

Pekka Mäkiaho and Timo Poranen (eds.)

Software projects 2012‐2013

UNIVERSITY OF TAMPERE

SCHOOL OF INFORMATION SCIENCES
REPORTS IN INFORMATION SCIENCES 23

TAMPERE 2013

UNIVERSITY OF TAMPERE
SCHOOL OF INFORMATION SCIENCES
REPORTS IN INFORMATION SCIENCES 23
OCTOBER 2013

Pekka Mäkiaho and Timo Poranen (eds.)

Software projects 2012‐2013

SCHOOL OF INFORMATION SCIENCES
FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐9238‐9

ISSN‐L 1799‐8158
ISSN 1799‐8158

i

Preface
This report contains project stories of 13 software development projects from
academic year 2012-2013. The students came from Project Work (TIEA4) and
Software Project Management (TIETS19) courses. The stories describe what kind of
experiences groups got during their project and what was the software product that
came out from the project. In the end of each story there are project statistics.

Table 1: General project statistics.

Project Type Client Dev. Mod. Group Hours

Avainsiirto WWW Other Scrum 3+3 1004

Alkeismatematiikka Appl. University Scrum 3+4 1040

Eedu Android Company Scrum 4+4 1229

Gesture Recognition Appl. University Scrum 4+4 927

Logistiikkaketjun kirjaus Android Company Scrum 3+4 1084

Majava4 WWW University Scrum 2+4 847

Math.fi WWW Other Scrum 3+4 1028

MobSec Android Other Waterfall 3+4 1152

Pricing Tool WWW Company Scrum 2+5 1163

Meta Review Tool WWW University Scrum 2+4 1118

Smart Lightning Appl. University Scrum 3+5 1266

Virtual Patient WWW University Scrum 4+5 1484

VirPro Appl. Company Scrum 3+4 1077

Table 1 gives an overview of the projects. For each project, there is project type
(WWW, Android or standalone application), client (University, Company or Other
non-commercial client), development model, group size (number of managers +
number of developers) and working hours of the project.
Although 12 projects applied Scrum (“Scrum-but”) development model, there was
usually some differences when compared to standard Scrum: no face-to-face daily
meetings, no fixed length iterations, many managers in the team, no sprint
retrospective…
Table 2 contains general course statistics (number of projects and usability teams,
number of students in the courses and average project size in working hours) starting
from year 2005.

ii

Table 2: Course statistics 2005-2013.

Academic
year

Projects Usability
teams

PW
students

SPM
students

Average
project size

2005-6 19 1 98 8 1008

2006-7 18 2 87 34 1089

2007-8 14 1 70 29 997

2008-9 10 1 60 39 1643

2009-10 15 1 80 34 1151

2010-11 13 1 70 27 1230

2011-12 14 0 67 30 1331

2012-13 13 0 54 39 1109

School of Information Sciences (SIS) offered version control services (subversion)
and Redmine-project management tool for all projects. Balsamiq was used in many
projects for user interface design. SIS’s projectWiki was used to maintain course and
project related documentation and guidelines: https://projectwiki.sis.uta.fi. The wiki
also contains some articles on project management and project management tools,
including lists of end-products currently in use, course related publications and course
related videos:

· https://projectwiki.sis.uta.fi/wiki/Finished_projects

· https://projectwiki.sis.uta.fi/wiki/Course_publications

· https://projectwiki.sis.uta.fi/wiki/List_of_project_videos

Course staff thanks our clients and students for great projects!

Pekka Mäkiaho and Timo Poranen
Tampere, September 2013

iii

Preface ... i

Interactive website for teaching chess - Avainsiirto ... 1

Alkeismatematiikan oppimisympäristö - Learning environment for elementary
mathematics ...10

Project Eedu ...19

Gesture Recognition ...28

Logistiikkaketjun kirjaus ..33

Majava 4 ..46

Math.fi ...57

MobSec ..63

Pricing tool ...68

Meta review tool...75

Smart Lightning ...86

Virtual Patient ..91

ViRPRO ...97

1

Interactive website for teaching chess -
Avainsiirto

Overview
Avainsiirto is an interactive Finnish web service aiming to teach the game of chess.
Avainsiirto contains a set of chess problems the users try to solve. While solving the
problems the users learn the rules of the game, how to play chess and also how to
make smart tactical choices.

Users aren’t forced to register to the service to be able to solve the chess problems.
If they choose to register, the service will track their progress and calculate a strength
number for each user depending how well the user has solved the problems.

Avainsiirto is mainly aimed at young students still in primary school. While designing
the service it was also important to make sure the service feels welcoming to older
students and adults.

Image 1: The main chess problem interface

Since the client Shakkilinna made all the necessary materials for the actual chess
problems, it was up to the project team to design both the visual and technical
elements of the service, according to customer’s needs and requests. The main
requirement involving the visuality of the site was to remember the user target group.

2

The technical requirements sprung from the versatility of the chess problems: the
need to be able to add new problems (as seen in image 2) as well as modify the
existing ones, and the need to track the user’s progress.

The first key feature of the site is the chess problem interface (image 1). The problem
includes all necessary texts, the chess board and the chess pieces. Texts include the
description of the problem, the hint and feedback to both correct and wrong answers.
The chess board has chess pieces on it and one of the pieces must be moveable
when solving the problem, both by click-and-click and drag-and-drop. The board and
the pieces must understand the basic rules of how each chess piece moves on the
chessboard.

Image 2: Creating chess problems has never been easier!

After the user moves one of the pieces feedback is given: colors on the board may
change and the exercise helper piece gives information if the user succeeded or
failed the exercise. If the user is registered to the service, one must get points
according to how well one has solved the problem. The service must remember
which problems are already solved and which are not, as well as the strength number
of the user.

The second key feature is the ability to make new problems and follow the progress
of the users (as seen in image 2). The customer, or administrator, must be able to
sign in to the service and access the html-based problem editor.

3

Organisation and management

The group was initially split into two different teams. The first team handled the
coding part of the project. This included the JavaScript section that made it possible
to have interactive content on the site, such as the interactive chess board. The code
team was also responsible for the backend logic of the site. The second team
handled the design and implementation of the user interface and product testing.

The project decided on a one meeting per week minimum. The whole project team
would participate in the weekly meeting which was to serve as a synchronization
point. At the beginning of the project there were UI meetings, but after the main
guidelines were set they ceased to exist. In the later phases of the project there were
also code workshops.

Our organisation is explained in the next table. Lauri Maasola has been our
administrative manager in charge of common tasks. Panu Hokkanen was mainly
responsible for the user interface implementation. Along with Mikko Kokotti, all the
managers observed the coding process and helped the development team when it
was necessary.

Management Development

● Lauri Maasola ● Tommi Perkola

● Mikko Kokotti ● Jukka Suorsa

● Panu Hokkanen ● Siiri Tammisto
Table 1: The team

Lauri Maasola
Lauri worked as the administrative project manager, which included things like
keeping everyone in touch with each other, reserving meeting rooms and organizing
weekly meetings and review sessions. Lauri also helped coding the actual chess
game and implemented the Kinetic JS framework into the project.

Mikko Kokotti
At the beginning of the project, Mikko introduced and taught the basics of CakePHP
to team developers. Mikko built a prototype of the problem editor with Java, which
helped to design and develop the actual editor with assistance of Tommi Perkola.

Manager Panu Hokkanen
Panu’s main responsibility has been UI designing and implementation. After the initial
start of the project, Panu helped getting the actual chess game working properly. He
has also helped with general CakePHP problems the team encountered and

4

implemented the Javascript editor to the site (since it was a separate piece of
Javascript before).

Tommi Perkola
Tommi wrote the code to the games javascript basics at the start of the project, which
gave a good support to write the rest of the code to the game. Most of the final editor
is developed by Tommi.

Jukka Suorsa
Jukka was the main programmer responsible for the backend part of our project. He
learned to use the CakePHP framework and implemented most of the features
concerning user management, news section and general needs of the site.

Siiri Tammisto
Since Siiri was the only team member without programming skills, her main
responsibility was to test the site while others programmed it. Siiri tried to look at the
site from the user’s perspective at all times, and to make remarks about possible
user interface problems.

Methods and tools

Name Version Purpose Usefulness

Eclipse IDE Indigo/
Juno

Main development Extremely useful

CakePHP 2.2.2 Framework for PHP Extremely useful

Kinetic JS 4.3.3 HTML5 Canvas JavaScript
framework

Extremely useful

jQuery 1.8.3 JavaScript library Extremely useful

XAMPP 3.1.0 Apache server and
MySQL support

Extremely useful

Subversion Version control Extremely useful

Facebook Communication Very useful

Redmine 1.3.1 Project information
sharing, e.g. features,
meeting minutes, etc.

Very useful

Photoshop CS5 Creating sketches and UI Very useful

5

elements

Google Docs Document creation Very useful

Balsamiq Mockup UI design Very useful

Internet Relay Chat Communication

Useful when
people were
actually using it

Table 2: Methods and tools

Project phases and development model
Our development model was Modified Scrum, since we didn’t have any daily
meetings. Instead, we had weekly meetings and additional workshops during the
project. Workshops were arranged when they were needed and usually were about
sharing information or coding some feature with more than one people.

At the start of the project the main way of communication was the forum Redmine
supported and of course Email. After a while, the team found it to be too slow and
incoherent, so we changed our primary communication method to Facebook, where
we created a new group for our project. Facebook proved to be quite useful, mainly
because of it’s addicting features. Since everyone is using Facebook on a daily
basis, team members could quickly communicate with each other. Our secondary
method of communication was the Internet Relay Chat (IRC), which proved to be
useful for those that tended to use it regularly outside the project.

Our project’s phases for the code team were mostly practicing, implementation and
integration. The project was “kickstarted” with the code camp, where the initial project
was made and we started to implement the first main features, the user system, the
news section and the interactive chessboard. The following large milestones included
first working prototype of the solvable chess problem and the chess problem editor.
These large features included a lot of integration, since they were developed
separately outside of the main site. The process of learning new technologies and
integrating ultimately lead to the lack of proper unit tests, but on the other hand, we
managed to achieve more than the minimum goal of our project.

Experiences

Foreseen risks
RISK ANALYSIS

Technology problems /
Tools and skills

Countermeasure
Studying new techniques and teaching others.

6

Analysis
The required technologies were learned. However,
required tools have been hard to install for some
members, especially XAMPP and Eclipse.

Quitting team members Countermeasure
Motivating team members. Delegating working hours
as equally as possible.

Analysis
One team member quit and the reason remains
unknown. After the disappearance, the managers
participated more in the coding process to
compensate loss of working hours.

Motivation problems Countermeasure
Motivating the team members.

Analysis
It was hard to keep the team motivated at the times,
since we didn’t have any real incentives. In a
university project like this, it is important that the
person attending the course is open and motivated to
learn new technologies and working with the team.

Working and studying during
project

Countermeasure
Personal schedule planning.

Analysis
Countermeasure for this risk would have been better
delegation of jobs.

Table 3: Foreseen risks

Unforeseen risks
RISK ANALYSIS

Lack of testing Things did not proceed as fast as we had
initially hoped, so the software testing
phase was delayed. Since the CakePHP
was new framework for every team
member, we thought we would postpone
testing so people could learn the
framework first. In hindsight, managers
should have set the testing environment

7

to the project and teach it to the project
members.

Different team members working
different hours

Problems occurred mostly on the
integration phase, because there was
some lack of communication. To counter
this, we started to have regular code
meetings.

Scheduling difficulties Since some project members had jobs
and working hours scheduling weekly
team meetings was sometimes hard.

Table 4: Unforeseen risks

Statistics

Diagram 1: Working hours by week.

8

Team
size

Dev. model Start date End data Days Hours

3+3 Modified Scrum 19.9.2012 17.3.2013 180 1003.50
Table 5: General project information.

Activit
y

Planni
ng and
manag
ement

Req.
specifi
cation.

Desig
n

Code Integr
ation
and
testing

Revie
ws

Repair Study Other Total

Hours 384.25 3.00 65.00 413.25 14.00 5.00 7.75 83.50 27.75 1003.5

% 38% 1% 6% 41% 1% 1% 1% 8% 3% 100%

Table 6: Group effort by activity.

Requir
ement
s

Pages Use-
cases

UI
scree
ns

Datab
ase
diagra
ms

Datab
ase
tables

- - 20 21 - 9
Table 7: Requirements and high-level design outcomes.

Pages Overvi
ew

diagra
ms

Class
diagra

ms

Seque
nce

diagra
ms

State
diagra

ms

Other
diagra

ms

- - 1 - - -
Table 8: Design outcomes.

Document Pages Versions

Preliminary analysis 6 1

Project Plan 12 3

Test plan 4 1

Final report X 1

Project's story X 1

Weekly reports X 1
Table 9: Documents.

Language PHP, JavaScript

9

LOC 7567

Classes 16

Functions 91

Code revisions 220
Table 10: Codelines.

10

Alkeismatematiikan oppimisympäristö - Learning
environment for elementary mathematics

Overview

Learning environment for elementary mathematics (AlkMat) is for children age 6 to 8
(from pre-school to 2nd grade) to help children learn quantities of objects, numerical
symbols and basic arithmetics. AlkMat offers a new method to learn mathematics by
offering Kinect motion sensing input. AlkMat can also be used by mouse.

AlkMat saves results of the tests and exercises and based on that information it
generates exercises based on children’s current skill level.

AlkMat helps teachers to identify children who need special attention in learning
numbers and early mathematics. Teachers can also test children’s level of skills and
later follow how children develop their skills in mathematics.

Our client was research center TAUCHI (Tampere Unit for Computer-Human
Interaction) in University of Tampere. The client representative was Jussi Okkonen.
Pedagogical expert in mathematics was Sari Yrjänäinen from University of Tampere.

11

Illustration 1: Main menu

Illustration 2: Object exercise

Organization and management

Johan Björn
project manager

Teemu Jyrkämä
project manager

Anu Kauppi
project manager

Jude Laine
database, audio

Krista Talvio

design, usability,
graphical resources

Joel Luukka

design, code

Ville Valtonen

design, code

Illustration 3: Team members

12

Methods and tools

We used mainly IRC and UTA email for communication. IRC wasn’t really a perfect
solution for communication because everybody didn’t use it. Also it’s impossible to
use it 24/7 because it doesn’t save messages in the screen and one has to use a
separate log file. Although during the last four or five sprints, we had quite a lot of
conversation among the core coding team on IRC. It was really useful way to
communicate and ask little questions concerning features. Documents were stored in
Google Drive which worked very well. We used Redmine for project management
tool and sharing files and Doodle for scheduling.

For the development we used these tools:
· Microsoft Visual Studio 2010 Professional SP1
· Microsoft XNA Framework 4.0
· Kinect SDK 1.0.3.191
· Microsoft .NET Framework 4
· Microsoft SQL
· Subversion

For the software project we used Scrum methodology with some modifications. We
had weekly meetings on Tuesdays. In these meetings we discussed tasks of previous
week and planned next tasks for next week.

Project phases and development model

We planned 9 two week sprints and one 3 week sprint at the beginning of the project.
Later we added one sprint because we decided to continue coding for 2 weeks to get
everything ready. Adding one sprint didn’t change the deadline of the project. It
worked very well to have more time for finalizing the code.

We had weekly meetings on Tuesdays. We also had some workshops especially in the
beginning of the project. In these workshops we planned, designed and coded together
which was very good way to work.

Project timetables

First project meeting 18.9.2012

Preliminary analysis 26.9.2012

Project plan 12.10.2012

Sprint 1 24.9.- 7.10.2012

Sprint 2 8.10.-21.10.2012

13

Sprint 3 22.10. - 4.11.2012

Personal report I 7.11.2012

Sprint 4 5.11. - 8.11.2012

Sprint 5 19.11. - 2.12.2012

Midterm presentations 28.11.2012

First review 28.11.2012

Sprint 6 3.12.2012 - 16.12.2012

Sprint 7 17.12.2012 - 6.1.2013

Personal report II 15.1.2013

Sprint 8 7.1. - 20.1.2013

Sprint 9 21.1.2013 - 3.2.2013

Sprint 10 4.2.2013 - 17.2.2013

Sprint 11 18.2.2013 - 3.3.2013

Finishing coding 17.2.2013 - 13.3.2013

Documentation and finishing 18.2.- 15.3.2013

Final presentation 13.3.2013

Project story 15.3.2013

Project CD 15.3.2013

Final meeting 28.3.2013

Personal report III 03.2013

14

Experiences
Due to staff changes our requirement specification phase delayed. It created a slow
start for the project because we got requirements as late as in November. Hence we
had to prioritize the requirements carefully. There could have been more testing
before the end of the coding phase if we had more time or more coding resources
available.

Some minor problems occurred when project team members could not attend to
meetings due to illness, work or just because it is always hard to pick a suitable time
slot for everybody.
It would have been good to have one other communication tool for discussing about
meeting times and other practical issues. We used email and it wasn’t flexible enough
for that kind of purpose. Good meeting memos are also important to have so that
everybody can check what they should do next.

Illustration 4: Weekly meeting

Statistics

Team size Dev. model Start date End date Days Hours

3+4 Mod. scrum 18.9.2012 28.3.2013 192 1040

Table 1: General project information

15

Activity 2012-
9

2012-
10

2012-
11

2012-
12

2013-
1

2013-
2

2013-
3

Total

Planning and
management

54.50 76.50 79.50 30.00 43.50 47.50 29.50 361.00

Requirements
specification

1.00 3.00 20.50 14.50 1.50 40.50

Studying 41.00 18.00 18.00 6.50 14.00 14.50 5.00 117.00

Code 26.00 55.00 6.50 50.00 35.00 19.50 192.00

Other 10.00 10.50 26.75 18.00 12.50 5.00 12.50 95.25

Design 6.00 36.00 25.00 12.50 14.00 20.00 103.50

Integration and
testing

 4.00 4.00 10.00 2.00 52.50 72.50

Review 4.00 10.00 5.00 7.00 8.00 34.00

Repair 0.50 0.50

Total 106.50 144.00 249.75 104.50 149.50 125.00 160.00 1042.25

Table 2: Hours by activity

Week Hours

2012-36 13

2012-37 14

2012-38 35,5

2012-39 44

2012-40 47

2012-41 33,5

2012-42 23

2012-43 29,5

16

2012-44 30,5

2012-45 54,5

2012-46 48

2012-47 52,5

2012-48 78,25

2012-49 32

2012-50 57,5

2012-51 6

2012-52 6

2013-1 15

2013-2 41,5

2013-3 43,5

2013-4 31

2013-5 24,5

2013-6 29

2013-7 51,5

2013-8 8

2013-9 51,5

2013-10 77

2013-11 56

Total 1038,25

Table 3: Weekly hours

17

Illustration 5: Weekly hours

Document Pages Versions

Preliminary analysis 5 1

Project plan 23 10

Requirements specification 17 6

Test plan 16 5

Test report 8 1

Exercises and exercise generator 3 1

User manual 7 1

Project story 8 1

Final report 19 4

Demo videos 2 2

Table 4: Documents

18

Code
Revisions

LOC Comments Source and
property files

Features Support Bugs

206 10 856
C#:
10107
XML:
749

2208 155 81 37 5

Table 5: Code

19

Project Eedu

Overview
We made a Java library that allows running Android application to change device
where it is running. If application is running on device 1 it can be “moved” to device
2 and shut down in device 1. Library was targeted to be used in Math Elements game
made by Eedu Ltd and thus we also made a simulator to simulate library related
functionalities of the game. Library also allows to transfer required information of
Math Elements game to start the game in the same state as it was when running on the
original device.
Our product contains two major parts: Framework and PhoneGap application to
simulate Math Elements game. Framework is split into two minor parts: The core of
Framework and Socket Server communication. PhoneGap application also splits into
two minor parts: The application itself and a PhoneGap plugin. Google App Engine
ChannelAPI socket server is also needed but it is not core parts of our product.

PhoneGap application is a simple Android application made by using PhoneGap
framework. It has a few functionalities: 1. Show QR code to change device, 2. Show
QR code to start multiplayer game and 3. Send example message to other device.

Image 1: PhoneGap application running on Android Emulator. QR code is used to
pair devices.

Organization and management

Name Role Main tasks

Markus Leinonen Project Manager general management, programming
and testing, contact person with
client, PhoneGap & Java mentoring

20

Pyry Kallio Project Manager general management, SVN,
programming and testing

Da Ke Project Manager general management, projectwiki,
redmine stuff, user interface,
documents and testing.

Yanzhao Wen Project Manager general management, UML and
architecture

Ville Siltala Project Member QR code coding

Eashan Salhotra Project Member PhoneGap coding and Testing
documentation

Golnaz Sabet Nejad Project Member IntentFilter/Launcher coding

Pengfei Lv Project Member Connection with Google App
Engine(including socket server and
socket client)

Table 1: Team members’ roles and main responsibilities.

All of the team also took part in documentation and design/planning of the project.

Image 2: Project Team. From left to right: Yanzhao Wen, Pengfei Lv, Markus
Leinonen, Eashan Salhotra, Golnaz Sabet Nejad, Da Ke and Pyry Kallio. Not in this
picture: Ville Siltala.

21

Methods and tools

Tool Purpose Usefulness

Eclipse IDE Main development Very useful

Android SDK Tools needed to compile and develop
Android code

Very useful

GAE SDK Tools needed to develop Google App
Engine applications

Very useful

Subversion Version control Very useful

Redmine Project management and information
sharing, e.g. features, meeting
minutes, etc.

Useful

Skype Real-time communication between
team

Useful

Google Group Communication between team Useful

Google Drive Document creation and storing Useful

Table 2: Methods and tools.

Project phases and development model
Development model for this project was modified Scrum. As a student project it is
impossible to use “pure” Scrum. Project team had weekly meetings but not daily
Scrum meetings. Project schedule was divided into phases and phases further into
shorter sprints, but sprints were actually only written in schedule but not supervised as
the management concentrated on phases. Review meetings with project supervisor
were scheduled in the ends of development phases, and single sprints were not
reviewed at all. At the very beginning of the project a lot of time was be used to
studying and learning new programming environments and there were not sprints at
all in the beginning. We did a lot of demos as we didn’t know if and how all
requirements could be achieved.

Our project was divided into four phases. First phase was studying: as none of our
project members was not familiar with Android development and not all too with
Java, we had to study new technologies to start the development. Second phase was a
demo phase: during it each team member had her/his own area of expertise of which
she/he developed a working demo. Third phase was integration and upgrading phase:
during this phase we integrated separated demos into a single working framework.

22

Fourth phase was testing and documentation: this phase was meant to test the
functionality of the framework and write needed documents.

Preliminary Analysis
Meeting

Review of the Preliminary Analysis 28.9.2012

Project Plan Inspection

Review of the Project plan with Pekka
Mäkiaho

9.11.2012

Review I (Checkpoint
I)

Review of the updated project plan
and project progress Pekka Mäkiaho

4.12.2012

Review II (Checkpoint
II)

Review of the project progress with
Pekka Mäkiaho

8.2.2013

Review III
(Checkpoint III)

Review of the project progress with
Pekka Mäkiaho

7.3.2013

Final Report Meeting Review of the Final Report with
Pekka Mäkiaho

21.3.2013

Table 3: Milestones and checkpoints

Document name Revisions Pages in latest revision

Preliminary analysis 1 16

Project Plan 6 21

User stories document 1 6

Testing template 4 50

Table 4: Course documents

23

Experiences

Foreseen risks

RISK ANALYSIS

Developers’ lack of experience in
used tools and methods

Counter measure:

Adequate time to let developers introduce
themselves in used technology. Possibly
organize workshops.
Analysis:

All of the team members learned necessary
skills.

Quitting team members Counter measure:

Good team atmosphere, fair management,
motivating developers by changing tasks if
needed and avoiding overburding any
developer.

Analysis:
No member of the group quitted and a group
spirit became even stronger towards the end of
the project.

Communicating problems Counter measure:
Using of clear language, using different
communication methods efficiently.
Analysis:

Lack of communication was some kind of a
problem for the whole project, both between
managers and developers and between
managers.

Lack of testing devices Counter measure:

Trying to share available testing devices fairly,
so no one need to develop the whole project by
using Android emulator. Single developer may
have a test device for one week at time, and
then it is given to the next one.
Analysis:

The problem was quite marginal as not all

24

team members developed Android projects in
the start of the project. At some phase Eedu
Ltd took devices away but returned them for
testing phase.

Lack of testing Counter measure:
Introducing the team into unit testing early
enough. Keeping statistics of untested features
and code

Analysis:
It took for a while before team members
started to write unit tests, but they are however
written. Not all necessary tests could be
written because we run out of time, but most
of the functionality is however tested
adequately and the client is satisfied.

Managers’ lack of experience in
management

Counter measure:

Prepare for managemental problems. Receive
extra time for managemental issues.

Analysis:
Managers had sometimes Skype meetings, and
meetings with course staff were prepared well.
As there were four managers, it was possible
to share managing tasks between managers,
but in many cases Markus was the only
manager able to solve some problems and he
was also that manager who had most obstacles
to attend course meetings, so extra time was
needed for managemental issues.

Things might be impossible to
implement

Counter measure:

Use modular development model. Plan
modules in a way they don’t interfere each
other. Be prepared for problems.
Analysis:

No such things emerged which had prevented
to reach the minimum goals of the project.

Table 5: Foreseen risks

25

Risks not foreseen

RISK ANALYSIS

Different team
members working
different hours

Even though all team members will get minimum working hours,
the work was divided unequally as some members have got lot of
hours in the late phase of the project and some others have
worked much throughout the whole project. Some of the
developers are getting maximum hours as some are getting
minimum, but this was also predicted when estimating working
hours in preliminary analysis phase.

Among the managers, Markus has got more working hours than
other managers, as he has been the critical manager who has the
best knowledge of the application usage and context, and
technologies.

Team members
getting work

Working during the project has caused problems when
scheduling meetings. As mentioned above, Markus has had the
best knowledge of the project, but he has also had difficulties in
attending meetings as the distance between Tampere and his
home town Pori is quite long.

Table 6: Unforeseen risks

Statistics

Chart 1: Weekly working hours.

26

Team size Dev. model Start date End date Days Hours

4 + 4 Scrumbut 12.9.2012 15.3.2013 124 1252.50

Table 7: General project information.

Table 8: Group effort by activity.

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

22 - 4 - - -

Table 9: Requirements and high-level design outcomes.

Overview
diagrams

Class diagrams Sequence
diagrams

State diagrams Other
diagrams

2 2 1 2 2

Table 10: Design outcomes.

Code Planni
ng and
manag
e-ment

Other Studyin
g

Integra
tion
and
Testing

Revie
w

Design Repa
ir

Require
ments
specific
ation

Total

182.40 449.80 59.50 235.15 158.10 26.30 80.00 1.00 36.50 1228.
75

15 % 36 % 5 % 19 % 13 % 2 % 7 % 0 % 3 % 100%

27

Document name Revisions Pages in latest revision

Preliminary analysis 1 16

Project Plan 6 21

User stories document 1 6

Testing template 4 50

Final report 3 16

Project story 1 9

Table 11: Documents.

Language Java

LOC 947

Classes 6

Interfaces 8

Code revisions 23

Table 12: Codelines.

28

Gesture Recognition

Overview

The basic idea of the project was to develop general gesture recognition software, which can
be integrated to different applications through an interface with minimal coding effort. This
project intends to reduce the time & effort by the researchers by focusing on gesture research
instead of learning new tools & SDKs. The client’s current system requires that a gesture
recognizer is developed from the beginning for each new project, as the server only gives the
application user data but does not interpret it in anyway. This is not efficient as it requires the
client to do almost the same work for every project.
There is an existing gesture recognition system that the client uses. It’s based on Microsoft
Kinect hardware. Existing system uses a client / server architecture paradigm where the server
provides gesture data to the client through socket connection. The project team has created a
skeleton data manger, which connects to skeleton server and polls for up to date data all the
time. We have also created hesture distributor which contains recognition engine which uses
data gained from skeleton data manager. And we also create gesture recorder, which is a
separate application used for recording new gestures.

In this project, we have created an interface which is connected to an existing server for
Microsoft Kinect. We have created a recognition system that uses predefined gestures that can
be used in any application We have also created an application which allows the user to
record their own gestures which can then be used in different applications. This gesture
recording application has a very GUI which makes it easy to use even for people with no
programming experience.

New gesture recorded with gesture recording software

29

UI for replaying and editing recorded gestures

Organization and management

Our group consisted of Eight members, four managers and four developers. The details of the
group members are given below:
Santeri Saarinen, Development Manager
Mika Pesonen, Survey Manager
Muhammand Faisal, Scrum Master
Yameng Qin, Team Communications Manager
Maciej Kachniarz, Developer
Jiadong Liu, Developer
Zhao Hanning, Developer
Byambadorj Dulamsuren, Developer

30

Methods and tools

The development in this project was done with Microsoft Visual Studio 2010. We used C# as
our programming language. For Kinect, we used Microsoft Kinect SDK v.1.5, and
coding4fun toolkit. Socket programming was used to connect to the gesture recognition server
and client provided by the client. For user interface design, the project team used Balsamiq
software.

Project also used Redmine for tracking project progress via tickets and wiki page of the
Redmine page was used to communicate other material. Hours were tracked using the
Redmine. Redmine also contained a project wiki
(https://redmine.sis.uta.fi/projects/gesture/wiki), which was used to save any important
information about the project and partly also used for communication. The team also used
Facebook group for daily communication between members. Skype and Gtalk were used for
person to person communication and long-range meetings.

SVN source code repository was used and there was a benefit how SVN integrates to
Redmine. Also the client used svn, so we could easily move the code between our and their
repository when needed.

All documentation for the project was created with Google Docs, as this allowed the team
members to edit texts simultaneously. For personal reports, other text editing tools, such as
Microsoft Word were used.

Project phases and development model

Modified scrum model was used during project. Sprints were defined; backlog was created
based on the requirements. Unfortunately was not possible to organize daily scrum meeting as
developers were not able to work every day 8 hours. However, developers reported what they
worked on, what were they going to do next and if they had any problems. Same questions
were asked during the weekly meetings. This helped to understand if there was anything
blocking the development.

Project sprints were three weeks long, except during the Christmas, as the members were not
required to work during that time. Software was tested as it was created by the developers and
each feature will be marked when it passed required tests.

Task Start Date End Date Completed Corresponding Person
Project Management 24.9.2012 15.3.2013 Yes Project Managers
Preliminary Analysis 24.9.2012 5.10.2012 Yes Project Managers
Survey 24.9.2012 15.12.2012 Yes Mika Pesonen
Architecture Design 24.9.2012 4.11.2012 Yes Santeri Saarinen
Implementation 15.10.2012 10.3.2013 Yes Project Managers
UI Design 5.11.2012 16.12.2012 Yes Project Managers
Table 2: Project Phases

31

During the project we had 3 reviews with the client, which were held in November, January
and February. During these reviews we presented the current results of the project, and
planned further requirements and goals for the group.

Experiences

Foreseen Risks
Risk Analysis
Keeping Schedule Keeping schedule is always a problem in student projects as

there are other courses students are participating at the same
time.

Analysis/Countermeasure
Workload was properly divided amongst the group members and
any change in schedule was properly handled and adjusted.

Communication
Problems

In university projects, mostly students are not working in the
same space at the same time, and there might be situations
where students need some code fix or other delivery from each
other, and communication is important at this stage, and failing
to do so could lead to significant delay.

Analysis/Countermeasure
Different communication channels were used to ensure that
everyone is connected to each other and if anyone is
unavailable, they informed before time to avoid any
inconvenience.

Technology Problems Technology was especially challenging in this project as new
technologies were needed to be learned in short time and some
gesture recognition algorithms were hard to understand and
implement.

Analysis/Countermeasure
As most of the group members had no experience in the field of
gesture recognition, and the tools which were being used, so it
was made sure that adequate learning time in the project hours
was included. The group members learned the new tools and
technologies, and wherever they had any problem, they were
able to resolve the issues with the help of experienced group
members.

Architecture Design As the delivered software had to support several gesture based
technologies, there might have been problems if we designed the
architecture wrong way, or if we designed the APIs so that
adding new technology was not easy once the system was
complete.

32

Analysis/Countermeasure
This risk was properly handled and was overcome by spending
plenty of time on the architecture design and refining it so that
the final architecture was without any problems.

Wrong Group Balance In the project, we had a wrong balance of managers and
developers. We had 4 managers and 4 developers. Also, it was
in the beginning known that one member will not be able to
work until the end of this project.

Analysis/Countermeasure
To cater this problem, managers also actively participated in
different development tasks, so sharing the workload of the
developers.

Team Member Quitting Luckily, none of our members quit, but some were away for
longer periods of time, and one had to leave back to his home
country in the middle of the project.

Analysis/Countermeasure
To prevent this becoming a problem, we reorganized the tasks to
members who were available during these periods of time. And
we also mailed a Kinect abroad to enable one project member to
continue working from home.

Table 1: Foreseen Risks

Our experiences
Arranging meeting times which were good for the whole group was difficult as people had
busy schedules. At one point we gave up on finding good times that fit everyone and agreed
that if people are not able to join, they will report their progress by email. We also used
Facebook to keep everyone up to date.
Still we did not have enough communication within the group. We only had discussions
maybe once or twice a week, and this was not enough to follow everyone's progress,
especially if someone was not able to join the conversation.
Our group was not correctly balanced, so the workload between members could not be
divided correctly. Because of this, the managers also took some tasks of the developers.
Also, some of our members were away for longer periods of time, which caused them to be
unable to help with the project. We tried to divide tasks again if this happened, but because of
this, the tasks were not evenly spread to all members of the team, and some worked more than
others.
Luckily, we also had some good experiences. Our group was diverse with lot of different
skills, which meant that even with new technologies and lot of need for studying, people still
managed to complete tasks well.
Also our subject was very interesting and challenging, and all members learned something
new during the project.

33

Statistics

Team size Dev. model Start date End data Days Hours

2+5+1 Modified
scrum

24.09.12 18.03.13 176

Table 1: General project information.

Activit
y

Planning
and
manageme
nt

Req.
specif
icatio
n.

De-
sign

Code Integr
ation
and
testing

Reviews Repair Study Other Total

Hours 300 20 34 234 46 48,5 0 221,5 22,5 926,5

% 32,38% 2,15% 3,67% 25,26% 4,96% 5,23% 0,00% 23,91
%

2,43% 100%

Table 2: Group effort by activity.

Number of
requirements

Use-cases UI screens Database diagrams

57 0 3 0

Table 3: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

5 3 3 0 0 0

Table 4: Design outcomes.

Document Pages Versions

Preliminary analysis 9 3

Project Plan 17 3

Requirements specification 1 10

Design plan 5 3

Test report 6 2

Final report 8 5

Project's story 8 2

Weekly reports 21 21

Survey 21 4

34

Table 5: Documents.

Language C#

LOC 3306

SLOC 4577

Reused code 300

Reused and modified 300

Classes 50

Code revisions 49

Table 6: Codelines.

35

Logistiikkaketjun kirjaus

Overview
Our project’s goal was to implement a software to the Android mobile phone. The
software is a prototype, which client can introduce a trade shows and customer events.
Software’s main functionalities are:

- Reading NFC-tag
- Registering new logistics transactions
- Seeking logistics transactions
- Possible deviations in logistic chain

-
Picture 1. Mobile phone read NFC tag and is connected to the server.

Picture 2. Welcome page. User can read NFC –tag or input it by keyboard or using
bar code.

36

Picture 3. User select information: logistics type, chain, phase and comment.

Picture 4. Feedback page. New phase has been successfully saved.

37

Picture 5. Registration of the new phase.

Picture 6. Phase information dialog.

Organization and management

Our team had 3 Project Managers and 4 Developers.

Project Managers and their responsibilities:

- Tuomas Granlund (Technical Project Manager)
o Development environment
o Version control

38

o Technical guide
o Planning document
o Architecture plan
o Installation plan
o Code auditing
o Training

- Elina Koivulampi
o Course Schedule
o Hourly accounting
o Facebook group
o Deployment plan
o Testing plan
o Testing
o Project Manager meetings

- Ari Varpenius
o Project plan
o Project rules
o Weekly meetings
o Specification document
o Project presentations

Developers and their responsibilities:
- Juha Kaura

o Application server installation and configuration
o XML message structure
o Server application implementation

- Heini Pylkkönen
o User Interface plan
o User Interface implementation

- Kaj Torrkulla
o Database plan
o Database implementation

- Lauri Vene
o Android application implementation

Course supervisor:
- Pekka Mäkiaho

Client and our contact person:
- Mylab, Lari Pelkonen

We had weekly meetings where Project Manager describe status of the project and
developers describe what they have done after previous meeting and do they have any
kind of problems or questions. Then Project Manager and developers made plans for
next week works.
Project Managers had meetings every two or four weeks and in those meetings Project
Managers planned big picture of the project.
We also had Trello as a project management tool and we had good experiences about
that system.
We met our client 4 times and Tuomas discussed regularly with the client’s contact
person.

39

Methods and tools
Android and application server

Eclipse SDK 4.2.1 (Juno)
SDK Platform Android 4.1.2-update1, API level 16,

Tomcat 7.0.26.
Java: 1.6.0_24.

Database
MySQL Community Server 5.5.28

(Emacs 24.2)

Version control
Git , version 1.7.11

Task and time management
Trello (http://www.trello.com)

Documentation
Project course’s wiki: https://projectwiki.cs.uta.fi/wiki/Logistiikkaketjun_kirjaus
Google Drive

Testing tools
No tools

Project phases and development model
Our project had iterative model.

1. Specification
2. Design
3. Implementation

 I Release 11.11.2012

 II Release 2.12.2012
 III Release 23.12.2012

4. Testing
5. Production starts 7.2.2012

First we specified all client’s requirements and designed the whole software. Then we
split implementation to three releases. In the testing phase we tested whole software,
client made acceptance testing and after that the software was ready for the production
phase. We chose this kind of project model because we think that by using this model
we can exactly be sure that production phase starts in due time.

There is a list of project’s tasks:

40

Task Start End

Project presentation 19.9.2012 19.9.2012
Project’s kickoff 21.9.2012 21.9.2012

Meeting the client 27.9.2012 27.9.2012
Specification workshop 27.9.2012 27.9.2012

Preliminary analysis meeting 28.9.2012 28.9.2012
Project plan implementation 24.9.2012 8.10.2012

Specification document’s
implementation

27.9.2012 28.10.201
2

Planning phase starts 8.10.2012 8.10.2012
Project plan review 15.10.2012 15.10.201

2
Implementation starts 15.10.2012 15.10.201

2
I release 11.11.2012 12.11.201

2
II release 2.12.2012 2.12.2012

III release 21.12.2012 21.12.201
2

Deployment plan 1.11.2012 7.1.2013
Finishing phase 6.1.2013 18.1.2013

Testing phase 19.1.2013 27.1.2013
Installation phase 23.1.2013 27.1.2013

Customer training 28.1.2013 28.1.2013
Acceptance testing 28.1.2013 1.2.2013

Finishing phase 2.2.2013 4.2.2013
Deployment phase 5.2.2013 6.2.2013

Production phase starts 7.2.2013 7.2.2013
Finishing the documentation 11.2.2013 20.3.2013

I release 11.11.2012

Tasks

Database planning and implementation
Application server installation

Model of application / Android

41

Logistics Application class implementation / Android

Request class implementation / Android
HTTPUtils class implementation / Android

Response class implementation / Android
ResponseFactory class implementation / Android

Welcome page implementation / Android
The initial setup query / Application server

War packaging / Application server

II release 2.12.2012

Tasks
Logistics Application class implementation continue /
Android
NFC Reader Activity class implementation / Android

Request class implementation continue / Android
HTTPUtils class implementation continue / Android

NFCUtils class implementation / Android
Response class implementation / Android

ResponseFactory class implementation continue / Android
Event logging page implementation / Android

Tag information from Android and analyse and information to
Android / Application server

III release 21.12.2012

Tasks
NFC Reader Activity class implementation continue / Android

FormSenderActivity class implementation / Android
EventDialogFragment class implementation / Android

Feedback page implementation / Android
Phase information dialog implementation / Android

Event logging input and output / Application server

42

Experiences
Our project didn’t met any foreseen risks.

We should have add extra phase to verify that all the functionalities works correctly
before the actual test phase.

Bad experience was that we had too many ways to communicate (IRC, Facebook,
email, Google Drive, Trello, weekly meetings).

Statistics

Team size Dev. model Start date End data Days Hours

3+4 Iterative 16.9.2012 22.3.2013 187 1084

Table 1: General project information.

Activ
ity

Plann
ing
and
mana
geme
nt

Req.
speci
ficati
on.

De-
sign

Code Integ
ration
and
testin
g

Revie
ws

Repai
r

Study Other Total

Hour
s

415 17 63 325 16 23 21 103 101 1084

% 38,3 1,57 5,81 30,0 1,48 2,12 1,94 9,51 9,28 100%

Total 1084
Table 2: Group effort by activity.

Activit
y

Plann
ing
and
mana
geme
nt

Req.
speci
ficati
on.

De-
sign

Code Integ
ration
and
testin
g

Revie
ws

Repai
r

Study Other Total

Week
37 12 0 2 0 0 0 0 2 3 19

Week
38 31 0 0 0 0 4 0 9 11 55

43

Week
39 27 9 0 0 1 2 0 11 7 57

Week
40 23 0 0 0 3 0 0 10 27 63

Week
41 22 4 4 0 0 2 0 9 3 44

Week
42 25 4 14 4 0 3 1 3 5 59

Week
43 24 0 12 11 0 1 1 6 2.5 57.5

Week
44 11 0 1 33 0 1 1 12 3 62

Week
45 17 0 2 31 0 2 1 8 2 63

Week
46 39 0 1 7 2 0 2 3 4 58

Week
47 14 0 12 33 0 1 0 6 4.5 70.5

Week
48 27.5 0 4 74 0 1 0 19 2 127.5

Week
49 17 0 2 16 0 0 1 0 2 38

Week
50 13 0 0 20 0 1 0 1 1 36

Week
51 14 0 2 30 0 0 0 4 2 52

Week
52 1 0 0 2 0 0 0 0 1 4

Week
1 11 0 0 0 0 0 0 0 0 11

Week
2 12 0 0 24 0 0 0 0 2 38

Week
3 21 0 0 31 3 0 4 0 2 61

Week
4 22.5 0 7 9 7 3 5 0 1 54.5

Week
5 8.5 0 0 0 0 2 3 0 1 14.5

Week
6 6.5 0 0 0 0 0 0 0 0 6.5

44

Week
7 2 0 0 0 0 0 2 0 0 4

Week
8 0 0 0 0 0 0 0 0 0 0

Week
9 4 0 0 0 0 0 0 0 0 4

Week
10 2 0 0 0 0 0 0 0 8 10

Week
11 8 0 0 0 0 0 0 0 7 15

Total 415 17 63 325 16 23 21 103 101 1084

Number of
requirement
s

Pages Use-cases UI screens Database
diagrams

Database
tables

3 8 3 9 0 0

Table 3: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

14 3 3 5 1 3

Table 4: Design outcomes.

Document Pages Versions

Preliminary analysis 5 1

Project Plan 20 9

Usability analysis -

Requirements specification 8 2

Design plan -

User interface document 1 1

Test plan 16 5

Test report 2 1

45

Usability test report -

Final report 1

Project's story 11 1

Weekly reports 23 1

Table 5: Documents.

Language JAVA, XML, SQL

LOC 16 186

SLOC 6 319

Reused code -

Reused and modified -

Classes 67

Functions 502

Code revisions 306

Table 6: Codelines.

46

Majava 4

Kuva 1: Majava-sivuston etusivu.

Yleiskuva projektista
Majava-kilpailu on koululaisille suunnattu tietotekniikka-aiheinen kilpailu, joka

järjestettiin Liettuassa ensimmäisen kerran vuonna 2004. Viime vuonna kilpailu
järjestettiin kymmenessä maassa eri puolilla Eurooppaa. Kilpailua alettiin järjestää,
koska ympäri Eurooppaa alettiin huolestua tietotekniikan aseman heikkenemisestä
koulujen opetussuunnitelmissa. Tämän seurauksena koululaisten tietotekninen
osaaminen heikkeni. Majava-kilpailun perimmäisenä tarkoituksena on tutustuttaa
peruskoululaisia ja lukiolaisia tietotekniikkaan hauskalla mutta opettavaisella tavalla
sekä lisätä opiskelijoiden kiinnostusta tietotekniikkaa kohtaan. Tavoitteena on myös
tukea opettajia tietotekniikan opetuksessa.

Majava-kilpailussa kysymykset on jaettu ikäryhmittäin neljään ryhmään.
Kysymyksissä on pyritty korostamaan yleisiä ongelmanratkaisutaitoja. Kysymykset
voivat koskea esim. tiedon esittämistä, loogisia arvoituksia ja pelejä sekä
tietotekniikkaa ja yhteiskuntaa. Nykyisellään kilpailu on järjestetty www-pohjaisen
sovelluksen avulla, joka on otettu Suomessa käyttöön vuonna 2010. Majava-kilpailu
löytyy osoitteesta www.majava-kilpailu.fi.

Projektiin liittyen vastasimme vuoden 2013 Majava-kilpailun valmistelusta ja
järjestämisestä Suomessa. Valmisteluun sisältyi muun muassa kilpailukysymysten
suomentaminen, niiden syöttäminen kilpailujärjestelmään sekä järjestelmän
toimivuuden testaus.

Vasta kilpailuvaiheen jälkeen pääsimme varsinaisesti työstämään järjestelmän
pohjana olevaa Majava-sovellusta. Saimme slovenialaisilta yhteistyökumppaneilta

47

uuden koodipohjan, jonka lokalisoimme ja jatkokehittelimme edelleen lisäten uutta
toiminnallisuutta ja korjaten vanhoja ohjelmistovirheitä. Päivitimme myös sivuston
ulkoasua ja uusimme kuvia.

Tärkeimpänä yksittäisenä uudistuksena koodasimme sovellukseen tuen
vuorovaikutteisille tehtäville. Aiemmin kilpailukysymykset olivat sen tyyppisiä, että
annetuista vastausvaihtoehdoista piti valita yksi oikea vastaus. Sen sijaan uusissa
vuorovaikutteisissa tehtävissä kilpailija voi esimerkiksi hiirellä siirrellä tehtävään
liittyviä kuvia oikeille paikoilleen ja muodostaa näin vastauksensa. Toteuttamamme
rajapinta mahdollistaa hyvin erityyppisten tehtävien laatimisen sekä annetun
vastauksen tulkinnan.

Käyttöliittymä

Kuva 2: Vuodenvalintasivun ulkoasu on yhtenäistetty etusivun ulkoasun kanssa.

48

Kuva 3: Esimerkki vuorovaikutteisesta tehtävästä: Pelkkien vastausvaihtoehtojen
sijasta kuvan hahmojen paikkaa voi vaihtaa hiirellä vetämällä, ja tieto tallentuu
tietokantaan yhteensopivassa muodossa.

Kuva 4: Annettu vastaus näytetään yhteenvetosivulla sellaisena, kuin käyttäjä siihen
vastasi. Sisäisesti ohjelma osaa alustaa tehtävän lopullisen asennon, koska tehtävä
alustetaan käyttäjän antaman vastauksen serialisoidun merkkijonon perusteella.

49

Kuva 5: Vuorovaikutteinen tehtävä lisätään hallintapuolen “Create a new interactive”
-painikkeesta. Myös vanhaa rajapintaa käyttävät tehtävät toimivat järjestelmässä
ilman muutoksia.

Kuva 6: Vuorovaikutteisen tehtävän koodit kirjoitetaan niille varattuihin kenttiin.
Kun kuuntelijafunktiot määritellään erikseen, tehtävän esittäminen vain luku -tilassa
on mahdollista. Tätä tarvitaan esimerkiksi tehtävien yhteenvetosivulla.

50

Ryhmä ja projektinjohto

Ryhmän jäsenet rooleineen
Päälliköt:

· Jouni Kähkönen: Johto, laadunvarmistus, palvelin- ja koodipäivitykset
· Antti Kiiskinen: Johto, business intelligence, palvelinpäivitykset

Ryhmäläiset:
● Toni Helenius: Vuorovaikutteistuen toteutus, koodaus
● Elias Roihuvuo: Dokumentointi, esimerkkitehtävät, koodaus
● Tuomas Räsänen: Layout-vastaava, esimerkkitehtävät, koodaus
● Antti Reunamo: Lokalisointivastaava, esimerkkitehtävät, koodaus

Asiakas:
● Timo Poranen

Projektin organisointi

Projektin yhtenä tärkeimmistä tavoitteista projektityöntekijän näkökulmasta oli

oppia työskentelemään monenlaisten haasteiden parissa. Vastoin yleisiä oletuksia
haasteet eivät välttämättä ole ainoastaan teknisluonteisia, vaan projektin etenemisessä
saattaa välillä aiheuttaa ongelmia myös ihmisten välinen viestintä. Tämän johdosta
projektin johtamisessa olennaista oli se, että pystyimme luomaan riittävästi ryhmän
keskuudessa tehokasta työskentelyhenkeä ja keskinäistä luottamusta ryhmän jäsenten
keskuudessa tehdyn työn tärkeydestä. Projektipäällikkönä koimme tärkeäksi nähdä
minkälaista tietoa kannattaa jakaa projektilaisten keskuudessa aiheuttamatta
sekaannusta ryhmäläisten keskuudessa toteutettavien toimintojen suhteen.

Myös tehtävien oikea jakaminen projektilaisten kesken oli olennaisessa osassa
projektin onnistumisen kannalta. Oli pystyttävä mittaamaan projektityöntekijöiden
valmiustasoa tehtävien suorittamiseksi tietyllä aikataululla, sekä organisoitava
tehtäviä tämän mukaisesti. Lisäksi ongelmatilanteissa projektityöntekijöitä oli
pystyttävä tarvittaessa motivoimaan ja avustamaan tehtävien loppuun saattamiseksi.
Tähän käytimme muun muassa työpaja-lähestymistapaa projektimme aikana.

Tiedolla johtaminen on toimintatapa, jossa erilaisissa tietolähteissä olevaa
informaatiota keräämällä, jalostamalla ja hyödyntämällä luodaan yhteinen ymmärrys
siitä, mitä asioita liiketoiminnassa tulee johtaa sekä luodaan kyvykkyyttä muuttaa
tämä ymmärrys paremmaksi tulokseksi ja kilpailukyvyksi. Tämä ajatusmalli voidaan
viedä jopa projektiryhmätasolle.

Ohjelmistoprojekteja on erilaisia ja niiden kanssa käytettävien erilaisten
työkalujen kanssa tulee pystyä työskentelemään. Projektin pitkäaikaisluonteisuus
vaatii pitkäjänteisyyttä ajattelun ja motivoitumisen suhteen koko projektin aikana.
Tämän tavoittamiseksi näimme kurssin antaneen hyviä toimintamalleja.

51

Metodit ja työkalut

Projektissa edettiin iteratiivisesti kevyemmän Scrum-mallin mukaan, jossa
ryhmä tapasi viikoittain kasvotusten. Muuten yhteyttä pidettiin sähköpostitse ja IRC:n
välityksellä. Dokumentit projektin kulusta ja julkaisuista kirjoitettiin Google Docsilla
ja viimeisteltiin Microsoft Officella. Ohjelmakoodia ylläpidettiin Subversion-
versionhallintajärjestelmässä ja projektin etenemistä seurattiin Redminellä. Majava-
kilpailua ajetaan Ruby on Rails -sovelluskehyksessä, joka oli asennettuna jokaisen
ryhmäläisen kotikoneen Ubuntu-näennäiskoneeseen.

Projektin vaiheet ja kehitystyö

Päiväys Aihe Toteutunut
päiväys

17.9.–1.10.2012 Sprintti 1 17.9.–1.10.2012

1–15.10.2012 Sprintti 2 1–15.10.2012
5.10.2012 Ympäristööntutustumiskatselmointi 5.10.2012

28.9.2012 Esitutkimus 1.10.2012
15–29.10.2012 Sprintti 3 15–29.10.2012

29.10.–
12.11.2012

Sprintti 4 29.10.–12.11.2012

1.11–7.11.2012 Henkilökohtainen raportti I 1.11–7.11.2012
12–16.11.2012 Majava-kilpailu 12–16.11.2012

12–26.11.2012 Sprintti 5 12–26.11.2012
12.10.2012 Projektisuunnitelmapalaveri 23.11.2012

23.11.2012 Asennuspalaveri 23.11.2012
26.11.–
10.12.2012

Sprintti 6 26.11.–10.12.2012

28.11.2012 Väliesitys 28.11.2012

30.11.2012 Katselmointi 1 30.11.2012
10–24.12.2012 Sprintti 7 10-24.12.2012

2.1.2013–
16.1.2013

Henkilökohtainen raportti II 2.1.2013–16.1.2013

16.12.2012 Katselmointi 2 28.1.2013
24.12.2012–
7.1.2013

Sprintti 8 24.12.2012–
7.1.2013

7–21.1.2013 Sprintti 9 7–21.1.2013

21.1.–4.2.2013 Sprintti 10 21.1.–4.2.2013

52

31.1.2013 Katselmointi 3 22.3.2013

4–18.2.2013 Sprintti 11 4–18.2.2013
18.2.–4.3.2013 Sprintti 12 18.2.–4.3.2013

4–18.3.2013 Sprintti 13 4–18.3.2013
15.3.2013 Loppupalaveri 22.3.2013

Projektin jälkeen Henkilökohtainen raportti III Loppupalaverin

jälkeen

Projektin toteutuneet päiväykset ovat hyväksytysti toteutuneet hieman
myöhempänä ajankohtana, johtuen muun muassa projektin alussa pidetystä
kilpailusta, joka asiakkaan ja ohjaajan näkökulma huomioon ottaen pidettiin
tärkeimpänä prioriteettina projektin alussa. Lisäksi yhteistyö ulkomaalaisen
yhteistyökumppanin kanssa aiheutti sen, että kehitystyötä ei voitu aloittaa ennen
päivitetymmän saantia heiltä.

Kehitystyö

Kilpailun järjestämiseen liittyvä toiminta
Projektin alussa järjestimme Majava-tietotekniikkakilpailun onnistuneesti yli 2

000 kilpailijalle. Tähän sisältyi kilpailuun valmistautuminen, itse kilpailun etenemisen
seuraaminen sekä kilpailun jälkeen muun muassa osallistujille tarkoitettujen
kunniakirjojen päivittäminen.

Kilpailuun valmistautumiseen liittyi kilpailukysymysten suomentaminen sekä
syöttö järjestelmään ja kopiointi eri ikäryhmille. Lisäksi joihinkin tehtäviin liittyviä
kuvia täytyi muokata, jotta tehtävät soveltuisivat suomalaiseen ympäristöön. Juuri
ennen kilpailua testasimme vielä kilpailun toimintaa uusien kysymysten kanssa.

Kilpailun aikana valvoimme järjestelmän toimintaa. Olimme valmiudessa mikäli
ongelmia syntyisi, mutta kilpailu sujui kuitenkin ongelmitta. Laadimme myöhemmin
tehtävistämonisteen, joka julkaistiin laitoksen raporttina.

Sovelluksen jatkokehitys

Kilpailun jälkeen jatkokehitimme olemassa olevaa Majava-sovellusta lisäten
siihen toimintoja ja korjaten vikoja. Saimme koodin slovenialaiselta
yhteistyökumppanilta, ja se vaatikin aluksi lokalisoinnin parantamista. Siirsimme
kaikki tekstit itse koodin sisältä erilliseen lokaalitiedostoon, joten jatkossa sovellus
voidaan helpommin muuttaa eri kielillä käytettäväksi. Päivitimme myös projektin
aikana sekä testi- että tuotantopalvelimien Rails-ohjelmistokehykset uusiin versioihin.

53

Korjasimme lukuisia ohjelmistovikoja ja teimme runsaasti pieniä muutoksia
sovellukseen. Yhtenäistimme sivuston graafista ulkoasua ja lisäsimme statistiikan
kävijätietojen seuraamiseen. Paransimme myös käytettävyyttä etenkin ylläpitopuolen
näkymien osalta sekä poistimme tarpeettomia ylimääräisiä toimintoja. Testasimme
sivuston toiminnallisuutta useilla eri selaimilla.

Sovellukseen liittyvän kehitystyön lisäksi laadimme projektisuunnitelman sekä
muita analyysejä ja raportteja. Myös kehitysympäristöjen asennus kehittäjien omille
koneille oli jonkin verran aikaa vaatinut prosessi.

Vuorovaikutteisten tehtävien tuki
Tärkeimpänä yksittäisenä toimintona kehitimme projektin aikana sovellukseen

tuen vuorovaikutteisille tehtäville sekä niiden lisäämiselle ja muokkaamiselle.
Toteutimme myös joitakin vuorovaikutteisia esimerkkitehtäviä. Ratkaisussamme
vuorovaikutteiset tehtävät laaditaan JavaScript-ohjelmointikielellä jQuery-kirjastoa
apuna käyttäen. Tehtävien laatijalla on vapaat kädet itse toteutuksen sekä vastauksen
tulkinnan osalta; jokainen tehtävä voi olla koodiltaan erilainen. Tehtävien luonnissa
on kuitenkin täysin erilliset rajapinnat tehtävän rakenteen luonnille, ulkoasulle sekä
käyttöliittymätapahtumille.

Dokumentoimme vuorovaikutteisten tehtävien lisäämistoiminnon lisäksi myös
joitakin käyttötapauskuvauksia. Tuotimme raportin jokaisesta pitämästämme
palaverista ja kirjasimme ylös tietoja projektinhallintaohjelmiston avulla.

Analyysiä kehitysympäristöstä ja Majava-projektista
Rails on jatkuvasti kehittyvä ja modulaarinen ohjelmistoympäristö. Majavan

koodin laadun johdosta sen ylläpidosta tulee oma haasteensa. Järjestelmä saatiin
päivitettyä Rails 3.2 -versioon, joten haavoittuvuudet saatiin korjattua ainakin joksikin
aikaa. Majavan aikaisemman version, Rails 3.0:n tuki loppui 2013 tammikuussa.
Kilpailupalvelin toimii tällä hetkellä Ruby 1.8 -versiolla ja viimeinen Rails-versio,
joka tätä tukee, on 3.2.

Majava-kilpailun tapaisilla järjestelmillä olisi hyvä olla jonkinlaista varmuutta
toiminnasta. Käsin testaus antaa hyvin vähän takuuta toimivuudesta uusia
ominaisuuksia luotaessa varsinkin rasituksen alla. Ruby on Railsin tapaiset
sovelluskehykset on luotu testattavien järjestelmien toteuttamiseen ja sisältävät
valmiiksi tähän tarvittavat työkalut.

Vuorovaikutteisten tehtävien toimivuutta ei tullut simuloidussa
kilpailutilanteessa testattua. Vaikka olemme nähneet vuorovaikutteisten tehtävien
toteutuksen toimivan moitteettomasti kehityspalvelimiemme, testipalvelimen ja
kilpailupalvelimen harjoitusosiossa, niitä ei ole testattu kuitenkaan kilpailutilanteessa
toimiviksi.

54

Kokemuksia projektista
Opin projektin aikana projektinjohtoa, sopivan haasteellisten tehtävien

asettamista sopiville tekijöille sekä ohjelmistoprojektiryhmän yleistä organisointia.
Koin tärkeäksi projektin aikana tuen antamisen ryhmäläisille silloin, kun jonkin
toiminnallisuuden toteuttamisessa oli ongelmia. Lisäksi ohjelmointityöpajat olivat
omiaan lisäämään ryhmän motivaatiota kehittää sovellusta eteenpäin.

Ennen olin tottunut käyttämään erinäisiä ohjelmistoprojekteissa tarvittavia
työkaluja, mutta tämän kurssin myötä opin myös opettamaan toisia työkalujen
käytössä sekä ohjeistamaan mistä saa lisätietoja tarvittavista komponenteista, jotta
vaatimusten mukaiset toiminnot saadaan toteutettua.

Projektin johtaminen onnistui pääpiirteissään hyvin. Toisaalta tilanteessa, jossa
projektia johtaa kaksi projektipäällikköä, olisi päälliköiden säännöllisempi
vetovastuuvuorottelu voinut osoittautua hyödylliseksi.

Ryhmän työskentely oli pääosin kiitettävää. Ryhmäläisillä oli riittävä motivaatio
aina kun sopivia tehtäviä saatiin asetettua sopiville henkilöille. Projektipäällikön
näkökulmasta oli mielekästä seurata ryhmäläisten halukkuutta oppia uusia asioita sekä
nähdä ryhmäläisten omaksuneen tärkeitä ryhmätyöskentelytaitoja sekä
ohjelmointitekniikoita, joista on hyötyä ohjelmistoalalla työskentelyssä.

– Jouni

Projektin yhtenä tärkeimmistä tavoitteista projektityöntekijän näkökulmasta oli

mielestäni oppia työskentelemään monenlaisten haasteiden parissa. Vastoin yleisiä
oletuksia haasteet eivät välttämättä olleet pelkästään teknisluonteisia, vaan projektin
etenemisessä saattoi välillä aiheuttaa myös ongelmia erilaiset ihmiskemiat. Tämän
johdosta projektin johtamisessa olennaista oli mielestäni pystyä luomaan ryhmän
keskuudessa tehokasta työskentelyhenkeä ja valaa keskinäistä luottamusta ryhmän
jäsenten keskuudessa tehdyn työn tärkeydestä. Tämä osoittautui ajoittain haasteeksi ja
näin jälkikäteen ajateltuna tiettyinä hetkinä olisi voinut projektinvetäjänä käyttää
myös erilaisia hengen nostattamistaktiikoita. Toisaalta saimme projektin aikana meille
asetetut tavoitteet täytetyiksi ja projektistamme yksikään jäsen ei jättänyt kurssia
kesken. Lisäksi asiakas esitti tyytyväisyytensä projektin läpiviennin suhteen. Nämä
seikat näen yhtenä selvänä merkkinä onnistumisestamme projektin kokonaiskuvaa
ajatellen. Projektipäällikön näkökulmasta ryhmäläiset suoriutuivat mielestäni erittäin
hyvin ja osasivat asennoitua oikealla mentaliteetilla työskenneltäessä
pitkäkestoisempien projektien parissa.

Ohjelmistoprojekteja on erilaisia ja niiden kanssa käytettävien erilaisten
työkalujen kanssa tulee pystyä työskentelemään. Projektin pitkäaikaisluonteisuus
vaatii pitkäjänteistä ajattelua ja motivoitumista projektin suhteen. Tämän näen kurssin
yhtenä tärkeimmistä opetuksista.

– Antti K

Projekti oli mielenkiintoinen vaikka lähtikin hitaasti alkuun. Pitkäaikaisempi
projekti on harvinaisempi yliopistossa, joten varmasti hyödyllinen.

– Toni

55

Projekti oli hyvä ja hyödyllinen. Tärkeiden perustyökalujen sekä esimerkiksi

jQueryn opetteleminen tuntui mielekkäältä. Sovelluksen kehittäminen
ryhmätyöskentelynä oli uutta ja opettavaista.

– Antti R

Projektin aikana sain jonkinlaisen kuvan siitä millaista on olla mukana
ohjelmistoprojektissa. Projektin kuluessa ryhmätyötaitoni ja ehkä myös
ohjelmointitaitoni kehittyivät. Lisäksi erilaiset työkalut tulivat tutuiksi. Arvelisin
tämän kurssin olleen yksi hyödyllisimmistä joita olen yliopistossa suorittanut.

– Tuomas

Projektin aikana opin käyttämään tärkeitä projektinhallinnan työkaluja, kuten
SVN. Projekti oli oivallista harjoitusta ryhmätyöskentelyn kannalta ja lisäksi oli
innostavaa kehittää ohjelmistoa, joka on todellisessa käytössä.

– Elias

Tilastoja

Kaavio 1: Tuntimäärät projektin aikana

Kaavio 1 havainnollistaa projektin eri vaiheet ja sen etenemisen kurssin aikana.
Tuntimäärissä havainnollistuu projektin aloitus ja työkaluihin oppimiseen kulunut
aikana viikoilla 36–42. Tämän jälkeen nähdään projektiin käytettyjen tuntimäärien
kasvavan, kun projektilaiset alkoivat tehdä pieniä päivityksiä projektiin. Viikolla 46
tapahtunut Majava-kilpailu näkyy myös tuntitilastoissa lievänä tuntimäärien laskuna.

Projektisuunnitelmassa näkyy joululoma, jolloin lähinnä projektipäälliköt
käyttivät muutamia tunteja projektin suunnittelemiseen ja ryhmäläisten väliseen

56

yhteydenpitoon. Joululoman jälkeen projektin kehitysvaihe käynnistyi viikolla 4.
Tällöin myös kertyi projektin kannalta suhteessa eniten tunteja projektissa.
Projektilaiset pääsivät keskittymään paremmin järjestelmän kehittämiseen ja
päivittämiseen. Kehitystyötä tapahtui projektin loppuun saakka.

Kaavio 2: SVN-tallennukset projektin aikana

Kaavio heijastaa projektin eri vaiheiden laatua. Projektin alkuaikana

keskityimme ohjelmointikielen opetteluun ja ohjelmistoympäristön asentamiseen
jokaisen projektiryhmäläisen koneelle, jonka takia SVN-tallennuksia (engl. commits)
ei tullut lainkaan. Viikolla 43 aloimme tallentaa kilpailun tehtäviä ja kuvatiedostoja
SVN-arkistoon ja viikolla 46 pidettiin itse kilpailu.

Viikoilla 51–2 ei tullut SVN-tallennuksia joululoman vuoksi. Vuoden 2013
puolella nähdään SVN-tallennusten määrän vaihtelevan viikoittain suuremmaksi ja
pienemmäksi. Tähän on todennäköisesti vaikuttanut se, että sprintin kesto on ollut
aina 2 viikkoa, ja SVN-tallennukset ovat tapahtuneet aina sprintin jälkimmäisen
viikon aikana. Lopussa SVN-tallennuksia tuli enemmän kuin koskaan muulloin
projektin aikana, johtuen siitä, että viimeiset toiminnallisuudet piti nopeasti saada
tehtyä.

57

Math.fi

Overview

Math.fi is a learning environment for a mathematical thinking. Main users are upper
comphrehensive pupils and teachers. Idea is to take the learning away from a teacher
leading teaching and make pupils more responsible of their own learning.

58

Organization and management
Managers:

Markus Ijäs

Hanne Korhonen
Markus Kumpulainen

Project team:

Paavo Happonen

Joonas Hartikainen
Jussi Kallava

Jesse Virtanen

We had weekly scrum meetings and open IRC-channel. MediaWiki was used for
requirements engineering and Jira was for managing tasks and working hours.

Methods and tools

List all tools and methods that you used in the project and give comments about their
usefulness.

59

JIRA for managing tasks and working hours. It was useful after project team learned
how to use it.

MediaWiki was for some coding instructions and for requirements engineering.

Google Drive/Docs was very essential for writing documents and version control of
documents.

Dropbox was easy way to share documents inside the project team.

Project team used xampp as a developing environment and NetBeans IDE for coding
and developing.

Database: MySQL
Programming language: PHP, Javascript

Framework: CakePHP 1.3 and CakePHP 2.2

For communication project team used IRC-channel, face-to-face meetings and email.

Project phases and development model

Our development model was modified scrum with 3 week sprints. We held weekly
meetings most of the time. There were separate occasions when we only met in IRC
but other than that we always met face to face.

Project started 14.09.2012
Preliminary analysis meeting 27.09.2012

Project plan inspection 09.10.2012
First sprint 15.10.2012 - 05.11.2012

First review 05.11.2012
Second sprint 05.11.2012 - 26.11.2012

Second review 26.11.2012
Third sprint 26.11.2012 - 17.12.2012

Third review 17.12.2012
Fourth sprint 07.01.2013 - 28.01.2013

Fourth review 28.01.2013
Fifth sprint 28.01.2013 - 18.02.2013

Fifth review 18.02.2013
Sixth sprint 18.02 - 11.03.2013

60

Seventh sprint 15.03.2013 - 12.04.2013
Eight sprint 12.04.2013 - 26.04.2013

Final meeting and project ending 29.04.2013

Experiences

Inactivity among project members
We had some problems with inactivity but nothing serious. Typical reasons were othe
work or school getting in the way. Next time we should try to get people more excited
about the project to prevent inactivity.

Lack of time
We didn’t have enough time to get all our requirements done. This was a bit
unexpected because of the ground work we had to do before we could start doing new
features. Next time we should keep the requirements as simple as possible and prepare
to have delays.

Problems with technology
Technology caused us little problems because if a member of our team had a problem
he would only bring it up on the next meeting. This resulted on delayed features.

Conflicts among the group
There were no conflicts and the group was open with suggestions.

Changing requirements
Requirements didn’t change much, they only got defined better.

More work than expected
There was a lot more to be done than we expected. We had to first update CakePhp
and the php version and that took a long time. Also we had to rethink the whole
structure of drills and homeworks which resulted in delayed functionality.

Site crashing
The site was crashing a lot and the source of that was harder to find than expected.
Our initial concern was drills which were badly coded but even though we removed
them the site still crashed. What turned out was that the site had been infested with
bots and we had to lock the public wiki site to fix the problem.

61

Statistics

Team size Dev. model Start date End data Days Hours

3+4 Modified
Scrum

12.09.2012 26.04.2013 226 1027,5

Table 1: General project information.

Activit
y

Plannin
g and
manage
ment

Req.
specific
ation.

De-sign Code Integrat
ion and
testing

Review
s

Repair Study Other Total

Hours 369,5 8,25 95,25 288,75 7 52,75 6,5 95,25 104,25 1027,5

% 36 1 9 28 1 5 1 9 10 100%

Usabi-
lity

 0

Total 1027,5

Table 2: Group effort by activity.

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

18 6 2 6 1 42

Table 3: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State diagrams Other
diagrams

0 0 0 0 0 0

Table 4: Design outcomes.

Document Pages Versions

Preliminary analysis 8 1

Project Plan 22 4

Usability analysis 0 0

Requirements specification 5 98

Design plan 0 0

User interface document 0 0

Test plan 1 7

62

Test report 0 0

Usability test report 0 0

Final report 12 1

Project's story 5 1

Weekly reports 2 31

Table 5: Documents.

Language PHP, Javascript

LOC ?

SLOC ?

Reused code ?

Reused and modified ?

Classes 39

Functions 95

Code revisions 928

Table 6: Codelines.

63

MobSec

Overview

The Mobile Security (MobSec) application is an security concept that monitors and
protects all devices connected via Bluetooth, that when activated the application will
monitor those devices and sound an audible alarm if any of the devices are removed
from the owners vicinity, or when the user accidentally leaves a device behind.

64

Organization and management
Project Managers:

· Andrew Cox

· Xie Liwei

· Kotha Navaneetha
Team Members (developers):

· Kuisma Kuusniemi

· Ruibin Ye

· Zheng Qian

· Wang Chenlu

Methods and tools
MobSec was developed using Android SDK. Android phone were provided by the
customer to use in the testing and other phases of the project. JUnit android testing
framework is used for writing test cases.

Redmine is to be used for requirements management and timekeeping. The wiki is
used for sharing documents, keeping track of the schedule, writing meeting minutes
and for other information. https://redmine.sis.uta.fi/projects/mobsec/wiki.
SVN was used for version control.

Skype and email are used for communication.
The tools used for documents are Microsoft Word and Open Office.

Project phases and development model
We decided to run with the lean scrum but within a first couple of meetings we
realized that we could not run lean scrum the reason been the face to face
communication problems. Being a multicultural team and although English is the
main communication in the meetings, it can be clearly seen that when individuals are
asked to repeat the task or problem they were unable to. In a fulltime working
environment time and money would be invested in language and communication
training as well as team work. With the University environment it was not possible
even coaching was limited.

After reviewing development models, it was decided that we would go with water fall
model for management tasking.

The three phases that we concentrated are:
Requirements: In the initial stages of the development we met with the customer and
gathered requirements. Based upon the agreed vision, we grouped and prioritized the
requirements as high level Features. These features were further broken down to user
stories, which are development level task. In the later stages of the development we
met with the customer and scoped down the requirements with respect to time and
effort that could be provided. In this phase some of the requirements were rejected as

65

agreed with the customer.
Implementation: We had a regular team meeting and initially we established the key
strength of the developers according to their interest. In Every team meeting mangers
had the prioritized list of user stories need to be developed and the developers has the
freedom to choose the user story or task they are interested from the top of the list.
User stories were easily tracked based on the prioritized list. This was main reason for
meeting with the customer and rescoping requirements as ambition level was too high
for the velocity we were achieving.

Hardening: In the later stages we transitioned to bug fixing and testing. From
exploratory testing bugs were created and prioritized. Within the team meetings and
workshops, developers focus would be to work on the high prioritize bugs. Specific
bugs were also raised as for test asset creation. We were then able to scope
development to bug fixing or test creation depending upon bug priority. Through
hardening phase we also concentrated on the user documentation.

The project milestone was met on time as expected and can be seen in the table
below:

Date Scheduled Task

21.9.2012 First meeting with the project team
18.9.2012 First meeting with the client

27.9.2012 Preliminary analysis returned
28.9.2012 Preliminary analysis review

6.10.2012 Project plan returned
12.10.2012 Project plan review

7.11.2012 Personal report I
28.11.2012 Midterm presentation

16.1.2013 Personal report II
13.3.2013 Final presentation

18.3.2013 Final review

Experiences

The project was successful. We had a really good working team. Every team member
was enthusiastic, committed and contributed to the project. One of the project
managers has real time software management experience and that helped for the
success of the project.

One of the risks met during the project is the communication problem. Being a multi
culture team, sometimes verbal communication was also a problem. Skype, team
meetings, retrospective and workshops helped managed this risk.
We think testing should go simultaneously as development and that’s the area we are

66

going to concentrate better the next time.

Statistics

Team size Dev. model Start date End data Days Hours
3+4 WaterFall

Model
14.9.2012 18.3.2013 181 1151.7

Table 1: General project information.

Chart1:Working hours per Week

Activit
y

Planni
ng and
manag
ement

Req.
specifi
cation.

De-
sign

Code Integr
ation
and
testing

Revie
ws

Repair Study Other Total

Hours 529.80 14.50 5.50 230.80 40.50 2.50 70.00 219.50 38.60 1151.7
% 46 1.2 0.4 20 3.5 0.2 6 19 3.3 100%
Usabi-
lity

- - - - - - - - - -

Total 529.80 14.50 5.50 230.80 40.50 2.50 70.00 219.50 38.60 1151.7

Table 2: Group effort by activity.

67

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

15 - - 4 - -

Table 3: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

- - - - - -

Table 4: Design outcomes.

Document Pages Versions
Preliminary analysis 9 1
Project Plan 15 1.1
Usability analysis - -
Requirements specification - -
Design plan - -
User interface document - -
Test plan - -
Test report - -
Usability test report - -
Final report
Project's story 5 1
Weekly reports 1 25
MobSec Bluetooth Concepting Discussion 9 1

Table 5: Documents.

Language Android
LOC 1328
SLOC -
Reused code -
Reused and modified -
Classes 14
Functions 71
Code revisions 211

Table 6: Codelines.

68

Pricing tool

Overview
The project’s aim was to develop a tool for creating a Word-based opportunities. The
customer company of the project is M-Files, which is specialized in developing of
document management systems. Today majority of vendors create proposals inside
the ERP system, which has its own limitations. Mostly these limitations are related to
structural constrictions of the document.
Those proposals created by ERP systems tend to be system-specific and thus lack in
those rich functionalities we are used to see in Word documents. The customer’s
vision for creating an opportunity is to provide sales personnel a traditional Word-
oriented interaction model with necessary adjustments allowing retrieving of products
without the need to open external supplementary documents.
Based on the customer’s vision our team ended up to implement the tool as Word add-
in. Although it might appear as obvious choice for underlying architecture there still
remained many unknown factors and risks that had to be considered carefully. The
biggest concern was the integration with Microsoft Dynamics, which was later
rejected by customer.
The end product turned out to be very close to the goals our team had set. One of the
major criteria was to make interaction with the tool as intuitive as possible. To do that
our team had to find the proper approach to hide the complexity of offer making
process. The GUI had an important role in this task by presenting the complex
technical and logical structure in easily readable and user-friendly way. The
screenshots below demonstrate the tool window (Fig 1) and the output of taken action
(Fig 2).

Fig 1.

69

Fig 2.

Organization and management
Our project group consisted of 4 managers and 5 developers. One of the managers had
previous sales experience in the Customer Company which allowed us to understand
and asses better both technical and user requirements. In the following is a list of
group members and roles.

Project managers:
Miia Ketolainen, Teemu Keskinen, Mirjan Merrukko and Elvis Okemou.

Developers:
Iulia Adomnita, Ville Murtonen, Reza Ahmadi, Elina Leino and Krzysztof Kachniarz.

Many of the tasks were performed collectively. In addition team members were
assigned an area of responsibility. From managers Miia guided and monitored the
coding process. Teemu’s area of responsibility was creation and improvement of
database along with customer relations. Mirjan monitored the overall progress of the
project and prepared a variety of documentation. Elvis maintained the requirement
specification document and governed the GUI team.

 From developers Iulia worked on development and implementation of GUI’s code
and appearance. Ville contributed in setting up the developing environment and
coding. Reza worked on code and ensured the integrity of application architecture.
Elina conducted the usability analyses and application tests. Krzystof worked on
database structure and sample data preparation.

Most of the decisions and task assignments were made in the weekly meetings. In the
beginning of the project an agenda was created for each meeting. In practice this
approach turned out to be impractical as each meeting usually raised a great amount
of new issues. The issues covered in the weekly meetings were written to minutes.

70

Methods and tools

One of the customers’ wishes was that the team makes as extensive use of Microsoft
technologies as possible. This affected the selection of tools and approaches that were
made during the project. Generally speaking all the tools selected for the project had
to be compatible with Microsoft technologies. In the following is the list of utilized
tools:

· Visual Studio 2012
· Visual Studio 2010
· C# programming language
· M-Files 9.0.3372.6
· Microsoft Word 2010
· SVN, TortoiseSVN –client
· Skype
· WPF
· .NET Framework 4.0

Visual Studio was used to build the frame of the application. All developers were
familiar with C# making it natural choice as the programming language. M-Files
served as the document warehouse for documentation produced during the course. In
addition to a basic document storage M-Files was also used for hour reporting. To
some extent M-Files was used for task assignments too.

M-Files also provided an intrinsic support for building a database. This helped the
whole team a lot as team members could easily access and evaluate the database from
their M-Files client application. To avoid possible Word version incompatibilities the
Word 2010 was chosen as version used for development.

SVN was used for version control. Skype proved to be handy especially in the
beginning of the project when general structure and overall architecture was in an
early stage. WPF’s role was to facilitate the development of GUI.

Project phases and development model
The development process was divided into seven sprints but instead we ended up
developing the tool according to the waterfall model. This was mainly because the
client wanted us to design the GUI, dataflow, architecture and the database
completely before writing a single line of code. Each sprint was designed to proceed
from preceding phase. In this respect the developing model differed from traditional
Scrum framework. Other deviations from Scrum concerned the meeting policies.
Because of busy schedule of group members the number of onsite meetings had to be
reduced which in turn increased the importance of remote collaboration. The original
Scrum-based schedule is presented in the table 1 below. Instead of this plan we started
the implementation in December. Fortunately the GUI prototypes were already
created by coding so we were able to use the code already written. The
implementation was ready in the beginning of March, after which the testing began.

71

Phase Start and end
dates

Length Description

Sprint
1

5.10.2012 -
26.10.2012

3
weeks

Design. First proposal for GUI, architecture and data
model is presented to the client. The SVN will be up
and running in the end of the first sprint.

Sprint
2

26.10.2011 -
15.11.2012

3
weeks

Design and implementation. GUI and architecture
design will be ready during the second sprint.
Implementation begins.

Sprint
3

16.11.2012 -
6.12.2012

3
weeks

Implementation and testing.

Sprint
4

07.12.2012 -
10.1.2013

5
weeks

Implementation and testing

Sprint
5

11.1.2013 -
31.1.2013

3
weeks

Implementation and testing

Sprint
6

1.2.2013 -
21.2.2013

3
weeks

Implementation and testing

Sprint
7

22.02.2013 –
15.3.2013

3
weeks

Testing and bug fixes

Table 1. The original schedule of the project.

Experiences
Generally the experiences reported by team members were mainly positive. There
were also critical views. Despite the importance of achieving success it is equally
importance to receive a constructive criticism. The following is an extract of feedback
given by group members.

Positive feedback:
One of the managers considered the experience of going through an actual project as
invaluable. The course should strive to maintain this arrangement and provide the
chance for students to get involved in real projects (not necessarily with companies).

One of the developers was so satisfied that called this course “a lifesaver”, as this
provided some real world experience which can be displayed on the developer's CV.

One other member was happy to be able to learn about project arrangements, various
tools and tasks while getting the necessary amount of credits.

Criticism:
One of the members was extremely negative on the usefulness of the course and
suggested that it should be replaced with innovation project which is “much better”.

72

Two managers suggested that there should be a maximum of two managers per
project. A limit on the number of participants or smaller groups was suggested to
accommodate this. Also having some weeks in advance to prepare for the projects
would be beneficial for managers.

Statistics

The content of this chapter mostly consist of collection of different graphs and tables
reflecting the content and progress of the project using graphical notation.

0

20

40

60

80

100

120

37 38 39 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10

Fig 3.

Team
size

Dev. model Start date End date Days Hours

4 + 5 Scrum 05.09.2012 15.03.2013 197 1162,5

Table 2: General project information.

Activit
y

Planni
ng and
manag
ement

Req.
specifi
cation.

De-
sign

Code Integr
ation
and
testing

Revie
ws

Repair Study Other Total

Hours 398,25 38,75 76,5 241,5 75,5 3,25 24,75 223,8 158,5 1241

% 32,09 3,12 6,16 19,46 6,1 0,26 1,99 18,03 12,77 100%

Total 1241

Table 3: Group effort by activity.

73

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

17 2 3 9 1 10

Table 4: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

 1 0 2 0 1

Table 5: Design outcomes.

Document Pages Versions

Preliminary analysis 7 1

Project Plan 17 1

Usability analysis 6 1

Requirements specification 2 1

Design plan 3 1

User interface document 0 0

Test plan 5 1

Test report 4 1

Usability test report 0 0

Final report 19 1

Project's story 7 1

Weekly reports 24

Table 6: Documents.

74

Language C#

LOC 2245

Reused code 0

Reused and modified 448

Classes 16

Functions 107

Code revisions 205

Table 7: Codelines.

75

Meta review tool

Overview

Meta review tool is a peer review program for TTT (Tietotekniikan taidot1, also T3)
course assistants and teachers. Tailored software was in need as Google Docs didn't
scale up that well with many simultaneous editors.

In TTT course, there are tasks that students must complete. Every task must be
reviewed by another student and these reviews are examined by the assistants. If the
review is incomplete, student must supplement it.
With Meta review tool, it is possible to give an annotation regarding the incomplete or
bad review. It is also possible to track whether this re-review gets fulfilled in an
appropriate manner and on time.

Figure 1. Screencapture of the Meta review tool

Organization and management
There were three project managers, three developers and one UI/UX designer. At the
very start of the course, one of our project managers had to quit due the busy schedule
at work.

1 Free translation: information technology skills

76

Projet management
Risto Salo

· 4th year CS student
· Studies information systems as a major
· Works a part-time web developer at Descom Oy (front and back end

developer)
· Gained experience on e-commerce development through work at Java
· Has gained skills of PHP, databases and Java during studies and freetime
· Been an assistant in TTT course for 1,5 years and also lectured the course once

Ville Valkonen
● 5 - 6th year CS student, counting style varies
● Software engineering as a major
● On freetime writes C and Python
● Past work experience of bit protocols with Java
● IT Engineer/Junior admin at Qualcomm Atheros

Developers

Janne Kallunki
● 3rd year CS student
● Works a full-time front-end and UI developer at Leonidas
● Likes mostly programming with HTML5/CSS3/JavaScript
● Handles also graphical designing
● Back-end experience of Javasta and PHP, also familiar with databases

Mika Tuunanen
● Nth year CS student
● Gained experience through studying and by own interest
● Knows PHP, [My|Postgre]SQL

Joni Hämäläinen
● 3rd year CS student, had studied CS for an year in the university of Jyväskylä

before the switch
● Gained experience through studying and by own interest
● Knows Java, PHP and databases

Ella Kaugin
● 3rd year sociology student but CS as a minor
● Have studied math for two years in university of Helsinki
● UI and UX skills

77

We settled one face-to-face meeting a week and used IRC and emails for rest of the
communication. In IRC, #meta-arviointi@IRCnet channel was created for the project
communications. It was used to discuss about implementation specifications,
ambiguous task descriptions and so on. Email was used merely for reporting.

We also discovered that sprint pool works better for us. In sprint pool, every
developer can choose somewhat freely what tasks they will complete. Tasks were
handled by Github's issues tracker.

Information regarding the meetings, more accurate specification (in Finnish), UI
mock ups, statistics and meeting memos can be found from:

 https://github.com/Meta-arviointi/meta-arviointi/wiki

Methods and tools

Project was developed by using a PHP programming language and a CakePHP
framework. The used tools and services is listed on below.

IDE:

NetBeans
Widely used IDE that has support for several languages. Was chosen mainly because
everyone has used it.

Programming language:

PHP
Check the next section.

Framework:

CakePHP
The choice was between FuelPHP and CakePHP as Janne (one of our developers)
had been using these before. CakePHP was chosen because of the better database
support for our needs.

Database:
PostgreSQL

Future of the MySQL is unpredictable since Oracle took over it. Postgresql values
security, data integrity and reliability, all important features of the well designed

78

database system. Also, Postgresql has many built-in functions that can ease the
development process.

SCM:

Git
Efficient distributed version control tool that has good support in Netbeans.

SCM hosting service:
Github

Superior hosting company who offers a free repository storage, a simple built-in
issue/bug/requirements management, and interactive graphs and plots for project's
efficiency monitoring.

Unit testing:

PHPUnit
Few of our developers had previous experience of this.

Source code analyzing:
Sonar

Ville had previous work experience of using this for improving source code quality.

Lines of code:

CLOC
Simple and clear, performs the needed calculations.

Public repository of the project:
https://github.com/Meta-arviointi

Issue and bug tracking: https://github.com/Meta-arviointi/meta-
arviointi/issues/milestones
We didn't want to use any separate system for issue and bug tracking. Also, Github's
issues were enough simple so that we were able to modify those to fill our needs
perfectly. It was also possible to make milestones which were linked in to stable
branch versioning.

Documentation

79

Google Docs
Google docs was chosen because it enables simultaneous editing, easy sharing and
versioning of document files.

Project phases and development model
We used modified Scrum for the project management. We settled only one meeting
per week (since this is an university course versus work life) and during the second
period we started to use a sprint pool. With the sprint pool team members were able to
choose freely what tasks they will complete. Tasks were chosen from the issues list
that was/is available via Github (https://github.com/Meta-arviointi/meta-
arviointi/issues?state=open). There were total five sprints during the course timespan.
That makes it roughly a month for each sprint.

PM = Project management, All = PM + other team members

Happening Invited Where When

Short project
presentation

PM B1029 19.9.2012, 12:25

Weekly meeting /
Workshop of tools to be
used

All B3136 25.9.2012, 16-19

Preliminary analysis All B3136 26.9.2012, 16-17

Weekly meeting All B3136 02.10.2012, 16-18

UI/UX Workshop Ella, Janne, Risto B1029 08.10.2012, 14:30-
16:45

Start of the 1st sprint All B1065 10.10.2012, 16-18

Database workshop Ville, Massimo, Joni,
Mika

Linna 3023 10.10.2012, 14:30-
16:00

Weekly meeting All B1065 10.10.2012, 16:00-
17:00

Review of the project
plan

All B1029 12.10.2012, 8-10

Weekly meeting All B0019 24.10.2012, 16-18

80

Weekly meeting All B2077 30.10.2012, 16-18

Review of the 1st
sprint /

Start of the 2nd sprint

All B1065 06.11.2012, 16-18

Weekly meeting All Linna 3017 13.11.2012, 16-18

Weekly meeting All B1065 20.11.2012, 16-18

Recreational activities Voluntary Höyry 20.11.2012, after
the weekly meeting

End of the 2nd sprint /

Start of the 3rd sprint

All B2077 27.11.2012, 16-18

Project presentation All B1097 28.11.2012, 13:40-
14:00

Weekly meeting All B2077 04.12.2012, 16-18

Weekly meeting All B2077 11.12.2012, 16-18

End of the 3rd spinrt /

Start of the 4th sprint

All B2077 2.1.2013, 16-18
(proposed)

UI/UX related meeting Ella, Risto B1065 8.1.2013, 14:45-16

Weekly meeting All B1065 8.1.2013, 16-18

Weekly meeting All B1065 16.1.2013, 16-18

Hackathlon All devs who do
programming and PM

Office of
Leonidas

21.1.2013, 17->

Review of the 4th
sprint /

Start of the 5th sprint

All B1065 23.1.2013, 16-18

Hackathlon All devs who do Office of 28.1.2013, 17->

81

programming and PM Leonidas

Weekly meeting All B1065 30.1.2013, 16-18

Weekly meeting All B1065 6.2.2013, 16-18

Weekly meeting All B1084 13.2.2013, 16-18

End of the 5th sprint /

Start of the finalizing
sprint

All B1084 20.2.2013, 16-18

Weekly meeting All B1065 27.2.2013, 16-18

Final project
presentation

All B1097 13.3.2013, 13:40-
14:00

Weekly meeting All B1065 13.5.2013, 16-17

Document name / document Latest version
(date)

Started Pages

Sprint-pool - list of tasks (Sprintpool) v.1 (16.1.2013) 6.11.2012 3

Project plan (Projektisuunnitelma) v.0.7.4
(9.5.2013)

3.10.2012 24

Preliminary analysis (Preliminary
analysis)

v.1 (6.10.2012) 22.9.2012 7

Document of filterable tables in UI

(Filtteröitävät taulukot)

v.1 (13.3.2013) 28.2.2013 2

Observations of usability test analysis

(Käytettävyystesti - havainnot)

v.1 (2.4.2013) 5.3.2013 4

User story (MA-kayttajatarinat) v.0.4.1
(9.5.2013)

21.9.2012 3

82

Sprint backlogs (MA-sprint-backlogs) v.1 (6.11.2012) 3.10.2012 3

Short project presentation (Short project
presentation)

v.1 (19.9.2012) 18.9.2012 3

Midterm presentation (Meta review
presentation #2)

v.1
(28.11.2012)

27.11.2012 8

Final project presentation (Meta review
tool - Final presentation)

v.1 (10.3.2013) 10.3.2013 11

Email templates (Meta-arviointi - Maili-
templatet)

v.1 (4.3.2013) 30.1.2013 3

Usability testing cases
(Kaytettavyystestaus)

v.1 (9.5.2013) 3/2013 6

Usability testing testing plan

(testitaulukko_kayttoliittyma)

v.1 (9.5.2013) 1/2013 9 (tables)

UI mock ups

(several images in directory
Rautalankamallit)

v.1 (9.5.2013) 9/2012 23
(images)

Final report (Meta-arviointityökalu -
Loppuraportti)

v.0.7.1
(10.5.2013)

6.5.2013 28

Working hour accounting (Meta-
tuntikirjanpito)

v.1 (10.5.2013) 9/2012 8 (tables)

* There is also meeting memos on every weekly meeting (includes reviews and
workshops), totaling 26. These documents can be found under Palaverimuistiot on:
https://github.com/Meta-arviointi/meta-arviointi/wiki

and detailed list of the tasks closed during the sprints:

https://github.com/Meta-arviointi/meta-arviointi/issues/milestones?state=closed. Only
2 and 3 sprints are shown since we made a switch to the sprint pool methodology
around 3th sprint. Sprint pool milestone and can be seen on https://github.com/Meta-
arviointi/meta-arviointi/issues?milestone=6

83

Experiences

The course taught important functionality and methodology regarding the work life.
Scrum, version control systems, release model and so on, are few of the concepts that
some people will learn at the very first time during the course.

Foreseen risks
Here we discuss about the two most critical and somewhat obvious risks that could
happen. Hereby, this is not a full list of risks.

Since there were new tools, frameworks and concepts, we recognized this could
exhaust some of the team members. Also, the course may take vast amount of time so
there are possibility that someone could drop the course due lack of time.
The latter risk mentioned above, lack of time, concreted shortly after the course
started. Massimo, one of the project leaders, had a rush in the work and couldn't find
needed time for the course. Therefore he resigned. Although this had a little affect for
the project, we managed to keep wheels running. On a positive side, this could have
been one of the developers and that have had been more crucial. The former risk, lack
of motivation, happened occasionally during the course. It is hard to come with a
working rewarding system if motivation ceases. ECTS depending on hours, works for
somebody but not for all. Nevertheless, we achieved a lot. Moreover, we think it is
completely normal to have regression or suffer from procrastination during the course
as many of the students have full-time jobs, families and other courses going on
concurrently.
Overall we think our team was greatly successful and proceed better that what our
initial expectations were.

Unforeseen
There were no unforeseen risks during the course period.

Statistics

Team size Dev. model Start date End data Days Hours

2+4 Modified scrum 21.09.2012 22.04.2013 214 1118

Table 1: General project information.

84

Figure 1. Working hours per week

Activity Planning
and
managem
ent

Req.
specifica
tion.

De-
sign

Code Integrati
on and
testing

Revie
ws

Repair Study Other Total

Hours 416 15 79 379 77 41 1 60 53 1118

% 37,51 1,38 7,28 32,44 7,10 3,78 0,09 5,53 4,88 100%

Total 407 15 79 352 77 41 1 60 53 1118

Table 2: Group effort by activity.

Number of
requirements

Pages Use-
cases

UI
screens

Database
diagrams

Database
tables

48 - 48 21 1 14

Table 3: Requirements and high-level design outcomes.

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

- - - - - -

Table 4: Design outcomes.

Document Pages Versions

85

Preliminary analysis 7 4

Project Plan 28 16

Usability analysis 5 2

Requirements specification - -

Design plan - -

User interface document 6 1

Test plan - -

Test report - -

Usability test report 5 1

Final report 28 10

Project's story 12 6

Weekly reports 21 1

Table 5: Documents.

Language PHP, CSS, Javascript, SQL, CoffeeScript, XML, Python,
Bourne, make

LOC 259 072

SLOC 160 167

Reused code -

Reused and
modified

-

Classes -

Functions -

Code revisions 414

Table 6: Codelines.

86

Smart Lightning
Overview
Smart Lightning is a software system which can help people to control the lights by
their acts to get a vivid effect in the presentation. The project idea is all about how to
develop applications that use the underlying light controlling system and some sensors in
order to help people to get thing done easily, smartly. This is the idea from our project’s
client, TAUCHI Research group in University of Tampere. After having some discussions
with our client and spending time on understanding the project, our group had a
brainstorming session about finding out some applications based on the idea. We came up
with the application named smart presentation room. That is by using light controlling
system provided from our client and Kinect motion sensor; our application would help the
presenter to be able to control the lights in the room himself. In detail, the presenter will
use his own gestures to control the light brightness in the room, make the light focus on
him and automatically direct the light beam follow him when he is moving around.
Organization and management

Person Experience Team Job

Bo Huang Project Manager Kinect Team Manage, Integration, Debug,
Testing, Documentation

Zhang Zhang Project Manager, Kinect Team Manage, Integration, Debug,
Testing, Documentation

Trong Nghia
Nguyen

Project Manager, Scrum
Master

Low-level Server Team Manage, Integration,
Documentation,
Coding(Connection with LLS)

Pawel Paradowski Developer Kinect Team Coding(Develop gesture
identification), Integration

Renfei Zhou Developer Kinect Team Coding(Develop gesture
identification), Integration,
Testing

Thrushna Nalam Developer Low-level Server Team Coding(Connection with LLS),
Integration

Tianyi Hu Developer Low-level Server Team Coding(Connection with LLS),
Integration, Debug, Testing

Ao Li Developer Kinect Team Coding(Develop gesture
identification),
Documentation, Testing

87

Methods and tools

Communication on Internet:
Wiki and Redmine:
Function: To communicate with documents of the project and requirements
management, and the working hour can be checked on Redmine.
Level of Useful: High.

Skype
Function: Online communication among the team members.
Level of Useful: Low. (Because of the bad Internet quality)

Email
Function: Keep communication in the team by email, especially for weekly report.
Level of Useful: High.

SVN
Function: Upload and download the document of code.
Level of Useful: Medium. (USB is more popular)

Developing Tools:
(1) Kinect sensors for developers doing research at home (at least 1 device)
(2) Low-level light controlling system
(3) Kinect tool for detecting skeleton data
Project phases and development model
Modified SCRUM is used for this project, which is an iterative and incremental agile

88

software development framework for managing software projects and product or
application development. Scrum focuses on project management institutions where it
is difficult to plan ahead. Mechanisms of empirical process control, where feedback
loops that constitute the core management technique are used as opposed to traditional
command-and-control management. Its approach to planning and managing projects
is by bringing decision-making authority to the level of operation properties and
certainties.

Project	Phases	 Date	Start	 Date	End	

Define	requirements		 14/09/2012	 28/09/2012	

Finishing	knowledge	study(C#,	
Kinect,	etc.)	

10/2012	 11/2012	

Design	1st	gesture	 11/2012	 12/2012	

Design	2nd	gesture	 11/2012	 12/2012	

Integration	 12/2012	 12/2012	

Connection	with	LLS	 01/2013	 01/2013	

Alpha	release	 01/2013	 01/2013	

Debugging	 20/01/2013	 01/02/2013	

Beta	release	 02/2013	 02/2013	

Debugging	 01/03/2013	 11/03/2013	

Final	version	 12/03/2013	 13/03/2013	

Experiences
Expected Risks Risk Mitigation Impact Certainty

Team member leaves the
project

None Can only provide peer
pressure and motivation.

HIGH MEDIUM

Team member cannot commit
sufficient time as originally
indicated

Monitor, discuss and motivate.
Encourage bidirectional trust to
highlight early and take actions

HIGH MEDIUM

89

Bad management practices Peer review, retrospectives must
cover development and
management

HIGH LOW

Resources unavailable in time Active highlight and
communication of risks

HIGH LOW

Improper and unclear task
division between project
managers.

Clear definition of tasks, and
active use of retrospective
techniques to improve.

MEDIU
M

LOW

Technology is new and could
slow progress to all team
members

Peer discussion, personal
learning, Good Communications
to help problems

MEDIU
M

LOW

Experience:
Arrange more time on Self-learning.
Most of our team members have no experience of using C#. So they need more time
to learn related knowledge.
Managers also need to learn SCRUM.
Solving problems.
We should also arrange time for working together to resolve some common problems,
maybe about one time every two weeks.
Completed documentation:
We get some documents from our user; it is about the basic framework. We divided
our developers into two small groups so that they can learn necessary knowledge as
quickly as they can.
Statistics

Team size Dev. model Start date End data Days Hours
3+5 SCRUM 14/09/2012 15/03/2013 182 1266

Table 1: General project information

Activities Sep-12 Oct-12 Nov-

12 Dec-12 Jan-13 Feb-13 Mar-13 Total

Planning and
management 60.5 72.5 47.5 32 21 29 44 306.5

Code 20 74.5 102 87 169.5 20 473
Design 10 8.5 2 3 23.5
Studying 4 31.5 23 29 49 79.5 41.5 257.5
Other 3 8.5 4 13 79 107.5
Integration and
testing 2 4 42 85 133

Review 2 5 7 17.5 7 38.5
Requirements
specification 4 3 7

Repair 15.5 15.5
Total 64.5 141 166 174 174 350.5 292 1362
Table 2: Group effort by activity

90

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

4 3 4 NO NO NO
Table 3: Requirements and high-level design outcomes

Document Pages Versions
Preliminary analysis 7 1.0
Project Plan 13 1.2
Usability analysis 4 1.1
Requirements specification 2 1.0
Design plan No No
User interface document No No
Test plan 5 1.1
Test report 3 1.1
Usability test report No No
Final report 16 1.1
Project's story 5 1.1
Weekly reports 26 1.0
Table 4: Documents.

Language C#, C++,
LOC 1470
SLOC 1470
Reused code 0
Reused and modified 0
Classes 48
Functions Hard to Calculate
Code revisions Beta
Table 5: Codelines

91

Virtual Patient

Overview

Virtual Patient is web browser application designed to help medical students learn
medical reasoning. This application opens an open platform for the users to create,
assign, and grade different tests in virtual environment.

Students can take tests assigned to them, or select open tests to complete at any time.
Teachers can grade submitted tests and give feedback with them.

92

Organization and management

● Ahmed Dawood, MySQL database developer.
● Hao Hu, UI developer.
● Sundar Kunwar, Documentation Manager.
● Xiaolan Ma, Tester, UI development assistant..
● Santtu Mansikkamaa, Support Manager.
● Johannes Pitkänen, Tester.
● Mohammad Ejazudding Syed, Code Manager, Communications as well at the

second half of the project.
● Chenyu Wei, UI developer.
● He Ye, Communications Manager, UI team lead.

Our project team used variety of different ways of management. We ended up using a
method, where He Ye was lead of UI development team (Hao Hu and Chenyu Wei).
Ye, Hu and Wei had coding meetings nearly daily, usually weekly for the most of the
project. Ma also joined these meetings for coding support and testing reviews.
Ejazuddin Syed was overseeing the code quality and conventions throughout the
project, and guided the developers to improve.
This UI development team was in close contact with Ahmed Dawood for database
integration work. Dawood created the database used in the project.
Other ways of management were through Redmine issues as a reminders of planned
work, and reporting tool of daily progress.
Our main method was weekly meetings, where we discussed current status and
planned for the upcoming week. Skype and e-mail were used during the week to
discuss and plan work.
Santtu Mansikkamaa was appointed as product owner, and he created the priorities for
implementation work with the client.

Methods and tools

TortoiseSVN: Easy to use graphical version control application that can be tied to
development environment easily. It is always clear to see who and what files were
changed, and see how the procedure goes. Using TortoiseSVN is convenient because
of its GUI, and user doesn't need to remember all commands and syntax.

Jacob Nielsen's heuristics were used for UX evaluation. These are very useful in any
application as always.

Task-oriented use case testing. Functionality testing. Relevant and useful for testing
purposes.

Redmine was used as wiki, version control followup and work followup system. Very
nicely created compact application that is very versatile for developers and managers
alike. In management view it is very powerful tool in distributing work and following
it, and creating reports. But only if everybody uses it effectively.

Google docs for distributed document editing. Very good especially when multiple
people want to contribute or follow. Even has version control.

93

Editplus was used for HTML and PHP code. It is small, green, convenient and easy to
use.

WAMP is a virtual website framework software, which can be used to testify and
connect team mers' code. It can also contribute to a complete website.

Balsamiq mockups (www.balsamiq.com) is a tool that can be used to create mockups
of UI's. The style of the mockups is close to hand drawn on a piece of paper. This tool
was used by our designer throughout the project, but it was not very convincing. On
one occasion one PM needed to create a design, but quickly moved to pen & paper
approach, as the mockup designing speed was much faster, and quality almost similar.

LibreOffice was used as main document editing tool in addition to google docs. Even
though LibreOffice is the demonspawn that will ruin your day, it is free, and better
than OpenOffice in many ways.

Project phases and development model

We used modified Scrum in the project. We didn't see a need for very heavy Scrum
processes, and the work was even more agile. It was a bit too light for some, although
it made managing the project a bit lighter without the need of burn down charts and
other similar tools. Once we used Skype to replace weekly meeting, but it was too
messy and sound quality was awful and we had to continue meetings face to face.

We didn't have phases per say. We spent the time best we could to create as many
features as possible. We moved to next feature when ever previous was finished. We
had defined the minimum set of functions for the application, and also other features.
When the minimum was fulfilled we started to implement other features on top of it.

This method created light and easy process for the team. It created us the ability to
demonstrate our progress with self guided priorities in each review meeting. Client
representative was quite often in our weekly meetings giving feedback and guiding to
right direction.

Experiences aka horror stories

The following chapters introduce unforeseen risks and realized risks.

Unforeseen risks
Our main unforeseen risk that realized, was the risk of multiple personnel of same
responsibility being unable to provide implementation. We had anticipated mitigation
plan for leaving personnel, but we did not expect that all personnel responsible for
implementation could be very difficult to work with. They were often absent from
meetings, they did not provide what they committed in meetings and even didn't
attend coding meetings even if they promised to join. This lead our project to slow
down to a halt for testers.

94

Second worst was the unexpected difficulty to reach certain personnel via mail or
Skype, opposite to their promises in meetings. This is overlapping with previous
point, but very big issue in the project. We also had problems with communication in
a sense that sometimes it was really hard to understand what another person was
meaning.

Tertiary worst problem was our implementers inability to provide working code for
all. This prevented testers to actually test the application during most of the project
time.

It is very hard to say what we could have done better, and how this could be prevented
in the future. Especially in student projects replacing personnel from the project is not
viable option, unlike in business world. We did not have capable personnel to take
their roles in full, unless we had replaced implementers with managers. Then
managers would have had done all coding instead of managing the project itself.

For client point of view we could also have had provided better visibility of what is
happening. It would have also helped project management. Even people promised to
use Redmine issues for hour reporting, and work followup, it was impossible to
actually have most of the project personnel use Redmine, even some managers
declined to use it. We ended up having one system, namely Redmine, for wiki,
documents, task- and hour tracking that was working only partially. But it was better
than having three legged donkey, than pulling half beaten mule after it as well.

We weren't expecting to have problems with a server in the project. At the beginning
only one of eight team members was supporting the idea of having a server to show
our web app. Our client started asking about it at the end of October. Then we started
to get it slowly. Then came christmas holidays, end of period test season, and then the
only manager actually hoping to have the server had to go for paternity leave. After
the leave we started to panic a bit, because the server issue wasn't getting any
progress. Then we asked for different sort of server from a different provider, and
when we sent the mails back and forth, we finally ended up in a hurry, few days
before the deadline, still not getting through to database server or having working
credentials for document server. The lesson learned here is this: if you aren't sure you
want it, but it might be nice, and it doesn't cost very much, get it early!

Realized risks

1. Inexperience in project management
This risk could have been mitigated partially, if we had had any training in the beginning of
the project. Some previous experiences and knowledge was passed down in the project, but
there was not very much proactivity on that sector to gain more information.
2. Unfamiliar technologies
This was quite well mitigated with studies. It did take a lot of the implementation budget, but
at least the learning responsibility from the course did fulfill.
3. Lack of communication

95

This risk realized towards managers. There was little to none from developers to managers,
and often problems were realized after deadline was passed with halted work. This was
problematic, as managers had hard time getting through to developers in the first place to ask
about the status often to actually mitigate the risk itself. In a way the risk was realized by a
separate risk.

Statistics

Team size Dev. model Start date End data Days Hours
4+5 Modified scrum 14.9.2012 15.3.2013 126 1484

Table 1: General project information.

Activity Planning
and
managem
ent

Req.
specif
icatio
n.

De-
sign

Code Integra
tion
and
testing

Revie
ws

Repai
r

Study Other Total

Hours 314,2 19,7 151,25 516,6 84,55 47,4 41,6 123,95 184,75 1484

Table 2: Group effort by activity.

Number of
requirements

Pages Use-cases UI screens Database
diagrams

Database
tables

35 1(wiki) 5 40 2 4?
Table 3: Requirements and high-level design outcomes

Pages Overview
diagrams

Class
diagrams

Sequence
diagrams

State
diagrams

Other
diagrams

4 1 1 0 0 1

Table 4: Design outcomes.

96

� Documen

Documen

Pages Versions

Preliminary
analysis

8 3

Project Plan 19 8
Usability
analysis

0 0

Requiremen
ts
specification

1 9 (wiki edits)

Design plan 0 0
User
interface
document

43 5 or more.

Test plan 18 Google docs.
Test report 26 Google docs.
Usability
test report

0 0

Final report 14 2
Project's
story

6 2

Weekly
reports

25 1

User's guide 3 Goole docs.

Table 5: Documents.

Language PHP HTML5 CSS JS MySQL
LOC 2619 86 n/a n/a
Classes 46 4 n/a n/a
Reused code 49 all n/a
Revisions 68 68 68 n/a n/a
Table 6: Codelines.

97

ViRPRO

Overview

Terms like virtual environments and gesture recognition are usually associated with
modern video games, but the technology has promise in many other areas as well.
Many TV productions today are filmed in a so-called virtual studio, where the
environment is digitally generated by a computer. The VirPro project is an attempt to
integrate a virtual environment with gesture recognition and lighting control in a way
that has not yet been done in Finnish TV productions. The central idea is that the user
could trigger changes in the virtual environment and/or studio lighting by using
motion gestures instead of external devices like push buttons to accomplish the same
effect.

VirPro is a piece of software that uses existing technology by TAUCHI as well as the
team’s own code to accomplish the task described above. The software includes its
own virtual environment generated by JMonkeyEngine (a free open source 3D
engine), but towards the end of the project the focus quickly shifted to implementing
the needed functionality for the software to work in Yle's virtual studio in Tohloppi.
The virtual environment in Yle's virtual studio is generated by a commercial engine
called Vizrt.

The VirPro software uses Microsoft Kinect devices for gesture recognition, and it is
capable of controlling lights that support the DMX512 protocol.

Figure 1: Main window view. Console log prominent.

98

Figure 2: Settings view.

Organization and management

In the beginning the project team consisted of 7 members - 3 managers and 4
developers. However, quite early in the project one developer decided to call it quits
as he lacked sufficient time and motivation to actively participate in the project. The
project then continued with the remaining 6 members until the end.

The project team included the following personnel: Aku Häsänen (technical director),
Mikko Myllylä (usability expert) and Timi Vienola (scrum master) as project
managers and Kimmo Hämäläinen, Tuomas Laitinen and Antti Nykänen as
developers. Almost all of the programming work was done by Antti and Kimmo.
Tuomas was assigned to other tasks, like testing and helping the managers with the
course documents.

The roles in the project were assigned on the basis of the members' own interests and
competence in specific areas. This approach worked quite well, although at times
some members were burdened more than others. However, the team generally had a
high level of motivation, and the members had no problem investing the long hours
needed to accomplish the tasks at hand.

99

Figure 3: The VirPro team and Yle’s representatives; Ilmari Huttu-Hiltunen and Riku Karvakuono.

Methods and tools

Devices:

· Microsoft Kinects
· DMX512-protocol controlled RGB lights, moving and stationary

None of the team members had any previous experience working with Kinects, but
that didn’t turn out to be a problem. The team gained some good experience in
developing software for the device, and encountered no significant obstacles in
getting the device to function as intended. The DMX512 protocol also turned out to be
quite understandable, and no problems relevant to our team’s goals were observed.

Project management tools:

· Google Drive (working hour reporting and document writing)
· Redmine (programming tasks and requirements management)
· Wiki (document and general information archive)
· Doodle (scheduling meetings)

All of the tools used for project management worked quite well. We had no problems
worth mentioning with any of the tools and we were successful in using them in an
appropriate manner.

Development tools:

· Eclipse IDE (development environment)

100

· NetBeans IDE (development environment)
· JMonkeyEngine 3.0 (3D engine)
· TortoiseSVN (version control)
· Java 6 (programming language)

Most of the development work was done using the Eclipse IDE, as both Antti and
Kimmo were more familiar with it. However, NetBeans was also used for some
amount of work. Both performed reasonably well, and developing with different IDEs
didn’t pose a problem - technical or otherwise. We needed an open source 3D engine
(preferably in Java) for our demos, and we decided to choose JMonkeyEngine 3.0.
The engine turned out to be a good choice as it performed quite well in the
rudimentary tasks we wanted to accomplish. Many of the members had previously
used SVN for version control, and TortoiseSVN proved to be an easy to use GUI for
that.

Communication tools:

· IRC (daily communication)
· E-mail (reminders)

Most of the communication outside of meetings was via IRC. This worked quite well,
since almost all of the members had previous experience in using it, or were using it
already for communication not related to this project.

Project phases and development model

Our project used a slightly modified version of the Scrum development model. We
had (generally) two-week development sprints, each of which ended in a sprint review
with the client. We held weekly face-to-face meetings in addition to discussing things
in IRC whenever necessary.

Our project’s sprints and milestones with dates are described in the table below.

Sprint Milestone Date
Sprint 0
 Short project presentation 19.9.2012
 Preliminary analysis 27.9.2012
Sprint I Development version 0.1 5.10.2012 - 19.10.2012
 Project plan 10.10.2012
 Project plan inspection 19.10.2012
 Sprint I review 19.10.2012
Sprint II Development version 0.2 19.10.2012 - 2.11.2012
 Sprint II review 2.11.2012
Sprint III Development version 0.3 2.11.2012 - 16.11.2012
 Personal Report I 1.11.2012 - 7.11.2012
 Sprint III review 16.11.2012
Sprint IV Development version 0.4 16.11.2012 - 30.11.2012

101

 Midterm presentation 28.11.2012
 Sprint IV review 30.11.2012
Sprint V Development version 0.5 30.11.2012 - 14.12.2012
 Sprint V review 14.12.2012
Sprint VI Development version 0.6 14.12.2012 - 11.1.2013
 Sprint VI review 11.1.2013
Sprint VII Development version 0.7 11.1.2013 - 25.1.2013
 Sprint VII review 25.1.2013
Sprint VIII Development version 0.8 25.1.2013 - 8.2.2013
 Sprint VIII review 8.2.2013
Test sprint Development version 1.0 8.2.2013 - 8.3.2013
 Test plan 15.2.2013
Wrap up 8.3.2013 - 15.3.2013
 Test report 10.3.2013
 Final report 12.3.2013
 Project story 12.3.2013
 Final presentation 13.3.2013
 Final meeting 15.3.2013
 Personal report III 15.3.2013-

Table 1: Project sprints and milestones.

Experiences

All in all the project turned out to be a success. From a difficult starting point, we
started to build a piece of software that would perform a number of tasks in the
direction of the quite ambiguous assignment we were given. Fortunately, as the
project progressed our assignment became clearer and the agile development model
ensured that a minimal amount of work was done in vain. The project’s goals shifted
somewhat towards the end, but the team nevertheless managed to make the necessary
adjustments to satisfy the client’s goals.

The project turned out to be quite challenging for both the developers and the
managers - mainly because of the unclear requirements. Much of the early work was
based on the team’s own ideas and basic building blocks that could be safely assumed
to be useful in the future, regardless of the more specific future goals.

In addition to the problems already mentioned, we also lost one developer and another
developer lacked the necessary programming skills and interest to participate in the
programming work. These problems were resolved by making the necessary changes
to the project schedule and trying to keep up a high level of motivation and team
spirit.

102

Statistics

Team size Dev.
model

Start date End date Days Hours

3+4 Scrum 17.9.2012 15.3.2013 180 1076,5

Table 1: General project information.

ActivityPlanning
and
management

Req.
specification.

De-
sign

Code Integration
and testing

Reviews RepairStudyOtherTotal

Hours 344 8,5 11 253,5 79,5 65 4,5 134,5 176 1076,5
% 32 1 1 24 7 6 0,5 12,5 16 100

Table 2: Group effort by activity.

Figure 4: Working hours by week.

Number of requirements UI screens
37 7

Table 3: Requirements and high-level design outcomes.

Overview diagrams Class diagrams Sequence
diagrams

State diagrams Other
diagrams

4 0 0 0 0

Table 4: Design outcomes.

Document Pages Versions
Preliminary analysis 7 1
Project Plan 20 4

103

Test plan 5 2
Test report 6 1
Final report 21 1
Project’s story 8 1
Weekly reports 25 -
Memos 28 -

Table 5: Documents.

Language Java
LOC 8850
SLOC-P 6285
SLOC-L 4772
Code revisions 125

Table 6: Codelines.

