

Applying Genetic Algorithms in Software Architecture Design

Outi Räihä

University of Tampere

Department of Computer Sciences

Computer Science

M.Sc. thesis

February 2008

University of Tampere

Department of Computer Sciences

Computer Science

Outi Räihä: Applying Genetic Algorithms in Software Architecture Design

M.Sc. thesis, 83 pages and 19 appendix and index pages

February 2008

This thesis experiments with a novel approach to applying genetic algorithms in

software architecture design by giving the structure of an architecture at a highly

abstract level. Previously in the literature, genetic algorithms are used only to improve

existing architectures. The structure and evaluation of software architectures and the

principles of meta-heuristic search algorithms are introduced to give a basis to

understand the implementation. Current research in the field of search-based software

engineering is explored to give a perspective to the implementation presented in this

thesis. The chosen genetic construction of software architectures is based on a model

which contains information of a set of responsibilities and dependencies between them.

An implementation using this model is presented, as well as test results achieved from a

case study made on a sketch of an electronic home control system. The test results show

that quality results can be achieved using the selected approach and that the presented

implementation is a good starting point for future research.

Key words and terms: search-based software engineering, genetic algorithms, software

architecture, software design

Contents

1. Introduction .. 1

2. Software architectures .. 3

2.1. The structure of an architecture .. 3

2.2. Standard solutions .. 5

2.2.1. Design patterns ... 5

2.2.2. Architecture styles .. 7

2.3. Evaluating an architecture .. 9

2.3.1. Evaluation using metrics .. 9

2.3.2. Evaluation using human expertise .. 13

3. Meta-heuristic search algorithms ... 16

3.1. Genetic algorithms ... 16

3.1.1. Encoding ... 17

3.1.2. Mutations .. 18

3.1.3. Crossover .. 18

3.1.4. Fitness function... 20

3.1.5. Selection operator ... 20

3.1.6. Executing a genetic algorithm .. 21

3.2. Tabu search and simulated annealing ... 23

3.2.1. Tabu search ... 23

3.2.2. Simulated annealing ... 24

4. Search algorithms in software engineering .. 26

4.1. Search algorithms in software design ... 26

4.1.1. Software clustering ... 26

4.1.2. Systems integration ... 30

4.1.3. Systems refactoring .. 32

4.1.4. Architecture development ... 35

4.2. Search algorithms in software analysis and testing .. 36

4.3. Other software engineering related problems ... 39

5. Genetic construction of software architectures .. 41

5.1. Architecture representation .. 41

5.2. Mutations .. 42

5.3. Crossover .. 44

6. Implementation .. 47

6.1. Presenting the program ... 47

6.1.1. Structure.. 47

6.1.2. Algorithms .. 50

6.1.3. Parameters .. 56

6.2. Evaluation metrics .. 57

6.2.1. Metrics for structure ... 57

6.2.2. Metrics for fine-tuning mechanisms ... 59

6.3. Fine-tuning the parameters ... 60

6.3.1. Example test cases .. 60

6.3.2. Remarks on adjusting the parameters ... 65

7. Case study : electronic home control system ... 68

8. Conclusions .. 76

8.1. Presenting the results .. 76

8.2. Success evaluation .. 77

8.3. Future work .. 78

References ... 80

Appendices

Appendix A: Test data

Appendix B: Test case parameters and fitness values

Appendix C: Case study data

Appendix D: Case study test case parameters and fitness values

1

1. Introduction

The most constant thing in the field of software engineering today is that the field is

changing. Software systems become larger and more complex, while at the same time

the mobile industry is growing rapidly, calling for new techniques and intricate systems

to be implemented with limited resources. As software enterprises become

multinational, the need for shared systems also grows. As the systems grow in

complexity, so does the need for highly talented software architects to keep the systems

under control, which is not an easy task especially when thinking of dynamic systems

with constantly changing architectures. Clearly, some kind of automated method is

needed in order to aid the design of such dynamic architectures by giving the human

architects suggestions and starting points which they can then fine-tune into quality

software architectures.

What could such a method be? What can be used to evolve modifiable, reusable and

efficient software architectures from complicated sets of requirements, especially if the

architectures need to conform to changes in their environments? A precedent to this

problem can be found in nature, where complex species have evolved from simple

organisms, and are constantly able to adapt to changes in the environment. The

evolution happens through generations with the idea of the survival of the fittest: the

ones with the ability to survive will be able to produce new offspring who will then

inherit the properties needed for survival. Changes in species also occur through

mutations, which are the key to survival when the change in environment is so drastic

that rapid adaptation is needed, but happen also constantly at a lower level. However,

the adaptation “project” with species takes perhaps hundreds of generations and years,

which is not acceptable in the field of software engineering. Fortunately, a simulation

can be done quite fast to achieve similar results with the use of genetic algorithms.

Genetic algorithms operate with analogies to evolution in biology. As in biology a

chromosome keeps the “solution” to the question as to how certain properties of a

species work, a solution to a software engineering problem can be modelled as a

“chromosome” in order for it to be operated by a genetic algorithm. This model is then

altered by mutations, which change one specific feature, and crossovers which, as in

nature, combine the characteristics of two individuals in their offspring.

Genetic algorithms are suitable for modifying software architectures as they too

have certain constants which can be implemented in various ways. An architecture is

based on the requirements as to what the software system is supposed to do. The basic

architecture deals with the question of how the operations related to the requirements

are divided into components. When further developing architectures, mechanisms such

as interfaces and inheritance can also be added to the design. Thus, the set of

requirements and their positioning in the system represents the basic individual, which

2

then evolves as positions of requirements are changed and mechanisms are added. As

there is theoretically an exponential amount of possible designs for a system, the use of

genetic algorithms to solve the problem is justified.

The common feature with all the current research activities on applying search

algorithms to architecture design is that a reasonably good architecture is needed as a

starting point, and the search algorithm merely attempts to improve this architecture

with respective to some quality metrics. This means that considerable effort is needed

before the algorithm can be executed, and as the base solution can be assumed as a

standard one, this also somewhat limits the possible solutions the algorithm can reach.

This restriction decreases the innovativeness of the method: if given the algorithm “free

hands”, it might be able to reach solutions that a human designer might not find at all,

but still have a high quality. Thus, an approach that only needs the basic requirements

(responsibilities) of the system would both save the initial work and give the algorithm

a chance for a more thorough traverse through the possible solutions.

In my thesis, I have taken the novel approach of starting only with a set of

responsibilities. I have derived a responsibility dependency graph which is then given as

input to a genetic algorithm, which will produce a suggestion for the architecture of the

given system as a UML class diagram. I begin my thesis by presenting the structure and

current evaluation methods of software architectures in Chapter 2. In Chapter 3 I

describe meta-heuristic search algorithms, and especially give a thorough presentation

of genetic algorithms. The current research involved with the application of meta-

heuristic search algorithms in software engineering is surveyed in Chapter 4. In

Chapters 5 and 6 I present my implementation, first from a logical point of view, as to

how an architecture can be modelled for a genetic algorithm, and then from a practical

view by giving a detailed description of the implementation and the evaluation metrics

used. Moreover, I present some example solutions so far achieved. A case study where

the implemented algorithm was used on a model of an electronic home control system is

presented in Chapter 7, and in Chapter 8 I present the outcome of this thesis and my

concluding remarks.

3

2. Software architectures

Software architecture is defined by the IEEE Standard 1471-2000 [IEEE, 2000] as “the

fundamental organization of a system embodied in its components, their relationships to

each other and to the environment, and the principles guiding its design and evolution”.

Thus, a software architecture defines the general structure of the software. An

architecture should always be described or modeled somehow, otherwise it does not

exist. In reverse engineering one tries to detect the architecture of a software from the

source code by looking at what kind of packages it has, and by generating class

diagrams from the code. Normally, the architecture of a software should always be

designed before the actual implementation, as it is possible to very efficiently evaluate

the architecture, and thus point out possible weaknesses of the software before

beginning the implementation.

The structure of an architecture and the evaluation metrics presented in this chapter

will be used in Chapter 5, where I present how architectures can be modeled in order to

operate them with a genetic algorithm, and in Chapter 6, where I discuss the evaluation

methods used in the implementation. The studies surveyed in Chapter 4 also use many

of the metrics presented here as well as concepts concerning architectural quality.

2.1. The structure of an architecture

As stated, a software architecture describes the components of a software and the

relationships between these components. We must now consider what can be thought of

as a component, and what as a relationship.

A software component is defined as an individual and independent software unit

that offers its services through well-defined interfaces [Koskimies ja Mikkonen, 2005].

This definition requires that the topics of dependency, usage and size are also dealt

with. Firstly, a component should never be completely dependent of another component.

A component can, however, be dependent on services that are provided by some other

components, thus requiring an interface to those components. Secondly, a component

can be taken to use as a single unit with no regard to other software units, providing that

the component is still provided the services it needs. Thirdly, there are no general

restrictions to the size of a component. A component can be extremely small, providing

only a few simple services, or it can contain a whole application. If the component is

very big and forms a significant sub-system within itself, it may be in order to describe

the architecture of that single component, although normally an architecture description

does not consider what the components entail [Koskimies ja Mikkonen, 2005].

When thinking of object-oriented design, the basic component provides some kind

of functionality to the system and consists of classes. Classes can be defined as abstract

and they can be inherited from each other. Classes interact with one another by either

4

straightforwardly calling operations from other classes or through interfaces. The

simplest component may only include one class. Because of this close relationship

between components and classes, architectures are often described with UML class

diagrams. Other components that are often present in the system, but do not provide

much functionality, are components such as databases, hardware drivers and message

dispatchers.

One of the key points in software engineering is to separate what one wants to

accomplish (the functionality provided by components) and how to accomplish it. This

is applied to software components in such a way that the implementation of a service

that a component provides should be separated from the abstraction of the service:

components should not be directly dependent on one another, but on the abstraction of

the service that the component provides [Koskimies ja Mikkonen, 2005]. The

abstraction is presented as an interface that provides access to services to the

components that require the services in question. This corresponds to the idea that

interfaces may be either provided or required.

Interfaces include all the information about a service: the service’s name, its

parameters and their types and the type of the possible result [Koskimies ja Mikkonen,

2005]. Interfaces have developed from abstract classes into their own program units.

Abstract classes and interfaces are still interlinked; by inheriting several concrete

classes from an abstract class one can thus give several implementations to one interface

[Koskimies ja Mikkonen, 2005]. One component or class can also implement several

interfaces.

There are several ways for components to interact with one another. Most of these

methods are fine-tuned ways of how interfaces are used in order to consider the needs of

a specific type of application. I will briefly present these communication methods, as for

the purpose of this thesis, it is more important to be aware that such methods exist and

possibly recognize them from an architecture design than to know all the ins and outs of

these communication methods and to able to actively implement them. I will describe

the methods as they are presented by Koskimies and Mikkonen [2005].

Firstly, the interfaces a component provides may be divided into more detailed role-

interfaces, each role-interface responding to the special need of the component requiring

that interface, instead of keeping all the services of the providing component in one big

interface. Secondly, when addressed with the problem of multiple components using

each other and thus creating a complex net of dependencies, one can use a mediator to

handle the interaction between the components. Thus, all the components only depend

on this one mediator, which is often a specialized interface. Thirdly, an even more

powerful method than the basic interface is forwarding. This means that the component

receiving a request for a service does not provide that service itself, but forwards the

request to another component, which then acts on it. Fourthly, the interaction between

5

components can be based on events. We can now think that asking for a service is the

event itself, and providing a service is reacting to the event. The component creating the

event is now the source and the component reacting to it is the observer. In this case

both components are providing and requesting an interface to communicate with each

other: the source component provides an interface through which the observer can

register as a service provider, and the observer provides an interface through which its

services can be provided.

I end this section with a brief summary. An architecture is based on the idea of

components and the relationships between them. Components provide services that

other components may need. This results in a dependency between components which is

ideally handled with interfaces: the component needing a service requires an interface,

which the component offering the service then provides by implementing that interface.

How the interface is built, i.e. what kind of communication method is used, depends on

the application and its requirements.

2.2. Standard solutions

When designing an architecture, there are some commonly used architecture styles and

design patterns that can be used as general guidelines for the architecture. These styles

and guidelines all have their positive and negative aspects, so one should think what the

main problems in the system are, and then study the implementation of styles and

design patterns that are generally known to solve those problems. One does not

necessarily need to categorize one’s architecture as any of the known styles or patterns,

but if it can be categorized, it usually indicates good structure in the architecture.

2.2.1. Design patterns

Design patterns are used to solve a particular problem in the architecture. They often

appear in several parts of an architecture, and one architecture can contain several

different patterns. The list of design patterns made by Gamma et al. [1995] is

recognized as the current standard in design pattern classification. This list contains

over 20 patterns, which can be divided into creational patterns, structural patterns and

behavioral patterns. For the purpose of this thesis it is not necessary to introduce them

all, and thus only a few of the most common or relevant patterns are described in more

detail.

Firstly, from the category of creational patterns, there are the factory method and the

abstract factory method, which are common design patterns when one has a lot of

components that work together or have a similar purpose. When applying the abstract

factory method, an interface should be provided for creating families of related or

dependent objects without actually specifying their concrete classes [Gamma et al.,

1995]. This means that two or more concrete classes that are responsible for similar

objects will implement the same interface, through which these families of objects can

6

be dealt with. In the factory method an interface is also used for creating an object, but

deciding the class that the object represents is left to subclasses [Gamma et al., 1995].

This means that the objects of a certain family all inherit the “base-object” of that

family in order to ensure that they contain the required properties.

These design methods are presented together as they are closely linked: abstract

factory classes are commonly implemented with factory methods. Although the abstract

factory method and the factory method are very commonly used in current architecture

design, I can imagine that automatically producing an architecture where such a pattern

could be found is a great challenge. These design patterns rely on the recognition of

similarities between objects and the ability to group objects by some standards.

However, similarities between objects can rarely be expressed in some kind of data, but

are rather something that experts can simply see. Thus, to train an algorithm to find such

abstract similarities will definitely need very fine-tuned definitions of the objects and

relations presented to the algorithm.

Secondly, there is the composite method, which is a structural pattern, in which

objects are composed into tree structures to represent part-whole hierarchies. A

composite also lets clients treat individual objects and compositions of objects

uniformly [Gamma et al., 1995]. The composite pattern defines hierarchies consisting

of primitive objects and composite objects. Primitive objects can form composite

objects, which in turn can form more complex composite objects, and so on recursively

[Gamma et al., 1995]. Vice versa, all composite objects can be broken down to

primitive objects. The composite method goes well with the responsibility based

approach used in this paper, as all responsibilities can be thought of as primitive objects

or services, which form composites that other composites use.

As automating the design of an architecture mainly deals with the structure of an

architecture, structural patterns are logically the ones that are most likely to be found

from the resulting architecture. Thus, structural patterns are the most interesting pattern

group from the viewpoint of this thesis. Overall, structural patterns deal with how

classes and objects are composed to form larger structures. Structural class patterns

commonly solve problems with clever inheritance to achieve interfaces for

implementations, and structural object patterns describe how objects can be composed

to achieve new functionalities [Gamma et al., 1995]. Other structural design patterns

besides the composite pattern are, for example, the adapter pattern. In this pattern, an

incompatible interface is converted to let such classes work together that could not

before because of the “wrong” type of the provided interface. Another example is the

bridge pattern, which builds a “bridge” between an abstraction and its implementation,

so they can vary independently [Gamma et al., 1995].

7

2.2.2. Architecture styles

Architecture styles have the same purpose as design patterns: they are used to solve a

problem in the design of the architecture. It is often difficult to make a difference

between design patterns and architectural styles, but the general guideline is that while

design patterns are used at a particular subsystem in the architecture, architecture styles

solve a problem regarding the whole architecture [Koskimies ja Mikkonen, 2005]. As

with design patterns, it is not necessary to go through all possible architecture styles, so

only the most interesting ones from this thesis’ point of view are described with more

detail.

Firstly, I present the layered architecture. A layered architecture is composed of

levels that have been organized into an ascending order by some principle of abstraction

[Koskimies ja Mikkonen, 2005]. This is usually done so that the parts of the system

that are closer to the user have a lower level of abstraction than the parts that are closer

to the application. Because the levels of abstraction can often be hard to identify, the

levels or layers in the architecture are deduced by how different components use

services from other components. A higher level in the architecture uses services from a

lower level [Koskimies ja Mikkonen, 2005]. However, layered architectures are rarely

so straightforward. It is quite common that a layer is simply passed in a service call,

and, for example, a service is required at the fifth level that is provided at the third level.

It is also possible that a lower layer needs to call a service from an upper layer. This is,

however, a sign of a serious problem in the architecture. Layered architectures are very

common, and can be used in almost any system [Koskimies ja Mikkonen, 2005]. The

layered architecture model encourages a minimized design in terms of dependencies, for

in the ideal case, any layer only depends on layers below itself. This kind of architecture

model is also very easy to understand, as it divides the system to subsections at a high

level [Koskimies ja Mikkonen, 2005]. The layered architecture is something that is

very interesting from my viewpoint and that of thinking through responsibilities. When

having a network of responsibilities, we can quite simply begin forming layers by

placing the responsibilities that do not depend from any other responsibilities at the

bottom layer, and going on until at the top level are the responsibilities that have a very

long dependency path behind them.

Secondly, there is the pipes and filters architectural style. It consists of processing

units (filters) and the connections (pipes) between them that carry the information that

needs to be processed. The role of pipes is to passively transport data which the filters

will actively process. The pipes and filters architecture is good for the kind of system

where the purpose is to mainly develop and process a common dataflow [Koskimies ja

Mikkonen, 2005]. To implement the pipes and filters architecture it requires that each

processing unit can be implemented independently: a unit can not depend on any of the

other processing units, and must only be able to understand the data that is brought to it

8

to process. The simplest form of a pipes and filters architecture is a pipeline

architecture, where the data moves straightforwardly from one processing unit to

another along a straight “conveyer belt”. There are two ways in operating this “conveyer

belt”, to push or pull. If we choose to push, then the unit that first generates the data will

push it to the second unit for processing, which will then continue to push to the next

processing unit and so on, until the data reaches the final unit needing the “end

product”, i.e. the completely processed data unit. If we choose to pull the data, then the

final unit needing the data will “pull” data from the processing unit preceding it, which

will then call for the data from its preceding unit, and so on [Koskimies ja Mikkonen,

2005]. A pipes and filters architecture can be useful from this thesis’s viewpoint if the

responsibilities we work with all deal with the same kind of data, and merely have more

fine-tuned responsibilities regarding that data, or if they can be arranged in quite a

straightforward line, i.e., if the dependency graph does not have any cycles and a unique

ending point can be identified.

Finally, an architecture style especially used in this thesis is the message dispatcher

architecture, where a group of components communicate with each other through a

centered message dispatcher. All the components have a common interface that contains

all the operations that are needed in order to send and receive messages to and from the

dispatcher [Koskimies ja Mikkonen, 2005]. It is important to notice that now the

components only communicate with the dispatcher: although they send and receive

messages to and from other components, no component can actually “see” the

message’s path past the dispatcher. Thus, no component actually knows where its

messages will end up or where the messages it has received originate from. A message

dispatcher architecture suits well in a situation where the system has a large number of

components that need to communicate with each other, but there is not much

information of the quality or quantity of the messages sent between components

[Koskimies ja Mikkonen, 2005]. A message dispatcher architecture is defined by the

set of components communicating with each other, the messages with which the

components communicate, the operations with which components react to messages, the

rules with which the components and messages are registered to the system, the rules on

how the dispatcher forwards messages to components and the model of concurrency

[Koskimies ja Mikkonen, 2005].

Other common architecture styles are service oriented architectures, such as the

client-server architecture, where client components ask for the services they need from

the server components. A client-server architecture is often thought as a distributed

system. Other, more specialized architecture styles are for example the model-view-

controller architecture or the interpreter architecture.

9

2.3. Evaluating an architecture

When evaluating a software architecture we must keep in mind that the architecture

under evaluation is, roughly stated, merely a picture of how the different components

are placed in the system and how they depend from one another. Thus, there is no

absolute method for evaluating an architecture; just as there is no absolute answer to the

question how good exactly a particular architecture is. Currently there are two kinds of

methods for software architecture evaluation. Firstly, there are metrics that can be used

when one knows the software in detail. These metrics often calculate the cohesion and

coupling between classes, so it must be known what kind of operations the classes

include, and how they are linked to each other. Secondly, there are methods to evaluate

the architecture by the means of using the expertise of software engineers, going

through meetings and several iterations when the architecture is broken down to pieces

and the analysts attempt to identify all the possible risks that can be related to the

suggested solution.

Whatever method is used to evaluate an architecture, one thing must be kept in

mind: no architecture can be evaluated from an overall point of view. There are

different viewpoints or quality attributes for an architecture, such as efficiency or

performance, maintainability, reliability, security, movability, usability, availability,

reusability and modifiability [Koskimies ja Mikkonen, 2005]. The actual evaluation of

an architecture is the sum of evaluations of a combination of these viewpoints, and it is

of course most preferred if as many relevant viewpoints as possible have been

considered.

2.3.1. Evaluation using metrics

Evaluating a software architecture using some kind of metrics system is often based on

the assumption that we are dealing with object-oriented design. Thus, metrics can be

used for different kinds of calculations of dependencies between and within classes,

which can give guidelines on how good a structure the architecture in question has.

Rosenberg and Hyatt [1997] define five different qualities that can be measured by

metrics for object-oriented design: efficiency, complexity, understandability, reusability,

and testability/maintainability. I will now introduce some metrics suites and definitions

that can be used when evaluating object-oriented designs.

The metrics suite by Chidamber and Kemerer [1994] is based on four principles that

rule object-oriented design process: identification of classes (and objects), identification

of semantics of classes (and objects), identification of relationships between classes

(and objects) and implementation of classes (and objects). Based on these principles

Chidamber and Kemerer [1994] present a metrics suite that consists of six different

metrics: weighted methods per class (WMC), depth of inheritance tree (DIT), number

10

of children (NOC), coupling between object classes (CBO), response for a class (RFC),

and lack of cohesion in methods (LCOM).

The WMC metric is defined as the sum of complexities of the methods within a

class. If all methods are equally complex, this is simply the amount of methods in a

class. It predicts how much time and effort is required to develop and maintain the class,

how much the children of the class are impacted by the class and how general the class

is [Chidamber and Kemerer, 1994]. These aspects relate to quality attributes such as

maintainability and reusability. Rosenberg and Hyatt [1997] point out that WMC also

indicates understandability.

DIT is self-defined as it is the length from a class node to the root of the inheritance

tree where the node is. If the class does not inherit any class, then DIT is zero. The

deeper a class is in a hierarchy, the harder it is to predict its behavior, the more complex

the design will most likely become, and the greater the potential reuse for inherited

methods [Chidamber and Kemerer, 1994]. Thus, DIT predicts negative aspects of

complexity and maintainability but a positive aspect of reusability. According to

Rosenberg and Hyatt [1997], DIT primarily evaluates efficiency and reusability, but can

also be used as an indicator for understandability and testability.

NOC is as clear as DIT as it calculates how many classes inherit the class in

question. It also predicts good reusability, but a high value warns of improper

abstractions of the parent class and indicates that a good deal of testing should be done

to the methods of the class [Chidamber and Kemerer, 1994]. In addition to testability,

NOC evaluates efficiency and reusability [Rosenberg and Hyatt, 1997].

CBO is defined as the number of classes to which the class in question is coupled,

i.e., CBO for class A is |B| + |C|, where B is the set of classes that class A depends on,

and C is the set of classes that depend on class A (where |X| stands for the cardinality of

X). A high CBO value indicates poor reusability, modularity and maintainability, and is

usually a sign of need for excessive testing [Chidamber and Kemerer, 1994]. CBO can

also be used as an evaluator for efficiency [Rosenberg and Hyatt, 1997].

RFC is defined as the size of the response set (RS) for the class, when the RS is the

union between the set of all methods in the class and the set of methods called by the

methods in the class. RFC contributes mainly in bringing out testing issues, but it also

indicates complexity [Chidamber and Kemerer, 1994]. According to Rosenberg and

Hyatt [1997], RFC evaluates understandability, maintainability and testability.

Finally, LCOM measures in what extend methods within the same class use the

same instance variables. LCOM is a count of method pairs with a similarity of zero, i.e.,

they have no instance variables in common, minus the count of method pairs with a

similarity that is not zero. Cohesiveness is very desirable, as it promotes encapsulation;

classes with low cohesion should most probably be divided into two or more subclasses,

11

and low cohesion also indicates high complexity [Chidamber and Kemerer, 1994]. In

addition, LCOM evaluates efficiency and reusability [Rosenberg and Hyatt, 1997].

In addition to the metrics by Chidamber and Kemerer, Rosenberg and Hyatt [1997]

present two additional metrics for evaluation at the method level, cyclomatic complexity

(CC) and size. CC is used to evaluate the complexity of an algorithm in a method. Quite

logically, CC measures mainly complexity, but is also related to all the other quality

attributes. The size of a method can be measured by several ways, e.g., by lines of code

or the number of statements. It evaluates mainly understandability, reusability and

maintainability.

A popular metric when dealing with the software or module clustering problem is

the modularization quality (MQ). There are several versions of this metric, but it is

always some kind of a combination of coupling and cohesion metrics, calculating the

inter- and intra-connectivities between and within clusters, respectively. A high MQ

value indicates high cohesion and low coupling. One version of the MQ metric is

presented by Doval et al. [1999], who begin by defining the intra-connectivity Ai of

cluster i as Ai =
2
i

i

N

µ
, where Ni is the number of components and µi is the number of

relationships to and from modules within the same cluster. Ai is 0 when no module is

connected to another module within the cluster, and 1 when each module in the cluster

is connected to every module in the same cluster. Inter-connectivity Ei,j between clusters

i and j, consisting of Ni and Nj components, respectively, with εij relationships between

the modules of both clusters, is defined as Ei,j = 0, if i = j, and Ei,j =
ji

ij

NN2

ε
 if i ≠ j

[Doval et al., 1999]. MQ is now a combination of these connectivity measures: when a

module dependency graph is partitioned into k clusters,

MQ = Ai , if k = 1, and

MQ =
k

A
k

i i∑ =1 -

2

)1(
1, ,

−

∑ =

kk

E
k

ji ji

 , if k > 1.

The work by Doval et al. [1999] and the module clustering problem in which this metric

is used, is presented in Chapter 4.

When defining what a software architecture is, the principles guiding its evolution

were mentioned. Thus, it is natural that there should be metrics to evaluate the evolution

and refactoring of an architecture. Mens and Demeyer [2001] present such evolution

metrics, the main metric being the distance between classes. This metric is very flexible,

as the distance it measures depends on what is needed, i.e., how far two classes are from

each other when considering, e.g., the number of methods, number of children or depth

of inheritance tree. The distance between classes metric is defined so that, when p(x) is

the property that is measured from class x, the distance between classes x and y is

12

dist(x; y) = 1 -
)()(

)()(

ypxp

ypxp

∪

∩
.

Large distances between classes can indicate a complex system. Mens and Demeyer

[2001] also discuss the emphasis of abstract methods and abstract classes in a system,

and point out that all abstract classes should be base classes.

Sahraoui et al. [2000] present a list of inheritance and coupling metrics, where the

simplest metrics are NOC, CBO and number of methods (NOM), which is a simpler

form of WMC, but the rest are more specialized extensions of the metrics presented

earlier. These include metrics such as class-to-leaf depth (CLD), number of methods

overridden (NMO), number of methods inherited (NMI), number of methods added

(NMA), specialization index (SIX), data abstraction coupling (DAC’), information-

flow-based inheritance coupling (IH-ICP), other class-attribute import coupling

(OCAIC), descendants method-method export coupling (DMMEC) and others method-

method export coupling (OMMEC). By analyzing the results given by these metrics, the

following operations can be administered to the system: creating an abstract class,

creating specialized subclasses and creating an aggregate class [Sahraoui et al., 2000].

Du Bois and Mens [2003] use a combination of the metrics defined above (number

of methods, CC, NOC, CBO, RFC and LCOM) in order to administrate a selection of

refactoring operations (extracting a method, encapsulating a field and pulling up a

method) to a system. Thus, this suite of metrics can be used to both evaluate the

existing system and to use those results to evolve a system. As can be seen, the metrics

suite presented by Chidamber and Kemerer [1994] acts as a good base for evaluating

architectures and evolving new metrics by using their six metrics as a starting point.

Another way of measuring is related to the stable/instable and abstract/concrete

levels of the system, which is used by Amoui et al. [2006]; this is based on simply

counting the number of certain types of classes and dependencies.

 Losavio et al. [2004] present ISO quality standards for measuring architectures.

This model is somewhere in between pure metrics and evaluation using human

expertise, which is discussed further on. The ISO 9126-1 quality model’s characteristics

are functionality, reliability, usability, efficiency, maintainability and portability

[Losavio et al., 2004] – a list quite similar to the one presented by Rosenberg and Hyatt

[1997]. In the ISO model, the characteristics of quality are refined into sub-

characteristics, which are again refined to attributes, which are measured by metrics.

Thus, the model needs human expertise in making the refinements, but the end result is

a measurable value related to the architecture. As the characteristics have from three to

five separately measured sub-characteristics each, it is not practical to go through them

all in the scope of this paper. The most interesting quality measures being efficiency and

maintainability, I will now present some example metrics for measuring the sub-

characteristics of these.

13

 Efficiency is divided into time behavior, resource behavior and compliance. Let us

now investigate how time behavior is measured. Time behavior means the capability of

the software product to provide appropriate response time, processing time and

throughput rates under stated conditions [Losavio et al., 2004]. To measure this, one

must first identify all the components involved with functionality and the connections

between them. The attribute is then computed as the sum of the time behaviors of the

components and the time behaviors of the connections. The time behavior of a

component or a connection depends on the stimulus/event/functionality and the path

taken in the architecture to respond to a stimulus for a given functionality [Losavio et

al., 2004].

Maintainability is sub-categorized into analyzability, changeability, stability,

testability and compliance. Let us take changeability and stability as examples.

Changeability is defined as the capability of the software to enable implementation of

modifications, and stability is defined as the capability of the software to avoid

unexpected effects from modifications of the software. In order to measure these (and

testability), two additional sub-characteristics need to be added to the ISO model

framework at architectural level: coupling and modularity [Losavio et al., 2004]. The

computations for changeability and stability need to be made for each couple of

connected components on the number of incoming/outgoing messages, and for each

component on the number of components depending on that component.

The examples of time behavior, changeability and stability are still something that

can be seen as metrics: the resulting values are something that can be computed, albeit

that it might not be easy. However, there are many sub-characteristics in the ISO 9126-1

quality model when the “counting rule” does not contain any calculation and thus, the

result is not numeral. For example, functionality contains sub-characteristics such as

interoperability and security, where the attribute that is to be “measured” is the presence

of a certain mechanism. Thus, to “count” the attribute, one needs to identify whether the

mechanism is present in the system [Losavio et al., 2004]. This is another point (in

addition to the redefining steps) where the ISO quality model can be seen as relying

more on human expertise than being a set of metrics that can be used for automated

evaluation of an architecture.

2.3.2. Evaluation using human expertise

When evaluating an architecture there are three questions that should be answered in the

evaluation. Firstly, is the designed architecture suitable for the system in question?

Secondly, if there are several options to choose an architecture from, which is the best

for the particular system and why? Thirdly, how good will different quality attribute

requirements be? [Koskimies ja Mikkonen, 2005]

These questions alone demonstrate the difference between using metrics to give

values to quality requirements and using human expertise: no metric can answer the

14

question “why” when discussing the positive and negative points of different

architectural options. Metrics may also give very good values to individual quality

requirements, but as a whole the architecture may not be at all suitable for the system in

question. Hence, although metrics can aid in architecture evaluation and are basically

the only way of automated evaluation, they cannot replace the evaluation of experts.

The most widely used and known method for architecture evaluation is the

Architecture Tradeoff Analysis Method (ATAM) by Kazman et al. [2000]. Other known

architecture evaluation methods are the Maintenance Prediction Method by Jan Bosch,

which concentrates in evaluating maintainability, and the Software Architecture

Analysis Method developed in the Software Engineering Institute of Carnegie-Mellon

University, which is mainly used for evaluating quality attributes that are related to

modifiability [Koskimies ja Mikkonen, 2005]. As ATAM is the only method that can

be used to evaluate all quality attributes, it is the one I will go into with more detail.

 The main points of ATAM are to elicit and refine a precise statement of the key

quality attribute requirements concerning the architecture, to elicit and refine precise

designing decisions for the architecture, and based on the two previous goals, to

evaluate the architectural design decisions to determine if they fulfill the quality

attribute requirements satisfactorily [Kazman et al., 2000]. The ATAM uses scenarios

in order to analyze whether the architecture fulfills all the necessary requirements and to

see risks involved in the architecture. The ATAM proceeds in nine steps: presenting the

method for the group of experts, presenting business drivers, presenting the architecture,

identifying architecture approaches, generating quality attribute utility tree, analyzing

architecture approaches, brainstorming and prioritizing scenarios, again analyzing

architecture approaches, and finally presenting the results [Kazman et al., 2000]. The

steps where we can say that the architecture is evaluated as in how good it is in the

ATAM are when the quality attribute utility tree is generated, architecture approaches

are analyzed and scenarios are brainstormed, so I will now concentrate on these steps.

When the architecture has been presented and the architecture styles have been

identified, a quality attribute utility tree is generated. This is done by eliciting the quality

attributes that relate to the particular system and then breaking them down to the level

of scenarios, which are shown with stimuli and responses and prioritized [Kazman et

al., 2000]. For each quality approach, the quality factor is divided into sub-factors. For

example, modifiability could be divided into GUI-modifications and algorithmic

modifications. For each of these sub-factors, detailed scenarios are described in order to

see how the sub-factor in question affects the architecture [Kazman et al., 2000]. For

example, GUI-modifications may have a scenario that if a new feature is added to the

application, the feature should be visible in the GUI within one day. These scenarios are

then prioritized according to how relevant they are to the system, how likely they are to

happen, and naturally, how critical they are for the quality attribute in question. Based

15

on the utility tree, experts can now concentrate on the high priority scenarios and

analyze architectural approaches that satisfy these scenarios.

While the utility tree is manufactured by a smaller group of specialized architecture

experts, a scenario brainstorming session involves all the stakeholders involved in the

project. The purpose of this session is to gather all the possible ideas and scenarios that

relate to the system and should be considered in the architecture [Kazman et al., 2000].

After the brainstorming of scenarios, all possible scenarios should be documented

either as a result of the utility tree or the brainstorming sessions. The architecture

experts may now reanalyze the architecture styles that have been documented and

discussed, and perhaps even suggest a completely different solution if the brainstorming

session brought up many unexpected scenarios or the prioritizing of quality attributes

was very different from the one in the utility tree.

After all the steps of the ATAM, the outcomes of this method will include the

architectural approaches documented, the set of scenarios and their prioritization, the set

of attribute-based questions, the utility tree, risks and sensitivity and tradeoff points in

the architecture [Kazman et al., 2000].

As can be seen, the ATAM relies purely on human expertise, and the evaluation of

architecture happens while the architecture is actually being developed. Some basic

architectural approaches are first presented based on the known structure of the system,

and as the quality attributes requirements of the system become clearer, the architecture

undergoes several iterations of analysis, while the architecture is being refined and

different approaches may be considered. The “goodness” of the architecture can be

defined and measured by how well it satisfies the quality attribute requirements and

how “easily” it responds to the scenarios related to the quality attributes.

16

3. Meta-heuristic search algorithms

In software engineering one is often faced with a task in which the possible set of

solutions is exceptionally big. It is impossible to go through the solution set by a simple

brute force algorithm, and a deterministic algorithm that would be fast enough to be

reasonable to conduct might not exist, or would be unreasonably complex to define.

Sub-problems of several software engineering problems are known to be NP-hard. For

example software clustering, which is a special case of the general graph partitioning

problem, is NP-hard. In such cases, non-deterministic search algorithms are useful, as

they are capable of finding good enough solutions from a large amount of data with

simple rules and perform them fast. The characteristics that enable such good results are

that they do not need to go through all the possible solutions of the data set; yet by being

non-deterministic, it is possible to recover from a search path that seemed good in the

beginning, but resulted in a bad solution.

There are certain terms that are common to most search algorithms; the

neighborhood and fitness of a solution. Each solution can be regarded as a point in the

search space that needs to be explored. The neighborhood of a solution is the set of all

available solutions that can be reached with one technique-specific move from the

current solution. The concept of neighborhood is especially used in local search

algorithms, such as hill-climbing, tabu search and simulated annealing. The fitness of a

solution indicates how good the solution is. In rare cases, when the optimum is known,

one tries to get the fitness value as close to the optimum as possible. Since this is hardly

ever the case, it is usually attempted to maximize or minimize a fitness function. Fitness

functions that measure the fitness value are application specific.

For the purpose of this thesis, it is necessary to understand how search algorithms

operate in order to understand the underlying concepts of the research presented in

Chapter 4, and the implementation presented in Chapters 5 and 6.

3.1. Genetic algorithms

Genetic algorithms were invented by John Holland in the 1960s. Holland’s original goal

was not to design application specific algorithms, but rather to formally study the ways

of evolution and adaptation in nature and develop ways to import them into computer

science. Holland’s 1975 book Adaptation in Natural and Artificial Systems presents the

genetic algorithm as an abstraction of biological evolution and gives the theoretical

framework for adaptation under the genetic algorithm [Mitchell, 1994].

In order to explain genetic algorithms, some biological terminology needs to be

clarified. All living organisms consist of cells, and every cell contains a set of

chromosomes, which are strings of DNA and give the basic information of the particular

17

organism. A chromosome can be further divided into genes, which in turn are functional

blocks of DNA, each gene representing some particular property of the organism. The

different possibilities for each property, e.g. different colors of the eye, are called

alleles. Each gene is located at a particular locus of the chromosome. When

reproducing, crossover occurs: genes are exchanged between the pair of parent

chromosomes. The offspring is subject to mutation, where single bits of DNA are

changed. The fitness of an organism is the probability that the organism will live to

reproduce and carry on to the next generation [Mitchell, 1996]. The set of chromosomes

at hand at a given time is called a population.

Genetic algorithms are a way of using the ideas of evolution in computer science.

When thinking of the evolution and development of species in nature, in order for the

species to survive, it needs to develop to meet the demands of its surroundings. Such

evolution is achieved with mutations and crossovers between different individuals,

while the fittest survive and are able to participate in creating the next generation.

In computer science, genetic algorithms are used to find a good solution from a very

large solution set, the goal obviously being that the found solution is as good as

possible. To operate with a genetic algorithm, one needs an encoding of the solution,

i.e., a representation of the solution in a form that can be interpreted as a chromosome,

an initial population, mutation and crossover operators, a fitness function and a

selection operator for choosing the survivors for the next generation.

3.1.1. Encoding

As stated, the basis of genetics in nature is a chromosome. When applying this thought

to computer science and genetic algorithms, each individual in the search space, i.e.

each solution to the problem at hand, needs to be encoded so that it can be thought of as

a chromosome. The most common and traditional way of doing this is to use a bit

vector, i.e., a string of ones and zeros [Mitchell, 1996]. Thus every bit in the

chromosome represents a gene in that locus, the alleles being one and zero. This has the

advantage of being very easy to interpret. Usually such encoding is used for

combinatorial problems. For example, if we want to get as close to a value x by

summing numbers from one to twenty, and using the minimal amount of numbers in the

sum. We can now use a 20-bit chromosome, where each number is represented in its

respective locus in the chromosome. If the allele in that locus is 1, the number is

included in the sum, if 0, then not. Another way of using bits is when one is dealing

with large scale numbers with tens or hundreds of decimals. The bits can thus be used to

give a binary representation of such a number.

Another common way of forming a chromosome is to have a string of natural

numbers. Such solutions are good for permutation problems, for example the traveling

salesman problem (TSP) [Michalewicz, 1992]. The nodes in the graph are numbered

18

and the travel route will be the order of the nodes in the chromosome. By mutations the

places of the nodes can be switched, thus reforming the route.

Strings of bits are the most traditional way of encoding a chromosome, and some

sources call only such solutions pure genetic algorithms. In fact, there can be as many

ways to encode a chromosome, numeric and non-numeric, as there are algorithm

developers, as long as the same developer can keep in hand the required mutations and

crossovers so the solutions stay “legal”. Purists call genetic algorithms that use such

advanced coding styles evolutionary programs, rather than pure genetic algorithms.

3.1.2. Mutations

Mutations are a way of creating new individuals from the population at hand by

administering a minor change to one of the existing individuals by changing alleles in a

random locus. When the chromosome is represented by a bit vector, a basic mutation is

to change one bit from 0 to 1 or vice versa. For example, we could have a bit string

001100. By mutating this string in its third locus the result would be 000100. When the

string contains natural numbers, a mutation could be to switch the places of two

numbers. Whatever the mutations are, the result should always still be a legitimate

individual, i.e., it should solve the defined problem. The more complex the encoding of

the chromosome is, the more there usually are possible mutations that can be applied

and the mutations may become more complex. It is also possible to have a separate

“correction mutation” that will check the chromosome after a mutation to see that it still

solves the problem that it is supposed to. If the mutation has caused the chromosome to

become unnatural, i.e., it does not belong to the solution space anymore, corrective

actions will take place. Such actions don’t necessarily just revert the mutation that

caused the problem, but might do even bigger changes to the chromosome.

For every mutation there is always a defined probability how likely it is that the

mutation in question would be applied to an individual, this is called the mutation

probability or mutation rate [Mitchell, 1996]. As in nature, mutations are unwanted in

most cases, thus the mutation probabilities are usually quite low. The mutation

probabilities should be thought of carefully, as both too high and too low probabilities

will result in problems. If the mutation probability is too high, one will end up

wandering aimlessly in the solution space as the chromosomes mutate in high speed. If

the mutation probability is too low, then the population stays very similar from one

generation to the next, i.e., there are not enough of variation between individuals to

ensure finding good enough solutions.

3.1.3. Crossover

The crossover operator is applied to two chromosomes, the parents, in order to create

two new chromosomes, their offspring, which combine the properties of their parents.

Like mutations, the crossover operator is applied to a certain randomly selected locus in

19

the chromosome. The crossover operator will then exchange the subsequences before

and after the selected locus to create the offspring [Mitchell, 1996; Michalewicz, 1992].

As an example, suppose we have chromosomes c1c2c3…cn and b1b2b3…bn, and the

selected locus is in position k, k<n. The offspring would then be c1c2…ckbk+1bk+2…bn

and b1b2…bkck+1ck+2…cn. It is also possible to execute a multi-point crossover, where

the crossover operator is applied to several loci in the parent chromosomes. Using the

same parents as in the previous example and a three-point crossover to loci i, j and k,

the resulting offspring would now be c1c2…cibi+1…bj-1bjcj+1…ck-1ckbk+1bk+2…bn and

b1b2…bici+1…cj-1cjbj+1…bk-1 bkck+1ck+2…cn.

Like mutations, the crossover operator also has a crossover probability or crossover

rate, which determines how likely it is for the crossover operator to be applied to a

chromosome. For the crossover probability, there are two differences to the respective

probability of the mutations. Firstly, the crossover probability is in relation to the fitness

of the chromosome. The fitter the individual is, i.e., the more likely it will survive to the

next population, the bigger the chance it should be that its offspring will also have a

high fitness-value. Whether the offspring will actually have a higher fitness value

depends on how well the crossover-operation is defined. The most desirable outcome is

always that the crossover would generate chromosomes with higher fitness-values than

their parents or at least have a big probability of doing so. Unfortunately, this can not

always be guaranteed. Thus, the probability of a crossover increases in some correlation

with the fitness-value of the chromosome. Secondly, the term crossover rate is not

always the same as crossover probability. In the case of a multi-point crossover

operator, the crossover probability determines the likelihood of the operation while the

crossover rate distinguishes the number of points at which the crossover takes place.

[Mitchell 1996].

Where and how the crossover operator is used varies based on the application and

developer. Mitchell [1996] and Reeves [1995] consider that the selection operator

always selects parents, and thus all chromosomes selected to the next generation are

subjected to the crossover operator. The crossover probability then determines whether

a real crossover is performed, or whether the offspring are actually duplicate copies of

the actual parents. Michalewicz [1992], on the other hand, applies the crossover

probability when after selecting a new generation. The crossover probability of a

chromosome is compared to the “limit” probability defining whether the crossover is

performed. Chromosomes subjected to crossover are randomly paired, and offspring

produced – in this approach the crossover does not produce any duplicates. Both

approaches replace the parents with the resulting offspring.

 For the rest of the paper I have chosen to follow mostly on Michalewicz’s views,

i.e., the crossover probability is used purely to choose parents from the existing

population. I have chosen a slightly different approach however, by not replacing the

20

parent chromosomes with the offspring, but keeping both the parents and the offspring

in the population. I justify this with keeping with the concept of biology; parents rarely

die off because of producing offspring.

3.1.4. Fitness function

In order to evaluate how good the different individuals in the population are, a fitness

function needs to be defined. A fitness function assigns each chromosome a value that

indicates how well that chromosome solves the given problem. [Mitchell, 1996]. A

common application of genetic algorithms is optimizing a function.

 Unfortunately optimizing problems are rarely so straightforward. In fact, genetic

algorithms are usually used in an attempt to optimize complex multivariable functions

or non-numerical data [Mitchell, 1996]. Naturally, the more complex the problem, the

more complex the fitness function usually becomes. When the algorithm is dealing with

numerical data the fitness function can be detected from the actual optimizing problem,

albeit that the problem is intricate. Thus, the most difficult fitness functions are the ones

needed to evaluate non-numerical data, as the developer must find other metrics or ways

to find a numerical evaluation of non-numerical data. An example of this is provided by

Mitchell [1996], who describes the problem of finding the optimal sequence of amino

acids that can be folded to a desired protein structure. The acids are represented by the

alphabet {A, …, Z}, and thus no numerical value can be straightforwardly calculated.

The used fitness function calculates the energy needed to bend the given sequence of

amino acids to the desired protein.

3.1.5. Selection operator

Since the number of individuals in a population always increases with the result of

crossovers, a selection operator is needed to manage the size of the population. The

selection operator will determine the individuals that will survive to the next generation,

and should thus be defined so that the ones with the best fitness are more likely to

survive in order to increase the average fitness of the population.

The simplest way of defining a selection operator is to use a purely elitist selection.

This selects only the “elites”, i.e., the individuals with the highest fitness. Elitist

selection is easy to understand and simple to implement; one can simply discard the

weakest individuals in the population. However, elitist selection isn’t the best choice, as

it may very well result in getting stuck to a local optimum.

Another and a more common way of defining the selection operator is to use a

fitness-proportionate selection, which can be implemented with a “roulette-wheel”

sampling [Mitchell, 1996; Michalewicz, 1992; Reeves, 1995]. Here, each individual is

given a slice of the “wheel” that is in proportion to the “area” that its fitness has in the

overall fitness of the population. This way, the individuals with higher fitnesses have a

21

larger area in the wheel, and thus have a higher probability of getting selected. The

wheel is then spun for as many times as there are individuals needed for the population.

In general, a fitness-proportionate selection operator can be defined by assigning a

probability of surviving, ps, to each individual, with coefficient fs to ensure that

individuals with better fitness values are more likely to be selected. Comparing the

actual values given by the fitness function is difficult, so these actual values should be

used as coefficients with caution. However, by examining the order of fitnesses it is

possible to employ the idea of survival of the fittest by having a linear relation between

the order of fitness and the coefficient.

A common selection operator is a crossing of the two methods presented above; the

survival of the very fittest is guaranteed by choosing the best individual with elitist

methods, while the rest of the population is selected with the probabilistic method in

order to ensure variety within the population. Some researches also use the tournament

technique to select the next generation [Blickle, 1996; Seng et al., 2005].

As mentioned in the presentation of the crossover operator, there are different

approaches to how to use the selection operator. Mitchell [1996] and Reeves [1995]

consider that the selection operator selects the individuals that are most likely to

reproduce, i.e., become parents. Michalewicz [1992] uses the selection operator in order

to find the fittest individuals for the next generation. Both approaches keep the same

selection probabilities for all individuals during the entire selection process, i.e., an

individual with a high fitness value may be selected to the next population more than

once.

For the rest of the paper, as with the crossover operator, I follow mostly with

Michalewicz’s views. However, also with selection, I take a different path by not

allowing multiple selections of the same chromosome. When applying this to the

roulette-wheel, the wheel is adjusted after every spin by removing the area of the

selected individual, and recalculating the areas for the remaining population so that they

keep in proportion to each other. Again, I justify this with the biological point of view;

no individual can clone themselves.

3.1.6. Executing a genetic algorithm

The operation of a genetic algorithm can be examined through an example of the

knapsack-problem. Say we have five items, each with a weight wi and a volume of vi.

The goal is to fit as much weight as possible to a backpack with a limited volume. The

candidate solutions can now be represented by a vector of 5 bits, where 0 represents not

picking the item represented by that gene, and 1 represents picking it. The items can be

arranged by volume, weight, or any other way, as long as it is clear which weight and

volume are connected to which index of the vector, i.e. which item is represented in

which locus. Suppose that in this example the items are as follows

22

locus w v

1 5 1

2 6 3

3 10 7

4 4 9

5 9 12 .

Firstly, it must be agreed what the population size should be, and then initialize the

first population. If possible, some kind of heuristic method should be used when

generating the initial chromosomes, so that some fitness is already ensured in the first

population. If no heuristic can be applied to the problem in question, the chromosomes

are randomly generated, while keeping in mind that they must be valid. For example

purposes, we may now have a population of 5, and the individuals can be:

A 00010

B 01100

C 10100

D 11100

E 10001.

By setting the target volume to 20, the fitness function f(x) can now be defined as

f(x) = ∑w(x), ∑v(x) ≤ 20.

Thus the fitnesses for the initial population would be: f(A) = 4, f(B) = 16, f(C) = 15, f(D)

= 21 and f(E) = 14.

Secondly, the population is subjected to the crossover operator. The crossover

probability for each chromosome is now pfc, p being the “standard” probability of a

crossover operation and fc fitness coefficient. Say that chromosomes B and E are

subjected to crossover, with the crossover point being in locus 2. The resulting offspring

would then be BE = 01001 and EB = 10100, with fitnesses f(BE) = 15 and f(EB) = 15.

Thirdly, the population is subjected to the mutation operator with the probability pm.

For this example, we define the mutation operator as the traditional one: changing the

bit value from 0 to 1 or from 1 to 0. We now assume that chromosome A is subjected to

mutation in locus 1, thus the result would be A’ = 10010, with f(A’) = 9. It is important

to notice that in this example we have a risk of achieving an illegal chromosome as the

result of a mutation. Since we have a volume limit of 20, no chromosome should

represent a set of items if the sum of their volumes surpasses 20. We now have two

options: either checking whether the mutation is possible before performing it or

constructing a correcting operator which will go through the results of mutations. Let us

assume that chromosome D is subjected to mutation in locus 5, producing the

23

chromosome D’ (11101). The sum volume of items represented by chromosome D is 11

and since the item represented by locus 5 has a volume of 12, the total volume would

now become 23, which isn’t allowed. If we choose to check each mutation beforehand,

the mutation in chromosome D simply wouldn’t happen, as it would be considered

unnatural.

Constructing a corrective operator is not as straightforward. One example of a

corrective operator would be the following. Say chromosome D has been subjected to

mutation and the resulting chromosome D’ is now checked with the corrective operator.

First, the volume of the items represented by the chromosome is calculated, the sum of

volumes being 23. After that, the operator begins correcting the chromosome by simply

removing items in order to achieve a legal individual. The operator starts from the first

locus and systematically changes ones to zeros until the sum of volumes is once again

within acceptable limits. So, the operator would first achieve chromosome D’’ (01101),

the sum volume of which is 22. Since 22 > 20, another iteration is needed. We now get

D’’’(00101), the sum volume of which is 19. Since 19 < 20, the chromosome D’’’ is an

acceptable individual and will replace the original chromosome D. The fitness of

chromosome D’’’, f(D’’’), is 19, which is lower than the fitness of the original

chromosome, but still above the average fitness in the population.

Finally, the population is subjected to the selection operator, i.e., the individuals

surviving to the next generation are chosen. The size of the population is now 7, with

the individuals A’, B, C, D’’’, E, BE, and EB. In this example we use a purely elitist

selection operator, which simply drops two of the weakest individuals; they do not

survive to the next generation. Thus the next population will be B, C, D’’’, BE and EB.

The population will go through as many generations of crossovers, mutations and

selections as is needed to achieve a good enough fitness value, or it is decided that the

generation number is high enough.

3.2. Tabu search and simulated annealing

While genetic algorithms use mutations and crossovers to constantly generate new

solutions, other meta-heuristic search algorithms have their own methods of trying to

get out of local optimums and reach the global optimum of the search space. I will now

briefly describe the methods of tabu search and simulated annealing.

3.2.1. Tabu search

The word tabu or taboo is understood as something strictly forbidden and unacceptable.

Tabu search is named such as it proceeds by setting barriers or restrictions to guide the

search process. These restrictions operate, as Reeves [1995] describes, “in several

forms, both by direct exclusion of certain search alternatives classed as ‘forbidden’, and

also by translation into modified evaluations and probabilities of selection”. Tabu

search is seen as a sequence of moves from one possible solution to the best available

24

alternative [Clarke et al., 2003]. The search technique relies on flexible memory and a

set of intellectually chosen principles of problem solving. By remembering past search

moves from several iterations and combining that information to the problem solving

principles, the search algorithm is able to see what directions are indeed tabu in the

present situation.

When administering the tabu search, one starts from a random point x in the search

space. Next, the set of moves that are possible to perform at that point are determined,

the resulting set being the neighborhood of the current solution, N = {x1, x2, …, xn}. The

tabu rules are then applied to N, which is now reformulated to the set of available

moves, A = N\T, T being the set of rules that are declared tabu. In some special cases, a

move that is originally tabu, may become available if all the other available moves

aren’t satisfactory. The best available move xk from set A is then chosen. [Clarke et al.,

2003]

The tabu rules and ways of determining the neighborhood of a solution vary greatly

between problems and applications. The common characteristics in tabu moves are

recency and repetition, i.e., moves that have recently been done or have been repeated

above the average amount are very likely to be declared tabu.

3.2.2. Simulated annealing

Simulated annealing is originally a concept in physics. It is used when the cooling of

metal needs to be stopped at given points where the metal needs to be warmed a bit

before it can resume the cooling process. The same idea can be used to construct a

search algorithm. At a certain point of the search, when the fitness of the solution in

question is approaching a set value, the algorithm will briefly stop the optimizing and

revert to choosing a solution that is not the best in the current solution’s neighborhood.

This way getting stuck to a local optimum can effectively be avoided. Since the fitness

function in simulated annealing algorithms should always be minimized, it is usually

referred to as a cost function [Reeves, 1995].

Simulated annealing optimally begins with a point x in the search space that has

been achieved through some heuristic method. If no heuristic can be used, the starting

point will be chosen randomly. The cost value c, given by cost function E, of point x is

then calculated. Next a neighboring value x1 is searched and its cost value c1 calculated.

If c1 < c, then the search moves onto x1. However, even though c ≤ c1, there is still a

small chance, given by probability p that the search is allowed to continue to a solution

with a bigger cost [Clarke et al., 2003]. The probability p is a function of the change in

cost function ∆E, and a parameter T:

 p = e
-∆E/T .

25

This definition for the probability of acceptance is based on the law of

thermodynamics that controls the simulated annealing process in physics. The original

function is

 p = e
-∆E/kt ,

where t is the temperature in the point of calculation and k is Boltzmann’s constant

[Reeves, 1995].

The parameter T that substitutes the value of temperature and the physical constant

is controlled by a cooling function C, and it is very high in the beginning of simulated

annealing and is slowly reduced while the search progresses [Clarke et al., 2003]. The

actual cooling function is application specific.

 If the probability p given by this function is above a set limit, then the solution is

accepted even though the cost increases. The search continues by choosing neighbors

and applying the probability function (which is always 1 if the cost decreases) until a

cost value is achieved that is satisfactory low.

26

4. Search algorithms in software engineering

Search algorithms have been used widely in different fields of research, such as

engineering, business and financial and economic modeling [Clarke et al., 2003], and

recently there has been an increasing interest in implementing search algorithms to

software engineering as well. This particular field of research is known as search-based

software engineering. The areas where search algorithms are used can be divided into

four categories [Rela, 2004]: analysis, design, implementation and testing. In this

chapter I will explore how search algorithms are used in different areas of software

engineering, with an emphasis on software design. The research is presented from the

algorithmic viewpoint, accenting how fitness functions are defined and how the

problem is modeled for the algorithm.

4.1. Search algorithms in software design

4.1.1. Software clustering

Software clustering or module clustering is a software engineering problem that is most

related with software architectures. The goal is to find the best grouping of components

to subsystems, i.e., the best clusters of an existing software system.

One way of representing a software system so that the representation is both

language independent and “presentable” to a search algorithm, is to transform the

structure of the system into a directed graph G. A partition of the graph G is a set of

non-overlapping clusters that cover all the nodes in the graph, and the goal is to

partition the graph so that the clusters represent meaningful subsystems. There are

several viewpoint to defining the graph G, e.g. by considering modules and their

relationships, object creation, runtime method invocation or generating a module

dependency graph [Clarke et al., 2003].

When defining a fitness function for the clustering problem, the main question to be

answered is what constitutes a good partition of the software structure graph. The

goodness of a partition is usually measured with a combination of cohesion and

coupling metrics, one of the most popular metric being the modularization quality MQ,

introduced in Chapter 2, which combines these two metrics.

Clarke et al. [2003] present three different ways of dealing with the clustering

problem: hill-climbing, hill-climbing with simulated annealing and genetic algorithms.

Using the hill-climbing approach, the algorithm begins with a random partition m of the

graph G, where nodes represent modules in the system. The neighboring partitions mi

(the neighborhood being as defined in Chapter 3) are then examined in order to find a

better rearrangement of the original partition. If a better solution mk is found, i.e.

MQ(mk) > MQ(m), mk is stored as the best partition found so far. The process is

iterated until the neighborhood of the best found partition does not contain any partition

27

with a better fitness value. The hill-climbing solution can be varied by adjusting when it

moves onto the next partition: does it select the first solution with a bigger MQ-value,

does it go through all the neighboring solutions or does it search a set minimum amount

of neighboring solutions. The hill-climbing search technique can be associated with a

cooling function used with simulated annealing. Clarke et al. [2003] note that giving the

algorithm this opportunity to momentarily accept worse solutions fitness-wise has

shown an improvement in performance without jeopardizing the quality of the

solutions.

Using a genetic algorithm for module clustering is quite straightforward: the main

challenge is to find a suitable encoding, after which traditional mutation and crossover

operators can be used. Defining these operations is, however, not so simple. Clarke et

al. [2003] introduce several cases where the hill-climbing algorithm has outperformed

genetic algorithms, and the blame is usually placed with the encoding and crossover

used with the genetic algorithm.

Doval et al. [1999] have also studied the module clustering problem, and have used

the module dependency graph (MDG) mentioned earlier. The module dependency class

is defined as a directed graph that describes the modules (or classes) of a system and

their static inter-relationships using nodes and directed edges, respectively. As with the

more general software clustering problem presented by Clarke et al. [2003], the goal is

to find a “good” partition of the MDG. A good partition features quite independent

subsystems which contain modules that are highly inter-dependent [Doval et al., 1999].

This definition of a good partition justifies the use of the MQ metric for the fitness

function: independent subsystems have low coupling, and high inter-dependency

signifies high cohesion.

Doval et al. [1999] have used a genetic algorithm approach for the optimization of

the module clustering problem. A numeral encoding is used, where each node Ni is

assigned a unique number that specifies the locus with the information about that node’s

cluster, e.g. N1 is in the first locus of the chromosome and N2 is in the second locus. The

actual alleles are the numbers of clusters where the nodes representing the components

are assigned to. Formally, a chromosome is represented as a string S, which is defined

as S = s1 s2 s3 s4 … sN, where N is the number of modules, i.e. the number of nodes in

the MDG, and si, (1≤ i ≤N) identifies the cluster that contains the ith node of the graph.

Doval et al. [1999] use a crossover rate of 80% for populations with 100 individuals or

less, and 100% for populations of a thousand individuals or more. The rate varies

linearly between those population values. The crossover function itself is the traditional

one, i.e. it combines subsections of two parents from the left and right side of the

crossover point. The mutation changes the value of one gene to a new, randomly

generated value, thus moving the node represented by the locus in question to a new

cluster represented by the new value. Doval et al. [1999] have used their algorithm on

28

real systems, and stress the point of obtaining correct parameters (size of population,

number of generations and crossover and mutation rates) in order to achieve solutions

with a higher quality and to also improve the algorithm execution performance. Tests on

a real system with a documented MDG showed that Doval et al.’s [1999] algorithm

produced a graph quite similar to the real one. The areas where the algorithm had the

most problems with were interface and library modules.

Harman et al. [2002] make their contribution to the modularization problem by

introducing a new representation for the modularization as well as a new crossover

operator that attempts to preserve building blocks. They approach the clustering

problem from a re-engineering point of view: after maintaining a system its

modularization might not be as good as it was when it was taken to use. Thus, Harman

et al. [2002] define their problem as searching the space of possible modularizations

around the current granularity, i.e., the number of modules a modularization uses, to see

if there exists a better allocation for the components.

Firstly, the new representation presented by Harman et al. [2002] ensures that each

modularization has a unique representation. A look-up table is used in order to allocate

components to numbered modules. It is also defined that component number one is

always in module number one, as well as all components belonging to the same module.

Then, component n with the smallest number that is in a different module as component

number one is placed in module number two, and the process is repeated with

components in the same module as component n, and again for all modules similarly

[Harman et al., 2002].

Secondly, Harman et al. [2002] present a new crossover, which does not choose a

random crossover point within the two parents, as crossover operators usually do, but a

random parent, and a random module from that parent, which is then copied on to the

child chromosome. The components in this module are then removed from the two

parents in order to prevent clones of components, and the rest of the modules are copied

to the child chromosome in a similar fashion from one or the other parent. This kind of

crossover operator ensures that at least one of the modules from the parents is

completely preserved in the child, and supports the building block theorem.

Di Penta et al. [2005] introduce the Software Renovation Framework (SRF) that

attempts to remove unused objects and code clones and to refactor existing libraries into

smaller, more cohesive clusters. Genetic algorithms have been used especially to help

with refactoring. The SRF works in six steps [Di Penta et al., 2005]. Firstly, the

software system’s applications, libraries and dependencies among them are identified.

Secondly, unused functions and objects are identified and removed. Thirdly, duplicated

and cloned objects are identified and possibly factored out. Fourthly, circularly linked

libraries are identified and either removed or reduced. Fifthly, large libraries are

refactored into smaller ones. Finally, objects, that are used by many applications but are

29

not yet grouped, are grouped into new libraries. As the interest mainly lies with the use

of genetic algorithm, I will concentrate now on the fifth step and the refactoring.

The library refactoring itself is done in three steps: determining the ideal number of

clusters and an initial solution, determining the new candidate libraries with the use of a

genetic algorithm, and after asking for feedback (as can be seen, this is a semi-

automated form of using search algorithms, as human expertise is used in order to see

how many iterations are needed), the second step may be repeated. The encoding used

by Di Penta et al. [2005] is a bit matrix: each library is represented by a separate matrix,

and the combination of matrices, GM, represents the system. The crossover operator is

defined so that it changes the content of two matrices around the column defined as the

crossover point. Mutations may either move an object by interchanging two bits in a

randomly chosen column, or clone an object by taking a random position gmx,y in the

matrix and changing its value to 1 if the bit in this position is zero, and the library

represented by the matrix depends on the object y [Di Penta et al., 2005]. The

probability of the moving mutation should always be bigger than the probability of the

cloning mutation, as cloning is not recommended in general. The fitness function used

by Di Penta et al. [2005] consists of four different factors: the number of inter-library

dependencies in a given generation (the dependency factor DF), the total number of

objects linked to each application (the partitioning ratio PR, which should be

minimized), the size of new libraries (the standard deviation factor SDF), and the

feedback given by developers (the feedback factor FF). The FF is calculated as the

difference between the matrix GM developed by the algorithm and the feedback matrix

FM, which contains information of the changes suggested by developers in matrix form.

The overall fitness function F is defined as F = DF(g)+w1PR(g)+w2SDF(g)+w3FF(g)

where w1, w2 and w3 are real-valued positive weight-factors. Di Penta et al. [2005]

report that tests with their SRF show very promising results especially with refactoring

libraries and thus reducing dependencies.

Seng et al. [2005] represent the system as a graph, where the nodes are either

subsystems or classes, and edges represent containment relations (between subsystems

or a subsystem and a class) or dependencies (between classes). The encoding used for

the genetic algorithm is to have each gene representing a subsystem, and each

subsystem is an element of the power set of classes. Seng et al. [2005] use three kinds of

mutations: the split & join mutation, the elimination mutation and the adoption

mutation. The split & join mutation either divides a subsystem into two smaller

subsystems or combines two existing subsystems into one. The subsystems are selected

based on how strong their relationship is in the original dependency graph. The

elimination mutation deletes a subsystem candidate and distributes its classes to other

subsystems and the adoption mutation tries to find a new subsystem candidate for an

orphan, that is, a subsystem with only one class. The crossover operator works in five

30

steps and produces two children from two parents. Firstly, a sequence of subsystem

candidates, i.e. a sequence of genes, is selected from both parents. Secondly, the chosen

sequences are integrated to the other parent. Thirdly, existing genes (subsystems)

containing classes that are now present in the new, integrated sequence, are deleted.

Fourthly, the classes that do not exist in the new sequence (and were parts of the deleted

subsystem), are collected. Fifthly, the collected classes are distributed to other genes so

that all classes will still stay present in the solution [Seng et al., 2005]. The fitness

function is formed from a combination of metrics for cohesion, coupling, complexity,

cycles and bottlenecks. Bottlenecks are subsystems that know about and are known by

too many subsystems. A tournament selection is used for selecting the new generation

[Seng et al., 2005].

Seng et al. [2005] also believe in the building block theorem, and construct their

initial population accordingly. They bring solutions with high fitness values into the

initial population in order to ensure the presence of good building blocks from the very

beginning. As genetic algorithms demand diversity in order to get the best results, half

of the initial population is constructed from the highly fit solutions, and half from

randomly selected sets of connected components from the initial graph model.

Based on the tests by Seng et al. [2005] with large systems, e.g., the javax.swing

that contains over 1500 classes, this method of subsystem decomposing was a highly

successful one. The method was also fast, as the tournament technique used for

selection is much more efficient than the roulette wheel – although the roulette wheel

produces solutions with slightly better fitness values.

4.1.2. Systems integration

Systems integration is in a way quite similar to module clustering, only now the

modules are known, and the order in which they are incorporated to the system is what

needs to be decided. As the integration usually happens in an incremental way, and not

all components are at use at the same time, a lot of stubs, i.e., components simulating

the functionality of a missing component, often need to be created [Clarke et al., 2003].

A stub is needed when a component is integrated to the system and it uses another

component that is still waiting for integration, and the more stubs are needed, the more

the integration process will cost. Therefore, the usual solution is that components that

are heavily used by other component are introduced early to the system, and

components that need a lot of other components, are introduced last. Obviously some

components are both heavily used and use a lot of other components, and timing the

integration of these components is crucial when attempting to achieve the optimal

integration sequence, i.e., the order of integrations which costs the least [Clarke et al.,

2003].

The order of integration of components can be presented as a permutation of the set

of components [Clarke et al., 2003], quite similarly to the TSP discussed in Chapter 3.

31

However, one needs to be careful when defining the crossover operator to a

permutation. A traditional crossover where parts of the chromosomes are interchanged

would very probably produce an illegal solution. Thus, Clarke et al. [2003] present the

options of using order crossover or cycle crossover. Order crossover selects a random

crossover point, and then copies the left substring of one parent directly to the child

chromosome. The items that are not present in that substring are added in the order they

appear in the other parent. Cycle crossover on the other hand merges two chromosomes.

For mutations, Clarke et al. [2003] use the swap and shuffle operations. Swap changes

two genes of the chromosome, and shuffle produces a new permutation. When the

fitness function can be defined as the cost sum that would be associated with the

solution represented by a specific permutation, systems integration can clearly be

subjected to genetic algorithms. In order to apply hill-climbing and tabu search, a

neighborhood must also be defined, and this is easy: two solutions p and p’ are

neighbors if and only if p’ can be generated by swapping two adjacent genes in p

[Clarke et al., 2003].

Le Hanh et al. [2001] present a very similar solution to the integration testing

problem. They stress that the testing of components that are being integrated should be

optimized. The chromosome representation is the same as defined by Clarke et al.

[2003], as is the swap mutation. The crossover operation is very similar to the order

crossover described by Clarke et al. [2003], only Le Hanh et al. [2001] have opted to

directly copy the right side of the first parent instead of the left side. Le Hanh et al.

[2001] also use simpler fitness function, as they only calculate the amount of stubs

needed for each solution. The selection function of Le Hanh et al. [2001] is quite

unusual. The algorithm is run by first calculating the fitness of each individual of the

population. Two individuals with the best fitness values are then chosen to produce the

next generation by applying the crossover and mutation operators to these two elite

solutions until there are enough individuals to form a population. One might wonder

whether this kind of selection operator really gives the best results. The selection

restricts the population to the neighborhoods of the two elite solutions, and thus greatly

increases the chances of the algorithm getting stuck to a local optimum and not finding

the global optimum. Le Hanh et al. [2001] report very promising results from their tests

where the genetic algorithm was applied to real-world systems, such as javax.swing.

They mention that the genetic algorithm is not very efficient, and perhaps some

adjustments should be made to their fitness function (such as adding the cost of a stub –

a metric used by Clarke et al. [2003]), but the quality of the solutions was good, and the

genetic algorithm approach could be easily modified to take into account the complexity

of the components.

32

4.1.3. Systems refactoring

Systems refactoring is a somewhat more delicate problem than module clustering. With

module clustering, it is more a question of efficiency, while the contents of a system

still stay the same. However, when refactoring a system, there is the risk of changing the

behavior of a system by, e.g., moving methods from a subclass to an upper class [Seng

et al., 2006]. This risk should be duly addressed, and the refactoring operations should

always be designed so that no illegal solutions will be generated or a corrective

operation is used to check that the systems behavior stays the same.

O’Keeffe and Ó Cinneide [2004] define the refactoring problem as a combinatorial

optimization problem: how to optimize the weighting of different software metrics in

order to achieve refactorings that truly improve the system’s quality. O’Keeffe and Ó

Cinneide [2004] introduce four different kinds of refactoring mechanisms: moving a

method up or down in the class hierarchy, extracting or collapsing a class, making a

class abstract or concrete and changing the superclass link of a class. The metrics that

are used are rejected methods (RM, should be minimized), unused methods (UM,

should be minimized), featureless classes (FC, should be minimized), duplicate

methods (DM, should be minimized) and abstract superclasses (AC, should be

maximized). It is also pointed out that as metrics for object-oriented design often

conflict, the priority of metrics should be made clear by a precedence graph and assign

weights accordingly. With the metrics introduced by O’Keeffe and Ó Cinneide [2004],

AC should have a lower priority than FC, RM and UM should have a higher priority

than FC, and DM should have a higher priority than RM. Taking these priorities into

account, some guidelines are achieved for assigning the weights, which together with

the actual metrics form the fitness function f(d) = ∑
=

n

m

mm dmetricw
1

)(, where d is the

design to be evaluated, n is the number of metrics and wm is the weight assigned to

metricm. Initial tests show some promising results in using simulated annealing to

improve the design of the system subjected to refactoring [O’Keeffe and Ó Cinneide,

2004]. The combinatorial optimization viewpoint should be noted as a general guideline

for building any kind of genetic algorithm, as the fitness function often consists of

several metrics that contradict each other.

Seng et al. [2006] have a similar approach as O’Keeffe and Ó Cinneide [2004], as

they attempt to improve the class structure of a system by moving attributes and

methods and creating and collapsing classes. Seng et al. [2006] begin by extracting a

model of the system from its source code, the basic model elements being attributes,

methods, classes, parameters and local variables. In addition, an access chain is

presented in order to produce the best possible results. An access chain models the

accesses inside a method body: this needs to be known in order to know the full effect

of moving a method [Seng et al., 2006]. A genetic algorithm is used to find the optimal

33

sequence of refactoring operations, thus the chromosome encoding is naturally the

sequence of transformations, where each refactoring operation is located in one gene.

The sequence can be extended by mutation, which adds another refactoring operation to

the current sequence [Seng et al., 2006]. The crossover operator picks a subsequence,

from the first gene to gene k, from one parent and simply adds the whole sequence

represented by the other parent to the selected subsequence. The transformations are

then applied for the model. The firstly selected subsequence is always legal, but with the

transformations specified after the crossover point it may be the case that the refactoring

operations proposed cannot be performed, and such operations are simply discarded

[Seng et al., 2006]. After the model has gone through the transformations specified by

the genome, its fitness is calculated. Seng et al. [2006] use a combination of the

following metrics for the fitness function: WMC, RFC, LCOM, information-flow-based

coupling (ICP), tight class cohesion (TCC), information-flow-based cohesion (ICH),

and stability (ST). Weights are also assigned to the metrics in order to focus on certain

aspects of the fitness function. The fitness of a solution is calculated by adjusting the

fitness achieved by metrics. The adjustments put the fitness value in perspective to the

metric-fitness of the initial solution and the metric-fitness of the solution with the

maximum metric values. Such a fitness function shows the relative improvement in

fitness values, which is easier to evaluate than mere raw numerical values. Seng et al.

[2006] have achieved some very promising results: the class structure was clearly

improved, and there was low statistical spread and good convergence within the fitness

values. The fitness values also settled to a standard after some 2000 generation runs.

The metric values that improved the most in tests were ICH and ICP, both having an

over 80% improvement between the initial system and the system subjected to

refactoring.

O’Keeffe and Ó Cinneide [2007] have continued their research with the use of the

representation and mutation and crossover operators introduced by Seng et al. [2006].

O’Keeffe and Ó Cinneide take the research further by introducing a wider list of

refactorings that can be applied to the system and by introducing more fine-tuned fitness

function metrics. The extended refactorings include operations that affect the security of

attributes and methods, i.e. changing it from private to protected or vice versa, and

changing a class from abstract to concrete or vice versa. O’Keeffe and Ó Cinneide

[2007] use the following metrics: data access metric, which indicates encapsulation, i.e.

cohesion within a class, NOM, number of polymorphic methods, CBO, design size in

classes, i.e. the number of classes in the design, and average number of ancestors.

O’Keeffe and Ó Cinneide [2007] also compared the genetic algorithm to other

search algorithms: simulated annealing, multiple ascent hill climbing (MHC) and

steepest ascent hill climbing (HC). They used a standard geometric cooling schedule

and a low starting temperature for the simulated annealing, and this technique proved to

34

be the worst. Reasons for the low success of HC were its very slowness and the facts

that an effective cooling schedule is difficult to determine and that there was much

variance between results. MHC begins similarly to the regular hill climbing algorithm

discussed in Subsection 4.1.1. However, when the MHC algorithm reaches a local

optimum, it does not stop, but performs a predefined number of random transformations

to the solution. MHC then restarts the search from the resulting solution; the number of

restarts is given as a parameter. Both hill-climbing approaches produced high quality

results, and MHC outperformed even the genetic algorithm approach by being

extremely fast, while the HC technique was quite slow.

Harman and Tratt [2007] introduce a more user-centered method of applying

refactoring. They offer the user the option to choose from several solutions produced by

the search algorithm, and also point out that the user should be able to limit the kind of

solutions he wants to see, as he may only have limited resources for the actual

implementation of the suggested refactorings. The fitness functions of search-based

algorithms are also problematized, as they often present a complex combinatorial

problem, and Harman and Tratt [2007] attempt to achieve a solution where the search

wouldn’t rely so heavily on perfectly formulated fitness functions.

The refactoring methods are the same as presented by Seng et al. [2006], and two

metrics are used to calculate the fitness of a solution: the well-known CBO and a new

metric, standard deviation of methods per class (SDMPC) [Harman and Tratt, 2007].

Two combinations of these metrics, f1 = CBO*SDMPC and f2 = CBO+SDMPC, are

then considered as options for the final fitness function.

Harman and Tratt [2007] present Pareto optimality to aid the evaluation and

selection of the results given by the fitness function. They define Pareto optimality as

follows: “In economics the concept a Pareto optimal value is effectively a tuple of

various metrics that can be made better or worse. A value is Pareto optimal if moving

from it to any other value makes one of its constituent metrics worse; it is said to be a

value which is not dominated by any other value. For any given set of values there will

be one or more Pareto optimal values. The sub-set of values that are all Pareto optimal

is termed the Pareto front of the set.” Harman and Tratt [2007] point out that the “true”

Pareto front for a search-based system is analytically impossible and impractical to

search. Therefore, the front of Pareto optimal values that can be created through a series

of runs is considered to be an approximation of the “true” Pareto front.

Pareto optimality is used when the user needs to choose the desired solution. It

might be difficult to see what solutions have a truly good combination of the two

metrics presented: by showing the solutions belonging to the Pareto front, the user can

be sure that these are indeed “good” solutions.

35

4.1.4. Architecture development

Program transformations for architecture development apply bigger modifications to the

system than simple refactoring operations. An example of program transformation is

implementing software design patterns to an architecture representation. In general,

program transformation is about changing the syntax of the program while keeping the

same semantics [Clarke et al., 2003]. This can be achieved by applying a series of

transformation steps. Thus, the solution that is searched for is the optimal sequence of

transformations. The fitness function, on the other hand, is a combination of code level

software metrics, as introduced in Chapter 2, to measure the quality of the resulting

architecture. Mutation operators feature e.g., replacing a transformation in the sequence,

shifting transformations or rotating the sequence by swapping the places of two

transformation steps. Program transformations can be used for maintenance and re-

engineering purposes as well as developing an initial architecture [Clarke et al., 2003].

Amoui et al. [2006] have attempted to implement software design patterns with the

help of genetic algorithms. Their goal is to use genetic algorithms to find the optimal

sequence of high level design pattern transformations to increase the reusability of a

software system. Amoui et al. [2006] introduce the concept of supergenes when

defining the encoding for the chromosomes. Each chromosome representing a series of

design transformation consists of a set of supergenes, each of which represents a single

transformation. A supergene contains information of the pattern number implemented,

the package number and the classes that the pattern is applied to. Because each

supergene has different parameters, mutations and crossovers may result in invalid

supergenes: these are found and discarded [Amoui et al., 2006]. The crossover operator

has two different versions which can be used separately or together: one can either

administrate a crossover at supergene level, swapping the places of the supergenes

before and after the crossover point, or select two supergenes and apply a crossover at

gene level to these supergenes. The mutation operator mutates a random number of

genes inside a randomly chosen supergene. The fitness function used by Amoui et al.

[2006] measures the distance from the main sequence D, and is defined as

 D =
2

1−+ IA
,

where A =
esTotalClass

assesAbstractCl

and I =
ae

e

CC

C

+
,

where Ce is defined as number of classes whose elements are used by other classes, and

Ca is the number of classes using elements of the other classes [Seng et al., 2006].

36

Amoui et al.’s [2006] tests show that genetic algorithm finds better solutions in less

time than a random search of design transformations. Similar results have also been

achieved by Grunske [2006].

The performance of a software system comes down to how efficient the underlying

architecture is. In addition to optimizing the efficiency of an architecture in terms of

structure, there are still a set of parameters that can be optimized for any given

architecture. These parameters are related to optimization methods such as loop tiling,

loop distribution, loop unrolling and array padding optimization. Che et al. [2003]

present how these parameters can be optimized with a genetic algorithm by

transforming the parameter selection into a combinatorial minimization problem. They

give a vector containing the parameters to the application, and then execute the program

in order to test the runtime achieved with the given parameters. The vectors containing

the parameters are generated by a genetic algorithm, and their “goodness” is evaluated

by the execution time, so that the less time it takes to run the program the better. The

result should be a set of near optimal parameters for different architectures. In order to

do the tests in reasonable time, Che et al. [2003] have done transformations to the initial

code of the application the runtime of which is being tested. The encoding used for the

genetic algorithm is a string of integers, the fitness function uses the knowledge on how

high the execution time of the individual is on the list of execution times of the

population, and selection is performed as a combination of elitist and roulette wheel

selection. Preliminary results show that extreme improvements can be achieved in

execution time using this approach for parameter optimization.

4.2. Search algorithms in software analysis and testing

In addition to design related software engineering problems, there are several other

fields of software engineering where search algorithms have successfully been

implemented, e.g., testing, requirements engineering and project management. I will

now present some examples as to demonstrate how widely search algorithms can indeed

be used in the area of software engineering.

Search algorithms can be applied to the area of testing for they are convenient in

producing optimal test cases. These test cases can be divided into categories depending

on what kind of testing they are used for: structural testing, specification based testing

or testing to determine the worst case execution time [Clarke et al., 2003].

Structural test techniques determine the adequacy of a test set by considering the

structure of the code. Normally such techniques measure the coverage of source code,

i.e., the proportion of different constructs that are executed during testing, and full

coverage is usually expected. Coverage can be divided into three different categories:

statement coverage, branch coverage and path coverage [Clarke et al., 2003]. Fitness

functions may be defined according to what is measured: how many statements the test

case covers, how close to the correct branch does the test case get to, or how many paths

37

it covers and how close does it get to the paths it is supposed to cover. Specification-

based testing can be done with the use of pre- and post-conditions P and Q,

respectively, and forming a predicate C(P, Q) = Q V¬P. A fault is detected if the

predicate C is false, and it can be examined with, for example, simulated annealing

[Clarke et al., 2003].

Genetic algorithms can quite straightforwardly be used in order to find minimal and

maximal execution times as the fitness function is easy to define to be dependent on the

execution time of the test case represented by the chromosome [Clarke et al., 2003].

In the cost estimation problem, the size of the application, usually measured in lines

of code or in function points, is examined in relation to the effort, which is usually

measured in person-months [Clarke et al., 2003]. Search algorithms, and especially

genetic algorithms in this case, are used in order to find predictive functions for the

relation. The operators of a solution function include +, -, *, /, power, sqrt, square, log

and exp, which will allow approximation of almost any function likely to solve the

problem. The initial population is formed of a set of well-formed equations, to which

the normal operators of a genetic algorithm are applied [Clarke et al., 2003]. The fitness

function used to evaluate the resulting equation is the mean squared error,

 mse =
2

1

−n
∑
=

−
n

i

ii yy
1

2)ˆ(.

The next generation is selected with the fitness-proportionate selection method [Clarke

et al., 2003]. The main benefit of using a genetic algorithm in cost estimation is the

achieved confidence in results; the algorithm explores solutions solely based on their

fitness values and does not constrain the form of the solution. Thus, even complex

evaluation functions have the possibility of being found and the final set of equations

provided by the genetic algorithm truly have the best predictive values [Clarke et al.,

2003].

Clarke et al. [2003] present that search algorithms can also be used for requirements

phasing. The development of a system consists of iterative cycles of selecting a set of

requirements and implementing them, after which the system is presented to the

customer. Problems arise when there are several customers with different interests: not

all customers agree with what requirements should be implemented in the following

iteration. To find out the most valued requirements, they need to be weighted or

prioritized in some way by all customers. When the requirements have been scored in

some way, the problem becomes about finding the optimal set of requirements to

implement. However, this problem is an instance of the 0-1 knapsack problem, which is

known to be NP-hard, and thus makes it appropriate for search algorithms presented in

Chapter 3 [Clarke et al., 2003]. A solution to the problem can be represented as a bit

vector, bits representing the presence or absence of a requirement, with the basic

mutations and crossover operators as discussed in Chapter 3. Neighbor proximity can be

38

represented by the Hamming distance. The fitness function will naturally be the sum of

priorities, weights or votes assigned to the requirements represented by a solution. This

kind of encoding enables the use of several different search algorithms [Clarke et al.,

2003]. Unfortunately, requirements are rarely so simple and independent of one

another: usually requirements depend on other requirements, and implementing a

requirement before the ones it depends on have been implemented will greatly increase

its cost. Also, customers may not prioritize requirements using the same criteria, as

others may value cost and others development time. Thus, each requirement needs to be

represented with a vector that contains all the relevant information: cost, development

time, dependencies, etc. This complicates the problem as the fitness function needs to

be refined, and it may now be possible to generate illegal individuals, which need to be

dealt with [Clarke et al., 2003].

A similar problem lies in the area of project management. When embarking on a

project, there are several conflicting desires: costs should be minimized while duration

and quality should be maximized, and human resources and the budget should be

managed optimally. Alba and Chicano [2007] have approached the project scheduling

problem with a genetic algorithm and they define the project scheduling problem as

follows. Costs associated with the employees and the project should be minimized as

well as the duration. The employee is regarded as a resource with several possible skills

and a salary, which is the cost of the employee. The employee also has a maximum

dedication to the project, which tells how much time the employee can use for the

project. If the employee is presented with tasks requiring more time than his maximum

dedication, the employee is forced to work overtime, which results in a high risk of

errors that in turn lower the quality of the project as well as an increase in duration.

Alba and Chicano [2007] model the possible solutions as a dedication matrix,

encoded into a binary string, which is the representation used for the genetic algorithm.

The fitness function is calculated from the weighted cost and duration of the suggested

solution, and a substantial penalty is added if the solution is not feasible. The

performance of the genetic algorithm is tested by varying the number of tasks and

employees, the special skills of the employees and the number of skills an employee

has. Results show that increasing the number of employees decreases the quality of the

solution, as it becomes more difficult to effectively assign tasks to employees. The same

result can be seen from the experiment with the number of tasks: the more tasks, the

more complex the problem. Reversely, the more skills an employee has, the easier the

problem becomes to solve.

Dick and Jha [1998] have applied a genetic algorithm to address the problem of co-

synthesizing hardware-software embedded systems. A co-synthesis system determines

the hardware and software processing elements (PE) that are needed and the links that

are used for a given embedded system. A co-synthesis system must carry out four tasks:

39

allocation, assignment, scheduling, and performance evaluation. The

allocation/assignment and scheduling are known to be NP-complete for distributed

systems, so the co-synthesis problem is an excellent candidate for search algorithms

[Dick and Jha, 1998]. The implementation by Dick and Jha [1998] optimizes price and

power consumption and heuristics are applied to allow multi-rate systems to be

scheduled in reasonable time. The system is represented as a combination of the

following data: cost, task graph, processing elements, communication links, constraints

and a PE allocation string. Solutions are grouped into clusters so that systems with the

same allocation string belong to the same cluster. Mutations and crossovers can be

defined both at the cluster and the solution level. Dick and Jha’s [1998] solution

provides the user with the Pareto-optimal set of architectures instead of the single “best”

solution, and has shown very promising results in solving co-synthesizing problems.

4.3. Other software engineering related problems

In addition to software engineering problems, search algorithms can be used for

problems in related field. I will briefly introduce some research in such problems, as

when studying these problems at a more abstract level, they may also provide new

insights as to how search algorithms can be used in the field of software engineering.

Network processors are optimized to process packets and provide network

functionality. Noonan and Flanagan [2006] have inspected how genetic algorithms can

be used to search for an optimized configuration of a network processor or to enhance a

solution suggested by a user. A multi-objective fitness criteria, based on empirical

calculations and analysis, is used to determine the “goodness” of a solution, and the

result will give information on the bus widths, speed of processing units and chip area.

The POOSL (Parallel Object Oriented Specification Language) is used to model the

processor, and after optimizing criteria are selected, the genetic algorithm attempts to

find the optimal parameter values for the POOSL model, as it is parameterized in terms

of clock speed, bus widths, etc. [Noonan and Flanagan, 2006]. For the chromosome

representation Noonan and Flanagan [2006] use a set of seven integers, which represent

four different bus widths and three different processor speeds. Mutation and crossover

operators get values from the user, and mutation to the bus widths is implemented by

adding or subtracting the given value, and mutation to processor speed is applied so that

the integer value is incremented or decremented by the given percentage value.

Burgess [1995] has also applied a genetic algorithm to processors. He presents the

more high-level problem of optimizing the multiprocessor computer architecture, as the

design of interconnection network affects greatly the performance of a multiprocessor

system. Optimizing network connections between processors will produce

configurations that perform well with real problems [Burgess, 1995]. Every processor is

given a number, and the valency of the network determines the number of links from

processors, which are also numbered. The links between processors are represented by a

40

pair of links, and the genetic algorithm handles a string consisting of such pairs. With

the use of crossovers and mutations, the links between processors are changed. This

may result in illegal solutions, so a corrective operation is also used. An elitist selection

is used to choose the next generation and find the optimal network configuration.

Genetic algorithms can also be used for commercial problems, as Asllani and Lari

[2007] demonstrate with their implementation of genetic algorithms to dynamic and

multiple criteria web-site optimizations. The purpose is to find an optimized

combination of web-objects, such as banners, advertisements and incentives, as well as

an optimized sequence of different pages in terms of download time, visualization, time

spent on a page and potential sales. Each web-object has several attributes, such as

product name, visualization score, download time, and the probability that the product

will be sold in combination with other products or services [Asllani and Lari, 2007].

The chromosome representation is a sequence of web-objects, each represented by an

array of web-object structures and a probability matrix. The fitness of a solution is

calculated as a combination of the download times, visualization scores and sales

probabilities of the objects in the sequence, where the probability of sale of the kth

object of the sequence is affected by its neighboring objects. The partial fitnesses are

weighted according to their importance as seen by the user. The crossover operator is a

traditional one, and mutation is implemented as a swap of two objects. The results

achieved by Asllani and Lari [2007] show that the algorithm worked well with virtually

any number of web-objects, and successfully took into account both the aesthetic and

the commercial needs assigned for the web page.

Finally, Potgieter and Engelbrecht [2007] have experimented with a genetic

algorithm to construct an optimal polynomial expression to characterize a function

defined by a data set. The mutation and crossover operators are used to teach the

algorithm structurally optimal polynomial expressions, and an efficient data clustering

algorithm is also used to reduce the training pattern search space. The representation

used for the algorithm is a set of unique term-coefficient mappings, and each term is

made up of a set of unique variable-order mappings. Four mutations are used in order to

expand the search space: shrink and expand, which remove and add one term-

coefficient pair to the set, respectively, and perturb and reinitialize, which modify the

variable-order mappings and reinitializes the whole representation, respectively

[Potgieter and Engelbrecht, 2007]. The crossover operation is a straightforward one, as

it combines two subsets of the term-coefficient mappings to build a new individual.

The fitness function used is similar to the adjusted coefficient of determination, and a

variation of the elitist selection, the “hall of fame” selection, where the structure of the

solution as well as the fitness is taken into account, is used to select every new

generation.

41

5. Genetic construction of software architectures

A software system is constructed to serve a specific purpose. In order to achieve the

desired outcome, the software needs to complete several tasks leading to the final

solution. The tasks can be grouped into responsibilities: a responsibility describes a

logical function without giving specific details about the actual implementation. For

example, a web application may have a responsibility “update user registry”. This

responsibility holds tasks such as processing the data to be updated, checking the

validity of the user registry, and possible notifying of exceptions. The goal in this thesis

is to apply genetic algorithms in order to build an architecture for a system when its

responsibilities are given as a dependency graph. The basic architecture considers the

class division of the responsibilities, and interfaces, abstract classes, inheritance and a

message dispatcher are brought into the architecture as fine-tuning mechanisms.

5.1. Architecture representation

When using a genetic algorithm, the first thing needed is an encoding for the solution.

The encoding chosen for the implementation presented here follows the supergene idea

given by Amoui et al. [2006]. A chromosome consists of supergenes, each of which

represents one responsibility in the system. A supergene Gi contains two kinds of

information. Firstly, there is the information given as input for the responsibility ri: the

responsibilities depending on it {r1i’, r2i’, …, rmi’}, its name ni, execution time ti,

parameter size pi, frequency of use fi, and type di (functional or data). Secondly, there is

the information regarding the positioning of the responsibility ri in the architecture, and

for this, class and interface libraries need to be created in the initialization. For a system

of n responsibilities, a class library is defined as CL = {(C1, 1), (C2, 2), …, (Cn, n)}, so

Ci can be identified by the integer value i of the tuple (Ci, i). The tuple notation is

chosen so that the value k for class Cj, which represents the class for gene Gj can be

mapped to the respective class (Ck, k) in the class library. An interface library is

similarly defined as IL = {(I1,1), (I2,2), …, (In,n)}, where Ii is identified by the integer

value i of the tuple (Ii, i). An abstract class library ACL is defined as ACL = CL. As

only one message dispatcher is allowed in the system, there is no need for a dispatcher

library. These identifiers are used in Gi, as it contains information of the class Ci that the

respective responsibility ri belongs to, the interface Ii it implements, the class ACi it

inherits and the group of responsibilities, RDi, it is communicating with through its

dispatcher Di. The encoding is presented in Figure 1, which represents a chromosome

with n responsibilities.

42

Figure 1. Chromosome encoding.

This encoding ensures that the dependency graph given as input is never

jeopardized, as there is no mutation that would alter the set of depending

responsibilities. It is also a simple way to store all the necessary information. As the

encoding is responsibility-centered, there is no need for separate encodings for, e.g.,

classes and interfaces. This also ensures that each responsibility is present in the system,

as the class property must always have a value belonging to the given class library. The

crossover operation is also safe and can be done as a traditional one-point crossover: as

the properties of a responsibility remain untouched, there is no risk of illegal class

distribution, that is, no responsibility can be in two classes or removed from the system

as a result of crossover.

The weakness of this kind of encoding becomes apparent when the solution needs to

be visualized as a UML class diagram, and when class based quality metrics need to be

calculated. As the information is now needed from the perspective of the classes and

interfaces, extra effort is needed to extract it from the individual supergenes. However,

the class diagram only needs to be drawn once to visualize the final solution, and

operations calculating the different metrics also need information regarding each

responsibility, so the cost of a responsibility-centered model is not that much greater in

the end. As also the mutation operations truly benefit from the chosen encoding since

the architecture is fairly easily kept legal, the benefits clearly overcome the

shortcomings of the presented modeling method.

5.2. Mutations

Mutations transform the architecture in two ways: on system level, where the mutation

affects the entire chromosome, and on responsibility level, where the mutation affects

only one supergene. For the supergene level mutations, the mutation index of the

chromosome is chosen randomly, and the actual effect will be on the responsibility

represented by the supergene in the chosen index.

The system level mutations are the following:

• introduce a dispatcher to the system

• remove a dispatcher from the system

• introduce a new abstract class to the system

 G1

r11’,

r21’,…

, rm1’

t1 p1 f1 n1 d1 Class

C1

Inter

face

I1

Dispa

tcher

D1

RD1

⊂ {r11’,

r21’,…,

rm1’}

Abstract

class

inherited

AC1

G2 G3 …… Gn

43

• remove an empty abstract class to the system.

Crossover is also considered as a mutation in this implementation, but will be discussed

separately as it is still implemented as a traditional one-point crossover operation with a

corrective function. The mutations that add a new property are executed by adding a

new supergene to the chromosome. The responsibility-related attributes of this new

gene are set to zero or null, and the only information actually stored in the gene is the

number of the abstract class or the dispatcher. If the abstract class ACk introduced is

already present in the chromosome as class Ck, then the class Ck is declared abstract.

The mutations that remove properties simply check that the abstract class or dispatcher

found in the gene subjected to mutation is not used by any other gene in the

chromosome, after which the gene is discarded.

In the responsibility level, supergene Gi, representing responsibility ri, can be

subjected to the following mutations:

• split the class Ci in Gi into classes Ci and Ck

• merge two classes Ci and Cj where Cj is in Gj

• introduce interface Ik, (Ik, k) ∈ IL, to Gi

• remove interface Ii from Gi

• introduce a dispatcher connection to Gi

• remove a dispatcher connection from Gi

• introduce an abstract class ACk, (ACk, k) ∈ ACL, to Gi

• remove abstract class ACi from Gi.

When splitting a class, the responsibilities located in Ci are divided into two classes, Ci

and Ck. The split is done by checking good cutting points, i.e., if Ci contains

responsibilities that depend on each other, they are kept together in the “old” class Ci

while the other responsibilities are moved to Ck. Merging two classes is the counter-

mutation for splitting classes: responsibilities from two different classes, Ck and Ci are

placed in one class, Ci.

When introducing interface Ik to Gi, the interface Ik is first chosen randomly from

the library, after which the interface value of Gi is set to k, thus implementing Ik through

ri. Interface implementations are restricted in the way that only function-type

responsibilities are allowed to implement an interface. Also, to prevent solutions with

anomalies, it is restricted that a class would call an interface it implements itself. All

responsibilities that depend on ri will now be associated with Ik instead of being directly

associated with the class Ci. Removing an interface association is the counter-mutation,

i.e., if ri is implementing the interface Ii, the interface value of Gi thus being i, the

implementation is removed by setting the interface value to 0.

Introducing a dispatcher communication to ri will cause a depending responsibility rj

to communicate with ri through the dispatcher Di instead of being directly associated

with the class Ci. Removing a dispatcher communication will cause a depending

44

responsibility rj to communicate with the responsibility ri either directly or through an

interface Ii, if the responsibility in question implements one.

The responsibility ri can also be introduced to an abstract class ACk, which will

cause the class Ci to inherit ACk. Removing an abstract class from ri is performed

similarly to removing an interface implementation.

The presented mutations allow different ways of communications between

responsibilities: direct associations between classes, communication through interfaces

(the different varieties of which were introduced in Chapter 2), and communication

through a dispatcher, which implicates that the message dispatcher architecture style

would be an appropriate choice for the system in question. The class structure is

modified by splitting and merging classes, and keeping sub-systems intact is encouraged

by checking for split points. Each mutation also has a counter-mutation, so every move

can be reversed in order to ensure the most flexible traverse through the search space.

The chosen mutations also conform to the idea of unit operations introduced by

Bass et al. [1998]. These operations are used to achieve architecture styles and design

patterns, and can be categorized to separation, abstraction, compression and resource

sharing. Merging and splitting a class are clearly analogous to compression and

separation, abstraction is achieved through abstract classes and interfaces, and resource

sharing can be done through a message dispatcher or an interface. It should be noted

that this is a rough analogy of unit operations to these mutations, and at a more detailed

level the unit operations are more complex, and, e.g., introducing an interface to a class

is also a case of separation, as it separates that particular class by “hiding” it behind the

interface. Bass et al. [1998] also discuss the actual resources to be shared and make an

example of databases; this also justifies the incorporation of different types for

responsibilities, and thus identifying data in the system.

5.3. Crossover

The purpose of a crossover is to combine good properties from two individuals. A

crossover between two architectures can be implemented as a traditional single-point

crossover. Figure 2 illustrates a crossover between chromosomes CR1 and CR2 at

crossover index k, the result being chromosomes CR12 and CR21.

45

CR1 :

G1

… Gk Gk+1 … Gm

CR2;

G1

… Gk Gk+1 … Gn

↓
CR12 :

G1

… Gk Gk+1 … Gn

CR21;

G1

… Gk Gk+1 … Gm

Figure 2. The crossover operation

The selected encoding and the way of performing a crossover operation ensure that

the architectures stay legal, as the supergenes stay intact during the crossover operation,

i.e., no responsibility can be dropped out of the system or be duplicated into two

different classes, and no interface becomes “empty”. The optimum outcome of a

crossover operation at index k would be that CR1 has found good solutions regarding

interfaces and dispatchers and a clear structure for responsibilities from r1 to rk, and CR2

contains good solutions for responsibilities from rk+1 to rn in a system with n

responsibilities. Thus, the resulting chromosome CR12 would be a combination of these

solutions, and contain a good solution of the entire system.

Decisions regarding architecture styles are kept during a crossover operation, i.e., if

a responsibility uses the message dispatcher for communication, this way of

communication is maintained even after a crossover operation. Thus, a corrective

procedure needs to be present in the crossover in order to handle situations where only

one of the chromosomes has a message dispatcher present in the system. This kind of

situation is presented in Figure 3, where the supergene Gm and the supergene Gk in

chromosome CR1 are separated during the crossover operation.

46

CR1 :

CR2;

G1

… Gk Gk+1 … Gn

 ↓
CR12 :

G1

… Gk

 Dk rj

Gk+1 … Gn

CR21;

G1

… Gk Gk+1 … Gn … Gm-1 Gm

 Dm

Figure 3. Chromosome CR12 contains a gene needing a dispatcher (Gk) but not the gene

containing the dispatcher (Gm)

As a message dispatcher needs to be declared in the system so it can be used by the

responsibilities, a corrective operation is now needed. The correction is done by adding

the supergene Gm to chromosome CR12, the end result CR12’ shown in Figure 4.

CR12’ :

G1

… Gk

 Dk rj

Gk+1 … Gn Gn+1

 Dm

 Figure 4. Crossover correction

To summarize, the crossover operation combines two subsets of responsibilities

with their respective architectural structures by administering a one-point crossover. A

checking and correcting operation is needed in the case where there is a message

dispatcher present in the system, but as this is a fairly simple procedure, the benefits of

the defined crossover operation clearly overcome this minor disadvantage.

G1

… Gk

 Dk rj

Gk+1 …Gn …Gm-1 Gm

 Dm

47

6. Implementation

6.1. Presenting the program

The implementation has been done with Java SE 1.5.0, and the core program

implemented handles the given data, executes the genetic algorithm, stores data of

fitness values and generates Java-files with javadoc-comments. These Java-files are

then given to UMLGraph_4.8 [UMLGraph, 2007], which in turn generates a .dot –file

containing information of the resulting class diagram. Finally, GraphViz_2.14

[GraphViz, 2007] is used to generate a GIF-picture from the .dot descriptive file.

6.1.1. Structure

The implementation is aimed to be as simple as possible, and it straightforwardly

follows the execution of a genetic algorithm presented in Chapter 3. The modeling

presented in Chapter 5 has been implemented with the Cromosome and SuperGene

classes, presented in the class diagram of the implementation ‘Frankenstein’ in Figure 5.

The SuperGene class is an inner class of the Cromosome, keeping a tight analogy

between the implementation and the presented model. The Cromosome class holds all

information of the system as a whole – the class, interface and abstract class libraries,

used classes, interfaces and the dispatcher, and the fitness value of the individual. It also

has the crossover operation, the mutation operations that affect the entire chromosome,

such as introducing a dispatcher to the system, and all the different fitness functions

responding to the used quality metrics. The fitness function is implemented in the

Cromosome class instead of the GeneticAlgorithm class in order to minimize calls

between classes, as the fitness functions need to constantly access the information

contained in both the chromosome as an entirety as well as its individual supergenes.

The SuperGene class holds the information stored in a gene, as presented in Chapter 5.

It also contains the mutation operations that affect an individual gene, such as

introducing an interface, as well as operations for accessing all the information stored in

the gene. The GeneticAlgorithm class contains the basic operations of the genetic

algorithm – creating a population, handling a population and selecting the next

population. Other classes in the implementation are Frankenstein, which is the main

class, OutputDataHandler, which takes care of storing the fitness data,

InputDataHandler, which transforms the information given as input into a “base”

chromosome, and UMLGenerator, which transforms the information in the achieved

best solution into Java-files.

48

Figure 5. Class diagram of ‘Frankenstein’

The process of ‘Frankenstein’ is described in the sequence diagram in Figure 6.

49

Figure 6. Sequence diagram for ‘Frankenstein’

First, a “base” chromosome is created by the InputDataHandler, which returns a

Cromosome type model of the given set of responsibilities. This Cromosome instance

contains all the information concerning responsibilities given in the input. The

chromosome representation is then given to GeneticAlgorithm so that an initial

population can be created. The population is created in such a way that two special

cases – all responsibilities in the same class and all responsibilities in different classes –

are put in the population by default to ensure variability in the population. Other

individuals are created randomly. In this stage, only the libraries described in Chapter 5

are set, and a random class is chosen for each responsibility. Interfaces, dispatchers and

abstract classes are only incorporated through mutations; they are not present in the

initial population.

After the initial population has been created, the actual algorithm can begin to

process the “chromosomes”. The GeneticAlgorithm class communicates with the

Cromosome class to mutate, crossover and calculate the fitness of each individual in

turn. After the whole population is dealt with, fitness data is stored and the selection for

the next population can begin. After an individual is selected, its mutation probabilities

are adjusted in relation to its fitness value in the population (from now on, this will be

referred to as an individual’s fitness order). The selected next population is returned to

the main class, which will again call the GeneticAlgorithm to handle it. This cycle

50

continues until the termination condition is met. Finally, the best solution is picked up,

and UMLGenerator is called to produce a representation of the solution.

6.1.2. Algorithms

So far I have presented the overall structure and flow of the implementation. I will now

give more detailed descriptions of the most important algorithms within the

implementation: the overall structure of the genetic algorithm, creating a population,

crossover, mutate, selection and setting the probabilities. The mutate operation will

select a mutation from the ones presented in Chapter 5. I will give examples of three

specific mutations: splitting a class, introducing an interface and removing a dispatcher

from the entire system. The other mutations are quite similar, and the logic behind their

implementation can be seen from the example algorithms.

Algorithm 1 presents the general genetic algorithm. Random mutation indexes and

probabilities are set and the chromosome is subjected to mutation. The mutate operation

returns the initial chromosome to crossoverChromosome if the chromosome should be

subjected to crossover. If the chromosome is mutated, it still has a chance to be

subjected to crossover: the second mutation is only effective, if the chosen mutation is

the crossover operation (as discussed in Chapter 5, crossover is thought of as a mutation

as well). The fitness value of the chromosome is calculated after the mutation. After all

the chromosomes have been dealt with, it is known which chromosomes are subjected

to crossovers, which are done in pairs. The fitness values of the offspring are then

calculated, after which the fitness values of the entire population can be sorted. The next

population can now be selected.

Algorithm 1 geneticAlgorithm
Input: base chromosome b, elitism integer e, population size p
Output: best chromosome after termination condition
 chromosomes ← createPopulation(b)
 do

 foreach chromosome in chromosomes

 p ← randomDouble
 i ← randomInteger
 crossoverChromosome ← mutate(chromosome, i, p)
 if crossoverChromosome == null then
 p ← randomDouble
 i ← randomInteger
 crossoverChromosome ← mutate(chromosome, i, p)
 end if

 if NOT crossoverChromosome == null then
 toCrossing.add(crossoverChromosome)
 end if
 fitness ← fitness(chromosome)
 fitnesses.add(fitness)
 end for

 while toCrossing.length > 1do

51

 offspring ←crossover(toCrossing[0], toCrossing[1])
 chromosomes.add(offspring)
 fitness ← fitness(offspring)
 fitnesses.add(fitness)
 remove processed chromosomes from toCrossing
 end while

 sort(fitnesses)
 fitnessBackUp ← fitnesses

 chromosomes ← selection(chromosomes, fitnesses, fitnessBackUp, p, e)
 while NOT terminationCondition;

 getBestSolution(chromosomes)

 Algorithm 2 describes the creation of the initial population, already discussed in

Subsection 6.1.1. The initial population is created by copying genes from the given base

chromosome, and then giving each responsibility a class to which it is located. The

special cases of having only one class, or having each responsibility in its own class, are

created before any other individuals.

Algorithm 2 createPopulation
Input: base chromosome b, population size s

Output: linked list chromosomes containing the chromosomes that form the population
 c ← copy(b)
 set same class for all genes in c

 setLibraries(c)
 chromosomes.add(c)
 d ← copy(b)
 set a different class for all genes in d
 setLibraries(d)
 chromosomes.add(d)
 for i ← 1 to s-2 do

 e ← copy(b)
 set a random class for all genes in e
 setLibraries(e)
 chromosomes.add(e)
 end for

 The crossover-operator is described in Algorithm 3. Both “children” first receive

copies of genes from one parent, and at the crossover point locus, the parent from which

the genes are copied is changed. However, mere copying is not enough, as discussed in

Chapter 5; the use of a dispatchers must be checked. If the first part of the child needs a

dispatcher, but it is not available in the parent providing the part after the crossover

point, then the dispatcher is introduced to the system through a forced mutation.

Algorithm 3 crossover
Input: chromosomes one and two

Output: chromosomes onechild and twochild

 i ← randomInteger
 onechildDispatcher ← 0

52

 twochildDispatcher ← 0
 for j ← 0 to i do
 onechild.geneAt[j] ← one.geneAt[j]
 twochild.geneAt[j] ← two.geneAt[j]
 if one.geneAt[k] contains Dispatcher then
 onechildDispatcher ← 1
 end if

 if two.geneAt[k] contains Dispatcher then
 twochildDispatcher ← 1
 end if

 end for
 for k ← i +1 to two.length -1 do
 onechild.geneAt[k] ← two.geneAt[k]
 end for
 for m ← i +1 to one.length -1 do
 twochild.geneAt[m] ← one.geneAt[m]
 end for

 if onechildDispatcher == 1 AND NOT(two contains Dispatcher) then
 mutationIntroduceMessageDispatcher(onechild)
 end if

 if twochildDispatcher == 1 AND NOT(one contains Dispatcher) then
 mutationIntroduceMessageDispatcher(twochild)
 end if

 The general mutation is presented in Algorithm 4: this operation merely finds out

the mutation that responds to the given probability, and passes along the chromosome.

Algorithm 4 mutate
Input: integer i, the mutation index, double p, the mutation probability, chromosome c

Output: c if subjected to crossover, else null
 mutationChoice ← selectMutation(i, p)
 mutation(c, mutationChoice)

As presented in Chapter 3, each mutation has a probability with which a

chromosome is subjected to it. In the selection process, the crossover is also regarded as

a mutation. As no chromosome can be subjected to more than one mutation during each

generation, the sum of probabilities, given as percentages, should be 100%, as one

mutation should indeed be chosen. As mutations should have fairly low probabilities in

order to keep the evolving of solutions under control, a “null” mutation is used in order

to bring the sum of percentages to that even 100. If the “null” mutation is chosen, the

chromosome will remain as it was.

The selection of a mutation is presented in Algorithm 5. The principle is the same

“roulette wheel” selection as in selecting chromosomes for the next population: the size

of a “slot” in the “wheel” is determined by the probability of the respective mutation.

The list of probabilities is gone through, and when the “slot” which includes the given

probability value is found, the id-number of the corresponding mutation operation is

returned.

53

Algorithm 5 selectMutation
Input: double value probability p
Output: integer id mutationChoice
 for m ← 0 to probabilities.length do
 if p < probabilities [m] AND m == 0 OR p > probabilities [m-1]
 mutationChoice ← m+1
 end if

 end for

 Splitting a class by a mutation is described in Algorithm 6. The class Ck of gene g,

holding responsibility rk, is found out, and a new class is selected randomly. The if-

statement is for selecting the split points discussed in Chapter 5; responsibilities

depending from one another are kept in the same class, and other responsibilities are

moved to the randomly selected new class.

Algorithm 6 mutationSplitClass
Input: gene g
 n ← g.getClass()
 r ← randomInteger
 foreach gene sg in c do
 if sg.getClass() == n AND NOT(sg depends on g) then
 sg.setClass(r)
 end if
 end for

 Introducing an interface to a responsibility is presented in Algorithm 7, and it is

quite straightforward as well. The interface to be implemented is selected randomly.

Then it is checked that the responsibility that should be implementing the interface is of

the type ‘function’, and does not belong to a class that is already implementing the

chosen interface.

Algorithm 7 introduceInterface
Input: gene g
 n ← randomInteger
 if g.type == ‘function’ then
 if NOT exists gene ge:: ge.class == g.class AND exists gene gn:: gn.Interface == n AND
 ge uses gn then
 g.setInterface(n)
 end if

 end if

 The mutation that removes a dispatcher, as presented in Algorithm 8, differs from

the previous mutations in the way that its target is the chromosome, not an individual

gene. It is first checked that the chromosome even contains a dispatcher. If a dispatcher

is found, the default assumption is that no responsibility is using the dispatcher. The

54

genes are then iterated through, and if any of them uses the dispatcher for

communication, removing of the dispatcher is not possible.

Algorithm 8 removeDispatcher
Input: chromosome c

 if c contains Dispatcher then
 usedDispatcher ← false
 foreach gene g in c do
 if g uses Dispatcher then
 usedDispatcher ← true
 end if

 end for

 if usedDispatcher == false then
 dg ← g.dispatcherGene
 g.remove(dg)
 end if

 end if

 After the mutations, the fitness values of chromosomes are calculated, after which

a new generation can be selected, as described in Algorithm 9. The method used for

selection is the “roulette wheel”: each chromosome is given a slice of the “wheel” with

respect to its fitness order. Before any other chromosome is selected, the best ones are

automatically selected through elitism. After this, the slots are calculated for the

“roulette wheel”, and a random probability is generated. Much like in the mutation

selection, the chromosome “owning” the slot responding to that probability is selected

to the next generation. The selection process is repeated until the number of

chromosomes selected for the next generation is equivalent to the given population size.

Algorithm 9 selection
Input: list of chromosomes, cl, list of fitnesses, fl, sorted lists of fitnesses, sfl, population
size integer s, number of elites, integer eliteAmount
Output: a list of chromosomes ncl
 for i ← 0 to eliteAmount do
 fitness ← sfl[i]
 nextFitnesses.add(fitness)
 j ← fl.indexOf(fitness)
 c ← cl[j]
 nextGeneration.add(c)
 cl.remove(c)
 fl.remove(fitness)
 end for

 for k ← 0 to s-eliteAmount do

 wheelAreas ← setWheelAreas(fitnesses)
 i ← randomDouble [0…1]
 chromosomeFound ← false
 for m ← 0 to wheelAreas.length do
 if i < wheelAreas[m] AND m == 0 OR i > wheelAreas [m-1]
 chromosomeFound ← true
 goodness ← sfl.indexOf(fl[m])

55

 setProbabilities(chromosome, goodness, s)
 nextFitnesses.add(fl[m])
 nextGeneration.add(cl[m])
 sfl.remove(fl[m])
 fl.remove(m)
 cl.remove(m)
 end if

 end for

After a chromosome has been selected to the next generation, its mutation

probabilities are set according to its fitness order, as described in Algorithm 10. The

setting of the probabilities is done at this point to avoid calculating the fitness value

twice during the process of handling a population. The probabilities are set so that if the

chromosome’s fitness order is in the “better half” of fitnesses, the probability of

crossover is increased in relation to the fitness order. If the fitness order of the

chromosome belongs to the “lower half”, the probability of the crossover is halved.

Since the sum of mutation probabilities should be 100%, the probabilities of the

mutations must be decreased in relation to the increase in the crossover probabability.

The crossover probability is the last one in the list of probabilities in order to ease the

execution of this algorithm.

Algorithm 10 setProbabilities
Input: chromosome c, order of fitness fo, list of probabilities pl, population size integer s
Output: altered list of probabilities pl

 if fo < s/2 do

 multiplier ← 1/fo
 crossoverprobability ← pl.last – pl [pl.length-2]
 probabilityChange ← crossoverprobability*multiplier
 crossoverprobability ← crossoverprobability + probabilityChange

 mutations ← pl.length -1
 pl[pl.length-2] ← pl.last – crossoverprobability

 for i ← 0 to mutations do
 altering ← probabilityChange/mutations

 pl[i] ← pl[i] – altering

 end for

end if

if fo >= s/2 do
 crossoverprobability ← pl.last – pl [pl.length-2]
 probabilityChange ← crossoverprobability/2
 crossoverprobability ← crossoverprobability/2
 mutations ← pl.length -1

 pl[pl.length-2] ← pl.last – crossoverprobability

 for i ← 0 to mutations do
 altering ← probabilityChange/mutations

 pl[i] ← pl[i] + altering

 end for

end if

56

6.1.3. Parameters

The input for the implementation is the dependency graph of the responsibilities in the

system as well as performance information of the responsibilities. The graph is given as

an adjacency list, which makes is possible to present the information in a simple text-

file, where each responsibility is represented by one line in the file. The output is a

UML class diagram, which is constructed of the best solution remaining in the final

generation. Fitness data is also stored throughout the generations in a separate file so

that the development of fitness values can be monitored.

For the genetic algorithm, there are two types of adjustable parameters: the common

parameters for any genetic algorithm implementation, and the parameters where the

nature of the problem needs to be considered. The common parameters include the size

of the population, the termination condition (often either tied to the fitness value or to

the number of generations), the level of elitism and how the order of fitness affects the

crossover rate. When choosing the level of elitism one should keep in mind that the

level should be high enough to ensure that the solutions truly evolve by having the best

material to develop from, but at the same time there should be enough room for

selection through probability, in order to ensure a free enough traverse through the

search space. As for the effect of the fitness order to the crossover probability, the

current solution ensures a perfect relation between the order of fitness and the increase

in the crossover probability. Other implementations are also possible, as long as the

following requirements are met. Firstly, the probabilities should be kept under control,

i.e., there must still be a possibility for at least some mutations after increasing the

probability of the crossover. Secondly, increasing the probability of the crossover

should have some logical relation to the fitness order. Thirdly, the probability of

crossover should not be raised for the worst solutions, but rather deducted, as it can be

assumed that they have poor material that should not be passed on to the next

generation.

The problem specific parameters are the weights assigned to different fitness

evaluators (quality metrics) and the probabilities given to different mutations. The

fitness weights can be given freely, but in order to ensure that the relation between

metrics is as intended, the ranges of the different quality metrics should be taken into

account when assigning the weights. When assigning weights, one should remember to

think of what characteristics are most valued, as it is extremely difficult to optimize all

quality aspects at the same time. In this implementation, I have used 8 different

evaluation criteria, some of which are seen as negative properties and some of which

positive. The restrictions to mutation probabilities have been discussed in Subsection

6.1.2, and adding the combinatorial problem of optimizing these probabilities alongside

with the fitness weights results in a very complex task of parameter optimization.

57

6.2. Evaluation metrics

There are two different types of characteristics that need to be evaluated in the produced

architecture: the basic structure, i.e., how the responsibilities have been divided into

classes and how many associations there are between classes, and the fine-tuning

mechanisms, i.e., the use of interfaces, abstract classes and the message dispatcher. As

presented in Chapters 2 and 4, there are several structure evaluation metrics which have

been successfully combined and used as a fitness function for genetic algorithms

processing architectures. As for the evaluation of interfaces, abstract classes and using

the dispatcher, there are no metrics found so far for pure numerical measurement.

Amoui et al. [2006] use a rather simple function for measuring the fitness of abstract

classes as a part of their metric “distance from main sequence”, introduced in Chapter 4.

However, this function merely measures the amount of abstract classes without

considering whether the placement of the abstract classes is “sensible”. Thus, metrics

for all these fine-tuning mechanisms needed to be constructed based on the information

at hand of software architectures.

For the literature based structure metrics, the analogy is used that each responsibility

is equivalent to one operation in a class, and each class is a module or component,

depending on what is used in the metric. As the concept of a responsibility is highly

abstract, this most probably will not be the case if the system under construction would

actually be implemented, but as there is no knowledge of what kind of operations each

responsibility entails, this analogy seems justified enough.

The overall quality of the architecture is used as the fitness value for the genetic

algorithm: this quality is achieved as a combination of all the quality metrics used, as

presented in Algorithm 11. Not all metrics need to be used: by setting the weight to 0,

the metric can be discarded from the fitness function.

Algorithm 11 fitness
Input: chromosome c, list of weights wl
Output: double value fitness

 fitness ← wl[0]*fitnessMQ(c) - wl[1]*fitnessRFC(c) + wl[2]*fitnessCohesion(c) -
wl[3]*fitnessCoupling(c) - wl[4]*fitnessInstability(c) + wl[5]*fitnessAbstracts(c) -
wl[6]*fitnessDispatchers(c) + wl[7]*fitnessInterfaces(c)

6.2.1. Metrics for structure

Structural metrics measure the placement of operations between and within classes, as

the efficiency of an architecture is affected by how many different calls there are

between classes. These metrics, apart from modularization quality, only measure the

quality of one class, but what is needed in this implementation is to get a quality value

for the whole system. Thus, the final value of a metric is the sum of the respective

metric values for all classes divided by the number of classes: this gives the average

quality value of the classes present in the system.

58

Firstly, I have chosen the modularization quality MQ, which is presented in Chapter

2. The strength of this metric is that it evaluates two separate metrics, cohesion and

coupling, at the same time and gives one balanced value. The implemented fitness

algorithm for MQ follows the definition by Doval et al. [1999], and only gives values

between minus one and one. As such, it does not provide enough variation between

quality values in order to evaluate the structure of the solution on its own. The

modularization quality metric has been kept in further tests though, to complement the

other metrics. However, the value given by the MQ metric needs to be weighted with a

high scalar.

Secondly, I have used the response for class, RFC, in order to minimize

dependencies between classes and to also prohibit overly large classes. RFC has proven

to be a powerful metric for controlling the dependencies, but as far as keeping large

classes under control, it is overpowered by coupling and cohesion metrics, which

achieve much higher values. Emphasizing RFC clearly improves the structure, as

solutions with the least associations between classes are valued. The implementation of

RFC is based on the definition by Chidamber and Kemerer [1994], and its values range

from 0 to |responsibilities|.

Thirdly, there are the traditional cohesion and coupling metrics [Chidamber and

Kemerer, 1994], of which I have used the information-flow based versions [Seng et al.,

2006]. The basic structure is already measured by MQ and RFC, and there is no need to

have overlapping metrics. However, as cohesion and coupling are very standard metrics

and recognized as good evaluators for architecture efficiency, it seems reasonable to

incorporate them to the implementation as well. Thus, using the information-flow based

versions services two purposes: firstly, the implementation uses standard quality

metrics, which increases the reliability of the results. Secondly, the evaluation of the

structure is more detailed, and the information given of the responsibilities is better

used, as the information-flow based metrics use the parameter size to evaluate the

“heaviness” of a call between two responsibilities in different classes. Coupling and

cohesion both achieve extremely high values (their range goes from 0 to infinity), and

thus tend to overpower the other metrics measuring similar qualities. Because of their

overpowering effect and the fact that in the end, coupling and cohesion encourage very

large classes, there is a need to “null” the effect of their reward if the system is not

structured enough. In practice, the value of the information-flow based cohesion metric

is set to 0 if the system only has one class, thus having all responsibilities in the same

class.

Finally, instability is used to measure the modifiability of the presented system. The

instability metric has been implemented as it is defined in Chapter 4 following Seng et

al. [2006]. Instability is well-suited for evaluating automatically generated architectures,

as it is designed to measure the quality of the entire system. Amoui et al. [2006] have

59

successfully used it as a part of their fitness function when evaluating architectures after

the implementation of design patterns. Having the instability metric as an evaluator in

an early stage will give a better base for further development. The range for the

instability metric is from 0 to 1 (also calling for a high weight), and it is a negative

quality.

6.2.2. Metrics for fine-tuning mechanisms

As there is no metric defined in the literature that would measure the effect of

introducing interfaces to an architecture, such a metric had to be defined in order to

prevent completely random incorporations of interfaces to the system. The logic behind

this metric is that an interface is most beneficial if there are many users for it. As there

are no empty interfaces, i.e., an interface needs to be implemented by a responsibility

belonging to the system, it can be concluded that an interface is well-placed if the

responsibility implementing the interface in question is used by many other

responsibilities. This increases reusability: changes to such a highly used responsibility

have great impact on a system, and there is a big risk that the depending responsibilities

may not get what they need from the changed responsibility. Thus, placing the needed

responsibility behind an interface ensures that it will still service properly the

responsibilities that need it even after it has been updated. The interface quality metric

also considers how well the interface is implemented. A penalty is given for both

unused and over flown interfaces. Both of these happen on the case where there is a

responsibility implementing an interface and that responsibility is not needed by any

other responsibility. Thus, the interface is unused, if the responsibility is the only one

implementing its interface. An interface is over flown when there are many

responsibilities implementing it, but the ones calling the interface do not need them all.

The value given by the interface metric is ∑(interface users) + ∑(implementing

responsibilities) - ∑(unused implementers) - ∑(unused interfaces), which is divided by

the number of interfaces to give an average value as in the class metrics. The range for

the interface quality metric goes from 0 to 2*|responsibilities| and it is a positive quality.

The metric for dispatchers is based on the facts that dispatchers decrease efficiency

and performance, but bring modifiability to the system, as components can be changed

if the messages are still exchanged correctly. Thus, the use of dispatchers is punished by

taking into consideration the parameter size of the needed responsibility, as the bigger

the message is that the dispatcher needs to transmit between classes, the slower the

process will be. Dispatchers are not rewarded, as they always complicate the structure of

the architecture, but they are allowed, as they are useful in ways presented in Chapter 2.

Thus, the value given by the dispatcher metric is ∑ (parameter sizes of dispatcher

users). The range for the dispatcher quality value goes from 0 to infinity, and as stated,

it is a negative quality.

60

The metric for evaluating abstract classes is based very strongly on the same ideas

as the interface metrics, which is logical, as interfaces have developed from abstract

classes. Every abstract class is rewarded by the number of responsibilities (and the

classes to which they belong) that inherit it, the length of the “dependency chain”

behind the inheriting responsibilities, and the number of responsibilities using the

inheriting responsibilities. Empty abstract classes are punished by decreasing the quality

value by two, as no responsibility is in the class, and no responsibility needs the class.

The value given by the abstract quality metric is ∑ (inheriting classes) + ∑(lengths of

dependency chains) + ∑(responsibilities in abstract classes) – 2*|empty abstract classes|,

and as with the class metrics, it is divided by the number of abstract classes in the

system. The range for the abstract class quality value goes from 0 to |responsibilities|,

and it is a positive quality.

6.3. Fine-tuning the parameters

6.3.1. Example test cases

Initial tests for the implementation were run with an example data set, given in

Appendix A. The example contains 20 functional responsibilities and 4 data

responsibilities with 22 dependencies, and has 5 subsystems within it. Tests were run

with 6 different combinations of the quality metrics presented in Section 6.2, and then

giving the same set of weights to all combinations. Different sets of mutation

probabilities were also tested in an attempt to both see whether increasing the mutation

probability would actually affect the final result, and to find more structured results. The

tests were mostly run with a population size of 50, elitism level of 7 elites, and the

number of generations set to 100. Some tests were also run with 150 or 200 generations

to see if this would have a noticeable effect to the solution, but as it did not, 100

generations was set as the default. Tests with 1000 generations were also made in order

to check how the fitness values evolve over a longer period of time.

Raw numerical fitness data does not reveal much of a produced solution: the fitness

values merely benefit the analysis of how the values evolve, and ensuring that there is

variance within the population; the highest and lowest fitness values should clearly

stand out from the average. Statistics of the amount of classes or interfaces used does

not reveal much of the structure either, apart from special cases when the number of

classes is very small or very big, and likewise with the use of interfaces. In order to

somehow evaluate the “goodness” of the produced solution, one needs a visualization to

see how the responsibilities are distributed, how the interfaces and dispatcher are used,

and how clear the presented solution is overall. Thus, when evaluating the goodness of a

solution from a class diagram, the evaluation is bound to be subjective, and people from

different backgrounds may appreciate different things. I have evaluated the goodness of

the solution based on three things: the structure, the use of interfaces, and the use of

61

dispatcher. The structure should be clear: there should not be a complex web of

dependencies. Interfaces should be used efficiently and the amount of empty interfaces

should be minimal. The dispatcher should also be used “with a thought”; the amount of

connections to a dispatcher should remain reasonable and the connections should add a

minimal amount of complexity to the system.

I will now present some example solutions achieved during the test runs that show

how different aspects of quality are present in the produced solution. The raw data,

containing the metric weights, mutation probabilities and statistics of the development

of fitness value, for each of these examples is presented in Appendix B.

In Figure 7, representing test case 1, the architecture is very simple and favors large

classes. Grouping the responsibilities into classes by subsystems is successful, as can be

seen by looking at Class 11. This class contains one data-responsibility and four

functional responsibilities. Yet, there are no dependencies from Class 11 to other

classes: all the responsibilities that it needs are within that same class. The same can be

seen in Class 18, where there are four functional responsibilities, and only one

dependency to another class.

Figure 7. Test case 1.

While in test case 1 all the responsibilities where in one system, in test case 2, the

result of which is shown in Figure 8, two subsystems have been successfully separated

in the solution. This solution shows that the implemented algorithm is able to identify

subsystems from the given data and group the responsibilities belonging to those

subsystems. Identifying subsystems will become even more important in larger systems,

as finding separate subsystems greatly clarifies the structure of the architecture. An

optimum place for implementing the message dispatcher would also be between two

subsystems, as to have the whole system communicating. However, such a solution

62

would require a shared responsibility between the subsystems, which would be in

charge of the communication, and such a responsibility is not present in this example.

Figure 8. Test case 2.

The previous examples have shown that evaluating structure indeed works in the

implemented algorithm. The following test cases show that fine-tuning mechanisms can

also be implemented successfully.

Test case 3, presented in Figure 9, shows how interfaces are placed so that they are

used efficiently. This test case provides a solution with 2 interfaces that are unused:

these are not beneficial in the current system, but if it would be connected to another

system, these currently unused interfaces could be put to use to access this system.

However, for the current situation, it is more beneficial to have interfaces with many

using classes, as they now shield responsibilities and guarantee that the using classes

will be provided the services they need. In test case 3, there are 6 interfaces, 5 of which

have 2 users, and one has 1. What is more is that 4 of the used interfaces are only

implemented by one responsibility, but are used by several: the implemented algorithm

has successfully separated the most used responsibilities to their own interfaces.

63

Figure 9. Test case 3.

 In Figure 10, representing test case 4, good usage of the message dispatcher can

be seen: two classes send calls from several responsibilities through the dispatcher. The

dispatcher can be seen as a center for the system, connecting different subsystems. As

can be seen, by achieving a heavily used message dispatcher, compromises had to be

made, and the actual structure of the overall system is not as clear as it could be.

64

Figure 10. Test case 4.

Test case 5, presented in Figure 11, models very well a high-level architecture,

where communication between components is mostly handled with interfaces and the

message dispatcher. In this solution, the operations in classes are heavily hidden, as they

are very much used through interfaces, which are in turn used through the message

dispatcher. A more higher-level solution where classes are divided into components

could fairly easily be modeled based on this presentation.

Figure 11. Test case 5.

65

As can be seen in Figures 10 and 11, when a dispatcher is used, classes may call the

dispatcher, but when the dispatcher forwards the call, it calls an interface. This situation

is very desirable when thinking of real-world systems: when using a message

dispatcher, the receiving class will most likely use an interface to accept and decode the

messages that a dispatcher sends, as not all classes accept messages through the

dispatcher, and those that do, only listen to certain types of messages.

6.3.2. Remarks on adjusting the parameters

During the hundreds of test runs, some details about individual parameters and their

relations to each other came apparent. I will now discuss the most remarkable findings

of the tests.

Firstly, it could be seen that the fitness metrics have more influence to the final

solution than the mutation probabilities. This came apparent when after nearly tripling

the probability of using a dispatcher to communicate to a needed responsibility, the

amount of dispatchers or their users did not significantly increase. Affect of the

dispatcher quality metric could, however, be seen instantly. Another point to make of

mutation probabilities is that the probability of the crossover operation had a bigger

effect, and after first starting with a crossover probability of 20%, in the end it was

lowered down to 10%, which gave noticeably better results. Otherwise, the biggest

probabilities are for splitting and merging classes, as they deal with the structure of the

system. This has proven to be a good decision in optimizing the probabilities, as

structured solutions are indeed achieved: if the probabilities of the fine-tuning

mechanisms would be overpowering, the solutions would most likely be more randomly

implementing the mechanisms, and the structure would rely heavily on the randomized

class division given in the creation of the initial population.

Secondly, the dispatcher metric clearly makes its contribution to the fitness value.

This could be seen by using a fitness function that did not evaluate how the dispatcher

(or interfaces) was used, but merely measured the structure of the solution. Solutions

achieved by such a fitness function fell roughly into two categories: ones that did not

contain any interfaces or the dispatcher, and ones that had many interfaces and many

connections to the dispatcher. In the first case, the class structure was often good, as the

structural metrics had their full effect. In the second case, the usage of interfaces and the

dispatcher was clearly quite random, and it also broke down the structure of the overall

solution so that it was clearly not of good quality. The interface quality metric also

proved to be very powerful: increasing the weight of the interface metric would

instantly provide solutions with more and better used interfaces. The influence of the

metric evaluating abstract classes could also be seen, as solutions achieved with

combinations that did not include the abstract evaluator often had more abstract classes,

which were also in many times empty, or not very well placed.

66

 Thirdly, the quality metrics have different ranges, which makes it difficult to find

the kind of weights that would indeed emphasize the quality attributes that one values.

Balancing out the weights while remembering the differences in ranges is a difficult

combinatorial optimization task, as “heavy” weights easily “cover” each other: a high

positive value in some area may “cover” a high negative value, and leave the final value

higher than that of other solutions which may have more balanced values, thus resulting

in a solution with both very desirable and very undesirable qualities.

 The balancing problem came especially apparent when trying to achieve solutions

which would effectively use both the dispatcher and interfaces. The interface quality

metric is a positive metric with relatively high values, and the dispatcher quality metric

is a negative metric, with extremely high values. So, in order to even let solutions with a

good number of interfaces to survive, the weight of the interface metric was set at least

10 times higher than the dispatcher metric. However, if the solution used a very great

number of interfaces, the result often also had many dispatcher users, and the class

structure was not clear. This can be explained by the interface quality value getting so

high, that it would cover the negative effect given by the dispatcher metric, thus

allowing solutions with very poor dispatcher usage and structure to survive. In fact, if

the weight for the dispatcher metric is set high, the system actually “needs” many

interfaces to achieve a fitness value that would be high in order. Similarly, as cohesion

gives very high positive values, its weight should not be set very much higher in regard

to the weight of the dispatcher, as this will result in poor dispatcher usage.

Another balancing problem is in the structure, as the optimum solution would

include medium-sized classes. However, the current metrics favor either very large

classes or very small classes. Large classes have high cohesion values and low coupling

if all the dependent responsibilities are in the same class, thus receiving good fitness

values from these powerful metrics. On the other hand, small classes including only one

or two responsibilities receive very small penalties from both the coupling and RFC

metrics, hence keeping the overall fitness value quite high even though the rewarding

metric values also stay small. This is actually a reverse situation of the “covering”

discussed earlier: in this case both the positive and the negative values stay so small that

the overall fitness value will still remain within the average and survive through many

generations.

On a more detailed level, there are some restrictions regarding the fitness weights

that should be considered. Firstly, the weight of MQ should not be very much higher in

relation to that of the RFC. A very clear difference to the better could be seen in

solutions when the only change in parameters was to drop the weight of the MQ metric

from 2.5 times the weight of RFC to 1.5 times the weight of RFC. More generally, the

weight of MQ should not be set higher than 1.5 times the weight of RFC, even though

MQ achieves noticeably smaller values than RFC and the other metrics. Whether

67

actually setting the weight of MQ smaller than the weight of RFC would be beneficial is

not as clear: this seems to depend on the mutation probabilities used, and especially

how high the probabilities for split and merge mutations are set.

The weight for the dispatcher metric should be kept well under control. The

weight for the dispatcher metric should stay one tenth or less of the weight used for the

interface metric, and it should not exceed the weight for the cohesion metric. Otherwise,

the negative value of the dispatcher evaluator will overpower the positive values, and

this will result in solutions with no dispatcher, or only one or two users for the

dispatcher. Naturally, this is the case when the dispatcher is actually evaluated, the

solutions given by combinations which do not take into account the dispatcher metric

are not considered at this point.

The metrics for instability and abstract classes do not have as much effect to the

final solution as, e.g, the interface and dispatcher metrics, but they may be used as parts

of the evaluation in order to especially minimize the amount of empty abstract classes,

but the quality of the solutions does not greatly deteriorate even if these two metrics are

left out. The amount of abstract classes can also be somewhat controlled by setting a

very low probability for the respective mutations.

The weights for the cohesion and coupling metrics should be in the same range,

and should be kept quite small, as the metrics achieve very high values. Weighting one

over the other is a question of which risk is one willing to take: the risk of achieving

many solutions with overly large classes by valuing cohesion, or the risk of achieving

many solutions with small classes by valuing coupling.

To conclude: there are no absolute rules as to how the weights can be assigned, as

they have a “see-saw” effect. By valuing some quality, another quality is hard to

achieve. Rather, it should be attempted to balance the weights in such a way that no

quality is completely overshadowed, thus making such a solution able that is somehow

valued by all the quality aspects.

68

7. Case study : electronic home control system

As the test cases presented in Chapter 6 were made with quite a small example system

which was constructed only for testing the performance of the implementation, it was

necessary to also test the implementation with data that resembled a real system, and

where the sensibility of the solution could be easily checked. For this purpose, example

data for an electronic home control system was sketched.

The electronic home control system contains 5 subsystems: logging in and user

registry, temperature control, drape control, music control and coffee control. These

subsystems are independent from each other, having altogether 40 functional

responsibilities and 5 data responsibilities with 60 dependencies between them. The

detailed data set is given in Appendix C. As the amount of responsibilities and the

complexity of the dependency graphs grew, the task of balancing the parameters became

even more challenging. Especially the difficulty of achieving both a good structure and

have good usage of the fine-tuning mechanisms was emphasized. As with the initial

tests, I will now present some test cases for the case study which illustrate both what

this implementation is capable of and what still needs to be developed the most. The

parameters and fitness values for each case study test case is given in Appendix D.

Firstly, the best way to see that the implementation can identify good structures is to

search for separated subsystems. In the case study the subsystems were larger and more

complex than in the initial tests, and this clearly affected the implementation’s ability to

find the separate subsystems. The subsystems were not found often, and the

implementation mostly found the smallest subsystem – the temperature control – which

is logical, as it has the least responsibilities to group. After a series of parameter tests,

such parameters were found that resulted in clearer structures in which also bigger

subsystems were separated. In Figure 12, representing case study test case 1, the music

control subsystem has been separated, and the overall structure is also reasonably clear.

Another example of subsystem separation is given by case study test case 2, presented

in Figure 13, where the drape control subsystem is separated.

When studying the fitness values of these two case study tests, the extremely high

fitness values stand out. Both solutions have quite small classes, as most of them

contain only one responsibility. As discussed in Chapter 6, although small classes are

not rewarded, they are given very little penalty, which results in a relatively high fitness

values. As the weight for the cohesion metric was set quite high in both of these tests,

high positive values were also achieved with very little effort, i.e., even one bigger class

would give a reasonably high cohesion value, and the high weight would then elevate

the overall fitness value to exponential proportions. It should also be noted that neither

of these solutions contain either interfaces or the dispatcher – this again demonstrates

69

the overpowering effect of the cohesion and coupling metrics, which becomes the more

apparent the more there are responsibilities in the system.

Figure 12. Case study test case 1.

Figure 13. Case study test case 2.

70

Secondly, in addition to separating subsystems, the overall structure can be

identified as “clear” if the class diagram can fairly easily be partitioned into subsystems

without having to inspect the details. In Figure 14, depicting case study test case 3, the

temperature control subsystem is completely separated, and all the other subsystems are

also very well grouped, with only a few responsibilities grouped with ones that do not

belong in the same subsystems – the class diagram containing several subsystems can

fairly easily be divided into four parts. When studying the fitness values of this solution,

it can be seen that they reach quite large negative values even though the structure is

actually better than in test cases 1 and 2. This can be explained by three things. Firstly,

the weight for the cohesion metric is not as high in regard to coupling and RFC as it was

in the previous test cases. Secondly, as the separated subsystem is the smallest, there are

more dependencies left in the rest of the system, which results in high negative coupling

values. Thirdly, there are no substantially larger classes in this test case, as the largest

classes only contain two responsibilities. Because of this, the cohesion metric can not

achieve high values, so the negative metrics are overpowering, as cohesion is the only

positive metric measured. Interestingly, this solution only contains a few interfaces and

does not contain the dispatcher, even though the dispatcher metric was not used, and

thus, the sensible usage of the dispatcher was not controlled.

Figure 14. Case study test case 3.

71

Thirdly, the fine-tuning mechanisms and their usage should be evaluated. In case

study test case 4 the fine-tuning mechanisms are also measured and the result can be

seen in Figure 15. This solution contains a large amount of interfaces, which are mostly

very well used. The solution was achieved by giving all metrics the same weight and

leaving out the instability evaluator. Thus, the ranges of the different metrics had a big

influence on the overall fitness value and the quality of the solution. As can be seen,

there are two noticeably larger classes in the system and, as stated, many well used

interfaces – these increase the fitness values given by the cohesion and interface

metrics. As this solution also receives high negative values from coupling, RFC and

dispatcher metrics, such high positive values from cohesion and interfaces are needed

for the solution to “stay alive” in the population. The fitness value data also shows

interesting “jumps” between generations: the values vary between large negative

numbers and extremely high positive numbers. Such variation is most likely the result

of introducing or removing the dispatcher from the system, and merging or splitting

very large classes, as these would instantly affect evaluators with high values. In

addition to demonstrating the importance of noticing the different ranges in metrics, this

test case also once again shows how easily the overall structure deteriorates when the

fine-tuning mechanisms are introduced to the system – it is quite difficult to quickly

find a clear structure from the class diagram in Figure 15. This particular phenomenon

obviously becomes clearer when the number of responsibilities and dependencies

increases.

Figure 15. Case study test case 4.

72

Another example of bringing fine-tuning mechanisms to the system is presented in

Figure 16, representing case study test case 5, where the dispatcher has a central

position and has a high level of usage. As can be seen, there are also several interfaces

and some larger classes with three or four responsibilities, thus giving high interface

and cohesion values, which overcome the penalty given by the dispatcher and coupling

metrics. The dispatcher is used for communication between responsibilities from all the

different subsystems; this resembles a system where there would be a responsibility that

would handle communication between the subsystems and thus control the entire

electronic home.

Figure 16. Case study test case 5.

In case study test case 5, the dispatcher already uses interfaces very well, and as

discussed with the initial tests, a high level representation of the architecture is easily

extracted from this type of solution. In case study test case 6, this has been taken further

still, as the amount of interfaces and dispatcher connections is even higher. The solution

provided by this test case is shown in Figure 17, and as can be seen, the dispatcher

collects calls from all around the system, and then distributes them to a series of

interfaces. This is the way the dispatcher should in fact be used, as it conforms best to

the description given for the message dispatcher architecture style in Chapter 2. The

73

modifiability provided by this architecture style is furthermore increased by the usage of

interfaces, as now not even the dispatcher has contact with the receiving class, but only

the interface.

Figure 17. Case study test case 6.

Finally, the best solution would naturally combine a good structure with well used

interfaces and dispatcher. In case study test case 7, presented in Figure 18, this is fairly

well achieved. The solution contains a dispatcher, which transmits messages between

two parts of the entire system. If it were not for the association between Class 22 and

Class 9, containing a data responsibility, the dispatcher would be the only way of

communication between the two groups of subsystems. In addition, there are quite many

interfaces which are well used both by classes and the dispatcher. Furthermore, there is

structure to be seen: the coffee control and the temperature control have been placed

together on the right side of the class diagram, and the login, music and drape control

systems are placed on the left side. When looking at the classes containing the data

responsibilities, the classes with the functional responsibilities using a certain data can

fairly easily be grouped, and thus a subsystem can be separated from the graph.

However, the architecture given in Figure 18 does not achieve the best possible result in

any of the ways discussed before, i.e., its structure is not as good as could be, and

neither is the dispatcher or interface usage. In fact, this test case best illustrates how

74

difficult the task of achieving a balanced solution actually is. The biggest strength of

this architecture is actually its lack of big weaknesses: it does not give a particularly bad

solution to any of the sub-optimization problems.

 Figure 18. Case study test case 7.

When studying the metric weights with which the solution of test case 7 was

achieved, it can be seen that unlike most metric combinations, these weights were more

penalty-oriented, as only structure was measured and coupling was valued higher than

cohesion. Moreover, even though dispatcher and interface metrics were not used, the

usage of these mechanisms is still sensible, that is, the amount of dispatcher connections

is at a reasonable level and there are hardly any empty interfaces. In this case the

coupling metric’s high weight also manages to keep the dispatcher connections under

control, as every connection through the dispatcher also increases the coupling value.

75

The case study revealed that the more responsibilities and the more complex the

dependency graphs, the more difficult it is to firstly, find a good structure, and secondly,

combine that structure with fine-tuning mechanisms. The effect of the complexity of the

dependency graphs becomes especially apparent when no subsystem is successfully

separated. In the initial tests, the dependency graphs were very tree-like. Thus, by

successfully combining at least some responsibilities, the overall structure was easy to

keep clear, as there were no circular or crossing dependencies. In the case study,

however, the structure of the dependency graphs was not as “standard”, which well

represents a real system, as there often exist breakpoints where a responsibility is used

by many other functions. If it would be attempted to put the dependency graph of the

home control system into tree form, several dependencies between children of the same

parent node would be seen, and these naturally do not belong in a true tree graph. These

characteristics of the dependency graph result to the kind of “web” of crisscrossing

associations as could be seen in Figures 15 and 17.

The importance of taking into account the ranges when assigning weights to fitness

metrics was also emphasized. As could be seen in the fitness values, they can achieve

extremely high positive and negative values. There is a straight relation between the

number of responsibilities and dependencies in the system and the level of fitness

values, which should be noted when assigning weights especially to coupling and

cohesion, as they may very well “cover” all other metrics if the number of

responsibilities amounts to hundreds or beyond and the weights for other metrics are not

set sufficiently high.

76

8. Conclusions

8.1. Presenting the results

I have presented a novel approach to software architecture design in the field of search-

based software engineering. In this thesis I have taken a more abstract approach than the

research done in the field so far as the structure of a software system is merely based on

the concept of responsibilities, and no information of actual operations is known.

Another contribution is to experiment with building a completely new architecture and

not merely moving pieces in a ready-made system as done in most of the work

concerning software architecture design, as discussed in Chapter 4.

The case study results presented in Chapter 7 show that it is possible to design

software architectures with this approach. Sensible solutions are achieved, and they can

be controlled with the selection of fitness metrics – meaning that the construction of the

architecture does indeed follow certain logic and is not completely random. The

solutions mainly fell into two categories; either they had a good structure or they

efficiently used interfaces and a message dispatcher. Naturally there were also solutions

somewhere in between, i.e., solutions with a good structure and some usage of

interfaces and maybe one connection to the dispatcher, or good usage of the fine-tuning

mechanisms and some structure. However, as the purpose would of course be to

combine a good overall structure with a high level of interface and dispatcher usage, it

is quite safe to make a division based on which of these two quality aspects is more

dominant in the solution. After all, a good solution is one where the quality can be seen

instantly – an average solution does not provide any new insights, as its biggest strength

is actually its lack of weaknesses.

From the point of architecture design and architecture evaluation, the

implementation presented here provides a strong starting point for further development

where the common “laws” concerning architectural design can be taken more into

account, thus ensuring quality solutions more consistently. In traditional architecture

design, the software architect has the requirements for the system, and attempts to piece

the respective operations together so the solution reaches high values when “measured”

by some quality attributes. In this approach, the genetic algorithm actually evaluates a

large number of architectures simultaneously, thus traversing through solutions a human

architect would not have the time or the imagination to think of. Hence, as these initial

tests already show that the implementation is able to find solutions greatly valued even

after human analysis, this approach could affectively cut down the time used in

architecture design as well as provide innovative solutions either as a starting point for

further design or as ready architectures.

77

From the point of search-based software engineering and especially software design

with the help of meta-heuristic search algorithms, this thesis clearly makes a

contribution to the field. As the starting point is raw data, and not a ready architecture,

this approach gives the implementation a significantly freer traverse through the search

space, thus resulting in more innovative solutions. When given a ready architecture, it

can be assumed that the architecture is already of good quality. Thus, it might prove

quite difficult to find such modifications to the architecture that would actually improve

the fitness value. The higher level of abstractness in architecture representation also

provides a better starting point for constructing architectures, as the logical entities in

software systems do not always straightforwardly follow the structural or operational

entities.

To conclude, the most important overall result of this thesis is that the approach

taken here appears reasonably successful. An architecture can be designed with the help

of a genetic algorithm with only abstract level knowledge of the architecture’s contents

and with no ready starting point.

8.2. Success evaluation

As discussed, the implementation was successful in proving that the selected approach

was a good one. The produced solutions were also successful in either providing a good

structure or good usage of communication mechanisms in the architecture. I will now

discuss the main contributors to the success and also what could still be improved.

Firstly, the very basic elements needed for the algorithm to operate proved to be

well chosen. That is, the modeling, mutations and crossover discussed in Chapter 5,

provided the kind of basis for the algorithm to operate that it was possible to modify the

architecture in such ways that would provide quality solutions.

Secondly, the fitness metrics proved to be very powerful. Solutions with, e.g.,

separated subsystems could not have been achieved if such good structure was not

properly valued by the fitness function. As such solutions were achieved, this

demonstrates the efficient implementation of the selected structural quality metrics. It

should be emphasized that the definitions of the fitness metrics concerning interfaces,

dispatchers and abstract classes were not based on anything found in the literature, but

were constructed by simply logically evaluating where such mechanisms would be best

used. As the results show, these metrics proved to serve their purpose.

Finally, there is obviously much that can still be improved. The ultimate goal would

be to consistently find solutions that are good from every quality aspect. Currently

solutions with a high quality in any aspect are not consistent, and hardly any solutions

are found with a good overall quality. Another improvement area lies within the

“legality” of the produced architecture. At this point, there are still some anomalies

present in the system, e.g., class A may use class B both through a dispatcher and

directly, which should be banned. The major reasons for not receiving even better

78

results at this stage are thus a “too” free traverse through search space, as architectures

that are not accepted by general standards are considered legal, and the optimization

problem with different fitness metrics. Naturally, the mutation probabilities also have

impact in the solution, but as the implementation provided solutions from both “quality

categories” by using the same set of probabilities, it is safe to assume that some sort of

optimum combination of mutation probabilities has actually been found. As a result,

further development lies more within the set of fitness weights in terms of parameter

optimization.

Overall, it can be stated that the work was successful. The main research question

was whether the selected approach would even be possible and sufficient enough to

produce quality software architectures. As this was achieved, and there are clear views

as to which direction the research could be taken, the implementation can indeed be

viewed as successful, and the approach deemed possible.

8.3. Future work

The work presented in this thesis has been experimental, and its purpose has been to

investigate whether the selected approach is valid for further development and research.

As the results achieved so far are extremely encouraging, the work goes on and there are

many ways with which the current implementation can be further developed and

improved.

Firstly, “laws of nature” should be incorporated to the system. These check that the

mutation and crossover operations do not produce an architecture that does not conform

to accepted standards in traditional architectural design. This will greatly limit the

search space, but will benefit the outcome, as a solution with many anomalies is not of

use.

Secondly, the fine-tuning mechanisms can be put to better use by introducing more

architecture styles and design patterns to the model. This would probably mean that the

model would need to be adjusted and the existing mutations should be combined in

ways that would produce a pattern. More “laws” would also have to be implemented, as

design patterns and styles should be kept in the system once they are introduced – as it

is with the message dispatcher. As a pattern involves many classes and responsibilities,

checking that a mutation has not broken an implemented design pattern may prove to be

quite complex.

Thirdly, the fitness metrics should be refined, and more metrics considered. After

implementing the patterns, the usage of patterns should be evaluated separately, and this

would require a new type of quality metric. As incorporating “laws of nature” would

also take care of some basic structural decisions, the existing metrics could also be

adjusted to more effectively evaluate the structural decisions actually made by

mutations and crossover.

79

Fourthly, the evaluation can be improved by making the fitness function dynamic. It

could only evaluate the structure in the first generations, and then begin to evaluate the

usage of fine-tuning mechanisms when they sufficiently exist in the architecture. As

these mechanisms are not present in the initial population, this kind of adjusted fitness

function could provide more quality structures.

Fifthly, another meta-heuristic search algorithm could be implemented in order to

make a comparison between its results and the results provided by the genetic

algorithm. If it is possible to model an architecture and achieve good results from, e.g.,

an implementation with simulated annealing, it could be researched whether the

strengths of both the new and initial algorithm implementations could be combined.

Finally, the quality of the implementation can be improved by parameterizing

currently hard-coded variables such as the mutation probabilities, and by producing

information of the solution in a format that can be easily modified, such as XMI.

To conclude: the work and results presented in this thesis are the first step in a

research approach with many possibilities. The basis has been made by producing a

model and initial operations which can be further developed and combined to achieve

significant results in the field of search-based software engineering.

80

References

[Alba and Chicano, 2007] E. Alba and J.F. Chicano, Software project management with

GAs, Information Sciences 177, 2007, 2380-2401.

[Amoui et al., 2006] M. Amoui, S. Mirarab, S. Ansari and C. Lucas, A genetic

algorithm approach to design evolution using design pattern transformation,

International Journal of Information Technology and Intelligent Computing 1

(1, 2), June/ August, 2006, 235-245.

 [Asllani and Lari, 2007] A. Asllani and A. Lari, Using genetic algorithm for dynamic

and multiple criteria web-site optimizations, European Journal of Operational

Research 176, 2007, 1767-1777.

[Bass et al., 1998] L. Bass, P. Clements and R. Kazman, Software Architecture in

Practice, Addison-Wesley, 1998.

[Blickle, 1996] T. Blickle, Evolving compact solutions in genetic programming: a case

study In: H. Voigt, W. Ebeling, I. Rechenberg, and H. Schwefel (eds.), Parallel

Problem Solving from Nature IV, Proceedings of the International Conference

on Evolutionary Computation, LNCS 1141, 564-573, 1996, Springer.

[Burgess, 1995] C.J. Burgess, A genetic algorithm for the optimisation of a

multiprocessor computer architecture, In: GALESIA'95, 1st IEE/IEEE

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, IEE Conference Publication 414, Sept. 1995, 39-

44

[Che et al., 2003] Y. Che, Z. Wang and X. Li, Optimization parameter selection by

means of limited execution and genetic algorithms, In: X. Zhou et al. (Eds.):

APPT 2003, LNCS 2834, 2003, 226–235.

[Chidamber and Kemerer, 1994] S.R. Chidamber and C.F. Kemerer, A metrics suite for

object oriented design. IEEE Transactions on Software Engineering 20 (6),

1994, 476-492.

[Clarke et al., 2003] J. Clarke, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M.

Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper and M. Shepperd,

Reformulating Software Engineering as a Search Problem, IEE Proceedings -

Software, 150 (3), 2003, 161-175.

[Di Penta et al., 2005] M. Di Penta, M. Neteler, G. Antoniol and E. Merlo, A language-

independent software renovation framework, The Journal of Systems and

Software 77, 2005, 225-240.

[Dick and Jha, 1998] R.P. Dick and N.K. Jha, MOGAC: A multiobjective genetic

algorithm for the co-synthesis of hardware-software embedded systems. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems 17 (10),

Oct. 1998, 920-935.

81

[Doval et al., 1999] D. Doval, S. Mancoridis and B.S. Mitchell, Automatic clustering of

software systems using a genetic algorithm, In: Proceedings of the Software

Technology and Engineering Practice, 1999, 73-82.

[Du Bois and Mens, 2003] B. Du Bois and T. Mens, Describing the impact of

refactoring on internal program quality. In: Proceedings of the International

Workshop on Evolution of Large-Scale Industrial Software Applications 2003,

37-48.

[GraphViz, 2007] http://www.graphviz.org, checked 17.1.2008.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[Grunske, 2006] L. Grunske, Identifying "good" architectural design alternatives with

multi-objective optimization strategies. In: Proceeding of the 28th International

Conference on Software Engineering, Shanghai, China, 2006, 849 - 852.

[Harman et al., 2002] M. Harman, R. Hierons and M. Proctor, A new representation and

crossover operator for search-based optimization of software modularization. In:

GECCO 2002: Proceedings of the Genetic and Evolutionary Computation

Conference, July 2002, 1351–1358.

[Harman and Tratt, 2007] M. Harman and L. Tratt, Pareto optimal search based

refactoring at the design level, In: GECCO 2007: Proceedings of the Genetic

and Evolutionary Computation Conference, 2007, 1106-1113.

[IEEE, 2000] IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems. IEEE Standard 1471-2000, 2000.

[Kazman et al., 2000] R. Kazman, M. Klein and P. Clements, ATAM: Method for

architecture evaluation, Carnegie-Mellon University, Technical report

CMU/SEI-2000-TR-004, August 2000.

[Koskimies ja Mikkonen, 2005] K. Koskimies ja T. Mikkonen,

Ohjelmistoarkkitehtuurit. Talentum, 2005.

[Le Hanh et al., 2001] V. Le Hanh, K. Akif, Y. Le Traon and J-M. Jézéquel, Selecting

an efficient OO integration testing strategy: an experimental comparison of

actual strategies. In: J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072,

2001, 381-401.

[Losavio et al., 2004] F. Losavio, L. Chirinos, A. Matteo, N. Lévy and A. Ramdane-

Cherif, ISO quality standards for measuring architectures. The Journal of

Systems and Software 72, 2004, 209-223.

[Mens and Demeyer, 2001] T. Mens and S. Demeyer, Future trends in evolution

metrics, In: Proc. Int. Workshop on Principles of Software Evolution, 2001, 83-

86.

82

[Michalewicz, 1992] Z. Michalewicz, Genetic Algorithms + Data Structures =

Evolutionary Programs. Springer-Verlag, 1992.

[de Miguel et al.,2000] M. de Miguel, T. Lambolais, S. Piekarec, S. Betgé-Brezetz and

J, Péquery, Automatic generation of simulation models for the evaluation of

performance and reliability of architectures specified in UML, In: Revised

Papers from the Second International Workshop on Engineering Distributed

Objects LNCS 1999, 2000, 83–101.

[Mitchell, 1996] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.

[Noonan and Flanagan, 2006] L. Noonan and C. Flanagan, An effective network

processor design framework: using multi-objective evolutionary algorithms and

object oriented techniques to optimise the Intel IXP1200 network processor, In:

Proceedings of the 2006 ACM/IEEE Symposium on Architecture for Networking

and Communications Systems 2006, 103-112.

[O’Keeffe and Ó Cinnéide, 2004] M. O’Keeffe and M. Ó Cinnéide, Towards automated

design improvements through combinatorial optimization, In: Workshop on

Directions in Software Engineering Environments (WoDiSEE2004), W2S

Workshop -26
th

 International Conference on Software Engineeering, 2004, 75-

82.

[O’Keeffe and Ó Cinnéide, 2007] M. O’Keeffe and M. Ó Cinnéide, Getting the most

from search-based refactoring In: GECCO 2007: Proceedings of the Genetic and

Evolutionary Computation Conference, 2007, 1114-1120.

[Potgieter and Engelbrecht, 2007] G. Potgieter and A.P. Engelbrecht, Genetic

algorithms for the structural optimization of learned polynomial expressions,

Applied Mathematics and Computation 186 (2), 2007, 1441-1466

[Reeves, 1995] C. R. Reeves, Modern Heuristic Techniques for Combinatorial

Problems. McGraw-Hill Book Company, 1995.

[Rela, 2004] L. Rela, Evolutionary computing in search-based software engineering,

Lappeenranta University of Technology, Department of Information

Technology, M.Sc. Thesis, 2004.

[Rosenberg and Hyatt, 1997] L. Rosenberg and L. Hyatt, Software quality metrics for

object-oriented design, available as

http://satc.gsfc.nasa.gov/support/CROSS_APR97/oocross.PDF, checked

12.9.2007.

[Sahraoui et al., 2000] H.A. Sahraoui, R. Godin and T. Miceli, Can metrics help

bridging the gap between the improvement of OO design quality and its

automation? In: Proc. of the International Conference on Software Maintenance

(ICSM ’00), 154-162, available as

http://www.iro.umontreal.ca/~sahraouh/papers/ICSM00.pdf, checked 12.9.2007.

83

[Seng et al., 2005] O. Seng, M. Bauyer, M. Biehl and G. Pache, Search-based

improvement of subsystem decomposition, In: GECCO 2005: Proceedings of

the Genetic and Evolutionary Computation Conference, 2005, 1045 – 1051.

[Seng et al., 2006] O. Seng, J. Stammel and D. Burkhart, Search-based determination of

refactorings for improving the class structure of object-oriented systems, In:

GECCO 2006: Proceedings of the Genetic and Evolutionary Computation

Conference, 2006, 1909–1916.

[UMLGraph, 2007] http://www.umlgraph.org, checked 17.1.2008.

Appendix A

Test data

The example data for testing the implementation. If the Depending responsibilities
column has the value 0, then no responsibility uses the corresponding responsibility i.
Type “f” stands for “functional” and “d” for “data”. Groups of functional responsibilities
forming a subsystem are separated by a bolded line.

Responsibility
number

Depending
responsibilities

Execution
time (ms)

Parameter
size

Fre-
quency

Name Type

1 2,3 10 3.0 2 first f
2 4,5 20 4.0 3 second f
3 0 10 2.0 4 third f
4 0 30 1.0 5 fourth f
5 0 40 2.0 4 fifth f

6 7 5 5.0 3 sixth f
7 0 10 6.0 2 seventh f

8 9,10 20 7.0 2 eighth f
9 0 50 2.5 1 ninth f
10 0 60 3.5 1 tenth f

11 12,13 10 4.5 2 eleventh f
12 0 5 3.8 1 twelfth f
13 14 20 4.9 2 thirteenth f
14 15,16 30 5.0 2 fourteenth f
15 0 40 1.2 1 fifteenth f
16 17 25 4.3 3 sixteenth f
17 18,19,20 35 5.1 3 seventeenth f
18 0 5 3.2 1 eighteenth f
19 0 5 5.6 1 nineteenth f
20 0 5 3.0 1 twentieth f

21 1,5 10 2.0 2 firstData d
22 10 10 2.0 2 secondData d
23 12 10 2.0 2 thirdData d
24 15,17 10 2.0 2 fourthData d

Table 1. Initial test responsibility set.

Appendix B

Test case parameters and fitness values

Test case 1

Table 2. Metric weights for test case 1

Table 3. Mutation probabilities

for test case 1.

Table 4. Fitness values for test case 1.

Metric Weight

MQ 1

RFC 1

Cohesion 1

Coupling 1

Instability 1

Abstracts 1

Dispatcher 0

Interface 0

Mutation Probability

Split 0.20

Merge 0.15

Connect dispatcher 0.025

Remove dispatcher 0.025

Introduce interface 0.05

Remove interface 0.05

Introduce abstract 0.03

Remove abstract 0.05

New abstract class 0.04

Remove empty abstract 0.04
Introduce new
dispatcher 0.02
Remove empty
dispatcher 0.02

Null 0.1

Crossover 0.2

Generation
Average
fitness

Average fitness 10
best Best fitness

91 -1961.308848 -1009.71385 -586.93333

92 -2007.477027 -986.1107833 -498.33333

93 -2007.816152 -979.2951833 -498.33333

94 -1953.619527 -1021.846533 -498.33333

95 -1800.616456 -953.727 -498.33333

96 -1729.001046 -929.4020667 -498.33333

97 -1757.488405 -796.0894833 -498.33333

98 -1671.652323 -775.8855667 -498.33333

99 -1744.853982 -859.5107 -498.33333

100 -1732.396351 -889.3759 -616.21

Test case 2

Metric Weight

MQ 0

RFC 40

Cohesion 5

Coupling 3

Instability 0

Abstracts 0

Dispatcher 1

Interface 35

Table 5. Metric weights for test case 2.

Table 6. Mutation probabilities for

test case 2.

Table 7. Fitness values for test case 2.

Mutation Probability

Split 0.1

Merge 0.1

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.225

Crossover 0.1

Generation Average fitness
Average fitness 10
best

Best
fitness

91 -5530.286198 -2634.6537 -2322.8

92 -5841.759035 -2718.2649 -2341.616

93 -5665.907271 -2794.9369 -2624.36

94 -5597.489743 -2959.33555 -2605.776

95 -5619.278146 -2995.09955 -2535.776

96 -5461.696808 -2989.21955 -2540.776

97 -5727.820043 -3002.81395 -2559.016

98 -5644.211379 -3011.31395 -2524.016

99 -6663.617509 -3060.59435 -2748.116

100 -5938.664333 -3057.03835 -2748.116

Test case 3

Metric Weight

MQ 30

RFC 40

Cohesion 5

Coupling 3

Instability 20

Abstracts 10

Dispatcher 1

Interface 35

 Table 8. Metric weights for test

case 3.

Table 9. Mutation probabilities for test

case 3.

Table 10. Fitness values for test case 3.

Mutation Probability

Split 0.1

Merge 0.1

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.225

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best

Best
fitness

91 -4958.246223 -2475.259133 -1971.032

92 -5095.114303 -2416.539133 -1936.032

93 -5538.65896 -2466.805683 -1989.472

94 -4598.398463 -2440.20085 -1921.552

95 -4796.314253 -2371.51035 -1836.952

96 -5010.234896 -2719.671 -2131.872

97 -5123.887285 -2694.6541 -2209.152

98 -5086.387895 -2706.216167 -2139.152

99 -5272.487994 -2930.74055 -2209.152

100 -5157.200953 -2640.354983 -2216.633

Test case 4

Metric Weight

MQ 0

RFC 20

Cohesion 2

Coupling 1

Instability 0

Abstracts 0

Dispatcher 2

Interface 20

Table 11. Metric weights for test case 4.

.

Table 12. Mutation probabilities for

test case 4

Table 13. Fitness values for test case 4.

Mutation Probability

Split 0.075

Merge 0.1

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.25

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best Best fitness

91 -1976.725743 -959.9081333 -863.55417

92 -1989.152992 -922.7138333 -863.55417

93 -1948.843894 -980.2838333 -863.55417

94 -1864.305969 -968.5446333 -863.55417

95 -1941.764022 -980.3766333 -863.55417

96 -7205.962421 -968.4246333 -863.55417

97 -1917.469868 -928.5725333 -863.55417

98 -1882.084698 -872.4462833 -843.55417

99 -3338.779649 -758.47155 -411.79583

100 -1951.675346 -813.7223667 -597.83333

Test case 5

Metric Weight

MQ 10

RFC 20

Cohesion 2

Coupling 1

Instability 0

Abstracts 10

Dispatcher 2

Interface 20

Table 14. Metric weights for test

case 5.

Table 15. Mutation probabilities for test

case 5.

Table 16. Fitness values for test case 5.

Mutation Probability

Split 0.075

Merge 0.1

Connect dispatcher 0.065

remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.25

Crossover 0.1

Generation Average fitness
Average fitness 10
best Best fitness

91 -1671.614347 -833.00215 -566.86667

92 -1729.227929 -850.0754667 -566.86667

93 -1771.420635 -882.8325333 -577.66667

94 -1751.149626 -850.5857944 -577.66667

95 -2137.628434 -805.4880944 -577.66667

96 -2192.433453 -898.9101278 -685.4125

97 -1846.221939 -933.2011278 -708.28333

98 -1834.754035 -922.8978307 -708.28333

99 -2776.479817 -839.9903807 -628.32

100 -1819.797366 -831.7422778 -667

Appendix C

Case study data

The electronic home control system case study data. If the Depending responsibilities

column has the value 0, then no responsibility uses the corresponding responsibility i.

Type “f” stands for “functional” and “d” for “data”. Groups of functional

responsibilities forming a subsystem are separated by a bolded line.

Responsibility

number

Depending

responsibilities

Execution

time (ms)

Parameter

size

Frequency Name Type

1 2,5 30 5.0 2 pswdcheck f

2 3,4,6,7 40 6.0 1 regadmin f

3 0 30 6.0 1 actuserreg f

4 3 30 6.0 1 adduserreg f

5 0 50 8.0 1 chngpswd f

6 0 60 2.0 1 rmvuserreg f

7 0 70 5.0 1 setuserrgt f

8 0 40 8.0 3 settemproom f

9 8,10 60 4.0 3 msrtemprtr f

10 0 20 4.0 3 chngtempCels f

11 8 50 1.0 2 setheateron f

12 8 50 1.0 1 setheateroff f

13 14 70 9.0 5 adminmusicls f

14 15 90 9.0 5 showmusicls f

15 17 70 6.5 5 pickmusic f

16 13,17,20 110 10.0 5 adminmusicfl f

17 0 100 8.5 5 plchosenmusic f

18 17 60 3.0 1 choosespkr f

19 17 60 3.5 5 musictospkrs f

20 0 50 3.0 1 stopmusicplay f

21 24 80 7.0 3 measuresun f

22 23,24 80 7.0 3 msrdrppos f

23 0 70 5.0 3 showdrppos f

24 25,26 90 6.5 3 calcoptdrp f

25 0 60 2.0 2 rundrpmotor f

26 0 50 1.0 2 stopdrpmotor f

27 31,32,37,39 110 10.5 2 showcffmchsta

t

f

28 0 40 5.0 2 chscffqlt f

29 0 40 5.0 2 chscffamnt f

30 28,29 50 6.0 2 calccffwtramnt f

31 30 50 3.5 2 setcoffee f

32 30 50 3.5 2 setwater f

33 32 50 2.5 2 msrwtramnt f

34 31 30 2.0 2 addcffprtn f

35 33 30 1.0 2 openwtr f

36 33 30 1.0 2 closewtr f

37 0 70 2.0 2 startcffmch f

38 37 70 3.5 2 setcffmchwarm f

39 0 50 2.0 2 stopcffmch f

40 38 20 2.0 2 ringbuzz f

41 1,2,3,4,5,6,7 10 2.0 7 userDB d

42 16,17,19 10 2.0 3 musicDB d

43 13,14,15 10 2.0 3 musicInfo d

44 21,22,23 10 2.0 3 drapeState d

45 28,29,31,32,

40

10 2.0 5 cffState d

Table 17. Case study responsibility set.

Appendix D

Case study test case parameters and fitness values

Case study test case 1

Metric Weight

MQ 30

RFC 25

Cohesion 5

Coupling 2

Instability 20

Abstracts 10

Dispatcher 2

Interface 30

Table 18. Metric weights for case

study test case 1.

Table 19. Mutation probabilities

for case study test case 1.

Table 20. Fitness values for case study test case 1.

Mutation Probability

Split 0.075

Merge 0.1

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.25

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best

Best
fitness

91 4.06E+07 2.25E+08 1.55E+09

92 4.80E+07 2.97E+08 1.55E+09

93 5.26E+07 2.97E+08 1.55E+09

94 5.04E+07 2.97E+08 1.55E+09

95 5.19E+07 3.26E+08 1.55E+09

96 6.24E+07 3.26E+08 1.55E+09

97 6.04E+07 3.40E+08 1.55E+09

98 3.67E+07 2.93E+08 1.55E+09

99 4.90E+07 2.93E+08 1.55E+09

100 5.09E+07 2.93E+08 1.55E+09

Case study test case 2

Metric Weight

MQ 0

RFC 30

Cohesion 7

Coupling 4

Instability 0

Abstracts 0

Dispatcher 1

Interface 20

Table 21. Metric weights for case

study test case 2.

Table 22. Mutation probabilities for

case study test case 2.

Table 23. Fitness values for case study test case 2.

Mutation Probability

Split 0.10

Merge 0.10

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.225

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best

Best
fitness

91 7.41E+07 4.05E+08 1.65E+09

92 6.96E+07 4.05E+08 1.65E+09

93 6.85E+07 4.05E+08 1.65E+09

94 7.37E+07 4.05E+08 1.65E+09

95 7.03E+07 4.05E+08 1.65E+09

96 7.77E+07 4.05E+08 1.65E+09

97 7.23E+07 4.05E+08 1.65E+09

98 6.80E+07 4.05E+08 1.65E+09

99 7.07E+07 4.05E+08 1.65E+09

100 7.03E+07 4.05E+08 1.65E+09

Case study test case 3

Metric Weight

MQ 0

RFC 30

Cohesion 4

Coupling 2

Instability 0

Abstracts 0

Dispatcher 0

Interface 0

Table 24. Metric weights for case

study test case 3.

Table 25. Mutation probabilities for

case study test case 3.

Table 26. Fitness values for case study test case 3.

Mutation Probability

Split 0.10

Merge 0.10

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.225

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best Best fitness

91 -97711.39279 -15029.78619 -15424

92 -74022.93013 -14968.09735 -15126.4

93 -780807.194 -17353.5 -15583.067

94 -614410.308 -17141.82 -15307.848

95 -158529.4134 -15137.28927 -15307.848

96 -222865.6628 -14431.48117 -14297.761

97 -446990.5491 -17422.20301 -15510.651

98 -304291.7299 -17464.83615 -15510.651

99 -1143661.328 -17171.99202 -15510.651

100 -79405.94403 -16610.93652 -15510.651

Case study test case 4

Table 27. Metric weights for case
 study test case 4.

Table 28. Mutation probabilities for
case study test case 4

Table 29. Fitness values for case study test case 4.

Metric Weight
MQ 1
RFC 1
Cohesion 1
Coupling 1
Instability 0
Abstracts 1
Dispatcher 1
Interface 1

Mutation Probability
Split 0.20
Merge 0.15
Connect dispatcher 0.025
Remove dispatcher 0.025
Introduce interface 0.05
Remove interface 0.05
Introduce abstract 0.03
Remove abstract 0.05
New abstract class 0.04
Remove empty abstract 0.04
Introduce new
dispatcher 0.02
Remove empty
dispatcher 0.02
Null 0.1
Crossover 0.2

Generation
Average
fitness

Average fitness 10
best Best fitness

91 ­29999.79587 ­7713.325093 ­6696.3587
92 ­21431.7256 ­7536.948219 ­6596.0978
93 ­19508.96345 ­7531.391304 ­6069.7174
94 ­547840.122 ­8138.384783 ­6694.8587
95 4732082.105 2.82E+07 3.96E+07
96 3848634.37 2.82E+07 3.96E+07
97 ­15180.43737 ­8166.81413 ­7052.7391
98 ­13899.84769 ­8026.956522 ­6668.5543
99 ­11927.05813 ­7548.165472 ­6539.3152

100 ­115734.7132 ­7510.123659 ­6166.4457

Case study test case 5

Metric Weight

MQ 0

RFC 25

Cohesion 5

Coupling 2

Instability 0

Abstracts 0

Dispatcher 2

Interface 30

Table 30. Metric weights for case

study test case 5.

Table 31. Mutation probabilities for

case study test case 5.

Table 32. Fitness values for case study test case 5.

Mutation Probability

Split 0.075

Merge 0.10

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.25

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best Best fitness

91 -859785.2771 -12847.86532 -11008.478

92 -661340.6955 -12546.4668 -10937.696

93 -714353.8173 -12585.22545 -10931.696

94 -1058509.888 -12910.93847 -10931.696

95 -766786.8544 -12946.72689 -10931.696

96 -251324.913 -12964.90241 -10935.457

97 -1046874.086 -12863.60304 -10762.935

98 -68599.82951 -12828.20174 -10702.239

99 -415539.4985 -12368.9074 -10704.239

100 -929183.3343 -12141.17307 -10470.196

Case study test case 6

Metric Weight

MQ 20

RFC 30

Cohesion 5

Coupling 5

Instability 0

Abstracts 5

Dispatcher 1

Interface 15

Table 33. Metric weights for case

study test case 6.

.

Table 34. Mutation probabilities for

case study test case 6.

Table 35. Fitness values for case study test case 6

Mutation Probability

Split 0.10

Merge 0.10

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.225

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best Best fitness

91 -1.44E+07 -42373.45909 -27579.543

92 -1.36E+07 -42637.46817 -27633.457

93 -1.34E+07 -41951.1721 -27618.457

94 -615163.9023 -40257.58152 -28199.435

95 -755966.3599 -38055.66182 -28199.435

96 -620748.7913 -35770.4843 -28155.141

97 -404988.6057 -36403.3245 -31527.413

98 -180728.0112 -34908.16594 -31006.88

99 -6470457.878 -34634.85465 -28755.359

100 -3433073.061 -34695.7346 -30808.391

Case study test case 7

Metric Weight

MQ 0

RFC 20

Cohesion 2

Coupling 4

Instability 0

Abstracts 0

Dispatcher 0

Interface 0

Table 36. Metric weights for case

study test case 7.

Table 37. Mutation probabilities for case

study test case 7.

Table 38. Fitness values for case study test case 7.

Mutation Probability

Split 0.075

Merge 0.1

Connect dispatcher 0.065

Remove dispatcher 0.05

Introduce interface 0.09

Remove interface 0.07

Introduce abstract 0.04

Remove abstract 0.05

New abstract class 0.01

Remove empty abstract 0.04
Introduce new
dispatcher 0.05
Remove empty
dispatcher 0.01

Null 0.25

Crossover 0.1

Generation
Average
fitness

Average fitness 10
best Best fitness

91 8199904.363 5.63E+07 5.63E+08

92 9434798.003 5.63E+07 5.63E+08

93 8945323.137 5.63E+07 5.63E+08

94 9468545.71 5.63E+07 5.63E+08

95 -467587.8944 -28804.14287 -19768.826

96 -304036.2691 -29246.15042 -21984

97 -807982.9403 -30002.98955 -21984

98 -147717.7592 -29105.09651 -20870.217

99 -103184.7275 -28826.58937 -20870.217

100 -2340852.807 -28723.40484 -20870.391

