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Abstract

In this doctoral thesis we consider topics related to linear estimation and
prediction in the general Gauss–Markov model. The thesis consists of eleven
articles and an introduction to concepts considered in the articles. The main
contributions of the thesis concern the concepts of the best linear unbiased
estimator, BLUE, the best linear unbiased predictor, BLUP, linear sufficiency,
linear prediction sufficiency, the ordinary least squares estimator, OLSE, and
the Watson efficiency.

In this thesis we consider linear sufficiency and linear completeness in
the context of estimating the given estimable parametric function. Some
new characterizations for linear sufficiency and linear completeness in a case
of estimation of the parametric function are given, and also a predictive
approach for obtaining the BLUE of the estimable parametric function is
considered.

In the context of predicting the value of new observation under the gen-
eral Gauss–Markov model, a new concept—linear prediction sufficiency—is
introduced, and some basic properties of linear prediction sufficiency are
given.

Furthermore, in this thesis the equality of the OLSE and BLUE of the
given estimable parametric function is considered, and properties of the
Watson efficiency are investigated particularly under the partitioned linear
model.

This thesis contains also an article concerning the best linear unbiased
estimation under the linear mixed effects model, and an article considering
a particular matrix decomposition useful in the theory of linear models.

Key Words: best linear unbiased estimation, best linear unbiased predic-
tion, linear model, linear sufficiency, linear completeness, linear prediction
sufficiency, ordinary least squares estimation, Watson efficiency.
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Notations

Rn×m set of n×m real matrices A
Rn set of n× 1 real column vectors a
A′ transpose of matrix A
A−1 inverse of matrix A
A− generalized inverse of matrix A
A+ Moore–Penrose inverse of matrix A
|A| determinant of matrix A, also denoted det(A)
r(A) rank of matrix A
tr(A) trace of matrix A
A ≥ 0 A is nonnegative definite
A > 0 A is positive definite
C (A) column space of matrix A
N (A) null space of matrix A
C (A)⊥ orthogonal complement of C (A)
dim C (A) dimension of C (A)
PA orthogonal projector onto C (A) w.r.t. standard inner product
A⊥ matrix whose column space is C (A)⊥

(A : B) columnwise partitioned matrix with A ∈ Rn×m and B ∈ Rn×k

A ≥ B A−B is nonnegative definite (Löwner partial ordering)
A > B A−B is positive definite
a column vector a ∈ Rn

I identity matrix
0 matrix of zeroes
1 column vector of ones
E(x) expectation of a random vector x
cov(x) covariance matrix of a random vector x
cov(x,y) (cross-)covariance matrix between random vectors x and y
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1 Introduction

1.1 The general Gauss–Markov model

In this thesis we consider the general Gauss–Markov model

y = Xβ + ε, (1)

where y is an n × 1 observable random vector, X is a known n × p model
matrix, β is a p×1 vector of unknown parameters, and ε is an n×1 random
error vector. The expectation and the covariance matrix of random vector y
are E(y) = Xβ and cov(y) = σ2V, respectively, where σ2 > 0 is an unknown
scalar and V is a known nonnegative definite matrix. In short, we use the
notation

M = {y, Xβ, σ2V} (2)

to describe the general Gauss–Markov model.
When the model matrix X is partitioned columnwise as X = (X1 : X2)

with X1 (n × p1) and X2 (n × p2), and correspondingly β = (β′
1,β

′
2)
′ with

β1 (p1 × 1) and β2 (p2 × 1), then the Gauss–Markov model M is called the
partitioned linear model

M12 = {y, Xβ, σ2V} = {y, X1β1 + X2β2, σ2V}. (3)

1.2 The best linear unbiased estimator

Let us now consider estimation of a linear parametric function K′β, K ∈
Rp×k, under the model M . A given linear parametric function K′β is said to
be estimable under the model M if there exists a linear unbiased estimator
for K′β, i.e., there exists a linear statistic Gy such that

E(Gy) = GXβ = K′β for all β ∈ Rp, (4)

or equivalently, if there exists a matrix G such that GX = K′; in other
words, C (K) ⊂ C (X′). Note that in our definition of the estimability of K′β
we allow β to vary freely over the whole Rp. Thus we have not considered so-
called natural restrictions on the parameter vector β which may arise under
the model M . For more about estimation under the natural restrictions,
see, Groß (2004, Section 1), Sengupta & Jammalamadaka (2003, Section
7.2), and Baksalary, Rao & Markiewicz (1992).

Based on (4), it is clear that the vector of expectation Xβ is always
estimable, and, on the other hand, the vector of unknown parameters β is
itself estimable if and only if C (X′) = Rp, or equivalently r(X) = p. In this
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thesis we are only interested in linear estimation of estimable parametric
functions, i.e., we are only interested in linear parametric functions that
have a linear unbiased estimator.

Let K′β be a given estimable parametric function under the model M .
Then a linear unbiased estimator Gy of K′β is said to be the best linear
unbiased estimator, BLUE, of K′β under the model M if, for any other unbi-
ased linear estimator Fy, the difference cov(Fy)−cov(Gy) is a nonnegative
definite matrix, i.e.,

cov(Fy)− cov(Gy) ≥ 0 for all Fy such that E(Fy) = K′β. (5)

The so-called fundamental equation of the BLUE states that a linear statistic
Gy is the BLUE of K′β under the model M if and only if G satisfies equation

G(X : VX⊥) = (K′ : 0). (6)

A proof of (6) is given, e.g., by Drygas (1970, p. 50), or Rao (1973, p. 282),
see also more recent proofs of Baksalary (2004) and Puntanen, Styan &
Werner (2000).

Throughout this thesis we assume the model M being the correct one
from the modelling point of view. That is, we assume that the model M
represents the structure of the random vector y accurately, and thus it always
holds that

y ∈ C (X : V) = C (X : VX⊥) (7)

almost surely. The property (7) now guarantees that the BLUE of K′β is
unique. That is, if G∗ is any other matrix satisfying the equation (6), then
BLUE(K′β | M ) = Gy = G∗y almost surely [see Groß (2004, Corollary 3)].

We may obtain explicit representations for the BLUE of K′β from the
equation (6). One often used representation for the BLUE of K′β is

BLUE(K′β | M ) = K̃′β = K′β̃ = K′(X′W−X)−X′W−y, (8)

where W = V+XUX′ with U being an arbitrary matrix such that C (W) =
C (X : V).

1.3 The ordinary least squares estimator

Another linear unbiased estimator for the given estimable parametric func-
tion K′β is the ordinary least squares estimator, OLSE. The ordinary least
squares estimator of the given estimable parametric function K′β under the
model M is defined as

OLSE(K′β | M ) = K̂′β = K′β̂ = K′(X′X)−X′y, (9)

10



where β̂ is any vector satisfying the normal equation X′Xβ̂ = X′y. Since
K′β is estimable and thereby K′β̂ is independent of the choice of (X′X)−,
we can express OLSE(K′β | M ) also (using the Moore–Penrose inverse) as

K′β̂ = K′X+y. (10)

Because the K′β̂ is independent of the covariance matrix V, K′β̂ is in
many situations an attractive alternative to the BLUE. For example, in many
practical situations the covariance matrix V may not be completely known.
That is, only the structure of V is known but its elements remain to be
functions of some unknown parameters, presented in vector θ, say. Hence,
in such situations, one may rather consider using the OLSE as an estimator
to K′β than using the estimated covariance matrix V̂ = V(θ̂) as a plug-in
estimator for V in any of the BLUE representation.

1.4 The best linear unbiased predictor

In addition to estimation of linear parametric functions, in this thesis we
are also interested in prediction of new observations in the general Gauss–
Markov model. That is, let yf denote an m×1 unobservable random vector
containing new observations (observable in future). New observations yf are
assumed to follow linear model

yf = Xfβ + εf , (11)

where Xf is a known m× p model matrix associated with new observations,
β is the same vector of unknown parameters as in (1), and εf is an m × 1
random error vector associated with new observations. The expectation
vector and the covariance matrix of (y′ : y′f )′ are now assumed to have
forms

E
(

y
yf

)
=

(
X
Xf

)
β and cov

(
y
yf

)
= σ2

(
Vy Vyf

V′
yf Vf

)
= σ2Ω, (12)

respectively, where σ2 > 0 is an unknown scalar and Ω is a known nonneg-
ative definite matrix. Again, we use the short notation

Mf =
{(

y
yf

)
,

(
Xβ
Xfβ

)
, σ2

(
Vy Vyf

V′
yf Vf

)}
(13)

to describe the general Gauss–Markov model in a case of containing new
(not yet observed) observations.
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Under the model Mf , we may consider the problem of predicting the
values of new observations yf based on the observable random vector y. In
this thesis, we only consider linear predictors of yf . A linear statistic Gy is
said to be a linear unbiased predictor of yf if

E(Gy) = E(yf ) = Xfβ for all β ∈ Rp, (14)

i.e., if the expected prediction error is zero. Clearly (14) is equivalent to
GX = Xf , we say that yf is unbiasedly predictable if there exists a matrix
G with property GX = Xf , i.e., C (X′

f ) ⊂ C (X′).
Moreover, a linear unbiased predictor Gy is said to be the best linear

unbiased predictor, BLUP, of yf under the model Mf , if for any other un-
biased linear predictor Fy the difference cov(Fy− yf )− cov(Gy− yf ) is a
nonnegative definite matrix, i.e.,

cov(Fy − yf )− cov(Gy − yf ) ≥ 0 for all Fy such that E(Fy) = Xfβ.
(15)

Goldberger (1962) showed, that if Vy is positive definite, then the BLUP of
yf has a form

BLUP(yf | Mf ) = Xf β̃ + V′
yfV

−1
y

(
y −Xβ̃

)
, (16)

where Xf β̃ and Xβ̃ are the best linear unbiased estimators, BLUEs, of Xfβ
and Xβ, respectively. A more general representation of the BLUP of yf ,
which is also applicable to the case of singular covariance matrix Vy, is
given, e.g., in Sengupta & Jammalamadaka (2003, Section 7.13).

2 Linear inference

2.1 Linear sufficiency

Linear sufficiency and linear prediction sufficiency are one of the most im-
portant concepts of this thesis, and are very much related to the best linear
unbiased estimation and the best linear unbiased prediction defined in sec-
tions 1.2 and 1.4.

The concept of linear sufficiency was introduced by Barnard (1963), Bak-
salary & Kala (1981), and Drygas (1983)—who was the first to use the term
linear sufficiency—while investigating those linear statistics Ty, which are
“sufficient” for estimation of the expected value Xβ in the general Gauss–
Markov model M . Formally, a linear statistic Ty is defined to be linearly
sufficient for Xβ under the model M if there exists a matrix A such that

12



ATy is the BLUE of Xβ. Baksalary & Kala (1981) and Drygas (1983) showed
that a linear statistic Ty is linearly sufficient for Xβ under the model M if
and only if the column space inclusion

C (X) ⊂ C (WT′) (17)

holds; here W = V+XUX′ with U being an arbitrary nonnegative definite
matrix such that C (W) = C (X : V).

2.2 Linear minimal sufficiency and linear completeness

In addition to linear sufficiency, Drygas (1983) also considered related con-
cepts of linear minimal sufficiency and linear completeness. A linearly suf-
ficient statistic Ty is called linearly minimal sufficient for Xβ under the
model M , if for any other linearly sufficient statistic Sy, there exists a ma-
trix A such that Ty = ASy almost surely. Drygas (1983) showed that Ty
is linearly minimal sufficient for Xβ if and only if the equality

C (X) = C (WT′) (18)

holds.
Moreover, Drygas (1983) called a linear statistic Ty linearly complete if

for every linear transformation of it, LTy, such that E(LTy) = 0, it follows
that LTy = 0 almost surely. According to Drygas (1983), a linear statistic
Ty is linearly complete if and only if

C (TV) ⊂ C (TX). (19)

It was also shown by Drygas (1983) that a linear statistic Ty is linearly
minimal sufficient for Xβ if and only if it is simultaneously linearly suffi-
cient and linearly complete for Xβ. Further properties on linear sufficiency,
minimal sufficiency, and completeness in a case of estimation of Xβ were
then provided by Müller, Rao & Sinha (1984) and Müller (1987), see also
Baksalary & Mathew (1986).

The notions of linear sufficiency and linear minimal sufficiency were ex-
tended to estimation of the given estimable parametric function K′β by
Baksalary & Kala (1986). Baksalary & Kala (1986) proved that Ty is lin-
early sufficient for K′β under the model M if and only if the null space
inclusion

N (TX : TVX⊥) ⊂ N (K′ : 0) (20)

holds, and Ty is linearly minimal sufficient for K′β if and only if the null
space equality

N (TX : TVX⊥) = N (K′ : 0) (21)

13



holds.
In article [1], we consider linear sufficiency in the context of estimat-

ing the parametric function X1β1 in the partitioned linear model M12 =
{y, X1β1 + X2β2, σ2V}. In [1], we give some new characterizations for
linear sufficiency and linear minimal sufficiency in a case of estimation of
the parametric function X1β1. We also define and consider linear complete-
ness in the context of estimating X1β1, and prove that a linear statistic Ty
is simultaneously linearly sufficient and linearly complete for X1β1 under
the partitioned model M12 if and only if it is a linearly minimal sufficient
statistic for X1β1.

In article [2], we present further results on linear sufficiency in a case
of estimation of the given estimable parametric function K′β in the gen-
eral Gauss–Markov model M . Article [2] is closely connected to article
[1]. The more general results given in article [2] have been obtained by
first reparametrizing the general Gauss–Markov model M into particularly
partitioned linear model and then by using the results given in article [1].

By a reparametrized model of M we mean the linear model

Mγ = {y, X∗γ, σ2V}, (22)

where X∗ is any matrix such that C (X) = C (X∗). That is, if X∗ is a matrix
with C (X) = C (X∗), then there exists a matrix A such that X = X∗A.
Further if we define γ = Aβ, then we can see that the models M and Mγ

are equivalent, and we can call the model Mγ as a reparametrized model
of M ; see, e.g., Peixoto (1993) and Sengupta & Jammalamadaka (2003, pp.
118–120).

Consider now estimation of the given estimable parametric function K′β,
K ∈ Rp×k, under the model M . Then the column space of the matrix
X(K : K⊥) equals the column space of X, and thus the partitioned model

Mγ = {y, X(K : K⊥)γ, σ2V}
= {y, XKγ1 + XK⊥γ2, σ2V}, (23)

where γ = (γ ′1,γ
′
2)
′, is equivalent to the original Gauss–Markov model M .

It is now shown in article [2] that a linearly sufficient statistic for K′β in
the general Gauss–Markov model M is also a linearly sufficient statistic for
XKγ1 in the partitioned reparametrized model Mγ , and thus the results
obtained in article [1] can be used for characterizing linear sufficiency in a
case of estimation of K′β.

In articles [1] and [2], we also consider a predictive approach for obtaining
the best linear unbiased estimator of X1β1 and K′β, respectively. Sengupta

14



& Jammalamadaka (2003, Chapter 11) gave an interesting study on the lin-
ear version of the general estimation theory, including the linear analogues
to the Rao–Blackwell and Lehmann–Scheffé Theorems when considering es-
timation of the expected value Xβ under the model M . In articles [1] and
[2], we give the corresponding linear analogues of the Rao–Blackwell and
Lehmann–Scheffé Theorems in the context of estimating X1β1 and K′β,
respectively.

2.3 Linear prediction sufficiency

The concepts of linear prediction sufficiency and linear minimal prediction
sufficiency are then considered in article [3]. Formally, we define a linear
statistic Ty to be linearly prediction sufficient for new observations yf under
the general Gauss–Markov model Mf with new observations if there exists
a matrix A such that ATy is the BLUP of yf , see [3, Definition 1].

In article [3], we give some equivalent characterizations for these new
concepts of linear prediction sufficiency and linear minimal prediction suffi-
ciency. These characterizations are similar to the characterizations of linear
sufficiency given by Drygas (1983), Baksalary & Kala (1986), and Müller
(1987), and to the characterizations of the concept of linear error-sufficiency
introduced by Groß (1998). However, not all linear versions of the impor-
tant concepts of mathematical statistics are considered in article [3]. For
example, the notation of linear completeness in a case of prediction of yf is
not investigated in that article.

3 Efficiency of the OLSE

3.1 The Watson efficiency

One further important concept of this thesis is the Watson efficiency. Let
the vector of parameters β itself be estimable under the model M , and let
us further assume that the covariance matrix V is positive definite. Then
the ordinary least squares estimator, OLSE, and the best linear unbiased
estimator, BLUE, of β under the model M are, respectively,

OLSE(β | M ) = β̂ = (X′X)−1X′y, (24)

BLUE(β | M ) = β̃ = (X′V−1X)−1X′V−1y, (25)
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with the corresponding covariance matrices being

cov(β̂ | M ) = σ2(X′X)−1X′VX(X′X)−1
, (26)

cov(β̃ | M ) = σ2(X′V−1X)−1. (27)

Both the OLSE and the BLUE are obviously unbiased estimators of β but

cov(β̂ | M ) ≥ cov(β̃ | M ). (28)

Hence we may want to know how “bad” or inefficient the OLSE of β could be
with respect to the BLUE of β. Clearly, there is no unique way to measure the
efficiency of the OLSE with respect to the BLUE. However, almost certainly
the most frequently used measure is the Watson efficiency (Watson 1955, p.
330) defined as the ratio of the determinants of the covariance matrices of
the BLUE(β | M ) and the OLSE(β | M ):

eff(β̂ | M ) =
|cov(β̃ | M )|
|cov(β̂ | M )|

=
|X′X|2

|X′VX| · |X′V−1X|
. (29)

It clearly holds that

0 < eff(β̂ | M ) ≤ 1, (30)

where the upper bound is attained if and only if the OLSE equals the BLUE,
see, e.g., Puntanen & Styan (1989). For a lower bound of the efficiency, see
Bloomfield & Watson (1975), Knott (1975); for the related geometry (and
antieigenvalues), see, e.g., Gustafson (2002, 2006). In articles [4], [5], and
[6], we now consider properties of the Watson efficiency in the partitioned
linear model M12 = {y, X1β1 + X2β2, σ2V}. Particularly, we consider the
Watson efficiency of the OLSE of the subvector β2 defined as the ratio

eff(β̂2 | M12) =
|cov(β̃2 | M12)|
|cov(β̂2 | M12)|

. (31)

In articles [4] and [5] we obtain some theoretical results on the relationship
between the Watson efficiency of the OLSE of the whole parametric vector
β, eff(β̂ | M12), and the Watson efficiency of the OLSE of the subvector β2,
eff(β̂2 | M12), and then in article [6] we present some real data demostrations
about the relation between eff(β̂ | M12) and eff(β̂2 | M12).
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3.2 The reduced model

One useful tool in our analyses concerning the Watson efficiency of β̂2 is the
so-called reduced model

M12·1 = {M1y, M1X2β2, σ2M1VM1}, (32)

where M1 = I − PX1 . The reduced model M12·1 is obtained by premulti-
plying the partitioned linear model M12 by the orthogonal projector M1.
Usefulness of the reduced model M12·1 arises from the fact that both the
OLSE and the BLUE of the subvector β2 under the reduced model M12·1
equal, respectively, the OLSE and the BLUE of the subvector β2 under the
partitioned model M12, see Frisch & Waugh (1933), Lovell (1963), Groß &
Puntanen (2000, Th. 4), and Bhimasankaram & Sengupta (1996, Th. 6.1).
Hence also the Watson efficiency of β̂2 under the reduced model M12·1 equals
the Watson efficiency of β̂2 under the partitioned model M12.

The Watson efficiency of the OLSE of the given estimable parametric
function K′β is then considered in article [9]. We have shown in article
[9] that the Watson efficiency of K′β̂ (when r(K) = k) under the model
M equals to the Watson efficiency of the OLSE of the subvector γ1 under
the reparametrized model Mγ . Since the reparametrized model Mγ can be
viewed as a certain partitioned model, the results presented in article [9] are
hence based on the results established in articles [4] and [5].

3.3 The equality of the OLSE and BLUE

In articles [7] and [8] we consider the situation of the Watson efficiency being
one, i.e., the situation when the ordinary least squares estimator equals the
best linear unbiased estimator. In article [7] we investigate conditions for
the equality between the OLSE and the BLUE of the subvector β1 under the
partitioned model M12 assuming that they are first equal under the so-called
small model

M1 = {y, X1β1, σ2V}. (33)

Then in article [8] we give new characterizations for the equality between
the OLSE and the BLUE of the given estimable parametric function K′β
under the general Gauss–Markov model M .
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4 Some other considerations

4.1 The linear mixed effects model

One particular type of the general Gauss–Markov model is the linear mixed
effects model. That is, suppose in equation (1) we have a reason to model
the random error term ε as

ε = Zα + u, (34)

where α is a q×1 vector of random effects with corresponding a known n×q
model matrix Z, and where u is an n× 1 random error vector uncorrelated
with α, i.e., cov(α,u) = 0.

Since in the original model M we assume that E(ε) = 0, we now make
also an assumption that E(α) = 0 and E(u) = 0. Let us further assume
that the covariance matrices cov(α) = D and cov(u) = R are both fully
known, and thus the original model equation (1) becomes the mixed effects
model equation

y = Xβ + Zα + u, (35)

where cov(y) = cov(Zα + u) = ZDZ′ + R = V. In short, we may denote
the linear mixed effects model as

Mm = {y, Xβ, ZDZ′ + R} = {y, Xβ, V}. (36)

Note that we now assume that the linear mixed effects model Mm does not
include the unknown scalar σ2.

In article [10] we consider estimation of the parametric function X1β1

under the following partitioned linear model

M12 = {y, X1β1 + X2β2, R} (37)

and under the following linear mixed effects model

Mm = {y, X1β1, X2DX′
2 + R}. (38)

The difference between models (37) and (38) is that in the mixed effects
model (38) the parameters associated with the model matrix X2 are consid-
ered to be random where as in the partitioned model (37) they are considered
to be fixed.

In article [10] we are interested in characterizing when the BLUE of X1β1

under the partitioned linear model (37) equals the corresponding BLUE un-
der the linear mixed effects model (38). Interest for this research problem
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arises from the fact that in many practical situations it can be difficult to
determine whether some of the fixed parameters in the partitioned model
should actually be treated as random variables; see, e.g., Searle, Casella &
McCulloch (1992, Section 1.4).

4.2 A useful matrix decomposition

In the last article of this thesis we take more thorough look at a particular
matrix decomposition used in almost all other articles of this thesis. That
is, in article [11] we consider properties and some statistical applications of
the matrix Ṁ defined as

Ṁ = M(MVM)−M, (39)

where M = I−PX and V is the covariance matrix from the general Gauss–
Markov model M . In general, the matrix Ṁ is not necessarily unique with
respect to the choice of (MVM)−. However, when V > 0, the matrix Ṁ is
unique and has a decomposition

Ṁ = V−1 −V−1X
(
X′V−1X

)−X′V−1. (40)

Thus, for example, the Watson efficiency of the OLSE of the parameter vector
β under the general Gauss–Markov model M can be expressed as

eff(β̂ | M ) = det
[
I−X′VṀVX(X′VX)−1

]
. (41)

Related to the matrix Ṁ, we also consider in article [11] properties of
the matrix Ṁ2 defined as

Ṁ2 = M2(M2VM2)−M2, (42)

where M2 = I − PX2 . The matrix Ṁ2 plays a major role in estimation of
the parametric function X1β1 under the partitioned linear model M12. For
example, a statistic X′

1Ṁ2y is linearly minimal sufficient statistic for X1β1

under the model M12 as shown in [1].
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5 Abstracts of original articles

[1] Linear sufficiency and completeness in the partitioned linear
model

In this paper we consider the estimation of X1β1 under the par-
titioned linear model {y, X1β1 + X2β2, σ2V}. In particular, we
consider linear sufficiency and linear completeness of X1β1. We
give new characterizations for linear sufficiency of X1β1, and de-
fine and characterize linear completeness in a case of the esti-
mation of X1β1. We also introduce a predictive approach for
obtaining the best linear unbiased estimator of X1β1, and sub-
sequently, we give the linear analogues of the Rao–Blackwell and
Lehmann–Scheffé Theorems in the context of estimating X1β1.

[2] Linear sufficiency and completeness in the context of esti-
mating the parametric function in the general Gauss–Markov
model

In this paper we consider linear sufficiency and linear completeness
in the context of estimating the estimable parametric function
K′β under the general Gauss–Markov model {y, Xβ, σ2V}. We
give new characterizations for linear sufficiency, and define and
characterize linear completeness in a case of the estimation of
K′β. Also, we consider a predictive approach for obtaining the
best linear unbiased estimator of K′β, and subsequently, we give
the linear analogues of the Rao–Blackwell and Lehmann–Scheffé
Theorems in the context of estimating K′β.

[3] Linear prediction sufficiency for new observations in the gen-
eral Gauss–Markov model

We consider the prediction of new observations in a general Gauss–
Markov model. We state the fundamental equations of the best
linear unbiased prediction, BLUP, and consider some properties of
the BLUP. Particularly, we focus on such linear statistics, which
preserve enough information for obtaining the BLUP of new ob-
servations as a linear function of them. We call such statistics
linearly prediction sufficient for new observations, and introduce
some equivalent characterizations for this new concept.
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[4] On decomposing the Watson efficiency of ordinary least squares
in a partitioned weakly singular linear model

We consider the estimation of regression coefficients in a parti-
tioned weakly singular linear model and focus on questions con-
cerning the Watson efficiency of the ordinary least squares esti-
mator of a subset of the parameters with respect to the best linear
unbiased estimator. Certain submodels are also considered. The
conditions under which the Watson efficiency in the full model
splits into a function of some other Watson efficiencies is given
special attention. In particular, a new decomposition of the Wat-
son efficiency into a product of three particular factors appears to
be very useful.

[5] Some further results concerning the decomposition of the
Watson efficiency in partitioned linear models

While considering the estimation of regression coefficients in a
partitioned weakly singular linear model, Chu, Isotalo, Puntanen
and Styan (2004) introduced a particular decomposition for the
Watson efficiency of the ordinary least squares estimator. This
decomposition presents the “total” Watson efficiency as a prod-
uct of three factors. In this paper we give new insight into the
decomposition showing that all three factors are related to the
efficiencies of particular submodels or their transformed versions.
Moreover, we prove an interesting connection between a particular
split of the Watson efficiency and the concept of linear sufficiency.
We shortly review the relation between the efficiency and spe-
cific canonical correlations. We also introduce the corresponding
decomposition for the Bloomfield–Watson commutator criterion,
and give a necessary and sufficient condition for its specific split.

[6] The efficiency factorization multiplier for the Watson effi-
ciency in partitioned linear models: Some examples and a
literature review

We consider partitioned linear models where the model matrix
X = (X1 : X2) has full column rank, and concentrate on the
special case where X′

1X2 = 0 when we say that the model is
orthogonally partitioned. We assume that the underlying covari-
ance matrix is positive definite and introduce the efficiency fac-
torization multiplier which relates the total Watson efficiency of
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ordinary least squares to the product of the two subset Watson
efficiencies. We illustrate our findings with several examples and
present a literature review.

[7] Effect of adding regressors on the equality of the OLSE and
BLUE

We consider the estimation of regression coefficients in a par-
titioned linear model, shortly denoted as M12 = {y, X1β1 +
X2β2, V}. We call M12 a full model, and correspondingly, M1 =
{y, X1β1, σ2V} a small model. We introduce a necessary and
sufficient condition for the equality between the ordinary least
squares estimator (OLSE) of β1 and the best linear unbiased es-
timator (BLUE) of β1 under the full model M12 assuming that
they are equal under the small model M1. This condition can
then be applied to generalize some results of Nurhonen and Pun-
tanen (1992) concerning the effect of deleting an observation on
the equality of OLSE and BLUE.

[8] A note on the equality of the OLSE and the BLUE of the
parametric function in the general Gauss–Markov model

In this note we consider the equality of the ordinary least squares
estimator (OLSE) and the best linear unbiased estimator (BLUE)
of the estimable parametric function in the general Gauss–Markov
model. Especially we consider the structures of the covariance
matrix V for which the OLSE equals the BLUE. Our results are
based on the properties of a particular reparametrized version of
the original Gauss–Markov model.

[9] Some comments on the Watson efficiency of the ordinary least
squares estimator under the Gauss–Markov model

We consider the estimation of a given estimable parametric func-
tion in the Gauss–Markov model, and focus on questions concern-
ing the Watson efficiency of the ordinary least squares estimator
(OLSE) of the given parametric function with respect to the best
linear unbiased estimator (BLUE). We apply the Frisch–Waugh–
Lovell Theorem for the estimation of the parametric function, and
give an interesting decomposition of the total Watson efficiency
with respect to the efficiency of the parametric function. Also, a
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relation between the Watson efficiency of the OLSE of the given
parametric function and specific canonical correlations is estab-
lished.

[10] Invariance of the BLUE under the linear fixed and mixed
effects models

We consider the estimation of the parametric function X1β1 under
the partitioned linear fixed effects model y = X1β1 + X2β2 + ε
and the linear mixed effects model y = X1β1 + X2γ2 + ε, where
γ2 is considered to be a random vector. Particularly, we consider
when the best linear unbiased estimator, BLUE, of X1β1 under the
linear fixed effects model equals the corresponding BLUE under
the linear mixed effects model.

[11] A useful matrix decomposition and its statistical applications
in linear regression

It is well known that if V is a symmetric positive definite n × n
matrix, and (X : Z) is a partitioned orthogonal n×n matrix, then

(X′V−1X)−1 = X′VX−X′VZ(Z′VZ)−1Z′VX. (*)

In this paper we show how useful we have found the formula (∗),
and in particular its version

Z(Z′VZ)−1Z′ = V−1 −V−1X(X′V−1X)−1X′V−1 := Ṁ, (**)

and present several related formulas, as well as some generalized
versions. We also include several statistical applications.
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6 Errata and completions to the articles

Article [1]:

– p. 56, line 13 ↑: Printed: W1 = V + X1X1,
Should be: W1 = V + X1X′

1.

Article [3]:

– p. 1021, line 2 ↓: Printed: BT(X : VX⊥) = S(X : VX⊥),
Should be: T(X : VX⊥) = BS(X : VX⊥).

– p. 1021, line 1 ↑: Printed: w = σ2(1, 2, 3, . . . , T − 1, T )′,
Should be: w = (1, 2, 3, . . . , T − 1, T )′.

Article [5]:

– p. 83, equation (3.2): Equation (3.2) holds, since (under a weakly sin-
gular model)

cov(β̂, β̃) = σ2(X′X)−1X′VV+X(X′V+X)−1

= σ2(X′X)−1X′X(X′V+X)−1

= σ2(X′V+X)−1 = cov(β̃).

Article [8]:

– p. 7, line 2 ↑: Typing error. Should be: “yet at the same time”.

Article [11]:

– p. 7, Lemma 2.1: Some important conditions can be added, e.g.,

(i) HPV = PVH,

(ii) C (PVH) = C (PV) ∩ C (H),

(iii) r(HPV) = dim[C (V) ∩ C (X)].
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7 Author’s contribution to the articles

All eleven articles in this thesis are joint research between myself and dif-
ferent co-authors. First three articles [1], [2], and [3] dealing with linear
sufficiency and linear prediction sufficiency were accomplished in collabora-
tion between me and Dr. Simo Puntanen (University of Tampere, Finland).

Since Dr. Puntanen is actually co-author in all of the eleven articles, and
more importantly the supervisor of this thesis, the collaboration between us
has appeared in many levels, both formal and informal, during this study.
As the supervisor of this thesis, Dr. Puntanen has guided and conducted
my research. He has given new research problems, commented the results
achieved by me, and provided references to earlier research articles, etc. Also
all eleven articles has been proofread and fine-tuned together by me and Dr.
Puntanen.

In case of articles [1], [2], and [3], I proposed the general themes of the
articles. That is, I started to explore the subjects of linear sufficiency and
linear prediction sufficiency, and later on carried out initial proofs of new
results, and organized the contents of the articles. The initial manuscripts
prepared by me were then substantially improved and clarified jointly with
Dr. Puntanen.

Articles [4], [5], and [6] concerning the Watson efficiency are joint re-
search together with Dr. Ka Lok Chu (Dawson College, Montréal, Canada),
Dr. Puntanen, and Prof. George P. H. Styan (McGill University, Montréal,
Canada). Article [4] is based on the technical reports Chu & Styan (2003)
and Isotalo & Puntanen (2003). During the 12th International Workshop on
Matrices and Statistics (Dortmund, Germany, August 2003), it was decided
to combine some of the results established in the reports Chu & Styan (2003)
and Isotalo & Puntanen (2003); this yielded article [4]. Articles [5] and [6]
then extend the results given in [4]. The initial version of article [5] was
prepared jointly by me and Dr. Puntanen, and similarly, the initial version
of article [6] was prepared by Dr. Chu and Prof. Styan. The final versions
of articles [5] and [6] were then accomplished in collaboration between all
authors.

Article [7] is related to article [4], and is a result of straightforward col-
laboration between me, Dr. Puntanen, and Prof. Styan. In case of article
[8], I proposed the considered research problem to the co-author Dr. Pun-
tanen. The process of writing the manuscript was then joint effort from me
and Dr. Puntanen. Similar pattern holds also for article [9]; I proposed the
theme of the article, and then the manuscript was prepared jointly by me,
Dr. Puntanen, and Prof. Styan.
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Article [10] is collaboration between me, Dr. Märt Möls (University of
Tartu, Estonia), and Dr. Puntanen. The article was initiated during the
research visit of Dr. Möls to University Tampere at January 2006. During
the visit, I introduced an open problem to Dr. Möls concerning the linear
mixed effects model. Initial results for the problem were then obtained by
Dr. Möls which were then further extended and generalized jointly by me
and Dr. Puntanen. The final manuscript was prepared jointly by the authors
of the article.

Last article [11] is based on the results encountered and considered by Dr.
Puntanen and Prof. Styan while studying linear statistical models over the
years. My contributions to the article appear specially in sections 3.3, 3.4,
and 3.7, where the main results of the article are applied to the partitioned
linear model.

Tampere, May 2007 Jarkko Isotalo
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