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This thesis experiments with a novel approach to applying genetic algorithms in 

software architecture design by giving the structure of an architecture at a highly 

abstract level. Previously in the literature, genetic algorithms are used only to improve 

existing architectures. The structure and evaluation of software architectures and the 

principles of meta-heuristic search algorithms are introduced to give a basis to 

understand the implementation. Current research in the field of search-based software 

engineering is explored to give a perspective to the implementation presented in this 

thesis. The chosen genetic construction of software architectures is based on a model 

which contains information of a set of responsibilities and dependencies between them. 

An implementation using this model is presented, as well as test results achieved from a 

case study made on a sketch of an electronic home control system. The test results show 

that quality results can be achieved using the selected approach and that the presented 

implementation is a good starting point for future research. 
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1.  Introduction 

The most constant thing in the field of software engineering today is that the field is 

changing. Software systems become larger and more complex, while at the same time 

the mobile industry is growing rapidly, calling for new techniques and intricate systems 

to be implemented with limited resources. As software enterprises become 

multinational, the need for shared systems also grows. As the systems grow in 

complexity, so does the need for highly talented software architects to keep the systems 

under control, which is not an easy task especially when thinking of dynamic systems 

with constantly changing architectures. Clearly, some kind of automated method is 

needed in order to aid the design of such dynamic architectures by giving the human 

architects suggestions and starting points which they can then fine-tune into quality 

software architectures.  

What could such a method be? What can be used to evolve modifiable, reusable and 

efficient software architectures from complicated sets of requirements, especially if the 

architectures need to conform to changes in their environments? A precedent to this 

problem can be found in nature, where complex species have evolved from simple 

organisms, and are constantly able to adapt to changes in the environment. The 

evolution happens through generations with the idea of the survival of the fittest: the 

ones with the ability to survive will be able to produce new offspring who will then 

inherit the properties needed for survival. Changes in species also occur through 

mutations, which are the key to survival when the change in environment is so drastic 

that rapid adaptation is needed, but happen also constantly at a lower level. However, 

the adaptation “project” with species takes perhaps hundreds of generations and years, 

which is not acceptable in the field of software engineering. Fortunately, a simulation 

can be done quite fast to achieve similar results with the use of genetic algorithms. 

Genetic algorithms operate with analogies to evolution in biology. As in biology a 

chromosome keeps the “solution” to the question as to how certain properties of a 

species work, a solution to a software engineering problem can be modelled as a 

“chromosome” in order for it to be operated by a genetic algorithm. This model is then 

altered by mutations, which change one specific feature, and crossovers which, as in 

nature, combine the characteristics of two individuals in their offspring. 

Genetic algorithms are suitable for modifying software architectures as they too 

have certain constants which can be implemented in various ways. An architecture is 

based on the requirements as to what the software system is supposed to do. The basic 

architecture deals with the question of how the operations related to the requirements 

are divided into components. When further developing architectures, mechanisms such 

as interfaces and inheritance can also be added to the design. Thus, the set of 

requirements and their positioning in the system represents the basic individual, which 
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then evolves as positions of requirements are changed and mechanisms are added. As 

there is theoretically an exponential amount of possible designs for a system, the use of 

genetic algorithms to solve the problem is justified. 

The common feature with all the current research activities on applying search 

algorithms to architecture design is that a reasonably good architecture is needed as a 

starting point, and the search algorithm merely attempts to improve this architecture 

with respective to some quality metrics. This means that considerable effort is needed 

before the algorithm can be executed, and as the base solution can be assumed as a 

standard one, this also somewhat limits the possible solutions the algorithm can reach. 

This restriction decreases the innovativeness of the method: if given the algorithm “free 

hands”, it might be able to reach solutions that a human designer might not find at all, 

but still have a high quality. Thus, an approach that only needs the basic requirements 

(responsibilities) of the system would both save the initial work and give the algorithm 

a chance for a more thorough traverse through the possible solutions.  

In my thesis, I have taken the novel approach of starting only with a set of 

responsibilities. I have derived a responsibility dependency graph which is then given as 

input to a genetic algorithm, which will produce a suggestion for the architecture of the 

given system as a UML class diagram. I begin my thesis by presenting the structure and 

current evaluation methods of software architectures in Chapter 2. In Chapter 3 I 

describe meta-heuristic search algorithms, and especially give a thorough presentation 

of genetic algorithms. The current research involved with the application of meta-

heuristic search algorithms in software engineering is surveyed in Chapter 4. In 

Chapters 5 and 6 I present my implementation, first from a logical point of view, as to 

how an architecture can be modelled for a genetic algorithm, and then from a practical 

view by giving a detailed description of the implementation and the evaluation metrics 

used. Moreover, I present some example solutions so far achieved. A case study where 

the implemented algorithm was used on a model of an electronic home control system is 

presented in Chapter 7, and in Chapter 8 I present the outcome of this thesis and my 

concluding remarks. 
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2. Software architectures 

Software architecture is defined by the IEEE Standard 1471-2000 [IEEE, 2000] as “the 

fundamental organization of a system embodied in its components, their relationships to 

each other and to the environment, and the principles guiding its design and evolution”. 

Thus, a software architecture defines the general structure of the software. An 

architecture should always be described or modeled somehow, otherwise it does not 

exist. In reverse engineering one tries to detect the architecture of a software from the 

source code by looking at what kind of packages it has, and by generating class 

diagrams from the code. Normally, the architecture of a software should always be 

designed before the actual implementation, as it is possible to very efficiently evaluate 

the architecture, and thus point out possible weaknesses of the software before 

beginning the implementation.  

The structure of an architecture and the evaluation metrics presented in this chapter 

will be used in Chapter 5, where I present how architectures can be modeled in order to 

operate them with a genetic algorithm, and in Chapter 6, where I discuss the evaluation 

methods used in the implementation. The studies surveyed in Chapter 4 also use many 

of the metrics presented here as well as concepts concerning architectural quality. 

2.1. The structure of an architecture 

As stated, a software architecture describes the components of a software and the 

relationships between these components. We must now consider what can be thought of 

as a component, and what as a relationship.  

A software component is defined as an individual and independent software unit 

that offers its services through well-defined interfaces [Koskimies ja Mikkonen, 2005].  

This definition requires that the topics of dependency, usage and size are also dealt 

with. Firstly, a component should never be completely dependent of another component. 

A component can, however, be dependent on services that are provided by some other 

components, thus requiring an interface to those components. Secondly, a component 

can be taken to use as a single unit with no regard to other software units, providing that 

the component is still provided the services it needs. Thirdly, there are no general 

restrictions to the size of a component. A component can be extremely small, providing 

only a few simple services, or it can contain a whole application. If the component is 

very big and forms a significant sub-system within itself, it may be in order to describe 

the architecture of that single component, although normally an architecture description 

does not consider what the components entail [Koskimies ja Mikkonen, 2005].  

When thinking of object-oriented design, the basic component provides some kind 

of functionality to the system and consists of classes. Classes can be defined as abstract 

and they can be inherited from each other. Classes interact with one another by either 
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straightforwardly calling operations from other classes or through interfaces. The 

simplest component may only include one class. Because of this close relationship 

between components and classes, architectures are often described with UML class 

diagrams. Other components that are often present in the system, but do not provide 

much functionality, are components such as databases, hardware drivers and message 

dispatchers. 

One of the key points in software engineering is to separate what one wants to 

accomplish (the functionality provided by components) and how to accomplish it. This 

is applied to software components in such a way that the implementation of a service 

that a component provides should be separated from the abstraction of the service: 

components should not be directly dependent on one another, but on the abstraction of 

the service that the component provides [Koskimies ja Mikkonen, 2005]. The 

abstraction is presented as an interface that provides access to services to the 

components that require the services in question. This corresponds to the idea that 

interfaces may be either provided or required. 

Interfaces include all the information about a service: the service’s name, its 

parameters and their types and the type of the possible result [Koskimies ja Mikkonen, 

2005].  Interfaces have developed from abstract classes into their own program units. 

Abstract classes and interfaces are still interlinked; by inheriting several concrete 

classes from an abstract class one can thus give several implementations to one interface 

[Koskimies ja Mikkonen, 2005]. One component or class can also implement several 

interfaces.  

There are several ways for components to interact with one another. Most of these 

methods are fine-tuned ways of how interfaces are used in order to consider the needs of 

a specific type of application. I will briefly present these communication methods, as for 

the purpose of this thesis, it is more important to be aware that such methods exist and 

possibly recognize them from an architecture design than to know all the ins and outs of 

these communication methods and to able to actively implement them. I will describe 

the methods as they are presented by Koskimies and Mikkonen [2005].  

Firstly, the interfaces a component provides may be divided into more detailed role-

interfaces, each role-interface responding to the special need of the component requiring 

that interface, instead of keeping all the services of the providing component in one big 

interface. Secondly, when addressed with the problem of multiple components using 

each other and thus creating a complex net of dependencies, one can use a mediator to 

handle the interaction between the components. Thus, all the components only depend 

on this one mediator, which is often a specialized interface. Thirdly, an even more 

powerful method than the basic interface is forwarding. This means that the component 

receiving a request for a service does not provide that service itself, but forwards the 

request to another component, which then acts on it. Fourthly, the interaction between 
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components can be based on events. We can now think that asking for a service is the 

event itself, and providing a service is reacting to the event. The component creating the 

event is now the source and the component reacting to it is the observer. In this case 

both components are providing and requesting an interface to communicate with each 

other: the source component provides an interface through which the observer can 

register as a service provider, and the observer provides an interface through which its 

services can be provided. 

I end this section with a brief summary. An architecture is based on the idea of 

components and the relationships between them. Components provide services that 

other components may need. This results in a dependency between components which is 

ideally handled with interfaces: the component needing a service requires an interface, 

which the component offering the service then provides by implementing that interface. 

How the interface is built, i.e. what kind of communication method is used, depends on 

the application and its requirements. 

2.2. Standard solutions 

When designing an architecture, there are some commonly used architecture styles and 

design patterns that can be used as general guidelines for the architecture. These styles 

and guidelines all have their positive and negative aspects, so one should think what the 

main problems in the system are, and then study the implementation of styles and 

design patterns that are generally known to solve those problems.  One does not 

necessarily need to categorize one’s architecture as any of the known styles or patterns, 

but if it can be categorized, it usually indicates good structure in the architecture.  

2.2.1. Design patterns 

Design patterns are used to solve a particular problem in the architecture. They often 

appear in several parts of an architecture, and one architecture can contain several 

different patterns. The list of design patterns made by Gamma et al. [1995] is 

recognized as the current standard in design pattern classification. This list contains 

over 20 patterns, which can be divided into creational patterns, structural patterns and 

behavioral patterns.  For the purpose of this thesis it is not necessary to introduce them 

all, and thus only a few of the most common or relevant patterns are described in more 

detail.  

Firstly, from the category of creational patterns, there are the factory method and the 

abstract factory method, which are common design patterns when one has a lot of 

components that work together or have a similar purpose. When applying the abstract 

factory method, an interface should be provided for creating families of related or 

dependent objects without actually specifying their concrete classes [Gamma et al., 

1995]. This means that two or more concrete classes that are responsible for similar 

objects will implement the same interface, through which these families of objects can 
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be dealt with. In the factory method an interface is also used for creating an object, but 

deciding the class that the object represents is left to subclasses [Gamma et al., 1995]. 

This means that the objects of a certain family all inherit the “base-object” of that 

family in order to ensure that they contain the required properties.  

These design methods are presented together as they are closely linked: abstract 

factory classes are commonly implemented with factory methods. Although the abstract 

factory method and the factory method are very commonly used in current architecture 

design, I can imagine that automatically producing an architecture where such a pattern 

could be found is a great challenge.  These design patterns rely on the recognition of 

similarities between objects and the ability to group objects by some standards. 

However, similarities between objects can rarely be expressed in some kind of data, but 

are rather something that experts can simply see. Thus, to train an algorithm to find such 

abstract similarities will definitely need very fine-tuned definitions of the objects and 

relations presented to the algorithm.  

Secondly, there is the composite method, which is a structural pattern, in which 

objects are composed into tree structures to represent part-whole hierarchies. A 

composite also lets clients treat individual objects and compositions of objects 

uniformly [Gamma et al., 1995].  The composite pattern defines hierarchies consisting 

of primitive objects and composite objects.  Primitive objects can form composite 

objects, which in turn can form more complex composite objects, and so on recursively 

[Gamma et al., 1995]. Vice versa, all composite objects can be broken down to 

primitive objects. The composite method goes well with the responsibility based 

approach used in this paper, as all responsibilities can be thought of as primitive objects 

or services, which form composites that other composites use. 

As automating the design of an architecture mainly deals with the structure of an 

architecture, structural patterns are logically the ones that are most likely to be found 

from the resulting architecture. Thus, structural patterns are the most interesting pattern 

group from the viewpoint of this thesis. Overall, structural patterns deal with how 

classes and objects are composed to form larger structures. Structural class patterns 

commonly solve problems with clever inheritance to achieve interfaces for 

implementations, and structural object patterns describe how objects can be composed 

to achieve new functionalities [Gamma et al., 1995]. Other structural design patterns 

besides the composite pattern are, for example, the adapter pattern. In this pattern, an 

incompatible interface is converted to let such classes work together that could not 

before because of the “wrong” type of the provided interface. Another example is the 

bridge pattern, which builds a “bridge” between an abstraction and its implementation, 

so they can vary independently [Gamma et al., 1995].   
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2.2.2. Architecture styles 

Architecture styles have the same purpose as design patterns: they are used to solve a 

problem in the design of the architecture. It is often difficult to make a difference 

between design patterns and architectural styles, but the general guideline is that while 

design patterns are used at a particular subsystem in the architecture, architecture styles 

solve a problem regarding the whole architecture [Koskimies ja Mikkonen, 2005]. As 

with design patterns, it is not necessary to go through all possible architecture styles, so 

only the most interesting ones from this thesis’ point of view are described with more 

detail. 

Firstly, I present the layered architecture. A layered architecture is composed of 

levels that have been organized into an ascending order by some principle of abstraction 

[Koskimies ja Mikkonen, 2005].  This is usually done so that the parts of the system 

that are closer to the user have a lower level of abstraction than the parts that are closer 

to the application. Because the levels of abstraction can often be hard to identify, the 

levels or layers in the architecture are deduced by how different components use 

services from other components. A higher level in the architecture uses services from a 

lower level [Koskimies ja Mikkonen, 2005]. However, layered architectures are rarely 

so straightforward. It is quite common that a layer is simply passed in a service call, 

and, for example, a service is required at the fifth level that is provided at the third level. 

It is also possible that a lower layer needs to call a service from an upper layer. This is, 

however, a sign of a serious problem in the architecture. Layered architectures are very 

common, and can be used in almost any system [Koskimies ja Mikkonen, 2005]. The 

layered architecture model encourages a minimized design in terms of dependencies, for 

in the ideal case, any layer only depends on layers below itself. This kind of architecture 

model is also very easy to understand, as it divides the system to subsections at a high 

level [Koskimies ja Mikkonen, 2005].  The layered architecture is something that is 

very interesting from my viewpoint and that of thinking through responsibilities. When 

having a network of responsibilities, we can quite simply begin forming layers by 

placing the responsibilities that do not depend from any other responsibilities at the 

bottom layer, and going on until at the top level are the responsibilities that have a very 

long dependency path behind them.  

Secondly, there is the pipes and filters architectural style. It consists of processing 

units (filters) and the connections (pipes) between them that carry the information that 

needs to be processed. The role of pipes is to passively transport data which the filters 

will actively process. The pipes and filters architecture is good for the kind of system 

where the purpose is to mainly develop and process a common dataflow [Koskimies ja 

Mikkonen, 2005]. To implement the pipes and filters architecture it requires that each 

processing unit can be implemented independently: a unit can not depend on any of the 

other processing units, and must only be able to understand the data that is brought to it 
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to process. The simplest form of a pipes and filters architecture is a pipeline 

architecture, where the data moves straightforwardly from one processing unit to 

another along a straight “conveyer belt”. There are two ways in operating this “conveyer 

belt”, to push or pull. If we choose to push, then the unit that first generates the data will 

push it to the second unit for processing, which will then continue to push to the next 

processing unit and so on, until the data reaches the final unit needing the “end 

product”, i.e. the completely processed data unit. If we choose to pull the data, then the 

final unit needing the data will “pull” data from the processing unit preceding it, which 

will then call for the data from its preceding unit, and so on [Koskimies ja Mikkonen, 

2005]. A pipes and filters architecture can be useful from this thesis’s viewpoint if the 

responsibilities we work with all deal with the same kind of data, and merely have more 

fine-tuned responsibilities regarding that data, or if they can be arranged in quite a 

straightforward line, i.e., if the dependency graph does not have any cycles and a unique 

ending point can be identified.  

Finally, an architecture style especially used in this thesis is the message dispatcher 

architecture, where a group of components communicate with each other through a 

centered message dispatcher. All the components have a common interface that contains 

all the operations that are needed in order to send and receive messages to and from the 

dispatcher [Koskimies ja Mikkonen, 2005]. It is important to notice that now the 

components only communicate with the dispatcher: although they send and receive 

messages to and from other components, no component can actually “see” the 

message’s path past the dispatcher. Thus, no component actually knows where its 

messages will end up or where the messages it has received originate from.  A message 

dispatcher architecture suits well in a situation where the system has a large number of 

components that need to communicate with each other, but there is not much 

information of the quality or quantity of the messages sent between components 

[Koskimies ja Mikkonen, 2005].  A message dispatcher architecture is defined by the 

set of components communicating with each other, the messages with which the 

components communicate, the operations with which components react to messages, the 

rules with which the components and messages are registered to the system, the rules on 

how the dispatcher forwards messages to components and the model of concurrency 

[Koskimies ja Mikkonen, 2005].  

Other common architecture styles are service oriented architectures, such as the 

client-server architecture, where client components ask for the services they need from 

the server components. A client-server architecture is often thought as a distributed 

system. Other, more specialized architecture styles are for example the model-view-

controller architecture or the interpreter architecture. 
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2.3. Evaluating an architecture 

When evaluating a software architecture we must keep in mind that the architecture 

under evaluation is, roughly stated, merely a picture of how the different components 

are placed in the system and how they depend from one another. Thus, there is no 

absolute method for evaluating an architecture; just as there is no absolute answer to the 

question how good exactly a particular architecture is. Currently there are two kinds of 

methods for software architecture evaluation. Firstly, there are metrics that can be used 

when one knows the software in detail. These metrics often calculate the cohesion and 

coupling between classes, so it must be known what kind of operations the classes 

include, and how they are linked to each other. Secondly, there are methods to evaluate 

the architecture by the means of using the expertise of software engineers, going 

through meetings and several iterations when the architecture is broken down to pieces 

and the analysts attempt to identify all the possible risks that can be related to the 

suggested solution. 

Whatever method is used to evaluate an architecture, one thing must be kept in 

mind: no architecture can be evaluated from an overall point of view. There are 

different viewpoints or quality attributes for an architecture, such as efficiency or 

performance, maintainability, reliability, security, movability, usability, availability, 

reusability and modifiability [Koskimies ja Mikkonen, 2005]. The actual evaluation of 

an architecture is the sum of evaluations of a combination of these viewpoints, and it is 

of course most preferred if as many relevant viewpoints as possible have been 

considered.  

2.3.1. Evaluation using metrics 

Evaluating a software architecture using some kind of metrics system is often based on 

the assumption that we are dealing with object-oriented design. Thus, metrics can be 

used for different kinds of calculations of dependencies between and within classes, 

which can give guidelines on how good a structure the architecture in question has. 

Rosenberg and Hyatt [1997] define five different qualities that can be measured by 

metrics for object-oriented design: efficiency, complexity, understandability, reusability, 

and testability/maintainability. I will now introduce some metrics suites and definitions 

that can be used when evaluating object-oriented designs. 

The metrics suite by Chidamber and Kemerer [1994] is based on four principles that 

rule object-oriented design process: identification of classes (and objects), identification 

of semantics of classes (and objects), identification of relationships between classes 

(and objects) and implementation of classes (and objects).  Based on these principles 

Chidamber and Kemerer [1994] present a metrics suite that consists of six different 

metrics: weighted methods per class (WMC), depth of inheritance tree (DIT), number 
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of children (NOC), coupling between object classes (CBO), response for a class (RFC), 

and lack of cohesion in methods (LCOM).  

The WMC metric is defined as the sum of complexities of the methods within a 

class. If all methods are equally complex, this is simply the amount of methods in a 

class. It predicts how much time and effort is required to develop and maintain the class, 

how much the children of the class are impacted by the class and how general the class 

is [Chidamber and Kemerer, 1994]. These aspects relate to quality attributes such as 

maintainability and reusability. Rosenberg and Hyatt [1997] point out that WMC also 

indicates understandability.  

DIT is self-defined as it is the length from a class node to the root of the inheritance 

tree where the node is. If the class does not inherit any class, then DIT is zero.  The 

deeper a class is in a hierarchy, the harder it is to predict its behavior, the more complex 

the design will most likely become, and the greater the potential reuse for inherited 

methods [Chidamber and Kemerer, 1994]. Thus, DIT predicts negative aspects of 

complexity and maintainability but a positive aspect of reusability. According to 

Rosenberg and Hyatt [1997], DIT primarily evaluates efficiency and reusability, but can 

also be used as an indicator for understandability and testability. 

NOC is as clear as DIT as it calculates how many classes inherit the class in 

question. It also predicts good reusability, but a high value warns of improper 

abstractions of the parent class and indicates that a good deal of testing should be done 

to the methods of the class [Chidamber and Kemerer, 1994]. In addition to testability, 

NOC evaluates efficiency and reusability [Rosenberg and Hyatt, 1997].  

CBO is defined as the number of classes to which the class in question is coupled, 

i.e., CBO for class A is |B| + |C|, where B is the set of classes that class A depends on, 

and C is the set of classes that depend on class A (where |X| stands for the cardinality of 

X). A high CBO value indicates poor reusability, modularity and maintainability, and is 

usually a sign of need for excessive testing [Chidamber and Kemerer, 1994]. CBO can 

also be used as an evaluator for efficiency [Rosenberg and Hyatt, 1997].  

RFC is defined as the size of the response set (RS) for the class, when the RS is the 

union between the set of all methods in the class and the set of methods called by the 

methods in the class. RFC contributes mainly in bringing out testing issues, but it also 

indicates complexity [Chidamber and Kemerer, 1994]. According to Rosenberg and 

Hyatt [1997], RFC evaluates understandability, maintainability and testability. 

Finally, LCOM measures in what extend methods within the same class use the 

same instance variables. LCOM is a count of method pairs with a similarity of zero, i.e., 

they have no instance variables in common, minus the count of method pairs with a 

similarity that is not zero. Cohesiveness is very desirable, as it promotes encapsulation; 

classes with low cohesion should most probably be divided into two or more subclasses, 
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and low cohesion also indicates high complexity [Chidamber and Kemerer, 1994]. In 

addition, LCOM evaluates efficiency and reusability [Rosenberg and Hyatt, 1997].  

In addition to the metrics by Chidamber and Kemerer, Rosenberg and Hyatt [1997] 

present two additional metrics for evaluation at the method level, cyclomatic complexity 

(CC) and size. CC is used to evaluate the complexity of an algorithm in a method. Quite 

logically, CC measures mainly complexity, but is also related to all the other quality 

attributes. The size of a method can be measured by several ways, e.g., by lines of code 

or the number of statements. It evaluates mainly understandability, reusability and 

maintainability. 

A popular metric when dealing with the software or module clustering problem is 

the modularization quality (MQ). There are several versions of this metric, but it is 

always some kind of a combination of coupling and cohesion metrics, calculating the 

inter- and intra-connectivities between and within clusters, respectively. A high MQ 

value indicates high cohesion and low coupling. One version of the MQ metric is 

presented by Doval et al. [1999], who begin by defining the intra-connectivity Ai of 

cluster i as Ai = 
2
i

i

N

µ
, where Ni is the number of components and µi is the number of 

relationships to and from modules within the same cluster. Ai is 0 when no module is 

connected to another module within the cluster, and 1 when each module in the cluster 

is connected to every module in the same cluster. Inter-connectivity Ei,j between clusters 

i and j, consisting of Ni and Nj components, respectively, with εij relationships between 

the modules of both clusters, is defined as Ei,j  = 0, if i = j, and Ei,j  = 
ji

ij

NN2

ε
 if i ≠ j  

[Doval et al., 1999]. MQ is now a combination of these connectivity measures: when a 

module dependency graph is partitioned into k clusters,  

MQ =  Ai   , if k = 1, and  

MQ = 
k

A
k

i i∑ =1 - 

2

)1(
1, ,

−

∑ =

kk

E
k

ji ji

 , if k > 1. 

The work by Doval et al. [1999] and the module clustering problem in which this metric 

is used, is presented in Chapter 4. 

When defining what a software architecture is, the principles guiding its evolution 

were mentioned. Thus, it is natural that there should be metrics to evaluate the evolution 

and refactoring of an architecture. Mens and Demeyer [2001] present such evolution 

metrics, the main metric being the distance between classes. This metric is very flexible, 

as the distance it measures depends on what is needed, i.e., how far two classes are from 

each other when considering, e.g., the number of methods, number of children or depth 

of inheritance tree. The distance between classes metric is defined so that, when p(x) is 

the property that is measured from class x, the distance between classes x and y is  
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dist(x; y) = 1 - 
)()(

)()(

ypxp

ypxp

∪

∩
. 

Large distances between classes can indicate a complex system. Mens and Demeyer 

[2001] also discuss the emphasis of abstract methods and abstract classes in a system, 

and point out that all abstract classes should be base classes. 

Sahraoui et al. [2000] present a list of inheritance and coupling metrics, where the 

simplest metrics are NOC, CBO and number of methods (NOM), which is a simpler 

form of WMC, but the rest are more specialized extensions of the metrics presented 

earlier. These include metrics such as class-to-leaf depth (CLD), number of methods 

overridden (NMO), number of methods inherited (NMI), number of methods added 

(NMA), specialization index (SIX), data abstraction coupling (DAC’), information-

flow-based inheritance coupling (IH-ICP), other class-attribute import coupling 

(OCAIC), descendants method-method export coupling (DMMEC) and others method-

method export coupling (OMMEC). By analyzing the results given by these metrics, the 

following operations can be administered to the system: creating an abstract class, 

creating specialized subclasses and creating an aggregate class [Sahraoui et al., 2000]. 

Du Bois and Mens [2003] use a combination of the metrics defined above (number 

of methods, CC, NOC, CBO, RFC and LCOM)  in order to administrate a selection of 

refactoring operations (extracting a method, encapsulating a field and pulling up a 

method)  to a system. Thus, this suite of metrics can be used to both evaluate the 

existing system and to use those results to evolve a system. As can be seen, the metrics 

suite presented by Chidamber and Kemerer [1994] acts as a good base for evaluating 

architectures and evolving new metrics by using their six metrics as a starting point. 

Another way of measuring is related to the stable/instable and abstract/concrete 

levels of the system, which is used by Amoui et al. [2006]; this is based on simply 

counting the number of certain types of classes and dependencies. 

 Losavio et al. [2004] present ISO quality standards for measuring architectures. 

This model is somewhere in between pure metrics and evaluation using human 

expertise, which is discussed further on. The ISO 9126-1 quality model’s characteristics 

are functionality, reliability, usability, efficiency, maintainability and portability 

[Losavio et al., 2004] – a list quite similar to the one presented by Rosenberg and Hyatt 

[1997].  In the ISO model, the characteristics of quality are refined into sub-

characteristics, which are again refined to attributes, which are measured by metrics. 

Thus, the model needs human expertise in making the refinements, but the end result is 

a measurable value related to the architecture. As the characteristics have from three to 

five separately measured sub-characteristics each, it is not practical to go through them 

all in the scope of this paper. The most interesting quality measures being efficiency and 

maintainability, I will now present some example metrics for measuring the sub-

characteristics of these. 
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 Efficiency is divided into time behavior, resource behavior and compliance. Let us 

now investigate how time behavior is measured. Time behavior means the capability of 

the software product to provide appropriate response time, processing time and 

throughput rates under stated conditions [Losavio et al., 2004]. To measure this, one 

must first identify all the components involved with functionality and the connections 

between them. The attribute is then computed as the sum of the time behaviors of the 

components and the time behaviors of the connections. The time behavior of a 

component or a connection depends on the stimulus/event/functionality and the path 

taken in the architecture to respond to a stimulus for a given functionality [Losavio et 

al., 2004].  

Maintainability is sub-categorized into analyzability, changeability, stability, 

testability and compliance. Let us take changeability and stability as examples. 

Changeability is defined as the capability of the software to enable implementation of 

modifications, and stability is defined as the capability of the software to avoid 

unexpected effects from modifications of the software. In order to measure these (and 

testability), two additional sub-characteristics need to be added to the ISO model 

framework at architectural level: coupling and modularity [Losavio et al., 2004]. The 

computations for changeability and stability need to be made for each couple of 

connected components on the number of incoming/outgoing messages, and for each 

component on the number of components depending on that component.  

The examples of time behavior, changeability and stability are still something that 

can be seen as metrics: the resulting values are something that can be computed, albeit 

that it might not be easy. However, there are many sub-characteristics in the ISO 9126-1 

quality model when the “counting rule” does not contain any calculation and thus, the 

result is not numeral. For example, functionality contains sub-characteristics such as 

interoperability and security, where the attribute that is to be “measured” is the presence 

of a certain mechanism. Thus, to “count” the attribute, one needs to identify whether the 

mechanism is present in the system [Losavio et al., 2004]. This is another point (in 

addition to the redefining steps) where the ISO quality model can be seen as relying 

more on human expertise than being a set of metrics that can be used for automated 

evaluation of an architecture.  

2.3.2. Evaluation using human expertise  

When evaluating an architecture there are three questions that should be answered in the 

evaluation. Firstly, is the designed architecture suitable for the system in question? 

Secondly, if there are several options to choose an architecture from, which is the best 

for the particular system and why? Thirdly, how good will different quality attribute 

requirements be? [Koskimies ja Mikkonen, 2005] 

These questions alone demonstrate the difference between using metrics to give 

values to quality requirements and using human expertise: no metric can answer the 
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question “why” when discussing the positive and negative points of different 

architectural options. Metrics may also give very good values to individual quality 

requirements, but as a whole the architecture may not be at all suitable for the system in 

question. Hence, although metrics can aid in architecture evaluation and are basically 

the only way of automated evaluation, they cannot replace the evaluation of experts. 

The most widely used and known method for architecture evaluation is the 

Architecture Tradeoff Analysis Method (ATAM) by Kazman et al. [2000]. Other known 

architecture evaluation methods are the Maintenance Prediction Method by Jan Bosch, 

which concentrates in evaluating maintainability, and the Software Architecture 

Analysis Method developed in the Software Engineering Institute of Carnegie-Mellon 

University, which is mainly used for evaluating quality attributes that are related to 

modifiability [Koskimies ja Mikkonen, 2005].  As ATAM is the only method that can 

be used to evaluate all quality attributes, it is the one I will go into with more detail. 

 The main points of ATAM are to elicit and refine a precise statement of the key 

quality attribute requirements concerning the architecture, to elicit and refine precise 

designing decisions for the architecture, and based on the two previous goals, to 

evaluate the architectural design decisions to determine if they fulfill the quality 

attribute requirements satisfactorily [Kazman et al., 2000].  The ATAM uses scenarios 

in order to analyze whether the architecture fulfills all the necessary requirements and to 

see risks involved in the architecture. The ATAM proceeds in nine steps: presenting the 

method for the group of experts, presenting business drivers, presenting the architecture, 

identifying architecture approaches, generating quality attribute utility tree, analyzing 

architecture approaches, brainstorming and prioritizing scenarios, again analyzing 

architecture approaches, and finally presenting the results [Kazman et al., 2000]. The 

steps where we can say that the architecture is evaluated as in how good it is in the 

ATAM are when the quality attribute utility tree is generated, architecture approaches 

are analyzed and scenarios are brainstormed, so I will now concentrate on these steps. 

When the architecture has been presented and the architecture styles have been 

identified, a quality attribute utility tree is generated. This is done by eliciting the quality 

attributes that relate to the particular system and then breaking them down to the level 

of scenarios, which are shown with stimuli and responses and prioritized [Kazman et 

al., 2000]. For each quality approach, the quality factor is divided into sub-factors. For 

example, modifiability could be divided into GUI-modifications and algorithmic 

modifications. For each of these sub-factors, detailed scenarios are described in order to 

see how the sub-factor in question affects the architecture [Kazman et al., 2000]. For 

example, GUI-modifications may have a scenario that if a new feature is added to the 

application, the feature should be visible in the GUI within one day. These scenarios are 

then prioritized according to how relevant they are to the system, how likely they are to 

happen, and naturally, how critical they are for the quality attribute in question. Based 
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on the utility tree, experts can now concentrate on the high priority scenarios and 

analyze architectural approaches that satisfy these scenarios. 

While the utility tree is manufactured by a smaller group of specialized architecture 

experts, a scenario brainstorming session involves all the stakeholders involved in the 

project. The purpose of this session is to gather all the possible ideas and scenarios that 

relate to the system and should be considered in the architecture [Kazman et al., 2000].  

After the brainstorming of scenarios, all possible scenarios should be documented 

either as a result of the utility tree or the brainstorming sessions. The architecture 

experts may now reanalyze the architecture styles that have been documented and 

discussed, and perhaps even suggest a completely different solution if the brainstorming 

session brought up  many unexpected scenarios or the prioritizing of quality attributes 

was very different from the one in the utility tree. 

After all the steps of the ATAM, the outcomes of this method will include the 

architectural approaches documented, the set of scenarios and their prioritization, the set 

of attribute-based questions, the utility tree, risks and sensitivity and tradeoff points in 

the architecture [Kazman et al., 2000]. 

As can be seen, the ATAM relies purely on human expertise, and the evaluation of 

architecture happens while the architecture is actually being developed. Some basic 

architectural approaches are first presented based on the known structure of the system, 

and as the quality attributes requirements of the system become clearer, the architecture 

undergoes several iterations of analysis, while the architecture is being refined and 

different approaches may be considered. The “goodness” of the architecture can be 

defined and measured by how well it satisfies the quality attribute requirements and 

how “easily” it responds to the scenarios related to the quality attributes. 
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3. Meta-heuristic search algorithms 

In software engineering one is often faced with a task in which the possible set of 

solutions is exceptionally big. It is impossible to go through the solution set by a simple 

brute force algorithm, and a deterministic algorithm that would be fast enough to be 

reasonable to conduct might not exist, or would be unreasonably complex to define. 

Sub-problems of several software engineering problems are known to be NP-hard. For 

example software clustering, which is a special case of the general graph partitioning 

problem, is NP-hard. In such cases, non-deterministic search algorithms are useful, as 

they are capable of finding good enough solutions from a large amount of data with 

simple rules and perform them fast. The characteristics that enable such good results are 

that they do not need to go through all the possible solutions of the data set; yet by being 

non-deterministic, it is possible to recover from a search path that seemed good in the 

beginning, but resulted in a bad solution.  

There are certain terms that are common to most search algorithms; the 

neighborhood and fitness of a solution. Each solution can be regarded as a point in the 

search space that needs to be explored. The neighborhood of a solution is the set of all 

available solutions that can be reached with one technique-specific move from the 

current solution. The concept of neighborhood is especially used in local search 

algorithms, such as hill-climbing, tabu search and simulated annealing. The fitness of a 

solution indicates how good the solution is. In rare cases, when the optimum is known, 

one tries to get the fitness value as close to the optimum as possible. Since this is hardly 

ever the case, it is usually attempted to maximize or minimize a fitness function. Fitness 

functions that measure the fitness value are application specific.  

For the purpose of this thesis, it is necessary to understand how search algorithms 

operate in order to understand the underlying concepts of the research presented in 

Chapter 4, and the implementation presented in Chapters 5 and 6. 

3.1. Genetic algorithms 

Genetic algorithms were invented by John Holland in the 1960s. Holland’s original goal 

was not to design application specific algorithms, but rather to formally study the ways 

of evolution and adaptation in nature and develop ways to import them into computer 

science. Holland’s 1975 book Adaptation in Natural and Artificial Systems presents the 

genetic algorithm as an abstraction of biological evolution and gives the theoretical 

framework for adaptation under the genetic algorithm [Mitchell, 1994]. 

In order to explain genetic algorithms, some biological terminology needs to be 

clarified. All living organisms consist of cells, and every cell contains a set of 

chromosomes, which are strings of DNA and give the basic information of the particular 
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organism. A chromosome can be further divided into genes, which in turn are functional 

blocks of DNA, each gene representing some particular property of the organism. The 

different possibilities for each property, e.g. different colors of the eye, are called 

alleles. Each gene is located at a particular locus of the chromosome.  When 

reproducing, crossover occurs: genes are exchanged between the pair of parent 

chromosomes. The offspring is subject to mutation, where single bits of DNA are 

changed. The fitness of an organism is the probability that the organism will live to 

reproduce and carry on to the next generation [Mitchell, 1996]. The set of chromosomes 

at hand at a given time is called a population. 

Genetic algorithms are a way of using the ideas of evolution in computer science. 

When thinking of the evolution and development of species in nature, in order for the 

species to survive, it needs to develop to meet the demands of its surroundings. Such 

evolution is achieved with mutations and crossovers between different individuals, 

while the fittest survive and are able to participate in creating the next generation.  

In computer science, genetic algorithms are used to find a good solution from a very 

large solution set, the goal obviously being that the found solution is as good as 

possible.  To operate with a genetic algorithm, one needs an encoding of the solution, 

i.e., a representation of the solution in a form that can be interpreted as a chromosome, 

an initial population, mutation and crossover operators, a fitness function and a 

selection operator for choosing the survivors for the next generation. 

3.1.1. Encoding 

As stated, the basis of genetics in nature is a chromosome. When applying this thought 

to computer science and genetic algorithms, each individual in the search space, i.e. 

each solution to the problem at hand, needs to be encoded so that it can be thought of as 

a chromosome. The most common and traditional way of doing this is to use a bit 

vector, i.e., a string of ones and zeros [Mitchell, 1996]. Thus every bit in the 

chromosome represents a gene in that locus, the alleles being one and zero. This has the 

advantage of being very easy to interpret. Usually such encoding is used for 

combinatorial problems. For example, if we want to get as close to a value x by 

summing numbers from one to twenty, and using the minimal amount of numbers in the 

sum. We can now use a 20-bit chromosome, where each number is represented in its 

respective locus in the chromosome. If the allele in that locus is 1, the number is 

included in the sum, if 0, then not. Another way of using bits is when one is dealing 

with large scale numbers with tens or hundreds of decimals. The bits can thus be used to 

give a binary representation of such a number.  

Another common way of forming a chromosome is to have a string of natural 

numbers. Such solutions are good for permutation problems, for example the traveling 

salesman problem (TSP) [Michalewicz, 1992].  The nodes in the graph are numbered 



18 

and the travel route will be the order of the nodes in the chromosome. By mutations the 

places of the nodes can be switched, thus reforming the route. 

Strings of bits are the most traditional way of encoding a chromosome, and some 

sources call only such solutions pure genetic algorithms. In fact, there can be as many 

ways to encode a chromosome, numeric and non-numeric, as there are algorithm 

developers, as long as the same developer can keep in hand the required mutations and 

crossovers so the solutions stay “legal”. Purists call genetic algorithms that use such 

advanced coding styles evolutionary programs, rather than pure genetic algorithms. 

3.1.2. Mutations 

Mutations are a way of creating new individuals from the population at hand by 

administering a minor change to one of the existing individuals by changing alleles in a 

random locus.  When the chromosome is represented by a bit vector, a basic mutation is 

to change one bit from 0 to 1 or vice versa. For example, we could have a bit string 

001100. By mutating this string in its third locus the result would be 000100. When the 

string contains natural numbers, a mutation could be to switch the places of two 

numbers. Whatever the mutations are, the result should always still be a legitimate 

individual, i.e., it should solve the defined problem. The more complex the encoding of 

the chromosome is, the more there usually are possible mutations that can be applied 

and the mutations may become more complex.  It is also possible to have a separate 

“correction mutation” that will check the chromosome after a mutation to see that it still 

solves the problem that it is supposed to. If the mutation has caused the chromosome to 

become unnatural, i.e., it does not belong to the solution space anymore, corrective 

actions will take place. Such actions don’t necessarily just revert the mutation that 

caused the problem, but might do even bigger changes to the chromosome. 

For every mutation there is always a defined probability how likely it is that the 

mutation in question would be applied to an individual, this is called the mutation 

probability or mutation rate [Mitchell, 1996]. As in nature, mutations are unwanted in 

most cases, thus the mutation probabilities are usually quite low. The mutation 

probabilities should be thought of carefully, as both too high and too low probabilities 

will result in problems. If the mutation probability is too high, one will end up 

wandering aimlessly in the solution space as the chromosomes mutate in high speed. If 

the mutation probability is too low, then the population stays very similar from one 

generation to the next, i.e., there are not enough of variation between individuals to 

ensure finding good enough solutions. 

3.1.3. Crossover 

The crossover operator is applied to two chromosomes, the parents, in order to create 

two new chromosomes, their offspring, which combine the properties of their parents. 

Like mutations, the crossover operator is applied to a certain randomly selected locus in 
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the chromosome. The crossover operator will then exchange the subsequences before 

and after the selected locus to create the offspring [Mitchell, 1996; Michalewicz, 1992]. 

As an example, suppose we have chromosomes c1c2c3…cn and b1b2b3…bn, and the 

selected locus is in position k, k<n. The offspring would then be c1c2…ckbk+1bk+2…bn 

and b1b2…bkck+1ck+2…cn. It is also possible to execute a multi-point crossover, where 

the crossover operator is applied to several loci in the parent chromosomes. Using the 

same parents as in the previous example and a three-point crossover to loci i, j and k, 

the resulting offspring would now be c1c2…cibi+1…bj-1bjcj+1…ck-1ckbk+1bk+2…bn and 

b1b2…bici+1…cj-1cjbj+1…bk-1 bkck+1ck+2…cn. 

Like mutations, the crossover operator also has a crossover probability or crossover 

rate, which determines how likely it is for the crossover operator to be applied to a 

chromosome. For the crossover probability, there are two differences to the respective 

probability of the mutations. Firstly, the crossover probability is in relation to the fitness 

of the chromosome. The fitter the individual is, i.e., the more likely it will survive to the 

next population, the bigger the chance it should be that its offspring will also have a 

high fitness-value. Whether the offspring will actually have a higher fitness value 

depends on how well the crossover-operation is defined. The most desirable outcome is 

always that the crossover would generate chromosomes with higher fitness-values than 

their parents or at least have a big probability of doing so. Unfortunately, this can not 

always be guaranteed. Thus, the probability of a crossover increases in some correlation 

with the fitness-value of the chromosome. Secondly, the term crossover rate is not 

always the same as crossover probability. In the case of a multi-point crossover 

operator, the crossover probability determines the likelihood of the operation while the 

crossover rate distinguishes the number of points at which the crossover takes place. 

[Mitchell 1996].  

Where and how the crossover operator is used varies based on the application and 

developer. Mitchell [1996] and Reeves [1995] consider that the selection operator 

always selects parents, and thus all chromosomes selected to the next generation are 

subjected to the crossover operator. The crossover probability then determines whether 

a real crossover is performed, or whether the offspring are actually duplicate copies of 

the actual parents. Michalewicz [1992], on the other hand, applies the crossover 

probability when after selecting a new generation. The crossover probability of a 

chromosome is compared to the “limit” probability defining whether the crossover is 

performed. Chromosomes subjected to crossover are randomly paired, and offspring 

produced – in this approach the crossover does not produce any duplicates. Both 

approaches replace the parents with the resulting offspring. 

 For the rest of the paper I have chosen to follow mostly on Michalewicz’s views, 

i.e., the crossover probability is used purely to choose parents from the existing 

population. I have chosen a slightly different approach however, by not replacing the 
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parent chromosomes with the offspring, but keeping both the parents and the offspring 

in the population. I justify this with keeping with the concept of biology; parents rarely 

die off because of producing offspring.  

3.1.4. Fitness function  

In order to evaluate how good the different individuals in the population are, a fitness 

function needs to be defined. A fitness function assigns each chromosome a value that 

indicates how well that chromosome solves the given problem. [Mitchell, 1996]. A 

common application of genetic algorithms is optimizing a function.   

 Unfortunately optimizing problems are rarely so straightforward. In fact, genetic 

algorithms are usually used in an attempt to optimize complex multivariable functions 

or non-numerical data [Mitchell, 1996]. Naturally, the more complex the problem, the 

more complex the fitness function usually becomes. When the algorithm is dealing with 

numerical data the fitness function can be detected from the actual optimizing problem, 

albeit that the problem is intricate. Thus, the most difficult fitness functions are the ones 

needed to evaluate non-numerical data, as the developer must find other metrics or ways 

to find a numerical evaluation of non-numerical data. An example of this is provided by 

Mitchell [1996], who describes the problem of finding the optimal sequence of amino 

acids that can be folded to a desired protein structure. The acids are represented by the 

alphabet {A, …, Z}, and thus no numerical value can be straightforwardly calculated. 

The used fitness function calculates the energy needed to bend the given sequence of 

amino acids to the desired protein.  

3.1.5. Selection operator  

Since the number of individuals in a population always increases with the result of 

crossovers, a selection operator is needed to manage the size of the population. The 

selection operator will determine the individuals that will survive to the next generation, 

and should thus be defined so that the ones with the best fitness are more likely to 

survive in order to increase the average fitness of the population.  

The simplest way of defining a selection operator is to use a purely elitist selection. 

This selects only the “elites”, i.e., the individuals with the highest fitness. Elitist 

selection is easy to understand and simple to implement; one can simply discard the 

weakest individuals in the population. However, elitist selection isn’t the best choice, as 

it may very well result in getting stuck to a local optimum.  

Another and a more common way of defining the selection operator is to use a 

fitness-proportionate selection, which can be implemented with a “roulette-wheel” 

sampling [Mitchell, 1996; Michalewicz, 1992; Reeves, 1995]. Here, each individual is 

given a slice of the “wheel” that is in proportion to the “area” that its fitness has in the 

overall fitness of the population. This way, the individuals with higher fitnesses have a 
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larger area in the wheel, and thus have a higher probability of getting selected. The 

wheel is then spun for as many times as there are individuals needed for the population.  

In general, a fitness-proportionate selection operator can be defined by assigning a 

probability of surviving, ps, to each individual, with coefficient fs to ensure that 

individuals with better fitness values are more likely to be selected. Comparing the 

actual values given by the fitness function is difficult, so these actual values should be 

used as coefficients with caution. However, by examining the order of fitnesses it is 

possible to employ the idea of survival of the fittest by having a linear relation between 

the order of fitness and the coefficient.   

A common selection operator is a crossing of the two methods presented above; the 

survival of the very fittest is guaranteed by choosing the best individual with elitist 

methods, while the rest of the population is selected with the probabilistic method in 

order to ensure variety within the population. Some researches also use the tournament 

technique to select the next generation [Blickle, 1996; Seng et al., 2005]. 

As mentioned in the presentation of the crossover operator, there are different 

approaches to how to use the selection operator. Mitchell [1996] and Reeves [1995] 

consider that the selection operator selects the individuals that are most likely to 

reproduce, i.e., become parents. Michalewicz [1992] uses the selection operator in order 

to find the fittest individuals for the next generation. Both approaches keep the same 

selection probabilities for all individuals during the entire selection process, i.e., an 

individual with a high fitness value may be selected to the next population more than 

once. 

For the rest of the paper, as with the crossover operator, I follow mostly with 

Michalewicz’s views. However, also with selection, I take a different path by not 

allowing multiple selections of the same chromosome. When applying this to the 

roulette-wheel, the wheel is adjusted after every spin by removing the area of the 

selected individual, and recalculating the areas for the remaining population so that they 

keep in proportion to each other.  Again, I justify this with the biological point of view; 

no individual can clone themselves.  

3.1.6. Executing a genetic algorithm 

The operation of a genetic algorithm can be examined through an example of the 

knapsack-problem. Say we have five items, each with a weight wi and a volume of vi. 

The goal is to fit as much weight as possible to a backpack with a limited volume. The 

candidate solutions can now be represented by a vector of 5 bits, where 0 represents not 

picking the item represented by that gene, and 1 represents picking it.  The items can be 

arranged by volume, weight, or any other way, as long as it is clear which weight and 

volume are connected to which index of the vector, i.e. which item is represented in 

which locus. Suppose that in this example the items are as follows 
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locus  w v 

1  5 1 

2  6 3 

3  10 7 

4  4 9 

5  9 12 . 

 

Firstly, it must be agreed what the population size should be, and then initialize the 

first population. If possible, some kind of heuristic method should be used when 

generating the initial chromosomes, so that some fitness is already ensured in the first 

population. If no heuristic can be applied to the problem in question, the chromosomes 

are randomly generated, while keeping in mind that they must be valid. For example 

purposes, we may now have a population of 5, and the individuals can be: 

 

A  00010     

B 01100      

C  10100      

D  11100       

E  10001.      

 

By setting the target volume to 20, the fitness function f(x) can now be defined as  

f(x) = ∑w(x), ∑v(x) ≤ 20. 

Thus the fitnesses for the initial population would be: f(A) = 4, f(B) = 16, f(C) = 15, f(D) 

= 21 and f(E) = 14.  

Secondly, the population is subjected to the crossover operator. The crossover 

probability for each chromosome is now pfc, p being the “standard” probability of a 

crossover operation and fc fitness coefficient. Say that chromosomes B and E are 

subjected to crossover, with the crossover point being in locus 2. The resulting offspring 

would then be BE = 01001 and EB = 10100, with fitnesses f(BE) = 15 and f(EB) = 15.  

Thirdly, the population is subjected to the mutation operator with the probability pm.  

For this example, we define the mutation operator as the traditional one: changing the 

bit value from 0 to 1 or from 1 to 0. We now assume that chromosome A is subjected to 

mutation in locus 1, thus the result would be A’ = 10010, with f(A’) = 9.  It is important 

to notice that in this example we have a risk of achieving an illegal chromosome as the 

result of a mutation.  Since we have a volume limit of 20, no chromosome should 

represent a set of items if the sum of their volumes surpasses 20. We now have two 

options: either checking whether the mutation is possible before performing it or 

constructing a correcting operator which will go through the results of mutations. Let us 

assume that chromosome D is subjected to mutation in locus 5, producing the 
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chromosome D’ (11101). The sum volume of items represented by chromosome D is 11 

and since the item represented by locus 5 has a volume of 12, the total volume would 

now become 23, which isn’t allowed. If we choose to check each mutation beforehand, 

the mutation in chromosome D simply wouldn’t happen, as it would be considered 

unnatural.   

Constructing a corrective operator is not as straightforward. One example of a 

corrective operator would be the following. Say chromosome D has been subjected to 

mutation and the resulting chromosome D’ is now checked with the corrective operator. 

First, the volume of the items represented by the chromosome is calculated, the sum of 

volumes being 23.  After that, the operator begins correcting the chromosome by simply 

removing items in order to achieve a legal individual. The operator starts from the first 

locus and systematically changes ones to zeros until the sum of volumes is once again 

within acceptable limits. So, the operator would first achieve chromosome D’’ (01101), 

the sum volume of which is 22. Since 22 > 20, another iteration is needed. We now get 

D’’’(00101), the sum volume of which is 19. Since 19 < 20, the chromosome D’’’ is an 

acceptable individual and will replace the original chromosome D.  The fitness of 

chromosome D’’’, f(D’’’), is 19, which is lower than the fitness of the original 

chromosome, but still above the average fitness in the population. 

Finally, the population is subjected to the selection operator, i.e., the individuals 

surviving to the next generation are chosen. The size of the population is now 7, with 

the individuals A’, B, C, D’’’, E, BE, and EB. In this example we use a purely elitist 

selection operator, which simply drops two of the weakest individuals; they do not 

survive to the next generation. Thus the next population will be B, C, D’’’, BE and EB.   

The population will go through as many generations of crossovers, mutations and 

selections as is needed to achieve a good enough fitness value, or it is decided that the 

generation number is high enough. 

3.2. Tabu search and simulated annealing 

While genetic algorithms use mutations and crossovers to constantly generate new 

solutions, other meta-heuristic search algorithms have their own methods of trying to 

get out of local optimums and reach the global optimum of the search space. I will now 

briefly describe the methods of tabu search and simulated annealing. 

3.2.1. Tabu search 

The word tabu or taboo is understood as something strictly forbidden and unacceptable. 

Tabu search is named such as it proceeds by setting barriers or restrictions to guide the 

search process. These restrictions operate, as Reeves [1995] describes, “in several 

forms, both by direct exclusion of certain search alternatives classed as ‘forbidden’, and 

also by translation into modified evaluations and probabilities of selection”. Tabu 

search is seen as a sequence of moves from one possible solution to the best available 
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alternative [Clarke et al., 2003]. The search technique relies on flexible memory and a 

set of intellectually chosen principles of problem solving. By remembering past search 

moves from several iterations and combining that information to the problem solving 

principles, the search algorithm is able to see what directions are indeed tabu in the 

present situation.  

When administering the tabu search, one starts from a random point x in the search 

space. Next, the set of moves that are possible to perform at that point are determined, 

the resulting set being the neighborhood of the current solution, N = {x1, x2, …, xn}. The 

tabu rules are then applied to N, which is now reformulated to the set of available 

moves, A = N\T, T being the set of rules that are declared tabu. In some special cases, a 

move that is originally tabu, may become available if all the other available moves 

aren’t satisfactory. The best available move xk from set A is then chosen. [Clarke et al., 

2003] 

The tabu rules and ways of determining the neighborhood of a solution vary greatly 

between problems and applications. The common characteristics in tabu moves are 

recency and repetition, i.e., moves that have recently been done or have been repeated 

above the average amount are very likely to be declared tabu.  

3.2.2. Simulated annealing  

Simulated annealing is originally a concept in physics. It is used when the cooling of 

metal needs to be stopped at given points where the metal needs to be warmed a bit 

before it can resume the cooling process. The same idea can be used to construct a 

search algorithm. At a certain point of the search, when the fitness of the solution in 

question is approaching a set value, the algorithm will briefly stop the optimizing and 

revert to choosing a solution that is not the best in the current solution’s neighborhood. 

This way getting stuck to a local optimum can effectively be avoided. Since the fitness 

function in simulated annealing algorithms should always be minimized, it is usually 

referred to as a cost function [Reeves, 1995]. 

Simulated annealing optimally begins with a point x in the search space that has 

been achieved through some heuristic method. If no heuristic can be used, the starting 

point will be chosen randomly. The cost value c, given by cost function E, of point x is 

then calculated. Next a neighboring value x1 is searched and its cost value c1 calculated. 

If c1 < c, then the search moves onto x1.  However, even though c ≤ c1, there is still a 

small chance, given by probability p that the search is allowed to continue to a solution 

with a bigger cost [Clarke et al., 2003]. The probability p is a function of the change in 

cost function ∆E, and a parameter T: 

 

      p = e
-∆E/T .  
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This definition for the probability of acceptance is based on the law of 

thermodynamics that controls the simulated annealing process in physics. The original 

function is  

      p = e
-∆E/kt , 

where t is the temperature in the point of calculation and k is Boltzmann’s constant 

[Reeves, 1995]. 

The parameter T that substitutes the value of temperature and the physical constant 

is controlled by a cooling function C, and it is very high in the beginning of simulated 

annealing and is slowly reduced while the search progresses [Clarke et al., 2003]. The 

actual cooling function is application specific. 

 If the probability p given by this function is above a set limit, then the solution is 

accepted even though the cost increases. The search continues by choosing neighbors 

and applying the probability function (which is always 1 if the cost decreases) until a 

cost value is achieved that is satisfactory low. 
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4. Search algorithms in software engineering 

Search algorithms have been used widely in different fields of research, such as 

engineering, business and financial and economic modeling [Clarke et al., 2003], and 

recently there has been an increasing interest in implementing search algorithms to 

software engineering as well. This particular field of research is known as search-based 

software engineering. The areas where search algorithms are used can be divided into 

four categories [Rela, 2004]: analysis, design, implementation and testing. In this 

chapter I will explore how search algorithms are used in different areas of software 

engineering, with an emphasis on software design. The research is presented from the 

algorithmic viewpoint, accenting how fitness functions are defined and how the 

problem is modeled for the algorithm.  

4.1. Search algorithms in software design 

4.1.1. Software clustering 

Software clustering or module clustering is a software engineering problem that is most 

related with software architectures. The goal is to find the best grouping of components 

to subsystems, i.e., the best clusters of an existing software system.  

One way of representing a software system so that the representation is both 

language independent and “presentable” to a search algorithm, is to transform the 

structure of the system into a directed graph G. A partition of the graph G is a set of 

non-overlapping clusters that cover all the nodes in the graph, and the goal is to 

partition the graph so that the clusters represent meaningful subsystems. There are 

several viewpoint to defining the graph G, e.g. by considering modules and their 

relationships, object creation, runtime method invocation or generating a module 

dependency graph [Clarke et al., 2003].  

When defining a fitness function for the clustering problem, the main question to be 

answered is what constitutes a good partition of the software structure graph. The 

goodness of a partition is usually measured with a combination of cohesion and 

coupling metrics, one of the most popular metric being the modularization quality MQ, 

introduced in Chapter 2, which combines these two metrics.  

Clarke et al. [2003] present three different ways of dealing with the clustering 

problem: hill-climbing, hill-climbing with simulated annealing and genetic algorithms. 

Using the hill-climbing approach, the algorithm begins with a random partition m of the 

graph G, where nodes represent modules in the system. The neighboring partitions mi 

(the neighborhood being as defined in Chapter 3) are then examined in order to find a 

better rearrangement of the original partition. If a better solution mk is found, i.e. 

MQ(mk) >  MQ(m),  mk is stored as the best partition found so far. The process is 

iterated until the neighborhood of the best found partition does not contain any partition 
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with a better fitness value. The hill-climbing solution can be varied by adjusting when it 

moves onto the next partition: does it select the first solution with a bigger MQ-value, 

does it go through all the neighboring solutions or does it search a set minimum amount 

of neighboring solutions. The hill-climbing search technique can be associated with a 

cooling function used with simulated annealing. Clarke et al. [2003] note that giving the 

algorithm this opportunity to momentarily accept worse solutions fitness-wise has 

shown an improvement in performance without jeopardizing the quality of the 

solutions. 

Using a genetic algorithm for module clustering is quite straightforward: the main 

challenge is to find a suitable encoding, after which traditional mutation and crossover 

operators can be used. Defining these operations is, however, not so simple. Clarke et 

al. [2003] introduce several cases where the hill-climbing algorithm has outperformed 

genetic algorithms, and the blame is usually placed with the encoding and crossover 

used with the genetic algorithm. 

Doval et al. [1999] have also studied the module clustering problem, and have used 

the module dependency graph (MDG) mentioned earlier.  The module dependency class 

is defined as a directed graph that describes the modules (or classes) of a system and 

their static inter-relationships using nodes and directed edges, respectively. As with the 

more general software clustering problem presented by Clarke et al. [2003], the goal is 

to find a “good” partition of the MDG. A good partition features quite independent 

subsystems which contain modules that are highly inter-dependent [Doval et al., 1999]. 

This definition of a good partition justifies the use of the MQ metric for the fitness 

function: independent subsystems have low coupling, and high inter-dependency 

signifies high cohesion. 

Doval et al. [1999] have used a genetic algorithm approach for the optimization of 

the module clustering problem. A numeral encoding is used, where each node Ni is 

assigned a unique number that specifies the locus with the information about that node’s 

cluster, e.g. N1 is in the first locus of the chromosome and N2 is in the second locus. The 

actual alleles are the numbers of clusters where the nodes representing the components 

are assigned to. Formally, a chromosome is represented as a string S, which is defined 

as S = s1 s2 s3 s4 … sN, where N is the number of modules, i.e. the number of nodes in 

the MDG, and si, (1≤ i ≤N) identifies the cluster that contains the ith node of the graph. 

Doval et al. [1999] use a crossover rate of 80% for populations with 100 individuals or 

less, and 100% for populations of a thousand individuals or more. The rate varies 

linearly between those population values. The crossover function itself is the traditional 

one, i.e. it combines subsections of two parents from the left and right side of the 

crossover point. The mutation changes the value of one gene to a new, randomly 

generated value, thus moving the node represented by the locus in question to a new 

cluster represented by the new value. Doval et al. [1999] have used their algorithm on 
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real systems, and stress the point of obtaining correct parameters (size of population, 

number of generations and crossover and mutation rates) in order to achieve solutions 

with a higher quality and to also improve the algorithm execution performance. Tests on 

a real system with a documented MDG showed that Doval et al.’s [1999] algorithm 

produced a graph quite similar to the real one. The areas where the algorithm had the 

most problems with were interface and library modules.  

Harman et al. [2002] make their contribution to the modularization problem by 

introducing a new representation for the modularization as well as a new crossover 

operator that attempts to preserve building blocks. They approach the clustering 

problem from a re-engineering point of view: after maintaining a system its 

modularization might not be as good as it was when it was taken to use. Thus, Harman 

et al. [2002] define their problem as searching the space of possible modularizations 

around the current granularity, i.e., the number of modules a modularization uses, to see 

if there exists a better allocation for the components.  

Firstly, the new representation presented by Harman et al. [2002] ensures that each 

modularization has a unique representation.  A look-up table is used in order to allocate 

components to numbered modules. It is also defined that component number one is 

always in module number one, as well as all components belonging to the same module. 

Then, component n with the smallest number that is in a different module as component 

number one is placed in module number two, and the process is repeated with 

components in the same module as component n, and again for all modules similarly 

[Harman et al., 2002].  

Secondly, Harman et al. [2002] present a new crossover, which does not choose a 

random crossover point within the two parents, as crossover operators usually do, but a 

random parent, and a random module from that parent, which is then copied on to the 

child chromosome. The components in this module are then removed from the two 

parents in order to prevent clones of components, and the rest of the modules are copied 

to the child chromosome in a similar fashion from one or the other parent. This kind of 

crossover operator ensures that at least one of the modules from the parents is 

completely preserved in the child, and supports the building block theorem.   

Di Penta et al. [2005] introduce the Software Renovation Framework (SRF) that 

attempts to remove unused objects and code clones and to refactor existing libraries into 

smaller, more cohesive clusters. Genetic algorithms have been used especially to help 

with refactoring. The SRF works in six steps [Di Penta et al., 2005]. Firstly, the 

software system’s applications, libraries and dependencies among them are identified. 

Secondly, unused functions and objects are identified and removed. Thirdly, duplicated 

and cloned objects are identified and possibly factored out. Fourthly, circularly linked 

libraries are identified and either removed or reduced. Fifthly, large libraries are 

refactored into smaller ones. Finally, objects, that are used by many applications but are 
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not yet grouped, are grouped into new libraries.  As the interest mainly lies with the use 

of genetic algorithm, I will concentrate now on the fifth step and the refactoring.  

The library refactoring itself is done in three steps: determining the ideal number of 

clusters and an initial solution, determining the new candidate libraries with the use of a 

genetic algorithm, and after asking for feedback (as can be seen, this is a semi-

automated form of using search algorithms, as human expertise is used in order to see 

how many iterations are needed), the second step may be repeated. The encoding used 

by Di Penta et al. [2005] is a bit matrix: each library is represented by a separate matrix, 

and the combination of matrices, GM, represents the system. The crossover operator is 

defined so that it changes the content of two matrices around the column defined as the 

crossover point. Mutations may either move an object by interchanging two bits in a 

randomly chosen column, or clone an object by taking a random position gmx,y in the 

matrix and changing its value to 1 if the bit in this position is zero, and the library 

represented by the matrix depends on the object y [Di Penta et al., 2005]. The 

probability of the moving mutation should always be bigger than the probability of the 

cloning mutation, as cloning is not recommended in general. The fitness function used 

by Di Penta et al. [2005] consists of four different factors: the number of inter-library 

dependencies in a given generation (the dependency factor DF), the total number of 

objects linked to each application (the partitioning ratio PR, which should be 

minimized), the size of new libraries (the standard deviation factor SDF), and the 

feedback given by developers (the feedback factor FF). The FF is calculated as the 

difference between the matrix GM developed by the algorithm and the feedback matrix 

FM, which contains information of the changes suggested by developers in matrix form.  

The overall fitness function F is defined as F = DF(g)+w1PR(g)+w2SDF(g)+w3FF(g) 

where w1, w2 and w3 are real-valued positive weight-factors. Di Penta et al. [2005] 

report that tests with their SRF show very promising results especially with refactoring 

libraries and thus reducing dependencies. 

Seng et al. [2005] represent the system as a graph, where the nodes are either 

subsystems or classes, and edges represent containment relations (between subsystems 

or a subsystem and a class) or dependencies (between classes).  The encoding used for 

the genetic algorithm is to have each gene representing a subsystem, and each 

subsystem is an element of the power set of classes. Seng et al. [2005] use three kinds of 

mutations: the split & join mutation, the elimination mutation and the adoption 

mutation. The split & join mutation either divides a subsystem into two smaller 

subsystems or combines two existing subsystems into one. The subsystems are selected 

based on how strong their relationship is in the original dependency graph. The 

elimination mutation deletes a subsystem candidate and distributes its classes to other 

subsystems and the adoption mutation tries to find a new subsystem candidate for an 

orphan, that is, a subsystem with only one class. The crossover operator works in five 
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steps and produces two children from two parents. Firstly, a sequence of subsystem 

candidates, i.e. a sequence of genes, is selected from both parents. Secondly, the chosen 

sequences are integrated to the other parent. Thirdly, existing genes (subsystems) 

containing classes that are now present in the new, integrated sequence, are deleted. 

Fourthly, the classes that do not exist in the new sequence (and were parts of the deleted 

subsystem), are collected. Fifthly, the collected classes are distributed to other genes so 

that all classes will still stay present in the solution [Seng et al., 2005]. The fitness 

function is formed from a combination of metrics for cohesion, coupling, complexity, 

cycles and bottlenecks. Bottlenecks are subsystems that know about and are known by 

too many subsystems. A tournament selection is used for selecting the new generation 

[Seng et al., 2005]. 

Seng et al. [2005] also believe in the building block theorem, and construct their 

initial population accordingly. They bring solutions with high fitness values into the 

initial population in order to ensure the presence of good building blocks from the very 

beginning. As genetic algorithms demand diversity in order to get the best results, half 

of the initial population is constructed from the highly fit solutions, and half from 

randomly selected sets of connected components from the initial graph model. 

Based on the tests by Seng et al. [2005] with large systems,  e.g.,  the javax.swing 

that contains over 1500 classes,  this method of subsystem decomposing was a highly 

successful one. The method was also fast, as the tournament technique used for 

selection is much more efficient than the roulette wheel – although the roulette wheel 

produces solutions with slightly better fitness values.  

4.1.2. Systems integration 

Systems integration is in a way quite similar to module clustering, only now the 

modules are known, and the order in which they are incorporated to the system is what 

needs to be decided. As the integration usually happens in an incremental way, and not 

all components are at use at the same time, a lot of stubs, i.e., components simulating 

the functionality of a missing component, often need to be created [Clarke et al., 2003]. 

A stub is needed when a component is integrated to the system and it uses another 

component that is still waiting for integration, and the more stubs are needed, the more 

the integration process will cost. Therefore, the usual solution is that components that 

are heavily used by other component are introduced early to the system, and 

components that need a lot of other components, are introduced last. Obviously some 

components are both heavily used and use a lot of other components, and timing the 

integration of these components is crucial when attempting to achieve the optimal 

integration sequence, i.e., the order of integrations which costs the least [Clarke et al., 

2003].   

The order of integration of components can be presented as a permutation of the set 

of components [Clarke et al., 2003], quite similarly to the TSP discussed in Chapter 3. 
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However, one needs to be careful when defining the crossover operator to a 

permutation. A traditional crossover where parts of the chromosomes are interchanged 

would very probably produce an illegal solution. Thus, Clarke et al. [2003] present the 

options of using order crossover or cycle crossover.  Order crossover selects a random 

crossover point, and then copies the left substring of one parent directly to the child 

chromosome. The items that are not present in that substring are added in the order they 

appear in the other parent. Cycle crossover on the other hand merges two chromosomes. 

For mutations, Clarke et al. [2003] use the swap and shuffle operations. Swap changes 

two genes of the chromosome, and shuffle produces a new permutation. When the 

fitness function can be defined as the cost sum that would be associated with the 

solution represented by a specific permutation, systems integration can clearly be 

subjected to genetic algorithms. In order to apply hill-climbing and tabu search, a 

neighborhood must also be defined, and this is easy: two solutions p and p’ are 

neighbors if and only if p’ can be generated by swapping two adjacent genes in p 

[Clarke et al., 2003].  

Le Hanh et al. [2001] present a very similar solution to the integration testing 

problem. They stress that the testing of components that are being integrated should be 

optimized. The chromosome representation is the same as defined by Clarke et al. 

[2003], as is the swap mutation. The crossover operation is very similar to the order 

crossover described by Clarke et al. [2003], only Le Hanh et al. [2001] have opted to 

directly copy the right side of the first parent instead of the left side. Le Hanh et al. 

[2001] also use simpler fitness function, as they only calculate the amount of stubs 

needed for each solution. The selection function of Le Hanh et al. [2001] is quite 

unusual. The algorithm is run by first calculating the fitness of each individual of the 

population. Two individuals with the best fitness values are then chosen to produce the 

next generation by applying the crossover and mutation operators to these two elite 

solutions until there are enough individuals to form a population. One might wonder 

whether this kind of selection operator really gives the best results. The selection 

restricts the population to the neighborhoods of the two elite solutions, and thus greatly 

increases the chances of the algorithm getting stuck to a local optimum and not finding 

the global optimum.  Le Hanh et al. [2001] report very promising results from their tests 

where the genetic algorithm was applied to real-world systems, such as javax.swing. 

They mention that the genetic algorithm is not very efficient, and perhaps some 

adjustments should be made to their fitness function (such as adding the cost of a stub – 

a metric used by Clarke et al. [2003]), but the quality of the solutions was good, and the 

genetic algorithm approach could be easily modified to take into account the complexity 

of the components.  
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4.1.3. Systems refactoring 

Systems refactoring is a somewhat more delicate problem than module clustering. With 

module clustering, it is more a question of efficiency, while the contents of a system 

still stay the same. However, when refactoring a system, there is the risk of changing the 

behavior of a system by, e.g., moving methods from a subclass to an upper class [Seng 

et al., 2006]. This risk should be duly addressed, and the refactoring operations should 

always be designed so that no illegal solutions will be generated or a corrective 

operation is used to check that the systems behavior stays the same.   

O’Keeffe and Ó Cinneide [2004] define the refactoring problem as a combinatorial 

optimization problem: how to optimize the weighting of different software metrics in 

order to achieve refactorings that truly improve the system’s quality. O’Keeffe and Ó 

Cinneide [2004] introduce four different kinds of refactoring mechanisms: moving a 

method up or down in the class hierarchy, extracting or collapsing a class, making a 

class abstract or concrete and changing the superclass link of a class. The metrics that 

are used are rejected methods (RM, should be minimized), unused methods (UM, 

should be minimized), featureless classes (FC, should be minimized), duplicate 

methods (DM, should be minimized) and abstract superclasses (AC, should be 

maximized).  It is also pointed out that as metrics for object-oriented design often 

conflict, the priority of metrics should be made clear by a precedence graph and assign 

weights accordingly. With the metrics introduced by O’Keeffe and Ó Cinneide [2004], 

AC should have a lower priority than FC, RM and UM should have a higher priority 

than FC, and DM should have a higher priority than RM. Taking these priorities into 

account, some guidelines are achieved for assigning the weights, which together with 

the actual metrics form the fitness function f(d) = ∑
=

n

m

mm dmetricw
1

)( , where d is the 

design to be evaluated, n is the number of metrics and wm is the weight assigned to 

metricm. Initial tests show some promising results in using simulated annealing to 

improve the design of the system subjected to refactoring [O’Keeffe and Ó Cinneide, 

2004]. The combinatorial optimization viewpoint should be noted as a general guideline 

for building any kind of genetic algorithm, as the fitness function often consists of 

several metrics that contradict each other.  

Seng et al. [2006] have a similar approach as O’Keeffe and Ó Cinneide [2004], as 

they attempt to improve the class structure of a system by moving attributes and 

methods and creating and collapsing classes. Seng et al. [2006] begin by extracting a 

model of the system from its source code, the basic model elements being attributes, 

methods, classes, parameters and local variables. In addition, an access chain is 

presented in order to produce the best possible results. An access chain models the 

accesses inside a method body: this needs to be known in order to know the full effect 

of moving a method [Seng et al., 2006].   A genetic algorithm is used to find the optimal 
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sequence of refactoring operations, thus the chromosome encoding is naturally the 

sequence of transformations, where each refactoring operation is located in one gene. 

The sequence can be extended by mutation, which adds another refactoring operation to 

the current sequence [Seng et al., 2006]. The crossover operator picks a subsequence, 

from the first gene to gene k, from one parent and simply adds the whole sequence 

represented by the other parent to the selected subsequence. The transformations are 

then applied for the model. The firstly selected subsequence is always legal, but with the 

transformations specified after the crossover point it may be the case that the refactoring 

operations proposed cannot be performed, and such operations are simply discarded 

[Seng et al., 2006]. After the model has gone through the transformations specified by 

the genome, its fitness is calculated. Seng et al. [2006] use a combination of the 

following metrics for the fitness function: WMC, RFC, LCOM, information-flow-based 

coupling (ICP), tight class cohesion (TCC), information-flow-based cohesion (ICH), 

and stability (ST).  Weights are also assigned to the metrics in order to focus on certain 

aspects of the fitness function. The fitness of a solution is calculated by adjusting the 

fitness achieved by metrics. The adjustments put the fitness value in perspective to the 

metric-fitness of the initial solution and the metric-fitness of the solution with the 

maximum metric values. Such a fitness function shows the relative improvement in 

fitness values, which is easier to evaluate than mere raw numerical values. Seng et al. 

[2006] have achieved some very promising results: the class structure was clearly 

improved, and there was low statistical spread and good convergence within the fitness 

values. The fitness values also settled to a standard after some 2000 generation runs. 

The metric values that improved the most in tests were ICH and ICP, both having an 

over 80% improvement between the initial system and the system subjected to 

refactoring. 

O’Keeffe and Ó Cinneide [2007] have continued their research with the use of the 

representation and mutation and crossover operators introduced by Seng et al. [2006]. 

O’Keeffe and Ó Cinneide take the research further by introducing a wider list of 

refactorings that can be applied to the system and by introducing more fine-tuned fitness 

function metrics. The extended refactorings include operations that affect the security of 

attributes and methods, i.e. changing it from private to protected or vice versa, and 

changing a class from abstract to concrete or vice versa. O’Keeffe and Ó Cinneide 

[2007] use the following metrics: data access metric, which indicates encapsulation, i.e. 

cohesion within a class, NOM, number of polymorphic methods, CBO, design size in 

classes, i.e. the number of classes in the design, and average number of ancestors.  

O’Keeffe and Ó Cinneide [2007] also compared the genetic algorithm to other 

search algorithms: simulated annealing, multiple ascent hill climbing (MHC) and 

steepest ascent hill climbing (HC). They used a standard geometric cooling schedule 

and a low starting temperature for the simulated annealing, and this technique proved to 
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be the worst. Reasons for the low success of HC were its very slowness and the facts 

that an effective cooling schedule is difficult to determine and that there was much 

variance between results. MHC begins similarly to the regular hill climbing algorithm 

discussed in Subsection 4.1.1. However, when the MHC algorithm reaches a local 

optimum, it does not stop, but performs a predefined number of random transformations 

to the solution. MHC then restarts the search from the resulting solution; the number of 

restarts is given as a parameter. Both hill-climbing approaches produced high quality 

results, and MHC outperformed even the genetic algorithm approach by being 

extremely fast, while the HC technique was quite slow. 

Harman and Tratt [2007] introduce a more user-centered method of applying 

refactoring. They offer the user the option to choose from several solutions produced by 

the search algorithm, and also point out that the user should be able to limit the kind of 

solutions he wants to see, as he may only have limited resources for the actual 

implementation of the suggested refactorings. The fitness functions of search-based 

algorithms are also problematized, as they often present a complex combinatorial 

problem, and Harman and Tratt [2007] attempt to achieve a solution where the search 

wouldn’t rely so heavily on perfectly formulated fitness functions. 

The refactoring methods are the same as presented by Seng et al. [2006], and two 

metrics are used to calculate the fitness of a solution: the well-known CBO and a new 

metric, standard deviation of methods per class (SDMPC) [Harman and Tratt, 2007]. 

Two combinations of these metrics, f1 = CBO*SDMPC and f2 = CBO+SDMPC, are 

then considered as options for the final fitness function.  

Harman and Tratt [2007] present Pareto optimality to aid the evaluation and 

selection of the results given by the fitness function. They define Pareto optimality as 

follows: “In economics the concept a Pareto optimal value is effectively a tuple of 

various metrics that can be made better or worse. A value is Pareto optimal if moving 

from it to any other value makes one of its constituent metrics worse; it is said to be a 

value which is not dominated by any other value. For any given set of values there will 

be one or more Pareto optimal values. The sub-set of values that are all Pareto optimal 

is termed the Pareto front of the set.”  Harman and Tratt [2007] point out that the “true” 

Pareto front for a search-based system is analytically impossible and impractical to 

search. Therefore, the front of Pareto optimal values that can be created through a series 

of runs is considered to be an approximation of the “true” Pareto front. 

Pareto optimality is used when the user needs to choose the desired solution. It 

might be difficult to see what solutions have a truly good combination of the two 

metrics presented: by showing the solutions belonging to the Pareto front, the user can 

be sure that these are indeed “good” solutions. 
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4.1.4. Architecture development 

Program transformations for architecture development apply bigger modifications to the 

system than simple refactoring operations. An example of program transformation is 

implementing software design patterns to an architecture representation. In general, 

program transformation is about changing the syntax of the program while keeping the 

same semantics [Clarke et al., 2003].  This can be achieved by applying a series of 

transformation steps. Thus, the solution that is searched for is the optimal sequence of 

transformations. The fitness function, on the other hand, is a combination of code level 

software metrics, as introduced in Chapter 2, to measure the quality of the resulting 

architecture. Mutation operators feature e.g., replacing a transformation in the sequence, 

shifting transformations or rotating the sequence by swapping the places of two 

transformation steps. Program transformations can be used for maintenance and re-

engineering purposes as well as developing an initial architecture [Clarke et al., 2003]. 

Amoui et al. [2006] have attempted to implement software design patterns with the 

help of genetic algorithms. Their goal is to use genetic algorithms to find the optimal 

sequence of high level design pattern transformations to increase the reusability of a 

software system. Amoui et al. [2006] introduce the concept of supergenes when 

defining the encoding for the chromosomes. Each chromosome representing a series of 

design transformation consists of a set of supergenes, each of which represents a single 

transformation. A supergene contains information of the pattern number implemented, 

the package number and the classes that the pattern is applied to. Because each 

supergene has different parameters, mutations and crossovers may result in invalid 

supergenes: these are found and discarded [Amoui et al., 2006].  The crossover operator 

has two different versions which can be used separately or together: one can either 

administrate a crossover at supergene level, swapping the places of the supergenes 

before and after the crossover point, or select two supergenes and apply a crossover at 

gene level to these supergenes. The mutation operator mutates a random number of 

genes inside a randomly chosen supergene. The fitness function used by Amoui et al. 

[2006] measures the distance from the main sequence D, and is defined as 
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where Ce is defined as number of classes whose elements are used by other classes, and 

Ca is the number of classes using elements of the other classes [Seng et al., 2006]. 
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Amoui et al.’s [2006] tests show that genetic algorithm finds better solutions in less 

time than a random search of design transformations. Similar results have also been 

achieved by Grunske [2006].  

The performance of a software system comes down to how efficient the underlying 

architecture is. In addition to optimizing the efficiency of an architecture in terms of 

structure, there are still a set of parameters that can be optimized for any given 

architecture. These parameters are related to optimization methods such as loop tiling, 

loop distribution, loop unrolling and array padding optimization. Che et al. [2003] 

present how these parameters can be optimized with a genetic algorithm by 

transforming the parameter selection into a combinatorial minimization problem. They 

give a vector containing the parameters to the application, and then execute the program 

in order to test the runtime achieved with the given parameters. The vectors containing 

the parameters are generated by a genetic algorithm, and their “goodness” is evaluated 

by the execution time, so that the less time it takes to run the program the better. The 

result should be a set of near optimal parameters for different architectures. In order to 

do the tests in reasonable time, Che et al. [2003] have done transformations to the initial 

code of the application the runtime of which is being tested. The encoding used for the 

genetic algorithm is a string of integers, the fitness function uses the knowledge on how 

high the execution time of the individual is on the list of execution times of the 

population, and selection is performed as a combination of elitist and roulette wheel 

selection. Preliminary results show that extreme improvements can be achieved in 

execution time using this approach for parameter optimization. 

4.2. Search algorithms in software analysis and testing 

In addition to design related software engineering problems, there are several other 

fields of software engineering where search algorithms have successfully been 

implemented, e.g., testing, requirements engineering and project management.  I will 

now present some examples as to demonstrate how widely search algorithms can indeed 

be used in the area of software engineering. 

Search algorithms can be applied to the area of testing for they are convenient in 

producing optimal test cases. These test cases can be divided into categories depending 

on what kind of testing they are used for: structural testing, specification based testing 

or testing to determine the worst case execution time [Clarke et al., 2003].  

Structural test techniques determine the adequacy of a test set by considering the 

structure of the code. Normally such techniques measure the coverage of source code, 

i.e., the proportion of different constructs that are executed during testing, and full 

coverage is usually expected. Coverage can be divided into three different categories: 

statement coverage, branch coverage and path coverage [Clarke et al., 2003].  Fitness 

functions may be defined according to what is measured: how many statements the test 

case covers, how close to the correct branch does the test case get to, or how many paths 
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it covers and how close does it get to the paths it is supposed to cover. Specification-

based testing can be done with the use of pre- and post-conditions P and Q, 

respectively, and forming a predicate C(P, Q) = Q V¬P. A fault is detected if the 

predicate C is false, and it can be examined with, for example, simulated annealing 

[Clarke et al., 2003]. 

Genetic algorithms can quite straightforwardly be used in order to find minimal and 

maximal execution times as the fitness function is easy to define to be dependent on the 

execution time of the test case represented by the chromosome [Clarke et al., 2003]. 

In the cost estimation problem, the size of the application, usually measured in lines 

of code or in function points, is examined in relation to the effort, which is usually 

measured in person-months [Clarke et al., 2003]. Search algorithms, and especially 

genetic algorithms in this case, are used in order to find predictive functions for the 

relation.  The operators of a solution function include +, -, *, /, power, sqrt, square, log 

and exp, which will allow approximation of almost any function likely to solve the 

problem. The initial population is formed of a set of well-formed equations, to which 

the normal operators of a genetic algorithm are applied [Clarke et al., 2003]. The fitness 

function used to evaluate the resulting equation is the mean squared error,  
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The next generation is selected with the fitness-proportionate selection method [Clarke 

et al., 2003]. The main benefit of using a genetic algorithm in cost estimation is the 

achieved confidence in results; the algorithm explores solutions solely based on their 

fitness values and does not constrain the form of the solution. Thus, even complex 

evaluation functions have the possibility of being found and the final set of equations 

provided by the genetic algorithm truly have the best predictive values [Clarke et al., 

2003]. 

Clarke et al. [2003] present that search algorithms can also be used for requirements 

phasing. The development of a system consists of iterative cycles of selecting a set of 

requirements and implementing them, after which the system is presented to the 

customer. Problems arise when there are several customers with different interests: not 

all customers agree with what requirements should be implemented in the following 

iteration. To find out the most valued requirements, they need to be weighted or 

prioritized in some way by all customers. When the requirements have been scored in 

some way, the problem becomes about finding the optimal set of requirements to 

implement. However, this problem is an instance of the 0-1 knapsack problem, which is 

known to be NP-hard, and thus makes it appropriate for search algorithms presented in 

Chapter 3 [Clarke et al., 2003]. A solution to the problem can be represented as a bit 

vector, bits representing the presence or absence of a requirement, with the basic 

mutations and crossover operators as discussed in Chapter 3. Neighbor proximity can be 
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represented by the Hamming distance. The fitness function will naturally be the sum of 

priorities, weights or votes assigned to the requirements represented by a solution. This 

kind of encoding enables the use of several different search algorithms [Clarke et al., 

2003].  Unfortunately, requirements are rarely so simple and independent of one 

another: usually requirements depend on other requirements, and implementing a 

requirement before the ones it depends on have been implemented will greatly increase 

its cost. Also, customers may not prioritize requirements using the same criteria, as 

others may value cost and others development time. Thus, each requirement needs to be 

represented with a vector that contains all the relevant information: cost, development 

time, dependencies, etc. This complicates the problem as the fitness function needs to 

be refined, and it may now be possible to generate illegal individuals, which need to be 

dealt with [Clarke et al., 2003]. 

A similar problem lies in the area of project management. When embarking on a 

project, there are several conflicting desires: costs should be minimized while duration 

and quality should be maximized, and human resources and the budget should be 

managed optimally. Alba and Chicano [2007] have approached the project scheduling 

problem with a genetic algorithm and they define the project scheduling problem as 

follows. Costs associated with the employees and the project should be minimized as 

well as the duration. The employee is regarded as a resource with several possible skills 

and a salary, which is the cost of the employee. The employee also has a maximum 

dedication to the project, which tells how much time the employee can use for the 

project. If the employee is presented with tasks requiring more time than his maximum 

dedication, the employee is forced to work overtime, which results in a high risk of 

errors that in turn lower the quality of the project as well as an increase in duration.   

Alba and Chicano [2007] model the possible solutions as a dedication matrix, 

encoded into a binary string, which is the representation used for the genetic algorithm. 

The fitness function is calculated from the weighted cost and duration of the suggested 

solution, and a substantial penalty is added if the solution is not feasible. The 

performance of the genetic algorithm is tested by varying the number of tasks and 

employees, the special skills of the employees and the number of skills an employee 

has. Results show that increasing the number of employees decreases the quality of the 

solution, as it becomes more difficult to effectively assign tasks to employees. The same 

result can be seen from the experiment with the number of tasks: the more tasks, the 

more complex the problem. Reversely, the more skills an employee has, the easier the 

problem becomes to solve.  

Dick and Jha [1998] have applied a genetic algorithm to address the problem of co-

synthesizing hardware-software embedded systems. A co-synthesis system determines 

the hardware and software processing elements (PE) that are needed and the links that 

are used for a given embedded system. A co-synthesis system must carry out four tasks: 
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allocation, assignment, scheduling, and performance evaluation. The 

allocation/assignment and scheduling are known to be NP-complete for distributed 

systems, so the co-synthesis problem is an excellent candidate for search algorithms 

[Dick and Jha, 1998].  The implementation by Dick and Jha [1998] optimizes price and 

power consumption and heuristics are applied to allow multi-rate systems to be 

scheduled in reasonable time. The system is represented as a combination of the 

following data: cost, task graph, processing elements, communication links, constraints 

and a PE allocation string.  Solutions are grouped into clusters so that systems with the 

same allocation string belong to the same cluster. Mutations and crossovers can be 

defined both at the cluster and the solution level.  Dick and Jha’s [1998] solution 

provides the user with the Pareto-optimal set of architectures instead of the single “best” 

solution, and has shown very promising results in solving co-synthesizing problems. 

4.3. Other software engineering related problems 

In addition to software engineering problems, search algorithms can be used for 

problems in related field. I will briefly introduce some research in such problems, as 

when studying these problems at a more abstract level, they may also provide new 

insights as to how search algorithms can be used in the field of software engineering. 

Network processors are optimized to process packets and provide network 

functionality. Noonan and Flanagan [2006] have inspected how genetic algorithms can 

be used to search for an optimized configuration of a network processor or to enhance a 

solution suggested by a user.  A multi-objective fitness criteria, based on empirical 

calculations and analysis, is used to determine the “goodness” of a solution, and the 

result will give information on the bus widths, speed of processing units and chip area. 

The POOSL (Parallel Object Oriented Specification Language) is used to model the 

processor, and after optimizing criteria are selected, the genetic algorithm attempts to 

find the optimal parameter values for the POOSL model, as it is parameterized in terms 

of clock speed, bus widths, etc. [Noonan and Flanagan, 2006]. For the chromosome 

representation Noonan and Flanagan [2006] use a set of seven integers, which represent 

four different bus widths and three different processor speeds. Mutation and crossover 

operators get values from the user, and mutation to the bus widths is implemented by 

adding or subtracting the given value, and mutation to processor speed is applied so that 

the integer value is incremented or decremented by the given percentage value. 

Burgess [1995] has also applied a genetic algorithm to processors. He presents the 

more high-level problem of optimizing the multiprocessor computer architecture, as the 

design of interconnection network affects greatly the performance of a multiprocessor 

system. Optimizing network connections between processors will produce 

configurations that perform well with real problems [Burgess, 1995]. Every processor is 

given a number, and the valency of the network determines the number of links from 

processors, which are also numbered. The links between processors are represented by a 



40 

pair of links, and the genetic algorithm handles a string consisting of such pairs. With 

the use of crossovers and mutations, the links between processors are changed. This 

may result in illegal solutions, so a corrective operation is also used.  An elitist selection 

is used to choose the next generation and find the optimal network configuration.  

Genetic algorithms can also be used for commercial problems, as Asllani and Lari 

[2007] demonstrate with their implementation of genetic algorithms to dynamic and 

multiple criteria web-site optimizations. The purpose is to find an optimized 

combination of web-objects, such as banners, advertisements and incentives, as well as 

an optimized sequence of different pages in terms of download time, visualization, time 

spent on a page and potential sales. Each web-object has several attributes, such as 

product name, visualization score, download time, and the probability that the product 

will be sold in combination with other products or services [Asllani and Lari, 2007].  

The chromosome representation is a sequence of web-objects, each represented by an 

array of web-object structures and a probability matrix. The fitness of a solution is 

calculated as a combination of the download times, visualization scores and sales 

probabilities of the objects in the sequence, where the probability of sale of the kth 

object of the sequence is affected by its neighboring objects. The partial fitnesses are 

weighted according to their importance as seen by the user. The crossover operator is a 

traditional one, and mutation is implemented as a swap of two objects.  The results 

achieved by Asllani and Lari [2007] show that the algorithm worked well with virtually 

any number of web-objects, and successfully took into account both the aesthetic and 

the commercial needs assigned for the web page. 

Finally, Potgieter and Engelbrecht [2007] have experimented with a genetic 

algorithm to construct an optimal polynomial expression to characterize a function 

defined by a data set.  The mutation and crossover operators are used to teach the 

algorithm structurally optimal polynomial expressions, and an efficient data clustering 

algorithm is also used to reduce the training pattern search space.  The representation 

used for the algorithm is a set of unique term-coefficient mappings, and each term is 

made up of a set of unique variable-order mappings. Four mutations are used in order to 

expand the search space: shrink and expand, which remove and add one term-

coefficient pair to the set, respectively, and perturb and reinitialize, which modify the 

variable-order mappings and reinitializes the whole representation, respectively 

[Potgieter and Engelbrecht, 2007]. The crossover operation is a straightforward one, as 

it combines two subsets of the term-coefficient mappings to build a new individual.  

The fitness function used is similar to the adjusted coefficient of determination, and a 

variation of the elitist selection, the “hall of fame” selection, where the structure of the 

solution as well as the fitness is taken into account, is used to select every new 

generation.   
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5. Genetic construction of software architectures 

A software system is constructed to serve a specific purpose. In order to achieve the 

desired outcome, the software needs to complete several tasks leading to the final 

solution. The tasks can be grouped into responsibilities: a responsibility describes a 

logical function without giving specific details about the actual implementation. For 

example, a web application may have a responsibility “update user registry”. This 

responsibility holds tasks such as processing the data to be updated, checking the 

validity of the user registry, and possible notifying of exceptions. The goal in this thesis 

is to apply genetic algorithms in order to build an architecture for a system when its 

responsibilities are given as a dependency graph. The basic architecture considers the 

class division of the responsibilities, and interfaces, abstract classes, inheritance and a 

message dispatcher are brought into the architecture as fine-tuning mechanisms. 

5.1. Architecture representation 

When using a genetic algorithm, the first thing needed is an encoding for the solution. 

The encoding chosen for the implementation presented here follows the supergene idea 

given by Amoui et al. [2006]. A chromosome consists of supergenes, each of which 

represents one responsibility in the system. A supergene Gi contains two kinds of 

information. Firstly, there is the information given as input for the responsibility ri: the 

responsibilities depending on it {r1i’, r2i’, …, rmi’}, its name ni, execution time ti, 

parameter size pi, frequency of use fi, and type di (functional or data). Secondly, there is 

the information regarding the positioning of the responsibility ri in the architecture, and 

for this, class and interface libraries need to be created in the initialization. For a system 

of n responsibilities, a class library is defined as CL = {(C1, 1), (C2, 2), …, (Cn, n)}, so 

Ci can be identified by the integer value i of the tuple (Ci, i). The tuple notation is 

chosen so that the value k for class Cj, which represents the class for gene Gj can be 

mapped to the respective class (Ck, k) in the class library. An interface library is 

similarly defined as IL = {(I1,1), (I2,2), …, (In,n)}, where Ii is identified by the integer 

value i of the tuple (Ii, i). An abstract class library ACL is defined as ACL = CL. As 

only one message dispatcher is allowed in the system, there is no need for a dispatcher 

library. These identifiers are used in Gi, as it contains information of the class Ci that the 

respective responsibility ri belongs to, the interface Ii it implements, the class ACi it 

inherits and the group of responsibilities, RDi, it is communicating with through its 

dispatcher Di. The encoding is presented in Figure 1, which represents a chromosome 

with n responsibilities. 
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Figure 1. Chromosome encoding. 

 

This encoding ensures that the dependency graph given as input is never 

jeopardized, as there is no mutation that would alter the set of depending 

responsibilities. It is also a simple way to store all the necessary information. As the 

encoding is responsibility-centered, there is no need for separate encodings for, e.g., 

classes and interfaces. This also ensures that each responsibility is present in the system, 

as the class property must always have a value belonging to the given class library. The 

crossover operation is also safe and can be done as a traditional one-point crossover: as 

the properties of a responsibility remain untouched, there is no risk of illegal class 

distribution, that is, no responsibility can be in two classes or removed from the system 

as a result of crossover. 

The weakness of this kind of encoding becomes apparent when the solution needs to 

be visualized as a UML class diagram, and when class based quality metrics need to be 

calculated. As the information is now needed from the perspective of the classes and 

interfaces, extra effort is needed to extract it from the individual supergenes. However, 

the class diagram only needs to be drawn once to visualize the final solution, and 

operations calculating the different metrics also need information regarding each 

responsibility, so the cost of a responsibility-centered model is not that much greater in 

the end. As also the mutation operations truly benefit from the chosen encoding since 

the architecture is fairly easily kept legal, the benefits clearly overcome the 

shortcomings of the presented modeling method. 

5.2. Mutations 

Mutations transform the architecture in two ways: on system level, where the mutation 

affects the entire chromosome, and on responsibility level, where the mutation affects 

only one supergene. For the supergene level mutations, the mutation index of the 

chromosome is chosen randomly, and the actual effect will be on the responsibility 

represented by the supergene in the chosen index. 

The system level mutations are the following: 

• introduce a dispatcher to the system 

• remove a dispatcher from the system 

• introduce a new abstract class to the system 
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• remove an empty abstract class to the system. 

Crossover is also considered as a mutation in this implementation, but will be discussed 

separately as it is still implemented as a traditional one-point crossover operation with a 

corrective function. The mutations that add a new property are executed by adding a 

new supergene to the chromosome. The responsibility-related attributes of this new 

gene are set to zero or null, and the only information actually stored in the gene is the 

number of the abstract class or the dispatcher. If the abstract class ACk introduced is 

already present in the chromosome as class Ck, then the class Ck is declared abstract. 

The mutations that remove properties simply check that the abstract class or dispatcher 

found in the gene subjected to mutation is not used by any other gene in the 

chromosome, after which the gene is discarded. 

In the responsibility level, supergene Gi, representing responsibility ri, can be 

subjected to the following mutations: 

• split the class Ci in Gi into classes Ci and Ck 

• merge two classes Ci and Cj where Cj is in Gj 

• introduce interface Ik, (Ik, k) ∈   IL,  to Gi 

• remove interface Ii from Gi 

• introduce a dispatcher connection to Gi 

• remove a dispatcher connection from Gi 

• introduce an abstract class ACk, (ACk, k) ∈  ACL, to Gi 

• remove abstract class ACi from Gi. 

When splitting a class, the responsibilities located in Ci are divided into two classes, Ci 

and Ck. The split is done by checking good cutting points, i.e., if Ci contains 

responsibilities that depend on each other, they are kept together in the “old” class Ci 

while the other responsibilities are moved to Ck. Merging two classes is the counter-

mutation for splitting classes: responsibilities from two different classes, Ck and Ci are 

placed in one class, Ci. 

When introducing interface Ik to Gi, the interface Ik is first chosen randomly from 

the library, after which the interface value of Gi is set to k, thus implementing Ik through 

ri. Interface implementations are restricted in the way that only function-type 

responsibilities are allowed to implement an interface. Also, to prevent solutions with 

anomalies, it is restricted that a class would call an interface it implements itself. All 

responsibilities that depend on ri will now be associated with Ik instead of being directly 

associated with the class Ci. Removing an interface association is the counter-mutation, 

i.e., if ri is implementing the interface Ii, the interface value of Gi thus being i, the 

implementation is removed by setting the interface value to 0. 

Introducing a dispatcher communication to ri will cause a depending responsibility rj 

to communicate with ri through the dispatcher Di instead of being directly associated 

with the class Ci. Removing a dispatcher communication will cause a depending 
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responsibility rj to communicate with the responsibility ri either directly or through an 

interface Ii, if the responsibility in question implements one. 

The responsibility ri can also be introduced to an abstract class ACk, which will 

cause the class Ci to inherit ACk. Removing an abstract class from ri is performed 

similarly to removing an interface implementation. 

The presented mutations allow different ways of communications between 

responsibilities: direct associations between classes, communication through interfaces 

(the different varieties of which were introduced in Chapter 2), and communication 

through a dispatcher, which implicates that the message dispatcher architecture style 

would be an appropriate choice for the system in question. The class structure is 

modified by splitting and merging classes, and keeping sub-systems intact is encouraged 

by checking for split points.  Each mutation also has a counter-mutation, so every move 

can be reversed in order to ensure the most flexible traverse through the search space. 

The chosen mutations also conform to the idea of unit operations introduced by 

Bass et al. [1998]. These operations are used to achieve architecture styles and design 

patterns, and can be categorized to separation, abstraction, compression and resource 

sharing. Merging and splitting a class are clearly analogous to compression and 

separation, abstraction is achieved through abstract classes and interfaces, and resource 

sharing can be done through a message dispatcher or an interface. It should be noted 

that this is a rough analogy of unit operations to these mutations, and at a more detailed 

level the unit operations are more complex, and, e.g., introducing an interface to a class 

is also a case of separation, as it separates that particular class by “hiding” it behind the 

interface. Bass et al. [1998] also discuss the actual resources to be shared and make an 

example of databases; this also justifies the incorporation of different types for 

responsibilities, and thus identifying data in the system.  

5.3. Crossover 

The purpose of a crossover is to combine good properties from two individuals. A 

crossover between two architectures can be implemented as a traditional single-point 

crossover. Figure 2 illustrates a crossover between chromosomes CR1 and CR2 at 

crossover index k, the result being chromosomes CR12 and CR21. 
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CR1 : 

G1 

 

… Gk Gk+1 … Gm 

    

CR2; 

G1 

 

… Gk Gk+1 … Gn 

 

↓ 
CR12 : 

G1 

 

… Gk Gk+1 … Gn 

    

CR21; 

G1 

 

… Gk Gk+1 … Gm 

Figure 2. The crossover operation 

 

The selected encoding and the way of performing a crossover operation ensure that 

the architectures stay legal, as the supergenes stay intact during the crossover operation, 

i.e., no responsibility can be dropped out of the system or be duplicated into two 

different classes, and no interface becomes “empty”.  The optimum outcome of a 

crossover operation at index k would be that CR1 has found good solutions regarding 

interfaces and dispatchers and a clear structure for responsibilities from r1 to rk, and CR2 

contains good solutions for responsibilities from rk+1 to rn in a system with n 

responsibilities. Thus, the resulting chromosome CR12 would be a combination of these 

solutions, and contain a good solution of the entire system. 

Decisions regarding architecture styles are kept during a crossover operation, i.e., if 

a responsibility uses the message dispatcher for communication, this way of 

communication is maintained even after a crossover operation. Thus, a corrective 

procedure needs to be present in the crossover in order to handle situations where only 

one of the chromosomes has a message dispatcher present in the system. This kind of 

situation is presented in Figure 3, where the supergene Gm and the supergene Gk in 

chromosome CR1 are separated during the crossover operation. 
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CR1 : 
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      ↓ 
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        Dm   
 

Figure 3. Chromosome CR12 contains a gene needing a dispatcher (Gk) but not the gene 

containing the dispatcher (Gm) 

 

As a message dispatcher needs to be declared in the system so it can be used by the 

responsibilities, a corrective operation is now needed. The correction is done by adding 

the supergene Gm to chromosome CR12, the end result CR12’ shown in Figure 4.  
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      Figure 4. Crossover correction 

 

To summarize, the crossover operation combines two subsets of responsibilities 

with their respective architectural structures by administering a one-point crossover. A 

checking and correcting operation is needed in the case where there is a message 

dispatcher present in the system, but as this is a fairly simple procedure, the benefits of 

the defined crossover operation clearly overcome this minor disadvantage. 
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6. Implementation 

6.1. Presenting the program 

The implementation has been done with Java SE 1.5.0, and the core program 

implemented handles the given data, executes the genetic algorithm, stores data of 

fitness values and generates Java-files with javadoc-comments. These Java-files are 

then given to UMLGraph_4.8 [UMLGraph, 2007], which in turn generates a .dot –file 

containing information of the resulting class diagram. Finally, GraphViz_2.14 

[GraphViz, 2007] is used to generate a GIF-picture from the .dot descriptive file. 

6.1.1. Structure 

The implementation is aimed to be as simple as possible, and it straightforwardly 

follows the execution of a genetic algorithm presented in Chapter 3. The modeling 

presented in Chapter 5 has been implemented with the Cromosome and SuperGene 

classes, presented in the class diagram of the implementation ‘Frankenstein’ in Figure 5. 

The SuperGene class is an inner class of the Cromosome, keeping a tight analogy 

between the implementation and the presented model. The Cromosome class holds all 

information of the system as a whole – the class, interface and abstract class libraries, 

used classes, interfaces and the dispatcher, and the fitness value of the individual. It also 

has the crossover operation, the mutation operations that affect the entire chromosome, 

such as introducing a dispatcher to the system, and all the different fitness functions 

responding to the used quality metrics. The fitness function is implemented in the 

Cromosome class instead of the GeneticAlgorithm class in order to minimize calls 

between classes, as the fitness functions need to constantly access the information 

contained in both the chromosome as an entirety as well as its individual supergenes.  

The SuperGene class holds the information stored in a gene, as presented in Chapter 5. 

It also contains the mutation operations that affect an individual gene, such as 

introducing an interface, as well as operations for accessing all the information stored in 

the gene. The GeneticAlgorithm class contains the basic operations of the genetic 

algorithm – creating a population, handling a population and selecting the next 

population. Other classes in the implementation are Frankenstein, which is the main 

class, OutputDataHandler, which takes care of storing the fitness data, 

InputDataHandler, which transforms the information given as input into a “base” 

chromosome, and UMLGenerator, which transforms the information in the achieved 

best solution into Java-files.  
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Figure 5. Class diagram of ‘Frankenstein’ 

 

 

The process of ‘Frankenstein’ is described in the sequence diagram in Figure 6.  
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Figure 6. Sequence diagram for ‘Frankenstein’ 

 

First, a “base” chromosome is created by the InputDataHandler, which returns a 

Cromosome type model of the given set of responsibilities. This Cromosome instance 

contains all the information concerning responsibilities given in the input. The 

chromosome representation is then given to GeneticAlgorithm so that an initial 

population can be created. The population is created in such a way that two special 

cases – all responsibilities in the same class and all responsibilities in different classes – 

are put in the population by default to ensure variability in the population. Other 

individuals are created randomly. In this stage, only the libraries described in Chapter 5 

are set, and a random class is chosen for each responsibility. Interfaces, dispatchers and 

abstract classes are only incorporated through mutations; they are not present in the 

initial population. 

After the initial population has been created, the actual algorithm can begin to 

process the “chromosomes”. The GeneticAlgorithm class communicates with the 

Cromosome class to mutate, crossover and calculate the fitness of each individual in 

turn. After the whole population is dealt with, fitness data is stored and the selection for 

the next population can begin. After an individual is selected, its mutation probabilities 

are adjusted in relation to its fitness value in the population (from now on, this will be 

referred to as an individual’s fitness order). The selected next population is returned to 

the main class, which will again call the GeneticAlgorithm to handle it. This cycle 
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continues until the termination condition is met. Finally, the best solution is picked up, 

and UMLGenerator is called to produce a representation of the solution. 

6.1.2. Algorithms 

So far I have presented the overall structure and flow of the implementation. I will now 

give more detailed descriptions of the most important algorithms within the 

implementation: the overall structure of the genetic algorithm, creating a population, 

crossover, mutate, selection and setting the probabilities. The mutate operation will 

select a mutation from the ones presented in Chapter 5. I will give examples of three 

specific mutations: splitting a class, introducing an interface and removing a dispatcher 

from the entire system. The other mutations are quite similar, and the logic behind their 

implementation can be seen from the example algorithms.  

Algorithm 1 presents the general genetic algorithm. Random mutation indexes and 

probabilities are set and the chromosome is subjected to mutation. The mutate operation 

returns the initial chromosome to crossoverChromosome if the chromosome should be 

subjected to crossover. If the chromosome is mutated, it still has a chance to be 

subjected to crossover: the second mutation is only effective, if the chosen mutation is 

the crossover operation (as discussed in Chapter 5, crossover is thought of as a mutation 

as well). The fitness value of the chromosome is calculated after the mutation. After all 

the chromosomes have been dealt with, it is known which chromosomes are subjected 

to crossovers, which are done in pairs. The fitness values of the offspring are then 

calculated, after which the fitness values of the entire population can be sorted. The next 

population can now be selected. 

 
Algorithm 1 geneticAlgorithm 
Input: base chromosome b, elitism integer e, population size p 
Output: best chromosome after termination condition 
 chromosomes ← createPopulation(b) 
 do 

  foreach chromosome in chromosomes 

   p ← randomDouble 
   i ← randomInteger 
   crossoverChromosome ← mutate(chromosome, i, p) 
   if crossoverChromosome == null then  
    p ← randomDouble 
    i ← randomInteger 
    crossoverChromosome ← mutate(chromosome, i, p) 
   end if 

   if NOT crossoverChromosome == null then 
    toCrossing.add(crossoverChromosome) 
   end if 
   fitness ← fitness(chromosome) 
   fitnesses.add(fitness) 
  end for 

  while toCrossing.length > 1do 
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  offspring ←crossover(toCrossing[0], toCrossing[1]) 
  chromosomes.add(offspring) 
  fitness ← fitness(offspring) 
  fitnesses.add(fitness) 
  remove processed chromosomes from toCrossing 
  end while 

  sort(fitnesses) 
  fitnessBackUp ← fitnesses 

  chromosomes ← selection(chromosomes, fitnesses, fitnessBackUp, p, e) 
 while NOT terminationCondition; 

 getBestSolution(chromosomes) 
 

 Algorithm 2 describes the creation of the initial population, already discussed in 

Subsection 6.1.1. The initial population is created by copying genes from the given base 

chromosome, and then giving each responsibility a class to which it is located. The 

special cases of having only one class, or having each responsibility in its own class, are 

created before any other individuals. 

 
Algorithm 2 createPopulation 
Input:  base chromosome b, population size s 

Output:  linked list chromosomes containing the chromosomes that form the population 
 c ← copy(b)  
 set same class for all genes in c 

 setLibraries(c) 
 chromosomes.add(c) 
 d ← copy(b) 
 set a different class for all genes in d  
 setLibraries(d) 
 chromosomes.add(d) 
 for i ← 1 to s-2 do 

  e ← copy(b)  
  set a random class for all genes in e 
  setLibraries(e) 
  chromosomes.add(e) 
 end for 

 

 The crossover-operator is described in Algorithm 3. Both “children” first receive 

copies of genes from one parent, and at the crossover point locus, the parent from which 

the genes are copied is changed. However, mere copying is not enough, as discussed in 

Chapter 5; the use of a dispatchers must be checked. If the first part of the child needs a 

dispatcher, but it is not available in the parent providing the part after the crossover 

point, then the dispatcher is introduced to the system through a forced mutation. 

 
Algorithm 3 crossover 
Input:  chromosomes one and two 

Output:  chromosomes onechild and twochild 

 i ← randomInteger 
 onechildDispatcher ← 0 
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 twochildDispatcher ← 0 
 for j ← 0 to i do 
  onechild.geneAt[j] ← one.geneAt[j] 
  twochild.geneAt[j] ← two.geneAt[j] 
  if one.geneAt[k] contains Dispatcher then  
   onechildDispatcher ← 1 
  end if 

  if two.geneAt[k] contains Dispatcher then  
   twochildDispatcher ← 1 
  end if 

 end for 
 for k ← i +1 to two.length -1 do 
  onechild.geneAt[k] ← two.geneAt[k] 
 end for 
 for m ← i +1 to one.length -1 do 
  twochild.geneAt[m] ← one.geneAt[m] 
 end for 

 if onechildDispatcher == 1 AND NOT(two contains Dispatcher)  then 
  mutationIntroduceMessageDispatcher(onechild) 
 end if 

 if twochildDispatcher == 1 AND NOT(one contains Dispatcher)  then 
  mutationIntroduceMessageDispatcher(twochild) 
 end if 

  

 The general mutation is presented in Algorithm 4: this operation merely finds out 

the mutation that responds to the given probability, and passes along the chromosome.  

 
Algorithm 4 mutate 
Input: integer i, the mutation index, double p, the mutation probability, chromosome c 

Output: c if subjected to crossover, else null 
 mutationChoice ← selectMutation(i, p) 
 mutation(c, mutationChoice) 
 

As presented in Chapter 3, each mutation has a probability with which a 

chromosome is subjected to it. In the selection process, the crossover is also regarded as 

a mutation. As no chromosome can be subjected to more than one mutation during each 

generation, the sum of probabilities, given as percentages, should be 100%, as one 

mutation should indeed be chosen. As mutations should have fairly low probabilities in 

order to keep the evolving of solutions under control, a “null” mutation is used in order 

to bring the sum of percentages to that even 100. If the “null” mutation is chosen, the 

chromosome will remain as it was.  

The selection of a mutation is presented in Algorithm 5. The principle is the same 

“roulette wheel” selection as in selecting chromosomes for the next population: the size 

of a “slot” in the “wheel” is determined by the probability of the respective mutation. 

The list of probabilities is gone through, and when the “slot” which includes the given 

probability value is found, the id-number of the corresponding mutation operation is 

returned. 
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Algorithm 5 selectMutation 
Input:  double value probability p  
Output:  integer id mutationChoice  
  for m ← 0 to probabilities.length do 
   if p < probabilities [m] AND  m == 0 OR p > probabilities [m-1] 
   mutationChoice  ← m+1 
   end if  

  end for  

 

 Splitting a class by a mutation is described in Algorithm 6. The class Ck of gene g, 

holding responsibility rk, is found out, and a new class is selected randomly. The if-

statement is for selecting the split points discussed in Chapter 5; responsibilities 

depending from one another are kept in the same class, and other responsibilities are 

moved to the randomly selected new class.  

 
Algorithm 6 mutationSplitClass 
Input:  gene g 
 n ← g.getClass() 
 r ← randomInteger 
 foreach  gene sg in c do 
  if sg.getClass() == n AND NOT(sg depends on g)  then 
    sg.setClass(r) 
  end if 
 end for 

 

 Introducing an interface to a responsibility is presented in Algorithm 7, and it is 

quite straightforward as well. The interface to be implemented is selected randomly. 

Then it is checked that the responsibility that should be implementing the interface is of 

the type ‘function’, and does not belong to a class that is already implementing the 

chosen interface. 

 
Algorithm 7 introduceInterface 
Input:  gene g 
 n ← randomInteger 
 if g.type == ‘function’ then 
  if NOT exists gene ge:: ge.class == g.class AND exists gene gn:: gn.Interface == n AND  
  ge uses gn then 
  g.setInterface(n) 
  end if 

 end if 

  

 The mutation that removes a dispatcher, as presented in Algorithm 8, differs from 

the previous mutations in the way that its target is the chromosome, not an individual 

gene. It is first checked that the chromosome even contains a dispatcher. If a dispatcher 

is found, the default assumption is that no responsibility is using the dispatcher. The 
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genes are then iterated through, and if any of them uses the dispatcher for 

communication, removing of the dispatcher is not possible.  

 
Algorithm 8 removeDispatcher 
Input:  chromosome c 

 if c contains Dispatcher then  
  usedDispatcher ← false 
  foreach gene g in c do 
   if g uses Dispatcher then 
   usedDispatcher ← true 
   end if  

  end for 

  if usedDispatcher  == false then 
   dg ← g.dispatcherGene 
   g.remove(dg) 
  end if 

 end if 

 

 After the mutations, the fitness values of chromosomes are calculated, after which 

a new generation can be selected, as described in Algorithm 9. The method used for 

selection is the “roulette wheel”: each chromosome is given a slice of the “wheel” with 

respect to its fitness order. Before any other chromosome is selected, the best ones are 

automatically selected through elitism. After this, the slots are calculated for the 

“roulette wheel”, and a random probability is generated. Much like in the mutation 

selection, the chromosome “owning” the slot responding to that probability is selected 

to the next generation. The selection process is repeated until the number of 

chromosomes selected for the next generation is equivalent to the given population size.  

 
Algorithm 9 selection 
Input: list of chromosomes, cl, list of fitnesses, fl, sorted lists of fitnesses, sfl, population 
size integer s, number of elites, integer eliteAmount 
Output: a list of chromosomes ncl 
 for i ← 0 to eliteAmount do 
  fitness ← sfl[i] 
  nextFitnesses.add(fitness) 
  j ← fl.indexOf(fitness) 
  c ← cl[j] 
  nextGeneration.add(c) 
  cl.remove(c) 
  fl.remove(fitness) 
 end for 

 for k ← 0 to s-eliteAmount do 

  wheelAreas  ← setWheelAreas(fitnesses) 
  i ← randomDouble [0…1] 
  chromosomeFound  ← false 
  for m ← 0 to wheelAreas.length do 
   if i < wheelAreas[m] AND  m == 0 OR i > wheelAreas [m-1] 
   chromosomeFound  ← true 
   goodness ← sfl.indexOf(fl[m]) 
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   setProbabilities(chromosome, goodness, s) 
   nextFitnesses.add(fl[m]) 
   nextGeneration.add(cl[m]) 
   sfl.remove(fl[m]) 
   fl.remove(m) 
   cl.remove(m) 
   end if  

  end for  

 

After a chromosome has been selected to the next generation, its mutation 

probabilities are set according to its fitness order, as described in Algorithm 10.  The 

setting of the probabilities is done at this point to avoid calculating the fitness value 

twice during the process of handling a population. The probabilities are set so that if the 

chromosome’s fitness order is in the “better half” of fitnesses, the probability of 

crossover is increased in relation to the fitness order. If the fitness order of the 

chromosome belongs to the “lower half”, the probability of the crossover is halved. 

Since the sum of mutation probabilities should be 100%, the probabilities of the 

mutations must be decreased in relation to the increase in the crossover probabability. 

The crossover probability is the last one in the list of probabilities in order to ease the 

execution of this algorithm. 

 
Algorithm 10 setProbabilities 
Input: chromosome c, order of fitness fo, list of probabilities pl, population size integer s 
Output: altered list of probabilities pl 

 if fo < s/2 do   

 multiplier ← 1/fo 
 crossoverprobability  ← pl.last – pl [pl.length-2] 
 probabilityChange ← crossoverprobability*multiplier 
 crossoverprobability ← crossoverprobability + probabilityChange 

 mutations ← pl.length -1 
 pl[pl.length-2] ← pl.last – crossoverprobability 

 for i ← 0 to mutations do  
  altering ← probabilityChange/mutations 

  pl[i] ← pl[i] – altering 

 end for 

end if  

if fo >= s/2 do  
 crossoverprobability  ← pl.last – pl [pl.length-2] 
 probabilityChange ← crossoverprobability/2 
 crossoverprobability ← crossoverprobability/2 
 mutations ← pl.length -1 

 pl[pl.length-2] ← pl.last – crossoverprobability 

 for i ← 0 to mutations do  
  altering ← probabilityChange/mutations 

  pl[i] ← pl[i] + altering 

 end for 

end if 
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6.1.3. Parameters 

The input for the implementation is the dependency graph of the responsibilities in the 

system as well as performance information of the responsibilities. The graph is given as 

an adjacency list, which makes is possible to present the information in a simple text-

file, where each responsibility is represented by one line in the file. The output is a 

UML class diagram, which is constructed of the best solution remaining in the final 

generation. Fitness data is also stored throughout the generations in a separate file so 

that the development of fitness values can be monitored. 

For the genetic algorithm, there are two types of adjustable parameters: the common 

parameters for any genetic algorithm implementation, and the parameters where the 

nature of the problem needs to be considered. The common parameters include the size 

of the population, the termination condition (often either tied to the fitness value or to 

the number of generations), the level of elitism and how the order of fitness affects the 

crossover rate. When choosing the level of elitism one should keep in mind that the 

level should be high enough to ensure that the solutions truly evolve by having the best 

material to develop from, but at the same time there should be enough room for 

selection through probability, in order to ensure a free enough traverse through the 

search space. As for the effect of the fitness order to the crossover probability, the 

current solution ensures a perfect relation between the order of fitness and the increase 

in the crossover probability. Other implementations are also possible, as long as the 

following requirements are met. Firstly, the probabilities should be kept under control, 

i.e., there must still be a possibility for at least some mutations after increasing the 

probability of the crossover. Secondly, increasing the probability of the crossover 

should have some logical relation to the fitness order. Thirdly, the probability of 

crossover should not be raised for the worst solutions, but rather deducted, as it can be 

assumed that they have poor material that should not be passed on to the next 

generation.  

The problem specific parameters are the weights assigned to different fitness 

evaluators (quality metrics) and the probabilities given to different mutations. The 

fitness weights can be given freely, but in order to ensure that the relation between 

metrics is as intended, the ranges of the different quality metrics should be taken into 

account when assigning the weights. When assigning weights, one should remember to 

think of what characteristics are most valued, as it is extremely difficult to optimize all 

quality aspects at the same time. In this implementation, I have used 8 different 

evaluation criteria, some of which are seen as negative properties and some of which 

positive. The restrictions to mutation probabilities have been discussed in Subsection 

6.1.2, and adding the combinatorial problem of optimizing these probabilities alongside 

with the fitness weights results in a very complex task of parameter optimization. 
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6.2. Evaluation metrics 

There are two different types of characteristics that need to be evaluated in the produced 

architecture: the basic structure, i.e., how the responsibilities have been divided into 

classes and how many associations there are between classes, and the fine-tuning 

mechanisms, i.e., the use of interfaces, abstract classes and the message dispatcher. As 

presented in Chapters 2 and 4, there are several structure evaluation metrics which have 

been successfully combined and used as a fitness function for genetic algorithms 

processing architectures. As for the evaluation of interfaces, abstract classes and using 

the dispatcher, there are no metrics found so far for pure numerical measurement. 

Amoui et al. [2006] use a rather simple function for measuring the fitness of abstract 

classes as a part of their metric “distance from main sequence”, introduced in Chapter 4. 

However, this function merely measures the amount of abstract classes without 

considering whether the placement of the abstract classes is “sensible”. Thus, metrics 

for all these fine-tuning mechanisms needed to be constructed based on the information 

at hand of software architectures.  

For the literature based structure metrics, the analogy is used that each responsibility 

is equivalent to one operation in a class, and each class is a module or component, 

depending on what is used in the metric. As the concept of a responsibility is highly 

abstract, this most probably will not be the case if the system under construction would 

actually be implemented, but as there is no knowledge of what kind of operations each 

responsibility entails, this analogy seems justified enough. 

The overall quality of the architecture is used as the fitness value for the genetic 

algorithm: this quality is achieved as a combination of all the quality metrics used, as 

presented in Algorithm 11. Not all metrics need to be used: by setting the weight to 0, 

the metric can be discarded from the fitness function. 

 
Algorithm 11 fitness 
Input: chromosome c, list of weights wl 
Output: double value fitness 

 fitness ← wl[0]*fitnessMQ(c) - wl[1]*fitnessRFC(c) + wl[2]*fitnessCohesion(c) - 
wl[3]*fitnessCoupling(c) - wl[4]*fitnessInstability(c) + wl[5]*fitnessAbstracts(c)  - 
wl[6]*fitnessDispatchers(c) + wl[7]*fitnessInterfaces(c)  

6.2.1. Metrics for structure 

Structural metrics measure the placement of operations between and within classes, as 

the efficiency of an architecture is affected by how many different calls there are 

between classes. These metrics, apart from modularization quality, only measure the 

quality of one class, but what is needed in this implementation is to get a quality value 

for the whole system. Thus, the final value of a metric is the sum of the respective 

metric values for all classes divided by the number of classes: this gives the average 

quality value of the classes present in the system. 
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Firstly, I have chosen the modularization quality MQ, which is presented in Chapter 

2. The strength of this metric is that it evaluates two separate metrics, cohesion and 

coupling, at the same time and gives one balanced value.  The implemented fitness 

algorithm for MQ follows the definition by Doval et al. [1999], and only gives values 

between minus one and one. As such, it does not provide enough variation between 

quality values in order to evaluate the structure of the solution on its own. The 

modularization quality metric has been kept in further tests though, to complement the 

other metrics. However, the value given by the MQ metric needs to be weighted with a 

high scalar.  

Secondly, I have used the response for class, RFC, in order to minimize 

dependencies between classes and to also prohibit overly large classes. RFC has proven 

to be a powerful metric for controlling the dependencies, but as far as keeping large 

classes under control, it is overpowered by coupling and cohesion metrics, which 

achieve much higher values. Emphasizing RFC clearly improves the structure, as 

solutions with the least associations between classes are valued. The implementation of 

RFC is based on the definition by Chidamber and Kemerer [1994], and its values range 

from 0 to |responsibilities|.  

Thirdly, there are the traditional cohesion and coupling metrics [Chidamber and 

Kemerer, 1994], of which I have used the information-flow based versions [Seng et al., 

2006]. The basic structure is already measured by MQ and RFC, and there is no need to 

have overlapping metrics. However, as cohesion and coupling are very standard metrics 

and recognized as good evaluators for architecture efficiency, it seems reasonable to 

incorporate them to the implementation as well. Thus, using the information-flow based 

versions services two purposes: firstly, the implementation uses standard quality 

metrics, which increases the reliability of the results. Secondly, the evaluation of the 

structure is more detailed, and the information given of the responsibilities is better 

used, as the information-flow based metrics use the parameter size to evaluate the 

“heaviness” of a call between two responsibilities in different classes. Coupling and 

cohesion both achieve extremely high values (their range goes from 0 to infinity), and 

thus tend to overpower the other metrics measuring similar qualities. Because of their 

overpowering effect and the fact that in the end, coupling and cohesion encourage very 

large classes, there is a need to “null” the effect of their reward if the system is not 

structured enough. In practice, the value of the information-flow based cohesion metric 

is set to 0 if the system only has one class, thus having all responsibilities in the same 

class. 

Finally, instability is used to measure the modifiability of the presented system. The 

instability metric has been implemented as it is defined in Chapter 4 following Seng et 

al. [2006]. Instability is well-suited for evaluating automatically generated architectures, 

as it is designed to measure the quality of the entire system. Amoui et al. [2006] have 
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successfully used it as a part of their fitness function when evaluating architectures after 

the implementation of design patterns. Having the instability metric as an evaluator in 

an early stage will give a better base for further development. The range for the 

instability metric is from 0 to 1 (also calling for a high weight), and it is a negative 

quality. 

6.2.2. Metrics for fine-tuning mechanisms 

As there is no metric defined in the literature that would measure the effect of 

introducing interfaces to an architecture, such a metric had to be defined in order to 

prevent completely random incorporations of interfaces to the system. The logic behind 

this metric is that an interface is most beneficial if there are many users for it. As there 

are no empty interfaces, i.e., an interface needs to be implemented by a responsibility 

belonging to the system, it can be concluded that an interface is well-placed if the 

responsibility implementing the interface in question is used by many other 

responsibilities. This increases reusability: changes to such a highly used responsibility 

have great impact on a system, and there is a big risk that the depending responsibilities 

may not get what they need from the changed responsibility. Thus, placing the needed 

responsibility behind an interface ensures that it will still service properly the 

responsibilities that need it even after it has been updated. The interface quality metric 

also considers how well the interface is implemented. A penalty is given for both 

unused and over flown interfaces. Both of these happen on the case where there is a 

responsibility implementing an interface and that responsibility is not needed by any 

other responsibility. Thus, the interface is unused, if the responsibility is the only one 

implementing its interface. An interface is over flown when there are many 

responsibilities implementing it, but the ones calling the interface do not need them all. 

The value given by the interface metric is ∑(interface users) + ∑(implementing 

responsibilities) - ∑(unused implementers) - ∑(unused interfaces), which is divided by 

the number of interfaces to give an average value as in the class metrics. The range for 

the interface quality metric goes from 0 to 2*|responsibilities| and it is a positive quality. 

The metric for dispatchers is based on the facts that dispatchers decrease efficiency 

and performance, but bring modifiability to the system, as components can be changed 

if the messages are still exchanged correctly. Thus, the use of dispatchers is punished by 

taking into consideration the parameter size of the needed responsibility, as the bigger 

the message is that the dispatcher needs to transmit between classes, the slower the 

process will be. Dispatchers are not rewarded, as they always complicate the structure of 

the architecture, but they are allowed, as they are useful in ways presented in Chapter 2. 

Thus, the value given by the dispatcher metric is ∑ (parameter sizes of dispatcher 

users). The range for the dispatcher quality value goes from 0 to infinity, and as stated, 

it is a negative quality. 
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The metric for evaluating abstract classes is based very strongly on the same ideas 

as the interface metrics, which is logical, as interfaces have developed from abstract 

classes. Every abstract class is rewarded by the number of responsibilities (and the 

classes to which they belong) that inherit it, the length of the “dependency chain” 

behind the inheriting responsibilities, and the number of responsibilities using the 

inheriting responsibilities. Empty abstract classes are punished by decreasing the quality 

value by two, as no responsibility is in the class, and no responsibility needs the class. 

The value given by the abstract quality metric is ∑ (inheriting classes) + ∑(lengths of 

dependency chains) + ∑(responsibilities in abstract classes) – 2*|empty abstract classes|, 

and as with the class metrics, it is divided by the number of abstract classes in the 

system. The range for the abstract class quality value goes from 0 to |responsibilities|, 

and it is a positive quality. 

6.3. Fine-tuning the parameters 

6.3.1. Example test cases 

Initial tests for the implementation were run with an example data set, given in 

Appendix A. The example contains 20 functional responsibilities and 4 data 

responsibilities with 22 dependencies, and has 5 subsystems within it. Tests were run 

with 6 different combinations of the quality metrics presented in Section 6.2, and then 

giving the same set of weights to all combinations. Different sets of mutation 

probabilities were also tested in an attempt to both see whether increasing the mutation 

probability would actually affect the final result, and to find more structured results. The 

tests were mostly run with a population size of 50, elitism level of 7 elites, and the 

number of generations set to 100. Some tests were also run with 150 or 200 generations 

to see if this would have a noticeable effect to the solution, but as it did not, 100 

generations was set as the default. Tests with 1000 generations were also made in order 

to check how the fitness values evolve over a longer period of time.  

Raw numerical fitness data does not reveal much of a produced solution: the fitness 

values merely benefit the analysis of how the values evolve, and ensuring that there is 

variance within the population; the highest and lowest fitness values should clearly 

stand out from the average. Statistics of the amount of classes or interfaces used does 

not reveal much of the structure either, apart from special cases when the number of 

classes is very small or very big, and likewise with the use of interfaces. In order to 

somehow evaluate the “goodness” of the produced solution, one needs a visualization to 

see how the responsibilities are distributed, how the interfaces and dispatcher are used, 

and how clear the presented solution is overall. Thus, when evaluating the goodness of a 

solution from a class diagram, the evaluation is bound to be subjective, and people from 

different backgrounds may appreciate different things. I have evaluated the goodness of 

the solution based on three things: the structure, the use of interfaces, and the use of 
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dispatcher. The structure should be clear: there should not be a complex web of 

dependencies. Interfaces should be used efficiently and the amount of empty interfaces 

should be minimal. The dispatcher should also be used “with a thought”; the amount of 

connections to a dispatcher should remain reasonable and the connections should add a 

minimal amount of complexity to the system. 

I will now present some example solutions achieved during the test runs that show 

how different aspects of quality are present in the produced solution. The raw data, 

containing the metric weights, mutation probabilities and statistics of the development 

of fitness value, for each of these examples is presented in Appendix B. 

In Figure 7, representing test case 1, the architecture is very simple and favors large 

classes. Grouping the responsibilities into classes by subsystems is successful, as can be 

seen by looking at Class 11. This class contains one data-responsibility and four 

functional responsibilities. Yet, there are no dependencies from Class 11 to other 

classes: all the responsibilities that it needs are within that same class. The same can be 

seen in Class 18, where there are four functional responsibilities, and only one 

dependency to another class.  

 

 
Figure 7. Test case 1. 

 

While in test case 1 all the responsibilities where in one system, in test case 2, the 

result of which is shown in Figure 8, two subsystems have been successfully separated 

in the solution. This solution shows that the implemented algorithm is able to identify 

subsystems from the given data and group the responsibilities belonging to those 

subsystems. Identifying subsystems will become even more important in larger systems, 

as finding separate subsystems greatly clarifies the structure of the architecture. An 

optimum place for implementing the message dispatcher would also be between two 

subsystems, as to have the whole system communicating. However, such a solution 
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would require a shared responsibility between the subsystems, which would be in 

charge of the communication, and such a responsibility is not present in this example. 

 

 
Figure 8. Test case 2. 

 

The previous examples have shown that evaluating structure indeed works in the 

implemented algorithm. The following test cases show that fine-tuning mechanisms can 

also be implemented successfully. 

Test case 3, presented in Figure 9, shows how interfaces are placed so that they are 

used efficiently. This test case provides a solution with 2 interfaces that are unused: 

these are not beneficial in the current system, but if it would be connected to another 

system, these currently unused interfaces could be put to use to access this system. 

However, for the current situation, it is more beneficial to have interfaces with many 

using classes, as they now shield responsibilities and guarantee that the using classes 

will be provided the services they need. In test case 3, there are 6 interfaces, 5 of which 

have 2 users, and one has 1.  What is more is that 4 of the used interfaces are only 

implemented by one responsibility, but are used by several: the implemented algorithm 

has successfully separated the most used responsibilities to their own interfaces. 
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Figure 9. Test case 3. 

 

 In Figure 10, representing test case 4, good usage of the message dispatcher can 

be seen: two classes send calls from several responsibilities through the dispatcher. The 

dispatcher can be seen as a center for the system, connecting different subsystems. As 

can be seen, by achieving a heavily used message dispatcher, compromises had to be 

made, and the actual structure of the overall system is not as clear as it could be. 
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Figure 10. Test case 4. 

 

Test case 5, presented in Figure 11, models very well a high-level architecture, 

where communication between components is mostly handled with interfaces and the 

message dispatcher. In this solution, the operations in classes are heavily hidden, as they 

are very much used through interfaces, which are in turn used through the message 

dispatcher. A more higher-level solution where classes are divided into components 

could fairly easily be modeled based on this presentation.  

 

 

Figure 11. Test case 5. 
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As can be seen in Figures 10 and 11, when a dispatcher is used, classes may call the 

dispatcher, but when the dispatcher forwards the call, it calls an interface. This situation 

is very desirable when thinking of real-world systems: when using a message 

dispatcher, the receiving class will most likely use an interface to accept and decode the 

messages that a dispatcher sends, as not all classes accept messages through the 

dispatcher, and those that do, only listen to certain types of messages. 

6.3.2. Remarks on adjusting the parameters 

During the hundreds of test runs, some details about individual parameters and their 

relations to each other came apparent. I will now discuss the most remarkable findings 

of the tests. 

Firstly, it could be seen that the fitness metrics have more influence to the final 

solution than the mutation probabilities. This came apparent when after nearly tripling 

the probability of using a dispatcher to communicate to a needed responsibility, the 

amount of dispatchers or their users did not significantly increase. Affect of the 

dispatcher quality metric could, however, be seen instantly. Another point to make of 

mutation probabilities is that the probability of the crossover operation had a bigger 

effect, and after first starting with a crossover probability of 20%, in the end it was 

lowered down to 10%, which gave noticeably better results. Otherwise, the biggest 

probabilities are for splitting and merging classes, as they deal with the structure of the 

system. This has proven to be a good decision in optimizing the probabilities, as 

structured solutions are indeed achieved: if the probabilities of the fine-tuning 

mechanisms would be overpowering, the solutions would most likely be more randomly 

implementing the mechanisms, and the structure would rely heavily on the randomized 

class division given in the creation of the initial population.  

Secondly, the dispatcher metric clearly makes its contribution to the fitness value. 

This could be seen by using a fitness function that did not evaluate how the dispatcher 

(or interfaces) was used, but merely measured the structure of the solution. Solutions 

achieved by such a fitness function fell roughly into two categories: ones that did not 

contain any interfaces or the dispatcher, and ones that had many interfaces and many 

connections to the dispatcher. In the first case, the class structure was often good, as the 

structural metrics had their full effect. In the second case, the usage of interfaces and the 

dispatcher was clearly quite random, and it also broke down the structure of the overall 

solution so that it was clearly not of good quality. The interface quality metric also 

proved to be very powerful: increasing the weight of the interface metric would 

instantly provide solutions with more and better used interfaces. The influence of the 

metric evaluating abstract classes could also be seen, as solutions achieved with 

combinations that did not include the abstract evaluator often had more abstract classes, 

which were also in many times empty, or not very well placed. 
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 Thirdly, the quality metrics have different ranges, which makes it difficult to find 

the kind of weights that would indeed emphasize the quality attributes that one values. 

Balancing out the weights while remembering the differences in ranges is a difficult 

combinatorial optimization task, as “heavy” weights easily “cover” each other: a high 

positive value in some area may “cover” a high negative value, and leave the final value 

higher than that of other solutions which may have more balanced values, thus resulting 

in a solution with both very desirable and very undesirable qualities. 

 The balancing problem came especially apparent when trying to achieve solutions 

which would effectively use both the dispatcher and interfaces. The interface quality 

metric is a positive metric with relatively high values, and the dispatcher quality metric 

is a negative metric, with extremely high values. So, in order to even let solutions with a 

good number of interfaces to survive, the weight of the interface metric was set at least 

10 times higher than the dispatcher metric. However, if the solution used a very great 

number of interfaces, the result often also had many dispatcher users, and the class 

structure was not clear. This can be explained by the interface quality value getting so 

high, that it would cover the negative effect given by the dispatcher metric, thus 

allowing solutions with very poor dispatcher usage and structure to survive. In fact, if 

the weight for the dispatcher metric is set high, the system actually “needs” many 

interfaces to achieve a fitness value that would be high in order. Similarly, as cohesion 

gives very high positive values, its weight should not be set very much higher in regard 

to the weight of the dispatcher, as this will result in poor dispatcher usage. 

Another balancing problem is in the structure, as the optimum solution would 

include medium-sized classes. However, the current metrics favor either very large 

classes or very small classes. Large classes have high cohesion values and low coupling 

if all the dependent responsibilities are in the same class, thus receiving good fitness 

values from these powerful metrics. On the other hand, small classes including only one 

or two responsibilities receive very small penalties from both the coupling and RFC 

metrics, hence keeping the overall fitness value quite high even though the rewarding 

metric values also stay small. This is actually a reverse situation of the “covering” 

discussed earlier: in this case both the positive and the negative values stay so small that 

the overall fitness value will still remain within the average and survive through many 

generations. 

On a more detailed level, there are some restrictions regarding the fitness weights 

that should be considered. Firstly, the weight of MQ should not be very much higher in 

relation to that of the RFC. A very clear difference to the better could be seen in 

solutions when the only change in parameters was to drop the weight of the MQ metric 

from 2.5 times the weight of RFC to 1.5 times the weight of RFC.  More generally, the 

weight of MQ should not be set higher than 1.5 times the weight of RFC, even though 

MQ achieves noticeably smaller values than RFC and the other metrics. Whether 
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actually setting the weight of MQ smaller than the weight of RFC would be beneficial is 

not as clear: this seems to depend on the mutation probabilities used, and especially 

how high the probabilities for split and merge mutations are set.  

The weight for the dispatcher metric should be kept well under control. The 

weight for the dispatcher metric should stay one tenth or less of the weight used for the 

interface metric, and it should not exceed the weight for the cohesion metric. Otherwise, 

the negative value of the dispatcher evaluator will overpower the positive values, and 

this will result in solutions with no dispatcher, or only one or two users for the 

dispatcher. Naturally, this is the case when the dispatcher is actually evaluated, the 

solutions given by combinations which do not take into account the dispatcher metric 

are not considered at this point. 

The metrics for instability and abstract classes do not have as much effect to the 

final solution as, e.g, the interface and dispatcher metrics, but  they may be used as parts 

of the evaluation in order to especially minimize the amount of empty abstract classes, 

but the quality of the solutions does not greatly deteriorate even if these two metrics are 

left out. The amount of abstract classes can also be somewhat controlled by setting a 

very low probability for the respective mutations. 

The weights for the cohesion and coupling metrics should be in the same range, 

and should be kept quite small, as the metrics achieve very high values. Weighting one 

over the other is a question of which risk is one willing to take: the risk of achieving 

many solutions with overly large classes by valuing cohesion, or the risk of achieving 

many solutions with small classes by valuing coupling. 

To conclude: there are no absolute rules as to how the weights can be assigned, as 

they have a “see-saw” effect. By valuing some quality, another quality is hard to 

achieve. Rather, it should be attempted to balance the weights in such a way that no 

quality is completely overshadowed, thus making such a solution able that is somehow 

valued by all the quality aspects. 
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7. Case study : electronic home control system 

As the test cases presented in Chapter 6 were made with quite a small example system 

which was constructed only for testing the performance of the implementation, it was 

necessary to also test the implementation with data that resembled a real system, and 

where the sensibility of the solution could be easily checked. For this purpose, example 

data for an electronic home control system was sketched.  

The electronic home control system contains 5 subsystems: logging in and user 

registry, temperature control, drape control, music control and coffee control. These 

subsystems are independent from each other, having altogether 40 functional 

responsibilities and 5 data responsibilities with 60 dependencies between them. The 

detailed data set is given in Appendix C.  As the amount of responsibilities and the 

complexity of the dependency graphs grew, the task of balancing the parameters became 

even more challenging. Especially the difficulty of achieving both a good structure and 

have good usage of the fine-tuning mechanisms was emphasized. As with the initial 

tests, I will now present some test cases for the case study which illustrate both what 

this implementation is capable of and what still needs to be developed the most. The 

parameters and fitness values for each case study test case is given in Appendix D. 

Firstly, the best way to see that the implementation can identify good structures is to 

search for separated subsystems. In the case study the subsystems were larger and more 

complex than in the initial tests, and this clearly affected the implementation’s ability to 

find the separate subsystems. The subsystems were not found often, and the 

implementation mostly found the smallest subsystem – the temperature control – which 

is logical, as it has the least responsibilities to group. After a series of parameter tests, 

such parameters were found that resulted in clearer structures in which also bigger 

subsystems were separated. In Figure 12, representing case study test case 1, the music 

control subsystem has been separated, and the overall structure is also reasonably clear.  

Another example of subsystem separation is given by case study test case 2, presented 

in Figure 13, where the drape control subsystem is separated. 

When studying the fitness values of these two case study tests, the extremely high 

fitness values stand out. Both solutions have quite small classes, as most of them 

contain only one responsibility. As discussed in Chapter 6, although small classes are 

not rewarded, they are given very little penalty, which results in a relatively high fitness 

values. As the weight for the cohesion metric was set quite high in both of these tests, 

high positive values were also achieved with very little effort, i.e., even one bigger class 

would give a reasonably high cohesion value, and the high weight would then elevate 

the overall fitness value to exponential proportions. It should also be noted that neither 

of these solutions contain either interfaces or the dispatcher – this again demonstrates 
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the overpowering effect of the cohesion and coupling metrics, which becomes the more 

apparent the more there are responsibilities in the system.  

 

 
     

Figure 12. Case study test case 1. 

 

 

 
Figure 13. Case study test case 2. 
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Secondly, in addition to separating subsystems, the overall structure can be 

identified as “clear” if the class diagram can fairly easily be partitioned into subsystems 

without having to inspect the details. In Figure 14, depicting case study test case 3, the 

temperature control subsystem is completely separated, and all the other subsystems are 

also very well grouped, with only a few responsibilities grouped with ones that do not 

belong in the same subsystems – the class diagram containing several subsystems can 

fairly easily be divided into four parts. When studying the fitness values of this solution, 

it can be seen that they reach quite large negative values even though the structure is 

actually better than in test cases 1 and 2. This can be explained by three things. Firstly, 

the weight for the cohesion metric is not as high in regard to coupling and RFC as it was 

in the previous test cases. Secondly, as the separated subsystem is the smallest, there are 

more dependencies left in the rest of the system, which results in high negative coupling 

values. Thirdly, there are no substantially larger classes in this test case, as the largest 

classes only contain two responsibilities. Because of this, the cohesion metric can not 

achieve high values, so the negative metrics are overpowering, as cohesion is the only 

positive metric measured. Interestingly, this solution only contains a few interfaces and 

does not contain the dispatcher, even though the dispatcher metric was not used, and 

thus, the sensible usage of the dispatcher was not controlled. 

 

 
 

Figure 14. Case study test case 3. 
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Thirdly, the fine-tuning mechanisms and their usage should be evaluated. In case 

study test case 4 the fine-tuning mechanisms are also measured and the result can be 

seen in Figure 15. This solution contains a large amount of interfaces, which are mostly 

very well used. The solution was achieved by giving all metrics the same weight and 

leaving out the instability evaluator. Thus, the ranges of the different metrics had a big 

influence on the overall fitness value and the quality of the solution. As can be seen, 

there are two noticeably larger classes in the system and, as stated, many well used 

interfaces – these increase the fitness values given by the cohesion and interface 

metrics. As this solution also receives high negative values from coupling, RFC and 

dispatcher metrics, such high positive values from cohesion and interfaces are needed 

for the solution to “stay alive” in the population. The fitness value data also shows 

interesting “jumps” between generations: the values vary between large negative 

numbers and extremely high positive numbers. Such variation is most likely the result 

of introducing or removing the dispatcher from the system, and merging or splitting 

very large classes, as these would instantly affect evaluators with high values. In 

addition to demonstrating the importance of noticing the different ranges in metrics, this 

test case also once again shows how easily the overall structure deteriorates when the 

fine-tuning mechanisms are introduced to the system – it is quite difficult to quickly 

find a clear structure from the class diagram in Figure 15. This particular phenomenon 

obviously becomes clearer when the number of responsibilities and dependencies 

increases. 

 

 
Figure 15. Case study test case 4. 
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Another example of bringing fine-tuning mechanisms to the system is presented in 

Figure 16, representing case study test case 5, where the dispatcher has a central 

position and has a high level of usage. As can be seen, there are also several interfaces 

and some larger classes with three or four responsibilities, thus giving high interface 

and cohesion values, which overcome the penalty given by the dispatcher and coupling 

metrics. The dispatcher is used for communication between responsibilities from all the 

different subsystems; this resembles a system where there would be a responsibility that 

would handle communication between the subsystems and thus control the entire 

electronic home. 

 

 
 

Figure 16. Case study test case 5. 

 

In case study test case 5, the dispatcher already uses interfaces very well, and as 

discussed with the initial tests, a high level representation of the architecture is easily 

extracted from this type of solution. In case study test case 6, this has been taken further 

still, as the amount of interfaces and dispatcher connections is even higher. The solution 

provided by this test case is shown in Figure 17, and as can be seen, the dispatcher 

collects calls from all around the system, and then distributes them to a series of 

interfaces. This is the way the dispatcher should in fact be used, as it conforms best to 

the description given for the message dispatcher architecture style in Chapter 2. The 
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modifiability provided by this architecture style is furthermore increased by the usage of 

interfaces, as now not even the dispatcher has contact with the receiving class, but only 

the interface.  

 

 
 

Figure 17. Case study test case 6.  

 

Finally, the best solution would naturally combine a good structure with well used 

interfaces and dispatcher. In case study test case 7, presented in Figure 18, this is fairly 

well achieved. The solution contains a dispatcher, which transmits messages between 

two parts of the entire system. If it were not for the association between Class 22 and 

Class 9, containing a data responsibility, the dispatcher would be the only way of 

communication between the two groups of subsystems. In addition, there are quite many 

interfaces which are well used both by classes and the dispatcher. Furthermore, there is 

structure to be seen: the coffee control and the temperature control have been placed 

together on the right side of the class diagram, and the login, music and drape control 

systems are placed on the left side. When looking at the classes containing the data 

responsibilities, the classes with the functional responsibilities using a certain data can 

fairly easily be grouped, and thus a subsystem can be separated from the graph. 

However, the architecture given in Figure 18 does not achieve the best possible result in 

any of the ways discussed before, i.e., its structure is not as good as could be, and 

neither is the dispatcher or interface usage. In fact, this test case best illustrates how 
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difficult the task of achieving a balanced solution actually is. The biggest strength of 

this architecture is actually its lack of big weaknesses: it does not give a particularly bad 

solution to any of the sub-optimization problems.  

 

 
    Figure 18. Case study test case 7. 

 

When studying the metric weights with which the solution of test case 7 was 

achieved, it can be seen that unlike most metric combinations, these weights were more 

penalty-oriented, as only structure was measured and coupling was valued higher than 

cohesion. Moreover, even though dispatcher and interface metrics were not used, the 

usage of these mechanisms is still sensible, that is, the amount of dispatcher connections 

is at a reasonable level and there are hardly any empty interfaces. In this case the 

coupling metric’s high weight also manages to keep the dispatcher connections under 

control, as every connection through the dispatcher also increases the coupling value.  
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The case study revealed that the more responsibilities and the more complex the 

dependency graphs, the more difficult it is to firstly, find a good structure, and secondly, 

combine that structure with fine-tuning mechanisms. The effect of the complexity of the 

dependency graphs becomes especially apparent when no subsystem is successfully 

separated. In the initial tests, the dependency graphs were very tree-like. Thus, by 

successfully combining at least some responsibilities, the overall structure was easy to 

keep clear, as there were no circular or crossing dependencies. In the case study, 

however, the structure of the dependency graphs was not as “standard”, which well 

represents a real system, as there often exist breakpoints where a responsibility is used 

by many other functions. If it would be attempted to put the dependency graph of the 

home control system into tree form, several dependencies between children of the same 

parent node would be seen, and these naturally do not belong in a true tree graph. These 

characteristics of the dependency graph result to the kind of “web” of crisscrossing 

associations as could be seen in Figures 15 and 17. 

The importance of taking into account the ranges when assigning weights to fitness 

metrics was also emphasized. As could be seen in the fitness values, they can achieve 

extremely high positive and negative values. There is a straight relation between the 

number of responsibilities and dependencies in the system and the level of fitness 

values, which should be noted when assigning weights especially to coupling and 

cohesion, as they may very well “cover” all other metrics if the number of 

responsibilities amounts to hundreds or beyond and the weights for other metrics are not 

set sufficiently high. 
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8. Conclusions 

8.1. Presenting the results 

I have presented a novel approach to software architecture design in the field of search-

based software engineering. In this thesis I have taken a more abstract approach than the 

research done in the field so far as the structure of a software system is merely based on 

the concept of responsibilities, and no information of actual operations is known. 

Another contribution is to experiment with building a completely new architecture and 

not merely moving pieces in a ready-made system as done in most of the work 

concerning software architecture design, as discussed in Chapter 4. 

The case study results presented in Chapter 7 show that it is possible to design 

software architectures with this approach. Sensible solutions are achieved, and they can 

be controlled with the selection of fitness metrics – meaning that the construction of the 

architecture does indeed follow certain logic and is not completely random. The 

solutions mainly fell into two categories; either they had a good structure or they 

efficiently used interfaces and a message dispatcher. Naturally there were also solutions 

somewhere in between, i.e., solutions with a good structure and some usage of 

interfaces and maybe one connection to the dispatcher, or good usage of the fine-tuning 

mechanisms and some structure. However, as the purpose would of course be to 

combine a good overall structure with a high level of interface and dispatcher usage, it 

is quite safe to make a division based on which of these two quality aspects is more 

dominant in the solution. After all, a good solution is one where the quality can be seen 

instantly – an average solution does not provide any new insights, as its biggest strength 

is actually its lack of weaknesses. 

From the point of architecture design and architecture evaluation, the 

implementation presented here provides a strong starting point for further development 

where the common “laws” concerning architectural design can be taken more into 

account, thus ensuring quality solutions more consistently.  In traditional architecture 

design, the software architect has the requirements for the system, and attempts to piece 

the respective operations together so the solution reaches high values when “measured” 

by some quality attributes. In this approach, the genetic algorithm actually evaluates a 

large number of architectures simultaneously, thus traversing through solutions a human 

architect would not have the time or the imagination to think of. Hence, as these initial 

tests already show that the implementation is able to find solutions greatly valued even 

after human analysis, this approach could affectively cut down the time used in 

architecture design as well as provide innovative solutions either as a starting point for 

further design or as ready architectures. 
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From the point of search-based software engineering and especially software design 

with the help of meta-heuristic search algorithms, this thesis clearly makes a 

contribution to the field. As the starting point is raw data, and not a ready architecture, 

this approach gives the implementation a significantly freer traverse through the search 

space, thus resulting in more innovative solutions. When given a ready architecture, it 

can be assumed that the architecture is already of good quality. Thus, it might prove 

quite difficult to find such modifications to the architecture that would actually improve 

the fitness value. The higher level of abstractness in architecture representation also 

provides a better starting point for constructing architectures, as the logical entities in 

software systems do not always straightforwardly follow the structural or operational 

entities. 

To conclude, the most important overall result of this thesis is that the approach 

taken here appears reasonably successful.  An architecture can be designed with the help 

of a genetic algorithm with only abstract level knowledge of the architecture’s contents 

and with no ready starting point. 

8.2. Success evaluation 

As discussed, the implementation was successful in proving that the selected approach 

was a good one. The produced solutions were also successful in either providing a good 

structure or good usage of communication mechanisms in the architecture. I will now 

discuss the main contributors to the success and also what could still be improved. 

Firstly, the very basic elements needed for the algorithm to operate proved to be 

well chosen. That is, the modeling, mutations and crossover discussed in Chapter 5, 

provided the kind of basis for the algorithm to operate that it was possible to modify the 

architecture in such ways that would provide quality solutions. 

Secondly, the fitness metrics proved to be very powerful. Solutions with, e.g., 

separated subsystems could not have been achieved if such good structure was not 

properly valued by the fitness function. As such solutions were achieved, this 

demonstrates the efficient implementation of the selected structural quality metrics. It 

should be emphasized that the definitions of the fitness metrics concerning interfaces, 

dispatchers and abstract classes were not based on anything found in the literature, but 

were constructed by simply logically evaluating where such mechanisms would be best 

used. As the results show, these metrics proved to serve their purpose. 

Finally, there is obviously much that can still be improved. The ultimate goal would 

be to consistently find solutions that are good from every quality aspect. Currently 

solutions with a high quality in any aspect are not consistent, and hardly any solutions 

are found with a good overall quality. Another improvement area lies within the 

“legality” of the produced architecture. At this point, there are still some anomalies 

present in the system, e.g., class A may use class B both through a dispatcher and 

directly, which should be banned. The major reasons for not receiving even better 
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results at this stage are thus a “too” free traverse through search space, as architectures 

that are not accepted by general standards are considered legal, and the optimization 

problem with different fitness metrics. Naturally, the mutation probabilities also have 

impact in the solution, but as the implementation provided solutions from both “quality 

categories” by using the same set of probabilities, it is safe to assume that some sort of 

optimum combination of mutation probabilities has actually been found. As a result, 

further development lies more within the set of fitness weights in terms of parameter 

optimization. 

Overall, it can be stated that the work was successful. The main research question 

was whether the selected approach would even be possible and sufficient enough to 

produce quality software architectures. As this was achieved, and there are clear views 

as to which direction the research could be taken, the implementation can indeed be 

viewed as successful, and the approach deemed possible. 

8.3. Future work 

The work presented in this thesis has been experimental, and its purpose has been to 

investigate whether the selected approach is valid for further development and research. 

As the results achieved so far are extremely encouraging, the work goes on and there are 

many ways with which the current implementation can be further developed and 

improved.  

Firstly, “laws of nature” should be incorporated to the system. These check that the 

mutation and crossover operations do not produce an architecture that does not conform 

to accepted standards in traditional architectural design. This will greatly limit the 

search space, but will benefit the outcome, as a solution with many anomalies is not of 

use. 

Secondly, the fine-tuning mechanisms can be put to better use by introducing more 

architecture styles and design patterns to the model. This would probably mean that the 

model would need to be adjusted and the existing mutations should be combined in 

ways that would produce a pattern. More “laws” would also have to be implemented, as 

design patterns and styles should be kept in the system once they are introduced – as it 

is with the message dispatcher. As a pattern involves many classes and responsibilities, 

checking that a mutation has not broken an implemented design pattern may prove to be 

quite complex. 

Thirdly, the fitness metrics should be refined, and more metrics considered. After 

implementing the patterns, the usage of patterns should be evaluated separately, and this 

would require a new type of quality metric. As incorporating “laws of nature” would 

also take care of some basic structural decisions, the existing metrics could also be 

adjusted to more effectively evaluate the structural decisions actually made by 

mutations and crossover. 
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Fourthly, the evaluation can be improved by making the fitness function dynamic. It 

could only evaluate the structure in the first generations, and then begin to evaluate the 

usage of fine-tuning mechanisms when they sufficiently exist in the architecture. As 

these mechanisms are not present in the initial population, this kind of adjusted fitness 

function could provide more quality structures. 

Fifthly, another meta-heuristic search algorithm could be implemented in order to 

make a comparison between its results and the results provided by the genetic 

algorithm. If it is possible to model an architecture and achieve good results from, e.g., 

an implementation with simulated annealing, it could be researched whether the 

strengths of both the new and initial algorithm implementations could be combined. 

Finally, the quality of the implementation can be improved by parameterizing 

currently hard-coded variables such as the mutation probabilities, and by producing 

information of the solution in a format that can be easily modified, such as XMI. 

To conclude: the work and results presented in this thesis are the first step in a 

research approach with many possibilities. The basis has been made by producing a 

model and initial operations which can be further developed and combined to achieve 

significant results in the field of search-based software engineering. 
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Appendix A

Test data

The example data for testing the implementation. If the Depending responsibilities
column has the value 0, then no responsibility uses the corresponding responsibility i.
Type “f” stands for “functional” and “d” for “data”. Groups of functional responsibilities
forming a subsystem are separated by a bolded line.

Responsibility
number

Depending
responsibilities

Execution
time (ms)

Parameter
size

Fre-
quency

Name Type

1 2,3 10 3.0 2 first f
2 4,5 20 4.0 3 second f
3 0 10 2.0 4 third f
4 0 30 1.0 5 fourth f
5 0 40 2.0 4 fifth f

6 7 5 5.0 3 sixth f
7 0 10 6.0 2 seventh f

8 9,10 20 7.0 2 eighth f
9 0 50 2.5 1 ninth f
10 0 60 3.5 1 tenth f

11 12,13 10 4.5 2 eleventh f
12 0 5 3.8 1 twelfth f
13 14 20 4.9 2 thirteenth  f
14 15,16 30 5.0 2 fourteenth  f
15 0 40 1.2 1 fifteenth f
16 17 25 4.3 3 sixteenth f
17 18,19,20 35 5.1 3 seventeenth  f
18 0 5 3.2 1 eighteenth  f
19 0 5 5.6 1 nineteenth  f
20 0 5 3.0 1 twentieth f

21 1,5 10 2.0 2 firstData d
22 10 10 2.0 2 secondData  d
23 12 10 2.0 2 thirdData d
24 15,17 10 2.0 2 fourthData  d

Table 1. Initial test responsibility set.



  

Appendix B 

 

Test case parameters and fitness values 

 

Test case 1 

 

          

 

 

 

 

 

 

 

 

Table 2. Metric weights for test case 1 

 

 

 

 

Table 3. Mutation probabilities  

for test case 1. 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Fitness values for test case 1. 

Metric Weight 

MQ 1 

RFC 1 

Cohesion 1 

Coupling 1 

Instability 1 

Abstracts 1 

Dispatcher 0 

Interface 0 

Mutation Probability 

Split 0.20 

Merge 0.15 

Connect dispatcher 0.025 

Remove dispatcher 0.025 

Introduce interface 0.05 

Remove interface 0.05 

Introduce abstract 0.03 

Remove abstract 0.05 

New abstract class 0.04 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.02 
Remove empty 
dispatcher 0.02 

Null 0.1 

Crossover 0.2 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 -1961.308848 -1009.71385 -586.93333 

92 -2007.477027 -986.1107833 -498.33333 

93 -2007.816152 -979.2951833 -498.33333 

94 -1953.619527 -1021.846533 -498.33333 

95 -1800.616456 -953.727 -498.33333 

96 -1729.001046 -929.4020667 -498.33333 

97 -1757.488405 -796.0894833 -498.33333 

98 -1671.652323 -775.8855667 -498.33333 

99 -1744.853982 -859.5107 -498.33333 

100 -1732.396351 -889.3759 -616.21 



  

 

Test case 2 

 

       
Metric Weight 

MQ 0 

RFC 40 

Cohesion 5 

Coupling 3 

Instability 0 

Abstracts 0 

Dispatcher 1 

Interface 35 

Table 5. Metric weights for test case 2. 

 

 

 

 

 

Table 6. Mutation probabilities for  

test case 2. 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Fitness values for test case 2. 

 

 

 

Mutation Probability 

Split 0.1 

Merge 0.1 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.225 

Crossover 0.1 

Generation Average fitness 
Average fitness 10 
best 

Best 
fitness 

91 -5530.286198 -2634.6537 -2322.8 

92 -5841.759035 -2718.2649 -2341.616 

93 -5665.907271 -2794.9369 -2624.36 

94 -5597.489743 -2959.33555 -2605.776 

95 -5619.278146 -2995.09955 -2535.776 

96 -5461.696808 -2989.21955 -2540.776 

97 -5727.820043 -3002.81395 -2559.016 

98 -5644.211379 -3011.31395 -2524.016 

99 -6663.617509 -3060.59435 -2748.116 

100 -5938.664333 -3057.03835 -2748.116 



  

 

Test case 3 

 

       
Metric Weight 

MQ 30 

RFC 40 

Cohesion 5 

Coupling 3 

Instability 20 

Abstracts 10 

Dispatcher 1 

Interface 35 

 Table 8. Metric weights for test  

case 3. 

 

    

 

 

Table 9. Mutation probabilities for test  

case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Fitness values for test case 3. 

 

 

 

 

 

 

Mutation Probability 

Split 0.1 

Merge 0.1 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.225 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best 

Best 
fitness 

91 -4958.246223 -2475.259133 -1971.032 

92 -5095.114303 -2416.539133 -1936.032 

93 -5538.65896 -2466.805683 -1989.472 

94 -4598.398463 -2440.20085 -1921.552 

95 -4796.314253 -2371.51035 -1836.952 

96 -5010.234896 -2719.671 -2131.872 

97 -5123.887285 -2694.6541 -2209.152 

98 -5086.387895 -2706.216167 -2139.152 

99 -5272.487994 -2930.74055 -2209.152 

100 -5157.200953 -2640.354983 -2216.633 



  

 

Test case 4 

 

         
Metric Weight 

MQ 0 

RFC 20 

Cohesion 2 

Coupling 1 

Instability 0 

Abstracts 0 

Dispatcher 2 

Interface 20 

Table 11. Metric weights for test case 4. 

 

. 

 

 

 

Table 12. Mutation probabilities for 

test case 4 

 

 

 

 

 

 

 

 

 

 

 

Table 13. Fitness values for test case 4. 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.075 

Merge 0.1 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.25 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 -1976.725743 -959.9081333 -863.55417 

92 -1989.152992 -922.7138333 -863.55417 

93 -1948.843894 -980.2838333 -863.55417 

94 -1864.305969 -968.5446333 -863.55417 

95 -1941.764022 -980.3766333 -863.55417 

96 -7205.962421 -968.4246333 -863.55417 

97 -1917.469868 -928.5725333 -863.55417 

98 -1882.084698 -872.4462833 -843.55417 

99 -3338.779649 -758.47155 -411.79583 

100 -1951.675346 -813.7223667 -597.83333 



  

 

Test case 5 

 

         
Metric Weight 

MQ 10 

RFC 20 

Cohesion 2 

Coupling 1 

Instability 0 

Abstracts 10 

Dispatcher 2 

Interface 20 

Table 14. Metric weights for test  

case 5. 

 

 

 

 

Table 15. Mutation probabilities for test  

case 5. 

 

 

 

 

 

 

 

 

 

 

 

Table 16. Fitness values for test case 5. 

 

 

 

 

Mutation Probability 

Split 0.075 

Merge 0.1 

Connect dispatcher 0.065 

remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.25 

Crossover 0.1 

Generation Average fitness 
Average fitness 10 
best Best fitness 

91 -1671.614347 -833.00215 -566.86667 

92 -1729.227929 -850.0754667 -566.86667 

93 -1771.420635 -882.8325333 -577.66667 

94 -1751.149626 -850.5857944 -577.66667 

95 -2137.628434 -805.4880944 -577.66667 

96 -2192.433453 -898.9101278 -685.4125 

97 -1846.221939 -933.2011278 -708.28333 

98 -1834.754035 -922.8978307 -708.28333 

99 -2776.479817 -839.9903807 -628.32 

100 -1819.797366 -831.7422778 -667 



  

Appendix C 

Case study data 

 

The electronic home control system case study data. If the Depending responsibilities 

column has the value 0, then no responsibility uses the corresponding responsibility i. 

Type “f” stands for “functional” and “d” for “data”. Groups of functional 

responsibilities forming a subsystem are separated by a bolded line.  

 

Responsibility 

number 

Depending 

responsibilities 

Execution 

time (ms) 

Parameter 

size 

Frequency Name Type 

1 2,5  30  5.0 2  pswdcheck  f 

2 3,4,6,7  40 6.0 1  regadmin f 

3 0 30 6.0 1  actuserreg f 

4 3  30 6.0 1  adduserreg f 

5 0  50 8.0 1  chngpswd f 

6 0 60 2.0 1 rmvuserreg f 

7 0  70 5.0 1  setuserrgt f 

8 0   40 8.0 3 settemproom f 

9 8,10 60 4.0 3 msrtemprtr f 

10 0 20 4.0 3  chngtempCels f 

11 8 50 1.0 2  setheateron f 

12 8 50 1.0 1  setheateroff f 

13 14 70 9.0 5 adminmusicls f 

14 15 90 9.0 5 showmusicls f 

15 17  70 6.5 5 pickmusic f 

16 13,17,20 110 10.0 5 adminmusicfl f 

17 0  100  8.5 5 plchosenmusic f 

18 17 60 3.0 1 choosespkr f 

19 17 60 3.5 5  musictospkrs f 

20 0 50 3.0 1 stopmusicplay f 

21 24 80 7.0 3 measuresun f 

22 23,24 80 7.0 3 msrdrppos f 

23 0 70 5.0 3 showdrppos f 

24 25,26 90 6.5 3 calcoptdrp f 

25 0 60 2.0 2  rundrpmotor f 

26 0 50 1.0 2 stopdrpmotor f 

27 31,32,37,39 110 10.5 2 showcffmchsta

t 

f 



  

28 0 40 5.0 2 chscffqlt f 

29 0 40 5.0 2 chscffamnt f 

30 28,29 50 6.0 2  calccffwtramnt f 

31 30 50 3.5 2 setcoffee f 

32 30  50 3.5 2 setwater f 

33 32 50 2.5 2 msrwtramnt f 

34 31 30 2.0 2  addcffprtn f 

35 33 30 1.0 2 openwtr f 

36 33 30 1.0 2 closewtr f 

37 0 70 2.0 2 startcffmch f 

38 37 70 3.5 2  setcffmchwarm f 

39 0 50 2.0 2 stopcffmch f 

40 38 20 2.0 2 ringbuzz f 

41 1,2,3,4,5,6,7 10 2.0 7 userDB d 

42 16,17,19  10 2.0 3 musicDB d 

43 13,14,15 10 2.0 3 musicInfo d 

44 21,22,23 10 2.0 3 drapeState d 

45 28,29,31,32, 

40 

10 2.0 5 cffState d 

Table 17. Case study responsibility set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Appendix D 

Case study test case parameters and fitness values 

 

Case study test case 1 

 

 
Metric Weight 

MQ 30 

RFC 25 

Cohesion 5 

Coupling 2 

Instability 20 

Abstracts 10 

Dispatcher 2 

Interface 30 

Table 18. Metric weights for case  

study test case 1.  

 

 

 

 

Table 19.  Mutation probabilities 

for case study test case 1. 

 

 

 

 

 

 

 

 

 

 

 

Table 20. Fitness values for case study test case 1. 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.075 

Merge 0.1 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.25 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best 

Best 
fitness 

91 4.06E+07 2.25E+08 1.55E+09 

92 4.80E+07 2.97E+08 1.55E+09 

93 5.26E+07 2.97E+08 1.55E+09 

94 5.04E+07 2.97E+08 1.55E+09 

95 5.19E+07 3.26E+08 1.55E+09 

96 6.24E+07 3.26E+08 1.55E+09 

97 6.04E+07 3.40E+08 1.55E+09 

98 3.67E+07 2.93E+08 1.55E+09 

99 4.90E+07 2.93E+08 1.55E+09 

100 5.09E+07 2.93E+08 1.55E+09 



  

 

Case study test case 2 

 

 
Metric Weight 

MQ 0 

RFC 30 

Cohesion 7 

Coupling 4 

Instability 0 

Abstracts 0 

Dispatcher 1 

Interface 20 

Table 21.  Metric weights for case  

study test case 2. 

 

 

 

Table 22.  Mutation probabilities for  

case study test case 2. 

 

 

 

 

 

 

 

 

 

 

Table 23. Fitness values for case study test case 2. 

 

 

 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.10 

Merge 0.10 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.225 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best 

Best 
fitness 

91 7.41E+07 4.05E+08 1.65E+09 

92 6.96E+07 4.05E+08 1.65E+09 

93 6.85E+07 4.05E+08 1.65E+09 

94 7.37E+07 4.05E+08 1.65E+09 

95 7.03E+07 4.05E+08 1.65E+09 

96 7.77E+07 4.05E+08 1.65E+09 

97 7.23E+07 4.05E+08 1.65E+09 

98 6.80E+07 4.05E+08 1.65E+09 

99 7.07E+07 4.05E+08 1.65E+09 

100 7.03E+07 4.05E+08 1.65E+09 



  

 

Case study test case 3 

 

 
Metric Weight 

MQ 0 

RFC 30 

Cohesion 4 

Coupling 2 

Instability 0 

Abstracts 0 

Dispatcher 0 

Interface 0 

Table 24. Metric weights for case  

study test case 3. 

 

 

 

 

Table 25. Mutation probabilities for 

case study test case 3. 

 

 

 

 

 

 

 

 

 

 

 

Table 26. Fitness values for case study test case 3. 

 

 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.10 

Merge 0.10 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.225 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 -97711.39279 -15029.78619 -15424 

92 -74022.93013 -14968.09735 -15126.4 

93 -780807.194 -17353.5 -15583.067 

94 -614410.308 -17141.82 -15307.848 

95 -158529.4134 -15137.28927 -15307.848 

96 -222865.6628 -14431.48117 -14297.761 

97 -446990.5491 -17422.20301 -15510.651 

98 -304291.7299 -17464.83615 -15510.651 

99 -1143661.328 -17171.99202 -15510.651 

100 -79405.94403 -16610.93652 -15510.651 



Case study test case 4

Table 27. Metric weights for case
 study test case 4.

Table 28. Mutation probabilities for
case study test case 4

Table 29. Fitness values for case study test case 4.

Metric Weight
MQ 1
RFC 1
Cohesion 1
Coupling 1
Instability 0
Abstracts 1
Dispatcher 1
Interface 1

Mutation Probability
Split 0.20
Merge 0.15
Connect dispatcher 0.025
Remove dispatcher 0.025
Introduce interface 0.05
Remove interface 0.05
Introduce abstract 0.03
Remove abstract 0.05
New abstract class 0.04
Remove empty abstract 0.04
Introduce new
dispatcher 0.02
Remove empty
dispatcher 0.02
Null 0.1
Crossover 0.2

Generation
Average
fitness

Average fitness 10
best Best fitness

91 ­29999.79587 ­7713.325093 ­6696.3587
92 ­21431.7256 ­7536.948219 ­6596.0978
93 ­19508.96345 ­7531.391304 ­6069.7174
94 ­547840.122 ­8138.384783 ­6694.8587
95 4732082.105 2.82E+07 3.96E+07
96 3848634.37 2.82E+07 3.96E+07
97 ­15180.43737 ­8166.81413 ­7052.7391
98 ­13899.84769 ­8026.956522 ­6668.5543
99 ­11927.05813 ­7548.165472 ­6539.3152

100 ­115734.7132 ­7510.123659 ­6166.4457



  

 

 

 

Case study test case 5 

 

 
Metric Weight 

MQ 0 

RFC 25 

Cohesion 5 

Coupling 2 

Instability 0 

Abstracts 0 

Dispatcher 2 

Interface 30 

Table 30. Metric weights for case 

study test case 5. 

 

 

 

 

Table 31. Mutation probabilities for 

case study test case 5. 

 

 

 

 

 

 

 

 

 

 

Table 32. Fitness values for case study test case 5. 

 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.075 

Merge 0.10 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.25 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 -859785.2771 -12847.86532 -11008.478 

92 -661340.6955 -12546.4668 -10937.696 

93 -714353.8173 -12585.22545 -10931.696 

94 -1058509.888 -12910.93847 -10931.696 

95 -766786.8544 -12946.72689 -10931.696 

96 -251324.913 -12964.90241 -10935.457 

97 -1046874.086 -12863.60304 -10762.935 

98 -68599.82951 -12828.20174 -10702.239 

99 -415539.4985 -12368.9074 -10704.239 

100 -929183.3343 -12141.17307 -10470.196 



  

 

 

 

Case study test case 6 

 

 
Metric Weight 

MQ 20 

RFC 30 

Cohesion 5 

Coupling 5 

Instability                          0 

Abstracts 5 

Dispatcher 1 

Interface 15 

Table 33. Metric weights for case  

study test case 6. 

. 

 

 

 

Table 34. Mutation probabilities for  

case study test case 6. 

 

 

 

 

 

 

 

 

 

 

Table 35. Fitness values for case study test case 6 

 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.10 

Merge 0.10 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.225 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 -1.44E+07 -42373.45909 -27579.543 

92 -1.36E+07 -42637.46817 -27633.457 

93 -1.34E+07 -41951.1721 -27618.457 

94 -615163.9023 -40257.58152 -28199.435 

95 -755966.3599 -38055.66182 -28199.435 

96 -620748.7913 -35770.4843 -28155.141 

97 -404988.6057 -36403.3245 -31527.413 

98 -180728.0112 -34908.16594 -31006.88 

99 -6470457.878 -34634.85465 -28755.359 

100 -3433073.061 -34695.7346 -30808.391 



  

 

 

 

Case study test case 7 

 

 
Metric Weight 

MQ 0 

RFC 20 

Cohesion 2 

Coupling 4 

Instability 0 

Abstracts 0 

Dispatcher 0 

Interface 0 

Table 36. Metric weights for case  

study test case 7.  

 

 

 

 

Table 37. Mutation probabilities for case 

study test case 7. 

 

 

 

 

 

 

 

 

 

 

Table 38. Fitness values for case study test case 7. 

 

 

 

 

 

 

 

 

Mutation Probability 

Split 0.075 

Merge 0.1 

Connect dispatcher 0.065 

Remove dispatcher 0.05 

Introduce interface 0.09 

Remove interface 0.07 

Introduce abstract 0.04 

Remove abstract 0.05 

New abstract class 0.01 

Remove empty abstract 0.04 
Introduce new 
dispatcher 0.05 
Remove empty 
dispatcher 0.01 

Null 0.25 

Crossover 0.1 

Generation 
Average 
fitness 

Average fitness 10 
best Best fitness 

91 8199904.363 5.63E+07 5.63E+08 

92 9434798.003 5.63E+07 5.63E+08 

93 8945323.137 5.63E+07 5.63E+08 

94 9468545.71 5.63E+07 5.63E+08 

95 -467587.8944 -28804.14287 -19768.826 

96 -304036.2691 -29246.15042 -21984 

97 -807982.9403 -30002.98955 -21984 

98 -147717.7592 -29105.09651 -20870.217 

99 -103184.7275 -28826.58937 -20870.217 

100 -2340852.807 -28723.40484 -20870.391 


