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Abstract

This thesis consists of six papers and a summary comprising statistical con-
siderations of topics related to bucking optimization in cut-to-length forest
harvesting. The topics addressed are: (1) the stem prediction problem in a
harvesting situation and (2) measuring the fit between the demand and out-
come distributions of logs. Since optimal tree bucking inevitably presumes
accurate stem predictions, the choice of a proper stem prediction method is
of crucial importance for the properties of all end products. Proper assessment
of the bucking result has become relevant as the trend in the sawmill industry
has been towards customer-oriented production of well-defined products.

The first article presents a cubic smoothing spline-based stem curve pre-
diction and performs comparisons of this method with two other stem pre-
diction techniques. In the second paper the use of a cubic smoothing spline is
studied in the analysis of complete and balanced data. The basic idea was to
replace the within-individual part of the Potthof and Roy GMANOVA model
by cubic smoothing splines. It is shown how the mean splines can be estimated
using a penalized log-likelihood function, and further, that the analysis can
be greatly simplified under a certain special class of covariance structures. A
rough testing of group profiles is also developed and illustrated.

The third paper studies the traditional χ2-statistic in the context of mea-
suring the bucking outcome and shows its relation to the Apportionment
Index (AI) commonly used in harvesting in Scandinavia. The paper also
presents price-weighted versions of both measures. The fourth paper exam-
ines the asymptotic sampling distribution of the AI by assuming a multino-
mial distribution for the bucking outcome. The paper provides approximate
expressions for the first two moments of the measure and constructs the lower
tolerance limit with a desired confidence level. In the first of the two remaining
articles the definition of the AI and its price-weighted version are extended.
The paper discusses the proper standardization of the measures and exam-
ines their limiting properties. The last article initiates a statistical analysis of
the AI based on the joint distribution of random components in the outcome
matrix. Dirichlet distribution is adopted to describe the joint distribution of
the random components in the cases of two and three log categories. It is
then proposed that the distribution parameters be chosen so that the AI is
maximized in the averaged sense.

Key Words and Phrases: Apportionment Index, Cubic smoothing spline,
Growth curve model, Measuring bucking outcome, Stem prediction.
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1 Introduction

The main part of this thesis consists of the six research papers listed in the
previous chapter. The papers comprise statistical considerations of topics re-
lated to bucking optimization in cut-to-length (CTL) forest harvesting. In
this chapter we provide a general introduction to bucking optimization in
CTL harvesting and motivate the work of this thesis. Chapter 2 focuses on
the prediction of stem profile, which plays an essential role in bucking op-
timization and serves as a topic for Paper I. The chapter also introduces a
cubic smoothing spline function, which is used in the analysis of complete
and balanced data in Paper II. Some methods used to evaluate the bucking
outcome are discussed in Chapter 3. This chapter serves as an introduction
and background especially for Papers III-VI. Section 3.2 contains a brief sum-
mary of the original papers. Some supplementary notes to Papers III and VI
are presented in Appendix A and B, respectively. Appendix C contains errors
perceived in some of the original papers. A list of forestry terms is provided
for the reader not familiar with forestry vocabulary.

1.1 Cut-to-length Harvesting
The first steps towards a fully mechanized forest harvesting industry were
taken about 50 years ago when the first forest harvesters, i.e. forest machines
capable of felling, delimbing and bucking trees, were introduced (Drushka &
Konttinen, 1997; Gellerstedt & Dahlin, 1999). The degree of mechanization,
however, varies considerably between different countries. In the Nordic coun-
tries, for example, almost all harvesting is currently done mechanically, while
in many Eastern European countries the traditional motor-manual methods
still dominate (Axelsson, 1998; Asikainen et al., 2005). According to a rough
estimate (Ponsse Oyj, 2006), about 45% of the world’s annual cutting volume
is currently harvested mechanically. The degree of mechanization, however,
is expected to further increase worldwide as the forestry industry focuses on
reducing costs, improving productivity and concentrating on labor-related
issues (Murphy, 2002).

Mechanized harvesting can be divided into three main methods which
differ in terms of the amount of processing done at the harvesting site in the
forest (Pulkki, 1997; Owende, 2004). (1) In the cut-to-length method trees
are felled, delimbed and bucked into shorter logs directly upon felling. The
resulting logs are then transported by a forwarder to the roadside and further
by timber truck to the production plant(s) for further processing. (2) In the
tree-length method (TL) trees are only topped (i.e. the top of a tree is cut
off at a pre-determined minimum diameter) and delimbed in the forest. The
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bucking is done at the separate terminal or at the mill’s log yards. (3) In the
whole tree method (also known as the full tree method) trees are felled and
forwarded to the roadside with branches and top intact. The whole (full) trees
are further processed either at the roadside or, after haulage, at the central
processing yard or the mill.

Although the popularity of the CTL method is steadily growing, it still
today accounts for less than half of the world’s roundwood harvest (Asikainen
et al., 2005). A rough estimate of its current share in the world’s mechanically
harvested timber is about 35% (Ponsse Oyj, 2006). In Finland and Sweden
almost all harvesting is carried out by CTL systems (Gellerstedt & Dahlin,
1999). The CTL method is also re-establishing itself in North America, where
the TL and full tree systems have traditionally been the dominant harvesting
methods (Pulkki, 1997).

Most harvesters currently employed in CTL operations are single-grip
models. A single-grip harvester has only one unit for both felling and repro-
ducing processes mounted on an articulating arm. A double-grip (two-grip)
harvester, which was popular in the 1970s, has two separate units; one for
felling and the other for the delimbing, bucking and sorting processes.

The first CTL harvesters with automatic measuring systems came onto
the market in the early 1970s. These first measuring systems, however, could
measure and record only tree length. The capability of continuously measuring
tree diameter while harvesting was not incorporated into them until the mid
1980s (Marshall, 2005; Drushka & Konttinen, 1997). Today harvesters are
equipped with high-class information systems able not only to measure the
dimensions of trees but also to predict the stem profile of each tree being
processed and thereby to tailor the bucking outcome for the desired output.
They have thus become an important part of the logistics chain from the
forest to the end user. To optimize the overall flow, more recent development
has focused on utilizing modern information technology such as geographical
and positioning systems (GIS and GPS), online internet applications and
information transfer over mobile phones.

In the course of processing, the harvester first fells the tree and then runs
it through the processing unit (i.e., a harvester head in a single-grip or a
delimbing-cutting device in a double-grip harvester). The length along the
stem is simultaneouly measured either by the running wheel located at the
harvester head (90% of all heads) or on the feed-rollers (Gellerstedt, 2002).
The stem diameter is usually measured by the amount of opening in the
delimbing knives or the feed-rollers using a cross measure. In measuring the
stem, the data are simultaneously stored in an on-board computer. Before
starting bucking optimization, filtering or smoothing techniques are used to
eliminate the most crucial discrepancies in the measured data.

1.2 Bucking Optimization
Bucking tree stems optimally into various wood assortments and log lengths
is one of the central and most challenging operations in the wood processing
chain. Since a poor bucking outcome is hard or even impossible to compensate
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later in the manufacturing process, the properties of all end products and
thereby business profitability are crucially affected by the bucking process.

The basic principle in bucking optimization is to maximize the value of
a single stem. However, since there are various market demands in terms of
the amounts, types and characteristics of log products, maximizing the value
of one single tree stem does not necessarily result in an optimal log output
at stand level. It is therefore necessary to some extent to compromise on
the principle of optimizing individual stems. In the following we first discuss
bucking optimization at stem level, i.e. how the value of an individual stem
is maximized. Then we broaden the perspective to stand level, where the aim
is to determine an optimal bucking pattern not only for a single stem but for
a large set of individual tree stems.

1.2.1 Stem Level
At stem level, the aim in bucking optimization is to assign to each harvested
tree a bucking pattern which yields the highest total stem value (Kivinen,
2007). This principle is commonly called bucking-to-value.

Following the formulation of Liski & Nummi (1995), an admissible cutting
pattern can be defined as a set of cutting points 0 = c0 < c1 < . . . < cK such
that the length (lk) and the small end diameter (dk) of the kth log satisfy

(1.1) lk = ck − ck−1 ∈ [lmin, lmax] and dk ≥ dmin > 0

for k = 1, 2, . . . , K, respectively, where c0 is the cutting point at the butt
of a tree, lmin is the minimum and lmax the maximum length of a log and
dmin is the minimum acceptable log diameter. The marking for bucking prob-
lem (MBP) is defined by Näsberg (1985) as the problem of converting a single
tree stem into smaller logs such that the total stem value according to a given
price list is maximized for logs. The price list for a certain log product speci-
fies how valuable or profitable it is to cut different length-diameter(-quality)
combinations of particular log type and gives the price of a log as a function
of both the length and the small end diameter (SED) of a log. The price of
the whole stem is then the sum of single log prices. In general, the aim is to
maximize a non-negative bounded utility function

(1.2) H(c0, c1, . . . , cK) =
K∑

k=1

h(lk, dk)

under the constraints (1.1), where the function h(lk, dk) can be taken as the
price of the kth log from a given stem. Besides price, however, many other
quantities (e.g. volume) can be used. Further, other constraints besides those
in (1.1) are usually needed in practice.

The basic requirement for solving the marking for bucking problem opti-
mally is that the whole stem profile be known and available to some sufficient
level of accuracy during the bucking process. By stem profile (stem curve) is
meant a function which describes how the stem tapering (diameter) changes
with respect to the stem height. To know the stem curve before making cut-
ting desicions, the whole stem could be first measured from the stump to the
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top, then returning to the butt end to start bucking. However, in practice
this kind of double processing is too slow and the stem could be damaged
during the process. Modern harvesters are therefore equipped with a stem
curve prediction system, which normally works in a stepwise manner. (1) Af-
ter felling a tree, the harvester runs and measures it only for a length not
exceeding the minimum log length, usually 3-4 m. (2) On the basis of the
measurements of the tree currently processed and the profiles gathered from
some number of previously cut stems, the harvester then predicts the profile
of the unknown part of the stem and optimizes the cutting points. (3) At each
suggested cutting point, the harvester usually checks whether the predicted
stem diameter lies within the given tolerance from the diameter measured by
the harvester at that point. If not, a new prediction and bucking optimiza-
tion is performed, possibly changing the crosscutting point either backwards
or forwards from its original place. Otherwise, the harvester cuts the log of the
suggested length and, as more measured data on the stem are now available,
updates the predicted profile for the remaining stem part and recalculates the
further bucking points. Stem curve prediction is discussed in greater detail in
Section 2.

1.2.2 Stand Level
The goal in stand-level bucking optimization is to assign a bucking policy
which maximizes the aggregate production value from all stems being cut at
a forest stand (Kivinen, 2007). Modern single-grip harvesters most frequently
employ the bucking-to-demand (or bucking-to-order) principle, which incor-
porates both the log values and the desired log output distributions into
the bucking optimization system. In bucking-to-demand optimization, a har-
vester, provided with the information on the value of each feasible length-
diameter-quality combination of logs within each assortment (log product),
selects the bucking pattern which maximizes the value of an individual stem
(cf. stem level). However, besides selecting the bucking pattern with the high-
est overall value, the harvester also continuously monitors the difference be-
tween the mill’s (or mills’) demand log distribution and the actual output
distribution. Two different implementations of bucking-to-demand optimiza-
tion have been developed, namely the adaptive price list method and the
close-to-optimal method. These methods are briefly introduced in Paper I. A
more detailed description can be found e.g. in Kivinen (2007). Discussions of
the optimization techniques and modeling approaches applied are provided,
for example, in Marshall (2005) and Kivinen (2007).

1.3 Factors affecting the Bucking Outcome
Bucking optimization is a somewhat complex concept making it rather dif-
ficult to understand why optimization systems eventually produce different
bucking outcomes in different circumstances. In an attempt to find answers
to the above question, Uusitalo and Kivinen (2001) outline and discuss the
most important factors affecting the bucking result with a modern tree buck-
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ing optimizing system. These factors include e.g. measuring accuracy, stand
composition, stem prediction accuracy, bucking algorithm, skill level of the
harvester operator, demand distribution and the relationship between wood
assortments.

As stated above, modern harvesters are equipped with a stem prediction
system. Since inaccurate predictions commonly result in non-optimal bucking
decisions, the prediction of stem profile is one of the most important parts
of the bucking optimization system. The accuracy of the prediction method
applied has a significant influence on the resulting bucking outcome both at
the stem level and at the stand level. We devote Chapter 2 to the prediction
of stem profile. For other factors we simply refer to the work of Uusitalo &
Kivinen (2001).

1.4 Needs for Evaluating the Log Bucking Out-
come

The common trend in the sawmill industry, at least in Scandinavia, is towards
customer-oriented production of well-defined products. In fact, controlling the
wood flow from forest to mills in such a way that the mills’ requirements
are satisfied has recently been seen as an even more important development
area in wood procurement than the traditional attempt to reduce transporta-
tion and harvesting costs (Kivinen, 2007). As customer-oriented production
strategies have gained ground in the sawmill industry, it has become more
and more important not only to supply the sawmill with a sufficient number
of logs at minimum cost, but also to ensure that the raw material meets the
requirements of the sawmill as regards length, diameter and quality distribu-
tion of logs (Kivinen, 2004). This, in turn, has made proper assessment of the
goodness of the bucking outcome of crucial importance.

In general, there are two situations where the agreement between the dis-
tribution of logs demanded by the sawmill (demand distribution) and the ac-
tual outcome (output) distribution of logs is of particular interest. These are
(1) the standard pre-harvest planning procedure where most suitable stands
for prevailing customer orders need to be determined, and (2) the posthar-
vest analysis where it may be desirable to know, for example, how various
harvesters have succeeded in meeting a certain demand distribution or to de-
termine whether there are any significant differences between various wood
suppliers. A proper measure for evaluating the bucking outcome also provides
information on how to adjust the bucking instructions to meet the desired log
distribution (Kivinen et al., 2005).
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2 Stem Curve Prediction

2.1 On Methods Proposed for Stem Curve
Prediction for Harvesters

Stem curve prediction in a harvesting situation when only a short part of the
stem is known differs from the problem of modeling the whole stem curve. In
stem curve prediction the main interest is in the unknown part of the tree.
To make the distinction between these two tasks in the following discussion,
we refer to the former by the expression ”prediction” and to the latter by
”modeling”.

Before utilizing observed measurements for prediction purposes, computer
programs often eliminate large intermittent errors in the diameter measure-
ments, using e.g. filtering or smoothing techniques (e.g. Gellerstedt, 2002;
Lukkarinen & Marjomaa, 1997). Let yi denote the observed and smoothed
stem diameter at point xi, i = 1, 2, . . . ,m, where xi is the distance of the ith
measurement from the butt and m is the total number of measurements. We
assume that

(2.1) yi = d(xi) + εi,

where the stem curve d(xi) = E(yi) is a smooth decreasing function in stem
height xi and εi is random error. The prediction problem is to determine the
stem curve measurements at the forthcoming stem points xm+1, xm+2, . . ., xn.
Bucking optimization is then based on the observed stem curve measurements
y1,y2,. . . ,ym and on the predictions ŷm+1, ŷm+2, . . . , ŷn.

The advanced prediction methods are based on mathematical models.
Although stand density, site type, climate, genetic factors etc. are known to
affect the form of the stem (Laasasenaho, 1982, p. 18), all such variables
cannot usually be included in stem curve models, since in practice they are
either difficult or impossible to measure.

The parameters of the model are commonly estimated by a set of previ-
ously harvested trees (data window) and possibly also by the measured part
of the stem being processed. As a new tree has been harvested, the data win-
dow is updated by removing the oldest stem and adding the newly harvested
tree. The size of the data window is kept small to adapt to possible changes
in the stem population (see e.g. Liski & Nummi, 1995). Different predic-
tion methods have been developed for harvesters, especially in Scandinavia.
Since harvester manufactures have been unwilling to publish very detailed
information on the methods actually utilized in harvesters, the number of
well-documented prediction methods is small.
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One of the simplest stem prediction methods based on a mathematical
model utilizes a linear curve and at a minimum two diameter measurements
taken at different heights on the known part of the stem (see Lukkarinen &
Marjomaa, 1997). The measurements are usually chosen such that the unfa-
vorable effect of the irregular butt section and butt swelling could be avoided.
Assuming that the tapering of the rest of the stem can be adequately described
by the recorded measurements, the unknown part is predicted by drawing a
straight line through the two chosen points. Some more advanced versions of
this method take into account the height at which prediction is calculated
and then make different corrections. The method is simple and fast and re-
quires only a small amount of computational power. Its main disadvantage
is sensitivity to measurement errors and irregularities in stem shape. It also
often fails to describe the butt end and top of the tree adequately.

The most advanced stem profile prediction methods are based on relative
stem shape theory or the so-called mixed model techniques. According to the
relative stem shape theory the taper curve in different-sized trees of the same
species is of the same shape and the absolute variation caused by differences in
tree size is eliminated by modeling relative diameters at relative heights along
the stem (e.g. Laasasenaho, 1982; Kozak, 1988; Newnham, 1992). Laasasenaho
(1982) suggested a polynomial model, in which the dependent variable is the
ratio of the stem diameter to the diameter at 20% of tree height and the
independent variable is the relative height. The powers used in the polynomial
model are in accordance with the Fibonacci series and the model can be
written as

(2.2) dl

d,2h

= b1x + b2x
2 + b3x

3 + b4x
5 + b5x

8 + b6x
13 + b7x

21 + b8x
34,

where d,2h is the basic diameter at 20% height (x = 0.8), dl is the diameter at
a height of l from the ground, x = 1− l

h
or the relative distance from the top

(0 corresponds to the top and 1 to the butt of the tree) and bi (i = 1, . . . , 8)
are the model parameters. It has been noted that models with only the first 5
or 6 terms seem to suffice in a real harvesting situation. Laasasenaho’s (1982)
model has been utilized in the stem prediction methods of some Finnish
harvester manufacturers (Lukkarinen & Marjomaa, 1997).

Since the real stem height is not available at the time of bucking and indi-
vidual variation in the form of stems is not usually perceived in the models,
relative stem shape theory-based models may be difficult to adapt to stem
prediction in harvesting. It is of course possible to use modifications whereby
the unknown values of the variables in stem curve equations are predicted.
However, the parametric form of such equations depends crucially on the
accuracy of the predicted variables. Poor prediction for stem height, for ex-
ample, may ruin the form of the complete stem curve. It is further known that
parameters in such models may not be unbiasedly estimated using standard
estimation procedures when the variables in the stem equation are measured
with error. For stem curve prediction when the stem height is measured with
error we refer to Nummi & Möttönen (2004b).

Lappi (1986) used linear mixed models for modeling stem curves with
the dimensions of a tree stem defined by a polar coordinate system. Liski &
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Nummi (1995) studied polynomial mixed models for repeated measurements
for stem prediction based on the real stem data. The new feature in the latter
was the incorporation of the individual form variation of stems. The authors
suggested the use of the second-degree polynomial with two random effects.
The model for a stem at height xi can be written as

(2.3) yi = (β0 + b0) + (β1 + b1)xi + β2x
2
i + εi,

where β0, β1 and β2 are common mean curve parameters, b0 and b1 are ran-
dom effects associated with the individual stem to be predicted and εi is an
error term. The model assumes that parameters b0 and b1 and random er-
rors are independent and independently and identically normally distributed.
According to Lukkarinen & Marjomaa (1997) a modification of this method
with a third-degree polynomial has been applied e.g. in Ponsse Opti systems.

One slight drawback in the approach of Liski and Nummi, however, is
that although most stem curves can be well predicted by low-degree random
coefficient polynomial models (unknown part), in certain cases the fit may
be rather poor. This may be the case where the butt of the tree is large
and irregular. A possible extension is to use non-linear mixed models (e.g.
Eerikäinen, 2001; Garber & Maguire, 2003). However, the use of these for
prediction in a harvesting situation is not, according to our knowledge, well
established.

The approaches of Laasasenaho (1982) and Liski and Nummi (1995), for
example, constrain the curve estimates to certain pre-specified parametric
forms, i.e. polynomials. A relatively straightforward extension of parametric
regression modeling is the use of spline functions. Suppose now that we have
K distinct points on some interval [a, b] and refer to these points as knots.
For example, knots could be some K stem points x1, x2, . . . , xK on an inteval
[a, b] satisfying a < x1 < x2 < . . . < xK < b. The spline of order p with the
given knots x1, x2, . . . , xK can be written in the form

d(x) = β0 + β1x + β2x
2 + . . . + βpx

p +
K∑

k=1

uk(x− xk)
p
+,

where
(x− xk)+ =

{
0, x ≤ xk

x− xk, x > xk

and β = (β0, β1, β2, . . . , βp)
′ and u = (u1, . . . , uk)

′ denote vectors of coeffi-
cients and 1, x, x2, x3, (x− x1)

3
, . . . , (x− xk)

p
+ are called basis functions. The

equation describes a sequence of p degree polynomials tied together at the
knots to form a continuous function. Quadratic (p = 2) and cubic (p = 3)
splines are the most commonly used splines. A natural cubic spline is obtained
by assuming that the function is linear beyond the boundary knots x1 and
xK . Assuming that the error terms are independent with common mean zero
and variance σ2

ε , the coefficients β and u can be estimated using the standard
least squares method.

In some cases the use of the standard least squares procedure may result
in a very rough curve estimate. To control this roughness, one may use the
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so-called penalized sum of squares procedure, where the curve estimate is
determined not only by its goodness-of-fit to the data as quantified by the
least squares function but also by its roughness. The roughness of a twice-
differentiable curve d(·) at interval [a, b] can be measured, for example, by
calculating its integrated squared second derivative

∫ b

a
{d′′(t)}2dt. Suppose

now that y1, y2, . . . , yK are the observed values at the knots. A (natural)
cubic smoothing spline d(·) is a smooth and continuously twice-differentiable
curve which (for fixed α) minimizes the penalized sum of squares,

K∑
i=1

{yi − d(xi)}2 + α

b∫
a

{d′′(x)}2dx,

where α is a positive smoothing parameter which controls the smoothness
of the curve (see e.g. Green & Silverman, 1994). For large values of α, the
curve estimate will display very little curvature and in the limiting case as α
tends to infinity, the spline curve will approach the linear regression fit. For
relatively small values of α, the curve estimate will track the data closely and
in the limiting case as the parameter value tends to zero, the spline curve
will approach the natural cubic smoothing spline which interpolates the data
points (c.f. interpolating cubic spline). Thus, by controlling the smoothing
parameter value we may adjust the fit smoothly from linear regression to
natural cubic spline.

The idea of using splines in stem curve modeling is not particularly new.
Stem curve models have been built using an interpolating cubic spline on the
basis of several diameter measurements (e.g. Lahtinen & Laasasenaho, 1979;
Goulding, 1979; Figueiredo-Filho et al., 1996) and e.g. so-called monotony-
preserving taper curves have been constructed using a quadratic spline (Lahti-
nen, 1988). Cubic smoothing splines were employed to portray the stem curve
for example in a study by Liu (1980). Recently, spline-based techniques have
yielded promising results as applied to prediction of stem curve in a harvest-
ing situation. The idea of applying cubic smoothing splines in this context
was first introduced by Möttönen & Nummi (2002). The method utilized
branch limits, which are difficult or impossible to measure in a real harvest-
ing situation. One advantage of the method is that it does not assume any
special functional form for the whole stem curve, although some models are
needed to predict the branch limits. The model was subsequently modified
by Nummi & Möttönen (2004a) using multivariate regression models with
smoothing splines.

2.2 On Prediction Accuracy
One way to assess the performance of a prediction method is to compare
the total stem values of a prediction-based bucking process with the optimal
values obtained by utilizing the complete stem curves. Based on this idea,
Näsberg (1985) found that loss in value due to incomplete stem information
(i.e. a part of the stem was measured and the remaining part was predicted)
was less than 2%. These good results were partially explained by the fact that
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the quality limits and defect positions of the processed trees were assumed to
be known precisely in the test. In a study by Liski & Nummi (1995), using the
mixed-effects model based prediction method, the minimum percentage loss in
value was found to be about 5%. The accuracy of a prediction method based
on Laasasenaho’s (1982) model was studied for spruce by Vuorenpää et al.
(1997). Using the Apportionment Index (see Equation 3.1) as the criterion
for bucking performance, a less than five percentage unit smaller index value
was obtained for prediction-based bucking than when the cutting was based
on complete stem measurements.

Lukkarinen & Marjomaa (1997) studied the prediction accuracy of the
Ponsse harvester on both spruce and pine stems, obtaining better results
for pine. The deviation between the predicted and measured SED of logs
was on average approximately +3 mm for spruce and -9 mm for pine. The
standard deviation for spruce and pine was 13 mm and 21 mm, respectively.
The average error obtained when predicting length was on average +11 cm for
spruce and -28 cm for pine. The respective standard deviations were 140 cm
and 160 cm. The study by Lukkarinen et al. also showed that somewhat better
predictions are obtained as more is known of the stem under process. Similar
conclusions were drawn by Liski & Nummi (1995) and Marshall (2005).
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3 Measuring the Bucking Out-
come

3.1 Target, Outcome and Price Matrix
The outcome of the actual harvesting operation has been measured mainly
by comparing the relative proportions of the output and target distributions.
More specifically, let

T = (tij) =


t11 t12 · · · t1n

t21 t22 · · · t2n
... ... . . . ...

tm1 tm2 · · · tmn


denote the m×n demand (target) matrix for a certain log type, where each row
represents a particular small end diameter (SED) class of logs, each column
refers to a particular length class and tij is the number of logs in the ith
diameter class and jth length class, i = 1, . . . ,m and j = 1, . . . , n. A log with
an SED of d and a length of l will belong to the log class (i, j) if the log
satisfies the constraints di ≤ d < di+1 and lj ≤ l < lj+1. Correspondingly,
m× n matrix

O = (oij) =


o11 o12 · · · o1n

o21 o22 · · · o2n
... ... . . . ...

om1 om2 · · · omn


denotes the outcome of the harvesting operation.

The m× n price matrix specifies relative prices for all log categories, i.e.
determines how valuable or profitable it is to cut different length-diameter
combinations of a particular log type. The price matrix can be given as

P = (p∗ij) =


p∗11 p∗12 · · · p∗1n

p∗21 p∗22 · · · p∗2n
... ... . . . ...

p∗m1 p∗m2 · · · p∗mn

 ,

where p∗ij =
pij∑m

k=1

∑n
l=1 pkl

is the relative price of the ith diameter and jth
length combination of logs and pij is the respective absolute price.
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3.2 Some Measures for Evaluating the Log
Bucking Outcome

A common practice in Scandinavia is to evaluate the fit between the demand
and actual output log distributions with the Apportionment Index (AI) or
Apportionment Degree, first introduced1 in forestry by Bergstrand in the mid-
1980s (e.g. Bergstrand, 1989). For a fixed quality class the AI is defined as

(3.1) AI = 1− 0.5×
m∑

i=1

n∑
j=1

|o∗ij − t∗ij|,

where o∗ij =
oij∑m

k=1

∑n
l=1 okl

and t∗ij =
tij∑m

k=1

∑n
l=1 tkl

are the relative proportions of
the outcome and target matrices, respectively. After some simple manipula-
tions it can be shown that the AI can be rewritten as

(3.2) AI =
m∑

i=1

n∑
j=1

min(o∗ij, t
∗
ij).

The maximum value of the AI is 1 (100%), which indicates a perfect match
between the distributions. The minimum value of the index is min(t∗11, t

∗
12,

. . . , t∗mn), i.e. the smallest relative cell target, which is reached when all the
logs fall into the diameter-length class of the smallest target proportion. In
some of the original papers this kind of a scenario is referred to as a perfect
mismatch.

The AI may be interpreted as the proportion of the ”correctly” located
logs in the outcome distribution with respect to the demanded log distribu-
tion. For example, if the AI value were 0.85, this would mean that 85% of the
produced logs are in accordance with the demanded distribution while 15%
are of the wrong size and should have been allocated to other log categories
during the bucking process to make the outcome equal to the target, i.e. to
attain complete agreement between the two distributions. In fact, by observ-
ing the deviation of the outcome from the target matrix in terms of upload
or download, i.e. cij = oij− tij, the AI can also be expressed for equal matrix
totals as

(3.3) AI =
N −

∑m
i=1

∑n
j=1 cijI(cij > 0)

N
,

where N =
∑m

i=1

∑n
j=1 oij =

∑m
i=1

∑n
j=1 tij and I(cij > 0) = 1 for cij > 0 and

0 otherwise.
The AI has gained ground especially by merit of its simplicity, easy inter-

pretability and ease of use. The measure has been criticized mainly as being
too crude, since, for example, it attributes the same weight to all log classes.
Hence, a price-weighted version of the AI was proposed by Kivinen et al.

1The history of some measures closely related to the AI (e.g. Dissimilarity Index dis-
cussed later in this section) strongly suggest that the AI was not developed by the Swedish
mathematician Bergstrand in the mid-1980s, as claimed in many forestry papers, but had
appeared earlier in different contexts such as sociology.
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(2005) and Nummi et al. (2005) [Paper III]. The price-weighted Apportion-
ment Index utilizes the price matrix and is defined as

(3.4) AIp =
m∑

i=1

n∑
j=1

p∗ij min(o∗ij, t
∗
ij).

The AIp is not as amenable to interpretation as the non-weighted AI, which
is clearly seen as a disadvantage of the measure.

Some penalty-based variants of the traditional AI were proposed in Kirk-
kala et al. (2000), Weĳo (2000) and Malinen & Palander (2004). The idea of
using prices as weights when measuring the agreement of the two distribu-
tions lead Kivinen et al. (2005) to apply the theory of index numbers common
in economics. The authors suggested the use of the Laspeyres’ quantity index
to describe the relationship between the values of the postharvest and pre-
harvest log distributions. However, in view of the scope of this thesis these
measures are not discussed here.

Instead of using the Apportionment Index or its derivatives to evaluate
the similarity between the demand and output log distributions, standard
statistical tests can also be applied. The most commonly used test for exam-
ining the goodness-of-fit of grouped data is the frequency χ2-test, which was
applied in the forestry context e.g. in Malinen & Palander (2004), Kivinen
et al. (2005) and Nummi et al. (2005) [Paper III]. Using the same notations
as above, the test statistic can be defined as

χ2 =
m∑

i=1

n∑
j=1

(oij − tij)
2

tij
.

In the case of a perfect match the value of the χ2-statistic equals zero. How-
ever, as the deviation between the two matrices increases, the value of the
measure also increases, giving large positive values for large deviations. Kivi-
nen et al. (2005) solved the scaling problem of the χ2-statistic by using the
contingency coefficient C defined as

C =

√
χ2

χ2 + N
,

where N is the total number of logs harvested. Substracting the contingency
coefficient from 1 then yields a measure which equals 1 for perfect match
and tends to decrease towards 0 as the deviation between the distributions
increases. Nummi et al. (2005) [Paper III], however, solved the scaling problem
by utilizing the p-value assigned to the χ2-statistic.

The AI is closely related to e.g the Dissimilarity Index (DI) or Index of
Dissimilarity commonly used in sociology for measuring segregation. One of
the very first instances of the DI as a measure of segregation was that in the
paper by Jahn et al. (1947). The DI is also commonly used to summarize the
closeness of fit of a model to the categorical sample data (e.g. Agresti, 2002,
pp. 329-330). The so-called overlapping coefficient (OV L) was later defined
as a generalized measure of agreement or similarity between two probability
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distributions or two populations represented by such distributions (Inman
& Bradley, 1989). If f1(x) and f2(x) are density functions defined on the
n-dimensional Euclidian space Rn, then the OV L can be defined as

OV L =

∫
Rn

min[f1(x), f2(x)]dx.

In a simple univariate case the OV L is simply the fraction of the probabil-
ity mass common to both distributions. In a case of two discrete probability
distributions, the relation of the OV L to the Apportionment Index and Dis-
similarity Index can be expressed as OV L = 1−DI = AI.

Although the traditional AI is today the measure most widely used for
assessing the agreement between the demand and the output log distribu-
tions, its superiority over the other measures is somewhat questionable. It is
not easy to make comparisons between the measures, since, first, they differ
in scaling and, second, there exists no commonly approved yardstick capable
of giving the ”true” ranking of all possible bucking outcomes with respect to
the given demand distribution. Kivinen et al. (2005) approached the problem
of comparing different measures by defining four criteria for an ideal measure.
Four alternative goodness-of-fit measures were then tested against the crite-
ria. The tested measures were: (1) the traditional AI, (2) the χ2-statistic,
(3) the Laspeyres’ quantity index and (4) the price-weighted AI. The results
of the study showed no marked differences between the performances of the
four measures compared. Neither did the results indicate the universal su-
periority of any of the candidates. All four measures met three of the four
requirements of an ideal measure and provided fairly consistent results for dif-
ferent demand matrices in different stand types. Malinen & Palander (2004)
compared the performance of five alternative goodness-of-fit measures on the
basis of their ability to control the bucking-to-demand procedure. Since the
use of the goodness-of-fit measures in the online control of the bucking pro-
cedure is not a topic of this thesis, we may content ourselves with a reference
to this particular study.
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Summaries of Original Publica-
tions

I. In the article in question we briefly introduce the bucking process and
then mathematically formulate the stem prediction problem. We also
briefly outline cubic smoothing splines and present a cubic smoothing
spline-based stem curve prediction method applicable in a real har-
vesting situation. The method is based on the idea first introduced in
Möttönen & Nummi (2002) and subsequently modified by the authors
in Nummi & Möttönen (2004a).
The performance of the cubic smoothing spline-based method is com-
pared to the linear mixed model approach of Liski & Nummi (1995)
and the stem curve prediction method based on Kozak’s taper equation
(Kozak, 1988). For comparisons we use a study material consisting of
five sets of Scots pine and Norway spruce stem profiles collected by two
different harvester models in five different final felling stands in southern
Finland. The performance of the methods is assessed by studying the
prediction errors by means of Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE).
The results of comparisons show that the spline-based approach out-
performs the other two methods. For example, the MAPE values of the
spline-based method vary from 2.1% to 4%, while for the linear mixed
model-based approach and the method based on Kozak’s taper equation
the values vary from 4.6% to 7.0% and from 2.7% to 4.7%, respectively.

II. A common approach used to model longitudinal data, i.e. data where
individuals are measured according to some ordered variable, is based
on the linear mixed models for repeated measures. Although this model
provides an eminently flexible approach to modeling a wide range of
mean and covariance structures, it is forced into a rigidly defined class
of mathematical formulas which may not be well supported by the data
within the whole sequence of observations. A cubic smoothing spline
provides a non-parametric alternative to modeling such data. It can be
shown that under normality assumption the solution of the penalized
log-likelihood equation is the cubic smoothing spline, and this solution
can be further expressed as a solution of the linear mixed model (see e.g.
Green & Silverman, 1994 and Verbyla et al., 1999). As the first result,
we show that the simple unweighted estimator can be used instead
of the weighted estimator when the covariance of errors belongs to a
certain special class of covariance structures, which assume particular
importance when splines are used to analyse a group of individuals.
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According to our knowledge this result is new in the smoothing spline
context.
The main part of the paper is devoted to showing how cubic smoothing
splines can be easily used in the analysis of complete and balanced data.
The basic idea is to replace the within-individual part of the Potthof
and Roy (1964) model GMANOVA (Generalized Multivariate Analysis
of Variance) by cubic smoothing splines. It is then shown how the mean
splines can be estimated using a penalized log-likelihood function. It is
further shown that the analysis can be greatly simplified under a certain
special class of covariance structures discussed earlier in the paper. The
connection to mixed models is used in developing the rough testing of
group profiles and numerical examples are presented to illustrate the
techniques proposed.

III. Testing statistically that the distribution of the population from which
the data is drawn agrees with a posited distribution is constantly en-
countered in many areas of research. The most commonly used test for
examining the goodness-of-fit of grouped data is the frequency χ2-test.
In this paper we study the use of the χ2-statistic in the context of mea-
suring the goodness of the bucking outcome and show its relation to
the Apportionment Index traditionally used in practice in Scandinavia.
Since the Apportionment Index is often criticized as not taking account
of the price deviation between different log categories, i.e. it gives the
same weight for all log categories, we also introduce price-weighted ver-
sions of both measures.
Applying the large sample properties of the frequency χ2-distribution
we justify the use of the weighted χ2-distribution as an approximation
to the distribution of the price-weighted χ2-statistic. A simulation study
is conducted to illustrate the behaviour of the measures when there is
a shortfall of a fixed proportion of logs in the outcome matrix with
respect to the target. The simulation shows that even large propor-
tions of missing logs (≈ 40%) may give relatively high values of both
the traditional and the non-weighted AIs, while the χ2-statistic and its
price-weighted versions will reject the hypothesis of agreement between
the distributions as 20% or more of the logs are missing. This indicates
better statistical performance of the χ2-statistic and its price-weighted
version. Since in practice it may not be possible to attain the demanded
values and/or the required total number of logs exactly and virtually
small deviations from the target values may not be of much interest,
the behaviour of both AI measures may be more desirable for the prac-
tical applications. Note that the AI and its price-weighted version only
compare the relative values of the observed and demanded distributions
and therefore even large departures in the absolute values may not be
noticed.
Appendix A contains some notes supplementary to Paper III. In Ap-
pendix A.1 we justify the statements of the approximation of the vari-
ance of the χ2(p∗) given in the original paper. In Appendix A.2 we
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clarify the arrangements of the simulation study conducted in Section 3
in the paper. Appendix A.3 and A.4 justify the use of the non-weighted
and weighted χ2-distributions for the standard and price-weighted χ2-
measures, respectively. Errata to the original paper are provided in Ap-
pendix C.

IV. In this paper we examine the asymptotic sampling distribution of the
Apportionment Index by assuming a multinomial distribution for the
bucking outcome. Such an assumption is natural in the context of a
frequency distribution. Under the multinomial assumption and using
large-sample normal approximations, we derive the approximate expres-
sions for the first and second moment of the AI and construct the lower
tolerance limit with a desired confidence level. A simulation study is
then carried out to evaluate the accuracy of the approximations. The
determination of the number of logs needed to attain high apportion-
ment with a given accuracy is also studied. The effects of the number
of logs harvested as well as of the form and the size of the given target
matrix are discussed in the paper.
The formulas of the first two moments clearly show that under the
multinomial assumption both the expected value of the AI and the
variance depend on the number of logs harvested (N). Since N as well
as the form and the size of the given target matrix seem to affect the
index value (as discussed in Section 5 in the paper), some justification
for a tolerable index value is needed. Here we suggest AI values higher
than the mean E(AI) to indicate a satisfactory level of agreement. If the
AI falls below the lower tolerance limit, we would consider the outcome
not satisfactory from the point of view of agreement with the given
target.
As the AI simply gives the proportion of the ”correctly” located logs
in the outcome matrix with respect to the given target, we propose
to examine the log categories in the outcome matrix which indicate
”upload” and ”download” with respect to the target. This is justified
when we note that the computation of the AI depends only on the to-
tal amount of upload (or download) and not on its specific frequency
distribution. However, we have not attempted to answer the question
of a desirable distribution for the upload and download. This calls for
a thorough study and close interaction with forestry personnel, as not
only the price matrix but also e.g. the dimensions of the logs indicat-
ing upload and download may have some crucial impact on the overall
agreement.

V. Here we extend the definition of the AI and its price-weighted version
and discuss proper standardizations of these measures. Applying some
aspects of moments and the Liaponouv inequality we then examine
the limiting properties of the measures and provide some examples to
illustrate the behaviour of the non-weighted and price-weighted gener-
alizations.

23



The idea of introducing a Family of Apportionment Indices derives from
the work done in the field of optimal design of experiments initiated by
Kiefer (1975), who proposed a family of optimality criterion which in-
cludes the well-known A-, D- and E-optimality criteria as special cases.
In this paper we show that the generalized Apportionment Index has
its connection to e.g. harmonic, geometric and arithmetic means. One
possible application of this kind of study might be to examine which of
two or more competing outcome matrices is more robust with respect
to the aspect of closeness to a given target matrix.

VI. The paper initiates a statistical analysis of the Apportionment Index
based on the joint distribution of random component outputs in the
outcome matrix. Dirichlet distribution is adopted to describe the joint
distribution of the random components. This is justified by noting that
all terms in the outcome matrix belong to the interval [0,1] and they
add up to one. Our purpose is then to choose the parameters of the
distribution so that the maximum apportionment is achieved. Here we
propose to maximize the AI in the averaged sense, i.e. we aim at maxi-
mizing its expected value. Another approach would be, for example, to
attain heavy right-tail distribution for the AI such that the index value
would tend to be probabilistically large. However, we will not pursue
the latter approach in this thesis.
We first study the case of only two log categories in which case maxi-
mizing the AI amounts to minimizing the mean deviation for any one of
the two log categories (as the other is determined automatically). Since
the mean deviation is least when it is taken about the median of the
distribution, our goal is to identify the parameter values for which the
median is the known target value. However, some condition is needed
to find a unique solution to the problem. Here we stipulate a condition
on the variance of the random outputs by assuming that some bound
is desirable on the accuracy of the bucking outcome. Demonstrations of
the specification of the parameters of the beta distribution (a special
case of Dirichlet distribution) are given when the target and an upper
bound to the variance of the component(s) are pre-specified.
We also extend the analysis to the case of three log categories aiming at
specifying the parameter values of the underlying Dirichlet distribution
by maximizing the expected AI such that the mean deviations between
the random components and the respective target values are simulta-
neously minimized. This calls for minimizing the mean deviation such
that the target value is taken as the median of the marginal distribution
of the respective random outcome. However, as argued in the paper, si-
multaneous minimization of all three terms is not possible. A method is
then proposed to tackle the problem of specifying the parameter values
as the target matrix is given and an upper bound to the largest of the
variances of the random outputs is specified. By doing so, we also have
control over the variablility of other two random outputs.
As shown in the paper, the specification of the parameter values by
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maximizing the AI in the averaged sense under the proposed Dirich-
let distribution for the random outputs is a complex task and it is not
amenable to an analytical solution even in the case of three locations.
Generalization of the method initiated in this paper to more than three
log categories clearly calls for a thorough investigation with powerful
computational tools. However, if only some parts of the target matrix
are of special interest in harvesting planning (e.g. large and/or small
target values), a study of the appropriate submatrices may well suffice
and the method provided in this paper could hence come into consider-
ation.
Appendix B contains some notes supplementary to Paper VI. Since the
appropriateness of the technique proposed to tackle the problem of spec-
ifying the parameter values in the case of three locations is not studied
in the paper, we now take up some computations on the suitability of
the proposed technique. Errata to the original paper are provided in
Appendix C.
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List of Forestry Terms

The literature citations referenced for each term follow the definition (in
brackets). The following numbering is used for the citations: [1] Stokes et al.
(1989), [2] Dykstra & Heinrich (1995) and [3] Megalos & Kea (2003). These
references can be used as sources for terms not found in this glossary.

Buck To saw a felled tree into short cuts. [1]
Bucking The act or process of transversely cutting the stem or branches

of a felled tree into logs. [2]
Butt Base of a tree. Large end of a log. [1]
Crosscutting See bucking. [2]
Cutting Process of felling trees. [1]
Delimbing Removing branches from trees. [1]
Felling The act or process of severing a standing tree. Compare cut-

ting. [2]
Forwarder Self-propelled or mobile machine, usually self-loading, de-

signed to transport trees or parts of trees by carrying them
completely off the ground. [1]

Forwarding Transporting trees or parts of trees by carrying them com-
pletely off the ground rather than by pulling or dragging them
along the ground. [1]

Haul Convey wood from a loading point to an unloading point. [1]
Harvester A machine which fells trees, delimbs them and crosscuts them

into logs. [2]
Harvesting The aggregation of all operations, including pre-harvest plan-

ning and postharvest assessment, related to the felling of trees
and the extraction of their stems or other usable parts from
the forest for subsequent processing into industrial products.
Also called timber harvesting. [2]

Log Length of tree suitable for processing into lumber, veneer, or
other wood products. [1]

Logging The act or process of felling and extracting timber from forests,
especially in the form of logs. [2]
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Stand An easily defined area of forest which is relatively uniform in
species composition or age and can be managed as a single
unit. [3]

Stem Main body of a tree from which branches grow. Used loosely
to refer to trees. [1]

Stump The woody base of a tree remaining in the ground after felling.
[2]

Timber General term applied to forests and their products. [1]
Topping Cutting off the top of a tree at a predetermined, minimum

diameter. [1]
Yard Place where logs are accumulated. [1]
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Appendix A

Supplementary to Paper III

A.1 Approximating the Variance of the Price-
weighted χ2-statistic

The statements on the approximation of the variance of the χ2(p∗) given on
page 263 in the paper are justified by noting that

V (χ2(p∗)) = V (
∑ ∑

p∗ijz
2
ij) ≈ V (

∑ ′∑
p∗ijz

2
ij)

(the term with the smallest p∗ij (<< 1
mn

) is taken out
leaving nm− 1 independent χ2

1 terms)

=
∑ ′∑

p∗ij
2V (z2

ij) =
∑ ′∑

p∗ij
2V (χ2

1)

=
∑ ′∑

p∗ij
2 · 2 = 2

∑ ′∑
p∗ij

2

(the term with the smallest p∗ij is again brought back)

≈ 2
∑ ∑

p∗ij
2.

Since

2nmp∗min
2 = 2

∑ ∑
p∗min

2 ≤ 2
∑ ∑

p∗ij
2 ≤ 2

∑ ∑
p∗max

2 = 2nmp∗max
2,

one approximation is

V (χ2(p∗)) ≈ 2nmp∗min
2 + 2nmp∗max

2

2
= nm(p∗min

2 + p∗max
2).

However, a better approximation for the variance is achieved by noting that

2p∗min = 2
∑ ∑

p∗ijp
∗
min ≤ 2

∑ ∑
p∗ij

2 ≤ 2
∑ ∑

p∗ijp
∗
max = 2p∗max,

and hence

V (χ2(p∗)) ≈ 2p∗min + 2p∗max

2
= p∗min + p∗max.
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A.2 Description of the Simulation Procedure
In the simulation study conducted in Section 3, new output matrices were
created by randomly deleting a given portion of logs from the given target
matrix. Letting p% be the portion of logs to be deleted and N the total
number of logs in the target table, the simulation proceeded by repeating
Steps 1-3 below pN/100 times.

1. Randomly select a log category out of the 25 in the target matrix.

2. The number of logs in the selected log category is reduced by one.

3. If the number of logs in the selected log category is zero, i.e. there are
no logs in the log category, the log number will not be changed.

Note that due to Step 3, the eventual total number of deleted logs may not
necessarily equal pN/100 for larger p.

A.3 Justification for the Use of χ2-distribution
Assume f = (f1, . . . , fk+1)

′ ∼ Mult(N ; π), where π = (π1, . . . , πk+1)
′ =

1
N

(δ1, . . . , δk+1)
′. Then for the mean vector of f we get E(f) = Nπ and the

dispersion matrix we write as

D(f) = N [diag(π)− ππ′] = N

(
Σ11 Σ12

Σ21 Σ22

)
,

where

Σ11 =


π1(1− π1) −π1π2 · · · π1πk

−π1π2 π2(1− π2) · · · π2πk
... . . . ...

−π1πk −π2πk · · · πk(1− πk)

 = diag(π∗)− π∗π∗′

and π∗ = (π1, . . . , πk)
′.

Since 1′f = N ⇒ Var(1′f) = 0 ⇔ 1′D(f)1 = 0, D(f) is singular. Hence we
now restrict attention to only the first k fi’s, i.e. f∗ = (f1, . . . , fk)

′, for which
E(f∗) = Nπ∗ and D(f∗) = NΣ11. Note that D(f∗) is p.d. It follows from
the multivariate central limit theorem (MCLT, see e.g. Bilodeau & Brenner,
1999, pp. 78) that f∗ → Nk (Nπ∗, D(f∗)) and hence

(f∗ −Nπ∗)′ [D(f∗)]−1 (f∗ −Nπ∗) ∼ χ2
k.

We may now write

D(f∗) = N(A−αα′),
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where A = diag(π∗) and α = π∗. Then

[D(f∗)]−1 =
1

N
(A−αα′)−1 =

1

N

[
A−1 +

A−1αα′A−1

1−α′Aα

]

=
1

N


π−1

1
. . .

π−1
k

 +
11′

1−
∑k

i=1 πi


=


δ−1

1
. . .

δ−1
k

 +
11′

N −
∑k

i=1 δi


and

(f∗ −Nπ∗)′ [D(f∗)]−1 (f∗ −Nπ∗)

=

(f1 − δ1, . . . , fk − δk)


δ−1

1
. . .

δ−1
k

 +
11′

N −
∑k

i=1 δi


f1 − δ1

...
fk − δk




=
k∑

i=1

(fi − δi)
2

δi

+

∑k
i=1(fi − δi)

∑k
i=1(fi − δi)

N −
∑k

i=1 δi

=
k∑

i=1

(fi − δi)
2

δi

+

(∑k
i=1(fi − δi)

)2

N −
∑k

i=1 δi

=
k∑

i=1

(fi − δi)
2

δi

+
(fk+1 − δk+1)

2

δk+1

=
k+1∑
i=1

(fi − δi)
2

δi

= χ2,

and hence χ2 ∼ χ2
k.

A.4 Justification for the Use of the Weighted
χ2-distribution

Now we justify the use of the weighted χ2-distribution for a measure with
positive weights. This measure is denoted by χ2(w). We use the same nota-
tions as in Appendix A.3 and assume f = (f1, . . . , fk+1)

′ ∼ Mult(N ; π), where
π = (π1, . . . , πk+1)

′ = 1
N

(δ1, . . . , δk+1)
′. Then,

χ2(w) =
k+1∑
i=1

wi(fi − δi)
2

δi

.

The (k + 1)th term in the χ2(w) can be written as

wk+1
(fk+1 − δk+1)

2

δk+1

= wk+1

(∑k
i=1(fi − δi)

)2

δk+1

=
wk+1

δk+1

(f∗ − δ∗)′11′(f∗ − δ∗)

= (f∗ − δ∗)′A∗(f∗ − δ∗)
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where f∗ = (f1, . . . , fk)
′, δ∗ = (δ1, . . . , δk)

′ and A∗ = wk+1

δk+1
11′. The other terms

in the χ2(w) can be written as

(f∗ − δ∗)′B(f∗ − δ∗),

where B = diag(w1

δ1
, . . . , wk

δk
). Hence

χ2(w) = (f∗ − δ∗)′(A∗ + B)(f∗ − δ∗) = x′(A∗ + B)x,

where x = (f∗ − δ∗).
Since f∗ → Nk (δ∗, D(f∗)), then x = (f∗ − δ∗) → Nk(0, D(x)), where

D(x) = D(f∗) = N(A − αα′) is a positive definite matrix and A and α are
as defined in Appendix A.3 above. Let z = D(x)−

1
2x. Then, z → Nk(0, I). We

now look at the distribution of

x′(A∗ + B)x =
([

D(x)
1
2

]
z
)′

(A∗ + B)
([

D(x)
1
2

]
z
)

= z′Cz,

where

C =
[
D(x)

1
2

]
(A∗ + B)

[
D(x)

1
2

]
=

[
D(x)

1
2

]
A∗

[
D(x)

1
2

]
+

[
D(x)

1
2

]
B

[
D(x)

1
2

]
=

[
D(x)

1
2

]
[xk+1

δk+1
11′]

[
D(x)

1
2

]
+

[
D(x)

1
2

]
diag

(
w1

δ1

, . . . ,
wk

δk

) [
D(x)

1
2

]
.

Since A∗ is symmetric and B diagonal, then clearly A∗ + B and also C
are symmetric. According to eigenvalue decomposition there now exists a
diagonal matrix Λ and an orthogonal matrix T such that C = T′ΛT. Letting
λ1, . . . , λk represent the diagonal elements of Λ and y1, . . . , yk the elements
of vector y = Tz, we may find that

χ2(w) = z′Cz = z′T′ΛTz = (Tz)′Λ(Tz) = y′Λy =
k∑

i=1

λiy
2
i ,

where y = Tz → Nk(0,TIT′) = Nk(0, I), i.e. yi ∼ i.i.d. N(0, 1), i = 1, . . . , k.
This shows that χ2(w) is a weighted sum of k independent χ2

1 distributed
terms. Since the weights are positive, we may approximate the distribution
of χ2(w) by aχ2

b for some suitable choices of a and b.
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Appendix B

Supplementary to Paper VI

In paper V we adopted Dirichlet distribution to describe the joint distribu-
tion of the random components in the output matrix and aimed at choosing
parameters of the distribution such that the Apportionment Index is maxi-
mized in the averaged sense. In the case of two log categories, we proposed
specifying an upper bound for the variance of the random outputs to find a
unique solution. However, the extension of the method to the case of three
log categories turned out to be analytically intractable. A technique was then
proposed to tackle the problem of specifying the parameter values when the
target matrix is given and an upper bound to the largest of the variances of
the random outputs is specified. However, the appropriateness of the tech-
nique in terms of maximizing the E(AI) was not studied in the paper. We
now take up some computations on the suitability of the technique.

We examine the suitability for the three settings in Example 2.1 by com-
puting the probabilities Γ1 =

∫ θ1

0
B(α1, α2 +α3), Γ2 =

∫ θ2

0
B(α2, α1 +α3) and

Γ3 =
∫ θ3

0
B(α3, α1 + α2). In an ideal case θi, i = 1, 2, 3, should serve as a

median of the marginal distribution of the respective Xi. Hence, the closer
the values of Γi’s are to 0.5, the closer the solution is to the optimal.

Table B.1 shows that for smaller V0 the parameter values provided by
the proposed technique are relatively close to optimal in all three settings.
However, as the variance is increased the solutions start to deviate from the
optimal in all three settings. A closer look at the results shows that all Γ’s
exceed 0.5. This indicates that all three marginal distributions which are spec-
ified by the parameters provided by the proposed technique possess slighly
heavy left tails.

Earlier we proposed choosing the parameter values in the ratio of the
known θ’s, i.e. by setting α1 = α, α2 = θ2

θ1
α = aα and α3 = θ3

θ1
α = bα and

solving for α for a specified V0, which corresponds to the highest marginal
variance of the Xis, namely that of X3. The above calculations indicate,
however, that we might possibly achieve a better solution by ”fine-tuning”
the proposed technique. Let us set α1 = α, α2 =

(
θ2

θ1

)γ

α = aγα and α3 =(
θ3

θ1

)γ

α = bγα, where γ is some fixed quantity in the interval (0, 1) and α is
the parameter specified by the given variance constraint. By an appropriate
choice of γ, the forms of the marginal distributions can be fine-tuned so as
to shift the medians closer to the respective target values, i.e. to improve the
choice in the sense of optimality. For a given target and a specified V0, the
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choice of γ could be made, for example, by solving

1

3
(Γ1 + Γ2 + Γ3) ≈ 0.5.

As discussed in the paper, the problem of specifying the model parameters
by maximizing the expected value of the AI is a complex task and leads to
highly complicated analytical computations even in the case of only three
locations. However, as seen in Table B.1 below, more or less satisfactory
results can be achieved for small V0. Possibly, satisfactory results could also
be achieved for larger V0 by developing the idea introduced above. Thereafter,
the extension of the technique to a more general case, i.e. to some moderate
number of locations (> 3), could be justified. However, further research is
required to determine whether significant improvements are achieved by the
modifications presented above, or otherwise. Our initial computations towards
incorporating the idea of introducing the scaling factor γ, mentioned above,
do not indicate any significant improvements. We leave study in this direction
as a topic for future research.
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Appendix C

Errata to the Original Papers

Paper I
• Page 2914
– Equation 8 Printed: ŝ = µ1 +

σ01

σ2
0

(DBH− µ0)

Should read: ŝ = µ0 +
σ01

σ2
1

(DBH− µ1)

Paper III
• Page 260
– Line 7 Typing error. Should read: ”. . . may yield very undesir-

able. . . ”
– Line 11 Typing error. Should read: ”Similarly we can. . . ”
– Line 18 Printed: ∗o∗ij =

oij
n∑

i=1

m∑
j=1

oij

Should read: o∗ĳ =
oĳ

n∑
i=1

m∑
j=1

oĳ

– Line 27 Printed: Ap =
n∑

i=1

m∑
j=1

δij
∗p∗ij ,

Should read: Ap =
n∑

i=1

m∑
j=1

δĳp∗
ĳ,

– Line 28 Printed: ∗p∗ij =
1

n∑
i=1

m∑
j=1

pij

Should read: p∗
ĳ =

pĳ
n∑

i=1

m∑
j=1

pĳ

• Page 261
– Line 3 All the characters in the two equations should be written in

non-cursive style.
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• Page 262
– Line 1 The epsilon in the equation should follow the style used

elsewhere in the paper.
– Line 3 tij should be written in non-cursive style in both appear-

ances on the line.
– Lines 5–6 All the characters in the equation should be written in non-

cursive style.
– Lines 10 All the characters in the equation should be written in non-

cursive style.
– Lines 3–12 There appear slightly different summation notations on the

page. The notations
′∑

and
′′∑

correspond to
/∑

and
//∑

,
respectively. Unique summation notations should be used
for both cases.

• Page 263
– Line 11 Printed: − V(χ2(p∗)) ≈ 2nm(p∗2

min + p∗2
max)/2 = nm(p∗2min + p∗2max)

′′

Should read: V(χ2(p∗)) ≈ 2nm(p∗2
min + p∗2

max)/2 = nm(p∗2
min + p∗2

max)

– Line 19 Printed: b̂ = 2/t

Should read: b̂ = 2/T

• Page 264
– Line 23 Typing error. Should read: ”. . . is approximately the

same. . . ”
– Line 27 Typing error. Should read: ”. . . is approximately 0.89. . . ”
• Page 266
– Figure 2 The title of the bottom figure is missing. The figure should

be titled: ”(c) Results of As(p∗
2).” The Apportionment Index

notations in the other figure titles should be written in non-
cursive style.

• Page 267
– Figure 3 The title of the bottom figure is missing. The figure should

be titled: ”(c) Associated p-values of χ2(p∗
2).” The notation

p∗1 in the figure title (b) should be written in non-cursive
style.

Paper VI
• Page 169
– Lines 45–46 Missing capital letters. Should read: ”In Section 2.1 we take

the analysis of the two log classes as a starting-point. In Sec-
tion 2.2 we extend the analysis to the case of three locations
and finally in Section 3. . . ”
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– Footnote Printed: laura.koskela@uta.fi*
Should read: laura.koskela@uta.fi

– Footnote Printed: tan@uta.fi*
Should read: tan@uta.fi

• Page 170
– Line 5 Printed: AI =

∑
i

∑
j

min{Xĳ . θĳ}.

(Note that θ could not be written above in non-cursive style
for technical reasons.)
Should read: AI =

∑
i

∑
j

min{Xĳ, θĳ},

(Note that θ could not be written above in non-cursive style
for technical reasons.)

• Page 171
– Line 3 Extra space. Should read: ”quality, say α, in view. . . ”
• Page 172
– Line 12 Printed: D(α1, α2, α3) = Γ(α1, α2, α3)/ . . .

Should read: D(α1, α2, α3) = Γ(α1 + α2 + α3)/ . . .

• Page 173
– Line 3 Missing dot after Equation 13.
• Page 176
– Table 5 Incorrect equation in the title of the table.

Printed: RR(i,j) = |Qi−Qj|
1
2 (Qi−Qj)

× 100 %

Should read: RR(i,j) = |Qi−Qj|
1
2 (Qi+Qj)

× 100 %

– Line 16 Typing error. Should read: ”Fördelningsaptering - ett sätt
att tillgodose sågverksönskemål.””

– Line 23 Typing error. Should read: ”apteeraustuloksen arvioin-
nissa. . . ”

– Line 24 Typing error. Should read: ”1/2000: 59–61.”
– Line 27 Missing comma. Should read: ”Skogforsk 537, 87–95), Växjö,

Sweden.”
• Page 177
– Lines 5–6 Extra colon and extra comma. Should read: ”. . . 4th ed.

Springer. New York.”
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ABSTRACT 
In the harvesting technique prevailing in Scandinavia, tree stems are converted into smaller logs 
immediately at harvest. Modern sawmills attempt to operate according to customers' special needs rather 
than only minimize the production costs. Since the annual production of saw timber in Scandinavia is in 
tens of millions of cubic meters, proper measuring of the goodness of the bucking outcome is of crucial 
importance. The outcome of the bucking operation can be considered as a multidimensional table of tree 
species, quality grades, prices and length and diameters classes. The prevailing method to measure the 
outcome is the so-called apportionment degree, which is calculated from the relative portions of the 
observed and target tables. However, this measure has severe drawbacks. E.g. it gives the same weight 
for each log class. Therefore, for example, the effect of the shape of the distributions is completely ignored. 
In this study we present some basic results of the statistical properties of the apportionment degree and 
present some alternative means to measure the bucking outcome. Also a simulation study is carried out to 
illustrate the relative performance of the measures presented.  
 
Key words: Apportionment degree, forest harvesting, frequency Chi-Square, simulation. 
 
MSC: 62P12 
 
RESUMEN 
El propósito de este trabajo es comenzar el análisis estadístico del índice del prorrateo, esta es una 
medida usada en el contexto de la tala en bosques para evaluar el ajuste entre la demanda y distribución 
del suministro de la leña. Ha habido algunos esfuerzos por entender este índice, pero una base teórica 
seria todavía falta. Nosotros discutimos brevemente la literatura existente y procedemos a investigar las 
propiedades del índice desde un punto de vista distribucional. Este es fundamentalmente un artículo 
exploratorio y nosotros sólo enfocamos los casos de dos y tres clases de leña, es decir, locaciones. En el 
caso de dos clases usamos la distribución beta para las variables aleatorias relativas a la salida (output) 
del rendimiento; en tres locaciones al azar se asume que los rendimientos relativos siguen la distribución 
de Dirichlet singular. Usando esta formulación es posible entender las propiedades estadísticas del índice 
del prorrateo. 
 

1. INTRODUCTION 
 
 The general objective in harvesting is to maximize the value of the timber obtained for further processing. 
Optimization of harvesting requires that several phases in a production chain are successfully combined. In 
the harvesting technique prevailing in Scandinavia, tree stems are converted into smaller logs immediately at 
harvest. High-class measuring and computing equipment have been developed, making possible computer-
based optimization of crosscutting in harvesters. In modern harvesters tree stems are run in sequence 
through the measuring equipment and simultaneously the harvester's computer receives the length and 
diameter data from sensors. If the whole stem is measured before crosscutting we may apply the techniques 
discussed e.g. in Näsberg (1985) to find the optimal cutting patterns on the stem. However, in practice the 
first cutting decisions have to be made under incomplete stem information and we must compensate the 
unknown part of the stem by predictions (see e.g Liski and Nummi (1995)). 
 
 An admissible cutting pattern is a set of cutting points 0 = x1 < x2 < … < xR such that the length of the rth log  
 

lr = xr - xr-1 ∈ [lmin, lmax] and d(xr) ≥ dT > 0 
 
for r = 2, 3,..., R, where x1 = 0 is at the butt of a tree, lmin is the minimum and lmax the maximum length of a log 
and dT is the minimum acceptable log diameter. Marking for bucking is the problem of converting a single tree 
stem into logs in such a way that the total stem value (price, volume etc.) for logs is maximized (see Näsberg 
1985, Chapter 3). 
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 We can classify a log with a small end diameter d(x) and length l (index r dropped) to one of the m × n 
classes according to the  following classification 

di ≤ d(x) < di+1     and    lj ≤ l < lj+1, 

where di, i = 1,…,n and lj, j = 1,…,m are given diameter and length limits. Then we may for example specify 
the price of each diameter and length combination di, lj of logs. Denote these as the m × n price matrix P, 
where the element pij  of  P is the price of the log at log class di, lj. However, it is well known that optimization of 
price only may yield very undesiderable log distributions from the sawmills point of view. Nowadays sawmills 
aim to operate more on customers special needs rather than maximizing price or minimizing the production 
costs only. In fact we may have simultaneously many targets. Especially we may have a matrix of frequencies 
jointly with a matrix of prices. We may define the target amount of logs for each diameter and length 
combinations. Denote these as the m × n target matrix T. Similarily we can classify the outcome of the actual 
bucking operation to elements of the m × n frequency matrix O. Then the measures studied here are simple 
functions of the actual output O, the target T and the log prices  P. 
 
2. MEASURING THE BUCKING OUTCOME 
 
2.1. The Apportionment degree 
 
 The so-called apportionment degree widely used in harvesting is defined for a fixed quality class as follows 
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respectively. With this measure we can compare the relative proportions of the output and target tables. The 
apportionment degree A gives a value between 0 to 1, where the value A = 1 corresponds to perfect match of 
the tables. After some simple manipulations we can show that A can be rewritten as  
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where δij = min(oij*, tij*). This measure was first introduced by the swedish mathematician Bergstrand  in the 
mid 1980s, when first steps in developing automatic bucking systems were taken. However very little is 
known of the statistical properties of the apportionment degree A. 

 It is easy to give a price-weighted version of A. Then we compute  
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and, hence, 
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which is of the same magnitude as the original A. Note that our choice ρδ,p* = 1 generally  overestimates the 
true value of ρδ,p*. This may imply that on the average the scaled statistic As underestimates the true 
apportionment degree. 
 
 It is now easy to make some observations concerning As. First if δ and p* are independent we note that  
As= nmAp/A. Similarly if σδ ≈ 0 or σp* ≈ 0 we note that in both cases As = nmAp/A. These correspond to 
situations where price is approximately uniform or the disparity  between demand and supply is more or less 
uniform, respectively. 
 
2.2. Analysis with standard statistical measures 
 
 One of the most common measures to test the fit between two distributions is the χ2-test. By using our 
notations this statistic is defined as 
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which under certain conditions follows the χ2-distribution with nm - 1 degrees of freedom. Note that here we 
use nm instead of nm - 1 degrees of freedom as an approximation since nm is in practical situations 
appropriately large. A price-weighted version of the statistic can be written as 
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 It can be shown see e.g. Rao (1973) that the distributions of this statistic can be approximated by weighted 
χ2-distribution. 
 
2.2.1. Relation to the apportionment degree in the unweighted case 
 
 We first write A as in (1), and 
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oij = tij + εij,  ∀i,j 
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 By using these notations we write the χ2-statistic in (3) as 
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2.2.2. Distribution of the weighted χ2-statistic 

 The price-weighted χ2-statistic in (2) can be written as a sum 
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       χ2(p*) ≈             (4) .a 2
bχ

 Now a and b can be solved from the first two moments of χ2(p*). The expected value is  
 

E(χ2(p*)) = 1. 
 
 For the variance we first note that the weights lie between the values 
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 We can now solve for a and b by equating the mean and variance of both sides in (4): 
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and 

2a2b = nm = T, say. )pp( 2*
max

2*
min +

 It follows that 

â  = T/2 

and 

b̂ = 2/t, 

where a  and b  are estimates of multiplier and degrees of freedom of the approximation (4), respectively. ˆ ˆ

2.2.3. A computational example 

 Assume that the target matrix is given in the Table 1. Then, for example, the target of the length of 430 cm 
and the top diameter of 160 mm logs is 28 objects. Assume that the actual output matrix is given in the  
Table 2. In fact the output matrix is obtained from the target matrix by randomly dropping 15 percent of logs 
from the target table. 

Table 1. Target matrix. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 28 16 58 45 45 192 

200 37 17 65 45 37 201 

240 17 49 37 44 55 202 

280 22 39 39 44 59 203 

340 19 30 47 54 52 202 

Total 123 151 246 232 248 1000 
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Table 2. Output matrix. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 23 12 52 39 41 167 

200 33 11 61 39 27 171 

240 12 39 30 38 49 168 

280 14 34 33 36 56 173 

340 8 30 42 47 44 171 

Total 90 126 218 199 217 850 

Table 3. Price matrix 1. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 100 103 105 108 109 525 

200 124 128 130 134 135 651 

240 144 148 151 156 157 756 

280 156 161 164 168 170 819 

340 160 165 168 173 174 840 

Total 684 705 718 739 745 3591 

 Next we investigate the fit between these two tables. The apportionment degree of these tables is A = 0.963. 
Since the value of the statistic is very close to 1 the fit between the two matrices is very good. The ordinary 
χ2-test statistic gives the associated p-value 0.176. This comparison also shows that the fit between the target 
and the observed matrices is very good. 

 We may also specify the price of each diameter and length combination of logs. Here we use two price 
tables denoted by P1 and P2. The price matrix 1 is given in the Table 3 and P2 is simply the matrix transpose 
of P1. The scaled price-weighted apportionment degrees are  = 0.947 and  = 0.982, respectively. 
It is easy to see that also in this case the fit is very good, however a slightly better fit is obtained when the 
price matrix P

)p(A 1s
* * )p(A 2s

2 is used. 

 The price-weighted versions  and  gave the associated p-values 0.152 and 0.242, respectively. 
This also indicates a slightly better fit attained when using the price matrix P

)p( *
1

2χ )p( *
2

2χ

2. 
 
3. A SIMULATION STUDY 
 
 In this section we conduct a simulation study to investigate the performance of the apportionment degree, 
χ2-test statistic and their price-weighted versions to measure the fit between target and output matrices.  
We take the target matrix in the Table 1 as a starting point. Next we randomly deleted 1%, 5%, 10%, 15%, 
20%, 25% 30%  and 40% in turn of the logs in the target table and this experiment is repeated 100 times at 
each percentage point. At each point the values of the apportionment degree, the χ2-statistic and their price-
weighted versions were calculated. For χ2-statistics also the associated p-values were calculated. 
 
 Then mean curves of  A,  and  are given in Figure 1a and mean curves of the p-values of χ)p(A *

1s )p(A *
2s

2, 

 and  are given in Figure 1b. From Figure 1a we observe that the average performance of the 

Apportionment degree A and its price-weighted versions  and  are approximately linear as a 
function of randomly generated missing values. The  average decrease is greatest for the Apportionment 
degree A. For price-weighted versions  and  the decrease is approximatelly the same, but the 

values computed for  are at somewhat higher level. It is remarkable that although the percentage of 
generated missing values is relatively high, the Apportionment degree indicates quite good fit. For example, if 
the percentage of generated missing values is as high as 40 % the average value of the Apportionment index 
is approximatelly 0.89 with very narrow range of values (see Figure 2 in the Appendix). Thus even large 
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(b) Mean curves of p-values of χ2,  and .)p( *

1
2χ )p( *

2
2χ

departures from the target table gave quite high values of the measure. This is not a very good property of a 
statistic, but it may make sense in practical applications where the values of the target table may not be 
possible to attain exactly. However, some kind of rough measure is needed to relate  the target table to the 
observed one. Note that this measure compares only the relative values of the observed and target tables. 
Therefore large departures in the absolute values may not be noticed. 
 

 
(a) Mean curves of A,  and . )p(A *

1s )p(A *
2s

Figure 1. Mean curves of the simulation study. 
 

 Statistically the χ2-statistic and its price-weighted versions performed better. When the percentage of 
missing values is 20 % or more, these statistics clearly reject the null hypothesis of the fit of the observed and 
target tables (Figure 1b). The performance of each of the χ2-statistics follows approximately the similar 
pattern (see also Figure 3 in the Appendix). 
 
 The simulation in this section was carried out by using R computing environment (see e.g.  

http://www.r-project.org/). 
 
4. CONCLUDING REMARKS 
 
 In this paper we study the use of the apportionment degree and the χ2-statistic and their price-weighted 
versions when measuring the fit of the output and target tables. This comparison shows that the apportionment 
degree clearly measures the difference in relative values whereas the χ2-statistic also observes the differences 
in absolute values. The idea of using prices as weights leads us to the use of the theory of index numbers for 
measuring the goodness of the bucking outcome which is a topic for future research. 
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APPENDIX 
 

 
 

Figure 2. Results of the simulation study for Apportionment degree and its scaled price-weighted versions. 
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Figure 3. Results of the simulation study of ordinary χ2-test statistic and its price-weighted versions. 
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In the harvesting technique prevailing in Scandinavia, tree stems are con-

verted into smaller logs immediately at harvest. Modern sawmills attempt

to operate according to customers’ special needs rather than simply minimize

production costs. Since the annual production of saw timber in Scandinavia

is in the tens of millions of cubic meters, proper measurement of the goodness

of the bucking outcome is of crucial importance. The outcome of the bucking

operation can be considered as a multidimensional table of tree species, qual-

ity grades, prices and length and diameter classes. The prevailing method of

measuring the outcome is the so-called Apportionment Index (AI), which is

calculated from the relative proportions of the observed and target tables. Re-

cently, some statistical properties of the AI have been studied and alternative

means of measuring the bucking outcome have been suggested (Nummi et al.,

2005 and Sinha et al., 2005). In this article we extend the definition of AI and

examine its limiting properties.

Key Words: Apportionment degree, Price-weighted index, Standardization, Moment inequalities

1. INTRODUCTION

Modern sawmills seek to develop their production strategies based on customer demands in

terms of the distribution of logs of various diameter-length specifications. The quality of the

1All results and computations presented in this paper were first published in the article: Sinha, B.K.,

Koskela, L., and Nummi. T. (2005). On a Family of Apportionment Indices and its Limiting Properties.

IAPQR transactions 30(2): 65-87.
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actual harvesting operation has mainly been measured by calculating the relationship between

the demand log distribution and the actual production distribution. A practice particularly

commonly adopted in Scandinavia is to measure the bucking outcome by the so-called Ap-

portionment Degree, or Apportionment Index (AI). This measure was introduced in forestry

by the Swedish mathematician Bergstrand in the mid-1980s, when the first steps were taken

in developing automatic bucking systems for forest harvesters. The main idea is to compare

the relative proportions of the demand and target distributions (e.g. Bergstrand 1989). While

there have been attempts to understand this index (Kivinen et al. 2005 and Nummi et al.

2005), a serious theoretical foundation is still lacking. Several alternatives to this measure are

proposed in Kirkkala et al. (2000) and Malinen and Palander (2004). Only recently, statistical

analysis of the AI has been initiated (Sinha et al. 2005).

Suppose that X∗ =
(
x∗ij

)
refers to the proportional output distribution and θ∗ =

(
θ∗ij

)
to the

proportional demand distribution, i.e. both X∗ and θ∗ refer to m× n matrices corresponding

to diameter-length specifications and the elements satisfy the conditions 0 < x∗ij , θ
∗
ij < 1 ∀ i, j

and
∑m

i=1

∑n
j=1 x∗ij =

∑m
i=1

∑n
j=1 θ∗ij = 1. Then the AI is defined as

AI = 1− 1
2

m∑
i=1

n∑
j=1

|x∗ij − θ∗ij |. (1)

A little reflection shows that AI can also be written as

AI =
m∑

i=1

n∑
j=1

min(x∗ij , θ
∗
ij), (2)

since
∑m

i=1

∑n
j=1 x∗ij =

∑m
i=1

∑n
j=1 θ∗ij = 1. The price-weighted version of AI is here denoted

by AIw and is defined as

AIw =
m∑

i=1

n∑
j=1

p∗ij min(x∗ij , θ
∗
ij), (3)

where P∗ =
(
p∗ij

)
refers to the m × n matrix of proportional price distribution corresponding

to diameter-length specifications.

We organize the rest of this paper as follows. In Section 2, we suggest generalizations of AI for

both versions: unweighted and price-weighted. We also discuss appropriate standardizations

for each of these measures. In Section 3, we first present some results related to moments

and moment inequalities, then apply these inequalities to derive various properties of the

standardized generalized measures of AI. A numerical illustration of the theoretical results

is considered in Section 4. Section 5 discusses further issues in the standardization of the

measures and presents additional pertinent results. In Section 6 we provide some concluding

remarks and outline further work in this direction.
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2. GENERALIZATION AND STANDARDIZATION OF THE MEASURES

2.1. On a Family of AI’s and its standarization

The traditional Apportionment Index (2) can be seen as a special case in the context of a

whole family of AI’s defined as

AI(k) = k

√√√√ m∑
i=1

n∑
j=1

[
min(x∗ij , θ

∗
ij)

]k = k

√√√√ m∑
i=1

n∑
j=1

d∗ij
k, 0 < k < ∞, (4)

where d∗ij = min(x∗ij , θ
∗
ij). It is easily seen that the traditional AI is simply a special case of

AI(k), i.e. AI(1) = AI.

Generally, AI(k) cannot be interpreted on the same scale as the original Apportionment

Index. To make the measures comparable, we must consider how to standardize AI(k). The

minimum value of AI is reached when all the logs fall into the diameter-length class of the

smallest target proportion. This kind of scenario is referred to as a perfect mismatch. Clearly,

AI(k) → 0 ∀ k > 0 as d∗ij → 0 ∀ i, j, and this happens when min(θ∗11, . . . , θ
∗
mn) → 0. The

maximum index value is reached as the output and target matrices are equal (perfect match),

i.e. d∗ij = θ∗ij ∀ i, j. It is then straightforward to show that in the case of a perfect match

AI(k) = k

√∑∑
θ∗ij

k, k > 0, and more generally,

0 ≤ AI(k) ≤ k

√√√√ m∑
i=1

n∑
j=1

θ∗ij
k, k > 0. (5)

The standardized generalized Apportionment Index can now be defined as

AIs(k) =

k

√
m∑

i=1

n∑
j=1

d∗ij
k

k

√
m∑

i=1

n∑
j=1

θ∗ij
k

=
AI(k; d∗)
AI(k; θ∗)

, k > 0. (6)

The above notations AI(k; d∗) = k

√∑∑
d∗ij

k and AI(k; θ∗) = k

√∑∑
θ∗ij

k will be intensively

used in the sequel.

2.2. On a Family of Price-weighted AI’s

In a similar manner, the price-weighted apportionment measure (3) can be generalized into

a whole family of price-weighted Apportionment Indices defined as

AIw(k) = k

√√√√ m∑
i=1

n∑
j=1

p∗ij
[
min(x∗ij , θ

∗
ij)

]k
, 0 < k < ∞. (7)
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Again, it is easily seen that AIw(1) =
m∑

i=1

n∑
j=1

p∗ijd
∗
ij = AIw. This time, using the same

arguments as above, it turns out that

0 ≤ AIw(k) ≤ k

√√√√ m∑
i=1

n∑
j=1

p∗ijθ
∗
ij

k, k > 0, (8)

and the standardized price-weighted generalized Apportionment Index can be defined as

AIw
s (k) =

k

√
m∑

i=1

n∑
j=1

p∗ijd
∗
ij

k

k

√
m∑

i=1

n∑
j=1

p∗ijθ
∗
ij

k

=
AIw(k; d∗)
AIw(k; θ∗)

, k > 0. (9)

The notations AIw(k; d∗) = k

√∑∑
p∗ijd

∗
ij

k and AIw(k; θ∗) = k

√∑∑
p∗ijθ

∗
ij

k above will be

intensively used in the sequel. Note that in a case of equal prices, i.e. p∗ij = 1
mn ∀ i, j, the

standardized versions of the traditional and the price-weighted indices are equal, i.e. AIw
s (k) =

AIs(k).

Illustrative examples for these computations are given in Section 4.

3. LIMITING PROPERTIES OF THE MEASURES

3.1. Moments of a discrete distribution and Liaponouv’s inequality

Let Y be a positive-valued discrete random variable with finite moments having the distri-

bution [(yi, πi) | 1 ≤ i ≤ T ], where πi is the probability associated with the value yi. The kth

(k > 0) moment of Y is

γk = E(Y k) =
T∑

i=1

yk
i πi. (10)

Recall that Liaponouv’s inequality states that

γ1 ≤
√

γ2 ≤ 3
√

γ3 ≤ 4
√

γ4 ≤ . . . i.e., γ
1/k
k ↑ in k > 0. (11)

Further, it is known that for a positive-valued discrete random variable Y with the above

distribution

k
√

γk = k

√√√√ T∑
i=1

yk
i πi =



min(yi) as k → −∞
HM as k = −1

GM as k → 0

AM as k = 1

max(yi) as k → ∞

, (12)

where HM , GM and AM refer to the harmonic mean, geometric mean and arithmetic mean

of y-values, respectively.
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3.2. Relation of the Apportioment Index to moments of a discrete distribution

The above aspects of moments and moment inequalities will be useful in our subsequent

analysis. To see this, we first note that AI(k; d∗) = k

√∑∑
d∗ij

k bears a relation to γk for

discrete distribution if we can specify a probability distribution. By taking the probablities as

πij = 1
mn , we may write

γk(d∗) =

m∑
i=1

n∑
j=1

d∗ij
k

mn
. (13)

We here use the notation γk(d∗) for the kth moment to emphasize that it is computed for the

d∗ij-values. By Liaponouv’s inequality we now get

k
√

γk(d∗) =
k

√√√√√ m∑
i=1

n∑
j=1

d∗ij
k

mn
↑ in k > 0 i.e.,

AI(k; d∗)
k
√

mn
↑ in k > 0. (14)

In the case of the price-weighted index AIw(k; d∗), the proportional price distribution may

very well serve as a probability distribution, since 0 < p∗ij < 1 for all i, j and
∑∑

p∗ij = 1.

Writing the generalized price-weighted measure as AIw(k; d∗) = k

√∑∑
p∗ijd

∗
ij

k = k
√

γk(d∗; p∗),

Liaponouv’s inequality gives

AIw(k; d∗) = k
√

γk(d∗; p∗) ↑ in k > 0. (15)

The notation γk(d∗; p∗) is used here to emphasize that the kth moment is computed for the

d∗ij-values taking prices as the corresponding probabilities. The above result also holds for

AIw(k; θ∗) = k

√∑∑
p∗ijθ

∗
ij

k = k
√

γk(θ∗; p∗).

3.3. On the properties of the non-weighted measures

We first refer to the standardized measure in (6) and rewrite it as

AIs(k) =
AI(k; d∗)
AI(k; θ∗)

=

k

√
m∑

i=1

n∑
j=1

d∗ij
k

k

√
m∑

i=1

n∑
j=1

θ∗ij
k

=

k

√
m∑

i=1

n∑
j=1

d∗ij
k

mn

k

√
m∑

i=1

n∑
j=1

θ∗ij
k

mn

=
k
√

γk(d∗)
k
√

γk(θ∗)
= k

√
γk(d∗)
γk(θ∗)

. (16)

Although AIs(k; d∗) is originally defined only for k > 0, the relation to the moments shows that

we may extend the range of definition AIs(k) to cover the entire real line, namely −∞ < k < ∞.

However, the extension may not have any statistical interpretation for k < 0. In view of (12),

we may deduce that

AIs(k) =
k
√

γk(d∗)
k
√

γk(θ∗)
→



d∗min

θ∗min
as k → −∞

HM(d∗)
HM(θ∗) as k = −1
GM(d∗)
GM(θ∗) as k → 0
AM(d∗)
AM(θ∗) = mnd̄∗ as k = 1
d∗max

θ∗max
as k →∞

. (17)
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In the above, we have used the abbreviations d∗min = min(d∗11, . . . , d
∗
mn), d∗max = max(d∗11, . . . , d

∗
mn),

HM(d∗) = mn∑ ∑ 1
d∗

ij

, GM(d∗) = mn

√∏ ∏
d∗ij and AM(d∗) =

∑ ∑
d∗ij

mn = d̄∗. Corresponding no-

tations are used for θ∗.

The traditional index can be expressed as

AI(k; d∗) = (mn)
1
k

k

√√√√√ m∑
i=1

n∑
j=1

d∗ij
k

mn
= (mn)

1
k

k
√

γk(d∗), k > 0. (18)

Before any extension to the range of AI(k; d∗) can be made, the nature of the function (mn)
1
k

for k < 0 needs to be studied. A closer look at the function shows that

(i) (mn)
1
k ↓ from 1 to

1
mn

for k ≤ −1,

(ii) (mn)
1
k ↓ from

1
mn

to 0 for − 1 ≤ k < 0 and

(iii) (mn)
1
k ↓ from ∞ to 1 for 0 < k < ∞.

(19)

Figure 1 illustrates the behaviour of (mn)
1
k for m = n = 5.
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(a) (mn)
1
k for k < 0 (b) (mn)

1
k for k > 0

FIG. 1. (mn)
1
k vs. k with m = n = 5

Although the quantity k
√

γk(d∗) is well-defined for −∞ < k < ∞, AI(k; d∗) has a discon-

tinuity point at k = 0. It is, however, a piecewise decreasing function in both (−∞, 0) and
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(0,∞) and it follows from (19) that

1
mn

k
√

γk(d∗) ≤ AI(k; d∗) ≤ k
√

γk(d∗) for k ≤ −1

and

0 ≤ AI(k; d∗) ≤ 1
mn

k
√

γk(d∗) for − 1 ≤ k < 0.

An extension of the range of AI(k; d∗) for −∞ < k < ∞ is hence possible also for AI(k; d∗).

We may now deduce that

AI(k; d∗) →



d∗min as k → −∞
HM(d∗)

mn as k = −1

0 as k → 0−
∞ as k → 0+

mnAM(d∗) as k = 1

d∗max as k → ∞

. (20)

Analogous limiting expressions can also be written for AI(k; θ∗). In this context, we refer to

Table 5 and Figure 2 in Section 4.

Remark 1 It is interesting to note that whereas both AI(k; d∗) and AI(k; θ∗) are discontinuous

at k = 0, the standardized measure AIs(k) is continuous everywhere, including k = 0. It is

readily seen that AIs(k) → GM(d∗)
GM(θ∗) as k → 0+. Further, it can be argued that the same limit

prevails as k → 0−.

3.4. On the properties of the price-weighted measures

The standardized price-weighted measure (9) can be rewritten as

AIw
s (k) =

AIw(k; d∗)
AIw(k; θ∗)

=
k
√

γk(d∗; p∗)
k
√

γk(θ∗; p∗)
= k

√
γk(d∗; p∗)
γk(θ∗; p∗)

. (21)

Hence, in view of (12)

AIw
s (k) = k

√
γk(d∗; p∗)
γk(θ∗; p∗)

→



d∗min

θ∗min
as k → −∞

HM(d∗;p∗)
HM(θ∗;p∗) =

m∑
i=1

n∑
j=1

p∗ij
θ∗

ij

m∑
i=1

n∑
j=1

p∗
ij

d∗
ij

as k = −1

GM(d∗;p∗)
GM(θ∗;p∗) =

m∏
i=1

n∏
j=1

d∗ij
p∗ij

m∏
i=1

n∏
j=1

θ∗ij

p∗
ij

as k → 0

AM(d∗;p∗)
AM(θ∗;p∗) as k = 1

d∗max

θ∗max
as k →∞

, (22)
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where HM(d∗; p∗), GM(d∗; p∗) and AM(d∗; p∗) refer to the price-weighted harmonic mean,

geometric mean and arithmetic mean, respectively. These means are computed for the values

d∗ij = min(x∗ij , θ
∗
ij) taking prices as the corresponding probabilities. Similarly, HM(θ∗; p∗),

GM(θ∗; p∗) and AM(θ∗; p∗) refer to the price-weighted means computed for the target values.

4. ILLUSTRATIVE EXAMPLES

4.1. Illustrations on the behaviour of the non-weighted measures

We now illustrate the behaviour of the non-weighted measures as a function of k for fixed

target and output matrices. The target matrix of Nummi et al. (2005) is used here and is

given in Table 1. The output matrix is obtained from the target matrix by randomly dropping

10% of logs in the target matrix (cf. Nummi et al. 2005) and is displayed in Table 2. We only

show the first four decimals, which explain the property of proportions not adding exactly up

to one. The matrix D∗ =
(
d∗ij

)
, where d∗ij = min(x∗ij , θ

∗
ij), is shown in Table 3.

TABLE 1.

Target matrix θ∗.

0.028 0.016 0.058 0.045 0.045

0.037 0.017 0.065 0.045 0.037

0.017 0.049 0.037 0.044 0.055

0.022 0.039 0.039 0.044 0.059

0.019 0.030 0.047 0.054 0.052

TABLE 2.

Output matrix X∗.

0.0289 0.0144 0.0622 0.0411 0.0456

0.0378 0.0067 0.0689 0.0467 0.0356

0.0167 0.0456 0.0344 0.0456 0.0589

0.0222 0.0400 0.0400 0.0444 0.0633

0.0178 0.0267 0.0478 0.0544 0.0544

TABLE 3.

Matrix D∗.

0.0280 0.0144 0.0580 0.0411 0.0450

0.0370 0.0067 0.0650 0.0450 0.0356

0.0167 0.0456 0.0344 0.0440 0.0550

0.0220 0.0390 0.0390 0.0440 0.0590

0.0178 0.0267 0.0470 0.0540 0.0520

To study the behaviour of AI(k; d∗), AI(k; θ∗) and AIs(k), it is necessary to make some com-

putations based on the target and D∗ matrices. These we show in Table 4. The computations

of the limits of the apportionment measures in (17) and (20) are reported in Table 5. Figures

2 and 3 are provided to illustrate the behaviour of AI(k; d∗) respective AIs(k) for some wide
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range of k. Figure 2 clearly shows that AI(k; d∗) has a discontinuity point at k = 0 and that it

approaches d∗min and d∗max as k tends to −∞ and ∞, respectively. Figure 3a shows, however,

that AIs(k) forms a nonsymmetric S-shaped curve as k runs through the whole range. Figure

3b takes a closer look at the measure at the interval k ∈ [−1, 1] showing that AIs(k) forms a

continuous curve with the limit GM(d∗)/GM(θ∗) as k → 0 (cf. Table 5).

TABLE 4.

Summary statistics computed from

the target and output matrices.

Statistics d∗ θ∗

min 0.0067 0.0160

HM 0.0293 0.0338

GM 0.0349 0.0371

AM 0.0389 0.0400

max 0.0650 0.0650

TABLE 5.

Behaviour of the generalized and standardized

non-weighted measures as k varies.

k AI(k; d∗) AI(k; θ∗) AIs(k)

−∞ 0.0067 0.0160 0.4167

−1 0.012 0.0014 0.8667

0 – – 0.9411

1 0.9719 1.0000 0.9719

∞ 0.0650 0.0650 1.0000

Remark 2 d∗max

θ∗max
≤ 1, and the equality holds if and only if x∗ijmax

≥ θ∗ijmax
, where ijmax denotes

the cell index of the largest target value.

Remark 3 It is observed in our computation that

d∗min

θ∗min

<
HM(d∗)
HM(θ∗)

<
GM(d∗)
GM(θ∗)

<
AM(d∗)
AM(θ∗)

<
d∗max

θ∗max

= 1,

though, in general terms, it is easily seen that each of the ratios is ≤ 1.

4.2. Illustrations of the behaviour of the price-weighted measures

To illustrate the behaviour of AIw
s (k; d∗) for different values of k, we use the same target

and output matrices as above and the price matrix presented in Nummi et al. (2005). The

price matrix is displayed in Table 6.

TABLE 6.

Price matrix P∗.

0.0279 0.0287 0.0292 0.0301 0.0304

0.0345 0.0356 0.0362 0.0373 0.0376

0.0401 0.0412 0.0421 0.0434 0.0437

0.0434 0.0448 0.0457 0.0468 0.0473

0.0446 0.0460 0.0468 0.0482 0.0485
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FIG. 2. AI(k; d∗) vs. k for a given target matrix θ∗ and output matrix X∗.
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ON A FAMILY OF APPORTIONMENT INDICES AND ITS LIMITING PROPERTIES 11

The computations for the minimum, maximum and price-weighted means for the matrices

d∗ and θ∗ are shown in Table 7. To examine the behaviour of AIw
s (k) we compute the limits

given in (22). These computations are reported in Table 8. We also provide Figure 4 to further

illustrate the behaviour of AIw
s (k) as k runs through some wide range of values. As was the

case with AIs(k), also AIw
s (k) forms a continuous nonsymmetric S-shaped curve. According

to the derivations in (22), AIw
s (k) → GM(d∗; p∗)/GM(θ∗; p∗) as k → 0. Figure 4 and the

computations in Table 8 verify this.

TABLE 7.

Summary statistics computed from the target

and output matrices with respect to price.

Statistics d∗; p∗ θ∗; p∗

min 0.0067 0.0160

HM 0.0302 0.0344

GM 0.0356 0.0376

AM 0.0394 0.0404

max 0.0650 0.0650

TABLE 8.

Behaviour of the standardized price-

weighted measure as k varies.

k AIw
s (k)

−∞ 0.4167

−1 0.8764

0 0.9458

1 0.9739

∞ 1.0000
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5. FURTHER STUDIES ON STANDARDIZATION OF THE MEASURES

5.1. On standardization of the non-weighted measure

So far in our study, the attainable minimum of AI(k; d∗) is taken to be independent of the

given target matrix. The independence follows from assuming that min(θ∗11, . . . , θmn) → 0,

i.e. that the smallest target value is indeed almost zero. Since the minimum corresponds to a

perfect mismatch, i.e. all the logs fall into the diameter-length class with the smallest target

value, it is easily seen that AI(k; d∗) → 0 only under the above assumption. Another approach

to standardize the measure would hence be to adjust the minimun of AI(k; d∗) on the given

target matrix. Suppose that θ∗ijmin
represents the smallest (positive) element in the target

matrix θ∗. Under a perfect mismatch AI(k; d∗) then reduces to

AI(k; d∗) = k

√
min(θ∗ij)k = θ∗ijmin

.

Adjusting the minimun of AI(k; d∗) on the given target matrix, the ”adjusted” standardized

non-weighted measure, AIs(k)adj., then becomes

AIs(k)adj. =
AI(k; d∗)− θ∗ijmin

AI(k; θ∗ij)− θ∗ijmin

, k > 0.

Defining d∗∗ij = d∗ij

θ∗ijmin

and θ∗∗ij = θ∗ij

θ∗ijmin

for all i, j, we may rewrite AIs(k)adj. as

AIs(k)adj. =

k

√
m∑

i=1

n∑
j=1

d∗ij
k − θ∗ijmin

k

√
m∑

i=1

n∑
j=1

θ∗ij
k − θ∗ijmin

=

k

√
m∑

i=1

n∑
j=1

d∗∗ij
k − 1

k

√
m∑

i=1

n∑
j=1

θ∗∗ij
k − 1

=
k
√

γk(d∗∗)− (mn)−
1
k

k
√

γk(θ∗∗)− (mn)−
1
k

. (23)

Recalling the behaviour of (mn)
1
k in (19), it is easy to see that (mn)−

1
k ↑ from 0 to 1 for

0 < k < ∞. Then,

limAIs(k)adj. →


GM(d∗∗)
GM(θ∗∗) = GM(d∗)

GM(θ∗) as k → 0+

mnd̄∗∗−1
mnθ̄∗∗−1

=
mnd̄∗−θ∗ijmin

mnθ̄∗−θ∗ijmin

= d̄∗−
θ∗ijmin

mn

θ̄∗−
θ∗

ijmin
mn

as k → 1

d∗∗max−1
θ∗∗max−1 =

d∗max−θ∗ijmin

θ∗max−θ∗ijmin

as k → ∞

. (24)

Notations d̄∗, d̄∗∗, θ̄∗ and θ̄∗∗ correspond to arithmetic means.

In Figure 5 we compare the two standardized measures AIs(k) and AIs(k)adj. for k > 0 and

the given target and output matrices. The figure shows that the measures are only slightly

different. Our computations support this conclusion, since the limiting values of AIs(k) and

AIs(k)adj. are the same as k → 0+ and k →∞ (see the values of AIs(k) in Table 5). However,

as k tends to one, AIs(k)adj. → 0.9711 and AIs(k) → 0.9719.



ON A FAMILY OF APPORTIONMENT INDICES AND ITS LIMITING PROPERTIES 13

0 10 20 30 40 50

0.
96

0.
97

0.
98

0.
99

1.
00

k

A
I s

(k
) a

dj
.

AIs(k)
AIs(k)adj.

FIG. 5. AIs(k) and AIs(k)adj. vs. k

Remark 4 As noted in Remark 2, when x∗ijmax
≥ θ∗ijmax

, then d∗max = θ∗max and hence AIs(k)

and AIs(k)adj. are equal to 1 as k →∞.

5.2. On standardization of the price-weighted measure

Assuming that all target values are positive, AIw(k; d∗) achieves its minimum as x∗ij → 1 for

the smallest zij = p∗ijθ
∗
ij and x∗ij → 0 for all other values. The value of AIw(k; d∗) then equals

the smallest zij , which will be denoted in the sequel by zijmin
. Following the derivations in

Section 5.1, we now define the ”adjusted” price-weighted standardized measure, which can be

written as

AIw
s (k)adj. =

AIw(k; d∗)− zijmin

AIw(k; θ∗ij)− zijmin

k > 0.

By rewriting AIw
s (k)adj. as

AIw
s (k)adj. =

k

√
m∑

i=1

n∑
j=1

p∗ijd
∗
ij

k − zijmin

k

√
m∑

i=1

n∑
j=1

p∗ijθ
∗
ij

k − zijmin

=
k
√

γk(d∗; p∗)− zijmin

k
√

γk(θ∗; p∗)− zijmin

, (25)
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we may deduce that

limAIw
s (k)adj. →


GM(d∗;p∗)−zijmin

GM(θ∗;p∗)−zijmin
as k → 0+

AM(d∗;p∗)−zijmin

AM(θ∗;p∗)−zijmin
as k → 1

d∗max−zijmin

θ∗max−zijmin
as k → ∞

. (26)

Overall, little difference is seen between the two standardized measures AIw
s (k) and AIw

s (k)adj.

for k > 0 and the given matrices. The computation of the limits of AIw
s (k)adj. in (26) give

0.9452, 0.9736 and 1.000 for k → 0+, 1 and ∞, respectively. A comparison of these values to

those of AIw
s (k) in Table 8 reveal, however, that the measures differ slightly even for the case

k → 0+.

Remark 5 Also for the price-weighted measure d∗max = θ∗max, when x∗ijmax
≥ θ∗ijmax

. In such

a situation both AIw
s (k) and AIw

s (k)adj. are equal to 1 as k →∞.

6. CONCLUSION

Following the concept and definition of the Apportionment Index, as suggested by Bergstrand

(1990), we have here undertaken a study of the extension of AI and an examination of its

limiting behaviour. This is a sequel to the recent studies reported in papers by Nummi et al.

(2005) and Sinha et al. (2005) on this subject. As is pointed out in Nummi et al. (2005), it may

be remarked that consideration of the cost of logs of different length-diameter combinations and

of varying qualities is essential in such studies. This calls for a modification to the definition

of AI and its generalizations. Results on the price-weighted version of the measure and its

extensions are given in this paper.

Several alternatives to the Apportionment Index are proposed in papers by Kirkkala et

al. (2000) and Malinen and Palander (2004). However, since the scaling of these alternative

measures differs from that of the original AI, the standardization of these measures needs to be

studied before the results can be compared e.g. to the traditional measure. The standardization

and generalization of the measures as well as the price-weighted considerations of the proposed

measures remain a topic for future research.

The introduction of the family of AI’s may raise the question of the optimal choice of k for

a given target matrix θ∗. Study in this direction is also left as a topic for future research.
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ON SOME STATISTICAL PROPERTIES
OF THE APPORTIONMENT INDEX
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ABSTRACT
The purpose of this paper is to initiate a statistical analysis of the Apportionment index, a measure used
in  the  context  of  forest harvesting  to  evaluate  the fit between demand  and supply distribution  of  logs.
There  have  been  some  attempts  to  understand  this  index,  but  a  serious  theoretical  foundation  is  still
lacking. We briefly review the available  literature and  then proceed to investigate the properties of  the
index from a distributional point of  view. This is mainly an exploratory article and we focus only on the
cases  of  two  and  three  log  classes,  i.e.,  locations.  In  the  case  of  two  locations  we  use  the  beta
distribution for the random relative output variables; with three locations the random relative outputs are
assumed to follow a singular  Dirichlet distribution. Using this formulation it is possible to understand the
statistical properties of the apportionment index.

Key words: Mean deviation, beta distribution, Dirichlet distribution, exchangeable distributions, median.

RESUMEN
El propósito de  este  trabajo  es  comenzar el análisis  estadístico del  índice  del  prorrateo, esta es  una
medida usada en el contexto de la tala en bosque para evaluar el ajuste entre la demanda y distribución
del  suministro  de  leña.  Ha  habido  algunos  esfuerzos  por  entender este  índice,  pero  se  necesita  una
base  teórica  seria.  Discutimos  brevemente  la  literatura  existente  y  procedemos  a  investigar  las
propiedades  del  índice  desde  un  punto  de  vista  distribucional.  Éste  es  fundamentalmente  un  artículo
exploratorio y sólo enfocamos los casos de dos y tres clases de  leña, es decir,  locaciones. En el caso
de dos clases usamos la distribución beta para las variables aleatorias relativas a  la salida (output) del
rendimiento; en tres locaciones al azar  se asume que los rendimientos relativos siguen la distribución
de  Dirichlet  singular.  Usando  esta  formulación  es  posible  entender  las  propiedades  estadísticas  del
índice del prorrateo.

MSC: 62P12.

1. INTRODUCTION

Modern sawmills attempt to develop their production strategies based on customer demands in terms of the
distribution of  logs of various diameter ­  length specifications. The quality of  the actual harvesting operation
has mainly been measured by calculating the relationship between the demand log distribution and the actual
production distribution. A very commonly adopted practice in Scandinavia is to measure the bucking outcome
by  the  so­called apportionment  degree,  or apportionment  index  (AI).  This measure was developed by  the
Swedish mathematician Bergstrand in the mid 1980s, when the first steps were taken in developing automatic
bucking systems for forest harvesters. The main idea  is  to compare the relative proportions of  the demand
and  target  distributions  (e.g.  Bergstrand  1990).  While  there  have been attempts  to  understand  this  index
(Kivinen et  al.  2003  and  Nummi et  al.  2004),  a  serious  theoretical  foundation  is  still  lacking.  Several
extensions of this measure are proposed in Kirkkala et al. (2000) and Malinen & Palander (2004).

  Our interest here is in the statistical analysis of the apportionment index AI. This kind of analysis may have
many potential applications in harvesting. For example,  in harvesting planning we may have many possible
output distributions (stands) and we should be able to select the optimal one for a given target. Further, we
may  have  many  possible  targets  and  we  wish  to  know  which  is  optimal  for  a  given  output.  A  proper
understanding of the statistical properties of this measure is thus of great importance.

  In Section 2 we initiate a statistical study of the AI based on the joint distribution of the random component
outputs in the output matrix.  In section 2.1 we take the analysis of the two log classes as a starting­point.  in
Section 2.2 we extend the analysis to the case of three locations and finally  in section 3 some observations
are made on the future course of action.

E­mail: 1bksinha@isical.ac.in
2laura.koskela@uta.fi*

3tan@uta.fi*

mailto:bksinha@isical.ac.in
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  Before  closing  the  section,  we  record  the general definition of  AI.  Suppose  X  refers  to  the proportional
output distribution and θ refers to the proportional demand distribution. Then the AI is defined as

AI = 1 ­ ∑∑ θ
i j

ijij |­X|
2
1 .                               (1)

  After some simple manipulations we can show that AI can also be written as

   AI = ∑∑
i j

min {Xij . θij}.      (2)

since 1X
i j

ij
i j

ij ∑∑∑∑ =θ= and min(a, b) =
2

|ba|
2

ba −
−

+ for two real numbers a and b.

2. JOINT DISTRIBUTION OF RANDOM OUTPUTS AND STATISTICAL ANALYSIS OF AI

2.1. The case of two locations

  Let  us  assume  for  simplicity  that  there  are only  two  locations,  labeled  “L1"  and  “L2",  and  their  relative
(i.e., proportional) demands are θ and 1 ­ θ, respectively. Let the relative random output generated at location
L1 be denoted by X so that in location L2 the output generated is 1 ­ X. By the definition the AI is given by the
formula (1) and in the case of two locations it can be written as

AI = 1 ­ | X ­ θ |.      (3)

  Because AI is now a random quantity we may look at the expected value of the AI given by the formula

      E(AI) = 1 – E [ | X ­ θ | ] .      (4)

  At this stage we note that the relative random output X in L1 is a random variable defined over [0,1] and this
explains the random nature of AI in (3). Our purpose is to maximize AI in some sense, since this will suggest
maximum apportionment. By reason of the stochastic nature of AI, one possibility would be to attain a heavy
right tail distribution for AI so that  it will tend to be probabilistically  large. In this paper, we use the notion of
maximization in the averaged sense, i.e., we aim at maximizing the expectation of AI in (4). This is equivalent
to minimizing E[|X­θ|]. Since  the mean deviation  is  least when  it  is  taken about  the median, our  goal  is  to
recommend  a  distribution  for  X  for  which  the  median  is  the known  target  value  of θ,  say θ0.  Since  X  is
distributed over  [0,1],  it  is natural  to express  its distribution as a member of  the family of beta distributions
(B(x;α,β)) introduced below by the density in (5).

        f(x; α, β) = xα­1(1 ­ x)β­1 / B(α, β); 0 < x < 1,                                             (5)

where B(α, β) is the beta integral defined for α > 0, β > 0. On this see e.g. Johnson et al. (1995), 2nd Edition,
pp. 210­211; Kotz and Johnson (1982), Vol.1, pp. 228­229. We may thus seek to use the beta distribution for
X with proper choice of the parameters α and β, determined by the condition that θ0 serves as the median of
the X distribution. In effect, we seek a solution for α and β, so as to satisfy

0.5 = dx),;x(f
0

0
∫
θ

βα .      (6)

  Since equation (6) does not have an unique solution, it is reasonable to introduce the condition

αβ / [(α + β)2(α + β + 1)] = V0,      (7)

since Var(X) = Var(1 ­ X). In the above, V0 is a pre­specified quantity. From (7), we may readily observe that a
solution to α exists provided that
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4
1

)1(4
1

)1()(
V

20 <
+β+α

≤
+β+αβ+α

αβ
= .

  However, equation (6) is not easy to solve analytically, even if it is expressed as a function of one unknown
quantity, say α ,  in view of the above consideration. In Table 1 we display solutions to α and β satisfying (6)
for selected values of V0 and θ0. Define

∆(θ; α, β) = E[| X ­ θ|], X ~ B(x; α, β).      (8)

  Since

∆(θ; α, β) = ∆(1 ­ θ; β, α),      (9)

in  Table 1,  we  present  values θ  up  to  0.5.  Moreover,  we also  display  the efficiency  ratio  Q ×100,  where
Q = 1/E(AI). The smaller the value of Q the better the degree of apportionment will be attained. In Figure 1,
we display Q × 100 values vs. V0 for selected values of θ0.

  The purpose of Table 1 is to demonstrate the specification of the parameters of the beta distribution for X
when the target (θ)  is specified, and we maximize the AI  in an averaged sense for a given value of Var(X).
Some of the findings are displayed in Figure 1.

  Figure 1  shows  that  for  a  specified  target  value θ0 of θ,  Q  (reciprocal  of  averaged  AI)  increases  in  V0.
In other words,  if we seek to be liberal (by allowing a larger variation in the X distribution by taking a higher
value of Var(X)),  then we will  tend  to achieve a poorer  apportionment on an average. From  the  figure we
can determine  the extent  of  variation  to be  allowed  in  the X distribution  to meet  any  specific  value of  the
averaged AI.

Table 1. Values of α, β and Q × 100 subject to (6) for a given θ and Var(X).

Var(X) = 0.01

θ  .051 .111 .151 .211 .251 .311 .351 .411 .451 .511

α .601 1.241 2.161 3.341 4.711 6.211 7.761 9.291 10.731 12.011

β 6.311 8.691 10.771 12.391 13.481 14.051 14.131 13.771 13.041 12.011

100Q  107.411 108.211 108.511 108.611 108.711 108.711 108.811 108.811 108.811 108.811

Var(X) = 0.05

θ  .051 .111 .151 .211 .251 .311 .351 .411 .451 1.51

α .271 .411 .561 .741 .941 1.161 1.381 1.601 1.811 2.01

β 1.421 1.711 1.931 2.111 2.231 2.301 2.301 2.251 2.151 2.01

100Q  117.611 119.711 121.011 121.811 122.311 122.711 122.911 123.011 123.111 123.11

Var(X) = 0.10

θ  .051 .111 .15 1 .211 .251 .311 .351 .411 .451 .511

α .181       .251 .311 .371 .431 .501 .571 .631 .701 .751

β .601 .691 .751 .791 .821 .841 .841 .821 .791 .751

100Q  129.011 132.011 134.011 135.411 136.511 137.311 137.911 138.311 138.511 138.511

Var(X) = 0.20

θ  .051 .111 .151 .211 .251 .311 .35 1 .411 .451 .511

α    .0731 .084 .092 .099 .101 .111 .111 .121 .121 .131

β   .111 .121 .131 .131 .131 .131 .131 .131 .131 .131

100Q  162.5 166.3    168.8    170.8 172.3 173.4    174.3     174.9 175.2 175.3
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         Figure 1. Graph showing Q × 100 vs. V0 for some selected values of θ
                                                              in the case of two locations.

2.2. The case of three locations

  We now pass on to a discussion for three locations with relative demands to be denoted by θ1, θ2 and θ3
subject to the total being 1. We will also denote the corresponding random relative outputs by the variables
X1,  X2  and  X3,  respectively.  Note  that  X1,  X2  and  X3  are  non­negative  random  variables  subject  to  the
normalizing constraint X1 + X2 + X3 =1. Therefore, as a natural generalization of  the beta distribution for two
locations, we here adopt 3­variate singular Dirichlet distribution to describe the joint distribution of the Xs. We
take the parameters of the Dirichlet distribution as α1 , α2 and α3 and denote the distribution by Dir[α1 , α2, α3]
and assume  (X1,X2)  to  follow  this  distribution,  unless  otherwise  stated.  For  the  sake  of completeness, we
display the density underlying Dir[α1 , α2, α3] below.

f(x1, x2; α1 , α2, α3) = 1
2

1
1

21 xx −α−α (1 ­ x1 ­ x2 )
α3−1

/ D(α1, α2, α3),

0 < x1, x2 < x1 + x2 ≤ 1,    (10)

where D(α1, α2, α3) = Γ(α1, α2 ,α3) / Γ(α1)Γ(α2)Γ(α3). Here Γ(α) refers to the standard Gamma integral defined

for α > 0 as ∫
∞

−α−

0

1x .dxxe See Johnson & Kotz (1972), pp 231­235; Kotz & Johnson (1982), Vol.2, pp. 386­387.

  This  time  our  requirements  are  fairly  stringent  so  far  as  attainment  of  the  absolute  maximum  of  the
expected AI is concerned. In the case of three locations the AI is given by the formula

AI = 1 ­
2
1

[ | X1 ­ θ1 | + | X2 ­ θ2 | + | X3 ­ θ3 | ]    (11)

and the expected AI is

E(AI) =  1 ­
2
1 [E[|X1 ­ θ1|] + E[|X2 ­ θ2 |] + E[|X3 ­ θ3|]].    (12)
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  Note that now X3 = 1 ­ X1 ­ X2 and θ3 = 1 ­ θ1 ­ θ2 but for simplicity we remain in the notations X3 and θ3.
To maximize (12) we need to minimize

ψ(α) =  E [ | (X1 ­ θ1)| ] + E [ | (X2 ­ θ2) | ] + E [ | (X3 ­ θ3 ) | ]    (13)

  We know that for any individual term above, minimization is achieved by taking the demand parameter θi as
the median of the corresponding output distribution of Xi. However, it is not possible to attain this feature for
all three terms simultaneously. To see this, we refer to Statement II in the Appendix.

  Note that in a Dirichlet distribution, each marginal distribution is beta. Hence in order for all the terms to be
simultaneously minimized  to attain  the least possible value corresponding  to  the median  in each case, we
must have

  (i) ),t,;(dx),;x(f5.0 11111
0

3211

1

ααθ∆=α+αα= ∫
θ

where
1

32
1t α

α+α
= ;

 (ii) ( ) ),t,;(dx,;xf5.0 22222
0

3122

2

ααθ∆=α+αα= ∫
θ

where
2

31
2t α

α+α
= ;

(iii) ( ) ),t,;(dx,;xf5.0 33333
0

2133

3

ααθ∆=α+αα= ∫
θ

where
3

21
3t α

α+α
= .

  Now, appealing to Statement II in the Appendix, we must have

θ1(α2 +α3) < (1 − θ1)α1; θ2(α1 + α3) < (1 − θ2)α2; θ3(α1 + α2) < (1 − θ3)α3.    (14)

  This pre­supposes that each θi  is less than 0.5, which will be assumed throughout.

  Summing over all the conditions and re­writing the inequality, we obtain

(θ1 + θ2 + θ3)(α1 + α2 + α3) < (α1 + α2 + α3),

i.e. (θ1 +θ2 +θ3) < 1 which is a contradiction. Therefore, we must have equality in each of the requirements above.
This means that

∫
θ

αα=
0

dx)t,;x(f5.0 (15)

is to be satisfied for a finite α while t = (1 ­ θ) ⁄ θ. This is again a contradiction, as indicated in the Appendix.

  Simultaneous  minimization  of  all  three  terms  in  (13)  to  respective  absolute minimum must  therefore be
ruled out. From now onwards, we assume θ1 ≤ θ2 ≤ θ3 without any loss of generity. However, a unique choice
of αis may be made by selecting them in the ratio of the θis and by equating the highest marginal variance
of the Xis to a given quantity V0.  In other words, we may start with [α, aα, bα], where a = θ2 / θ1 , b = θ3 /θ1
(1 ≤ a ≤ b), and seek to choose α using the variance requirement V0 on the largest of V(X1), V(X2) and V(X3),
i.e., on V(X3). We can compute the value of AI and hence that of Q and examine its behaviour for variations in
α for given (a, b), i.e. for given θ1, θ2 and θ3. In Tables 2, 3 and 4 we show the values of Q x 100 and ψ(α) in
(13) for different values of θ1, θ2 ,θ3 as a function of V0 (or α).

  Tables 2, 3 and 4 and also Figure 2 show that for higher values of V0, equal­demand distribution seems to
yield less satisfactory results. We should therefore look at this case more carefully.  In Table 5 we compare

the  relative  ratios  of  Qi  and Qj  by  using  the  measure RR(i,  j)  = %,100
)Q(Q

|Q­Q|

ji2
1

ji ×
+

where  indices  i  and  j
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correspond to the settings in Tables 2, 3 and 4, respectively. Table 5 and also Figure 2 reveal that there is
little  difference among  the  realized Q values  for different  demand distributions whenever  V0  is  appreciably
small. The comparison also shows that settings 1 and 2 likewise differ little, but a slight difference is obtained
for large values of V0. For settings 1 and 3, and also for settings 2 and 3, the difference is fairly large except
for notably small values of Vo.

  The values of Ψ(α) and Q × 100 for different values of θ1, θ2, θ3 as a function of V0 (or α).

Table 2. θ1 = 0.17, θ2 = 0.38, θ3 = 0.45

                           a =
1

2
θ
θ = 2.23529, b =

1

3
θ
θ = 2.64706

V0 α ψ(α) 100Q

.010 4.04 0.219 112.3

.020 1.93 0.312 118.5

.030 1.23 0.385 123.8

.040 0.88 0.447 128.8

.050 0.67 0.504 133.6

.075 0.39 0.625 145.5

.100 0.25 0.733 157.8

.125 0.17 0.831 171.1

.150 0.11 0.923 185.7

.175 0.070 1.011 202.1

.200 0.040 1.095 221.0

Table 3. θ1 = 0.1, θ2 = 0.45, θ3 = 0.45

           a =
1

2
θ
θ = 4.5, b =

1

3
θ
θ = 4.5

V0 α ψ(α) 100Q

.01 2.38 0.209 111.6

.02 1.14 0.296 117.4

.03 0.73 0.364 122.3

.04 0.52 0.422 126.8

.05 0.47 0.474 131.1

.075 0.23 0.588 141.6

.10 0.15 0.687 152.4

.125 0.098 0.778 163.7

.15 0.065 0.864 176.1

.175 0.041 0.946 189.8

.20 0.024 1.025 205.2
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Table 4. θ1 = ,
3
1

θ2 = ,
3
1

θ3 =
3
1

                 a =
1

2
θ
θ = 1.0, b =

1

3
θ
θ = 1.0.

V0 α ψ(α) 100Q
.01 7.07 0.215 113.7
.02 3.37 0.345 120.8
.03 2.14 0.426 127.1
.04 1.52 0.496 133.0
.05 1.15 0.560 138.8
.075 0.65 0.699 153.9
.10 0.41 0.823 170.0
.125 0.26 0.938 188.3
.15 0.16 1.045 209.5
.175 0.090 1.148 234.8
.20 0.037 1.247 265.8

Figure 2. Graph displaying Q × 100 vs. V0 for different settings in Example 2.1.
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Table 5. Relative ratio of Q values defined as RR(i,j) = %,100
)Q­(Q
|Q­Q|

ji2
1

ji ×

          where i and j refer to two different demand distributions.

V0 RR(1,1) RR(1,3)) RR(2,3)
.01 0.60 1.26 1.86
.02 0.95 1.95 2.89
.03 1.27 2.58 3.85
.04 1.58 3.21 4.79
.05 1.89 3.85 5.74
.075 2.69 5.60 8.29
.10 3.51 7.43 10.94
.125 4.38 9.58 13.94
.15 5.30 12.06 17.33
.175 6.30 14.96 21.21
.20 7.42 18.41 25.74

   The computations in this section were carried out using Mathematica (Wolfram, 1999) and R software (Venables
& Ripley 2002) environments. The software code is available from the authors on request.

3. DISCUSSION

  In  this  paper  we have  initiated a  statistical  study of  the Apportionment  Index  (AI)  by  considering  it  as  a
random variable and by seeking maximization of its average value. We have developed the necessary theory
and  computational  aspects  for  this  problem  in  the  case of  two  and  three  locations.  Our  results  rely  on  a
specification of the distribution of the underlying random variable(s) which is taken to be beta (Dirichlet). The
general case is yet to be taken up. There is also scope for a Bayesian analysis of this problem by considering
the target parameters (θ) to be random and taking appropriate priors for them.
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A P P E N D I X

STATEMENT I

  Define

∆(r; α, tα) =

∫

∫
−α−α

−α−α

−

−

1

0

1t1

r

0

1t1

dx)x1(x

dx)x1(x

 .    (16)

  Then ∆(r; α, tα) ↑ in t, ∀α > 0, ∀r ∈ (0,1).

Proof.

  Taking the first derivative and requiring it to be positive, we end up, after simplification, with the inequality
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which is equivalent to
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  Then, comparing term by term, we require
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which can be expressed as
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  We can now simplify the above and demand:
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  Note next  that on  the  left­hand side, xj ≤ rj, while on the right, xj ≤ rj, and  this  is  true  for all  j = 0, 1, 2,…
Therefore

left­side integral < rj
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  Hence the claim is settled.

  It thus follows that ∆(r; α, t1α) ≤ ∆(r; α, α) ≤ ∆(r; α, t2α), ∀t1 < 1 < t2, ∀α > 0, ∀r ∈ (0,1).

STATEMENT II

  With the ∆ function defined as in Statement I, ∆(r; α, tα) = 0.5 is possible only when t <
> (1 ­ r)/r, according as

r <
> 0.5 whatever be the value of α.

  A satisfactory analytical proof of Statement II has so far eluded us. However, we have carried out extensive
numerical computations and our results support the claim. In Table 6 we display some of  the computations
(see also Figure 3).

Figure 3.
Graph showing t(α) as a function
of α satisfying the equation

∫ =−
αα

−−
r

0

11 0.5dxx)(1x1
)t,(B

for some selected values of r

(r = 0.05, 0.1,… ,0.45).

The values of t0(r) = 1
r
1

−

are also indicated along the t­axis.
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Table 6. Table showing selected values of r and t for different values of α. The values of t0 (r) =
r
1 ­ 1

   are also shown in the table.

∫ =−
αα

−α−α
r

0

1t1 5.0dx)x1(x
)t,(B

1

r
α

  .05   .10   .15   .20   .25  .30 .35   .40 .45
0.2 3.642 2.240 1.919 1.647 1.465 1.331 1.226 1.139  1.065
0.4 7.787 4.126 2.883 2.247 1.855 1.585 1.386 1.231  1.105
0.6 10.583  5.310 3.544 2.655 2.117 1.754 1.491 1.290  1.131
0.8 12.340  6.068 3.973 2.923 2.290 1.866 1.560 1.329  1.147
1.0 13.513  6.579 4.265 3.106 2.409 1.943 1.609 1.357  1.159
1.2 14.344  6.942 4.474 3.238 2.496 2.000 1.645 1.377  1.168
1.4 14.960  7.213 4.629 3.337 2.560 2.042 1.671 1.392  1.175
1.6 15.433  7.421 4.750 3.413 2.611 2.075 1.692 1.405  1.180
1.8 15.809  7.587 4.845 3.474 2.651 2.102 1.709 1.414  1.184
2.0 16.113  7.721 4.923 3.524 2.684 2.123 1.723 1.422  1.188
2.5 16.670  7.967 5.066 3.615 2.744 2.163 1.748 1.437  1.194
3.0 17.048  8.134 5.163 3.677 2.785 2.190 1.766 1.447  1.199
3.5 17.320  8.255 5.233 3.722 2.815 2.210 1.778 1.454  1.202
4.0 17.526  8.346 5.286 3.755 2.837 2.225 1.788 1.460  1.204
5.0 17.817  8.475 5.361 3.803 2.869 2.246 1.801 1.465  1.208
6.0 18.011  8.561 5.411 3.836 2.891 2.260 1.810 1.473  1.210
7.0 18.151  8.623 5.447 3.859 2.906 2.271 1.817 1.477  1.212
8.0 18.256  8.670 5.474 3.876 2.918 2.278 1.822 1.479  1.213
9.0 18.338  8.706 5.495 3.890 2.927 2.284 1.826 1.482  1.214

10.0 18.404  8.735 5.512 3.901 2.934 2.289 1.829 1.483  1.215
20.0

t

18.701  8.867 5.589 3.950 2.967 2.311 1.843 1.492  1.219
t0 19.000  9.000 5.66667 4.00 3.000 2.33333  1.85714  1.50 1.22222
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