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Tiivistelmä

Tämä työ käsittelee multimodaalilogiikkoja, joiden kieleen liittyy periaatteessa mielival-
tainen algebra siten että jokaista modaalioperaattoria vastaa kieleen liittyvän algebran
kaava. Syntaktista teoriaa ei käsitellä, lukuunottamatta muutamaa esimerkinomaista de-
duktiota liitteessä. Sen sĳaan tässä työssä keskitytään malliteoriaan, erityisesti algebral-
listen (syntaktisten) operaattoreiden tulkintaan. Aluksi esitellään työn alaan kuuluvien
modaalikielten sekä mallien yleinen määrittely ja käsitellään joukko-opillisten operaa-
tioiden modaalista määriteltävyyttä. Tässä yhteydessä esitellään perustan käsite, joka on
kehystä yleisempi struktuuri, missä mallien perusjoukkoon W on liitetty kielen syntak-
tisten operaattorien tulkinta funktiona (W ×W )n → (W ×W ). Tämän jälkeen käsitel-
lään malliteoreettisia työkaluja (kehysten erilliset yhdisteet ja kehysten väliset pseudo-
epimorfismit), joiden avulla osoitetaan tiettyjä yleisiä ehtoja operaatioiden modaaliselle
määriteltävyydelle kehystasolla.

Käsiteltävien logiikkojen nimeksi on tässä annettu Propositional State Transition Logics
(propositionaalinen tilasiirtymien logiikka). Kyseessä on työnimi, joka jäi lopullisen ve-
doksen otsikoksi. Prosessien logiikka olisi ehkä ollut tässä yhteydessä osuvampi, mutta
tämä nimitys on jo käytössä ja viittaa lähinnä dynaamista logiikkaa ja aikalogiikoita
yhdistelevään multimodaalilogiikkaan. Käyttöön jäänyt nimitys lienee kuitenkin perus-
teltu, sillä tässä tekstissä käsiteltävät loogiset kielet soveltunevat parhaiten mallintamaan
erilaisia systeemejä, joissa mielenkiinnon kohteena ovat systeemin tilasta toiseen tapahtu-
vat epätriviaalit (siis, ei-atomaariset) siirtymät. Esimerkiksi ohjelmat, joissa algoritmeja
ketjutetaan, iteroidaan ja muulla tavoin yhdistellään, ovat tämänkaltaisia systeemejä.

Tässä työssä ei kuitenkaan keskitytä mallintamiseen eikä käsiteltävien logiikkojen intu-
itiiviseen tulkintaan. Tekstin keskeisin sisältö koostuu määriteltävyystuloksista, joissa
todistetaan vastaavuuksia kaavajoukkojen ja näiden sisältämien kaavojen syntaktisten o-
peraattorien tulkintojen välillä. Määriteltävyystulokset on jaettu kahteen lukuun, joista
ensimäinen käsittelee kehysmääriteltävyyttä ja toinen perustamääriteltävyyttä. Osoit-
tautuu, että kaikki relaatiokalkyylin operaattorit ovat perustamääriteltäviä ja tyypil-
liset sulkeumat (refleksiivinen, symmetrinen ja transitiivinen) sekä perusta- että kehys-
määriteltäviä.
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Abstract

This paper is an introduction to a class of multimodal logics with an algebraic structure
associated with modal operators. The discussion focuses on model theory, especially on
the interpretation of several syntactic operators on modalities. First part of the paper
discusses definitions of languages and models and considers conceptual issues on modal
definability of operations on relations. Also in this context the concept of foundations,
which is an abstraction level between domains and frames, is introduced. Then some
general results on the expressive power of the class of logics in question is covered.

The core of the article consists of several definability results establishing correspondences
between formulae and interpretations of syntactic operators within various languages.
The correspondence results are divided into two sections discussing operator definability
on the level of frames and foundations respectively. It will be demonstrated that all the
operations of the calculus of relations are foundation definable, and moreover that all the
common closures (reflexive, symmetric and transitive) are definable on the level of frames
and foundations.
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1 Introduction

In this paper we consider a class of multimodal logics called Propositional State Transition
Logics (henceforth PSTL). The class contains multimodal logics that allow operations on
modalities such that syntactic operators with atomic modalities form an algebraic struc-
ture. The expressions of the resulting algebra are then associated with modal operators.
Well-known example of this kind of logic is Propositional Dynamic Logic (PDL).1 In fact,
PSTL can been seen as a generalization of the PDL. Moreover, the fragment of PDL
that does not include the test operator (usually denoted 〈ϕ?〉, wherein ϕ is a formula
of PDL) is a propositional state transition logic. A rather recent study in related spirit
can be found in (Broersen, 2003) with a discussion of informal semantics of logics that
resemble PSTL.

The name propositional state transition logics conveys the idea that this class of logics is
designed to reason about systems that involve processes that transform the state of the
systems, for example programs, automata, dynamic epistemic systems, epistemic actions
of agents, etc. The research behind this paper originates in a seminar held at the Univer-
sity of Tampere at summer 2005 on an article entitled ”Learning and Epistemic Logic”
by Veikko Rantala (Rantala, 2006). The article discusses a brand of epistemic logic that
incorporates learning processes and the possibility to apply operations on the processes.
Although the focal idea in (Rantala, 2006) is not directly involved in the operations on
modalities,2 Ari Virtanen (the seminar instructor) became interested in generalizing the
concept of operations on the learning processes. Thus, at the initial stage of the research
the possible epistemic interpretations of operations were considered, although the focus
rather quickly shifted towards pure mathematics without much contemplation about in-
formal semantics of PSTL. Modeling of, or reasoning about, some (re)active, dynamic,
or generally any causal system within the formal framework requires that the (possible)
compositional structure of the processes involved can be properly expressed in the chosen
language. That is, the language assigned for the task should be expressive enough to
capture the essential properties of the structure of the processes in question. Moreover,
formal expressions should be specific in the sense that they do not allow inappropriate
interpretations. In what follows, modeling issues are not further elaborated but hopefully
these superficial remarks reveal some of the motivations underlying the research.

Sections 6 and 7 consist of several definability results which establish correspondences
between formulae of the PSTL languages and interpretations of syntactic operators on
modalities. The referred sections form the core of this report, wherein two different logics
are covered. Section 6 discusses the more common variety of modal definability, i.e. modal
definability issues on the level of frames. In Section 7 modal definability on the level of
foundations is considered. Foundation logics is rather novel approach that constitutes a
general and elegant framework for studying modal definability of operations on binary
relations. Indeed, within the multimodal logics without such operations the concept of

1For exposition, see e.g. (Harel et al., 2000) or virtually any standard textbook on multimodal logics.
2To be sure, (Rantala, 2006) considers only one operation that is not even well-defined in the sense of

definition 3.1.
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foundations does not make much sense, but within the PSTL and related logics the
foundation framework offers a natural and expressive level of abstraction over frames. It
will be demonstrated that all the operations of the calculus of relations are foundation
definable.

Section 3 discusses the concept of definability in the PSTL frame logics and foundation
logics respectively. During the research, it has become clear that the concept of definability
in the context of PSTL is not necessarily too trivial. The discussion is intentionally kept
on a rather intuitive level. Sections 4 and 5 provide general model theoretic tools for
resolving issues in frame logic definability.

Next section begins to explore the PSTL by defining the PSTL languages and models.
The fundamental definitions are originally proposed by Ari Virtanen in an unpublished
manuscript at the above mentioned seminar in 2005. The research has been carried out
in more or less active periods during 2005–2007 in close collaboration with Virtanen
and Antti Kuusisto. Specifying the actual contribution of Virtanen and Kuusisto to the
accomplishment of this work would flood the paper with footnotes. Some focal contri-
butions are explicitly mentioned, but above all I wish to thank them for their valuable
effort through several meetings and discussions, and also for their tolerance of my rather
loose working pace. I also would like to express my gratitude to Mirja Hartimo for several
helpful comments on the penultimate draft of the text and especially for correcting my
English.

The paper is written with an aspiration to make it as accessible as possible to everyone
with an entry-level competence in modal logics. Thus, extensive background information
on the subject is not required, but at least cursory acquaintance with some standard
textbook is recommended.3

3For example (Blackburn et al., 2002), or (Rantala & Virtanen, 2004) for Finnish readers.
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2 Syntax and semantics

2.1 Syntax

Definition 2.1. The basic elements of any given language in the context of PSTL are
the following:

A Set of propositional symbols Π ⊆ {p0, p1, p2, . . .}

A Set of atomic process symbols A ⊆ {a0, a1, a2, . . .}

A Set of syntactic operators F ⊆ {f0, f1, f2, . . .}

Logical Connectives ¬,∧ and parentheses (, ), [, ]

Sets Π, A and F are assumed as nonempty and countable.

Definition 2.2. Provided that sets A and F are given, the set of all modal terms Λ is
defined in the following way:

Every process symbol a ∈ A is modal a term, thus for all a ∈ A : a ∈ Λ

If f ∈ F is k-ary operator and α1, . . . , αk ∈ Λ, then f(α1, . . . , αk) ∈ Λ

For the modal term constructed from k-ary syntactic operator f ∈ F with parameter
array α1, . . . , αk ∈ Λ, we use the prefix notation f(α1, . . . , αk). For the sake of legibility,
we typically use the infix notation for binary operators (e.g. α⊗β, if α, β are modal terms
and ⊗ is binary syntactic operator), and denotation of the form α† for a unary operator
† ∈ F . If denotation of the form ·̃ is used for unary operator ·̃ ∈ F , modal term ·̃(α) is
denoted α̃. This is because of standard denotational conventions for some common (e.g.
set-theoretical) operators. In the following, the term process refers to any modal term
α ∈ Λ, whether atomic or molecular.

At this point it should also be noted that if the syntactic expression of a formula or other
such entity contains a chain of (associative) binary operators, connectives, etc. with an
ambivalent structure, e.g. R ∪ S ∪ T , the order of execution is from left to right; that is,
the syntactic structure is assumed to be ((R ∪ S) ∪ T ) in the case of the example.

Definition 2.3. If sets Π,A and F are given, particular PSTL-language L(Π,A,F) is
the set of formulae generated by the following recursive formula generation rules:

If pi ∈ Π, then (pi) is a formula

If (ϕ) is a formula, then (¬ϕ) is a formula
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If (ϕ) and (ψ) are formulae, then (ϕ ∧ ψ) is a formula

If (ϕ) is a formula and α ∈ Λ, then ([α]ϕ) is a formula

In what follows, we conform to the standard practice and omit the outermost and other-
wise unnecessary brackets from the formulae.

Definition 2.4. We use logical connectives ∨,→,↔, modal operator 〈α〉 and constants ⊥
and > as abbreviations defined in the standard way: provided that ϕ and ψ are formulae
and α ∈ Λ,

ϕ ∨ ψ ≡def ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ ≡def ¬ϕ ∨ ψ

ϕ↔ ψ ≡def (ϕ→ ψ) ∧ (ψ → ϕ)

〈α〉ϕ ≡def ¬[α]¬ϕ

⊥ ≡def (ϕ ∧ ¬ϕ)

> ≡def (ϕ ∨ ¬ϕ)

2.2 Semantics

2.2.1 PSTL structures

Definition 2.5. The quadruple 〈W, I, R̃, P 〉 is a model of language L(Π,A,F), if it
satisfies the following definitions.

The set W = {w0, w1, w2, . . .} is the domain consisting all states wi of the model. Only
restriction on the domain W is that in every model, W is a non-empty set.

Structure 〈W, I〉 is called a foundation. An element I is an interpretation mapping,
dom(I) = F , defined as follows: Let f ∈ F be a k-ary syntactic operator, then4

I(f) = F : (P(W ×W ))k → P(W ×W ).

Thus, the interpretation I of k-ary operator f maps every k-tuple of binary relations of
the domain to a single binary relation, hence the interpretation mapping is a function

I : F →
∞⋃
n=0
{F | F : (P(W ×W ))n → P(W ×W )}.

We will not make much use of the above technical definition of I, but instead will use it
to generalize a map R̃ to a more intuitive mapping R, defined as follows:

4Provided that A is a set, we use the notation An for the n-fold Cartesian product of A and the
notation P(A) to denote the power set of A.
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Structure 〈W, I, R̃〉 is a frame of the model, if R̃ is a mapping R̃ : A → P(W × W ),
whence R̃(a) ⊆ W ×W , a ∈ A. For a given frame 〈W, I, R̃〉, function R : Λ→ P(W ×W )
is a generalization of R̃ defined in the following way. Let f ∈ F be k-ary operator, then

For all a ∈ A : R(a) = R̃(a)

For all α1, . . . , αk ∈ Λ : R(f(α1, . . . , αk)) = I(f)(R(α1), . . . , R(αk)).

Finally, the model 〈W, I, R̃, P 〉 is obtained by adding a valuation function P : Π→ P(W )
into the frame 〈W, I, R̃〉.

We say that the model M = 〈W, I, R̃, P 〉 is a PSTL-model for language L(Π,A,F) (or
L(Π,A,F)-model), if there is an interpretation in M for the syntactic operator f , process
a and proposition p exactly when f ∈ F , a ∈ A and p ∈ Π. Likewise, we say that
frame F = 〈W, I, R̃〉 is L(Π,A,F)-frame if the above defining condition is met, save
the reference to the set of propositional symbols Π, and that the foundation 〈W, I〉 is
L(Π,A,F)-foundation, if the interpretation I(f) is defined for every operator symbol
f ∈ F .

2.2.2 Truth definitions

Definition 2.6. Let M = 〈W, I, R̃, P 〉 be a PSTL-model for the language L(Π,A,F),
w ∈ W , p ∈ Π, α ∈ Λ and ϕ, ψ ∈ L(Π,A,F). The truth definitions for formulae in the
state w ∈ W are the following:

M,w � p if and only if w ∈ P (p)

M,w � ¬ϕ if and only if M,w 2 ϕ

M,w � ϕ ∧ ψ if and only if M,w � ϕ and M,w � ψ

M,w � [α]ϕ if and only if ∀w′ ∈ W : wR(α)w′ ⇒M,w′ � ϕ

We say that ϕ is true in the state w of the model M , if M,w � ϕ. For the formulae
abbreviations presented in 2.4, the truth definitions are implied in the above. Since in this
paper the semantics of modal operators are of special importance, an explicit presentation
of the truth definition for the operator formulae of the form 〈α〉ϕ is given here:

M,w � 〈α〉ϕ if and only if ∃w′ ∈ W : wR(α)w′ and M,w′ � ϕ

We write M � ϕ, if the formula ϕ is valid in the model M , that is ∀w ∈ W : M,w � ϕ.
Similarly we write F � ϕ, if the formula ϕ is valid in every model of the frame F =
〈W, I, R̃〉, and 〈W, I〉 � ϕ, if ϕ is valid in every frame of the foundation 〈W, I〉.
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LetM = 〈W, I, R̃, P 〉 be a model for the PSTL-language L(Π,A,F) and Γ ⊆ L(Π,A,F).
We say that M is a Γ-model (or model of Γ), if M � Γ; that is, ∀ϕ ∈ Γ : M � ϕ.
Correspondingly, we say that the frame F = 〈W, I, R̃〉 is a Γ-frame, if F � Γ, and that
the foundation 〈W, I〉 is a Γ-foundation, if 〈W, I〉 � Γ.

3 The concept of definability in PSTL

We use the notation C(R) to denote that the relation R satisfies characterization C.
By characterization C of k-ary syntactic operator f , denoted C(I(f)(R1, R2, . . . , Rk)),
we mean that relation I(f)(R1, R2, . . . , Rk) has an effective dependence on the relations
R1, R2, . . . , Rk under description C. Thus, basically we consider C to be a higher-order
predicate. It is convenient to use similar notation for the relation and operator characteri-
zations, since these concepts coincide: R(f(α1, . . . , αk)) = I(f)(R(α1), . . . , R(αk)), hence
C(R(f(α1, . . . , αk)))⇔ C(I(f)(R(α1), . . . , R(αk))).

We write I(f) ' G, if G is well-defined operator such that I(f) = G � dom(I(f)); i.e.
∀x1, . . . , xn ∈ dom(I(f)) : I(f)(x1, . . . , xn) = G(x1, . . . , xn).5

Definition 3.1. We say that the operator characterization C is frame definable, if there
is a PSTL-language L(Π,A,F) with k-ary operator f ∈ F and a set of formulae Γ ⊆
L(Π,A,F) such that the following correspondence holds:

〈W, I, R̃〉 � Γ if and only if ∀α1, . . . , αk ∈ Λ : C(R(f(α1, . . . , αk))).

We say that the characterization C of the operator f is well defined, if for all frames
〈W, I, R̃〉, 〈W,J, R̃〉 it is the case that ∀α1, . . . , αk ∈ Λ:6

if C(I(f)(R(α1), . . . , R(αk))) and C(J(f)(R(α1), . . . , R(αk))), then

I(f)(R(α1), . . . , R(αk)) = J(f)(R(α1), . . . , R(αk))

For example, if C(x(y, z)) =′′ x is the union of (the relations) y, z′′, then ∀α, β ∈ Λ :
C(I(+)(R(α), R(β)))⇔ R(α)∪R(β), thus the characterization C is well defined since the
extension (output) of the union operation is unambiguous.

An example of an ill-defined characterization is I(u)(R(α), R(β)) ⊆ R(α)∩R(β). Clearly,
if R(α) ∩ R(β) 6= ∅, there are at least two relations S that satisfy the condition S ⊆
R(α) ∩ R(β), namely S = ∅ and S = R(α) ∩ R(β). Therefore, in the general case
there exists interpretations I(u) and J(u) such that ∃α, β ∈ Λ : I(u)(R(α), R(β)) 6=
J(u)(R(α), R(β)), but I(u)(R(α), R(β)) ⊆ R(α)∩R(β) and J(u)(R(α), R(β)) ⊆ R(α)∩
R(β).

5Thus, (I(f) = G)⇒ (I(f) ' G); and (I(f) = G)⇔ (I(f) ' G and dom(I(f)) = dom(G)).
6In fact, this is an iff-clause, the other direction being trivial.
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Definition 3.2. We say that the operator characterization C is foundation definable, if
there exists a PSTL-language L(Π,A,F) with a k-ary operator f ∈ F and a set of
formulae Γ ⊆ L(Π,A,F) such that the following correspondence holds:

〈W, I〉 � Γ if and only if ∀R1, . . . , Rk ⊆ W ×W : C(I(f)(R1, . . . , Rk)).

The well-definedness condition for the characterization C of k-ary operator f ∈ F in the
context of the foundation definability is the following. If 〈W, I〉 and 〈W,J〉 are L(Π,A,F)-
foundations, then ∀R1, . . . , Rk ⊆ W ×W :

if C(I(f)(R1, . . . , Rk)) and C(J(f)(R1, . . . , Rk)), then

I(f)(R1, . . . , Rk) = J(f)(R1, . . . , Rk).

Thus, I(f) = J(f). Moreover I = J , if the condition holds for every f ∈ F .

Therefore, the interpretation I(f) satisfying the constraints of a well-defined characteri-
zation C of f is unique (satisfied by exactly one interpretation mapping).

Naturally, this means that we interpret the operator f under the interpretation I as a well-
defined operation on relations R1, . . . , Rk. For example, if ∀R, S ⊆ W×W : I(+)(R, S) =
R ∪ S, then we say that I(+) satisfies the characterization (or the predicate)

C(x) =′′ x is the union operation′′ (or within our notation, C(x) =′′ x ' ∪′′).

Note that if an operation is definable in PSTL-language L(Π,A, {f1, . . . , fn}), the opera-
tion in question is always definable in any PSTL-language L(Π,A,F) with {f1, . . . , fn} ⊆
F . On the other hand, if an operator is not definable in language L(Π,A, {f1, . . . , fn}) it
might be definable in some other language L(Π,A,F∗), for example, with {f1, . . . , fn} ⊂
F∗; that is, in language with more syntactic operators. At this point it is unfortunately
not completely clear to what extent expressive power increases (besides syntactical de-
finability) with the introduction of several operators in the frame and foundation logics
respectively.7

Example 3.3. If there is a PSTL-language L(Π,A,F) with binary operator f ∈ F and
a set of formulae Γ ⊆ L(Π,A,F) such that

〈W, I, R̃〉 � Γ⇔ ∀α, β ∈ Λ : R(f(α, β)) = R(α) ∪R(β),

as it actually turns out to be (cf. theorem 6.8), we say that the property of being the
union operation on the relations R(α), R(β);∀α, β ∈ Λ is definable. Or, preferably, that

7Although, it seems to be the case that in the frame logics every definable operation is definable
in one-operator language and in the foundation logics some operations require language with multiple
operators. For example relative complementation seems to be definable only with the union and the
intersection, and thus apparently requires language with three binary syntactic operators.
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the operator returning the union of relations R(α), R(β);∀α, β ∈ Λ is frame definable,
provided that the correspondence holds in every L(Π,A,F)-frame.

If on the other hand we have a correspondence result:

〈W, I〉 � Γ⇔ ∀R, S ⊆ W ×W : I(f)(R, S) = R ∪ S,

this clearly means that I(f) ' ∪. Then we say that the union is (foundation) definable
in PSTL, provided that the correspondence holds in every L(Π,A,F)-foundation.

Other weaker notions of definability may be useful since there are correspondences that
do not define proper operators, as in the following example:
Example 3.4. There are correspondence theorems that do not define any operators (as in
lemma 3.7 and lemma 3.8). Also, we can define pseudo-operators. For example, consider
language L(Π,A, {̃·}) and let ·̃ be a unary operator. We have the following correspondence
(cf. lemma 3.7):

〈W, I, R̃〉 � [α]ϕ→ [α̃]ϕ if and only if ∀α ∈ Λ : R(α̃) ⊆ R(α),

The operation I (̃·) returns a subrelation of R(α). Since there are always relations that
conform to R(α̃) (∅ and R(α), for example), the operation I (̃·) is defined by the axiom of
choice, but does not correspond to a proper operator since it is not generally well-defined
in the sense of definition 3.1.
Example 3.5. Assume that the binary union is frame definable with a set of formulae Γ
and consider the frame F = 〈W, I, R̃〉 of the language at issue such that
W = {w1, w2, w3},

I(f)(R, S) =
{

R ∪ S, if R, S ⊆ W ×W : R 6= {〈w1, w3} or S 6= {〈w3, w1〉},
{〈w2, w2〉}, if R = {〈w1, w3〉} and S = {〈w3, w1〉},

R̃(a1) = {〈w1, w2〉}, R̃(a2) = {〈w2, w3〉}.

Remember that we defined I(f) such that I(f) = F : (P(W ×W ))2 → P(W ×W ), in the
case, where f is a binary operator. Now, since there are no processes α, β ∈ Λ with an
access to relations {〈w1, w3〉} and {〈w3, w1〉},8 we have that I(f)({〈w1, w3〉}, {〈w3, w1〉}) =
{〈w2, w2〉}, and still I(f)(R(α), R(β)) = R(α) ∪ R(β);∀α, β ∈ Λ. By the latter notion,
F � Γ regardless of the fact that ∃S, T ⊆ W ×W : I(f)(S, T ) 6= S ∪ T .

The above means just that although F = 〈W, I, R̃〉 is a Γ-frame, 〈W, I〉 is not a Γ-
foundation. If we also require that the foundation of F = 〈W, I, R̃〉 conforms to
〈W, I〉 � Γ, the definition of the interpretation I(f) given above is not acceptable.
This is because there exists a frame F ∗ = 〈W, I, R̃∗〉 of the foundation 〈W, I〉 such that
R̃∗(a1) = {〈w1, w3〉} and R̃∗(a2) = {〈w3, w1〉}. Since F ∗ satisfies I(f)(R∗(a1), R∗(a2)) =
{〈w2, w2〉} 6= R∗(a1) ∪ R∗(a2), by assumption that Γ defines the binary union we infer
F ∗ 2 Γ, hence 〈W, I〉 2 Γ.

8That is, there are no processes α, β ∈ Λ such that R(α) = {〈w1, w3〉}, and R(β) = {〈w3, w1〉}.
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The morale of Example 3.5 is that the relation of frames and foundations is similar to
the relation of models and frames, i.e. every frame of a Γ-foundation is automatically a
Γ-frame, but not the other way around. The reason for this is that in frame definability
theorems the right-hand side of the equivalence pertain only to relations that are accessible
by processes in the set Λ in the frames under consideration, not every relation of the
foundation in general.

That said, frame definability is a sufficient condition for the foundation definability, since
if 〈W, I, R̃〉 � Γ⇔ ∀α1, . . . , αk ∈ Λ : C(I(f)(R(α1), . . . , R(αk))), then

〈W, I〉 � Γ⇔ ∀R1, . . . , Rk ⊆ W ×W : C(I(f)(R1, . . . , Rk)).

This is because there is always a frame F = 〈W, I, R̃〉 such that R1 = R(ai1), . . . , Rk =
R(aik) for some ai1 , . . . , aik ∈ A. Therefore, every array of relations in the dom(I(f)) is
accessible by some set of processes in some frame of any given foundation.

This last remark comes with one technical proviso. If we consider a PSTL-language
L(Π,A,F) with a k-ary operator f ∈ F and |A| < k, there is a foundation 〈W, I〉
such that |A| < k ≤ |P(W ×W )|. In this case the claim, that every array of relations
R1, . . . , Rk ∈ dom(I(f)) = (W ×W )k is accessible in some frame of foundation 〈W, I〉,
is clearly false. For example, consider a language L(Π, {a}, {+}) wherein + is binary
operator. There is a set of formulae Γ ⊆ L(Π, {a}, {+}) that defines the union on the level
of frames (cf. theorem 6.8). Consider then a foundation 〈W, I〉 such that W = {w1, w2}
and

I(+)(S, T ) =
{
S, if S = T
∅, if S 6= T.

Now, clearly R(α+ β)) = R(α)∪R(β);∀α, β ∈ Λ holds in every frame of the foundation,
since ∀α, β ∈ Λ : R(α) = R(β) = R(a). Hence, the foundation satisfies 〈W, I〉 � Γ (cf.
theorem 3.6). Regardless of this, there are relations R, S ⊆ W×W such that I(+)(R, S) 6=
R ∪ S (for example R = {〈w1, w1〉} and S = {〈w2, w2〉}, thus I(+)(R, S) = ∅ 6= R ∪ S).

Any language that contains a k-ary operator f such that |A| < k is a pathological special
case. This issue fortunately does not cause problems in what follows. It should be kept
in mind, however, that k-ary operations are generally not foundation definable in any
language L(Π,A,F), if |A| < k. Hence, the cardinality of a set of atomic processes A
could have an effect on the expressive power of the language. This is because on the
level of frames every process α ∈ Λ corresponds to fixed relation, whereas on the level of
foundations atomic processes are essentially free variables, whose binding is tantamount
to choosing a frame, and therefore the cardinality of a set A amounts to the number of
variables within the foundation logics. This is one notable difference between the frame
and the foundation logics.

The next theorem formalizes some of the preceding considerations.

Theorem 3.6. Let L(Π,A,F) be a PSTL language with k-ary operator k ∈ F . Let C
be any well-defined operator characterization and assume that there is a set of formulae
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Γ ⊆ L(Π,A,F) such that 〈W, I, R̃〉 � Γ⇔ ∀α1, . . . , αk ∈ Λ : C(I(f)(R(α1), . . . , R(αk))),

then 〈W, I〉 � Γ⇔ ∀R1, . . . , Rk ⊆ W ×W : C(I(f)(R1, . . . , Rk)), provided |A| ≥ k.

That is, every frame definable operator characterization is foundation definable with the
same set of formulae, and hence within the same language.

Proof. Let C be an operator characterization. Let L(Π,A,F) be a PSTL-language with
k-ary operator f ∈ F , |A| ≥ k and a set of formulae Γ ⊆ L(Π,A,F) such that

〈W, I, R̃〉 � Γ⇔ ∀α1, . . . , αk ∈ Λ : C(I(f)(R(α1), . . . , R(αk)))

holds in every L(Π,A,F)-frame 〈W, I, R̃〉.

Consider a foundation 〈W, I〉 and let R1, . . . , Rk ⊆ W × W be such relations that
/C(I(f)(R1, . . . , Rk)). Then there is a frame 〈W, I, R̃〉 such that R(a1) = R1, . . . , R(ak) =
Rk. Now, (R1, . . . , Rk) = (R(a1), . . . , R(ak)), therefore /C(I(f)(R(a1), . . . , R(ak))). Hence,
∃α1, . . . , αk ∈ Λ : /C(I(f)(R(a1), . . . , R(ak))), thus by the initial frame definability assump-
tion we infer 〈W, I, R̃〉 2 Γ, hence 〈W, I〉 2 Γ. Therefore, by the contraposition we have
that the frame definability assumption implies 〈W, I〉 � Γ ⇒ ∀R1, . . . , Rk ⊆ W ×W :
C(I(f)(R1, . . . , Rk)).

Assume then that 〈W, I〉 is L(Π,A,F)-foundation such that ∀R1, . . . , Rk ⊆ W × W :
C(I(f)(R1, . . . , Rk)). Then pick any frame 〈W, I, R̃〉 of the given foundation. Since
∀R1, . . . , Rk ⊆ W ×W : C(I(f)(R1, . . . , Rk)), especially then C(I(f)(R(α1), . . . , R(αk))),
for all α1, . . . , αk ∈ Λ. Hence, we infer by the frame definability assumption that
〈W, I, R̃〉 � Γ. Since this holds in every frame of the foundation, we have that if the
frame definability holds, ∀R1, . . . , Rk ⊆ W ×W : C(I(f)(R1, . . . , Rk))⇒ 〈W, I〉 � Γ.

Therefore, every frame definable operator is foundation definable. However, there are
foundation definable operators that are not frame definable, for example operator that
returns the universal relation of the domain. (Cf. theorems 6.3 and 7.1.9) Thus, we are
considering two different PSTL logics with definability as the primary semantic concept,
the PSTL frame logic and the PSTL foundation logic.

In what follows, we consider both logics, i.e. definability with respect to frames and
foundations. By theorem 3.6, we only need to prove that C is frame definable or that C is
not foundation definable and we get the other definability issue resolved by default. We
treat both definability issues explicitly only if it happens that C is foundation definable,
but not frame definable property.

We close this section by proving two simple lemmas with one substantial corollary.

Lemma 3.7. If α, β ∈ Λ, then 〈W, I, R̃〉 � [α]ϕ→ [β]ϕ if and only if R(β) ⊆ R(α).
9This issue, with the proof of theorem 7.1, was first pointed out to the author by Antti Kuusisto at

the University of Tampere, 2006.
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Proof. Let 〈W, I, R̃〉 be a PSTL-frame; α, β ∈ Λ processes that satisfy R(β) ⊆ R(α)
and P an arbitrary valuation function. Now, the structure M = 〈W, I, R̃, P 〉 is PSTL-
model with R(β) ⊆ R(α). Consider state w ∈ W and assume M,w � [α]ϕ, i.e. ∀w′ ∈
W : wR(α)w′ ⇒ M,w′ � ϕ. Hence, by the assumption R(β) ⊆ R(α), clearly ∀w′ ∈
W : wR(β)w′ ⇒ M,w′ � ϕ, thus M,w � [β]ϕ. Therefore, if R(β) ⊆ R(α), then
M,w � [α]ϕ→ [β]ϕ.

Then assume R(β) * R(α), thus ∃w,w′ ∈ W : wR(β)w′ and w/R(α)w′. Choose valuation
function P such that P (p) = W \ {w′}, for some p ∈ Π. Since w/R(α)w′, the choice
of P (p) directly implies M,w � [α]p. On the other hand, w′ /∈ P (p), thus M,w′ 2 p,
which, with wR(β)w′, implies M,w 2 [β]p. Therefore, M,w 2 [α]p → [β]p. Hence, if
R(β) * R(α) holds in frame 〈W, I, R̃〉, there is a valuation P and a formula ϕ such that
〈W, I, R̃〉 2 [α]ϕ→ [β]ϕ. Therefore, if 〈W, I, R̃〉 � [α]ϕ→ [β]ϕ, then R(β) ⊆ R(α).

Lemma 3.8. If α, β ∈ Λ, then 〈W, I, R̃〉 � [α]ϕ↔ [β]ϕ⇔ R(α) = R(β).

Proof. Consider an arbitrary PSTL-frame 〈W, I, R̃〉. By lemma 3.7, the proof is a trivial
chain of equivalences:

〈W, I, R̃〉 � [α]ϕ↔ [β]ϕ ⇔ 〈W, I, R̃〉 � [α]ϕ→ [β]ϕ and 〈W, I, R̃〉 � [β]ϕ→ [α]ϕ
⇔ R(β) ⊆ R(α) and R(α) ⊆ R(β)
⇔ R(α) = R(β)

Corollary 3.9. Let L(Π,A,F) be a PSTL-language such that f, g ∈ F wherein dom(f) =
Λm, dom(g) = Λn and let |A| ≥ m+ n. Then,

〈W, I〉 � [f(α1, . . . , αm)]ϕ↔ [g(β1, . . . , βn)]ϕ

if and only if

∀S1, . . . Sm, T1, . . . , Tn ⊆ W ×W : I(f)(S1, . . . Sm) = I(g)(T1, . . . , Tn).

Proof. Assume that the foundation 〈W, I〉 satisfies ∀S1, . . . Sm, T1, . . . , Tn ⊆ W × W :
I(f)(S1, . . . Sm) = I(g)(T1, . . . , Tn). Then, especially ∀α1, . . . , αm, β1, . . . , βn ∈ Λ :
I(f)(R(α1), . . . , R(αm)) = I(g)(R(β1), . . . , R(βn)) holds in every frame 〈W, I, R̃〉. Thus,
by Lemma 3.8, 〈W, I, R̃〉 � [f(α1, . . . , αm)]ϕ ↔ [g(β1, . . . , β)]ϕ holds in every frame
of 〈W, I〉 for every α1, . . . , αm, β1, . . . , βn ∈ Λ, i.e. 〈W, I〉 � [f(α1, . . . , αm)]ϕ ↔
[g(β1, . . . , βn)]ϕ.

Assume then that ∃S1, . . . , Sm, T1, . . . , Tn ⊆ W×W : I(f)(S1, . . . , Sm) 6= I(g)(T1, . . . , Tn).
By the assumption |A| ≥ m + n, there is a frame 〈W, I, R̃〉 such that R̃(a1) =
S1, . . . , R̃(am) = Sm and R̃(b1) = T1, . . . , R̃(bn) = Tn; a1, . . . am, b1, . . . bn ∈ A. Thus,
R(f(a1, . . . , am)) 6= R(g(b1, . . . , bn)), hence, by lemma 3.8, 〈W, I, R̃〉 2 [f(a1, . . . , am)]ϕ↔
[g(b1, . . . bn)]ϕ. Therefore, 〈W, I〉 2 [f(α1, . . . , αm)]ϕ↔ [g(β1, . . . , βn)]ϕ.
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4 The union of the disjoint PSTL models and frames

In this section, we define an operation on frames called the union of the disjoint frames.
The operation on Kripke-frames should be found in any textbook considering modal de-
finability.10 Since the standard Kripke-frames do not contain the interpretation mapping
I, we also need to take care of that the interpretation mapping in the unified PSTL frame
is both well defined and provides for the most essential property of the operation; that is,
I should be defined such that all the frame validities are conserved in the union of disjoint
frames.
Definition 4.1. Let Mi = 〈Wi, Ii, R̃i, Pi〉 and Mj = 〈Wj, Ij, R̃j, Pj〉 be models of the
same language L(Π,A,F), i.e. there is an interpretation for every p ∈ Π, f ∈ F and
a ∈ A in both models Mi and Mj. If Wi ∩Wj = ∅, the models Mi and Mj are said to be
(pairwise) disjoint.

If necessary, we can always assume that any two models Mi = 〈Wi, Ii, R̃i, Pi〉 and Mj =
〈Wj, Ij, R̃j, Pj〉 are pairwise disjoint, since there is a canonical way to force the models to
satisfy the disjointness condition. This is done by renaming both, the domain elements
wn ∈ Wi and the domain Wi itself, by tagging the initial indices with new a index k.
Thus, if for example Wi = {w0, w1, w2}, tagging yields Wik = {w0k , w1k , w2k}. Renaming
is then applied to any element in Mi, thus e.g. from w0R̃i(α)w1, we get w0kR̃ik(α)w1k ,
etc. Call the resulting model Mik . Then the procedure is applied to Mj with a new index
k′ 6= k. The net result is that necessarily Wik ∩Wjk′ = ∅, since the elements of sets Wik
andWjk′ are syntactically divergent. Of course, the process can be applied to any number
of models under consideration.

Next we define an operation on disjoint PSTL-models that returns a single unified model
and prove several properties of the operation. Then we generalize the operation to apply
for frames and prove the most important result of the section: every frame definable
property is conserved within the union of disjoint frames. We use the result mainly to
prove that some operators are not frame definable in any PSTL-language.
Definition 4.2. Let Mi and Mj be disjoint models. The disjoint union Mi ]Mj of the
models Mj,Mi is the structure 〈Wi ] Wj, Ii ] Ij, R̃i ] R̃j, Pi ] Pj〉 with the following
definitions:

(i) Wi ]Wj = Wi ∪Wj

(ii) (R̃i] R̃j) : A → P((Wi]Wj)× (Wi]Wj)) s.t. (R̃i] R̃j)(a) = R̃i(a)∪ R̃j(a),∀a ∈ A

(iii) (Pi ] Pj) : Π→ P(Wi ]Wj) s.t. (Pi ] Pj)(p) = Pi(p) ∪ Pj(p),∀p ∈ Π

The interpretation function

(Ii ] Ij) : F →
∞⋃
n=0
{F |F : (P((Wi ]Wj)× (Wi ]Wj)))n → P((Wi ]Wj)× (Wi ]Wj))}

10See for example (Blackburn et al., 2002, pp.138–139) or (Rantala & Virtanen, 2004, pg.219).
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is likewise as follows: Let f ∈ F be k-ary operator, then

(iv) (Ii ] Ij)(f) = F : V ⊆ ((Wi ]Wj)× (Wi ]Wj))k 7→ U ⊆ (Wi ]Wj)× (Wi ]Wj)

wherein if V = ((S1∪T1), . . . (Sk∪Tk)) such that Sr ⊆ Wi×Wi, Tr ⊆ Wj×Wj; 1 ≤ r ≤ k,
then U = Ii(f)(S1, . . . , Sk) ∪ Ij(f)(T1, . . . Tk); otherwise U = Wi ∪Wj.

Note that the choice to map relations, that are not properly included in the initial frames,
toWi∪Wj is arbitrary; this is just to ensure that the resulting unified frame is well-defined.

By the above definition, mapping Ri ]Rj : Λ→ P(Wi ]Wj) satisfying

(v) (Ri ]Rj)(a) = (R̃i ] R̃j)(a)
(vi) (Ri ]Rj)(f(α1, . . . , αk)) = (Ii ] Ij)(f)((Ri ]Rj)(α1), . . . , (Ri ]Rj)(αk))

= Ii(f)(Ri(α1), . . . , Ri(αk)) ∪ Ij(f)(Rj(α1), . . . , Rj(αk))

is well defined and consequently ∀α ∈ Λ : (Ri ]Rj)(α) = Ri(α) ∪Rj(α).

We adopt a more compact notation, M(i;j) = 〈W(i;j), I(i;j), R̃(i;j), P(i;j)〉, for structure Mi ]
Mj = 〈Wi ]Wj, Ii ] Ij, R̃i ] R̃j, Pi ] Pj〉.

Lemma 4.3. Let Mi = 〈Wi, Ii, R̃i, Pi〉 and Mj = 〈Wj, Ij, R̃j, Pj〉 be L(Π,A,F)-models.
Every formula ϕ ∈ L(Π,A,F) and every state w ∈ Wi ∪Wj satisfies

(i) M(i;j), w � ϕ⇔Mi, w � ϕ, if w ∈ Wi and

(ii) M(i;j), w � ϕ⇔Mj, w � ϕ, if w ∈ Wj.

Proof. The proof is a typical induction process over the structure of an arbitrary formula
ϕ. Assume first that ϕ = p ∈ Π and consider the state w ∈ W(i;j). SinceW(i;j) = Wi∪Wj,
w ∈ Wi or w ∈ Wj. If w ∈ Wi, by disjointness of the domains Wi and Wj, we readily have
that w /∈ Wj. Therefore, the part (ii) of the claim, M(i;j), w � p⇔Mj, w � p; if w ∈ Wj,
holds trivially since the condition w ∈ Wj is not satisfied. Recall that valuation function
P(i;j) is defined such that ∀pk ∈ Π : P(i;j)(pk) = Pi(pk) ∪ Pj(pk). The definition has an
immediate reformulation: ∀w ∈ Wi ∪Wj : w ∈ P(i;j)(pk) ⇔ (w ∈ Pi(pk) or w ∈ Pj(pk)).
Now w /∈ Pj(p), since by the assumption w ∈ Wi; hence we have that w ∈ P(i;j)(p) ⇔
w ∈ Pi(p). By Definition 2.6, the latter is exactly the part (i) of the claim, namely that
M(i;j), w � p⇔Mi, w � p.

If, on the other hand, w /∈ Wi then w ∈ Wj and the proof for the basis of the induction
is identical with the previous demonstration. Therefore the claim holds, if ϕ = p ∈ Π.

Then assume that the claim holds for the formulae ξ and ζ. The connectives are treated
in the standard way, thus we bypass the demonstrations as trivial and consider next the
operator case; that is, let ϕ = [α]ξ, for α ∈ Λ.
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Pick an arbitrary state w ∈ Wi ∪Wj. By symmetry, we may assume that w ∈ Wi. Since
Wi ∩Wj = ∅, we again have w /∈ Wj and the part (ii) of the claim, M(i;j), w � [α]ξ ⇔
Mj, w � [α]ξ; if w ∈ Wj, holds trivially.

Next assume Mi, w 2 [α]ξ. Then ∃w′ ∈ Wi : wRi(α)w′ and Mi, w
′ 2 ξ. Since w′ ∈ Wi,

w′ ∈ Wi ∪Wj = Wi ]Wj, and because Mi, w′ 2 ξ by the induction hypothesis M(i;j), w
′ 2

ξ. Now by Definition of R(i;j) we have that wR(i;j)(α)w′, hence M(i;j), w 2 [α]ξ. So if
M(i;j), w � [α]ξ, then Mi, w � [α]ξ, provided w ∈ Wi.

Assume then thatM(i;j), w 2 [α]ξ, i.e. ∃w′ ∈ W(i;j) : wR(i;j)(α)w′ and M(i;j), w
′ 2 ξ. Since

R(i;j)(α) = Ri(α) ∪ Rj(α) and Wi ∩Wj = ∅ we infer, by the initial assumption w ∈ Wi,
that w′ ∈ Wi and wRi(α)w′. Now by induction hypothesisMi, w′ 2 ξ, henceMi, w 2 [α]ξ.
Therefore if Mi, w � [α]ξ, then M(i;j), w � [α]ξ.

Lemma 4.3 has an array of useful corollaries.

Corollary 4.4. M(i;j) � ϕ⇔Mi � ϕ and Mj � ϕ.

Proof.

M(i;j) � ϕ ⇔ ∀w ∈ W(i;j) : M(i;j), w � ϕ
(By definition 4.2) ⇔ ∀w ∈ Wi ∪Wj : M(i;j), w � ϕ

(By lemma 4.3) ⇔ ∀w′ ∈ Wi : Mi, w′ � ϕ and ∀w′′ ∈ Wj : Mj, w′′ � ϕ
⇔ Mi � ϕ and Mj � ϕ

Corollary 4.5. Corollary 4.4 holds for the disjoint union of indefinite number of models.
That is, let

M(0;1;...;n) =
n⊎
i=0

Mi, then M(0;1;...;n) � ϕ⇔M0 � ϕ,M1 � ϕ, . . . ,Mn � ϕ.

Proof. This is an induction over the index set {0, 1, . . . , n} with the basis provided in
Corollary 4.4, hence we begin by assuming that the claim holds for M(0;1;...;n−1). Now,

M0 � ϕ,M1 � ϕ, . . . ,Mn−1 � ϕ,Mn � ϕ ⇔ M(0;1;...;n−1) � ϕ and Mn � ϕ
⇔ M(0;1;...;n−1) � ϕ ]Mn � ϕ
⇔ M(0;1;...;n) � ϕ,

where the first equivalence is due to the induction hypothesis and the second is implied
by Corollary 4.4.

Definition 4.6. We get the definition for the union of disjoint frames easily from Def-
inition 4.2 by simply omitting the references to valuations: Let Fi = 〈Wi, Ii, R̃i〉 and
Fj = 〈Wj, Ij, R̃j〉 be disjoint frames of the same PSTL-language, i.e. the domains of
Fi, Fj satisfy Wi∩Wj = ∅, then structure Fi]Fj = 〈Wi]Wj, Ii] Ij, R̃i] R̃j〉 is the struc-
ture that satisfies the conditions (i),(ii) and (iv) (and therefore, effectively, the conditions
(v) and (vi)) of Definition 4.2. Again, we denote F(0;1;...;n) = F1 ] F1 ] . . . ] Fn.
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Corollary 4.7. Frame validity is conserved within the union of disjoint frames; that is,
let L(Π,A,F) be a PSTL-language and Fi, Fj L(Π,A,F)-frames, then

∀ϕ ∈ L(Π,A,F) : F(i;j) � ϕ⇔ Fi � ϕ and Fj � ϕ.

Proof. Assume Fi � ϕ and Fj � ϕ. Now if F(i;j) 2 ϕ, there is a valuation P(i;j) such
that 〈F(i;j), P(i;j)〉 2 ϕ; i.e. ∃w ∈ W(i;j) : 〈F(i;j), P(i;j)〉, w 2 ϕ. If w ∈ Wi, by lemma 4.3
〈Fi, Pi〉, w 2 ϕ. Likewise if w ∈ Wj, then 〈Fj, Pj〉, w 2 ϕ. In any case Fi 2 ϕ or Fj 2 ϕ,
which contradicts the assumption. Thus, Fi � ϕ and Fj � ϕ⇒ F(i;j) � ϕ.

Next assume that Fi 2 ϕ or Fj 2 ϕ. Then, exploiting Definition 2.6, directly by Lemma
4.3, we have that F(i;j) 2 ϕ.

Lemma 4.8. Let L(Π,A,F) be a PSTL-language. Any definable well-defined charac-
terization of an interpretation I(f), for all f ∈ F , is conserved in the union of disjoint
L(Π,A,F)-frames.

To be exact, the lemma states that given any PSTL-language L(Π,A,F), if there is a
set of formulae Γ ⊆ L(Π,A,F) such that Γ defines some well-defined characterization C
of k-ary operator f ∈ F and the following holds:

(i) Frame Fi = 〈Wi, Ii, R̃i〉 satisfies C(Ri(f(α1, . . . , αk))),∀α1, . . . , αk ∈ Λ

(ii) Frame Fj = 〈Wj, Ij, R̃j〉 satisfies C(Rj(f(α1, . . . , αk))),∀α1, . . . , αk ∈ Λ,

then F(i;j) = 〈W(i;j), I(i;j), R̃(i;j)〉 satisfies C(R(i;j)(f(α1, . . . , αk))),∀α1, . . . , αk ∈ Λ.

Proof. Let L(Π,A,F) be a PSTL-language with a k-ary operator f ∈ F . Assume first
that ∃Γ ⊆ L(Π,A,F) such that the following correspondence holds for every L(Π,A,F)-
frame 〈W, I, R̃〉:

1◦ : 〈W, I, R̃〉 � Γ if and only if C(R(f(α1, . . . , αk))),∀α1, . . . , αk ∈ Λ.

Let Fi = 〈Wi, Ii, R̃i〉 and Fj = 〈Wj, Ij, R̃j〉 be L(Π,A,F)-frames such that ∀α1, . . . , αk ∈
Λ : C(Ri(f(α1, . . . , αk))) and C(Rj(f(α1, . . . , αk))). By the assumption 1◦, Fi � Γ and
Fj � Γ. Now, by Corollary 4.7, F(i;j) � Γ, therefore, again by the assumption 1◦,
C(R(i;j)(f(α1, . . . , αk))),∀α1, . . . , αk ∈ Λ.

Since the concept of characterization is left somewhat intuitive in the opening of the
chapter 3, it will be worthwhile to elaborate on actual content of Lemma 4.8. The reader
should notice that the lemma actually has a non-trivial and applicable content, since the
concept of the frame definability and the constraints assigned in Definition 2.5 to the
well-defined characterizations should be clear and straightforward.
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Consider what it would mean if Lemma 4.8 did not hold. For contradiction, consider again
the unified frame F(i;j) = 〈W(i;j), I(i;j), R̃(i;j)〉 and assume that there is a L(Π,A,F)-frame
F = 〈W(i;j), I, R̃(i;j)〉 such that

2◦ : C(I(f)(R(i;j)(α1), . . . , R(i;j)(αk))),∀α1, . . . , αk ∈ Λ and I(i;j)(f) 6= I(f).

The latter part of the condition 2◦ means that

∃β1, . . . , βk ∈ Λ : I(i;j)(f)(R(i;j)(β1), . . . , R(i;j)(βk)) 6= I(f)(R(i;j)(β1), . . . , R(i;)(βk)).

Therefore, according to Definition 3.1, the first part of 2◦ implies that either, contrary to
assumption, C is ill-defined property since it is satisfied with two divergent mappings with
the same argument list, or I(i;j)(f)(R(i;j)(β1), . . . , R(i;j)(βk)) fails to satisfy C. The latter in
turn implies with 1◦ that F(i;j) 2 Γ, which contradicts the assumptions Fi � Γ, Fj � Γ and
Lemma 4.7. This last remark demonstrates that actually Lemma 4.8 is a reformulation
of Lemma 4.7 that allows us to bypass several mechanical steps in the inference required
to apply Lemma 4.7 properly.

5 Pseudoepimorphic PSTL-frames

For some non-frame definability results we need a different approach than with the union
of disjoint frames. Next, we introduce standard model theoretical tool called pseudoepi-
morphism, henceforth p-morphism for short. (Cf. e.g. Blackburn et al. (2002, pp.60–
62)). P-morphisms form a subclass of natural homomorphisms over Kripke-frames called
bounded morphisms. We start by defining Λ-bounded morphisms; that is, bounded mor-
phisms suited for PSTL-frames.

Definition 5.1. Let F = 〈W, I, R̃〉 and F ∗ = 〈W ∗, I∗, R̃∗〉 be frames of the same PSTL-
language. Function g : W → W ∗ is a Λ-bounded morphism from F to F ∗, if

(i) ∀α ∈ Λ : wR(α)v ⇒ g(w)R∗(α)g(v) and

(ii) ∀α ∈ Λ : g(w)R∗(α)v′ ⇒ ∃v ∈ W : wR(α)v and g(v) = v′.

If g : W → W ∗ is a surjective Λ-bounded morphism, we say that g is a Λ-p-morphism
and that F ∗ is a Λ-p-morphic image of F .

We extrapolate the above definition to define Λ-bounded morphisms over PSTL-models:
Let M = 〈W, I, R̃, P 〉 and M∗ = 〈W ∗, I∗, R̃∗, P ∗〉 be L(Π,A,F)-models. Function g :
W → W ∗ is a Λ-bounded morphism from M to M∗, if g satisfies conditions (i), (ii) and

(iii) ∀p ∈ Π : ∀w ∈ W : M,w � p⇔M∗, g(w) � p.
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Lemma 5.2. Let M = 〈W, I, R̃, P 〉 and M∗ = 〈W ∗, I∗, R̃∗, P ∗〉 be models of the same
PSTL-language L(Π,A,F) such that there exists Λ-bounded morphism g : W → W ∗.
Then, ∀w ∈ W : M,w � ϕ if and only if M∗, g(w) � ϕ.

Proof. Choose any state w ∈ W . We prove the claim by induction over the structure of
formula ϕ. Let ϕ = p ∈ Π. Then the claim holds directly by the above condition (iii) for
the Λ-bounded morphisms on models.

Assume that the claim holds for formulae ξ and ζ. As usual, the connective steps are
straightforward:

M,w � ¬ξ ⇔M,w 2 ξ ⇔(i.h.) M
∗, g(w) 2 ξ ⇔M∗, g(w) � ¬ξ

M,w � ξ ∧ ζ ⇔ M,w � ξ and M,w � ζ
(By the induction hypothesis) ⇔ M∗, g(w) � ξ and M∗, g(w) � ζ

⇔ M∗, g(w) � ξ ∧ ζ
Then let ϕ = [α]ξ, for arbitrary α ∈ Λ. First assume M,w 2 [α]ξ, i.e. ∃v ∈ W :
wR(α)v and M, v 2 ξ. Since g is a Λ-bounded morphism fromM toM∗, by the condition
(i), g(w)R∗(α)g(v) and by the induction hypothesis M∗, g(v) 2 ξ. Therefore M∗, g(w) 2
[α]ξ.

Next assume M∗, g(w) 2 [α]ξ. Then ∃v′ ∈ W ∗ : g(w)R∗(α)v′ and M∗, v′ 2 ξ. Therefore,
by the condition (ii), ∃v ∈ W : wR(α)v and g(v) = v′. Since M∗, v′ 2 ξ, by the induction
hypothesis we have M, v 2 ξ, thus M,w 2 [α]ξ. Since the choice of process α ∈ Λ was
arbitrary, we infer from the preceding steps that ∀α ∈ Λ : M,w � [α]ξ ⇔M∗, g(w) � [α]ξ.
This completes the induction and the proof of Lemma 5.2.

We close this short section with a theorem concerning the most important property of
Λ-p-morphisms in respect of frame definability issues.

Theorem 5.3. Let L(Π,A,F) be a PSTL-language and F = 〈W, I, R̃〉, F ∗ =
〈W ∗, I∗, R̃∗〉 frames of the named language such that F ∗ is a Λ-p-morphic image of F ,
i.e. there is a Λ-p-morphism g : W → W ∗. Then ∀ϕ ∈ L(Π,A,F) : F � ϕ⇒ F ∗ � ϕ.

Proof. For a contradiction, assume that F � ϕ and F ∗ 2 ϕ. Then there is a model
M∗ = 〈W ∗, I∗, R̃∗, P ∗〉 with state w′ ∈ W such that M∗, w′ 2 ϕ. Consider a valuation
P such that ∀p ∈ Π : P (p) = {w ∈ W |g(w) ∈ P ∗(p)}. Clearly P is well-defined and
also, in effect, now g : W → W ∗ is a Λ-bounded morphism from M onto M∗. Also, since
g : W → W ∗ is surjective, we have that ∃w ∈ W : w′ = g(w). Now, lemma 5.2 states that
M,w � ϕ ⇔ M∗, w′ � ϕ, if w′ = g(w); hence we infer M,w 2 ϕ from M∗, w′ 2 ϕ. But
then we have that F 2 ϕ, a contradiction. Therefore the counter-assumption is necessarily
false.
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6 Operator definability in PSTL frame logics

6.1 Constant operators

This section discusses some typical 0-ary operators, i.e. operators with an empty argument
list. The class of 0-ary operators is a natural member in our family of operators and
implied in Definition 2.5: If f ∈ F is 0-ary, then I(f) = F : {∅} → P(W × W ),
since (P(W ×W ))0 = {∅}.11 For 0-ary operator f , we associate the interpretation I(f)
directly with the target relation S of mapping F . Thus, if I(f) = F : ∅ 7→ S, we write
I(f) = S = R(f).12

Actually, by a constant operator we mean an operator with any arity that returns fixed
relation R ⊆ W ×W with any parameter array. By definition, any 0-ary operator f is
automatically a constant operator. (Constant in relation to the given foundation, that is.)
On the other hand, any k-ary constant operator could be assigned any arity. Whence, it
is natural to generally associate constant operators with 0-ary operators, for the output
of a constant operator is not dependent on its parametric relations. For example, if
we have a k-ary operator f such that ∃R ⊆ W × W : ∀R1, R2, . . . , Rk ⊆ W × W :
I(f)(R1, R2, . . . , Rk) = R, we can always introduce a 0-ary operator f0, and on the other
hand a k + 1-ary operator fk+1, such that I(f0) = R and ∀R1, R2, . . . , Rk+1 ⊆ W ×W :
I(fk+1)(R1, R2, . . . , Rk+1) = R. Therefore, generally speaking, it is pointless to define k-
ary constant operators with k > 0. Regardless of this fact, we formulate non-definability
theorems for constant operators with an arbitrary arity to emphasize the point that the
results are valid for any PSTL-language.

Finally, it should be noted that if C(R) is definable in Kripke semantics, then C(R(f)) is
frame definable in PSTL language L(Π,A, {f}) wherein f is 0-ary operator. It should
be clear that if there is a set of formulae Γ of standard modal logic (i.e. modal logic
that contains single modal operator �) such that 〈W,R〉 � Γ⇔ C(R), wherein 〈W,R〉 is
a Kripke-frame, then 〈W, I, R̃〉 � Γ∗ ⇔ C(R(f)), where Γ∗ is obtained by replacing the
occurrences of the modal operator � with the modal operator [f ]. Thus, the following de-
finability results are familiar from Kripke semantics. (For example, the proof of Theorem
6.2 is left as an exercise in Rantala & Virtanen (2004, in pg.212).)

Theorem 6.1. Let L(Π,A, {0}) be a PSTL-language such that 0 is 0-ary operator. The
operator returning the empty relation ∅ is frame definable within L(Π,A, {0}) since the
following correspondence holds:

〈W, I, R̃〉 � [0]⊥ if and only if R(0) = ∅.
11Technically, A0 is the set that has the empty tuple as its only member. We use the notation ∅ to

denote the empty tuple in the context of the constant operators.
12This is a minor technicality: Actually I(f) is a function from the empty tuple to P(W ×W ), but as

in the Definition 2.5 on page 5 we can write I(f)(∅) = R(f(∅)). Thus, if we omit the redundant reference
to the empty tuple ∅, the expression I(f)(∅) = R(f(∅)) reduces to I(f) = R(f).
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Proof. The proof is trivial. If R(0) = ∅ holds in the frame F = 〈W, I, R̃〉, directly by the
truth definition of the operator formula [0]⊥, we have that F � [0]⊥.

If, on the other hand, R(0) 6= ∅, there exists states w,w′ ∈ W such that wR(0)w′. Now,
M,w′ 2 ⊥ by the definition of the constant ⊥, hence M,w 2 [0]⊥. Thus, F 2 [0]⊥.

Theorem 6.2. Let L(Π,A, {D}) be a PSTL-language with 0-ary operator D. An operator
returning the diagonal relation {〈w,w〉 | w ∈ W} (i.e. the identity map of W ) is frame
definable in language L(Π,A, {D}) since the following holds:

〈W, I, R̃〉 � [D]ϕ↔ ϕ if and only if R(D) = {〈w,w〉 | w ∈ W}.

Proof. The proof for the implication from right to left is quite straightforward. Let
M = 〈W, I, R̃, P 〉 be a L(Π,A, {D})-model satisfying R(D) = {〈w,w〉 | w ∈ W}. Now
∀w ∈ W : if M,w � [D]ϕ, then M,w � ϕ, because wR(D)w. Similarly, if M,w 2 [D]ϕ,
then ∃w,w′ ∈ W : wR(D)w′ and M,w′ 2 ϕ. By the definition of R(D), necessarily
w = w′, thus M,w 2 ϕ. Hence, we conclude R(D) = {〈w,w〉|w ∈ W} ⇒ 〈W, I, R̃〉 �
[D]ϕ↔ ϕ.

Then, let F = 〈W, I, R̃〉 be a L(Π,A,F)-frame such that R(D) 6= {〈w,w〉|w ∈ W}. Now
F satisfies either

(i) ∃w ∈ W : w/R(D)w, or
(ii) ∃w,w′ ∈ W : wR(D)w′ and w 6= w′.

First assume that the frame F satisfies the condition (i). Let M = 〈W, I, R̃, P 〉 be a
model with a valuation mapping P for some propositional symbol p ∈ Π defined such
that P (p) = W \ {w}. Then, by the definition of P (p), we readily have M,w 2 p. On
the same grounds, with the condition (i), ∀w′ ∈ W : wR(D)w′ ⇒ M,w′ � p; that is,
M,w � [D]p. Therefore M,w 2 [D]p↔ p.

Next assume that F satisfies the condition (ii). Let M = 〈W, I, R̃, P 〉 be structure with
valuation P (p) = {w}, for some p ∈ Π; i.e. M,w � p. By condition (ii), wR(D)w′
and w 6= w′. By the choice of P (p) we have M,w′ 2 p, thus M,w 2 [D]p. Therefore
M,w 2 [D]p↔ p.

Hence, we have that 〈W, I, R̃〉 � [D]ϕ↔ ϕ⇒ R(D) = {〈w,w〉|w ∈ W}.

Results of the section 4 are very useful for proving that several operators are not definable
in any PSTL-language, especially in the case of domain dependent operators. Since
several standard constant operators are inherently domain dependent, we find powerful
applications for Lemma 4.4 and its corollaries within the non-frame definable constant
operators.

Theorem 6.3. The operator that returns the universal relation W ×W of an arbitrary
frame 〈W, I, R̃〉, is not frame definable in any PSTL-language L(Π,A,F).
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The theorem is directly implied by Lemma 4.8 but for the sake of illustration we consider
the proof in this case in more detail.

Proof. Assume the contrary; that is, there is a PSTL-language L(Π,A,F) and a set of
formulae Γ ⊆ L(Π,A,F) such that Γ defines the universal relation on frames. Thus, there
is a k-ary operator f ∈ F such that

〈W, I, R̃〉 � Γ⇔ ∀α1, . . . , αk ∈ Λ : R(f(α1, . . . , αk)) = W ×W.

Let F1 = 〈W1, I1, R̃1〉 and F2 = 〈W2, I2, R̃2〉 be Γ-frames (i.e. F1 � Γ and F2 � Γ)
defined such that W1 = {w1}, W2 = {w2} and ∀a ∈ A : R̃1(a) = ∅ = R̃2(a). We
assume that I1(g) and I2(g) are well defined for all g ∈ F , possibly as required by Γ.
Especially, since F1 and F2 are Γ-frames, I1(f)(R1(α1), . . . , R1(αk)) = W1 × W1 and
I2(f)(R2(α1), . . . , R2(αk)) = W2 ×W2.

Now, by Definition 4.6, the structure F(1;2) = 〈W(1;2), I(1;2), R̃(1;2)〉 is the following:

W(1;2) = {w1, w2}
∀α1, . . . , αk ∈ Λ : I(1;2)(f)(R(1;2)(α1), . . . , R(1;2)(αk)) = {〈w1, w1〉, 〈w2, w2〉}
(∀g ∈ F : I(1;2)(g) defined by I1, I2 and the operation ])
∀ai ∈ A : R̃(1;2)(ai) = ∅

Now, ∃α1, . . . , αk ∈ Λ : R(1;2)(f(α1, . . . , αk)) 6= W(1;2) ×W(1;2) (indeed, we can choose any
list of processes α1, . . . , αk ∈ Λ we like). Thus, by the counter-assumption, F(1;2) 2 Γ.
Consequently, by Corollary 4.7, either F1 2 Γ or F2 2 Γ. Hence, the counter-assumption
implies contradiction and therefore is false.

Theorem 6.4. The operation that maps to the diversity relation of the domain W , i.e.
relation {〈w,w′〉|w,w′ ∈ W : w 6= w′}, is not frame definable in any PSTL-language.

Proof. The proof should be obvious. Consider frames F1 = 〈{w1}, I1, R̃1〉 and F2 =
〈{w1}, I2, R̃2〉. The frames have the same diversity relation, namely the empty relation.
Now, if we have an operator f ∈ F such that ∀α1, . . . , αk ∈ Λ : R1(f(α1, . . . , αk)) = ∅ and
R2(f(α1, . . . , αk)) = ∅, then ∀α1, . . . , αk ∈ Λ : R(1;2)(f(α1, . . . , αk)) = ∅. But the diversity
relation of the frame F(1:2) is {〈w1, w2〉, 〈w2, w1〉}, therefore the theorem holds by Lemma
4.8.

6.2 Unary operators

In this section we shall discuss only two operators, where one is frame definable and the
other not. We shall begin with the latter exploiting Lemma 4.8.

Theorem 6.5. The operator that returns the complement of the relation R(α), ∀α ∈ Λ,
with respect to the universal relation of a given domain, i.e. the relation R(α) = (W ×
W ) \R(α), is not frame definable in any PSTL-language.
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Since the complementation is a domain dependent operation and the scope of the appli-
cation of Lemma 4.8 clearly coincides with the domain dependent properties, this should
be enough to inform the reader that the complementation is not frame definable in any
PSTL-language L(Π,A,F). Anyhow, we look at the proof briefly with some more detail.

Proof. Consider frames F1 = 〈W1, I1, R̃1〉 and F2 = 〈W2, I2, R̃2〉 of any PSTL-language
L(Π,A,F) with a unary operator f ∈ F such that

W1 = {w1}
I1(f)(R1(α)) = R1(α),∀α ∈ Λ
R̃1(a) = ∅,∀a ∈ A

and


W2 = {w2}
I2(f)(R(α)) = R(α),∀α ∈ Λ
R̃2(a) = ∅, ∀a ∈ A

Thus, for any a ∈ A, I1(f)(R1(a)) = {〈w1, w1〉} and I2(f)(R2(a)) = {〈w2, w2〉}. Now,
consider the frame F(1;2) = 〈W(1;2), I(1;2), R̃(1;2)〉 and pick any a ∈ A. Since R(1;2)(a) = ∅
and I(1;2)(f)(R(1;2)(a)) = {〈w1, w1〉, 〈w2, w2〉} 6= W(1;2) ×W(1;2) = R(1;2)(a), the comple-
mentation property is not conserved within the interpretation I(1;2)(f). Therefore, by
Lemma 4.8, the operator carrying out the complementation is not frame definable in any
PSTL-language.

Note two details in the previous proof. First, the set of syntactic operators F could
contain a set of operators {f1, f2, f3, . . .} ⊆ F : f /∈ {f1, f2, f3, . . .} and should this be the
case, interpretations Ik(fi), k ∈ {1, 2, (1; 2)}, i ∈ {1, 2, 3, . . .} were not explicitly defined
in frames F1, F2 and F(1;2). In any case, we can assume that the possible extraneous
operators are assigned any interpretation since in the crucial step of the proof operator
f operates directly on the atomic process. Therefore, whatever interpretations operators
f1, f2, f3 . . . should have, this does not affect the conclusion. Secondly, we assumed that
f is a unary operator. This, again, does not affect the conclusion for the following
reason. Clearly the arity of the operator f should be n ≥ 1, and if the arity is n > 1,
we need a projection function to pick out the relation R(α) from the argument list in
I(f)(R(α1), . . . , R(α), . . . R(αn)), if we want f to return the complement of R(α) with
respect to W × W . Otherwise the output of f would not be effectively dependent on
the argument list, thus rendering f ill-defined. And this, in turn, effectively reduces the
n-ary operator f to a unary operator. Hence, the proof is valid regardless the actual arity
assigned to the operator f , or the arity of any other operator in F for that matter.

Theorem 6.6. Let L(Π,A, {̆·}) be a PSTL-language and ·̆ a unary operator. The oper-
ation returning the inverse of relation R(α), i.e. R(α)−1 = {〈w,w′〉|〈w′, w〉 ∈ R(α)}, is
frame definable in L(Π,A, {̆·}), since the following correspondence holds:

〈W, I, R̃〉 � ϕ→ [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ if and only if ∀α ∈ Λ : R(ᾰ) = R(α)−1.

Proof. 13 Let 〈W, I, R̃〉 be a L(Π,A, {̆·})-frame such that ∀α ∈ Λ : R(ᾰ) = R(α)−1.
Consider an arbitrary modelM = 〈W, I, R̃, P 〉 of a frame F and let w ∈ W be such a state

13For partial result, see (Harel et al., 2000, pp.177–178).
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that M,w � ϕ. If wR(α)w′, then, by the definition of an inverse relation, w′R(α)−1w.
By assumption R(ᾰ) = R(α)−1, we infer M,w′ � 〈ᾰ〉ϕ. All we assumed about state
w′ was that wR(α)w′, whence the conclusion holds for all w′ ∈ W : wR(α)w′; that is,
∀w′ ∈ W : wR(α)w′ ⇒ M,w′ � 〈ᾰ〉ϕ. Therefore, M,w � ϕ ⇒ M,w � [α]〈ᾰ〉ϕ. If on
the other hand wR(ᾰ)w′, similarly as above then w′R(α)w, since R(ᾰ) = R(α)−1, hence
M,w′ � 〈α〉ϕ. Thus, ∀w′ ∈ W : wR(ᾰ)w′ ⇒ M,w′ � 〈α〉ϕ, i.e. M,w � [ᾰ]〈α〉ϕ. From
the above results we infer M,w � ϕ→ [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ.

Therefore, if ∀α ∈ Λ : R(ᾰ) = R(α)−1, then 〈W, I, R̃〉 � ϕ→ [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ.

Next, consider the frame F = 〈W, I, R̃〉 and assume that ∃α ∈ Λ : R(ᾰ) 6= R(α)−1. Then
either (i) R(ᾰ) * R(α)−1 or (ii) R(α)−1 * R(ᾰ); that is,

(i) ∃w,w′ ∈ W : wR(ᾰ)w′ and w/R(α)−1w′, or
(ii) ∃w,w′ ∈ W : wR(α)−1w′ and w/R(ᾰ)w′

First, assume that F satisfies the condition (i). Let M = 〈W, I, R̃, P 〉 be model
with valuation P (p) = {w}, for some p ∈ Π. Thus, M,w � p. Since w/R(α)−1w′

by condition (i), by the definition of inverse relation we then have w′ /R(α)w. There-
fore, M,w′ 2 〈α〉p by the choice of P (p). Again, wR(ᾰ)w′ by condition (i), whence
∃w′ ∈ W : wR(ᾰ)w′ and M,w′ 2 〈α〉p, i.e. M,w 2 [ᾰ]〈α〉p. Therefore, we have
M,w 2 [α]〈ᾰ〉p ∧ [ᾰ]〈α〉p. Hence, we conclude that M,w 2 p→ [α]〈ᾰ〉p ∧ [ᾰ]〈α〉p.

Second, assume that F satisfies (ii). Let M = 〈W, I, R̃, P 〉 be a model such that P (p) =
{w′}, i.e. M,w′ � p. Now, w′R(α)w, because by (ii) wR(α)−1w′. On the other hand,
w/R(ᾰ)w′ and P (p) = {w′}, whenceM,w 2 〈ᾰ〉p. Thus, w′R(α)w andM,w 2 〈ᾰ〉p, hence
M,w′ 2 [α]〈ᾰ〉p and we conclude that M,w′ 2 p→ [α]〈ᾰ〉p ∧ [ᾰ]〈α〉p

Thus, if a frame F satisfies R(ᾰ) 6= R(α)−1, then F 2 ϕ→ [α]〈ᾰ〉ϕ∧ [ᾰ]〈α〉ϕ. Therefore,
if 〈W, I, R̃〉 � ϕ→ [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ, then ∀α ∈ Λ : R(ᾰ) = R(α)−1.

6.3 Binary operators

The composition and the union of binary relations are basic operations in the interpreta-
tion of the regular PDL. Thus, the results 6.7 and 6.8 are well-known.14

Theorem 6.7. Let L(Π,A, {; }) be a PSTL-language such that ; is a binary syntactic
operator. The operator that returns the composition of relations R(α), R(β);α, β ∈ Λ,
i.e. R(α) ◦ R(β) = {〈w,w′〉|∃w′′ ∈ W : wR(α)w′′ and w′′R(β)w′}, is frame definable in
L(Π,A, {; }), since

〈W, I, R̃〉 � 〈α; β〉ϕ↔ 〈α〉〈β〉ϕ if and only if ∀α, β ∈ Λ : R(α; β) = R(α) ◦R(β).
14See for example (Blackburn et al., 2002, pp.132–133) or (Harel et al., 2000, pp.175–176).
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Proof. Let 〈W, I, R̃〉 be a L(Π,A, {; })-frame. Assume ∀α, β ∈ Λ : R(α; β) = R(α)◦R(β).
Choose a model M = 〈W, I, R̃, P 〉 and any state w ∈ W . Now,

M,w � 〈α; β〉ϕ ⇔ ∃w′ ∈ W : wR(α; β)w′ and M,w′ � ϕ
(Since I(; ) ' ◦) ⇔ ∃w′ ∈ W : w(R(α) ◦R(β))w′ and M,w′ � ϕ

(By the definition of ◦) ⇔ ∃w′ ∈ W : ∃w′′ ∈ W : wR(α)w′′, w′′R(β)w′ and M,w′ � ϕ
⇔ ∃w′′ ∈ W : wR(α)w′′ and M,w′′ � 〈β〉ϕ
⇔ M,w � 〈α〉〈β〉ϕ

Therefore, ∀α, β ∈ Λ : R(α; β) = R(α) ◦R(β)⇒ 〈W, I, R̃〉 � 〈α; β〉ϕ↔ 〈α〉〈β〉ϕ.

Then let 〈W, I, R̃〉 be a L(Π,A, {; })-frame such that ∃α, β ∈ Λ : R(α; β) 6= R(α) ◦ R(β).
Now the frame satisfies either:15

(i) ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(α; β) and 〈w,w′〉 /∈ R(α) ◦R(β), or
(ii) ∃w,w′ ∈ W : 〈w,w′〉 /∈ R(α; β) and 〈w,w′〉 ∈ R(α) ◦R(β)

Assume that 〈W, I, R̃〉 satisfies (i) and let M = 〈W, I, R̃, P 〉 be such model that P (p) =
{w′}, for some p ∈ Π. Since 〈w,w′〉 /∈ R(α) ◦ R(β), the choice of P (p) implies that
@w′′ ∈ W : 〈w,w′′〉 ∈ R(α) ◦ R(β) and M,w′′ � p. By the above equivalence chain,
∃w′′ ∈ W : 〈w,w′′〉 ∈ R(α) ◦ R(β) and M,w′′ � p ⇔ M,w � 〈α〉〈β〉p, thus we infer
M,w 2 〈α〉〈β〉p. On the other hand, 〈w,w′〉 ∈ R(α; β), hence by the choice of P (p) we
have that M,w � 〈α; β〉p. Therefore, M,w 2 〈α; β〉p↔ 〈α〉〈β〉p.

Next consider the case that the frame 〈W, I, R̃〉 satisfies the condition (ii). Again, we
choose a valuation P (p) = {w′} for some p ∈ Π and thus obtain a modelM = 〈W, I, R̃, P 〉
such that M,w 2 〈α; β〉p, since 〈w,w′〉 /∈ R(α; β). By the condition (ii), 〈w,w′〉 ∈
R(α) ◦ R(β), and by the choice of P (p) we have that M,w′ � p. Therefore, we infer by
the above equivalence chain that M,w � 〈α〉〈β〉p. Hence, M,w 2 〈α; β〉p↔ 〈α〉〈β〉p.

Therefore, either way, if the frame 〈W, I, R̃〉 satisfies ∃α, β ∈ Λ : R(α; β) 6= R(α) ◦ R(β),
then 〈W, I, R̃〉 2 〈α; β〉ϕ↔ 〈α〉〈β〉ϕ.

Theorem 6.8. Consider PSTL-language L(Π,A, {+}) such that + is a binary operator.
Then,

〈W, I, R̃〉 � [α+β]ϕ↔ [α]ϕ∧[β]ϕ if and only if ∀α, β ∈ Λ : R(α+β) = R(α)∪R(β).

That is, operator I(+) ' ∪ is frame definable in a PSTL-language with a single binary
syntactic operator.

15A remark on notation: As usual, 〈w,w′〉 ∈ R(α) denotes wR(α)w′ and 〈w,w′〉 /∈ R(α) denotes
w/R(α)w′. For the notational simplicity, denotation wR(α)w′ is used throughout the text when appropri-
ate. For proofs considering complex relations, however, the set-inclusion notation is adopted for legibility,
especially in the case of the proofs about non-inclusion relations.
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Proof. Let 〈W, I, R̃〉 be L(Π,A, {+})-frame such that ∀α, β ∈ Λ : R(α+β) = R(α)∪R(β).
Consider a model M = 〈W, I, R̃, P 〉 and w ∈ W . Then M,w � [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ,
since
M,w � [α + β]ϕ ⇔ ∀w′ ∈ W : wR(α + β)w′ ⇒M,w′ � ϕ

⇔ ∀w′ ∈ W : w(R(α) ∪R(β))w′ ⇒M,w′ � ϕ
⇔ ∀v ∈ W : wR(α)v ⇒M, v � ϕ and ∀v′ ∈ W : wR(β)v′ ⇒M, v′ � ϕ
⇔ M,w � [α]ϕ and M,w � [β]ϕ
⇔ M,w � [α]ϕ ∧ [β]ϕ.

Thus, we infer ∀α, β ∈ Λ : R(α+β) = R(α)∪R(β)⇒ 〈W, I, R̃〉 � [α+β]ϕ↔ [α]ϕ∧ [β]ϕ.

We then consider the frame 〈W, I, R̃〉 such that ∃α, β ∈ Λ : R(α + β) 6= R(α) ∪ R(β).
Hence, the frame satisfies either:

(i) ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(α) ∪R(β) and 〈w,w′〉 /∈ R(α + β), or
(ii) ∃w,w′ ∈ W : 〈w,w′〉 /∈ R(α) ∪R(β) and 〈w,w′〉 ∈ R(α + β)

Assume first that the frame satisfies the condition (i). Let P be a valuation function with
a definition P (p) = W \ {w′} for some p ∈ Π. Since 〈w,w′〉 ∈ R(α) ∪ R(β), we have
〈w,w′〉 ∈ R(α) or 〈w,w′〉 ∈ R(β). If 〈w,w′〉 ∈ R(α), clearly M,w 2 [α]p. If 〈w,w′〉 ∈
R(β), likewise M,w 2 [β]ϕ. At any rate, condition (i) with a valuation P (p) = W \ {w′}
impliesM,w 2 [α]ϕ∧[β]ϕ. On the other hand, 〈w,w′〉 /∈ R(α+β). Thus, by the definition
of valuation P (p), we have that ∀w′′ ∈ W : 〈w,w′′〉 ∈ R(α + β) ⇒ M,w′′ � ϕ, hence
M,w � [α + β]p. Therefore, M,w 2 [α + β]p↔ [α]p ∧ [β]p.

Then assume that 〈W, I, R̃〉 satisfies (ii). This part of the proof proceeds as the previous
one. Thus, let M = 〈W, I, R̃, P 〉 be a model such that P (p) = W \ {w′}, for some p ∈ Π.
Now 〈w,w′〉 /∈ R(α) and 〈w,w′〉 /∈ R(β), since 〈w,w′〉 /∈ R(α) ∪ R(β). Evidently, then,
M,w � [α]p and M,w � [β]p, whence M,w � [α]p ∧ [β]p. Since 〈w,w′〉 ∈ R(α + β) and
M,w′ 2 p, we have M,w 2 [α + β]p. Thus, M,w 2 [α + β]p↔ [α]p ∧ [β]p.

Therefore, 〈W, I, R̃〉 � [α+β]ϕ↔ [α]ϕ∧ [β]ϕ⇒ ∀α, β ∈ Λ : R(α+β) = R(α)∪R(β).

The relative union of the relations R, S is rather untypical domain dependent operation
on binary relations presented in the Tarski’s paper (Tarski, 1941, pg.76). The operation
is defined as follows.
Definition 6.9. Let Ru S denote the relative union of binary relations R, S on domain
W , i.e. R, S ⊆ W ×W . Then,

Ru S = {〈w,w′〉|∀w′′ ∈ W : wRw′′ or w′′Sw′}.

For clarification it should be noted that Ru S = R ◦ S, since
〈w,w′〉 ∈ R ◦ S ⇔ 〈w,w′〉 /∈ R ◦ S

⇔ @w′′ ∈ W : 〈w,w′′〉 ∈ R and 〈w′′, w′〉 ∈ S
⇔ ∀w′′ ∈ W : 〈w,w′′〉 /∈ R or 〈w′′, w′〉 /∈ S
⇔ ∀w′′ ∈ W : 〈w,w′′〉 ∈ R or 〈w′′, w′〉 ∈ S
⇔ 〈w,w′〉 ∈ Ru S.
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Theorem 6.10. The operator that returns the relative union of R(α), R(β);∀α, β ∈ Λ is
not frame definable in any PSTL-language L(Π,A,F).

Proof. Pick any PSTL-language L(Π,A,F) with a binary syntactic operator f ∈ F . Let
F1 = 〈W1, I1, R̃1〉 and F2 = 〈W2, I2, R̃2〉 be such L(Π,A,F)-frames that

W1 = {w1}
R̃1(a) = {〈w1, w1〉}, ∀a ∈ A
I1(f)(R1(α), R1(β)) = R1(α)uR1(β),∀α, β ∈ Λ


W2 = {w2}
R2(a) = {〈w2, w2〉},∀a ∈ A
I2(f)(R2(α), R2(β)) = R2(α)uR2(β), ∀α, β ∈ Λ

As usual, we also assume that I1(g) and I2(g) are defined for all g ∈ F .

Choose any a ∈ A. By the definitions of I1 and I2, we have that R1(f(a, a)) = R1(a) u
R1(a) = {〈w1, w1〉} and R2(f(a, a)) = R2(a) u R2(a) = {〈w2, w2〉}. Consider then the
structure F(1;2) = 〈W(1;2), I(1;2), R̃(1;2)〉. Now, R(1;2)(f(a, a)) = {〈w1, w1〉, 〈w2, w2〉}, by
Definition 4.2. On the other hand, R(1;2)(a) u R(1;2)(a) = {〈w1, w2〉, 〈w2, w1〉}. Thus,
R(1;2)(f(a, a)) 6= R(1;2)(a)uR(1;2)(a) (whence, I(1;2)(f)/'u), though I1(f) ' u and I2(f) '
u. Therefore, by Lemma 4.8, the operator that returns the relative union is not frame
definable in L(Π,A,F), since the relative unification is not conserved in the union of
disjoint frames.

So far, we have carried out the non-definability proofs with respect to the whole class of
PSTL-languages. Next we proceed to demonstrate two weaker non-definability results:
First, that the intersection is not frame definable in any PSTL language L(Π,A, {+, ·}),
wherein + and · are binary, with respect to the frame class C(+,∪) = {〈W, I, R̃〉|I(+) ' ∪};
that is, the intersection is not frame definable with the union. We go over the definability
issue of the intersection with the union operation since I(·) ' ∩ turns out to be foundation
definable within the language in question, given interpretation I(+) ' ∪. Second, that
the relative complementation (i.e. the set-theoretical difference) is not frame definable in
any PSTL language L(Π,A, {/}) wherein / is a binary operator.

We assume that the candidate syntactic operators for carrying out the target operations
are binary. This should not effect the generality of the following theorems;16 the restriction
is to simplify the following discussion. But the possibility, that there is a more expressive
language L(Π,A,F), (that is, a language that contains more syntactic operators) such
that, for instance, relative complementation is definable in L(Π,A,F), is left open. Frame
definability of the operators in question seems unlikely, but the resolution of the issue is
presently open for the lack of proper general frame definability results.

Theorem 6.11. The intersection operator of the relations R(α), R(β) for every α, β ∈ Λ
is not frame definable with respect to the frame class C(+,∪) = {〈W, I, R̃〉|I(+) ' ∪}

16Similarly as in the proofs of theorems 6.5 and 6.10. Although we lack a formal proof in this context,
the reasoning is on the lines with the comments after the proof of theorem 6.5 in page 6.2.
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within language L(Π,A, {+, ·}), wherein + and · are binary operators. Thus, in brief, the
intersection is not frame definable (even) with the union operator.

Proof. Let L(Π,A, {+, ·}) be a PSTL-language such that |A| ≥ 2 and +, · are binary
syntactic operators.

Consider frames F1 = 〈W1, I2, R̃1〉 and F2 = 〈W2, I2, R̃2〉 such that

W1 = {w0, w1, w2, w3}
I1(+)(S, T ) = S ∪ T ;∀S, T ⊆ W1 ×W1

I1(·)(S, T ) =


∅; S = {〈w0, w1〉, 〈w0, w2〉}, T = {〈w0, w2〉, 〈w0, w3〉}
∅; S = {〈w0, w2〉, 〈w0, w3〉}, T = {〈w0, w1〉, 〈w0, w2〉}

S ∩ T ; otherwise

R̃1(ai) =
{
{〈w0, w1〉, 〈w0, w2〉}; i is odd
{〈w0, w2〉, 〈w0, w3〉}; i is even



W2 = {w0, w1, w2, w3, w4}
I2(+)(S, T ) = S ∪ T ;∀S, T ⊆ W2 ×W2
I2(·)(S, T ) = S ∩ T ;∀S, T ⊆ W2 ×W2

R̃2(ai) =
{
{〈w0, w1〉, 〈w0, w2〉}; i is odd
{〈w0, w3〉, 〈w0, w4〉}; i is even

Clearly, F1, F2 ∈ C(+,∪). We proceed to demonstrate that there is a surjective Λ-bounded
morphisms from W2 to W1.

Let Ai ⊆ W1 ×W1 and Bi ⊆ W2 ×W2, i ∈ {1, 2, 3, 4} be the following relations:
A1 = {〈w0, w1〉, 〈w0, w2〉} B1 = {〈w0, w1〉, 〈w0, w2〉}
A2 = {〈w0, w2〉, 〈w0, w3〉} B2 = {〈w0, w3〉, 〈w0, w4〉}
A3 = A1 ∪ A2 B3 = B1 ∪B2
A4 = ∅ B4 = ∅

Let I = {1, 2, 3, 4}. With the following matrices, where entryjk = I(f)(Cj, Ck), we can
verify that ∀i, j ∈ I : ∃k ∈ I :

(
I1(f)(Ai, Aj) = Ak and I2(f)(Bi, Bj) = Bk

)
; f ∈ {+, ·}.

I1(+) A1 A2 A3 A4
A1 A1 A3 A3 A1
A2 A3 A2 A3 A2
A3 A3 A3 A3 A3
A4 A1 A2 A3 A4

I2(+) B1 B2 B3 B4
B1 B1 B3 B3 B1
B2 B3 B2 B3 B2
B3 B3 B3 B3 B3
B4 B1 B2 B3 B4

I1(·) A1 A2 A3 A4
A1 A1 A4 A1 A4
A2 A4 A2 A2 A4
A3 A1 A2 A3 A4
A4 A4 A4 A4 A4

I2(·) B1 B2 B3 B4
B1 B1 B4 B1 B4
B2 B4 B2 B2 B4
B3 B1 B2 B3 B4
B4 B4 B4 B4 B4
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Next, we show that ∀α ∈ Λ : ∃i ∈ I : R1(α) = Ai and R2(α) = Bi. Call this claim (∗).

Let α = ai such that ai ∈ A. If i is odd, by the definitions of R̃1 and R̃2 then R1(ai) = A1
and R2(ai) = B1. If on the other hand i is even, on the same grounds R1(ai) = A2 and
R1(ai) = B2. Thus, the claim holds for atomic processes.

Assume then that the claim holds for processes β and γ; that is,

R1(β) = Ai and R2(β) = Bi, and R1(γ) = Aj and R2(γ) = Bj; for some i, j ∈ J ,

and let α = β + γ. Now, by the induction hypothesis, R1(β + γ) = I(+)(Aj, Ak) and
R2(β + γ) = I(+)(Bj, Bk), thus, as stated above, we can compute with the matrices
that ∃i ∈ I : (I(+)(Aj, Ak) = Ai and I(+)(Bj, Bk) = Bi). Therefore, ∃i ∈ I : R1(α) =
Ai and R2(α) = Ai. In case α = β ·γ similar argument clearly proves the induction claim.
Thus, by induction, claim (∗) holds.

Next, let g : W2 → W1 be the following mapping:

g :



w0 7→ w0
w1 7→ w1
w2 7→ w2
w3 7→ w2
w4 7→ w3

Recall the conditions of Λ-bounded morphisms from W2 to W1 (cf. definition 5.1):

(i) ∀α ∈ Λ : wR2(α)v ⇒ g(w)R1(α)g(v),
(ii) ∀α ∈ Λ : g(w)R1(α)v′ ⇒ ∃v ∈ W : wR2(α)v and g(v) = v′.

Since, by claim (∗), ∀α ∈ Λ : ∃i ∈ I : R1(α) = Ai ⇔ R2(α) = Bi, it is rather straightfor-
ward to verify that g is a Λ-bounded morphism. Since mapping g is also surjective, F1 is
a Λ-p-morphic image of F2.

Now that we have in place the Λ-bounded morphism from W2 onto W1, we intro-
duce counter-assumption to the theorem; that is, assume there is a set of formulae
Γ ⊆ L(Π,A, {+, ·}) such that F � Γ ⇔ I(·) ' ∩, provided F ∈ C(+,∪). Now, by
the definition of I1(·), we have that R1(a1 · a2) = ∅ 6= R1(a1)∩R1(a2) = {w0, w2}. There-
fore, by the counter-assumption, F1 2 Γ. Also we have F2 � Γ, since I2(·) ' ∩. But then,
since F2 � Γ and F1 is Λ-p-morphic image of F2, we have that F1 � Γ by Theorem 5.3.
Therefore, the counter-assumption cannot hold.

Corollary 6.12. The operator returning the intersection of relations R(α), R(β);α, β ∈ Λ
is not frame definable in any PSTL-language that contains only one syntactic operator.

Proof. Clear by Theorem 6.11.

The relative complementation is the only operation covered in this paper that does not
appear in Tarski’s list of basic operators in (Tarski, 1941). We consider it here since the
relative complementation turns out to be rather useful foundation definable operation.
(Cf. Theorem 7.3 and its corollaries in section 7.)
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Theorem 6.13. Let L(Π,A, {/}) be a PSTL-language wherein |A| ≥ 2 and / is a binary
syntactic operator. The operator that returns the relative complementation of relations
R(α), R(β);α, β ∈ Λ, i.e. the set-theoretical difference R(α) \ R(β) = {〈w,w′〉|〈w,w′〉 ∈
R(α) and 〈w,w′〉 /∈ R(β)}, cannot be defined in L(Π,A, {/}).

Proof. Assume to the contrary, i.e. ∃Γ ⊆ L(Π,A, {/}) such that for every L(Π,A, {/})-
frame 〈W, I, R̃〉 it is the case that 〈W, I, R̃〉 � Γ⇔ ∀α, β ∈ Λ : R(α/β) = R(α) \R(β).

We demonstrate that the counter-assumption implies contradiction by applying the same
method and the same kind of frames as in the proof of Theorem 6.11. Thus, let F1 =
〈W1, I1, R̃1〉 and F2 = 〈W2, I2, R̃2〉 be L(Π,A, {/})-frames such that

W1 = {w0, w1, w2, w3}

I1(/)(S, T ) =
{
S; S 6= T
∅; S = T

R̃1(ai) =
{
{〈w0, w1〉, 〈w0, w2〉}; i is even
{〈w0, w2〉, 〈w0, w3〉}; i is odd


W1 = {w0, w1, w2, w3, w4}
I1(/)(S, T ) = S \ T ;∀S, T ⊆ W2 ×W2

R̃2(ai) =
{
{〈w0, w1〉, 〈w0, w2〉}; i is even
{〈w0, w3〉, 〈w0, w4〉}; i is odd

Let A1, A2, A3 ⊆ W1 ×W1 and B1, B2, B3 ⊆ W2 ×W2 be the following relations:

A1 = {〈w0, w1〉, 〈w0, w2〉} B1 = {〈w0, w1〉, 〈w0, w2〉}
A2 = {〈w0, w2〉, 〈w0, w3〉} B2 = {〈w0, w3〉, 〈w0, w4〉}
A3 = ∅ B3 = ∅

and I = {1, 2, 3} the corresponding index-set. Then, ∀α ∈ Λ : ∃i ∈ I : (R1(α) =
Ai and R2(α) = Bi). We demonstrate this by an induction over the structure of the
process α ∈ Λ.

Let α = ai ∈ A. Then the claim clearly holds, since if i is even, R1(α) = A1 and R2(α) =
B1 and similarly if i is odd, R1(α) = A2 and R2(α) = B2. Then assume that the claim
holds for the processes β, γ ∈ Λ.

Consider the following matrices with entryjk = I(/)(Cj, Ck):

I1(/) A1 A2 A3
A1 A3 A1 A1
A2 A2 A3 A2
A3 A3 A3 A3

I2(/) B1 B2 B3
B1 B3 B1 B1
B2 B2 B3 B2
B3 B3 B3 B3

Since, by the induction hypothesis, ∃i ∈ I : R1(β) = Ai and R2(β) = Bi and ∃j ∈
I : R1(γ) = Aj and R2(γ) = Bj, the matrices clearly demonstrate that process β/γ is
mapped under I1 and I2 such that ∃i ∈ I : R1(β/γ) = Ai and R2(β/γ) = Bi. Therefore
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the claim holds for β/γ ∈ Λ, and by induction we then infer that the claim holds for every
α ∈ Λ.

Next, we set function g : W2 → W1 such that

g :



w0 7→ w0
w1 7→ w1
w2 7→ w2
w3 7→ w2
w4 7→ w3

By resorting to the previous induction-claim, we need to check only relations Ai, Bi; i ∈ I
to confirm that g is surjective Λ-bounded morphism, and clearly this is the case. Thus,
F1 is Λ-p-morphic image of F2. Since I1(/)(R(a1), R(a2)) = A1 6= {〈w0, w1〉} =
R1(a1) \ R1(a2), by the counter-assumption we infer F1 2 Γ. But then, by the very
same assumption, F2 � Γ since I2(/) ' \. Whence, by Theorem 5.3. F1 � Γ since F1 is a
Λ-p-morphic image of F2. Therefore, the counter-assumption is necessarily false.

6.4 Closures

Although the closure operations are unary, we shall discuss common closures in a separate
section for their special status. We shall prove that operators that return the transitive
and the reflexive closure of a given relation R(α), α ∈ Λ, are frame definable respectively.
This implies frame definability of the reflexive transitive closure within a language with
two unary syntactic operators. Since the reflexive transitive closure corresponds to the
interpretation of Kleene-closure within, for example, the contexts of PDL and regular
languages, frame definability of reflexive transitive closure with single unary syntactic
operator is covered.

Definition 6.14. Herein dealt closures of relations are defined as follows: Let R be a
relation over domain W , then17

r(R) = R ∪R[0] (reflexive closure)
s(R) = R ∪R−1 (symmetric closure)
t(R) = ⋃∞

n=1R
[n] (transitive closure

tr(R) = ⋃∞
n=0R

[n] (reflexive transitive closure)

Theorem 6.15. The operator that returns the reflexive closure of R(α),∀α ∈ Λ is frame
definable in language L(Π,A, {r}) in which r is a unary syntactic operator, since

〈W, I, R̃〉 � [αr]ϕ↔ [α]ϕ ∧ ϕ if and only if ∀α ∈ Λ : R(αr) = r(R(α)).
17We denote the n-fold composition of relation R, i.e. R1 ◦ R2 ◦ . . . ◦ Rn, as R[n]. Whence, recursive

definition of R[n] is that R[0] = {〈w,w〉|w ∈W} and R[n+1] = R[n] ◦R.
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Proof. Let M = 〈W, I, R̃, P 〉 be a model of L(Π,A, {r})-frame 〈W, I, R̃〉. Assume ∀α ∈
Λ : R(αr) = r(R(α)) and consider an arbitrary state w ∈ W . It is trivial to conclude that
M,w � [αr]ϕ↔ [α]ϕ ∧ ϕ, since

M,w � [αr]ϕ ⇔ ∀w′ ∈ W : wR(αr)w′ ⇒M,w′ � ϕ
(Since R(αr) = r(R(α))) ⇔ ∀w′′ ∈ W : wR(α)w′′ ⇒M,w′′ � ϕ and M,w � ϕ

⇔ M,w � [α]ϕ and M,w � ϕ
⇔ M,w � [α]ϕ ∧ ϕ.

So, if ∀α ∈ Λ : R(αr) = r(R(α)), then 〈W, I, R̃〉 � [αr]ϕ↔ [α]ϕ ∧ ϕ.

Then consider L(Π,A,F)-frame 〈W, I, R̃〉 that satisfies R(αr) 6= r(R(α)) for some α ∈ Λ,
i.e. either R(αr) * r(R(α)) or r(R(α)) * R(αr).

Assume first that R(αr) * r(R(α)). Then, ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(αr) and 〈w,w′〉 /∈
r(R(α)). Choose a valuation P such that P (p) = W \ {w′}, for some p ∈ Π. Now the
resulting model M = 〈W, I, R̃, P 〉 satisfies M,w 2 [αr]p. That said, 〈w,w′〉 /∈ R(α),
since 〈w,w′〉 /∈ r(R(α)) = R(α) ∪ {〈v, v〉|v ∈ W}, thus, by the choice of valuation P (p),
M,w � [α]p. Also w 6= w′ since r(R(α)) is reflexive and 〈w,w′〉 /∈ r(R(α)), whence
M,w � p. Therefore, M,w � [α]p ∧ p, furthermore M,w 2 [αr]p ↔ [α]p ∧ p, whence
〈W, I, R̃〉 2 [αr]ϕ↔ [α]ϕ ∧ ϕ.

Assume next r(R(α)) * R(αr). Then, ∃w,w′ ∈ W : 〈w,w′〉 ∈ r(R(α)) and 〈w,w′〉 /∈
R(αr). Consider then a model M = 〈W, I, R̃, P 〉 where P (p) = W \ {w′}, for some p ∈ Π.
Now M,w′ � [αr]p. Since r(R(α)) = R(α) ∪ {〈v, v〉|v ∈ W}, either 〈w,w′〉 ∈ R(α) or
w = w′. Thus, either we have 〈w,w′〉 ∈ R(α) which implies M,w 2 [α]p with P (p), or
〈w,w′〉 /∈ R(α), whence w = w′ and by the choice of P (p) then M,w 2 p. In either case,
M,w 2 [α]p∧p. Therefore, M,w 2 [αr]p↔ [α]p∧p; that is, 〈W, I, R̃〉 2 [αr]ϕ↔ [α]ϕ∧ϕ.

Therefore, if 〈W, I, R̃〉 � [αr]ϕ↔ [α]ϕ ∧ ϕ, then ∀α ∈ Λ : R(αr) = r(R(α))

Theorem 6.16. Let L(Π,A, {s}) be a PSTL-language such that s is a unary operator
and |Π| ≥ 2. Then

〈W, I, R̃〉 � Σ if and only if ∀α ∈ Λ : R(αs) = s(R(α)),

wherein Σ = {σ1, σ2, σ3} such that

σ1 = [αs]ϕ→ [α]ϕ
σ2 = ϕ→ [α]〈αs〉ϕ
σ3 = 〈αs〉([α]ϕ ∧ ψ)→ ϕ ∨ 〈α〉ψ

Proof. Let 〈W, I, R̃〉 be such L(Π,A, {s})-frame that ∀α ∈ Λ : R(αs) = s(R(α)) and
choose a model M = 〈W, I, R̃, P 〉 with an arbitrary valuation P . Pick any w ∈ W and
assumeM,w � [αs]ϕ. Now, ∀w′ ∈ W : wR(αs)w′ ⇒M,w′ � ϕ. Since R(αs) = s(R(α)) =
R(α)∪R(α)−1, clearly also ∀w′′ ∈ W : wR(α)w′′ ⇒M,w′′ � ϕ, i.e. M,w � [α]ϕ. Whence,
M,w � [αs]ϕ→ [α]ϕ.
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Assume then that M,w � ϕ. Now, if wR(α)w′, then w′R(α)−1w. Since R(αs) = R(α) ∪
R(α)−1, clearly then w′R(αs)w also. Hence, M,w′ � 〈αs〉ϕ sinceM,w � ϕ. As usual, this
holds for every state w′ ∈ W whenever wR(α)w′, thus we have M,w � [α]〈αs〉ϕ. Hence,
M,w � ϕ→ [α]〈αs〉ϕ.

Finally, assumeM,w � 〈αs〉([α]ϕ∧ψ). Then, ∃w′ ∈ W : wR(αs)w′ and M,w′ � [α]ϕ∧ψ,
i.e. M,w′ � [α]ϕ and M,w′ � ψ. Since wR(αs)w′, by the assumption R(αs) = R(α) ∪
R(α)−1, either wR(α)w′ or wR(α)−1w′. If wR(α)−1w′, then w′R(α)w and furthermore
M,w � ϕ, sinceM,w′ � [α]ϕ. If on the other hand wR(α)w′, then evidentlyM,w � 〈α〉ψ.
In either case M,w � ϕ ∨ 〈α〉ψ, hence M,w � 〈αs〉([α]ϕ ∧ ϕ)→ ϕ ∨ 〈α〉ψ.

Therefore, we conclude that if R(αs) = s(R(α)), then 〈W, I, R̃〉 � Σ.

Next, consider L(Π,A, {s})-frame 〈W, I, R̃〉 wherein ∃α ∈ Λ such that either R(αs) *
s(R(α)) or s(R(α)) * R(αs).

If ∃α ∈ Λ : R(αs) * s(R(α)), then there are states w,w′ ∈ W such that 〈w,w′〉 ∈ R(αs),
〈w,w′〉 /∈ R(α) and 〈w,w′〉 /∈ R(α)−1. Consider then model M = 〈W, I, R̃, P 〉 such
that P (p) = {w′′|〈w′, w′′〉 ∈ R(α)} and P (q) = {w′} for some p, q ∈ Π : p 6= q. Then,
M,w′ � [α]p and M,w′ � q, and consequently M,w � 〈αs〉([α]p ∧ q). Since 〈w,w′〉 /∈
R(α)−1, we have that 〈w′, w〉 /∈ R(α). Thus, w /∈ P (p), i.e. M,w 2 p. Since also
〈w,w′〉 /∈ R(α) and P (q) = {w′}, we haveM,w 2 〈α〉q, henceM,w 2 p∨〈α〉q. Therefore,
M,w 2 〈αs〉([α]p ∧ q)→ p ∨ 〈α〉q.

Consider then the other possibility: ∃α ∈ Λ : s(R(α)) * R(αs). Then, ∃w,w′ ∈ W :
〈w,w′〉 /∈ R(αs), and 〈w,w′〉 ∈ R(α) or 〈w,w′〉 ∈ R(α)−1.

If 〈w,w′〉 ∈ R(α), a model M = 〈W, I, R̃, P 〉, with P (p) = W \ {w′}, clearly satisfies
M,w � [αs]p and M,w 2 [α]p, whence M,w 2 [αs]p→ [α]p.

Assume next 〈w,w′〉 ∈ R(α)−1 and consider a model M = 〈W, I, R̃, P 〉 with P (p) = {w′},
i.e. M,w′ � p. Now M,w 2 〈αs〉p, since 〈w,w′〉 /∈ R(αs), and 〈w′, w〉 ∈ R(α), since
〈w,w′〉 ∈ R(α)−1. Therefore, M,w′ 2 [α]〈αs〉p, whence M,w′ 2 p→ [α]〈αs〉p.

Thus, in any case, if 〈W, I, R̃〉 � Σ, then R(αs) = s(R(α)).

Currently, it is unknown (at least to the author, that is) whether a language L({p},A, {s}),
i.e. a PSTL-language with a single unary operator and |Π| = 1, is expressive enough to
define the operator that picks out the symmetric closure on the level of frames. That said,
the operator in question is definable within a language that contains a single propositional
symbol and one unary and one binary operator. Next we show that (1◦) reflexive closure
is syntactically frame definable in L(Π,A, {D,+})-frame class

{F | F � [D]ϕ↔ ϕ and F � [α + β]ϕ↔ [α]ϕ ∧ [β]ϕ}.

and similarly, (2◦) symmetric closure is syntactically frame definable in L(Π,A, {̆·,+})-
frame class

{F | F � ϕ→ [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ and F � [α + β]ϕ↔ [α]ϕ ∧ [β]ϕ}.
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The claim (1◦) is due to the fact that if F = 〈W, I, R̃〉 is a L(Π,A, {D,+})-frame such
that F � [D]α ↔ α and F � [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ, by Theorems 6.2 and 6.8 R(D) =
{〈w,w〉|w ∈ W} and ∀α, β ∈ Λ : R(α + β) = R(α) ∪R(β). Therefore,

R(α + D) = R(α) ∪R(D)
= R(α) ∪ {〈w,w〉|w ∈ W}
= r(R(α)).

Correspondingly, if the frame F = 〈W, I, R̃〉 satisfies F � ϕ → [α]〈ᾰ〉ϕ ∧ [ᾰ]〈α〉ϕ and
F � [α + β]ϕ ↔ [α]ϕ ∧ [β]ϕ, then, by Theorems 6.2 and 6.8, ∀α ∈ Λ : R(ᾰ) = R(α)−1

and ∀α, β ∈ Λ : R(α + β) = R(α) ∪R(β). Thus, the claim (2◦) holds, since

R(α + ᾰ) = R(α) ∪R(ᾰ)
= R(α) ∪R(α)−1

= s(R(α)).

Note that the latter case holds even if |Π| = 1, since one propositional symbol is sufficient
to define the operator that returns the inverse relation and the operator that returns the
union of R(α), R(β);α, β ∈ Λ, although in this case |F| ≥ 2.

Theorem 6.17. Consider PSTL-language L(Π,A, {t}) where t is unary operator. Then,

〈W, I, R̃〉 � Θ if and only if ∀α ∈ Λ : R(αt) = t(R(α)),

wherein Θ = {θ1, θ2} such that

θ1 = [αt]ϕ→ [α]ϕ ∧ [αt][α]ϕ
θ2 = [αt](ϕ→ [α]ϕ)→ ([α]ϕ→ [αt]ϕ)

Proof. Consider any L(Π,A, {t})-frame 〈W, I, R̃〉 that satisfies ∀α ∈ Λ : R(αt) = t(R(α))
and letM = 〈W, I, R̃, P 〉 be a model with an arbitrary valuation mapping P . Pick w ∈ W
and assume that M,w � [αt]ϕ. Then, contrary to the claim of the theorem, assume that
M,w 2 [α]ϕ ∧ [αt][α]ϕ. Thus, (1◦) M,w 2 [α]ϕ or (2◦) M,w 2 [αt][α]ϕ.

(1◦): If M,w 2 [α]ϕ, then ∃w′ ∈ W : wR(α)w′ and M,w′ 2 ϕ. Since R(α) ⊆ t(R(α)) =
R(αt), now wR(αt)w′ which implies M,w 2 [αt]ϕ.

(2◦): If M,w 2 [αt][α]ϕ, then ∃w′ ∈ W : wR(αt)w′ and M,w′ 2 [α]ϕ, i.e. ∃w′′ ∈ W :
w′R(α)w′′ and M,w′′ 2 ϕ. Therefore, ∃w′′ ∈ W : w(R(αt) ◦ R(α))w′′ and M,w′′ 2 ϕ.
Recall that by Definition 6.14,

t(R(α)) =
∞⋃
n=1

R(α)[n].

Thus, since R(αt) = t(R(α)), we now have that w(R(α)[z] ◦ R(α))w′′, for some z ∈ Z+.
Furthermore, then wR(α)[z+1]w′, since R(α)[z] ◦ R(α) = R(α)[z+1]. Again, directly by
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Definition 6.14, ∀z ∈ Z+ : R(α)[z+1] ⊆ t(R(α)), therefore w(t(R(α)))w′′. Clearly, then,
M,w 2 [αt]ϕ, since M,w′′ 2 ϕ.

Thus, in any case, if M,w � [αt], then M,w � [α]ϕ ∧ [αt][α]ϕ; that is, M,w � [αt]ϕ →
[α]ϕ ∧ [αt][α]ϕ.

Assume next M,w 2 [α]ϕ → [αt]ϕ; that is M,w � [α]ϕ and M,w 2 [αt]ϕ. As in the
preceding argument, since R(αt) = t(R(α)), M,w 2 [αt]ϕ implies (i) ∃z′ ∈ Z+ : ∃w′ ∈
W : wR(α)[z′]w′ and M,w′ 2 ϕ. Since M,w � [α]ϕ, ∀v ∈ W : wR(α)v ⇒ M, v � ϕ, and
furthermore R(α) = R(α)[1], hence necessarily z′ > 1. Thus, we write z′ = z + 1 and
reformulate the corollary (i) as:

(ii) ∃z ∈ Z+ : ∃w′ ∈ W : wR(α)[z+1]w′ and M,w′ 2 ϕ.

In addition, we are permitted to assume that z in question is the smallest positive integer
that satisfies the claim (ii); that is, by the minimality of z, ∀y ∈ Z+ : y ≤ z ⇒ ∀v ∈ W :
wR(α)[y]v ⇒ M, v � ϕ. Again, since R(α)[z+1] = R(α)[z] ◦ R(α), from (ii) we infer that
w(R(α)[z] ◦ R(α))w′, whence ∃w′′ ∈ W : wR(α)[z]w′′ and w′′R(α)w′. By the minimality
of z, now M,w′′ � ϕ. Furthermore M,w′′ 2 [α]ϕ, since w′′R(α)w′ and M,w′ 2 ϕ,
whence M,w′′ 2 ϕ → [α]ϕ. Thus, M,w 2 [αt](ϕ → [α]ϕ), since we have wR(α)[z]w′′,
M,w′′ 2 ϕ → [α]ϕ and R(α)[z] ⊆ R(αt). In conclusion, if M,w 2 [α]ϕ → [αt]ϕ, then
M,w 2 [αt](ϕ→ [α]ϕ), therefore M,w � [αt](ϕ→ [α]ϕ)→ ([α]ϕ→ [αt]ϕ).

On the grounds of the above results, if ∀α ∈ Λ : R(αt) = t(R(α)), then 〈W, I, R̃〉 � Θ.

Next, let 〈W, I, R̃〉 be a L(Π,A, {t})-frame such that ∃α ∈ Λ : t(R(α)) * R(αt) or
∃α ∈ Λ : R(αt) * t(R(α)).

To begin with, assume ∃α ∈ Λ : t(R(α)) * R(αt), i.e. (R(α)[1] ∪R(α)[2] ∪R(α)[3] ∪ . . .) *
R(αt). Then ∃z ∈ Z+ : R(α)[z] * R(αt) and ∀y ∈ Z+ : y < z ⇒ R(α)[y] ⊆ R(αt);
that is, z is the smallest positive integer such that there is a pair 〈w,w′〉 ∈ W × W
such that 〈w,w′〉 ∈ R(α)[z] and 〈w,w′〉 /∈ R(αt). Then, let M = 〈W, I, R̃, P 〉 be a
model with P (p) = W \ {w′}. If z = 1, then 〈w,w′〉 ∈ R(α), thus M,w 2 [α]p. If
z > 1, we write z′ + 1 = z; that is, now 〈w,w′〉 ∈ R(α)[z′+1]. It should be clear, on
the basis of the considerations carried out previously, that then ∃w′′ ∈ W : 〈w,w′′〉 ∈
R(α)[z′] and 〈w′′, w′〉 ∈ R(α). Hence, M,w′′ 2 [α]p, since M,w′ 2 p. By the minimality
of z, R(α)[z′] ⊆ R(αt), thus 〈w,w′′〉 ∈ R(αt). Therefore, M,w 2 [αt][α]p. Consequently,
in any case M,w 2 [α]p or M,w 2 [αt][α]p, thus M,w 2 [α]p ∧ [αt][α]p. Nevertheless,
M,w � [αt]p, since P (p) = W \ {w′} and 〈w,w′〉 /∈ R(αt), thus M,w 2 [αt]p → [α]p ∧
[αt][α]p. Whence, 〈W, I, R̃〉 2 [αt]ϕ→ [α]ϕ∧ [αt][α]ϕ. Accordingly, if 〈W, I, R̃〉 � θ1, then
∀α ∈ Λ : t(R(α)) ⊆ R(αt).

Consider then L(Π,A, {t})-frame 〈W, I, R̃〉 such that ∃α ∈ Λ : R(αt) * t(R(α)), i.e.
∃w,w′ ∈ W : 〈w,w′〉 ∈ R(αt) and 〈w,w′〉 /∈ t(R(α)). Set a valuation P (p) = { v | 〈w, v〉 ∈
t(R(α))} for some p ∈ Π. Consider then the resulting model M = 〈W, I, R̃, P 〉 and pick
an arbitrary state w′′ ∈ W : 〈w,w′′〉 ∈ R(αt). If 〈w,w′′〉 /∈ t(R(α)), then M,w′′ 2 p by
the definition of P (p), thus M,w′′ � p→ [α]p. Assume then that 〈w,w′′〉 ∈ t(R(α)). Now
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if ∃v ∈ W : 〈w′′, v〉 ∈ R(α), also 〈w, v〉 ∈ t(R(α)) by the definition 6.14, and furthermore
then M, v � p by the definition of P (p). Thus, ∀v ∈ W : 〈w′′, v〉 ∈ R(α) ⇒ M, v � p,
i.e. M,w′′ � [α]p, whence M,w′′ � p → [α]p. Therefore, if 〈w,w′′〉 ∈ R(αt), in any
case M,w′′ � p → [α]p, thus M,w � [αt](p → [α]p). Now, clearly M,w � [α]p since
R(α) ⊆ t(R(α)) and thus by the definition of P (p), for all v ∈ W : 〈w, v〉 ∈ R(α) ⇒
M, v � p. However, 〈w,w′〉 /∈ t(R(α)), hence M,w′ 2 p. Furthermore then M,w 2 [αt]p,
since 〈w,w′〉 ∈ R(αt). Therefore, M,w 2 [α]p → [αt]p, hence we finally have that
M,w 2 [αt](p → [α]p) → ([α]p → [αt]p). Thus, if 〈W, I, R̃〉 � θ2, then ∀α ∈ Λ : R(α)t ⊆
t(R(α)).

Now we have covered the model theoretic results that enable us to define syntactically the
operator that maps to the reflexive transitive closure of R(α), within particular frame-
classes of languages L(Π,A, {r, t}) and L(Π,A, {D, t,+}). Clearly, if we consider the
L(Π,A, {D, t,+}) frame-class

C = { F | F � [D]ϕ↔ ϕ and F � [α + β]ϕ↔ [α]ϕ ∧ [β]ϕ and F � Θ},

then in every frame F ∈ C : ∀α ∈ Λ : R(D + αt) = tr(R(α)), since

R(D + αt) = R(D) ∪R(αt)
= R(α)0 ∪

(⋃∞
n=1R(α)[n]

)
= ⋃∞

n=0R(α)[n]

= tr(R(α)),

by Theorems 6.2, 6.8 and 6.17. Similarly, within the L(Π,A, {r, t}) frame-class

C∗ = { F | F � [αr]ϕ↔ [α]ϕ ∧ ϕ and F � Θ},

clearly R((αr)t) = t(R(αr)) = tr(R(α)), by Theorems 6.15 and 6.17.

Anyhow, reflexive transitive closure can also be defined independently within PSTL-
language with one unary operator, as we shall next demonstrate. The following theorem
is also familiar from the regular PDL (cf. Blackburn et al., 2002, pg.132).

Theorem 6.18. Let L(Π,A, {∗}) be a PSTL-language with unary operator ∗. Then,

〈W, I, R̃〉 � Υ if and only if ∀α ∈ Λ : R(α∗) = tr(R(α)),

wherein Υ = {υ1, υ2} such that

υ1 = 〈α∗〉ϕ↔ ϕ ∨ 〈α〉〈α∗〉ϕ
υ2 = [α∗](ϕ→ [α]ϕ)→ (ϕ→ [α∗]ϕ)

Proof. First recall that

1◦ : tr(R(α)) = ⋃∞
n=0R(α)[n] = R(α)[0] ∪R(α)[1] ∪R(α)[2] ∪ . . . ,

2◦ : ∀n,m ∈ N : R(α)[n] ◦R(α)[m] = R(α)[n+m] and
3◦ : ∀n ∈ N : R(α)[n+1] ⊆ ⋃∞i=1R(α)[i] ⊆ ⋃∞j=0R(α)[j],
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hence w(R(α) ◦ tr(R(α)))w′ ⇔ ∃n ∈ N : w(R(α) ◦R(α)[n])w′ (1◦)
⇔ ∃n ∈ N : wR(α)[1+n]w′ (2◦)
⇒ w(tr(R(α)))w′ (3◦).

Therefore, 4◦: w(R(α) ◦ tr(R(α)))w′ ⇔ ∃n ∈ N : wR(α)[1+n]w′, and
5◦: R(α) ◦ tr(R(α)) ⊆ tr(R(α)).

LetM = 〈W, I, R̃, P 〉 be L(Π,A, {∗})-model that satisfies ∀α ∈ Λ : R(α∗) = tr(R(α)) and
pick an arbitrary state w ∈ W . If M,w � 〈α∗〉ϕ, then ∃w′ ∈ W : wR(α∗)w′ and M,w′ �
ϕ. Since R(α∗) = tr(R(α)), by (1◦) now (i) ∃n ∈ N : ∃w′ ∈ W : wR(α)[n]w′. If
the former holds when n = 0, then M,w � ϕ. If n > 0, we set n = 1 + m and
reformulate (i) as (ii) ∃m ∈ N : wR(α)[1+m]w′. Then by (4◦), w(R(α) ◦ tr(R(α)))w′, thus
w(R(α) ◦ R(α∗))w′ by the assumption R(α∗) = tr(R(α)). Therefore, M,w � 〈α〉〈α∗〉ϕ,
since w(R(α) ◦R(α∗)w′ and M,w′ � ϕ is equivalent to M,w � 〈α〉〈α∗〉ϕ (cf. the proof of
theorem 6.7). Thus in any case, if M,w � 〈α∗〉ϕ, then M,w � ϕ or M,w � 〈α〉〈α∗〉ϕ, i.e.
M,w � 〈α∗〉ϕ→ ϕ ∨ 〈α〉〈α∗〉ϕ.

Assume then that M,w 2 〈α∗〉ϕ; that is, ∀w′ ∈ W : wR(α∗)w′ ⇒ M,w′ 2 ϕ. Since
R(α∗) = tr(R(α)), by the reflexivity of relation R(α∗), we have M,w 2 ϕ. Furthermore,
by (5◦), also ∀w′′ ∈ W : w(R(α) ◦ R(α∗))w′ ⇒ M,w′ 2 ϕ. By the inference presented in
the proof of Theorem 6.7, ∀w′′ ∈ W : w(R(α) ◦ R(α∗))w′ ⇒ M,w′ 2 ϕ is equivalent to
M,w 2 〈α〉〈α∗〉ϕ. Therefore, if M,w 2 〈α∗〉ϕ, then M,w 2 ϕ and N,w 2 〈α〉〈α∗〉ϕ, i.e.
M,w � ϕ ∨ 〈α〉〈α∗〉ϕ→ 〈α∗〉ϕ.

From the above results we infer that if R(α∗) = tr(R(α)), then 〈W, I, R̃〉 � υ1.

Assume next M,w 2 ϕ → [α∗]ϕ; that is, M,w � ϕ and M,w 2 [α∗]ϕ, thus ∃w′ ∈ W :
w(tr(R(α)))w′ and M,w′ 2 ϕ. As usual, then ∃n ∈ N : wR(α)[n]w′ and ∀m ∈ N : m <
n ⇒ (∀v ∈ W : wR(α)[m] ⇒ M, v � ϕ). Since M,w � ϕ, necessarily n > 0, i.e. w 6= w′.
Hence, we write n = m + 1. Then, ∃w′′ ∈ W : wR(α)[m]w′′ and w′′R(α)w′, and by
the minimality of n = m + 1, we have that M,w′′ � ϕ. (Note that now it is possible
that m = 0, i.e. w′′ = w.) Since w′′R(α)w′ and M,w′ 2 ϕ, we have M,w′′ 2 [α]ϕ.
Thus, M,w′′ 2 ϕ → [α]ϕ. Since wR(α)[m]w′′ and R(α)[m] ⊆ tr(R(α)) = R(α∗), finally
M,w 2 [α∗](ϕ → [α]ϕ). Therefore, if M,w 2 ϕ → [α∗]ϕ, then M,w 2 [α∗](ϕ → [α]ϕ),
i.e. M,w � [α∗](ϕ → [α]ϕ) → (ϕ → [α∗]ϕ). Thus, 〈W, I, R̃〉 � υ2, provided R(α∗) =
tr(R(α)).

To recap the previous, we now have that ∀α ∈ Λ : R(α∗) = tr(R(α))⇒ 〈W, I, R̃〉 � Υ.

Consider then such L(Π,A, {∗})-frame 〈W, I, R̃〉 that ∃α ∈ Λ : tr(R(α)) * R(α∗). Then,
∃n ∈ N : ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(α)[n] and 〈w,w′〉 /∈ R(α∗) and moreover ∀m ∈ N :
m < n⇒ R(α)[m] ⊆ R(α∗), i.e. n is minimal.

If n = 0, then w = w′, thus 〈w,w〉 /∈ R(α∗). Then the model M = 〈W, I, R̃, P 〉, with
P (p) = {w}, clearly satisfiesM,w � p∨〈α〉〈α∗〉p andM,w 2 〈α∗〉p, thusM,w 2 〈α∗〉p↔
p ∨ 〈α〉〈α∗〉p.
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If n > 1, we write n = 1 + m; thus, 〈w,w′〉 ∈ R(α)[m+1]. Consider then a model
M = 〈W, I, R̃, P 〉 such that P (p) = {w′}, for some p ∈ Π; that is, M,w′ � p. Since
R(α)[m] ⊆ R(α∗), by the minimality of n = 1 +m, we infer with the fact

〈w,w′〉 ∈ R(α)[1+m] and M,w′ � p
⇔

∃w′′ ∈ W : 〈w,w′′〉 ∈ R(α) and 〈w′′, w′〉 ∈ R(α)[m] and M,w′ � p,

that first of all 〈w′′, w′〉 ∈ R(α∗), thus M,w′′ � 〈α∗〉p. Secondly, M,w � 〈α〉〈α∗〉p, since
〈w,w′′〉 ∈ R(α). However, 〈w,w′〉 /∈ R(α∗), therefore M,w 2 〈α∗〉p by the choice of P (p).
Accordingly then M,w 2 〈α∗〉p↔ p ∨ 〈α〉〈α∗〉p, and consequently 〈W, I, R̃〉 2 υ1.

Therefore, if 〈W, I, R̃〉 � υ1, then ∀α ∈ Λ : tr(R(α) ⊆ R(α∗)).

Next, let 〈W, I, R̃〉 be L(Π,A{∗})-frame and assume that ∃α ∈ Λ : R(α∗) * tr(R(α)),
i.e. ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(α∗) and 〈w,w′〉 /∈ tr(R(α)). Consider a model M =
〈W, I, R̃, P 〉 in which P (p) = { v | 〈w, v〉 ∈ tr(R(α))}, for some p ∈ Π. Then, M,w � p by
the reflexivity of tr(R(α)). Also we have that ∀v ∈ W : 〈w, v〉 ∈ tr(R(α))⇒M, v � [α]p.
This is because if ∃v ∈ W : 〈w, v〉 ∈ tr(R(α)) and M, v 2 [α]p, then ∃v′ ∈ W : 〈v, v′〉 ∈
R(α) and M, v′ 2 p. Moreover, if 〈v, v′〉 ∈ R(α), then 〈v, v′〉 ∈ tr(R(α)). Thus, we
have that 〈w, v〉 ∈ tr(R(α)) and 〈v, v′〉 ∈ tr(R(α)), whence 〈w, v′〉 ∈ tr(R(α)) by the
transitivity of tr(R(α)). Then, v′ ∈ {v | 〈w, v〉 ∈ tr(R(α))} = P (p), i.e. M, v′ � p, a
contradiction. Therefore, (i) if 〈w, v〉 ∈ R(α∗) and 〈w, v〉 ∈ tr(R(α)), then M, v � p →
[α]p, since M, v � [α]p. If on the other hand (ii) 〈w, v〉 ∈ R(α∗) and 〈w, v〉 /∈ tr(R(α)),
then M, v 2 p by the choice of P (p), therefore M, v � p→ [α]p.

By (i) and (ii), ∀v ∈ W : 〈w, v〉 ∈ R(α∗)⇒M, v � p→ [α]p, henceM,w � [α∗](p→ [α]p).
Now, M,w′ 2 p since by the assumption 〈w,w′〉 /∈ tr(R(α)), hence w′ /∈ P (p). Therefore
by the assumption 〈w,w′〉 ∈ R(α∗), we have M,w 2 [α∗]p. Previously we concluded that
M,w � p, therefore M,w 2 (p → [α∗]p). Thus, M,w 2 [α∗](p → [α]p) → (p → [α∗]p).
Therefore, if 〈W, I, R̃〉 � υ2, then ∀α ∈ Λ : R(α∗) ⊆ tr(R(α)).

In conclusion, if 〈W, I, R̃〉 � Υ, then ∀α ∈ Λ : R(α∗) = tr(R(α)).

Notice that on the basis of the above results, it is possible on the level of frames to
syntactically define the equivalence relation determined by the relation R(α); that is, the
smallest equivalence relation S ⊆ W ×W that contains R(α). Relation trs(R(α)) is the
equivalence determined by R(α), and by the results in this section relation trs(R(α)) is
frame definable, for example, within the language L(Π,A, {t, r, s}) wherein t, r and s are
unary syntactic operators.

7 Definability in PSTL foundation logics

In this chapter we move on to address definability issues in the foundation logics. Recall
that according to Theorem 3.6, every frame definable operation is immediately foundation
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definable, but not the other way around. Therefore, we need to go through only few
operations covered in Chapter 6 that proved not to be frame definable.

It would be interesting to sort out the general properties that discriminate between frame
definable and exclusively foundation definable operators. If the target operation makes
possible on the level of frames to define operation that maps to the universal relation,
this clearly renders the operation as non-frame definable.18 The same does not hold
for foundation logics, as is manifest by Theorem 7.1. Of course, this casts only one
necessary condition for the frame definability. In addition, by Theorems 6.11 and 7.2, there
seems to be deeper issues that govern this division, since the intersection is completely
domain independent operation and moreover generally downsizes the extension of the
parametric relations. Regrettably, these issues are not discussed here, for they remain so
far unresolved. Indeed, it is unclear what are the general restrictions of the expressive
power of PSTL frame and foundation logics respectively.

In this chapter we do not seek the minimal definability results; that is, consider whether
some given operation is definable for instance within a language that contains only one
syntactic operator. Rather, we show how to define various operators by resorting to the
definability of other operations. It is more or less an open question to what extent the
operations are independently definable.

It should be noted, that in what follows we use schematic symbols α, β, γ . . . for process
variables in formulae that define operators, but in fact we could use proper atomic process
symbols a, b, c . . . instead and the results would remain the same.19 Also, we could use
propositional symbols p, q . . . instead of schemata ϕ, ψ . . . In Chapter 6, in connection
with the frame logic definability, we could use propositional symbols instead of schematic
formulae as well, but not proper atomic process symbols instead of schematic processes.
For consistency, the schematic symbols are used in the following, but it could be note-
worthy that in the case of foundation definability we actually could use proper formulae
and that is something we cannot do in the case of frame definability.

Theorem 7.1. Let L(Π,A, {×}) be a PSTL-language such that × is a 0-ary operator.
The operator that returns the universal relation W×W of foundation 〈W, I〉 is foundation
definable within L(Π,A, {×}). We have the following correspondence:

〈W, I〉 � [×]ϕ→ [α]ϕ if and only if I(×) = W ×W .

Proof. Let 〈W, I〉 be a L(Π,A, {×})-foundation. Assume I(×) = W ×W . Then, clearly
by Lemma 3.7, ∀R̃ : 〈W, I, R̃〉 � [×]ϕ → [α]ϕ since ∀α ∈ Λ : R(α) ⊆ R(×). Therefore,
I(×) = W ×W ⇒ 〈W, I〉 � [×]ϕ→ [α]ϕ.

Assume then I(×) 6= W × W , i.e. I(×) ⊂ W × W . Then, there is a frame 〈W, I, R̃〉
such that R(a) = W × W for some a ∈ A. Since R(×) 6= W × W , there are states

18For example, complementation (with the empty relation), the diversity relation (with the union and
the diagonal relation), etc.

19As long as we take care that in case of any k-ary operator, we use distinct atomic processes a1, . . . , ak.
See example 3.5 and the following remarks in page 9 for explanation.
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w,w′ ∈ W such that w/R(×)w′. Let M = 〈W, I, R̃, P 〉 be a model with P (p) = W \ {w′}.
Now, M,w � [×]p and M,w 2 [a]p, thus M,w 2 [×]p → [a]p, and furthermore then
〈W, I〉 2 [×]ϕ→ [α]ϕ. Therefore, 〈W, I〉 � [×]ϕ→ [α]ϕ⇒ I(×) = W ×W .

Next we proceed to demonstrate that the intersection operation is foundation definable
with the union. The defining set of formulae Ψ with partial sketch of the following proof
was first provided by Ari Virtanen at the University of Tampere in 2005. This particular
logic has been under some discussion during the research into PSTL conducted by the
author, Virtanen and Kuusisto. Kuusisto (2007) has proven that there is an elegant
complete axiomatization for logic {ϕ | 〈W, I, 〉 � ϕ, wherein I(+) ' ∪ and I(·) ' ∩}.
In fact, axiomatization Ψ ∪ {[(α · (β · γ)]ϕ ↔ [(α · β) · γ]ϕ} is deductively equivalent
within a natural PSTL deduction system with the axiomatization used by Kuusisto. (Cf.
appendix A for a brief presentation.)
Theorem 7.2. Consider PSTL language L(Π,A, {+, ·}) wherein + and · are binary
syntactic operators and |A| ≥ 2. Let Ψ = {ψ1, ψ2, ψ3, ψ4, ψ5} be the following set of
schemata:

ψ1 = [α]ϕ ∨ [β]ϕ→ [α · β]ϕ
ψ2 = [α]ϕ↔ [α · α]ϕ
ψ3 = [α · β]ϕ↔ [β · α]ϕ
ψ4 = [α + β]ϕ↔ [α]ϕ ∧ [β]ϕ
ψ5 = [(α + β) · γ]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ

Then, 〈W, I〉 � Ψ if and only if I(+) ' ∪ and I(·) ' ∩.

Proof. First, consider a foundation 〈W, I〉 such that I(+) ' ∪ and I(·) ' ∩. By Theorem
6.8 and Lemmata 3.7 and 3.8, it is relatively easy to see that 〈W, I〉 � {ψ1, ψ2, ψ3, ψ4, ψ5}.
Choose any frame 〈W, I, R̃〉, then

〈W, I, R̃〉 � ψ1: Since R(α) ∩ R(β) ⊆ R(α), R(α) ∩ R(β) ⊆ R(β) and R(α · β) =
R(α) ∩ R(β), clearly R(α · β) ⊆ R(α) and R(α · β) ⊆ R(β). Hence, by Lemma 3.7
we have that 〈W, I, R̃〉 � [α]ϕ→ [α ·β]ϕ and 〈W, I, R̃〉 � [β]ϕ→ [α ·β]ϕ. Therefore,
〈W, I, R̃〉 � [α]ϕ ∨ [α]β → [α · β]ϕ.

〈W, I, R̃〉 � ψ2: Since R(α) = R(α)∩R(α) = R(α · α), we have 〈W, I, R̃〉 � [α]ϕ↔
[α · α]ϕ by Lemma 3.8.

〈W, I, R̃〉 � ψ3: Since R(α · β) = R(α) ∩ R(β) = R(β) ∩ R(α) = R(β · α), Lemma
3.8 again directly implies that 〈W, I, R̃〉 � [α · β]ϕ↔ [β · α]ϕ.

〈W, I, R̃〉 � ψ4: By Theorem 6.8.

〈W, I, R̃〉 � ψ5 : R((α + β) · γ) = (R(α) ∪R(β)) ∩R(γ)
= (R(α) ∩R(γ)) ∪ (R(β) ∩R(γ))
= R((α · γ) + (β · γ)).

Hence, by Lemma 3.8, 〈W, I, R̃〉 � [(α + β) · γ]ϕ ↔ [(α · γ) + (β · γ)]ϕ. Therefore,
〈W, I, R̃〉 � [(α + β) · γ]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ, since 〈W, I, R̃〉 � ψ4.
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Since the choice of mapping R̃ was arbitrary, we conclude that that the results are valid
in all frames of foundation 〈W, I〉. Therefore, if I(+) ' ∪ and I(·) ' ∩, then 〈W, I〉 � Ψ.

Consider then L(Π,A, {+, ·})-foundation 〈W, I〉 and assume that 〈W, I〉 � Ψ. By theo-
rems 6.8 and 3.6 we readily get the other demonstrable, i.e. I(+) ' ∪, since 〈W, I〉 � ψ4.
To show that also I(·) ' ∩ we first need some intermediate results.

7.2.a: 〈W, I〉 � ψ1 ⇒ ∀S, T ⊆ W × W : I(·)(S, T ) ⊆ S ∩ T . To prove this, assume
that ∃S, T ⊆ W × W : I(·)(S, T ) * S ∩ T . Then there is frame 〈W, I, R̃〉 such that
R(a) = S and R(b) = T , for some a, b ∈ A, whence R(a · b) * R(a) ∩ R(b). Thus,
∃w,w′ ∈ W : 〈w,w′〉 ∈ R(a · b) and 〈w,w′〉 /∈ R(a) or 〈w,w′〉 /∈ R(b). Consider then a
modelM = 〈W, I, R̃, P 〉 wherein P (p) = W \{w′}. Since 〈w,w′〉 /∈ R(a) or 〈w,w′〉 /∈ R(b),
either M,w � [a]p or M,w � [b]p. In either case, M,w � [a]p ∨ [b]p. On the other hand,
〈w,w′〉 ∈ R(a · b), whence M,w 2 [a · b]p. Therefore, M,w 2 [a]p∨ [b]p→ [a · b]p, whence
〈W, I〉 2 [α]ϕ∨[β]ϕ→ [α·β]ϕ. Hence, 〈W, I〉 � ψ1 ⇒ ∀S, T ⊆ W×W : I(·)(S, T ) ⊆ S∩T .

The following correspondences hold by Lemma 3.8:

〈W, I, R̃〉 � [α]ϕ↔ [α · α]ϕ⇔ R(α) = R(α · α),
〈W, I, R̃〉 � [α · β]ϕ↔ [β · α]ϕ⇔ R(α · β) = R(β · α).

Thus, we conclude by Theorem 3.6 that

7.2.b: 〈W, I〉 � ψ2 ⇔ ∀S ⊆ W ×W : S = I(·)(S, S),
7.2.c: 〈W, I〉 � ψ3 ⇔ ∀S, T ⊆ W ×W : I(·)(S, T ) = I(·)(T, S).

7.2.d: 〈W, I〉 � ψ5 ⇒ ∀R, S, T ⊆ W ×W : I(·)((R ∪ S), T ) = (I(·)(R, T )) ∪ (I(·)(S, T )),
provided 〈W, I〉 � ψ4. Assume

〈W, I〉 � [(α + β) · γ]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ and 〈W, I〉 � [α + β]ϕ↔ [α]ϕ ∧ [β · γ]ϕ.

Since PSTL foundation logic respects standard propositional logic, we can readily infer
from the assumptions that 〈W, I〉 � [(α+β) ·γ]ϕ↔ [(α ·γ)+(β ·γ)]ϕ. Then, by corollary
3.9, we infer that

∀R, S, T ⊆ W ×W : I(·)((I(+)(R, S)), T ) = I(+)((I(·)(R, T )), (I(·)(S, T ))).

Since assumption 〈W, I〉 � ψ4 implies I(+) ' ∪, we conclude that

∀R, S, T ⊆ W ×W : I(·)((R ∪ S), T ) = (I(·)(R, T )) ∪ (I(·)(S, T )).

We denote S u T = I(·)(S, T ) for readability of the proof to follow. Now, to recap the
results 7.2.(a-d) we have the following:

1◦ ∀S, T ⊆ W ×W : S u T ⊆ S ∩ T , by 7.2.a.
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2◦ The operation u is idempotent: ∀S ⊆ W ×W : S = S u S, by 7.2.b.

3◦ The operation u is commutative: ∀S, T ⊆ W ×W : S u T = T u S, by 7.2.c.

4◦ By 7.2.d, the operation u respects the distinct distributive law with union, namely
∀R, S, T ⊆ W ×W : (R ∪ S) u T = (R u T ) ∪ (S u T ).

5◦ ∀R, S, T ⊆: W ×W : T u (R ∪ S) = (T u R) ∪ (T u S). This is a commutative
reformulation of 4◦, permitted by 3◦.

Then pick any two relations A,B ⊆ W ×W . We denote

A′ = A \B, B′ = B \ A and C = A ∩B.

Hence 6◦ : A = (A′ ∪ C) and 7◦ : B = (B′ ∪ C).

Also, by 1◦, we have thatA′uB′ ⊆ A′∩B′ = ∅, A′uC ⊆ A′∩C = ∅ and CuB′ ⊆ C∩B′ = ∅;
that is,

8◦ : A′ uB′ = ∅, 9◦ : A′ u C = ∅ and 10◦ : C uB′ = ∅.

Finally, we are ready to commit the the concluding inference:

I(·)(A,B) = A uB
= (A′ ∪ C) u (B′ ∪ C) 6◦, 7◦
= (A′ u (B′ ∪ C)) ∪ (C u (B′ ∪ C)) 4◦
= ((A′ uB′) ∪ (A′ u C)) ∪ ((C uB′) ∪ (C u C)) 5◦
= (∅ ∪ ∅) ∪ (∅ ∪ (C u C)) 8◦, 9◦, 10◦
= C u C
= C 2◦
= A ∩B

Therefore, ∀S, T ⊆ W ×W : I(·)(S, T ) = S ∩ T . This concludes the proof of the other
implication in the theorem; that is, if 〈W, I〉 � Ψ, then I(+) ' ∪ and I(·) ' ∩.

Theorem 7.3. Let L(Π,A, {+, ·, /}) be a PSTL-language such that +, · and / are binary
syntactic operators and |A| ≥ 2. Then,

〈W, I〉 � Ψ ∪K if and only if I(+) ' ∪, I(·) ' ∩ and I(/) ' \,

wherein set Ψ is as defined in page 38 and

κ1 = [α/β]ϕ ∧ [α · β]ϕ↔ [α]ϕ
κ2 = [β · (α/β)]⊥

Proof. Consider L(Π,A, {+, ·, /})-foundation 〈W, I〉 such that I(+) ' ∪, I(·) ' ∩ and
I(/) ' \. Immediately by Theorem 7.2, 〈W, I〉 � Ψ.
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Then choose any frame 〈W, I, R̃〉 of the foundation under consideration. Evidently ∀α, β ∈
Λ : (R(α)\R(β))∪(R(α)∩R(β)) = R(α), therefore 〈W, I, R̃〉 � [(α/β)+(α ·β)]ϕ↔ [α]ϕ
by Lemma 3.8. By Theorem 6.8, 〈W, I, R̃〉 � [(α/β) + (α · β)]ϕ↔ [α/β]ϕ ∧ [α · β]ϕ, thus
we now have that 〈W, I, R̃〉 � [α/β]ϕ ∧ [α · β]ϕ↔ [α]ϕ.

Next, R(β · (α/β)) = ∅, since ∀α, β ∈ Λ : R(β) ∩ (R(α) \ R(β)) = ∅. Thus, 〈W, I, R̃〉 �
[β · (α/β)]⊥.

Therefore, 〈W, I, R̃〉 � {κ1, κ2}. Since the choice of mapping R̃ was arbitrary, we conclude
that 〈W, I〉 � K, hence if I(+) ' ∪, I(·) ' ∩ and I(/) ' \, then 〈W, I〉 � Ψ ∪K.

Assume then 〈W, I〉 � Ψ ∪K. Since 〈W, I〉 � Ψ, by Theorem 7.2 I(+) ' ∪ and I(·) ' ∩.
We still need to prove that I(/) ' \, i.e. ∀S, T ⊆ W ×W : I(/)(S, T ) = S \ T .

Assume to the contrary; that is, either I(/)(S, T ) * S \ T or S \ T * I(/)(S, T ) holds for
some relations S, T ⊆ W ×W .

Assume I(/)(S, T ) * S \T and consider a frame 〈W, I, R̃〉 such that R̃(a) = S and R̃(b) =
T for some a, b ∈ A, whence ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(a/b) and 〈w,w′〉 /∈ R(a) \ R(b).
Since 〈w,w′〉 /∈ R(a) \R(b), either 〈w,w′〉 /∈ R(a) or 〈w,w′〉 ∈ R(a) ∩R(b).

Assume first that 〈w,w′〉 /∈ R(a). Consider then a model M = 〈W, I, R̃, P 〉 with P (p) =
W \ {w′}. Since 〈w,w′〉 /∈ R(a), clearly M,w � [a]p. However, 〈w,w′〉 ∈ R(a/b), thus
M,w 2 [a/b]p, whence M,w 2 [a/b]p∧ [a · b]p. Therefore, 〈W, I〉 2 [a/b]p∧ [a · b]p↔ [a]p,
contrary to the assumption 〈W, I〉 � κ1.

Consider then the other possibility, namely 〈w,w′〉 ∈ R(a) ∩ R(b). Then 〈w,w′〉 ∈ R(b),
and 〈w,w′〉 ∈ R(a/b) by the initial assumption, thus 〈w,w′〉 ∈ R(b) ∩R(a/b). Therefore,
〈w,w′〉 ∈ R(b · (a/b)), since I(·) ' ∩ by the assumption 〈W, I, R̃〉 � Ψ. Whence, by the
definition of constant ⊥, clearly M,w 2 [b · (a/b)]⊥. Thus, 〈W, I〉 2 κ2, contrary to the
assumption 〈W, I〉 � Ψ ∪K.

Therefore, 〈W, I〉 � Ψ ∪K ⇒ ∀S, T ⊆ W ×W : I(/)(S, T ) ⊆ S \ T .

Next, assume S \ T * I(/)(S, T ). Then there is a frame 〈W, I, R̃〉 wherein R̃(a) = S
and R̃(b) = T , for some a, b ∈ A, such that ∃w,w′ ∈ W : 〈w,w′〉 ∈ R(a) \ R(b) and
〈w,w′〉 /∈ R(a/b). Since 〈w,w′〉 ∈ R(a)\R(b), we have 〈w,w′〉 ∈ R(a) and 〈w,w′〉 /∈ R(b);
that is, 〈w,w′〉 /∈ R(a) ∩ R(b). Consider a model M = 〈W, I, R̃, P 〉 wherein P (p) =
W \ {w′}. Since 〈w,w′〉 ∈ R(a), we have M,w 2 [a]p. On the other hand, we have that
〈w,w′〉 /∈ R(a/b) and 〈w,w′〉 /∈ R(a) ∩ R(b), i.e. 〈w,w′〉 /∈ R(a · b). Thus, by the choice
of valuation P (p), now M,w � [a/b]p and M,w � [a · b]p; that is, M,w � [a/b]p ∧ [a · b]p.
Hence M,w 2 [a/b]p ∧ [a · b]p ↔ [a]p, which contradicts the assumption 〈W, I〉 � κ1.
Therefore 〈W, I〉 � Ψ ∪ {κ1} ⇒ ∀S, T ⊆ W ×W : S \ T ⊆ I(/)(S, T ).

Thus, the proof for 〈W, I〉 � Ψ∪K ⇒ ∀S, T ⊆ W×W : I(/)(S, T ) = S\T is complete.

Theorem 7.4. Consider a PSTL-language L(Π,A, {×,+, ·, /}) wherein |A| ≥ 2 and
dom(×) = Λ0 and dom(+) = dom(·) = dom(/) = Λ2. The complementation is syntacti-
cally foundation definable in L(Π,A, {×,+, ·, /}), since
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if 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ}, then ∀S ⊆ W ×W : I(/)(I(×), S) = S.

Proof. Cf. the proof of corollary 7.5 below.

Corollary 7.5. Let L(Π,A, {×, ·,+, ·, /}) be a PSTL-language with |A| ≥ 2 and
dom(×) = Λ0, dom(·) = Λ1 and dom(+) = dom(·) = dom(/) = Λ2. The operation
that returns the complement of S ⊆ W ×W is foundation definable in the language at
issue, since the following correspondence holds:

〈W, I〉 � (Ψ ∪K ∪ {[×]ϕ→ [α]}) ∪ {[α]ϕ↔ [×/α]ϕ}

if and only if

I(×) = W ×W, I(+) ' ∪, I(·) ' ∩, I(/) ' \ and ∀S ⊆ W ×W : I(·)(S) = S.

The essential content of Theorem 7.5 is actually the following: Recall that by Theorems
7.1,7.2 and 7.3, 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ → [α]ϕ} is equivalent to that I(×) = W ×W ,
I(+) ' ∪, I(·) ' ∩ and I(/) ' \. Now, if 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ} the following
holds:

〈W, I〉 � [α]ϕ↔ [×/α]ϕ if and only if ∀S ⊆ W ×W : I(·)(S) = S.

Proof. Assume that 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ}. Thus I(×) = W ×W , I(+) ' ∪,
I(·) ' ∩ and I(/) ' \, by Theorems 7.1, 7.2 and 7.3. Therefore ∀S ⊆ W × W :
I(/)(I(×), S) = S.

By Corollary 3.9, 〈W, I〉 � [α]ϕ ↔ [×/α]ϕ ⇔ ∀S ⊆ W ×W : I(·)(S) = I(/)(I(×), S).20

Thus, 〈W, I〉 � [α]ϕ↔ [×/α]ϕ⇔ ∀S ⊆ W ×W : I(·)(S) = S, for I(/)(I(×), S) = S.

Theorem 7.6. Let L(Π,A, {×, ; ,+, ·, /}) be a PSTL-language such that |A| ≥ 2 and
dom(×) = Λ0, dom(·) = Λ1 and dom(; ) = dom(+) = dom(·) = dom(/) = Λ2. Then, the
relative union is syntactically foundation definable in the language since

if 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ} ∪ {〈α; β〉ϕ↔ 〈α〉〈β〉ϕ}, then

∀S, T ⊆ W ×W : I(/)(I(×), (I(; )(I(/)(I(×), S), I(/)(I(×), T )))) = S u T .21

20Note that this is a somewhat nontrivial application of 3.9. Of course the trivial implication of the
corollary is that if 〈W, I〉 is L(Π,A,F)-foundation with |A| ≥ n and f, g ∈ F , then

〈W, I〉 � [f(α1, . . . , αn)]ϕ↔ [g(α1, . . . , αn)]ϕ⇔ ∀S1, . . . , Sn ⊆W×W : I(f)(S1, . . . , Sn) = I(g)(S1, . . . , Sn)

We can treat (×/x) as a unary compound operator where x denotes the place of an argument, that is
(×/x) stands for instances of I(/) : ((W ×W ), S) 7→ (W ×W ) \ S for any S ⊆ W ×W . Therefore,
the commented step in the proof of theorem 7.5 holds. Indeed, the proof shows that there is no logical
difference between operators I(·) and I(/)(×/x) in the considered foundation class.

21Notice that if we relax our denotational conventions and just write I(f) = f and use infix nota-
tion, the overly complex statement I(/)(I(×), (I(; )(I(/)(I(×), S), I(/)(I(×), T )))) = S u T reduces to
(×/((×/S); (×/T ))) = S u T .
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Proof. Recall that SuT = S ◦ T (cf. Definition 6.9). If 〈W, I〉 � Ψ∪K ∪{[×]ϕ→ [α]ϕ},
by Theorem 7.4: (1◦) I(/)(I(×), S) = S. Furthermore, Theorem 6.7 with Theorem 3.6
implies (2◦) I(; )(S, T ) = S ◦ T , if 〈W, I〉 � 〈α; β〉ϕ↔ 〈α〉〈β〉ϕ.

Hence, if 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ} ∪ {〈α; β〉ϕ↔ 〈α〉〈β〉ϕ}, the following chain of
equivalences holds:

I(/)
(
I(×), (I(; )(I(/)(I(×), S), I(/)(I(×), T )))

)
= I(/)

(
I(×), (I(; )(S, T ))

)
1◦

= I(/)
(
I(×), ((S ◦ T ))

)
2◦

= S ◦ T 1◦
= S u T def.6.9

If we want to reserve a distinct syntactic operator to carry out the relative union, we
can always assign one for the task. This requires that we introduce a language with an
additional binary syntactic operator in regard to language L(Π,A, {×, ; ,+, ·, /}). For
illustration, one in the following corollary of Theorem 7.6 is considered.

Corollary 7.7. Let L(Π,A, {×, ·, ; ,+, ·, /,⊕}) be a PSTL-language such that |A| ≥ 2
and dom(×) = Λ0, dom(·) = Λ1 and dom(+) = dom(·) = dom(/) = dom(; ) = dom(⊕) =
Λ2. Now,

if 〈W, I〉 � Ψ∪K ∪{[×]ϕ→ [α]ϕ}∪{[α]ϕ↔ [×/α]ϕ}∪{〈α; β〉ϕ↔ 〈α〉〈β〉ϕ}, then

〈W, I〉 � [α⊕ β]ϕ↔ [α; β]ϕ if and only if ∀S, T ⊆ W ×W : I(⊕)(S, T ) = S u T .

Notice that operator · is actually redundant here, but its introduction makes the demon-
stration far more easier to follow.

Proof. Let 〈W, I〉 be L(Π,A, {×, ·,+, ·, /, ; ,⊕})-foundation such that

〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ} ∪ {[α]ϕ↔ [×/α]ϕ} ∪ {〈α; β〉ϕ↔ 〈α〉〈β〉ϕ}.

Since 〈W, I〉 � Ψ ∪ K ∪ {[×]ϕ → [α]ϕ} ∪ {[α]ϕ ↔ [×/α]ϕ}, we have I(·)(S) = S by
Theorem 7.5. Also, since 〈W, I〉 � 〈α; β〉ϕ ↔ 〈α〉〈β〉ϕ, we have I(; )(S, T ) = S ◦ T by
Theorems 6.7 and 3.6. Therefore,

∀S, T ⊆ W ×W : I(·)(I(; )(I(·)(S), I(·)(T ))) = S ◦ T = S u T.

Thus, if 〈W, I〉 � [α⊕ β]ϕ↔ [α; β]ϕ, then

∀S, T ⊆ W ×W : I(⊕)(S, T ) = I(·)(I(; )(I(·)(S), I(·)(T ))),

by Theorem 3.9. Whence, we conclude that ∀S, T ⊆ W ×W : I(⊕)(S, T ) = S u T .
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Finally, we have one more operation to be considered: the constant operator that returns
the diversity relation over the domain of given foundation 〈W, I〉. Rather less surprisingly,
the operation is definable.
Theorem 7.8. Consider PSTL-language L(Π,A, {D,×,+, ·, /}) wherein |A| ≥ 2 and
dom(D) = dom(×) = Λ0 and dom(+) = dom(·) = dom(/) = Λ2. The operator that
returns the diversity relation of a given domain is syntactically foundation definable in
the language. Let 〈W, I〉 be a L(Π,A, {D,⊗,+, ·, /})-foundation. Now,

if 〈W, I〉 � Ψ ∪K ∪ {[×]ϕ→ [α]ϕ} ∪ {[D]ϕ↔ ϕ}, then

I(×/D) = {〈w,w′〉|w,w′ ∈ W : w 6= w′}.

Proof. The proof is trivial. Assume 〈W, I〉 � Ψ∪K∪{[×]ϕ→ [α]ϕ}∪{[D]ϕ↔ ϕ}. Since
〈W, I〉 � [D]ϕ ↔ ϕ, we have that I(D) = {〈w,w〉|w ∈ W} by Theorems 6.2 and 3.6. In
addition, 〈W, I〉 � Ψ∪K ∪{[×]ϕ→ [α]ϕ} implies I(×) = W ×W and I(S/T ) = S \T by
Theorems 7.1 and 7.4 respectively. Therefore, I(×/D) = I(×)\I(D) = (W ×W )\ I(D) =
I(D) = {〈w,w′〉|w,w′ ∈ W : w 6= w′}.

Moreover, we can introduce a distinct (0-ary) syntactic operator that maps to the diversity
relation if needed; that is, we evidently have the corresponding corollary to Theorem 7.8
with Theorems 7.4 and 7.6.

8 Summary

In this paper we have considered several particular operation definability issues in various
PSTL languages in the level of frames and foundations respectively. The results are
recapitulated in the table below.22

Table representing frame and
foundation definability results.

UNARY frame found.
complement no yes
inverse yes yes

BINARY frame found.
composition yes yes
union yes yes
relative union no yes
set substraction no∗ yes
intersection no∗ yes

CLOSURES frame found.
reflexive yes yes
symmetric yes yes
transitive yes yes
trans. refl. yes yes

CONSTANTS frame found.
empty yes yes
diagonal yes yes
universal no yes
diversity no yes

22Results tagged with asterisk (∗) are unresolved in general case. See section 6, page 6.3 for explanation.
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In Sections 4 and 5, we discussed some general issues in frame logic definability. The
covered model theoretic tools were the union of disjoint frames and bounded morphisms,
which both are familiar tools of any normal modal logic semantics, generalized for the
context of PSTL.

It is unfortunate that thus far we lack similar powerful model theoretical tools for founda-
tion logics. Of course, one could define for example the union of disjoint foundations by
just omitting the references to mapping R̃i ] R̃j in the definition of the union of disjoint
frames (cf. Definition 4.2). The problem, however, resides in the fact that while the
fundamental idea of the union of disjoint frames is that the operation does not always
preserve operator characterizations, but always preserves frame validities, the described
operation on disjoint foundations most definitely does not generally preserve either prop-
erty of foundations.

At this point we also lack general characterization of expressiveness of PSTL. It should
be clear that PSTL frame logic is not as expressive as the First-Order Logic (FOL),
since we cannot, for example, define the complementation on the level of frames within
any PSTL language. On the other hand, transitive closure is frame definable in PSTL
language with one unary operator while the closure is not definable in FOL. Therefore,
the class of definable operations in FOL and PSTL frame logics intersect, but neither
language is strictly more expressive than the other in this respect.

It would be even more interesting to pin down the class of foundation definable operations,
although for the reason mentioned above we have even less to say about what is not defin-
able in foundation logics than in frame logics. For some overview on the positive results,
we know that the calculus of relations can be expressed completely within the PSTL foun-
dation logics. The calculus of relations, for one, is equivalent in expressive and deductive
power with FOL fragment with three variables. It is rather surprising that this frag-
ment is adequate to formulate virtually any first-order set theory and first-order number
theory (Givant, 2006). Moreover, since the transitive closure is also definable in founda-
tion logics, the proofs presented in this paper disclose that the PSTL foundation logics
provide a highly expressive framework. Unfortunately it is not yet established whether
every first-order definable operation is foundation definable or not; that is, whether PSTL
foundation logics framework is strictly more expressive than FOL.
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A Brief review on the syntactic theory

Definition A.1. We call a deduction system SΛ as the minimal deduction system of
PSTL language L(Π,A,F) defined in the following.

The minimal deduction system SΛ contains standard axiomatization of Propositional Logic
(PL), i.e. axioms

Ax1 : ϕ→ (ψ → ϕ)
Ax2 : (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))
Ax3 : (¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

and is closed under inference rule Modus Ponens:

(MP ) : if ` ϕ→ ψ and ` ϕ, then ` ψ.

In what follows, we do not apply axioms Axi or rule (MP ) explicitly but instead resort to
an inference rule (PL) that allows us to introduce any formula ϕ ∈ L(Π,A,F) that can
be deduced from the subset of preceding formulae by using classical propositional logic.
Rule (PL) is justified simply by the fact that system consisting Ax1, Ax2, Ax3 and (MP )
contains every tautology as its theorem, i.e. constitutes a complete axiomatization of the
propositional logic. Note that we consider also modal tautologies (e.g. [α]ϕ→ [α]ϕ∨ [β]ψ)
to be classical tautologies, although they are not contained in language of PL proper.

In addition, SΛ contains generalization of the standard axiom K of normal modal logic:

(KΛ) : [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

and generalization of inference rule (RN):

(RNΛ) : ∀α ∈ Λ : if ` ϕ, then ` [α]ϕ

We proceed to demonstrate the deductive equivalence of Ψ∗ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6} and
Ω = {ψ3, ψ4, ψ6, ω1, ω2, ω3}, wherein

ψ1 = [α]ϕ ∨ [β]ϕ→ [α · β]ϕ
ψ2 = [α]ϕ↔ [α · α]ϕ
ψ3 = [α · β]ϕ↔ [β · α]ϕ
ψ4 = [α + β]ϕ↔ [α]ϕ ∧ [β]ϕ
ψ5 = [(α + β) · γ]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ
ψ6 = [α · (β · γ)]ϕ↔ [(α · β) · γ]ϕ
ω1 = [α + (α · β)]ϕ↔ [α]ϕ
ω2 = [α · (α + β)]ϕ↔ [α]ϕ
ω3 = [α · (β + γ)]ϕ↔ [(α · β) + (α · γ)]ϕ

The motivation behind this is that, as mentioned in the opening of section 7, Antti Kuu-
sisto has proven that a slightly expanded deduction system S∗Λ with axioms Ω constitute
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a complete axiomatization of the PSTL foundation logic of language L(Π,A, {+, ·}) with
interpretations I(+) ' ∪ and I(·) ' ∩. The minimal deduction system SΛ is not adequate
to establish completeness, but it is sufficient to carry out deductions Ψ∗ ` Ω and Ω ` Ψ∗.
Interested reader is referred to consult (Kuusisto, 2007).

We begin with Ψ∗ ` Ω. All we need to prove is Ψ∗ ` {ω1, ω2, ω3}, since ψ3, ψ4, ψ6 ∈ Ψ∗.

Ψ∗ ` ω1 : 1. [α]ϕ→ [α]ϕ ∨ [β]ϕ (PL)
2. [α]ϕ ∨ [β]ϕ→ [α · β]ϕ ψ1
3. [α]ϕ→ [α · β]ϕ 1, 2 (PL)
4. [α]ϕ→ [α]ϕ ∧ [α · β]ϕ 3 (PL)
5. [α]ϕ ∧ [α · β]ϕ↔ [α + (α · β)]ϕ ψ4
6. [α]ϕ→ [α + (α · β)]ϕ 4, 5 (PL)
7. [α + (α · β)]ϕ↔ [α]ϕ ∧ [α · β]ϕ ψ4
8. [α]ϕ ∧ [α · β]ϕ→ [α]ϕ (PL)
9. [α + (α · β)]ϕ→ [α]ϕ 7, 8 (PL)
10. [α + (α · β)]ϕ↔ [α]ϕ 6, 9 (PL)

Ψ∗ ` ω2 : 1. [α]ϕ→ [α]ϕ ∨ [α + β]ϕ (PL)
2. [α]ϕ ∨ [α + β]ϕ→ [α · (α + β)]ϕ ψ1
3. [α]ϕ→ [α · (α + β)]ϕ 1, 2 (PL)
4. [α · (α + β)]ϕ↔ [(α + β) · α]ϕ ψ3
5. [(α + β) · α]ϕ↔ [α · α]ϕ ∧ [β · α]ϕ ψ5
6. [α · α]ϕ ∧ [β · α]ϕ→ [α · α]ϕ (PL)
7. [α · α]ϕ↔ [α]ϕ ψ2
8. [α · (α + β)]ϕ→ [α]ϕ 4− 7 (PL)
9. [α · (α + β)]ϕ↔ [α]ϕ 3, 8 (PL)

Ψ∗ ` ω3 : 1. [α · (β + γ)]ϕ↔ [(β + γ) · α]ϕ ψ3
2. [(β + γ) · α]ϕ↔ [β · α]ϕ ∧ [γ · α]ϕ ψ5
3. [α · (β + γ)]ϕ↔ [β · α]ϕ ∧ [γ · α]ϕ 1, 2 (PL)
4. [β · α]ϕ↔ [α · β]ϕ ψ3
5. [γ · α]ϕ↔ [α · γ]ϕ ψ3
6. [β · α]ϕ ∧ [γ · α]ϕ↔ [α · β]ϕ ∧ [α · γ]ϕ 4, 5 (PL)
7. [α · (β + γ)]ϕ↔ [α · β]ϕ ∧ [α · γ]ϕ 3, 6 (PL)
8. [(α · β) + (α · γ)]ϕ↔ [α · β]ϕ ∧ [α · γ]ϕ ψ4
9. [α · (β + γ)]ϕ↔ [(α · β) + (α · γ)]ϕ 7, 8 (PL)
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To establish Ω ` Ψ∗, we need to carry out deductions for Ω ` {ψ1, ψ2, ψ5}, since
ψ3, ψ4, ψ6 ∈ Ψ∗.

Ω ` ψ1 : 1. [α]ϕ↔ [α + (α · β)]ϕ ω1
2. [α + (α · β)]ϕ↔ [α]ϕ ∧ [α · β]ϕ ψ4
3. [α]ϕ ∧ [α · β]ϕ→ [α · β]ϕ (PL)
4. [α]ϕ→ [α · β]ϕ 1− 3 (PL)
5. [β]ϕ↔ [β + (β · α)]ϕ ω1
6. [β + (β · α)]ϕ↔ [β]ϕ ∧ [β · α]ϕ ψ4
7. [β]ϕ ∧ [β · α]ϕ→ [β · α]ϕ (PL)
8. [β · α]ϕ↔ [α · β]ϕ ψ3
9. [β]ϕ→ [α · β]ϕ 5− 8 (PL)
10. [α]ϕ ∨ [β]ϕ→ [α · β]ϕ 4, 9 (PL)

Ω ` ψ5 : 1. [γ · (α + β)]ϕ↔ [γ · α]ϕ ∧ [γ · β]ϕ ω3
2. [γ · α]ϕ↔ [α · γ]ϕ ψ3
3. [γ · β]ϕ↔ [β · γ]ϕ ψ3
4. [γ · α]ϕ ∧ [γ · β]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ 2, 3 (PL)
5. [γ · (α + β)]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ 1, 4 (PL)
6. [γ · (α + β)]ϕ↔ [(α + β) · γ]ϕ ψ3
7. [(α + β) · γ]ϕ↔ [α · γ]ϕ ∧ [β · γ]ϕ 5, 6 (PL)

Ω ` ψ2 : 1. [α]ϕ↔ [α · (α + α)]ϕ ω2
2. [α · (α + α)]ϕ↔ [(α + α) · α]ϕ ψ3
3. [(α + α) · α]ϕ↔ [α · α]ϕ ∧ [α · α]ϕ ψ5
4. [α · α]ϕ ∧ [α · α]ϕ↔ [α · α]ϕ (PL)
5. [α]ϕ↔ [α · α]ϕ 1− 4 (PL)

Therefore, `SΛ Ψ∗ ↔ Ω, whence the set of formulae Ψ (see page 38) with a formula ψ6
provides the complete axiomatization of logic {ϕ|〈W, I〉 � ϕ, I(+) ' ∪ and I(·) ' ∩}
within the deduction system S∗Λ provided by Kuusisto. Whether ψ6 is derivable from Ψ
in S∗Λ is currently unknown. This seems unlikely, since then ψ6 would be redundant in Ω
also and we have reasons to believe that this is not the case (again, for elaboration see
(Kuusisto, 2007)).
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