

Improved Iterative Software Development Method for Game Design

by

Umair Azfar Khan

University of Tampere

Department of Computer Sciences

Computer Science

M.Sc. Thesis

Supervisor:

Martti Juhola

April 2008

 i

University of Tampere

Department of Computer Sciences

Computer Science

Umair Azfar Khan

Improved Iterative Software Development Method for Game Design

M.Sc. thesis, 53 pages

April 2008

This paper describes a game making and editing tool which simplifies the process of

game making by removing the need to recompile the code. For this reason a simple side

scrolling game engine was developed which also supports an inbuilt editor. With the

help of this editor all the objects present in the game engine can be changed to look the

way a user wants them to. This reduces the communication gap that is normally found

in between the coding and art development team for a game. The artists are now given

the liberty to draw the objects by themselves and that is automatically integrated into the

game.

In order to save all the changes done to the objects, XML files are used, which store

all the information necessary for drawing an object and its constituent sub-objects.

These XML files can be worked on separately by the users and then later exchanged

which speeds up the whole development process and also provides the functionality to

share each other’s work. Thus, the game engine remains the same, but the same engine

can be used to create two totally different games that look totally different from each

other.

Key words and terms: Game, editor, object, recompile.

 ii

Dedications

This thesis is dedicated to my mother who passed away during the time I was

completing my studies. She always believed in me through all the decisions that I made

and supported me whenever I was overburdened with work and low on spirits.

This is also dedicated to my father who always kept my studies at a higher priority

than anything in my life. He always kept me focused on what was important and what

took preference over everything else.

Finally, I would like to dedicate this thesis to all the friends and family who

understood all the problems that I had been facing and provided support and comfort

through all the hard times.

 iii

Acknowledgements

Dr. Martti Juhola has been the ideal thesis supervisor during the time I had the

privilege in working under him. His insightful criticisms, encouragement and all out

support have helped me in innumerable ways in completing this thesis. I really

appreciate all his effort in bringing this thesis to its completion.

 iv

Contents

1. Introduction...1

2. Background ...2

2.1. Selecting the right hardware: ...3

2.2. Selecting the IDE and Language..3

2.3. Idea and Inspirations..4

3. Traditional Software Development ...5

3.1. Specification Barrier ..5

3.1.1. The Applier's Perspective ...5

3.1.2. The User's Perspective: ...6

3.1.3. The End-User’s Perspective:...6

3.2. Communication Barrier ...6

3.3. Optimisation Barrier ..6

3.4. Methods Overcoming the Barriers...7

3.4.1. Prototyping..7

3.4.2. Agile Software Development..7

3.4.3. Iterative and Incremental Software Development ..7

4. History of Iterative Software Development..8

4.1. Basic Software Development Models..8

4.1.1. Waterfall Models ..8

4.1.2. Evolutionary Models...10

4.1.3. The RAD Model ...12

4.1.4. Agile Software Development Models...14

5. Iterative Software Development ..15

6. Iterative Game Design ..17

6.1. Players as Game Designers..19

6.2. Relations between Designer and Player...20

6.2.1. Designer as Player...20

6.2.2. Player as Designer’s Muse..20

6.2.3. Player as Designer’s Patient..20

6.2.4. Player as a Designer’s Advisor ...21

6.2.5. Players as Designer ...21

7. Stages of Development..23

8. Application Design ..24

8.1. Distributing Objects ...24

8.1.1. Menu Object..24

 v

8.1.2. Game Object ...25

8.1.3. Component..26

8.1.4. Shape...27

9. Implementation ...28

9.1. Defining the Game:..28

9.2. Creating the Editor...31

9.3. Creating the Menus..31

9.4. Walkthrough ..32

9.4.1. The Main Menu Screen...32

9.4.2. The Object Menu Screen ..33

9.4.3. The Sub-object Menu..34

9.4.4. The Editor ...35

10. Results ..40

10.1. Aims...40

10.2. Problems ..40

10.3. Future Enhancements...41

11. Discussion...42

12. Summary..45

 1

1. Introduction

The software industry has been lately taking a lot of interest in the end-user interaction

and software development. The aim has been to bring the end-user closer to the whole

software development process, without complicating the whole development process.

The bottleneck in this effort is the constant requirement of the software to be

recompiled whenever a change is made. This is the reason why once software is

released the development cycle does not end there. A series of patches and fixes are

released constantly to make changes and fix many bugs within the software.

These days, great care is being taken to make the software development process as

humanly intuitive as possible. The problem here is that, the configuration and

compilation of the code requires the user to have some programming experience and the

installation of different development environments to get the job done. This

requirement already forces the users of the application out of the end-user zone to

casual programmers.

The aim of this Game Making and Editing Tool (Gamedit) is to narrow the gap

between software development and the end-user. Gamedit provides a simple 2D side

scrolling game with an in-game editor that lets the user define his own objects being

used by the game engine. These objects include all the menus and the objects that the

user can interact with while playing the game.

The editing is done by using an in-game editor that behaves like a simple drawing

tool that people are normally used to. This provides an intuitive way of making changes

to the software and no code needs to be recompiled for this to work properly. Whatever

you draw on screen is what you get inside the game, thus minimizing the time required

in between editing the game objects and reproducing the change inside the game.

Gamedit improves upon the iterative software development method for 2D games

by allowing the testers to play the part of the coder. The testers are provided with an in

game editor which avoids the software to go under unnecessary iterations.

 2

2. Background

Computer games have been a part of the mainstream software ever since the days of

early personal computers. Programming games has always been considered one of the

toughest jobs to do in the field of computer science. Every game comes with its

complex problems which normally require a complete overhaul of the way the game is

to be made or the problem is to be solved. This is the reason why, most of the times, the

programmers are so busy in perfecting the solution to the various problems that they

forget how to make the game more fun and to reach out to broader audience than the

hard core gamers.

This trend has somewhat changed lately when almost every game that is released,

comes with its own software developers kit and development tools which allow the

gaming community to experiment with the game engine and make changes as they see

fit. The problem with this approach is that only those users who have some

programming experience can use the tools. This leaves out a great deal of users who

want to make changes to the software, but do not have the expertise to do so.

Another problem that comes up is the constant dependency of the software to be

recompiled with every little change that is made to the code. The code once compiled

does not provide any dynamic interaction that might change it from within. Code needs

to be recompiled to see if the change that was made has produced the required result or

not. This is another time consuming process that increases the time in development.

What is required is software that can be changed at runtime. This means that once a

program has been created, it can be changed from within from inbuilt tools. Thus, the

program is intelligent enough to read the changes without the need to recompile the

entire code.

With the arrival of object oriented programming languages such as JAVA, C#,

C++, etc., making a software that changes itself has become both easier to code for and

to manage. Object oriented programming languages help define the entire software in a

series of objects where each object can be self contained and the change done on one

object can be reflected on to many similar objects. This helps in separating the code

blocks from one another and whatever makes programming easier can be reflected on

how the program behaves when it is edited from within. In order to bring the editing

tool to the broader audience, it is supposed to be:

• Intuitive enough to let the users learn it from the get go

• Accessible enough so that the users can use it any time of the day and,

• Simple enough to hide the unnecessary details that make the software daunting

 3

The aim for Gamedit was to complete all these requirements and provide a

framework for all the future software to base their development on. It should be noted

that Gamedit is not merely a game, but an editing tool that changes the software without

recompiling. A game engine is used because it provides the quickest way to see the

changes in the software as the user is dependent on the visual responses to enjoy the

game.

2.1. Selecting the right hardware:

One of the main concerns about making software accessible to the general users is to

have it in a device that is in every day use. Life nowadays demands users to be on their

feet and mobile, which makes their time spent on a computer lesser day by day. This is

the reason why the mobile devices have become so popular recently, hence increasing

the demand in functionality of these devices.

Keeping this in mind, the target hardware for Gamedit was mobile phones and in

the mobile phones, that category which supports Java for mobiles. Java Platform, Micro

Edition or J2ME [Java ME] provides a flexible environment for running applications on

mobile phones and other embedded devices. This has the advantage of running Gamedit

on the maximum number of mobile devices as Java is platform independent; hence, a

maximum number of users can get a hold of the software on devices that they use daily.

This satisfies the condition where the users can use the software on a daily basis.

Another important thing about mobile devices is the limited number of keys

available to the user to use any mobile application. This makes it necessary that each

application is designed to use the least number of keys and be intuitive enough so that

every user can start using it almost instantly. This in itself provides the restriction that

the application must be easy enough for every user to use.

2.2. Selecting the IDE and Language

For creating Gamedit, I chose to use the Eclipse IDE [Eclipse]. It has an EclipseME

plugin [Eclipse ME] that supports J2ME development using the Eclipse environment. I

have a working experience in J2ME from my school years and then the job that I was

doing for the past 1 year. So picking Eclipse and J2ME as the development

environment came naturally. In order to use the IDE, the Sun Java Wireless Toolkit for

CLDC [Sun Java Wireless Toolkit] needs to be installed. The version used was Sun

Java Wireless Toolkit 2.5.2 for CLDC along with J2ME Polish [J2ME Polish], which is

a suite for creating enhanced J2ME applications.

 4

J2ME Polish contains PDA optional packages (JSR 75) which gives developers the

FileConnection API used for accessing the mobile phone's file system. Using this

optional package was critical in Gamedit’s development as file reading and writing

plays a major role in saving the user’s progress and loading the old settings done by a

user.

Another reason for using J2ME was the ease of development of mobile

applications. I wanted the application to support easy game development which J2ME

handles really well. Making a game was a priority as a game provides the most visually

accessible feedback for user responses. The ease of programming provided the option

of getting the most out of the least amount of code, which helped in creating the

Gamedit application faster so that the whole idea can be tried and tested easily and

quickly.

2.3. Idea and Inspirations

The idea of this thesis came up while working on my job one day. I visualised a game

where the puzzles can be solved by drawing the objects in a game. This called for a

proper physics engine to be implemented, plus a dynamic game environment, where

objects can be added and removed by drawing them. Later the idea was further

enhanced by envisioning a tool which lets the user draw the art of the game rather than

pre-built programmer defined objects. This called for developing a game which had the

least amount of rules hard coded, while the rest of the game defined by the users

themselves. This created the requirement for making a game engine which needs to be

compiled just once and the rest can be done from within the game. Hence the idea

transformed into what is now known as Gamedit.

While developing Gamedit, I came across many similar ideas that proved to be both

fascinating and inspirational. Their emphasis was more on using user’s feedback with

the in-game physics to achieve a result, while my idea had transformed into redefining

the whole game from within the game itself. The first inspiration was Phun, which is a

Master of Science Thesis by Computing Science student Emil Ernerfeldt at VRLab,

Umeå University, Sweden [Ernerfeldt, 2008]. The other inspiration was Crayon Physics

Deluxe, which was the finalist in the Independent games Festival of 2008 [Crayon

Physics Deluxe]. Surprisingly, both these ideas come at a time when I myself was

working on a similar project, but I do think that my idea stands separate from what

these other topics have tried to achieve.

 5

3. Traditional Software Development

The traditional software development processes have always contained a series of

weaknesses and problems which has asked for continuous evolution and development

of old and new development models time and again. The sources for most of the

development processes lie in the theoretical concepts applied as well as the use of

inadequate cost analysis models. One of the major reasons for the inadequacy of the

traditional processes is the improper participation of the several groups that are related

to the development of the software, one way or the other. Rauterberg argues that there

are three essential barriers to optimizing the software development process [Rauterberg,

1992]: the specification barrier, the communication barrier and the optimization barrier.

3.1. Specification Barrier

The requirements specification has always been a major problem whenever it comes to

defining software. The main reason for this is normally the gap between what the client

understands and what is actually doable under the budget that the software developers

need to work in. Another reason is for the client to understand what part of the project

can be done based on the technology in question. A software developer can not create

real-time animation using just HTML for example.

There is also no way to ascertain that once the requirements have been written down

and the development team starts designing and implementing the software, those

requirements will not changed. This is the reason why many early software

development models such as the Waterfall model are generally not used these days. A

more open approach such as the incremental or iterative software development is used.

Even Agile software development methods are used as they provides the coders with a

flexible set of requirements and much is decided on the feedback that is received from

the clients after some on hands time with the developed prototype. It is therefore

necessary to find other informal, semi-formal to formal methods for requirement

specification.

It can also be catastrophic to assume that the clients, usually the people from middle or

higher levels of management, are able to provide adequate information for any software

system. Hence, the following perspectives should be taken into consideration during the

software analysis and specification phases [Rauterberg, 1992]:

3.1.1. The Applier's Perspective

Every person who can help in defining the requirements for software system is

considered to be an applier. Normally, the clients hold the role of the applier when it

 6

comes to defining the perspectives. This perspective takes into consideration all the

general requirements concerning the organizational structures, project costs, and

implementation goals for the complete software system.

3.1.2. The User's Perspective:

Users are those persons who need the software to produce results for performing their

tasks. The major factor that influences their perspective is human-to-human

communication with the end-users such as their bosses or department head. Their

contribution normally is to define requirements for the software interface.

3.1.3. The End-User’s Perspective:

End-users are all those people who use the software system directly as a work tool. This

group formulates the essential requirements for the tool and the input/output interfaces.

3.2. Communication Barrier

This barrier has different layers that need to be overcome to minimise the unnecessary

requirements of the software system. The first layer is the difference of opinion,

information and understanding between the three groups of people described in the

above mentioned perspectives. The way the requirement trickles down from the

appliers, to users and finally to the end-user and then from end-user to applier, many

things may go wrong or maybe misunderstood.

The second layer comes between the difference in understanding between the client

and the software development team. The understanding of the software developers with

their technical jargon is of no meaning to the client. Many times a client may want a

simple solution to a problem, whereas the developers might make it too complicated

than it really is. Sometimes the client might not be able to relax the requirement, even a

little bit, that might make the software very difficult to use. I personally had a similar

experience while working during my days at Jintech Pvt Limited, Pakistan, where the

client wanted the website for their product to work exactly as their software used to

work. This made the code for their website extremely complex and hard to do.

3.3. Optimisation Barrier

The final barrier is the optimisation barrier, which ascertains as to which part of the

project requires more optimisation and how that optimisation is needed to be carried

out. Software might be broken into several parts and each part is needed to be optimised

separately or maybe prototypes are needed to check the user response to the different

parts of the software and each part is to be optimised separately. Overcoming this

barrier can help in reducing the development cost and help in targetted software

development.

 7

3.4. Methods Overcoming the Barriers

Time and again, there have been many software development methods that have been

introduced to overcome the barriers as mentioned above. These methods have had

different degrees of success when it came to developing software with changing

requirements. Most of these methods require close communication between the client

and the software development team which minimises the understanding gap which is

normally encountered during other software development methods. A brief mention of

some of these techiniques is as following:

3.4.1. Prototyping

A prototype is used to acquaint the end-users with the procedural character of the

system being developed. Prototyping is used to display the working of a part of or the

entire application system to the end-user so that he is able to grasp the way the entire

system is going to work. Thus prototyping provides a particularly effective means of

communication between the user and the developer as a small trailer of the entire

application is presented to the user and the user feedback is acquired readily and

incorporated into the future releases of the prototype.It is however extremely important

that the time taken from acquirring user feedback on the prototype to the

implementation of the new prototype is short.

3.4.2. Agile Software Development

The idea behind Agile software development is to complete the entire software

development cycle in one small iteration. The iteration may not necessarily contain all

the workings of the final software but it should have some working software which was

intended at the end of that iteration. Normally this release of software, also known as an

iteration, lasts 4 weeks. Software developed during one unit of time is referred to as an

iteration, which may last from one to four weeks. Each iteration is an entire software

project, which includes planning, requirements analysis, design, coding, testing, and

documentation.

3.4.3. Iterative and Incremental Software Development

Incremental software development requires that different parts of the entire software

system are developed at different times or rates, and integrated to the whole as they are

completed. During this type of software development some time is set aside to revise

and improve parts of the completed system. In Iterative software development, the user

feedback that is received after each iteration is not used as input for revising the plans

or specifications of the successive increments. This however might be used for

modifying, and especially for revising the targets of each successive iteration.

 8

4. History of Iterative Software Development

Iterative software development is the method under discussion in this thesis. It is only

fair that we begin from the history of this development method and move onto its

usability in the game design process. In order to grasp the idea of iterative software

development, we need to start from the basic software development models and move

up to their evolution over the years which, in turn, have provided us with the iterative

development model. But before beginning, it is necessary to clarify the difference

between an increment and iteration. [Goldberg, et al., 1995] has defined this difference

as:

• Iteration: The controlled reworking of part of a system to remove mistakes or

make improvements.

• Increment: Making progress in small steps to get early tangible results.

4.1. Basic Software Development Models

The main reason for using a software development model is to produce better quality

software with complete documentation quickly and efficiently. The goal is the same for

all the software models that are in use today but the end result is not always the same.

Barry Boehm [Boehm, 1988] states that the primary function of any software model is

to determine the stages in software development and the order in which they are going

to be implemented for developing complete software; this also includes the information

about the transition criteria that is needed to progress from one stage to the next. The

completion criteria and the entrance criteria for the next stage are a part of these

transition criteria.

Many software projects in the past have experienced serious problems because there

was no systematic way of completing the various development activities. No proper

systematic way or model was used, which caused exceptional loss in man hours and

effort once the initial design needed to be reworked in order to make the software work

properly. As a result, a number of software development models have been employed

throughout the industry with different degrees of success. All these models can be

grouped under two main categories; the waterfall model and the evolutionary model.

4.1.1. Waterfall Models

The most popular software development model is the waterfall model. In this method,

the feedback loops are confined to successive stages instead of reworking all the stages

once one iteration of software is complete. This means that once a stage has been

complete, there is no turning back and the software moves to the next stage of

development.

 9

The assumptions on which the waterfall model is based on are:

• The customer knows what is required off the end product

• Once the requirements have been finalised in the requirements specification

phase, they cannot be changed

• Phase reviews are used as control and feedback points

The characteristics of a successful project completed using the waterfall model are:

• The requirements have remained stable during the completion of the project

• The environments have remained stable

• Focus has remained on completing the project as a whole

• In the end there is one final product delivery

The stages that are present in the waterfall model can best be described by Figure 1

as given by [Boehm, 1988]:

Figure 1 – Stages of a Waterfall Model [Boehm, 1988]

 10

The goal for each stage of a waterfall model is to produce a fully elaborated

document in the end. This works as the completion criterion for the current stage and

once this document is accepted, as the entry criterion for the next stage. Even though

this form of trickle down approach for completing different phases of the project and

then moving on to the next has been successful for some projects, it has not been

successful for those projects that required extensive end user interaction. Hasan Savani

[Savani, 1988] has best described it as:

“The waterfall model works well for salmon, not people. While trying to achieve

their goal, salmons tend to move intractably upstream. When people strive for a goal

they tend to meander, sometimes venturing forward and sometimes retracting steps.

While following a general course from the problem to the solution, people often look

ahead (such as by prototyping or simulation) and then retreat to accommodate their

current understanding of the problem to what they learned in their look ahead.”

4.1.2. Evolutionary Models

The evolutionary model is characterised by frequently occuring feedback loops and

extensive customer participation in every iteration of the software as it is completed. In

this model, with the completion of each increment all the stages are expanded to

incorporate changes as defined by the customer after testing. Thus, with each increment

the software gets better and the customer is kept satisfied.

The assumptions for the evolutionary model are:

• The customer cannot be sure of what he wants, hence close communication is a

necessity.

• The requirements will change with time.

• Feedback and control should be acquired through continuous reviews.

The characteristics of a successful evolutionary model project are:

• Acquisition of continuous customer feedback

• The targets for the product are not entirely fixed

• Focus is always on the most important features

• The software has frequent releases

The evolutionary model as given by [Martin, 1991] is best described by Figure 2.

 11

Figure 2 – Stages in an Evolutionary Model [Martin, 1991]

Another name for evolutionary models is the Rapid Application Development

Models or RAD models for short. These models are perfectly suited for devloping

applications which require close communication with the end-user. The requirments can

only be established after the end-user has had some hands on time with the application,

which generally is a prototype in this scenario.

This doesn't mean that the evolutionary models do not have a problems of their

own. If a software is being developed for a wide market which has a large variety of

customers, the software might go through endless increments and making a final

product may become problematic. Also, since the product is constantly changing, it

might make the software unstable and might require a special increment just to stabilise

it. Before we move to define the iterative software development we should explain the

various evolutionary models that are being used for development. These models are the

spiral model, the RAD model and the agile models.

 12

Spiral Model:

The Spiral Model was defined by Barry Boehm [Boehm, 1988] which aims to

incorporate the details of both the waterfall and the evolutionary model. In the spiral

model, full cycles of development are used. These successively refine the end product.

The order of these cycles is risk driven. Simulations and prototypes are used in the early

cycles to evaluate all the alternatives and to resolve risks. These are then concluded

with reviews and approvals of completed documentation before the next cycle is

started. Once all the risks have been covered, the last cycle is initiated, which is the

conventional waterfall development of the product.

Figure 3 - The Spiral Model [Boehm, 1988]

4.1.3. The RAD Model

The original Rapid Application Development (RAD) model as introduced by James

Martin [Martin, 1991] was based on short incremental cycles based on business

priorities and required close involvement of the customers. Each increment of the RAD

model is a small waterfall model developed by a SWAT (Skilled Workers with

Advanced Tools) team. The SWAT Team is a small team of two to six developers who

are specialized in working together with the development tools and produce builds of

the software at high speed. Their goal is to create fast deliverables after each iteration

 13

by taking the user feedback into consideration. It is with the effort of this team that the

users get an early build to test and provide comments which are extremely important in

creating the final application. Since the conception of this idea, it has become a generic

term for many different types of evolutionary software development models.

Figure 4 – Rapid Application Development Model [Martin, 1991]

As seen in Figure 4, RAD depends on joint activities like Joint Requirements

Planning (JRP) or Joint Application Design (JAD) to complete the software. Joint

Requirements Planning (JRP) is a technique where the software professionals hold joint

planning sessions for creating user requirements. These are informal sessions or

workshops aim to provide an open environment for people to discuss their

responsibilities and the critical information that they require for carrying out their job.

 14

At the end of each JRP session, a Written documentation defining the requirements is

produced. There are many benefits that are provided by the JRP workshops such as,

• Encouraging the development of a partnership between business and software

experts.

• Identification of the software needs that the business side will be able to fulfil

with the software.

• Clarifying all software requirements which reduce the overall design and

development time.

• Driving the decisions pertaining to software architecture and platform.

• Issues are resolved early in the system life cycle which lowers the deployment

and maintenance costs.

• Combines the ideas of a variety of people which improves the quality of the

solution

• Increasing the knowledge of the end user and project team about the system.

JRP and JAD are often used synonymously due to the identical nature of both the

processes. The only difference is that where JRP is more centred towards acquiring

requirements with stakeholder’s feedback, JAD is used for redesigning the application.

Due to the non-constant nature of the Rapid Application Development process a change

in requirement normally means a change in design, hence both terms can be used

interchangeably.

4.1.4. Agile Software Development Models

Agile software development can also be explained as adaptive software development.

The idea is to create software in a matter of weeks rather than months, consult with the

user at every step and adapt to the changes as requested by the client. It should be noted

that agile software development is considered to be chaotic although it is planned

development where the emphasis is on quick software development and not the

documentation, even though making the documentation is also a part of agile software

development methodology. The agile software development has been defined as [Agile

Alliance]:

“Individuals and interactions are valued over processes and tools.

Working software is valued over comprehensive documentation.

Customer collaboration is valued over contract negotiation.

Responding to change is valued over following a plan.”

 15

5. Iterative Software Development

Software is developed incrementally while using the Iterative software development

method. This allows the developer to take advantage of the experience and user

feedback that was acquired during the development of the first increment while creating

the next deliverable increment of the project. The project starts with the simple

implementation of the entire project, which evolves and gets enhanced with each

successive increment while working closely with the end-users. This goes on until the

full system is implemented and delivered.

Figure 5 – Iterative Software Life Cycle

The iterative software development consists of the initialization step, the iteration

step and the project control list. The initial step is used to create a product that the end

user can use and interact with. This provides the development team with the necessary

feedback that can then be used to enhance the product in the next increment. In the

initial step, the product needs to be simple and should provide a solution to the main

problem in question. You can call it as the skeleton of the final project, which performs

all the necessary actions. The way the user reacts to it defines how the product is to be

created in future increments.

The development phase may contain one or more iterations whose aim is to

redesign or to enhance the current state of the project. Several successive iterations are

used to design the software according to the client’s request.

 16

The project control list keeps track of all the necessary tasks that need to be

performed while implementing the next iteration. The new features that are to be

implemented and the redesigning of the existing solution are all kept by the project

control list. This list is constantly revised and updated during the analysis phase of the

project.

The guidelines that define the iterative software development are as following:

• If there is a difficulty in designing, coding and testing a modification, this means

that redesigning and recoding is necessary to solve the problem.

• Modifications should be implemented to the modules easily. If that is not

possible, then redesigning is in order.

• As the project progresses, the modifications should become easier.

• The existing implementation should be analyzed frequently to see if it matches

with the required criteria of the software to be delivered.

• User feedback should be taken seriously and the deficiencies in the project

should be overcome as soon as possible for the next round of user input.

When working to create games, constant user feedback is extremely important.

Games are meant to entertain its users; hence the main aim for any game developer is to

have software that provides both a challenge and entertainment to the user. Games

normally go through a long series of iterations and testing before an end product is

delivered. This is the reason why the iterative model is extensively used for game

development. Now that we know the basics of the iterative software development, we

can look into game designing through the iterative software development method. Once

that is defined, we will look into the advantages of using the iterative game design and

then the disadvantages of the same model. This will bring us to the improvement as

suggested by me to the iterative software development method, which puts the user in

the developer’s seat and helps the users implement the changes without the need to wait

for another iteration to be completed.

 17

6. Iterative Game Design

Game design is an iterative process which includes a long a repetitive cycle of

designing, prototyping, play testing, and then modifying the underlying design based on

the results gathered after each cycle. The iterative game design process holds the

premise that a great game cannot be created by simply envisioning it, writing its

specifications, and then building it. Through repetitive experiences it has been known

that play tests lead to refinements that are critical to tuning the play experience.

Prototyping and play testing are a fundamental part of the overall game creation process

and they should be started as soon as possible to approach a refined end product.

Iterative design is a design methodology for game development which is based on a

cyclic process of prototyping, play testing, analyzing, and finally refining a work in

progress. In iterative design, all the interaction with the designed system is used for

evolving a project through series of successive versions as they are implemented. An

iterative game design can best be described by Figure 6:

Figure 6 – Iterative Design Method

In an iterative process design, decisions are based on the results and experience

acquired from the prototype in progress. The prototype is tested and analyzed, based on

which revisions are made, and the project is tested once again. In this way, the project

develops through close interaction between the designers and the testing audience. All

 18

the feedback received during play testing is forwarded to the designers which after

tweaking and adding more features release a newer version. Another important point

that is to be considered is that, different users behave differently with the same

software. Hence the response from the different users can be varied so a middle ground

is sometimes needed to be achieved before the final product is released.

When we talk about iterative designing in games, it normally means extensive play

testing. The main emphasis in game development is creating a game that lets its users

enjoy and provide a challenge. If a game is too easy, the users will beat it too quickly

and if the game is too hard the users will not try to play it for fear of losing every time.

Thus, it is only through extensive testing that the game designers can find the middle

ground between fun and challenge.

This iterative process which involves extensive testing differs from the typical retail

game development. Normally, at the start of the design process, a game designer will

think of a finished concept, his entire vision and then write a design document that

defines every possible aspect of the game that can be thought of. However, the final

game does not come out to be like the original concept. This has a lot to do with what

the game designer had built according to his own experience, and what the game testers

provided as feedback to the original design. The users play a vital role during the game

design process in the iterative game development model. It is important to survey the

type of users that will be playing the game instead of creating a game out of developer’s

experience. The players may belong to several categories and different backgrounds;

thus their inclusion in the game design process is critical. Since empowering the users

with the tweaking and development task is the emphasis for this project, it is vital that

we go through the types of users that normally play the game, once it is released.

Olli Sotamaa, has tried to perceive the type of players that are normally interested in

playing a game [Sotamaa]. Players are normally divided into two major categories, the

novice players and the professional players. This division is mainly useful for deciding

the various degrees of difficulties that must be added to the game. The novice players

are looking for a fun and challenging experience and want to beat the game once. The

professional players want to go one step ahead and try the game at the hardest of

difficulties to really see how good they are with their understanding of the game.

The other division that is normally made is between the casual player and the

hardcore player. The casual players are those who pick up the game to kill time and are

not interested in all the secrets that are needed to be a better player; whereas the

hardcore players want to learn everything that is there to be a better player than anyone

else. This division is primarily for the marketing purposes so that the players

understand what sort of a challenge they may come across when playing the game and

what game best suits their playing style.

 19

6.1. Players as Game Designers

It has been known that game designers normally place cheats inside the game which

changes the game itself. The concept of the cheats is to provide a different set of rules

that may help the players in beating the game easily. Whenever a player changes the

rules by using the cheats, he does in fact take part in the game design process. He tells

the developers that this is how he would like the game to be and this is how he would

like to finish the game. This concept has been so popular that almost every game that

comes out has its own set of cheats. Another interesting fact is that sometimes these

cheats are put in the game for demonstration purposes and to test the game. Both of

these functions cannot be done unless the presence of cheats was not taken into

consideration while creating the game. Rollings and Adams believe the changing the

rules as actually an act of game designing as they have said, “Every game player is a

potential game designer” [Rollings et al., 2003] .

Recently, Massively Multiplayer games have been very popular with the gaming

audience. An important point to this trend is the ability of players to tell their own

stories. Players are given a vast world to explore, alliances to make or break and do

many of the every day tasks within the game. This provides them the flexibility to

change the game and as a result, all the game designers for the current Massively

Multiplayer games in development are advised to create a game that changes according

to the actions of the player.

Another term that has been in recent use is “Modifications” or mod for short.

Games these days come with their own Software Developers Kit, which contains just

enough code to let the eager end-users to change the game according to their liking.

Previously, it was not appreciated that the original game content should be made

available to the end-user for making changes, but recently, it has been found that this

increases the life expectancy of the game as the game engine is constantly under use by

eager developers. The same game may be changed to look entirely different than how it

was originally envisioned and sometimes, it is just polished by the end-users into

something better. This also provides the software industry with the potential developers

for hiring and minimizes the amount of effort that is taken during the hiring process.

Salen and Zimmerman have defined this ability of the end-users to change the game

content as, “one of the sweetest pleasures as a game designer is seeing your game

played in ways that you did not anticipate” [Zimmerman et al., 2003].

The game design process can be distributed into four stages, concept design, pre-

production, production and post-production stages [Fullerton et al., 2004]. It is a

general belief that the game designers can get some clear benefits by using different

user-centered design techniques during the abovementioned stages [Sykes et al., 2006].

Of all the design methods that are used for game development, the iterative design

method is considered to be the best as it relies on user feedback early on during the

 20

development process. The game designers are encouraged to create a playable prototype

so that user response is recorded during the early stages of development. It is however

seen that even though the iterative development provides a lot of benefits for game

designers, it is still not the popular approach while making games [Zimmerman et al.,

2003].

6.2. Relations between Designer and Player

Olli Sotamaa has defined the possible relationships that can be found between a game

designer and the end-user [Sotamaa, 2007]. These relationships reflect on the various

design ideologies and traditions that are in use these days. These should be discussed to

understand the role of the users in producing a high quality game.

6.2.1. Designer as Player

The first relation is that of a designer with himself as a user. In order to create a game, a

designer needs to play a lot of games himself. This allows the designer to understand

how other game manufacturers have gone about creating similar games and helps him

chalk out many design decisions. One of the drawbacks of this is that, the designer

might end up designing the game for himself as he himself is testing it as a player. This

results in creating games which are mediocre at best. Playing the games by the

designers is a good starting point for making any game but after that continuous input

by the end-users is essential for making a good game.

6.2.2. Player as Designer’s Muse

Sometimes, the designer uses the ideas given by the players for developing new features

into a game. This leads to many new and innovative ideas that the designer has not

thought of himself. The downside to this is that many of the ideas might not be

according to the overall theme of the whole game idea and might work as unnecessary

bells and whistles rather than anything that changes the whole gaming playability.

6.2.3. Player as Designer’s Patient

Many times, it has been found that the interface scheme that was used for the game was

too complex for an ordinary player to understand and use effectively. This causes a

large audience not to pick up and play the game and thus results in a complete failure of

the game in the market. This means that the player should have such sort of a

relationship with the designer as a patient has with the doctor. The patient comes up

with a problem, the doctor diagnoses it and then provides a solution that might help the

patient. Thus new design decisions are taken by the designers to cure the problems that

the players are having while playing the game’s prototype.

 21

6.2.4. Player as a Designer’s Advisor

Working with focus groups provides a good conception about the overall game design.

The central and most effective method for getting players’ advice is through

playtesting. The proponents of iterative game design agree that the most important time

for getting player feedback is during the early stages of game development. Even if the

designer to has a good understanding of the focused group it is still not possible to

assume how the user feedback is going to be as the designer will never know in how

many ways his game will be played and how to assume that at what point the player is

going to do what. The open ended nature of the game and the user interaction is what

makes the game development one of the toughest jobs in the software development

industry.

6.2.5. Players as Designer

There are signs that some developers are considering opening parts of the early game

production pipeline to players for their input [Banks, 2005]. This has a lot to do with

the success of the player developed content for many game titles, which in turn, has

boosted the sales for that game. The two modifications that have become extremely

popular are Counterstrike modification for Half Life and Defence of the Acients

modification for Warcraft 3. Thus the trend has now become to hire players as the

designers for upcoming titles directly from the players community.

Thus the modern trend in iterative game development method is to involve the users

from the early stages of the game designing process so that the cost of making design

changes can be reduced early on thus maintaining the survivability of the game through

the entire development process and after release. A lot of times it has been seen that the

remake of the old formula is presented to the gamers time and again before

experimenting with something totally new. The designers try new ideas only after they

have perfected the old ones and are sure to venture the new territory with as much

careful planning as possible. Many other developers mimic the ideas that had been done

by other designers which lets them cash on the success of others. This again goes under

the umbrella of those designers, who are players themselves. They have tested a popular

formula, they know its pros and cons, hence making a game on that idea minimises the

risk of failure.

But in all the iterative game development models the problem that has been the

most prevalent is the number of iterations it takes till the final product is released. A big

reason for this is the amount of recompiling and testing that goes on before the final

product is released. The software, Gamedit, as created by me, provides a game design

idea that minimises the number of iterations that are needed for tweaking a game. Apart

from that, it also provides the players or the testers with editing capabilities, which

removes their dependence on the coders for changes to be implemented. The game

 22

comes with an easy to use editor which helps in making changes to all the objects inside

the game. Once the changes have been made, these are saved in script files that override

the initial settings for all the objects. Since the application also reads these script files

during run-time, thus no recompilation is needed for these files to work.

In order to better explain this improvement done to the traditional iterative game

development method, we need to go through the stages of development, discuss the

design decisions taken and finally explain how the editing done by the users impacts the

overall software. This will be explained by showing a game and then letting the user

make changes to it in order to see how it changes the overall game.

 23

7. Stages of Development

Gamedit went through a lot of iterations before settling into the shape that it is now. It

started with a concept of a game where the objects can be defined by the user. Thus any

object that is developed by the user becomes the part of the game environment. This

was a good concept but it did not provide the user the ability to change the software

itself. This idea only gave the user the liberty to add extra content to the already

complete software. The two inspirations that I mentioned before (Phun and Crayon

Physics Deluxe) do the same as they let users add extra content to the already complete

game engine.

The original idea was changed and then a new idea took shape which allowed the

users to change every aspect of the game itself, starting from the local menus and going

all the way up to the each individual game object. Functionality was put in so that the

user will be able to tinker with the game engine itself, hence changing the playability of

the game from inside the game.

Apart from that there was functionality built into the game engine itself that let the

users define animations by performing them themselves. The idea here was that each

action done by the user will be stored by the software itself and then replayed by

mimicking the user inputs and redrawing all the performed actions.

Another idea that was linked with the animation definition functionality was to

define an easy to use programming language that guided the user to select the next

series of steps done in the animation. This was meant to provide the users with more

control on how they were going to control the whole animation. The two animation

ideas, however good, required a lot of effort to be put into a topic that was loosely

connected with animation at all. Here the idea was to develop software that helps in

rewriting itself. Software that over-rides the hard code defined in it in favor of what the

user wants to add to the software.

Making every feature of the software editable was a hard thing to do in itself, hence

spending more time in defining animations not only took the software out of its

proposed aim but also created a whole set of new problems. The goal was to provide a

software that lets the user define its own art, look and graphics and can be changed in

runtime so that the changes can be seen almost instantly. Completing this feature was a

priority and it took preference above all the rest.

 24

8. Application Design

Gamedit aims to make the entire software editable. Every menu in the software, that

relates to the game itself; every object that is contained in the game and all the attributes

within each object should be made editable. This is no small task as each object might

be made up of many sub-objects, which in themselves might be made up of many other

sub-objects. Thus a long hierarchy of objects is maintained all the time and going

through this hierarchy, making changes and putting everything together is no small

task. To make it work properly a clever design strategy was thought out and

implemented which makes the handling each individual object easy.

It should be made clear that even though this software aims to make everything

editable, there are some parts which have been left out of the whole editing process.

These parts were related with the in-game editor that is used to change the game

objects. Hence, all the menus that can be accessed through the “Options” menu can not

be changed. Similarly, the “Options” menu itself cannot be changed. Another reason for

doing the same was due to the reason that these parts of the software are not part of the

actual game; hence changing them holds no importance on the overall game design

process. If editing of these parts had been made the part of the overall game design, it

could have complicated the user interface and once the software had been changed from

the original state, it would have been very difficult to take the software back to a state

where it was in the beginning. These parts have been hard coded into the program and

are not subject to change.

8.1. Distributing Objects

The first phase in object distribution was to separate out the main parts of Gamedit

which make everything to work together. This required distributing the objects into

Menus and Game Objects.

8.1.1. Menu Object

The objects for menus will be made up of components such as buttons and a

background object, to draw the menus properly. These objects will themselves be made

up of other objects which can be edited to change the shape of each individual button

and background. Thus, the hierarchy for every menu can be best described by Figure 1.

Every menu is made up of the MainMenuObject class. In order to show the menu

properly, it is then further distributed into two components, the MenuBackground and

the Button Component. Both the MenuBackground Class and the Button Class inherit

 25

from the Component Class. The MenuBackground is used to display the background of

the menu while the Button class is used to draw the buttons for the menu. The

Component class contains a list of all the sub-objects defined by the Shape class. These

sub-objects are used to draw the shape and colour of the menu and the background.

Figure 7 – Hierarchy inside an object of a menu

8.1.2. Game Object

The hierarchy defining the game objects is the same as that for the menu object.

The difference here is that the classes that inherit from the Component class are slightly

different in functionality than those that are used while defining the Buttons. However,

the shapes that are used in defining each component are the same as the same editor is

used to alter all the components. The hierarchy inside the object of a game is best

defined in Figure 8.

It should be noted that however the hierarchy for both the menu objects and the

game objects is the same, both perform totally different functions when it comes to

defining the Gamedit program. Even though the user might be able to change the look

of each individual button of every menu, there are a few things that cannot be changed,

such as the number of buttons in a menu. The creation of these buttons is dependent on

the number of objects or sub-objects for which the menu is being created.

 26

Figure 8 – Hierarchy inside an object of a game

Thus, from the main menu, if the user chooses to open the editor, he is first given a

list of menu and game objects that are present in Gamedit. Once he makes his selection,

he is then given a list of sub-objects of which the main object is composed of. So once

the sub-object is selected, the editor is launched and the user can manipulate the

selected sub-objects. Whatever changes the user makes are applied instantly to the

selected sub-object which in turn, changes the look of the main object.

8.1.3. Component

Component class is the workhorse for all the main objects of Gamedit. All the

major objects are made up of components and it is the combination of these components

that we get a completely defined menu or game object. It is by editing these

components that we are able to change the main objects in Gamedit. This can be done

by adding, removing or changing the shapes that define every component. Once one of

the main objects has been selected for editing, the sun-object selection menu comes up

to let the users alter each individual component. The components behave differently

when they are a part of different main objects, but on the whole, their aim is the same

and that being defining the one of the main objects.

 27

8.1.4. Shape

Every component is made up of many different shapes. Shapes are made up of

rectangles, triangles, circles and semi-circles. Every shape can be defined in a different

colour and the combination of these shapes goes on to define every component. These

is no limit as to how many shapes can be in a component, hence the user can define as

many shapes as he likes to define a component.

 28

9. Implementation

In order to understand how all of these objects come together, we need to take a

walkthrough from the beginning to the editor and then see how the changes done by the

user while using the editor changes the software itself. But before we go into the

working of the software, we should at first talk about the environment that was used to

explain the idea behind improving the iterative game development model.

Java Micro Edition for mobiles was built specifically for portable devices that have

come into normal use these days. With an increase in the number of mobile devices,

there was a need to have a language that could create small applications quickly and

with the least amount of memory footprint. Apart from that, the portable nature of Java,

which allows it to run on almost every device, was another reason to be chosen for

portable devices.

It has also been seen that during the times when the users are travelling or waiting

for an appointment, they tend to use their portable devices for entertainment. This also

created a huge market for game software for mobile phones. J2ME is an effective

language for fast mobile software development as it allows creation of professional

looking games in less than three months’ time. Three months for creating a game is

extremely fast for any game development which makes J2ME a favourite choice for

creating games.

Irrespective of which programming language to choose, the software development

model remains the same. This means that no matter what language is being used for

developing software, the methods that are going to be used to go about its development

are going to stay the same. Since J2ME helps in developing software much quicker than

any available language at the time, it was my choice for trying the improved iterative

software development model. This helped in creating Gamedit is much lesser time than

it would have taken, had I used any other programming language. Also, the emphasis

here was to have complete software to see how the suggested improvements worked

rather than how beautiful the over all software looked. Thus the first phase, or shall I

say the initialisation step during the development of Gamedit was to have a game

engine and an editor implemented to see how the basic editing tasks worked on the

overall game. Thus, to explain the improvement of the iterative game development

model, I shall describe the development of Gamedit through every iteration to explain

how this software speeds up the entire iterative software development procedure.

9.1. Defining the Game:

In order to explain the iterative game development model, an elaborate game was not

needed. The aim here was to make a simple game that was easy to make and had the

least amount of rules so that the editing the game was easy plus the users might not lose

 29

track of all the changes once they had been implemented. Thus it was decided that a

simple 2D car racing game will be used. The car will be one of the game objects and

there will be obstacles in the game that the player will need to avoid in order to win the

game. Obstacles will also be game objects and they will also be editable. The basic idea

of the game can be described by Figure - 9. This is not the final state of the game and

should only be used for demonstration purposes.

Figure 9 – The Game Concept

In order to define all the game objects, it was decided that all the objects should be

distributed into sub-objects. It is only by combining these sub-objects that we are able

to define a complete object. This decision was taken because it is possible that we might

need to define an object with moving components. If that becomes the case, it will

become problematic to define the animation of the object as the whole object will need

to be animated and will have separate painting functions or separate functions for

defining the different frames of animation.

 30

Going by the natural order of how any object is composed in real life, we normally

see a combination of sub-objects which when combined together form an object. This

also provided a modular approach for defining the game objects. Now instead of

changing an entire object, the user can make a change to one single sub-object. So for

example, the car in the game can be divided into the car body and the four wheels. Now

each tire can be changed individually and that change will be displayed when the car is

drawn again while playing the game. Thus, the hierarchy of objects which defines a car

can best be described by Figure 10:

Figure 10 – The Car Object

From this figure, we can easily deduce the hierarchy of the car object. The car is

basically composed of five main components. One is the body and the others are the

wheels. Since all the wheels can be defined separately, we are considering them as four

separate components. Like all the real world objects, these components have shapes of

their own. Hence, it is the combination of these shapes that a component is defined

graphically. What sort of a shape is used, where it is used, what was the size of the

shape and what was the colour, etc, all these properties of every shape are remembered

and stored within each component. Thus, when an object is ordered to be drawn, it

actually draws all the components of which it is made of. These components in turn call

the drawing function of all the constituent shapes and thus the entire object is displayed.

So if a user wants to change the look of an object, he needs to go down to the level of

the sub-objects and change the shapes that are being used to draw the individual

components.

The same holds true for all other objects in the game and also for the menus. The

menus themselves are objects and they are also made up of different sub-objects. So if a

user wants to make changes to a menu, he needs to open the editor and then select the

 31

appropriate menu to change. Then he will be given a list of the background and the

buttons that the user wants to change. He can pick up any sub-object and make changes

as he pleases. In this way, the entire game can be changed by the user.

9.2. Creating the Editor

There were a few requirements for the game editor to fulfil. First of all, it should be run

able from inside the game engine. Then it must be able to display the sub-objects of all

the objects, help in editing each sub-object, provide different shapes to help with

drawing the sub-objects and finally maintain the history of all the steps done while

drawing .

The role of the editor is to change the look of all the sub-objects within the objects

and once these changes are done, they are applied to the game without the need of

recompiling. This removes the communication cycle that normally takes place between

the game coder and the game tester where the tester tells the coder of the many features

he wants to be changed and then the coder open up the code, recompiles it and then

gives the tester a new build to play on. Now the tester can simply open the in-game

editor and make changes as he sees fit.

The menu provides the user with a colour menu so that the user can choose what

colour of the shapes should be that he is going to add to the component. He is also

provided with a menu to select the type of shape that he is going to add to the

component. He is also given the option to resize the shape that has been added and

finally, he has the option to undo any move he makes. It should be kept in mind that all

the graphics that are used are vector in nature. This ensures that the changes done in the

code remain the same irrespective of the screen size of the mobile device. A simple

algorithm can be written to resize the shapes as according to the screen on which they

are being displayed. Thus, no images are kept in the software itself, which makes the

size of the software very small and reduces the amount of memory that is required to

run it.

9.3. Creating the Menus

Almost all of the menus in Gamedit are dynamically created. As I had mentioned before

that the aim was to create software that is totally editable, it was necessary that all the

menus needed to be editable themselves. Every menu is an object itself and a separate

canvas has been dedicated for displaying the assigned menu. Apart from the main

menu, all the menus depend on the objects and the sub-objects present in the game.

Since the main menu needs to specify the main functions of the game, the options are

hard coded as a list. But even here, if you increase the size of the list, the number of

buttons will increase as well.

 32

Every menu has a Tool tip at the bottom to tell the user at what level he is inside the

menus. The Objects Menu lists all the main objects that are present in the game. Once

an object has been selected, the Sub-object Menu comes up which displays all the sub-

objects that are present in the selected object. Once a sub-object has been selected it is

then displayed in the editor and can be edited there.

9.4. Walkthrough

The improved iterative software model for game development requires that the game

engine is at its place before the entire editing and tweaking begins. Once a game loop is

in place, all that is left is putting in the game rules to define the game. For defining the

racing car game as I have discussed above, the first step was to create the game engine

and make all the objects editable while using the menu. Right at that time, there was no

definition of the game’s rules in place. So we start our walkthrough of out project from

that point onwards.

9.4.1. The Main Menu Screen

The main menu screen contains the main menu and it is used to make the necessary

choices for playing the game or editing the game objects. Figure 11 displays all the

menu options that a user can select. If the user selects ”Play” he can play the game

without changing any of the game’s objects. If the user selects Editor, then he is first

asked about the object that he wants to edit and then gets to edit that object. Finally, If

the user want to exit the software, he can just select the ”Quit” option and the software

will stop execution.

It should be noted that although the text of the buttons for the main menu were hard

coded, the creation of the buttons was not. If the text is too long, then the buttons

extend themselves to cover the entire text, depending on the size of the text.

The user can navigate the menu by pressing the arrow keys and then press the

middle soft key to make a selection. The soft key for menu selection can change

depending on the phone it is being used. Sometimes the number keys might be used to

move around the menu and making a selection.

 33

Figure 11 – The Main Menu

9.4.2. The Object Menu Screen

Gamedit contains a linked list which stores all the objects that are contained in it. This

linked list is required to create the menu for all the objects. The Object Menu comes up

when the user chooses the editor as his option from the main menu. Gamedit accesess

the list of objects that are stored in it and reproduces those objects as selectable buttons

for the main menu. All the objects have a String attribute called ”type” which stores the

name of all the objects. This holds true for all the sub-objects as well. This is necessary

so that we can identify each object individually. It is possible that many different

objects might have been created from the same class, so if we use the class’s name to

define every object that will cause confusion. Thus whenever the menu is created, the

type attribute of all the objects is read and is put as the label for the button defining that

object. Figure 12 displays the Object Menu.

 34

Figure 12 – The Object Menu

In the screenshot above, we can see that in the Object Menu, the game objects and

all the menu objects are displayed. The user can select any of the given menus above

and that will lead him to the sub-objects. Here we can see that only four objects are

being displayed. This is all dependent on the number of objects that are present in the

game. As we increase the number of objects, the number of selectable options in the

object menu will increase. Selecting an object from the object menu leads the user to

the sub-object menu.

9.4.3. The Sub-object Menu

The Sub-object menu shows all the components of which the selected object is made up

of. All the components themselves have the ”type” attribute, which helps in labeling the

selectable buttons of the menu.

The number of buttons that are shown in the menu depend on the number of

components that are present in the object. If the components are the buttons of the menu

itself, then they are shown as they are shown on the menu screen as shown in Figure 13.

The user can add more shapes to these components and make them look different.

If the user chooses to change the shape of one of the components of the game

objects, then only that component of the entire object is displayed in the editor.

 35

Figure 13 –The Sub-object Menu

9.4.4. The Editor

Once the user has selected the sub-object to change, then the editor is displayed with a

red crosshair in the centre along with the component that is to be altered as shown in

Figure 14. The cross hair shows the position where the user is and helps in pinpointing

the place where any new shape is to be added.

The crosshair can be moved around using the arrow keys and the middle soft key is

used for making a selection. Here, we can see that the user has selected the Torso of the

Hero object from the sub-object menu. Any changes made to the Torso component will

show up when the user will play the game.

 36

Figure 14 – The Editor

By pressing the left soft key, the user can bring up the Options menu shown in

Figure 15. The Options menu can help the user to select a colour for the shape that is

going to be added and also to select the shape itself. Apart from this, once an action has

been taken, the Options menu has the “Undo” option that lets the user undo an action

and finally, it can be used to return to the main menu.

 37

Figure 15 – Options Menu

If the user chooses to select the colour, then Colour Menu pops up. Here, the user is

given a grid of colours which can be navigated by using the arrow keys as shown in

Figure 16. Once the user has selected which colour to select, he can press the middle

soft key on the phone and that colour will be selected.

 38

Figure 16 – Colour Menu

There is also a Shapes menu present (Figure 16), which can be selected by choosing

“Shapes” from the Options Menu. This gives a list of shapes that the user can add to the

component. If the user has selected a colour before selecting the shape, then the selected

shape will have the selected colour. If the user selects a colour after selecting the shape,

then the selected shape will change its colour to that which was selected. It should be

kept in mind that a shape can be placed anywhere on the drawing canvas. Hence it is

possible that while drawing the user might add shapes randomly. Even though this

feature is supported by the editor it is going to be aesthetically unpleasing to the user to

see disjoint shapes to represent the components. The best practise would be to think

before drawing any component and be careful while adding shapes so that the main

object does not look bad once all the components are drawn.

 39

Figure 17 – Shapes Menu

Once the user is happy with his choice of shape selection, colour usage and overall

drawing of the component, he can simply select back from the right soft key, go back to

the main menu and select the “Play” option to play the game. Now the same game will

be displayed exactly like how the user drew all the components. If the user wants to

tweak any of the components, he can go back to the main menu and start editing again.

This is the most important feature of this thesis and that being, giving the tester the

power which the game programmers normally have. The reliance of the testers on

coders to play an updated version of the game has been removed. The changes that they

want can be applied almost instantly and they can test the game as they want. This

reduces the number of iterations that are needed to tweak the game as that part is done

by the testers readily. All the updates are recorded in the XML file of each component

and the coders can easily use those XML files to see what were the changes done that

made the tester like the game. These changes can then be hard coded in the game if the

coders do not want to rely on file reading or they can just let them be in the game to

reduce the amount of coding done to tweak the game. Hence, the main concept of this

improvement on the iterative development method is to empower the testers with the

power of coding and let the testers call the shots for better game playability.

 40

10. Results

This section explains the targets that Gamedit wanted to achieve, the problems

encountered and the actual features that were implemented.

10.1. Aims

Gamedit was supposed to provide a tool that had a game engine and an editor together

in one application. Whatever objects that were contained in the game, were supposed to

be editable by the editor. This aim was achieved by the application as it provided the

user with the ability to select each object within the game and edit it. No exception was

made whether the object was a part of the game itself or the menu; even the

backgrounds for the different in-game screens were editable.

The second aim was to see the changes without having to recompile the code. To

achieve this aim, the entire game engine was developed with dynamic objects in mind.

The idea was to make it possible to edit the game from inside the game. All the objects

in the game were kept in a linked list. The menus were created out of these lists which

were then used to select each individual object. Every object was then made up of

several sub-objects which were then composed of more sub-objects. The real challenge

was to maintain this hierarchy and still make it possible to edit each individual sub-

object. These changes then reflected on the entire object and made it possible to change

the objects by changing the sub-objects.

The third aim was to create a game with pre-defined rules. The software did not

hold much value unless there was a game that can actually be played. Once a game was

in place, it was up to the testers to tweak the different settings and make the game

enjoyable.

The final aim that was to be achieved was reading and writing of XML files. The

maintenance of the XML files was the centre point for this project. Whatever changes

were made to the objects were stored in each object’s XML file. Since the software was

supposed to read the XML files before drawing any of the objects, this ensured that the

objects were drawn correctly even if we do not recompile the code. All the XML data

was first stored in string with in the object and then written to the XML files. This was

the only aim that the project was not able to achieve.

10.2. Problems

As discussed above, the only aim that was not achieved during the creation of the

project was the reading and writing of the XML files. This had to do with the emulators

not having the permission to read or write files. Since they did not get any permission,

writing of the XML data did not take place. This meant that as long as the program is

running, the XML data will be stored in memory and all the changes will be reproduced

 41

as they are stored in the XML string of every object. But as soon as the program is

closed, these changes will be lost.

A work around to this problem was to output all the changes to the console of the

IDE. Then the programmer can use the data received in the console to apply the

changes. This however limits the users to stay in the vicinity of the IDE to make the

changes and using a mobile phone to do the same is not possible. Almost three weeks

were spent to find the proper solution to the problem also on different computers but

that did not result in much success, so it was decided that all other parts of the software

must be completed before returning back to this problem and fixing it.

10.3. Future Enhancements

Talking about future enhancements, the first and the foremost that comes to mind was

to fix the problem concerning the reading and writing of XML files. This is a

configuration problem rather than a coding problem. All the code regarding the reading

and writing of the files is in place. Once that configuration problem is fixed, the

program will be ready to be made portable to mobile devices.

Another enhancement that can be made to the current software is the ability for the

user to define animations. There is code available within the software that records all

the steps done by the user and replays them when needed. In this way whatever

animation the user wants to produce, he can define it by moving objects using the arrow

keys. More functionality needs to be added, to let the user add and delete objects as the

user pleases. The in game editor can also help in defining new objects.

The in-game editor provides only the most basic of functions when it comes to

drawing. Many more shapes can be added to the editor to allow the user a lot of options

to choose from while defining a shape of an object. Another enhancement that can be

added is the ability to rotate the shapes. At the moment the shapes that are added can

have their colour changed and they can be resized. The more options there are for more

shapes and transformations, the better the overall drawing experience is going to be.

Lastly, in order to support easy to exchange XML files, it will be best if the user can

exchange the XML files through MMS messaging. That way the users will not need to

open the contents of the mobile phone with a personal computer and will be able to pass

contents with their phone only. This increase the accessibility of the combined

development and sharing of resources and help in rapid game development.

 42

11. Discussion

Gamedit aims to further enhance the iterative game development model by

providing the testers with tools to change the software. It narrows the gap between

software analysis and testing by removing the need for recompiling after every test.

Software made using this design method must meet some requirements before it can

start to take advantage of this approach.

The first and the foremost requirement is that, this technique is only good enough

for game development. Even though making games is one of the most difficult jobs in

the software industry, the improved iterative model can only be worked on this category

of software. No other software requires play testing and careful balancing of all the

attributes which may change the game’s playability.

The second requirement being that the game is not too complex to code. It was

felt while developing Gamedit by using the improved iterative software development

technique was that, it is a combination of two types of software in one package. The

game designer is not only making a game, but in fact, he is also making an editor inside

the game. This however is not entirely different than what normal game developers do.

In order to create game resources, such as object models and game maps, the developers

create separate tools for making these resources. Gamedit, on the other hand, adds these

tools to the game engine itself and tries to allow using them as easy as possible.

Gamedit is totally based on vector graphics. Thus no external images or files can

be used to create any resource. This reduces the amount of detail that may be required

in designing different objects for the game. The artist is limited to the software’s

drawing tool and can not do anything beyond that. It is believed that as the developers

start to adopt this method for game development, the abilities of the game engine will

improve with time and start to incorporate new details. The games that can be made

from the current state of Gamedit are strictly 2D and it never ventures off to explore

new 3D worlds. Doing this was necessary because whether the game is in 3D or in 2D

the basic concept of a game remains the same. The excessive detail would have made

the idea complex and difficult to both code and understand.

The ability of the tester to change the code adds another layer to the whole

iterative game development model. It can best be described by figure given below:

 43

Figure 18 – Improved Iterative Game Design Method

In between the Test phase and the Analyze phase another small phase has been

added known as the Modify phase. Thus, in every iterative cycle there is yet another

cycle that can be referred to as the tweaking cycle. Software is presented to the user for

testing. The user tests the software and makes some recommendations which are then

analyzed by both the testers and the coders. If the recommendations made by the testers

do not require any major design changes, then either the coders or the testers go about

modifying the code using the in-built editor.

This small inner cycle continues to the point where no minor changes are possible.

Everything has been tweaked and modified and the changes that are to be done now

require an entire design overhaul. In that scenario, the coders take the reigns of game

development, redesign the game and then with the creation of the next build they let the

testers go on with their Test, Analyze and Modify cycle.

The addition of this small inner cycle keeps the iterative model at heart as the same

iterative process is continued but there is an additional layer to it now. This allows for

lesser time spent in recompiling and tweaking on the developers end which improves

the amount of time taken to develop the game. Apart from this, the same game can be

developed by different users by working on separate parts of the project. Once all the

XML files have been generated, they can be used to replace the existing files which in

 44

turn change the whole game. Similarly, the same game can be given to different artists

who then might come up with two totally different looking games.

User involvement in game modification and development is being greatly

appreciated these days. Almost every game that comes out nowadays has some

developer tools with it. Using those tools is difficult for a user that has no technical

background and it is hard for them to start a project by themselves. Gamedit is an

experimental framework to both test an improved iterative game development technique

and to provide the end-user with easy tools for making their own games. It is believed

that if this method is adopted for making small casual games, it can help in creating a

large variety of games based on one single game engine which users will not need to

buy but in fact distribute for free. This can be then used for teaching purposes and for

entertainment.

 45

12. Summary

Gamedit is a software development tool that is based on the iterative game development

model. The aim of this tool was to exhibit a new improvement that was made to the old

iterative game development model by empowering the testers with the ability to make

changes to the software without learning to code. Another important aspect of this tool

is the possibility to make changes to the software after compiling has been done. This

required that a game engine should be developed that is as dynamic as practically

possible and relied on a large number of script files that are generated and rewritten to

account for the changes done to the software.

Once the users were given the power for changing the code, it reduced the amount

of tweaking, programming and recompiling that the coders needed to do in order to

fulfil the demands set by the testers. Testers can now tweak the game themselves and

stop relying on the developers unless a major design change is required. This helps

reduce the number of iterative cycles needed to complete the game hence speeding up

the time required for game development.

Another important aspect is the ability of the end-user to totally change the look and

feel of the game once it has been released. It is as easy as changing a few script files

from the software and the user will have a totally new game to enjoy. Also, different

users can make different parts of the program and then exchange files to complete the

whole game modification process. This not only increases the life of the game engine

that has been developed, but it can also be used to exhibit modular programming and to

learn basic programming thought process and skills.

 46

References

[Agile Alliance] www.agilealliance.org “Manifesto of Software Development”

[Banks, 2005] Banks, J.A.L. (2005) “Opening the Production Pipeline: Unruly

Creators” in de Castell S., and Jenson, J. (eds.) Changing Views: Worlds in Play -

Selected Papers of the 2005 Digital Games Research Association's Second International

Conference, Digital Games Research Association & Simon Fraser University,

Vancouver.

[Boehm, 1988] B.W. Boehm, “A Spiral Model of Software Development and

Enhancement”, IEEE Computer, pp. 61-72, May 1988.

[Crayon Physics Deluxe] http://kloonigames.com/crayon/

[Eclipse] http://www.eclipse.org/

[Eclipse ME] http://www.eclipseme.org/

[Ernerfeldt, 2008] Phun beta 3.5 by Emil Ernerfeldt, made for Kenneth Bodin at

VRLab, Umeå University. http://www.phun.at/

[Fullerton et al., 2004] Fullerton, T.; C. Swain & S. Hoffman (2004) Game Design

Workshop: Designing, Prototyping, and Playtesting Games. CMP Books, San

Francisco, New York & Lawrence.

[Goldberg, et al., 1995] A. Goldberg and K.S. Rubin, Succeeding with Objects,

Addison-Wesley, 1995.

[Jave ME] http://java.sun.com/javame/index.jsp

[J2ME Polish] http://www.j2mepolish.org

[Martin, 1991] James Martin, Rapid Application Development, Maxwell Macmillan

International Edition, 1991.

[Rauterberg, 1992] Matthias Rauterberg - An Iterative-Cyclic Software Process Model,

Fourth International Conference on Software Engineering and Knowledge Engineering,

1992, pp. 600-607, Capri, Italy.

 47

[Rollings et al., 2003] Rollings, A. & E. Adams (2003) Andrew Rollings and Ernest

Adams on Game Design. New Riders Publishing.

[Zimmerman et al., 2003] Zimmerman, E. & Salen, K. (2003) Rules of Play: Game

Design Fundamentals. MIT Press, Cambridge, MA.

[Savani, 1988] Hasan Savani, "IEEE Software Manager Exchange", IEEE Software,

July 1989, pp. 108.

[Sotamaa, 2007] Sotamaa, Olli, "Perceptions of Player in Game Design Literature" in

Baba (ed.) DIGRA 2007 Conference Proceedings. University of Tokyo, Tokyo,pp. 456-

465.

[Sun Java Wireless Toolkit] http://java.sun.com/products/sjwtoolkit/

[Sykes et al., 2006] Sykes, J. and Federoff, M. (2006) ”Player-Centred Game Design”,

inCHI Extended Abstracts 2006, pp. 1731-1734.

