to get a description of a specific 
instance of that family. However, we  consider this as a special case. In 
general, application of a pattern language corresponds to refining the 
original language to a narrower domain, and results in a new pattern 
language. This language may indeed cover only a single instance of the 
family, but that is not necessary. Thus, applying a pattern language is 
called specialization. This is the fundamental reuse mechanism for 
pattern languages. E.g. a pattern language describing the structure of a 
design pattern may be specialized to get a pattern language for a specific 
implementation pattern. 

F o u n d a t i o n s  o f  A p p r o a c h  

Pattern language is a structure of patterns. The patterns are organized in 
a parent-child hierarchy with cross-references. Figure 2 depicts a pattern 
language of four patterns, with pattern Server as the root, and a cross-
reference from Handler to Request. 

 

1..n 1

1 for each Request 

Server 

Servlet Request 

Handler 
 

Figure 2. A pattern language for creating Java servlets 

This pattern language is an abbreviated description on how to create 
server applications that handle multiple types of requests from clients. 
Although suppressed from the diagram, each pattern encapsulates a 
description of certain part of this domain. E.g., the pattern Request 
stands for the requests the server should be able to handle. Servlet-
pattern describes how to implement the server using Java Servlet 
technology. It is supplemented by Handler, which describes the handler 
methods that should be provided for each request. 

In general, the patterns provide a vocabulary for the domain, and the 
relationships between patterns form a grammar for composing sentences 
describing sub-domains or specific instances of the original domain. In 
other words, pattern language is always applied to create a new language. 
Creating a new pattern language corresponds to refining patterns of the 
original language according to the semantics of the original patterns and 
the grammatical rules of the original language. 
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Figure 3 presents another pattern language. It describes a servlet that is 
able to respond to two types of requests (log in and fetch). Clearly, this 
language describes a sub-domain of the previous pattern. It has been 
created according to the grammatical rules of the previous language. 
Patterns LogIn and Fetch refine the pattern Request of the previous 
pattern language. Similarly, the original Handler-pattern is refined for the 
two types of requests. 

 

 

0..1
1..n 

1

1 for each LogIn

1 for each Fetch 

Server 

Servlet 

LogIn 

Fetch 

HandleLogIn 

HandleFetch 
 

Figure 3. A refined pattern language for Java servlets 

This language can be further refined, however. The logging functionality 
is marked as optional, and there can be several kinds of fetch-requests. A 
new language may introduce a fixed set of requests, or even dictate the 
exact implementation of the handler methods. In case the domain is 
completely fixed and thus cannot be further refined, the pattern language 
effectively describes a single application. In other cases, the language 
encapsulates architectural configuration knowledge of a certain domain. 

If we look at three patterns on the left side of the previous figure, we see 
something that looks like a feature model with cardinalities. A more 
specialized language with no cardinalities would correspond exactly to a 
conventional feature model. Application of a pattern would then 
correspond to selecting the particular feature. E.g., the logging 
functionality could be selected by applying the LogIn pattern. 

The other patterns in the figure describe low-level implementation 
features. As we have dependencies between the sides, the high-level 
decisions are effectively mapped to low-level implementation strategies. 
With similar bindings, it is possible to bridge problem space to solution 
space, and eventually produce code based on the low-level pattern 
descriptions. 

The approach does not impose any particular requirements on the 
patterns. Our focus has been in working on the mechanical interpretation 
of pattern languages and thus we’re trying to leave the semantics of 
patterns as open as possible, allowing arbitrary extensions to the 
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approach. However, three important kinds of patterns can be identified 
based on what kind of information they contain and how they should be 
applied. These are features, roles and constraints. They are all considered 
patterns in our approach; they all describe a domain, but with different 
kind of content. 

FEATURES 

Features correspond closely to the features of feature models. 
They encapsulate some configuration knowledge. Refining a 
feature means narrowing the variability captured by the feature. 
Traditionally a feature in a feature model describes a point and 
bounds of variation, and a featural description (the result of the 
application of a feature model) would select a unique value within 
the range of variation. In general, the feature in a refined language 
must define a sub-domain of the original feature, but it does not 
need to be a single value. 

In the previous example, the patterns LogIn and Fetch are 
examples of features, refining the Request feature. 

ROLES 

The second important category of patterns are roles. They are 
descriptions of program elements such as classes, methods, fields 
and so on. A pattern language may leave the actual program 
element open, in which case the pattern may be further refined in 
subsequent pattern languages, or bind the role to a specific piece 
of code. 

The description of a role should encapsulate the knowledge on 
writing the required piece of code, or generating the code 
automatically. The description can include templates and scripts 
that make use of the dependencies within the pattern language, 
allowing code and instructions to be generated according to the 
other generated elements and selected featural configuration. E.g., 
the code template for the Getter method role in Figure 1 could be 
“return #Attribute#;”, expanding to something like “return name;” 
during the development time. 

In our previous example, the pattern Servlet is a class role, and 
patterns HandleLogIn and HandleFetch are method roles. 

CONSTRAINTS 

The third class of patterns is constraints. They describe conditions 
on the program elements bound to roles. 

There are no constraint patterns in the previous example, but it 
could be augmented with constraints. E.g., it would be natural to 
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add a constraint demanding the servlet class (bound to role 
Servlet) to extend the HttpServlet base class declared by Java 
Servlet API. This requirement could be imposed as a constraint 
pattern, attached as a child of the Servlet role. 

To achieve generative tool-support, there must be a tool-supported 
format for defining the semantics of patterns. The tool could then use a 
pattern language as the basis of guiding the developer through developing 
a new application for the domain, or defining a more restricted sub-
domain. The developer is responsible of applying the pattern language, 
but the tool makes sure that the pattern language application is 
syntactically correct, and enforces the semantic constraints embedded in 
pattern descriptions. Scripts provide automatic and semi-automatic code 
generation, and architecture-specific violations could be reported at 
compile-time based on constraint descriptions.  

At the heart of this are the features that are used in gathering the featural 
description of the system under construction. Depending on the nature of 
the pattern language the system could be generated automatically based 
on the choice of features, or the features could be used as the basis of co-
operative software development between the tool and the developer. 

P a t t e r n  L a n g u a g e  D e v e l o p m e n t  

The approach makes no distinction between deriving software systems 
based on pattern languages and deriving new pattern languages from old 
ones. An important and immediate consequence is that pattern languages 
itself can be developed exactly the same way as the applications are 
derived from the pattern languages. Thus, if we have a generative tool for 
software, we also have a generative tool for describing feature models, 
design pattern variants, architectures, and everything that can be 
captured by the kinds of pattern languages proposed. 

The discussion has also discovered why cardinalities do play an important 
role in after all. Even though cardinalities do not play an important role in 
conventional feature models, a generic DSL would be hard to write 
without them. E.g., without cardinalities, the language in Figure 3 could 
not be considered a specialization of language in Figure 2, and thus no 
tool support could be provided in that language. 

A continuation to our previous example is depicted in the Figure 4. 
Patterns Server, LogIn, Search and Download essentially define a simple 
feature model with no cardinalities. The roles Servlet, HandleLogIn, 
HandleSearch and HandleDownload can be used to generate code for the 
application based on the selected choice of features. The pattern language 
is a refinement of a more general language, the one we saw before, and 
Search and Download are actually refinements of Fetch-feature. Thus, a 
feature model can exist without cardinalities, but they are central to 
general-purpose pattern languages. 



 - 10 - 

 

0..1 
1 1 

1 

1 for each LogIn

1 for each Search 

1 for each Download

Server 

LogIn 

Search 

Download

Servlet 

HandleLogIn 

HandleSearch 

HandleDownload
 

Figure 4. A pattern language with limited cardinalities only 

It is possible for a pattern language to combine multiple existing pattern 
languages. E.g., continuing with our example, it would have been possible 
to create the original example as a refinement of two languages – a 
pattern language for servers in general, and a pattern language for 
servlets. The figure below depicts these primordial languages, however 
omitting many details as in previous examples. 

 

1..n 1..n

Server 

Request 

Servlet 

Handler 
 

Figure 5. Simple pattern languages that could have been used as the 
basis of composing the language in Figure 2 

D y n a m i c  C o m p o s i t i o n  o f  P a t t e r n  L a n g u a g e s  

Pattern language specialization alone is not sufficient mechanism for 
reusing pattern languages, however. Consider we were supposed to 
describe a pattern language for web servers, as in previous examples, but 
wanted not to restrict the language on any particular implementation 
technology, like Java servlets. In general, sometimes we would like to 
leave a part of the pattern language open, to be refined later, in the 
subsequent specialization of the language. For this purpose, another 
mechanism is required. 

Dynamic composition of pattern languages means that in certain pattern 
language we leave some parts unspecified by introducing a placeholder so 
that another pattern language can augment the original specification at 
later time. This requires that we can somehow specify the boundary 
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between two pattern languages, and the required characteristics of these 
parts. Thus, a typing system for pattern languages is required. 

Figure 6 repeats our original example, but this time using dynamic 
composition. The pattern marked with dashed border indicates a slot to 
be fulfilled by some other pattern language. A dashed arc in the diagram 
indicates that this pattern language is able refer to the Request pattern of 
the host language by the name R. 

 

1..n

R

1 

Server 

Request Server  
Implementation 

 

Figure 6. A pattern language that makes use of the dynamic 
composition 

Another pattern language is presented in Figure 7 that may be used in 
place of the server implementation of the previous pattern language. This 
language describes a server implementation using Java servlets. 

 

1 for each R

Servlet 

Handler R 
¨ 

Figure 7. A pattern language that can be used to fulfill the slot of the 
language in Figure 6 

The pattern language defines an external pattern R. This is used in gluing 
the two pattern languages together. When using this pattern language to 
fulfill the slot in the previous language, Request-pattern stands for R. As a 
result, we get a language that looks like our original example, but has 
resulted from the dynamic composition of pattern languages. This allows 
us to specify multiple variations of server implementation independently 
of the original pattern language. We can even apply more fine-grained 
decomposition by specifying the contents of the Handler-pattern as a 
separate pattern language. This would allow different kinds of handler 
implementations according to differing needs. E.g., handlers could be 
implemented as ordinary methods, or utilizing the Command design 
pattern [Gam94] (which in turn could be presented as another pattern 
language). 

5 .  C O N C L U S I O N  

Feature models and pattern languages have much in common. This paper 
has outlined our attempt in capturing the essence of these approaches to 
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provide systematic architectural tool-support. The approach is based on 
the experiences of Fred-project, extending the DSL-processing machinery 
already present in the Fred-tool. The resulted model itself is independent 
of any particular problem or solution domain in the same sense feature 
models or design patterns can be applied in variety of domains.  

The promise of the unified approach is in bridging languages of problem 
space to the languages of solution space, providing seamless, tool-
supported and traceable transition from requirements to code. However, 
the problem in combining the approaches lies in the complexity and size 
of the resulted DSLs, and must be confronted by DSL-level reuse 
mechanisms. 

We have briefly outlined ideas on pattern language specialization and 
dynamic composition, as mechanisms for specifying domain specific 
languages by reusing others. It is our aim to provide a framework that 
would allow development of reusable pattern language libraries capturing 
design abstractions in the same way object-oriented frameworks are used 
in capturing architectures at implementation level. 

The approach itself is not tied to any particular programming language. 
At the time of writing, we have a tool prototype supporting pattern 
language specialization, and are continuing to investigate dynamic 
composition. Fred 2.0, incorporating these features, as well as a Java-
framework for extending support for different programming languages 
and solution domains, is to be released in the first quarter of 2003. The 
release incorporates support for Java and XML. 
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