NEKROTISOIVAN ENTEROKOLIITIN RISKITEKIJÄT

Asta Sillanpää
Syventävien opintojen kirjallinen työ
Tampereen yliopisto
Lääketieteen yksikkö
Marraskuu 2011
SILLANPÄÄ ASTA: NEKROTISOIVAN ENTEROKOLIITIN RISKITEKIJÄT

Kirjallinen työ, 16 s.
Ohjaaja: dosentti Outi Tammela

Marraskuu 2011

Avainsanat: ennenaikaisuus, korionamnioniitti, ampisilliini

SISÄLLYS

1 JOHDANTO .. 1
2 AINEISTO JA MENETELMÄT .. 4
3 TULOKSET ... 5
4 POHDINTA ... 10
LÄHTEET ... 15
1 JOHDANTO

Nekrotisoiva enterokoliitti (NEC) on merkittävä sairastavuuden ja kuolleisuuden aiheuttaja vastasyntyneiden teho-osastolla. Huolimatta vuosikymmenten tutkimustyövää sen patogeneesi on edelleen huonosti ymmärretty.

Ennenaikaisuus ja pieni syntymäpaino ovat merkittävimmät nekrotisoivan enterokoliitin riskitekijät, ja riski saada NEC on käänteisesti yhteydessä gestaatioikään ja syntymäpainoon (Lin ja Stoll 2006). Ilmaantuvuus on 1–3 1 000 elävänä syntynytä kohti ja 3–7 % ennenkaikisesti syntyneillä (alle 37 rv) ja pienipainoisilla (alle 2 500 g) (Henry ja Moss 2009). Erittäin pienipainoissten (alle 1 000 g) keskuudessa NEC:ia esiintyy 12 %:lla (Bradshaw 2009). Ennenaikaisesti syntyneet ovat suuresti riskissä, koska useat tärkeät elinjärjestelmät eivät ole vielä täysin kehittyneet, kuten erityisesti suoliston motiliteetti, ruoansulatuskyky, verenkierron säätely, suoli–vereen toiminta ja immuunipuolustus (Lin ja Stoll 2006).

NEC:ia on tutkittu paljon, mutta etiologia on silti yhä epäselvä. Pikkukeskossten sairastuvuus ja kuolleisuus NEC:iin on merkittävä, lisäksi komplikaatioita esiintyy usein. Jotta tehokkaita ehkäisymenetelmiä ja hoitomuotoja voitaisiin kehittää, NEC:n etiologian selvittämiseksi ja riskitekijöiden kartoittamiseksi tarvitaan edelleen tutkimustyötä.

2 AINEISTO JA MENETELMÄT

Raskautta ja syntyistä koskevat tiedot (Taulukko 1, tekijät syntyessä) kerättiin lapsen tulotekstistä ja synnytyskertomuksesta. Myös lapsen äitiä koskevat tiedot (Taulukko 1, prenataaliset tekijät) perustuvat yksinomaan lapsen sairauksertomukseen ja synnytyskertomukseen tehtyihin kirjauksiin, mukaan lukien äidin lääkityskset (antibiootitoito, verenpainelääkitys). Tiedot lapsen lääkehoidosta ja ventilaatiotuesta sekä ruokintaan liittyvät tiedot perustuvat päälsein ns. kuumekurvasta saatuihin tietoihin. Tieto avoimesta valtimotiehyestä (PDA) perustui syntyyn jälkeen tehtyyn sydämen ultraäänitutkimukseen.
Tapausten luokittelut Bellin luokkiin II ja III tehtiin sairaukskertomukseen dokumentoitujen tietojen perusteella (röntgenkuvausunnot, kliiniset oireet ja laboratoriolöydökset). Muutamassa tapauksessa varma NEC-diagnoosi saatiin ruumiinavausraportista. Tiedot verrokkien infektiosta ja sepsiksestä perustuvat epikriisiin kirjattuun diagnoosiin (vastasyntyneen infektio tai sen epäily). Laboratoriokokeiden tulokset (kuten CRP ja veriviljely) löytyivät useimmiten kertomusteksteistä, tarvittaessa käytettiin hyväksi paperisia tulosteita.

Analysointiin käytettiin IBM SPSS Statistics 19 -tilastointiohjelmaa. Ryhmiä (kaikki tapaukset, vain vaikeat NEC-tapaukset ja verrokit) verrattiin toisiinsa käyttäen tilastollisesti sopivia testejä: jatkuville muuttujille Student's t -testi ja Mann-Whitney U -testi, luokiteltaville muuttujille χ^2 -testi ja Fisher’s Exact -testi. Tilastollisesti merkitseväksi katsottiin p:n arvo alle 0,05.

3 TULOKSET

Ryhmien (kaikki NEC-tapaukset, vaikea NEC ja verrokit) välinen vertailu on esitetty taulukossa 1.

NEC-tapauksista 10:llä (37 %) oli oireiden ja löydösten perusteella Bell II -luokan NEC ja 17:llä (63 %) oli vaikea NEC (Bell III). Oireiden alkamisen mediaani (vaihteluväli) syntymästä oli 9,5 (5–22) vrk Bell II -luokassa ja vaikeilla NEC-tapauksilla (Bell III) 7 (3–30) vrk (p = 0,066). Vatsan natiiviröntgenkuvassa nähdyt muutokset olivat oletettavastikin vakavammat vaikeimmassa tapauksissa (ristiintaulukointi, p = 0,039): 41,2 %:lla (7) Bell III -luokassa oli röntgenkuvassa havaittavissa ilmaa vapaassa vatsaontelossa merkkinä suolen perforaatiosta (Bell II 0 %). Lievempää, NEC:lle tyyppillistä pneumatosis intestinalis -muutosta oli Bell II -tapauksilla 70,0 %:lla (7) ja vaikeilla NEC-tapauksilla 29,4 %:lla (5). Leikkaushoitoa sai 33,3 % (9) kaikista sairastu-
Taulukko 1. Ryhmien välinen vertailu.

<table>
<thead>
<tr>
<th>Prenataaliset tekijät</th>
<th>NEC, kaikki (n = 27)</th>
<th>ρ^2</th>
<th>Vaikea NEC (n = 17)</th>
<th>ρ^2</th>
<th>Verrokkit (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G^a</td>
<td>1,5 (1–6)</td>
<td>0,028</td>
<td>1 (1–6)</td>
<td>0,115</td>
<td>2 (1–7)</td>
</tr>
<tr>
<td>P^a</td>
<td>0 (0–3)</td>
<td>0,003</td>
<td>0 (0–2)</td>
<td>0,002</td>
<td>1 (0–5)</td>
</tr>
<tr>
<td>äidin infektiio</td>
<td>11 (40,7)</td>
<td>0,682</td>
<td>9 (52,9)</td>
<td>0,219</td>
<td>18 (36,0)</td>
</tr>
<tr>
<td>korinammonioniitti</td>
<td>6 (22,2)</td>
<td>0,059</td>
<td>5 (29,4)</td>
<td>0,021</td>
<td>3 (6,0)</td>
</tr>
<tr>
<td>pre-eklampsia</td>
<td>4 (14,8)</td>
<td>0,259</td>
<td>3 (17,6)</td>
<td>0,743</td>
<td>13 (26,0)</td>
</tr>
<tr>
<td>PROM</td>
<td>5 (18,5)</td>
<td>0,357</td>
<td>4 (23,5)</td>
<td>1,000</td>
<td>14 (28,0)</td>
</tr>
<tr>
<td>gestaatioksiabetes</td>
<td>2 (7,4)</td>
<td>1,000</td>
<td>2 (11,8)</td>
<td>0,639</td>
<td>4 (8,0)</td>
</tr>
<tr>
<td>verenpainetauti, äiti</td>
<td>3 (11,5)</td>
<td>0,406</td>
<td>2 (12,5)</td>
<td>0,588</td>
<td>3 (6,0)</td>
</tr>
<tr>
<td>Tekijät syntyessä</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gestaatioksiabetes (vk)^a</td>
<td>26,43 (24,00–34,58)</td>
<td>0,115</td>
<td>25,72 (24,00–31,00)</td>
<td>0,021</td>
<td>27,93 (23,00–31,72)</td>
</tr>
<tr>
<td>syntymäpäino (g)^b</td>
<td>800 (495–1 575)</td>
<td>0,216</td>
<td>750 (495–1 505)</td>
<td>0,046</td>
<td>975 (360–1 460)</td>
</tr>
<tr>
<td>sektio</td>
<td>21 (77,8)</td>
<td>0,365</td>
<td>12 (70,6)</td>
<td>0,842</td>
<td>34 (68,0)</td>
</tr>
<tr>
<td>moniskiösisys</td>
<td>8 (29,6)</td>
<td>0,973</td>
<td>4 (23,5)</td>
<td>0,760</td>
<td>15 (30,0)</td>
</tr>
<tr>
<td>Apgar 5 min^c</td>
<td>6 (2–9)</td>
<td>0,263</td>
<td>5 (2–9)</td>
<td>0,053</td>
<td>7 (2–9)</td>
</tr>
<tr>
<td>Napa-pH, arteria^b</td>
<td>7,32 (± 0,089)</td>
<td>0,824</td>
<td>7,32 (± 0,091)</td>
<td>0,947</td>
<td>7,31 (± 0,095)</td>
</tr>
<tr>
<td>Ventilaatio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surfaktanttia saaneet</td>
<td>25 (92,6)</td>
<td>0,034</td>
<td>16 (94,1)</td>
<td>0,091</td>
<td>36 (72,0)</td>
</tr>
<tr>
<td>surfaktantti, annokset^d</td>
<td>2 (0–3)</td>
<td>0,045</td>
<td>2 (0–2)</td>
<td>0,079</td>
<td>1 (0–4)</td>
</tr>
<tr>
<td>hengityskonehoito</td>
<td>26 (96,3)</td>
<td>0,027</td>
<td>17 (100)</td>
<td>0,028</td>
<td>38 (76,0)</td>
</tr>
<tr>
<td>hengityskonehoito (vrk)^e</td>
<td>10 (4–15)</td>
<td>< 0,001</td>
<td>11 (6–17)</td>
<td>< 0,001</td>
<td>2 (0,75–3,5)</td>
</tr>
<tr>
<td>HFOV</td>
<td>21 (77,8)</td>
<td>< 0,001</td>
<td>16 (94,1)</td>
<td>< 0,001</td>
<td>14 (28,0)</td>
</tr>
<tr>
<td>NCPAP (vrk)^f</td>
<td>10 (2–41)</td>
<td>0,442</td>
<td>7 (1,5–31,5)</td>
<td>0,859</td>
<td>14,5 (0,25–34,5)</td>
</tr>
<tr>
<td>teofilinii</td>
<td>18 (66,7)</td>
<td>0,497</td>
<td>10 (58,8)</td>
<td>0,237</td>
<td>37 (74,0)</td>
</tr>
<tr>
<td>Hemodynamikka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morfini</td>
<td>21 (77,8)</td>
<td>0,083</td>
<td>14 (82,4)</td>
<td>0,070</td>
<td>29 (58,0)</td>
</tr>
<tr>
<td>inotroopit</td>
<td>20 (74,1)</td>
<td>0,368</td>
<td>13 (76,5)</td>
<td>0,344</td>
<td>32 (64,0)</td>
</tr>
<tr>
<td>PDA</td>
<td>19 (73,1)</td>
<td>0,666</td>
<td>13 (81,3)</td>
<td>0,528</td>
<td>30 (68,2)</td>
</tr>
<tr>
<td>indometasiini</td>
<td>2 (7,4)</td>
<td>0,124</td>
<td>1 (5,9)</td>
<td>0,270</td>
<td>11 (22,0)</td>
</tr>
<tr>
<td>Ruokinta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN (vrk)^g</td>
<td>22 (13–34)</td>
<td>< 0,001</td>
<td>18 (11–35)</td>
<td>0,034</td>
<td>13 (7,5–17)</td>
</tr>
<tr>
<td>maidon alötusiskä (vrk)^g</td>
<td>2 (1–4)</td>
<td>0,192</td>
<td>1 (1–2)</td>
<td>0,275</td>
<td>1 (1–2)</td>
</tr>
<tr>
<td>maitomäärä 0–7 vrk ml/kg (syntymäp.)^h</td>
<td>83,5 (32,75–151,75)</td>
<td>0,582</td>
<td>73 (13,25–134)</td>
<td>0,371</td>
<td>97 (21–202,5)</td>
</tr>
<tr>
<td>Kuolleet</td>
<td>13 (48,1)</td>
<td>0,010</td>
<td>12 (70,6)</td>
<td>< 0,001</td>
<td>10 (20,0)</td>
</tr>
<tr>
<td>ikä kuollessa (vrk)^i</td>
<td>16 (10,5–24,5)</td>
<td>< 0,001</td>
<td>17 (11–27,25)</td>
<td>< 0,001</td>
<td>5 (2–5,5)</td>
</tr>
</tbody>
</table>

Data on n (%): ^a mediaani (vaihteluväli), ^b keskiarvo (± SD), ^c mediaani (kvartilitväli 25–75 %), ^d NEC, kaikki vs verrokkit, ^e vaikea NEC (Bell III) vs verrokkit; G = graviditeetti, P = paritetti, PROM = premature rupture of membranes, HFOV = high frequency oscillatory ventilation, NCPAP = nasal continuous positive airway pressure, PDA = patent ductus arteriosus, PN = parenteraalintrito
neista. Kaikki operatiivisesti hoidetut lapset kuuluivat luokkaan Bell III (9/17). Vaikeista tapauksista (Bell III) kuoli 12 (70,6 %) ja Bell II -luokassa ainoastaan 1 (10 %). Vastaavasti verrokeista kuoli 10 (20 %) (Taulukko 1).

Primaarivaiheessa käytetyissä mikrobilääkkeissä oli tapaus- ja verrokkiryhmien välillä tilastollisesti merkitsevä ero (Taulukko 2; ks. myös Pohdinta).

Taulukko 2. Mikrobilääkehoito ennen infektiota.

<table>
<thead>
<tr>
<th>Luokka</th>
<th>NEC, kaikki (n = 27)</th>
<th>Vaikea NEC (n = 17)</th>
<th>Verrokit (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aminoglykosidi</td>
<td>26 (96,3)</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>amphisilliini</td>
<td>18 (69,2)</td>
<td>11 (64,7)</td>
<td>21 (42,9)</td>
</tr>
<tr>
<td>bentsyylipenisilliini</td>
<td>8 (30,8)</td>
<td>6 (35,3)</td>
<td>28 (57,1)</td>
</tr>
<tr>
<td>flukonatsoli</td>
<td>19 (70,4)</td>
<td>12 (70,6)</td>
<td>22 (44,0)</td>
</tr>
</tbody>
</table>

Data on n (%); NEC, kaikki vs verrokit, vaikea NEC (Bell III) vs verrokit, amphisilliini vs bentsyylipenisilliini, ks. myös Pohdinta

Verrokeista 21:lla (42,0 %) oli infektio. Heistä 16:lla (84,2 %) todettiin veriviljely-positiivinen sepsis ja lopuilla (5) oli infektiopäily kliinisen tilan ja laboratoriolöydösten perusteella (CRP:n nousu tai leukosyyttireaktio) ilman positiivista veriviljelyä. Verrikkien infektion hoitoon käytettyjen antibiootti-ien määrän mediaani (vaihteluväli) oli kolme (0–4), kun taas tapausten infektion (NEC) hoitoon oli käytetty neljää (2–7) antibioottia (p < 0,001). Koska tapauksilla oli vakava infektio (NEC), heitä oli myös hoidettu laajakirjoisemmin kuin verrokkeja: vankomysiniiin käytössä ei ollut eroa ryhmien välillä, mutta kefotaksiimia oli annettu tapauksille merkitsevästi useammin kuin verrokeille, 70,4 % vs 35,0 % (p = 0,016).

Veriviljely oli positiivinen kaikista verrokeista 16:lla (76,2 %) ja 15:lla (55,6 %) tapauksista (p = 0,138). Yleisimmät patogeenit veressä olivat Staphylo-
coccus epidermidis (tapaukset n = 5, verrokit n = 6) ja Staphylococcus capitis (tapaukset n = 4, verrokit n = 4). Ryhmien välillä ei ollut näiden patogeenien suhteen tilastollisesti merkitsevää eroa. Lisäksi tapausten veressä kasvoi Enterobacter cloacae (n = 3) ja Enterococcus faecalis (n = 3), joita ei löytynyt verrokkien veriviljelystä (p = 0,040). Ulosteviljely oli otettu vain seitsemältä NEC-tapaukselta (kuudella positiivinen). Yleisimmät ulosteessa kasvaneet patogeenit olivat Escherichia coli (n = 4) ja Enterococcus faecalis (n = 4).

Ennen NEC:n oireiden ilmaantumista hengityskonehoitoa oli saanut kaikista NEC-tapauksista 25 (92,6 %): Bell II -ryhmässä 9 (90 %) ja Bell III -ryhmässä 16 (94,1 %). Vastaavasti verrokeista primaaristi hengityskoneessa oli ollut 37 (74,0 %) (p = 0,049). Taulukossa 1 esitettyissä luvuissa ovat mukana kaikki hengityskonehoitoa saaneet.

Alle 7,05 napa-arterian pH-arvoa ei esiintynyt tapausryhmässä yhdelläkaään ja verrokkiryhmässäkin vain yhdellä (pH 7,02). Viiden minuutin Apgar-pisteissä on lähes tilastollisesti merkitsevä ero (p = 0,053) verrattaessa vaikeaa NEC-ia (Bell III) verrokkeihin (Taulukko 1). Tilastollisesti merkitsevä eroa ei kuitenkaan ole, kun verrataan luokiteltuja Apgar-pisteitä (Apgar < 4, 4–6 tai 7–10) ryhmien välillä.

Parenteraalisen ravitsemuksen kesto oli tapauksilla luonnollisesti pidempi kuin verrokeilla, koska kyseessä oli suolioireinen infektiio, ks. Taulukko 1. Lisäksi enteraalinen ravitsemus oli tapauksilla pidempään tauolla, mediaani (kvartiiliväli) 7 (3–9) vrk vs 0 (0–0) vrk (p < 0,001). Tämän vuoksi NEC-potilaidella täysin maitoihin päästiin myöhemmin: mediaani (kvartiiliväli) 28 (14–43) vrk vs 14,5 (12–19,25) vrk (p < 0,001). Maidon vahvike aloitettiin myös keskimäärin myöhemmin tapauksilla kuin verrokeilla: keskiarvo (SD) 29,81 (± 14,50) vrk vs 15,64 (± 5,62) vrk (p = 0,001). Sen sijaan enteraalisen ruokakinnan aloitusajasta tai ensimmäisen viikon maitomäärästä (ml/kg) ei ollut ryhmien välillä tilastollisesti merkitsevää eroa (Taulukko 1).
Äidin sairaudet eivät vaikuttaneet lapsen sairastumiseen, lukuun ottamatta äidin korionamnioniittia (ks. Taulukko 1, 3 ja 4). Myöskään äidin raskaudenaiikaisessa antibioottihoidossa tai verenpainelääkityksessä ei ollut ryhmien välillä eroa.

Logistiseen regressioanalyyysiin valittiin ne tekijät, joiden p-arvo oli tilastollisesti merkitsevä (p < 0,05) tai lähes merkitsevä (p < 0,1). Jatkuvat muuttujat (G, P, gestaatioikä ja syntymäpaino) muutettiin luokiteltuun muotoon analysoinnin helpottamiseksi (ks. Taulukko 3 ja 4). Tekijöitä tarkasteltiin sekä yksittäin (Taulukko 3) että yhdessä (Taulukko 4). Graviditeetti jätettiin pois kombinoidusta mallista, koska G:n ja P:n tarkastelemisen erillisinä muuttuina ei vaikuttanut järkevästi ja G:n ollessa mukana analyysissä tulokset eivät olleet mielekkäitä. Kombinoidussa mallissa merkitseviksi riskitekijöiksi osoittautuivat ainoastaan äidin korionamnioniitti ja lapselle syntymän jälkeen annettu amphisilliinilääkitys (Taulukko 4).

Taulukko 3. Logistinen regressioanalyysi, tekijät tarkasteltuna yksittäin.

<table>
<thead>
<tr>
<th></th>
<th>NEC (kaikki) vs verrokit</th>
<th>vaikea NEC vs verrokit</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>OR</td>
<td>95 %-n LV (OR)</td>
</tr>
<tr>
<td>G (graviditeetti), luokiteltu*</td>
<td>0,010</td>
<td>4,111</td>
</tr>
<tr>
<td>P (pariteetti), luokiteltu*</td>
<td>0,035</td>
<td>5,357</td>
</tr>
<tr>
<td>gestaatioikä (vk), luokiteltu*</td>
<td>0,088</td>
<td>2,375</td>
</tr>
<tr>
<td>syntymäpaino (g), luokiteltu*</td>
<td>0,165</td>
<td>2,023</td>
</tr>
<tr>
<td>korionamnioniitti</td>
<td>0,047</td>
<td>4,476</td>
</tr>
<tr>
<td>hengityskonehoito primaaristi</td>
<td>0,065</td>
<td>4,392</td>
</tr>
<tr>
<td>surfaktantti</td>
<td>0,048</td>
<td>4,861</td>
</tr>
<tr>
<td>morfini</td>
<td>0,088</td>
<td>2,534</td>
</tr>
<tr>
<td>flukonatsoli</td>
<td>0,030</td>
<td>3,023</td>
</tr>
<tr>
<td>amphisilliini vs bentsyylipenisilli</td>
<td>0,032</td>
<td>3,000</td>
</tr>
</tbody>
</table>

*1 vs ≥ 2, b 0 vs ≥ 1, c < 28 vk vs ≥ 28 vk, d < 1 000 g vs ≥ 1 000 g; OR = odds ratio, LV = luottamusväli
Taulukko 4. Logistinen regressioanalyysi, kombinoitu malli.

<table>
<thead>
<tr>
<th></th>
<th>NEC (kaikki) vs verrokit</th>
<th>vaikea NEC vs verrokit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>OR</td>
</tr>
<tr>
<td>P (pariteetti), luokiteltu(^a)</td>
<td>0,075</td>
<td>5,212</td>
</tr>
<tr>
<td>gestaatioikä (vk), luokiteltu(^b)</td>
<td>0,877</td>
<td>1,131</td>
</tr>
<tr>
<td>syntymäpaino (g), luokiteltu(^c)</td>
<td>0,626</td>
<td>10,528</td>
</tr>
<tr>
<td>korionamnionítti</td>
<td>0,029</td>
<td>4,476</td>
</tr>
<tr>
<td>hengityskonehoito primaaristi</td>
<td>1,000</td>
<td>--</td>
</tr>
<tr>
<td>surfaktantti</td>
<td>1,000</td>
<td>--</td>
</tr>
<tr>
<td>morfiini</td>
<td>0,488</td>
<td>0,554</td>
</tr>
<tr>
<td>flukonatsoli</td>
<td>0,131</td>
<td>2,867</td>
</tr>
<tr>
<td>amplisíliini vs bentsylipeníssíliini</td>
<td>0,011</td>
<td>6,147</td>
</tr>
</tbody>
</table>

\(^a\) 0 vs ≥ 1, \(^b\) < 28 vk vs ≥ 28 vk, \(^c\) < 1 000 g vs ≥ 1 000 g; OR = odds ratio, LV = luotettavuusväli

Bell II - ja Bell III -luokan NEC-tapauskien välillä ei tullut esille tilastollisesti merkitseviä eroja riskitekijöissä, eli tämän aineiston perusteella mikään riskitekijä ei näyttäisi suoraan ennustavan vaikeamman taudinkuvan.

4 POHDINTA

Tutkimusasetelmana oli tapaus-verrookkitutkimus, ja verrokkien oli tarkoitus olla kaltaisettuja sukupuolten, syntymäpainon ja gestaatioiän mukaan. Verrattaessa kaikkia tapauksia verrokkeihin, kaltaistus näyttäisi onnistuneen melko hyvin (Taulukko 1). Sen sijaan Bell III -luokan NEC-tapausten (vaikea NEC) ja verrokkien välillä gestaatioiän ero oli tilastollisesti merkitsevä (p = 0,021). Tämä vahvistaneeseen sen, että varhaisilla raskausviikoilla syntyminen on NEC:n riskitekijä (Srinivasan ym. 2008). Myös syntymäpainon suhteen vaikeiden NEC-tapausten ja verrokkien välillä oli tilastollisesti merkitsevä ero (p = 0,046).
NEC on merkittävä ennenaikaisesti syntyneiden kuolleisuuden aiheuttaja (Henry ja Moss 2009), joten ei ollut yllätys, että tässäkin aineistossa kuolleisuus oli selvästi suurempi tapausryhmässä (Taulukko 1). Lähä kaikilla (92 %) tapausryhmän kuolleista oli vaikea NEC (Bell III). Ne verrokit, jotka kuolivat sen sijana nuorempina kuin NEC-tapaukset: 5 vrk vs 16 vrk (p < 0,001). Tämä kertonee siitä, että NEC:iin sairastutaan ja kuollaan yleensä vasta varhaisimman vastasyntyneisyyskauden jälkeen.

Tapaukset olivat olleet merkitsevästi useammin (p = 0,027) ja pidempään hengityskonehoidossa (p < 0,001) kuin verrokit (Taulukko 1). Myös korkea-taajuusventilaatiohoidoa (HFOV) tapaukset olivat merkitsevää useammin (p < 0,001) kuin verrokit. Eron voisi olettaa selittyvän infektiotilanteella: tapauksista 100 %:lla oli infektio (NEC) ja 63 %:lla vaikea infektio (Bell III-luokan NEC) ja verrokeista vain 42 %:lla oli infektio. Tosin, kun aineistosta poistetaan ne verrokit, joilla ei ollut infektiota, hengityskonehoidon kesto on edelleen merkitsevästi pidempi tapausryhmässä (p = 0,001). Myös HFOV-hoidon suhteen tilastollinen ero säilyy terveiden verrokkien poistamisenkin jälkeen (p < 0,001). Myös ennen infektio-oireiden ilmaantumista saadussa hengityskonehoidossa on tapaus- ja verrokkirhymien välillä tilastollisesti merkitsevä ero (p = 0,049). NEC siis näyttäisi altistavan pidemmälle hengi-
tyskonehoidolle, mutta toisaalta myös hengityskonehoidon näyttäisi altistavan NEC:lle.

Syntymähetken hapetustilannetta karkeasti kuvaavissa Apgar-pisteissä ja hapetusta herkemmin kuvaavassa napa-arterian pH-avossa ei juurikaan ollut eroa ryhmien välillä (Taulukko 1). Itse asiassa oli varsin yllättävää huumata, kuinka hyvät pH-arvot aineiston kaikilla tapauksilla olivat ja kuinka vähäistä vaihtelua oli. Myöskään selkeästi matalia (< 4) Apgar-pisteitä ei tässä aineistossa ollut NEC-tapauksilla verrokkeja useammin.

Yllättävästi sienilääke flukonatsolin käyttö primaarivaiheessa oli tilastollisesti merkittävästi yleisempiä NEC-ryhmässä (p = 0,027). Tiettävästi flukonatsolin yhteyttä nekrotisoivaan enterokoliittiin ei ole aikaisemmin todettu. Tampereen yliopistollisen sairaalan vastasyntyneiden tehosto-osastolla (VTO), josta aineisto oli kerätty, on käytätönä, että flukonatsooliääkitys aloitetaan rutiinistä syntyessään alle 1 000 g painoisille tai hyvin ennenaikeisille. Aineistossa oli alle 1 000 g:n painoisia 46 (59,7 %): tapauksia 19 (70,4 %) ja verrokkeja 27 (54,0 %) (p = 0,162). Flukonatsolin käytössä alle 1 000 g:n painoisilla ollut ryhmien välillä eroa (p = 1,000), mutta yli 1 000 g painavilla (n = 31) flukonatsolia ollut ollut primaaristi käytössä tapausryhmässä edelleen tilastollisesti merkittävästi useammin (p = 0,002). Pienipainoisuus ei siis näyttäisi täysin selittävän flukonatsolin ja NEC:n tilastollista yhteyttä.

Mielenkiintoista oli myös huomata, että tapausten äidit olivat keskimäärin (mediaani) ensisyntyttäjä (G1,5 P0) ja verrokkien äidit toissynynyttäjä (G2 P1). Erot olivat ryhmien välillä tilastollisesti merkittävät (graviditeetti, p = 0,028 ja synnyttäneisyys, p = 0,003). Tämä lienee sattumaa, tosin tapausryhmässä oli useita sellaisia äitejä, joilla oli ollut enemmän kuin yksi keskenmerkintä tai raskaudenkeskeytyys (16,7 % vs verrokit vain 8,7 %). Ero ei ollut kuinka- kantaan tilastollisesti merkittävä (p = 0,432).

Aikaisemmista tutkimuksista poiketen tilastollisesti merkitsevaksi riskitekidjöiksi tässä tutkimuksessa eivät osoittautuneet äidin pre-eklampsia tai verenpainetauti (Bashiri ym. 2003), ennenaikeinen kalvojen puhkeaminen

Yhteenvetona tilastollisesti merkitseviä selittäviä tekijöitä nekrotisoivalle enterokoliitille tässä tutkimuksessa näyttäisivät olevan flukonatsolin ja ampisilliinin käyttö primaaristi, äidin ensisyynnyttäjyyys ja surfaktantin anto. Lisäksi äidin korionamnioniitti oli selittävä tekijä vaikealle NEC:lle verrattaessa heitä verrokkeihin. Kuitenkin logisesti regressioanalyysissä tilastollisesti merkitseviksi riskitekijöiksi NEC:lle osoittautuivat ainoastaan äidin korionamnioniitti (OR 4,48; 95 %:n LV 1,28–86,67) ja lapsen ampisilliinilääkitys primaaristi (OR 6,15; 95 %:n LV 1,51–25,00). Tosin ampisilliinin osuus todellisena riskitekijänä jää epävärnosti ja syntymävuoden ollessa sekoittavana tekijänä vertailtavien ryhmien välillä.

Aineiston pienuuden vuoksi osa riskitekijöistä on saattanut jäädä tunnistamatta. Lisäksi ampisilliinin osuus riskitekijänä tarvitsee lisäselvityksiä. Aiheesta tarvitaan lisätutkimuksia isomilla aineistoilla.
LÄHTEET

Hällström M. Necrotising enterocolitis in preterm infants: frequency, risk factors, laboratory diagnosis and microbiological etiology. Acta Universitatis Tamperensis; 1062, Tampereen yliopisto, Tampere 2005

