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Abstract

Positron emission tomography (PET) imaging is a unique method for studying

biochemical processes involved in living species. It provides quantitative infor-

mation about the processes at a cellular level, which is needed, for example in

diagnosis of a disease and the development of new drugs. Quantitative information

can be determined from PET images by extracting volumes of interest. In order

to collect large databases of the functional data derived from PET, new automatic

methods for image analysis are required. The delineation of PET images is a

challenging task due to noise and individual data contents in PET images. It has

not gained attention that it deserves.

This study proposes a new lossless image compression method and novel

approaches to delineate brain surfaces from PET brain images. First, a low com-

plexity lossless image compression method was developed for noisy PET brain

images. Next, a user-guided software using intensity values of image was devel-

oped and utilized to determine quantitative values from the PET brain images.

Next, a two-dimensional deformable model and the corresponding anatomical

references from MR images were applied to delineate cortical surfaces from PET

brain images. Deformable models are advanced delineation methods entailing

geometric shape and evolution rules, which connect the model to data providing

its adaptation to the salient features in an image. This method was able to improve

the registration alignment and correct differences between the anatomical and

functional structures. However, proper segmentation of volumetric PET images

required a new three-dimensional deformable surface model which was developed

in close collaboration with this study. It uses a global optimization to avoid the

initialization problem common with deformable models. The new method was

applied to extract surfaces from images in PET brain studies with 18FDG and 11C-

Raclopride radiopharmaceuticals. The delineation procedure was fully automatic,

repeatable and considerably faster than the entirely manual delineation methods

applied with PET images. Consequently, the coarse cortical structures for the

hemispheres were determined in an iterative way and no anatomical references or

user interactions were required in the process.

This study contributes novel approaches for semi-automatic and fully auto-
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matic surface delineation from PET brain images. In addition, an image compres-

sion procedure for PET brain images is proposed. These provide new possibilities

for developing fully automatic applications for neurological image analysis and

databases.

Key words brain surface extraction, volume of interest, deformable model, three-

dimensional image analysis, mid-sagittal plane, segmentation, compression
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Chapter 1

Introduction

I
MAGING is the methodology and technology which together provide data ac-

quisition and its representation as an image form. The last century produced

several imaging methodologies suitable for measuring biological structures and

their functions. These are known as medical imaging. The technological devel-

opment in recent decades has seen medical imaging widely applied all over the

world, opening up completely new possibilities to expand our knowledge about

living species and to apply it on a regular basis to disease diagnostics. Unfor-

tunately, the development has led to information explosion and, consequently,

difficulties to control, to classify, and to analyze the collected data. New advanced

models and methodologies are needed to accomplish these tasks properly.

The objective of medical imaging is to provide quantitative and qualitative

information on species for purposes of research and medical decision-making.

Medical imaging includes the measurement, reconstruction, analysis, and repre-

sentation of biological structures and processes as images. This is a challenge for

the computational methods applied. The information on images can be examined

qualitatively and quantitatively. Medical imaging is divided into structural and

functional imaging methods. Structural imaging aims to measure and to represent

the anatomical structures of the object. Such imaging methods are magnetic

resonance (MR) imaging and computed tomography (CT) X-ray imaging [Hor03,

KS01]. Both of they are suitable for studying living (in vivo) and dead (in vitro)

species. Functional imaging can provide information about the biochemical pro-

cesses occurring in a subject over time, and is a useful method for studying

1
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living species. Functional magnetic resonance imaging (fMRI) [FMR03] and

emission tomography (ET) are such methods. Emission tomography includes

single photon emission computed tomography (SPECT), also known as single

photon emission tomography (SPET), and positron emission tomography (PET)

imaging methods [UCL03]. There are also other methods available for structural

as well as functional imaging, but they are beyond the scope of this study, which

set focus on PET imaging.

Positron emission tomography provides quantitative information about the

studied function which allows comparison of different individuals. This makes

it possible to detect abnormalities present in functionality before the actual symp-

toms of a disease are visible and to follow its current stage in detail. Quantification

of cellular level functions also plays an important role in drug development in

the medical industry. However, extracting quantitative values from images is not

a straightforward operation. The image resolution and signal-to-noise ratio are

relatively low compared to the structural images. The complex data acquisition

and image reconstruction processes require advanced hardware as well as compu-

tational methods, which may be difficult to control. The properties of the studied

function may be highly individual, particularly in the case of the neurological

structures.

Quantification of functions from PET brain images can be performed by ex-

tracting the structures. Due to the nature of function and the properties of PET

images, automatic and accurate structure extraction is rarely possible. Structure

extraction is usually performed by manually drawing regions on image cross-

sections and using some low-level segmentation tools. With a large set of images,

possibly delineated by several clinicians, robust and accurate structure extraction

is a rather demanding and laborious task. For the automatic quantification of

functional images, the structure extraction method should be automatic. This

could improve the accuracy of the quantification of structures.

The objectives of the present study is to explore computational structure ex-

traction and related topics with PET brain images. The main interest is to find a

general and automatic procedure for delineating brain surfaces from PET images.



Chapter 2

Functional Positron Emission

Tomography

2.1 Introduction to Positron Emission Tomography

Imaging

P
OSITRON emission tomography (PET) is based on a radio-labeled biolog-

ically active compound, tracer, its detecting and a model. The model de-

scribes the kinetics of the tracer as it is involved in a biological process. The

process can be measured by registering the radiation emitted by the tracer and

calculating the tracer concentration. The final result is represented as a three-

dimensional image. Repeating the scan, a tissue function can be followed over

time. An overview example of PET technique is represented in Figure 2.1. A

good introduction to PET can be found in [UCL03], see also [KS01, Chapter

4.2.3] and [Bro95, Chapter 69].

All tissue functions are based on biochemical processes involved in cells. For

example, blood flow, membrane transport, metabolism and ligand-receptor inter-

actions are such processes. The physiological effect of processes can be studied

with PET imaging. The determination of biochemical functions is a complex

multidisciplinary task entailing data acquisition, image reconstruction, and image

analysis steps. Data acquisition in functional imaging requires advanced technical

equipment and trained staff. In addition, emission tomography methods require

3
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detector ring

imageprojection table (sinogram)

PET image reconstruction

Figure 2.1: Overview of positron emission tomography imaging. Data acquisition

and image reconstruction process for a single count is shown. A pair of photons is

registered as a count and stored into the sinogram. The image is reconstructed from

the sinogram.

a cyclotron unit for the required radio-isotope production. Image reconstruction

and analysis need good models and methods to extract information properly from

acquired data.

2.1.1 Acquisition Techniques for PET

In PET, a tracer includes an unstable nucleus which emits photons when being

transformed into a stable isotope. Photons are registered around the subject with

detectors which are positioned on a ring or detectors circulate around the object.

The registered photons are called counts. The counts are collected in a sinogram,

which is a two-dimensional table representing all projections. The field of view

(FOV) is the area inside detector ring where the counts can be registered. The

resolution of a PET scanner is defined as a full width at half maximum (FWHM)

distribution of a measured count.

In positron emission tomography, a released positron from an unstable nucleus

and an electron annihilate into two photons. The photons travel in almost opposing

directions. Registering the coincidence of two photons, a line where annihilation
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took place can be determined (Figure 2.1.) The acquired coincides, counts, are

stored in a sinogram. The radiation is specific for the applied radiopharmaceu-

tical. It originates only from the tracer administrated to species allowing exact

quantification of radioactivity concentration. This is a unique feature of PET.

The data acquisition process has several noise sources. Radioactive decay is a

random process, but with a large number of nucleus, it follows statistical Poisson

distribution. A released positron may travel a significant distance from the nucleus

before meeting an electron. Thus, the location of annihilation cannot be defined

precisely. In practice, the spatial resolution is limited to about three millimeters

[Bud95], [Ruo97, Chapter 2.2]. The spatial resolution of the collected data is

affected by scattering, accidental coincidence, variance in sensitivity of individual

detectors, and size and number of detectors.

2.1.2 Quantification in PET

Positron emission tomography provides a way to measure and quantify biochem-

ical processes. However, complicated natural systems are fairly difficult to model

properly with insufficient measurements and limited knowledge. An excessively

complex but insufficient model can easily lead to problems caused by the model

itself. It is better to keep the model of the system as simple as possible.

The compartment model is a simplified mathematical model for anatomical

and physiological systems [Ruo97, Chapter2.3]. The system under study can

be modelled by dividing it into separate blocks. The radioactive compounds

exchange between the blocks, and can accumulate in the cells. The accumulated

concentration of the tracer can be measured by the PET scanner. The two-block

model consists of the blood plasma and the cell blocks are shown in Figure 2.2

(a). The cell block can be divided into two parts, exchange and uptake. The three-

block model is shown in Figure 2.2 (b). The same models can also be applied to

the single photon emission tomography (SPET).

The pharmaceutical matters applied in positron emission tomography to label

compounds are 11C, 13N , 15O, and 18F . If possible, they should be connected to

the normal molecules involved in biochemical processes. FDG (fluoro-2-deoxy-

D-glucose) is the most used tracer in positron emission tomography, because the
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radioactivity

cell

blood
plasma

(a)

cell

free
radioactivity uptakeblood

plasma

(b)

Figure 2.2: Description model of metabolic radioactivity. a) A two-block model and

b) a three-block model.

radioactivity concentrates on the tissue studied and does not return to the blood

plasma.

The compartment model can be applied with a reference region approach

[GLHC97, AKK+99]. The image itself is used to derive the input for the method

instead of using the blood samples. For example, the block models can be applied

with two separate tissues, the target and reference areas. The reference area is

such that it has similar properties to the structure under study, except that the

radioactivity does not concentrate on the reference tissue. That property can be

utilized to solve the actual uptake concentration from the target area. The two-

block model is applied to the reference area and the three-block model to the

target.

It is possible and preferable to transfer image analysis operations to the pro-

jection space and perform calculations straight from sinogram data for accurate

quantification. For example, this approach was utilized in the study [KTJ+97].

The structures extracted from the corresponding MR images were transferred to

the observation space of the PET scanner for quantification of function.
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filtered
profile current image

domain filtering
frequency

profile
projection

back−projection

Figure 2.3: Filtered back-projection for a single projection profile. The profile is

projected back over the image at a given angle. The process is repeated for each profile

in the sinogram.

2.2 Image Reconstruction Methods for PET

The reconstruction from data to image is traditionally modelled by Radon trans-

form [Rus95, Chapter 9]. Reconstructing the image from its projections (sino-

gram) is to compute the inverse Radon transform. This is an ill-posed inverse

problem. One common solution for PET is to use the filtered back projection

(FBP) method, which was originally developed for the reconstruction of CT im-

ages [KS01, Chapter 3]. Each projection profile in the sinogram is transferred

to the frequency space, filtered, and returned to the spatial space. The filtered

projection is back-projected over the image at a given angle. The overview of FBP

for a single projection is represented in Figure 2.3. The FBP method is sensitive

to Poisson noise. The noise level can be reduced by filtering, but at the cost of

lowered image resolution. This is not a desirable feature with PET.

Another possibility is to apply statistical iterative methods to the reconstruc-

tion problem. With an iterative method the algorithm compares the image to

the measured data and improves the next iteration image so that the calculated

projections have a better correlation to the measured sinogram.

Maximum likelihood (ML) is an iterative method for trying to find the best

possible estimate1 [Moh87, Chapter 3.8]. With the maximum likelihood expec-

tation maximization (MLEM) method, an initial guess image is set for the first

image. The current image is forward-projected to projections and compared to

the original projections to determine the corrections for the next iteration. The

MLEM algorithm overview is shown in Figure 2.4. However, the MLEM tends

1A unified formalism for the estimation theory can be found in [Kar97].
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current image Final image

initial guess

corrections

sinogram

sinogram
calculated

forward−projection

Figure 2.4: MLEM process overview. At the beginning, the initial estimate image is

created. It is forward-projected to the projection space and compared to the original

projections to determine corrections. Corrections are updated to the current image.

The process is repeated until the current image meets the aimed quality criteria.

to increase the noise for each iteration. With Bayes methods, the prior default

distribution for the image is utilized for the MLEM iteration to reduce noise. Ap-

plied prerequisites (priors) may include anatomic image, analytic energy function,

and median root prior (MRP) [AR97, ARA98]. The MRP method assumes that

the most probable value of the pixel is close to the local median of surrounding

pixels.

Examples of FBP and MRP reconstructed images from the same FDG-PET

brain study and the same measurement are shown in Figure 2.5 (a) and (b) respec-

tively. The images are from the selected coronal, sagittal, and transaxial views,

near the middle area of the brain.

2.3 Properties of PET Images

The properties of reconstructed positron emission tomography images originate

from several sources in the imaging process [Bud95]. These can be divided

into those originating from the subject, applied data acquisition technique and

reconstruction method. In the image, the resolution and noise level are likely to

be the most important properties setting physical limitations what can be extracted

from an image. The resolution can be divided into spatial and time resolutions.
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(a) (b)

Figure 2.5: A FDG-PET brain image reconstructed with (a) FBP method and (b)

median root prior method. From top, transaxial, coronal and sagittal cross-section

views.
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Whereas the spatial resolution defines the smallest physical size for the target

that can be recognized, the time resolution defines the smallest time period that

it is possible to capture from a metabolic process. Both ultimately depend on the

scanner hardware applied. However, the complex reconstruction process applied

may significantly affect the spatial resolution and the noise level of a final image.

For example, the conventional FBP method produces artifacts in the reconstructed

images which can be seen around the target on the FBP reconstructed image in

Figure 2.5 (a).

The size of a measured target may be smaller than the smallest measurable unit

of a scanner. In a partial volume effect (PVE), a single voxel in an image includes

data from several tissues. It produces systematic errors in estimated quantitative

physiological parameters. In a spill-over, the higher radioactivity in target area

spreads to the surrounding tissues. As a consequence, the surrounding tissues

have a higher radioactivity concentration than they should have. This should be

taken into account with accurate regional image analysis. These are delicate topics

in functional imaging research at present waiting for proper solutions [Iid02].

Scanning a living species may pose several practical problems. To avoid

unnecessary radiation dose, the amount of the pharmaceutical should be as low

as possible to recognize the object. With many PET brain studies, the subject

should be alert during the scan to follow a desired function. Any physical move-

ments in the field of view cause distortions in the data collected during the scan.

Depending on the study, scanning may take a long time, up to an hour, increasing

the likelihood of movement. Emotional studies may cause unwanted reflexes.

Illnesses may be difficult with respect to physical actions. The subject inside the

field of view may be fixed to avoid physical movements. The head is normally

fixed by some supporting material, however, it cannot fully prevent movements.

Tighter fixing is inconvenient and may disturb the actual functional study.

To summarize, the properties of positron emission tomography images pose

a real challenge for any attempts to analyze images in a robust, accurate and

automatic way. The contrast, noise and resolution in images are the most im-

portant properties to be considered when developing new methods for analysing

PET images.



Chapter 3

Computational Methods for

Neurological Images

3.1 Atlases and Coordinate Systems for Brain Im-

age Analysis

A
LL human brains have the same main anatomical structures: cerebrum,

cerebellum, and ventricles [Gra80, Chapter 7]. The brain is divided into the

left and right hemispheres, which are connected. The cerebrum consists of grey

matter and white matter structures. Grey matter or cortex is an outer part and it is

an individually convoluted tissue, a few millimeters thick. Figure 3.1 represents

the main structures of the human brain. These structures provide a guideline for

neurological studies. The brain surface can be applied to identify the brain struc-

ture including all the sub-structures. For a brain study, the hemispheres need to

be coarsely separated in a brain image. This can be done by determining the mid-

sagittal plane of the brain. Automated approaches can be found in the literature

based on cross-correlation of the intensity values between the hemispheres and

the symmetry of brain boundaries [AKK97, LCR01].

11
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cerebellum

cerebrum

brain surface white matter surface

white matter

gray matter

Figure 3.1: Mid-sagittal sketch of anatomical human brain structures. Cerebrum

including grey matter and white matter tissues and cerebellum are represented.

3.1.1 Brain Atlases for Neurological Imaging

A brain atlas is a representative image, where the common anatomical structures

of brain are represented. Brain mapping methods try to transform individual

images into the atlas space to allow the direct comparison of images. Existing

brain atlases are based on the anatomical structures of the brain. Structures are ob-

tained from post mortem studies or magnetic resonance images. Some individual

variances are removed from the atlas, because they could disturb brain mapping

process.

The Talairach and Tourneax brain atlas and coordinate system

The Talairach and Tourneax (T&T) brain atlas is widely applied to brain image

fusion and brain mapping [Tal88]. It is created on the basis of the sliced brain from

a dead female adult. Due to individual nature of the brain structures, the use of one

subject as a representative of others is not generally a good idea. Nevertheless, the

Talairach and Tourneax proportional brain atlas is widely applied in brain mapping

research. It was the first proper brain atlas commonly accepted for clinical use
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AC−PC line

VAC line VPC line

AC

PC

1

2

3
4

5

6
7
8

10
11
12

9

A C D E F G H IB

Figure 3.2: Proportional grid of the Talairach stereo-tactic coordinate system. The

grid is overlayed over the earlier sketch (Figure 3.1), which was slightly rotated.

The Talairach coordinate system is based on anteriour commisure (AC) and posterior

commisure (PC).

and, hence it has attained a reference status.

Definitely the most important contribution of the work of Talairach and Tour-

neax is the underlying idea how an individual brain is mapped to the atlas. The

T&T coordinate system is based on the anteriour commisure (AC) and posteriour

commisure (PC) which exist in every normal subject’s brain. These landmarks

define three lines, the AC-PC line, the vertical anteriour commisure (VAC) line

and the vertical posteriour commisure (VPC) line. From these baselines and the

current outer surfaces, the brain is proportionally split to labelled areas. Figure

3.2 presents the landmarks, baselines, and the grid positioned on the previously

introduced sketch in Figure 3.1. In the third dimension, the left and the right

hemispheres are split similarly to get the full three-dimensional grid for the brain

structure.
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MNI brain atlases

The Montreal Neurological Institute (MNI) has created brain atlases which are

more representative of the population than the Talairach and Tourneax atlas. The

first MNI305 brain atlas was created from 305 normal magnetic resonance scans

[ECM+93]. It was included in the SPM96 distribution [SPM03]. The newer

ICBM152 atlas image is the average of 152 normal magnetic resonance scans.

The scans have been matched to the MNI305 with the nine parameter affine

transformations. It is the standard template in the SPM99 software package and

International Consortium for Brain Mapping (ICBM) [SPM03, ICB03]. Un-

fortunately, the MNI atlas images slightly differ from the Talairach atlas image.

The MNI atlases appear to be slightly larger than the Talairach atlas. This way

cause inaccuracies of image analysis in MNI space if the MNI descriptions are

not available. The Talairach descriptions are difficult to transform to the MNI

space.

Applications for brain atlases

Brain atlases can be applied to segmentation, coregistration and labelling of new

brain images. They provide relevant information about the structures to be identi-

fied from new images. For example, the Talairach proportional atlas is applied to

extract brain structures from single photon emission tomography (SPET) images

in the article [MDB+94]. The anatomic structure is delineated for regions of in-

terest (ROIs) in the atlas and transferred to the image, which is set in the Talairach

coordinate grid system.

The Talairach and Tourneaux atlas image with the coordinate system provides

a map of the general brain structures. With the labels, this is an efficient tool

for many problems arising in the field of brain mapping. However, complex

structures, such as the cortex, require more precise description. Highly individual

cortex might be better handled separately from the other brain structures. Brain

atlases can be dedicated to a disease-specific purpose [TMT01].
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Figure 3.3: Overview of image fusion. At first, a mapping function between images

(image 1 and image 2) is determined. This can be linear or non-linear function. Then,

the image data (image 1) are transformed into the reference image space (image 1’).

Image representation is the physical appearance of the image data on a display or

printer. The images need to be re-sampled according to the output hardware.

3.2 Fusion of Neurological Images from Different

Modalities

Brain images originating from different acquisition techniques need to be brought

into the same spatial and intensity space. Differences in resolutions and intensities

need to be removed in order to compare content of images. These differences are

caused by the acquisition techniques themselves and different standards for han-

dling and representing image data [KIMW00]. In fusion, conventionally, images

originate from different imaging modalities for the same individual. Fusion can be

divided into a coregistration and visualization of images. Visualization of images

includes re-sampling and physical representation methods for images. Physical

representation includes the methods for preparing the digital data for conversion

into analog form, which may have several limitations such as limited contrast.

Figure 3.3 gives an overview of image fusion.

Image coregistration, or registration, is a fundamental operation to find sim-

ilarities between two images. With automatic approaches, image registration is

formed as an optimization problem. Optimization is the act of obtaining the

best result under given circumstances [Rao78, Page 1]. The aim is to minimize

or maximize the desired property, which is formed as an objective function. It
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provides a quantitative measure to compare the similarity of two images. A

maximum of this similarity measure gives a solution for the registration prob-

lem. However, in general, a similarity measure is difficult to define and highly

application dependent. Reviews of image registration can be found, for example,

in [Bro92, MV98, HBTL02].

The coregistered images are brought to the same coordinate space by re-

sampling the images applying the determined transformation parameters. Trans-

formations can be divided into the rigid-body and non-rigid methods. A rigid-

body transformation includes translations and three rotations for each dimension.

Translations refers to the straight movements in coordinate space and rotations

defines angles how to rotate data around the coordinate axis. A non-rigid transfor-

mation includes a rigid-body transformation as the first step. Scaling defines the

changes in the size of the data for each dimension. Affine transformations include

rotation, scaling, translation and shearing [PS85, Chapter 1].

The nine parameter rigid-body transformation can be formed as a matrix oper-

ation [FvDFH91, Chapter 5]. The right-handed coordinate system is often applied

to matrices. The order of the multiple operations affects the final result and the

special cases need to be taken into account.

3.3 Registration Methods for Neurological Images

Brain images are challenging for automatic image registration methods because of

their highly individual structures and functions. Different acquisition techniques

produce fundamentally different images, which may contain only little usable in-

formation for establishing a correspondence between images. In medical imaging,

registration problems can be divided into four categories based on subject and

modality [HBTL02]. The categories are represented in Table 3.1.

The overall idea to obtain a registration is to find appropriate transformation

parameters for the image to be transformed into the reference image space. At

first, initial parameters are selected and applied to the image. Then, the similarity

function is calculated between the new image and the reference image. If it is not

a maximum of the similarity, transformation parameters are updated for the next

iteration. When the maximum for the similarity function is found, images are in
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Table 3.1: Four types of image coregistration problems with subjects and scanning

devices (modalities).

modality

subject intra inter

intra images of the same subject ac-

quired in the same modality

images of the same subject across

different modalities

inter images of different subjects in the

same modality

images of different subjects across

different modalities

coregister and the transformation parameters are determined for the image.

3.3.1 Registration Categories for Brain Images

Intra-subject, intra-modality

Alignment of brain studies in the same subject acquired in the same modality can

be matched based on an extrinsic coregistration method. An extrinsic method

relies on an external marker or references in the scanner space. It assumes that

the distance between the markers is the same in both the images. With the same

scanner and the same subject, this can be done accurately. In other cases, the

image content needs to be considered by using an intrinsic method.

Intra-subject, inter-modality

Intrinsic methods can be divided into feature-based and voxel-based methods.

Features are common geometric properties existing in images to be applied to

determine a coregistration. A feature-based method may be based on landmarks

or surfaces present in images. A landmark is the point that can be identified from

both the images to be coregistered. A mapping between the images is determined

based on the landmarks by minimizing a penalty function. For example, the least-

squares fitting of two three-dimensional point sets is presented in [AHB87]. In

practice, the number of landmarks is rather limited and the complete description
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of a complex elastic mapping of brain images may not be feasible. However,

manual landmark-based methods are widely applied in clinical practice because

of their simplicity and easy understandability.

Surface-based coregistration methods are more redundant than methods based

on landmarks; they use the complete structures instead of a limited set of pre-

defined points. An algorithmic overview of surface registration techniques for

medical imaging can be found in the article [AFP00]. One popular method with

PET brain images is the hat and head method [Pel94]. It fits an external sur-

face ”hat” from the anatomical image to the surface ”head” from the functional

image by applying the maximum likelihood estimation. The implementation of

the method provides convenient interactive control for the registration process

[Ero98]. In the past, low computational complexity was also a significant feature.

Image coregistration based only on the outer surfaces of the brain might not

provide an optimal mapping for the inner structures.

A voxel-based method maps data from one voxel to another voxel. Three

widely applied examples applying the voxel classification of brain images are au-

tomated multi-modality image registration (AMIR), automated image registration

(AIR), and statistical parametric mapping (SPM) methods [ABH+95, WMC93,

FAF+95, AF97]. All provide fully-automated coregistration and are applied to

registration problems in practice with functional and anatomical images. The

evaluation of the SPM and AIR coregistration methods with the PET images

can be found in [KAPF97]. Both methods were able to solve the MR to PET

coregistration problem for PET images.

With the AMIR method, the head contour is first segmented from the MR im-

age. Then the segmented head volumes are classified using the K-means algorithm

[JD88]. The registration is based on assumptions that spatially corresponding

PET voxels are expected to have similar values. The variance of the PET voxel

values within each connected component is minimized. The method was primarily

developed to register MR and PET images, but has successfully been applied to

other modalities.

The AIR method uses a cost function for measuring the MR and PET misreg-

istration. The underlying assumptions are the same as with the AMIR method.

The aim is to find a transformation matrix which maps all the MR voxels with the
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same intensity value to a set of similar PET voxel intensity values.

The SPM coregistration algorithm transforms the MR image into the spatial

and intensity space of a representative PET image. The MR image is classified

into grey matter, white matter, cerebrospinal fluid and background voxels. Then,

the MR image is fitted to an MR template image by using 12-parameter affine

transformations. Voxel intensities of grey matter and white matter of the fitted

image are modified to correspond to the voxels in the PET image. This image is

then mapped to the original PET image.

Inter-subject, intra-modality

The intrinsic methods can be applied to the alignment of studies of different

subjects in the same modality. The individual variations need to be mapped to

a template image, which may be one image from the set studied or an atlas image.

The straight forward way is to remove individual details by smoothing the images

before determining the transformation parameters. This could be an appropriate

approach for a statistical group studies.

Inter-subject, inter-modality

The last category, alignment of studies of different subjects across different modal-

ities requires advanced methods due to individual variations and differences be-

tween modalities. Determination of transformation parameters requires the appli-

cation of non-linear methods. The registration of functional images can indirectly

be done by using the transformation obtained from the anatomical images. A

template image or a brain atlas can be used as the link between the images.

3.4 Brain Warping Methods for Non-Linear Image

Fusion

Brain warping combines advanced techniques from image segmentation, brain

image registration and brain atlases to help the neurological image analysis. It

focuses particularly on methods that apply elastic non-linear registration methods
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[TT99, Chapter 1]. Three-dimensional elastic methods has been under active

study for more than a decade, see for example [BK89]. The aim is to register

an individual brain image to some template brain image to allow comparison

of brain structures from different individuals (inter-subject). A template brain

image may be selected from images studied, or it may be an average image from

a representative set of images. A non-linear method is required due to individ-

ual variations of brain structures and different properties of imaging modalities.

Linear mapping is included in the process. As in image registration, warping

methods can be divided into feature-based and voxel-based methods. Whereas

voxel-based methods minimize some similarity metrics between images, feature-

based methods apply geometrical structures from images. A warping method

tries to find a good mapping between structures by modifying them elastically.

These elastic transformations for brain images have produced numerous different

methods [Tog99]. These methods are applicable to a variety of image mapping

problems arising from practice [TT00].

Statistical parametric mapping (SPM) is a widely applied approach based on

the registration method, introduced in section 3.3, for non-linear brain mapping

and image analysis [AF99]. The underlying idea is to map images to the template

image which is an average brain image or atlas. The normalized images are

then analysed statistically. The relatively strong smoothing as compared to the

resolution of functional images is also likely to remove important details from

data. This may affect the quantification of images and prevent quantitative studies

with small structures.

Sub-structures of the brain can be considered separately. One interesting

possibility for the warping of a cortical structure is to open the individual three-

dimensional convolutions to the less individual two-dimensional representation.

This way individual convolution is turned on the flat map as in [DvECS99]. The

fMRI activation patterns were mapped on the Visible Man atlas [oM03]. This

method provides an alternative way to model the cortical structure and to consider

elastic brain warping in two dimensions. With PET images, flattening of the corti-

cal structure is a different operation, because the individual cortical convolutions

cannot properly be seen in images.
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3.5 Databases and Compression of Brain Images

The atlas image and its labelling are not sufficient for an automated brain image

processing. A brain database can be applied to organize all the necessary infor-

mation. A database allows storing original data, images, parameters, additional

information, analysing models, atlas, and labelling. This way the amount of

redundant information can be minimized and the image retrieval performance

optimized. Such a database should be open and distributed to allow full utili-

sation of the collected data. This could be provided by applying the grid systems

[FKT01]. The term ”grid” refers to an emerging network-based computing

infrastructure. It provides security, resource access, information, and other ser-

vices to control sharing of resources. The resources can be dynamically applied

among the individuals and institutions with common interests. In practice, there

are many unsolved problems before a global virtual database can be established in

the field of medical imaging; to mention a few examples how to protect individual

information related to the data, how to cope with the differences between existing

imaging systems from different institutes, and how to solve ownership questions

of data.

Transmitting images over networks requires compression of image data. A

comprehensive overview of compression methods can be found in [GG92]. The

properties of PET images (Section 2.3) poses a real challenge for image com-

pression methods and hence application specific methods are usually applied. A

lossy dynamic image data compression method for medical images is presented

in [HF97]. They use a three-step technique to compress FDG-PET images and

a compression ratio greater than 80:1 was achieved. This method was integrated

into the database implementation for dynamic PET images [CFF00]. Because the

possible future applications of image data are unknown, the lossy compression of

data is not advisable with PET brain images. The reliability of quantification may

significantly decrease with lossy methods or even vanish. Due to the properties of

brain images, the construction of efficient and fast lossless compression is a rather

demanding task. The compression method should be fast, because the grid system

can distribute the image processing to available facilities in the network. General

compression methods designed for one-dimensional signals may not be optimal
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for three-dimensional (or four-dimensional) images without modifications. The

external knowledge from a target in images should be applied to improve com-

pression ratio and speed. For example, this can be done by first partitioning image

data in a suitable way based on the expectations regarding the data. The general

compression methods with optimal parameters can then be efficiently applied to

these partitions.

Inevitably, a large virtual database raises the question of how efficiently the

desired piece of information can be retrieved. A usual way is to use added textual

descriptions of the image and its structures. These descriptions are subjective and

hence they may have some variations. Moreover, future needs are difficult or even

impossible to predict. The contents of an image could provide a better way than

mere textual descriptions. With functional images, there are only a few studies

concerning the contents of image.

One interesting approach for a content-based functional image retrieval database

system (FICBDS) for dynamic PET images is described in the article [CFF00].

The system combines image storage, indexing and compression. The non-textual

content of an image is defined as a vector describing the activity concentration at

different time points in the image. The retrieval method provides the user with

easy access to the images in the database through an given example vector, which

can be obtained from an example image. However, the statistical and comparative

analysis of PET images is possible with the FICBDS, but not performed.

An earlier attempt at a content-based retrieval system (I2Cnet) from medical

images can be found in the article [OCV96]. The system provides query services

through WWW from different servers. The underlying retrieval method is based

on extracted regions from images, where the geometrical and textural descriptions

are interactively determined. A query can be created by using an example or

sketched descriptions. Then the query is compared to the database entries to find

the best matches.

3.6 Visualization of Brain Images

Image visualization includes the re-sampling data in the new representation for

further processing, displaying, and printing as shown in Figure 3.3. The re-
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sampling of matrices requires interpolation of data. The usual methods include the

nearest neighbour, linear (bi- and tri-linear with images), spline and sinc-function

interpolations. The sinc-function can be defined as follows [Wei03]:

sinc(x) =

{

1 ; x = 0,
sin(x)

x
; x 6= 0.

(3.1)

The choice of an interpolation method depends on the application requirements;

there is a trade-off between the speed and quality of the final result.

The representation of image data in two dimensions requires interpolation be-

tween voxels to achieve a visually satisfactory image. An interpolation method se-

lected wrong implies a possibility for misleading interpretations of an image with

visual inspection. In general, two-dimensional representation of three-dimen-

sional medical image data needs special attention, because it is applied to medical

decision-making [BK00]. The selection of an appropriate interpolation method

depends on properties of an output device which is often a display or a printer.

However, visually high quality view may require a computationally expensive

interpolation method.

The objective of visualization is to represent image data so that the properties

of interest can be seen clearly and less important properties are hidden. This

can be achieved by manipulating the colourmap, thresholding voxels, selecting

segments and selecting viewpoints. A special colour palette can be mapped to

the intensity values to emphasize the desired parts of an image. This method

is commonly used in clinical imaging applications. Conventionally, an image

is viewed slice by slice from a selected projection. From the three-dimensional

image, the projections can be taken from three different angles to give an overview

of its content. See Figure 2.5 for an example. Naturally, the viewing angle

can freely be selected by applying a proper interpolation method. In emission

tomography, the brain scan is tried to make according to the AC-PC line shown in

Figure 3.2. The term transaxial slice refers to the image cross-sections that follow

this line in a brain image.

From a dynamic functional image sequence an animation can be created to

illustrate the change of function. This technique can also be applied to visualize

metabolic activity change over a longer time period than just one scan session.
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For example, the animation of a disease change in positron emission tomography

images is presented in the article [SDT+93]. This way the development of a

disease could better be understood and the effects of the given treatment better

monitored.

The term superposition is used especially when overlaying transaxial slices

from two or more images which are coregistered and re-sampled to the same

spatial space. The superposition method is widely applied in clinical applications

to visualize functional images on structural images. The term is also used when

transferring extracted boundaries and surfaces from one image to another.

Recent developments with computer graphics have led to many new possibil-

ities for representing volumetric data such as glass-like surfaces, freely selectable

sections, adjustable light sources, stereo views, and virtual reality. For example,

virtual reality has been applied for planning and simulation of neurosurgery in

[KSTT+00]. However, not many of these have practical applications with PET

visualization, but they are certainly topics for further research.

3.7 Summary

Neurological images have been the subject of active research in recent decades.

Individually shaped brain structures are not easy targets for applications such

as the quantification of functional images. The shape and location of the cor-

responding functional activity visible in images vary widely between individu-

als. Therefore, the comparison of images from different subjects requires remov-

ing those differences. Also, combining images from different modalities in the

same individual is difficult, because of the initial incongruity of the anatomical

and functional structures. Advanced methods have been developed to address

these problems, to name examples, image fusion, brain warping, brain atlases and

databases. Together, these methods provide possibilities to analyse and compare

brain images from different individuals and modalities.



Chapter 4

Deformable Models for Delineation

of Brain Structures

4.1 Introduction to Deformable Models

A
DEFORMABLE model is an object including geometric representation,

topology, and evolution rules. The geometric representation describes the

shape of the object. The shape has a topology which may differ from the object’s

topology. The initial geometry is required for the deformable model. The shape

of the deformable model can be changed according to the evolution rules. The

evolution rules connect the deformable model to data allowing its adaptation to the

salient features in an image. The deformable model can be thought as an elastic

framework which responds to the applied forces and constraints in a natural way.

Hence, it is a well-suited approach for segmentation problems arising from the

medical images. The state of the deformable model can be described by force-

based or energy-based approaches. The deformable models for delineation of

three-dimensional structures and non-rigid motions were introduced in [TWK88,

KWT87, MT93]. Since then, they have been widely applied for various problems

arising in medical imaging [MT96, PXP99].

Deformable models can be classified into continuous and discrete geometric

representations [MDA01]. The continuous representation makes it possible to

determine the properties such as surface normals at almost any location on a sur-

25
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face. In practice, a continuous representation needs to be discretised before it can

actually be computed. With the discrete model, the geometry is only known at a

finite set of points. By establishing connectivity relations for the points, a geomet-

ric representation can be defined for the deformable model. The discrete model

offers a lower computational complexity and a more compact representation for

the surface than the continuous representation, but with decreased accuracy. With

sparse functional images, the discrete representation could provide a sufficient

description for the image data.

The evolution process can also control other properties than the shape of the

deformable model. For example, the resolution of the mesh and connectivity

relations may be affected. In the most adaptive approaches the deformable model

can be split into many, or several deformable models join to one as described in

[MT95]. Highly adaptive methods are particularly useful for extracting unknown

objects from images whose noise content is low. However, a highly adaptive

deformable model could be difficult to control with noisy and low contrast PET

images.

4.2 Discrete Representation of Shapes

The choice of the appropriate representation for a structure depends on image

dimensions and the application in which the object is to be used. Requirements

for a good representation include size, translation, and rotation invariances. The

representation utilized may describe edges, skeleton, voxels or other properties of

a segmented object. Representations can be divided into continuous and discrete

representations, however, this study concentrates on discrete models which can be

applied to present the boundaries of an object.

A set of discrete points is P = (p1,p2, . . . ,pm), where pi ∈ R
n, n ∈ {2, 3}.

Their connectivity relations are applied to represent the boundary or surface of

a segment. The actual locations of points in an image is determined by a ref-

erence point r ∈ R
n. Connectivity relations define how the actual boundary is

reconstructed from the set of points. A geometric representation is a pair (P, rP ).

The representation is said to be closed if it limits an area in two dimensions or a

volume in three dimensions. Otherwise, it is open.
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Figure 4.1: A set of connected points (p1-p5) constructs a polygon in two dimensions

(a). The points are connected with a broken line (edge) and the area limited is shaded.

Triangulated representation of a tetrahedron is shown in (b). A triangular face is

defined by three points. Four polygons limit the volume.

The polygons defined by a set of points are a simple and computationally

efficient method to construct a representation of a curve in a discrete form. A

polygon can provide an approximative description for a curve. The connectivity

relations can be simply defined by giving the points (pi ∈ R
2) in order to be

connected. In the closed curve, the last point (pm) is connected to the first point

(p1). For example, a polygon limiting a shaded area is visually represented in

Figure 4.1 (a).

A three-dimensional object can be represented with a stack of curves. How-

ever, coding three-dimensional segmentation this way is not an optimal method.

A fixed orientation is especially difficult with three-dimensional rotations. The

rotation invariance can be altered.

In three dimensions, points (pi ∈ R
3) with connectivity relations construct a

mesh. The mesh is a collection of edges, vertices, and polygons. Each edge is

shared by at most two polygons. Connectivity relations can be defined with the

aid of neighbouring points. Three points define a triangle which defines a piece

of surface, a face [PS85, Chapter 5]. All triangles are selected in such a way that

they entirely cover the desired surface. This way three-dimensional surfaces can

be represented with a triangulation based on discrete points on a surface. It is
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(a) (b)

Figure 4.2: Conversion of a polygon face (a) to the triangulated faces (b).

known as triangulated mesh.

Another possibility is to apply simplex mesh, where the faces are polygons,

usually pentagon or hexagon [Del99]. For faces, the mesh points need to be

in the same plane, which must be ensured during the construction of the mesh.

The simplex mesh is an equivalent representation to the triangulated mesh [PS85,

Chapter 5]. For example, a polygon face can be triangulated by setting a new

mesh point in the middle of the polygon and creating triangulation as shown in

Figure 4.2. However, with the triangulated mesh, more points and their relations

need to be stored as compared to the simplex mesh.

The construction of an optimal triangulation from a given segment is a rather

difficult task as compared to the construction of curves. For example, the connec-

tivity relations are easy to create for a set of points in two dimensions, but a very

complex task in three dimensions. The total number of points, size of triangles,

geometry and its topology and the topology of the target to be represented need

to be considered to meet the requirements of the application. The surface mesh

reconstruction from sample points from the surface of a three-dimensional object

is an interesting problem and it has been studied, for example, in [ACK01]. The

power crust method presented applies the Voronoi diagram and the medial axis

transform, which represents an object by the set of maximal balls completely

contained in the interiour. Another triangulation method for an arbitrary point

set for biomagnetic problems can be found in [LRM98]. It is a modification of the

Delanay triangulation.



4.3 Energy of Discrete Deformable Models 29

4.3 Energy of Discrete Deformable Models

The deformation process from the initial geometry to the desired one is often

formed as an energy minimization problem. The energy of a deformable model

consists of the external and internal energies. While the external energy Eext is

determined from an image, the internal energy Eint regularizes the geometry of

the model. The total energy E of a deformable model is defined as

E = λ

∫

Eint + (1 − λ)

∫

Eext, (4.1)

where the regularisation parameter λ ∈ [0, 1]. Possible external constraints can

be added to gain a desired behaviour for the model. With the discrete geometric

representation, defined in section 4.2, Equation (4.1) becomes

E(P, rP ) = λEint(P) + (1 − λ)Eext(P, rP ) (4.2)

=
1

n

n
∑

i=1

[

λEint(pi) + (1 − λ)Eext(pi + rP )
]

. (4.3)

The objective is to find a minimum for E(P, rP ). A local optimization ap-

proach is usually applied and hence a fairly good initial geometry is required. The

external energy Eext can be defined from an image, for example, by applying the

gradient operator (∇f ). The gradient image is fixed during the minimization and

hence it can be calculated for the image only once. The internal energy Eint is

bound to the current stage of the model and energy minimization. The internal

energy varies during the evolution process.

4.4 Methods for Energy Minimization

Optimization problems can be divided into unconstrained and constrained prob-

lems. With unconstrained problems, no limitations are set for the variable val-

ues of the solution. Optimization with real world applications, such as energy

minimization of a deformable model often requires setting constraints in order to

obtain meaningful solutions. The constraints are divided into the soft and hard

constraints depending on how restrictive they are. The ultimate aim is to find

an optimization method which provides the global solution, is fast, and requires
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only little space. Unfortunately, this is not generally possible and hence numerous

methods have been developed to meet application requirements.

Optimization methods can be divided into the global and local approaches.

Global methods seek the best solution for an objective function. Computationally,

finding the exact global solution is often a non-deterministic polynomial (NP)

hard problem. This can efficiently prevent the use of the global method for many

practical applications where an answer is needed in reasonable time. Therefore,

global energy minimization methods have not become popular with three-dimen-

sional deformable surfaces [MDA01]. A local method seeks the best solution by

limiting the search. Finding of the global solution cannot be guaranteed. However,

if the application specific information can be utilized properly, the global solution

for the minimization problem can be found in a reasonable time. Local and

global optimization methods can be utilized to seek a minimum for the energy

(E(P, rP )).

Global Energy Minimization

Dynamic programming was first proposed for the minimization of two-dimensional

deformable models in [AWJ90]. It searches globally the minimum energy for

the deformable model from the set of all possible solutions. The computational

complexity of their method is O(nm3), where n is the number of points and m

is the size of the local neighbourhood to be searched. In three dimensions, the

point relations of the mesh cannot be ordered as in two dimensions, leading to

computationally expensive algorithms. In theory as well as in practice, dynamic

programming leads to unsolvable difficulties with three-dimensional deformable

models.

However, the amount of possible solutions can be limited based on the ex-

pectations of the object to be searched. One interesting possibility for the global

search with deformable curves has been presented in [GN97]. The key idea is

to use two curves for the iterative search process instead of one. Two curves

are set in a way that the searched object lies in the area between these curves.

Initial settings for the dual method are shown in Figure 4.3. The two curves are

minimized. Their current energies are compared and the surface having higher
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Figure 4.3: Initial settings with the dual curve method [GN97]. The global minimum

can iteratively be searched by minimizing two curves.

energy is minimized. When these curves stop in local minima, the curve with the

higher energy is minimized with the additional driving force. The driving force

pushes the curve towards the other curve until its energy becomes lower. The

dual minimization process is continued until the curves become equal. This is the

global result of the minimization process.

Local Energy Minimization

In contrast to global approaches, the local optimization has widely been applied

with deformable models. A fast search with deformable models can be performed

by using, for example, the greedy method [WS92]. In principle, the method

searches for a minimum for Equation (4.2). In minimization, the greedy method

considers only the local neighbourhood, where the best new position for a point is

selected. The greedy optimization method requires a appropriate initialization for

the deformable model, which is located rather close to the object to be extracted.

The time complexity for the greedy method is O(nm), which makes this method

more tempting for three-dimensional minimization than dynamic programming

approaches. However, the model may be stuck in a strong local minimum and

hence the global solution cannot be guaranteed.
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4.5 Delineation of Brain Structures with Deformable

Models

Delineation of structures from brain images is certainly one important applica-

tion for deformable models. Deformable models are able to delineate complete

structures, adapt individual variances, handle uncontiguous parts in structures and

allow the introduction of prior expectations about the structures into the delin-

eation process. These are prerequisites for developing fully automatic approaches

for structure extraction from brain images.

However, most of the effort in research has been put into developing structure

extraction from anatomical MR brain images. Anatomical structures must be

identified for advanced brain mapping, for example. With MR brain images, struc-

ture extraction methods are often a collected sequence of operations to produce

the final representation of a structure. Pre-processing usually includes removal of

unwanted structures from MR images such as the skull tissue from brain images.

This is often performed by using manual methods to avoid difficulties later in

the delineation process. In the sequence, deformable models are applied to refine

the given rough initial surfaces according to the image data. The initial surface

for the deformable model may be a generic shape, such as a sphere, or it may

be adapted from a given template shape. The deformable model can be used

iteratively several times in a processing sequence, where a new initialization can

be obtained from the previously extracted surface.

For example, an iterative search to find a parametric representation of the corti-

cal sulci is presented in [VD97]. An elliptic initial surface is first used as the initial

surface for the three-dimensional deformable model to extract the outer surface of

the brain structure from a pre-processed MR image. Then, the delineated outer

surface of the brain is used as the initial surface for the deformable model to

obtain the final surface. This kind of iterative approach could also be applied to

delineate structures from functional brain images by using a deformable model.

In the literature, there are many newer deformable approaches for the structure

delineation from MR images, for example [XPR+99, ZSSD99, MKAE00]. The

underlying assumptions for extracting structures from functional images are dif-

ferent than with MR brain images, and these methods could be difficult to apply
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to PET brain images. The deformable motion approach to compensate patient

motion in gated PET cardiac images was presented in the article [KH02]. How-

ever, this problem is rather different than the brain structure extraction problem

addressed in this study. In summary, all these studies with MR brain images gave

ideas and motivation for delineating surfaces from PET brain images.
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Chapter 5

Objectives of the Study

P
OSITRON emission tomography (PET) imaging provides a way to measure

biochemical processes in living organs for drug development and disease

diagnosis. PET technique is fairly complicated both technologically and method-

ologically. The problems are multidisciplinary requiring advanced methodologies

for the correct interpretation of acquired data. Comparative and statistical studies

in the same modality as well as between modalities with large image sets would be

feasible if the regional information could be automatically and reliably collected

into a large distributed database. However, this is rather difficult with the present

manual or manually guided delineation methods. Noise and low contrast in sparse

images together with individual functionality make automatic surface extraction a

rather challenging task, particularly in the case of neurological images.

The aim of this study was to investigate lossless image compression and to find

and implement a general and automatic procedure for delineating brain surfaces

from PET brain images. The complete brain surface should be identified from

an image. The segmentation method needed should be able to elastically adapt

distinguishable uptake of a radiopharmaceutical in a three-dimensional image.

The search should be performed using a global optimization because an initial-

ization close to the object might be difficult to provide for the automatic process.

Moreover, the hemispheres of the brain should be automatically separated into left

and right to allow separate analysis. If visible in the image, other surfaces should

also be delineated for determining structures based on the surfaces.
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Chapter 6

Materials and Methods

6.1 Image Material for Evaluations

F
UNCTIONAL positron emission tomography studies provided appropriate

image material to study surface extraction and compression problems. The

noise and low contrast images and the individual variability in the structures of the

PET images set the requirements for the methods to be developed. All the image

material and calibration information were obtained for the evaluations from the

Turku PET Centre [PET03]. The material consists of two phantom studies and

a set of selected human studies with 18FDG (fluoro-2-deoxy-D-glucose), FDOPA

(fluoro-dopaminium) and 11C-Raclopride radiopharmaceuticals. A phantom is

an artificially made object representing the structures of an object. It can be filled

with the known volume and activity concentration. The structures in a phantom

are static, where there is no blood circulation, natural movements, or changes

in substructure volumes as with biological subjects. Hence, it is a useful tool to

evaluate new methods developed for neuroimaging. In living human brain studies,

the source distribution is unknown.

Sinograms were acquired with ECAT 931/08-12 (CTI/Siemens, Knoxville,

TN) and GE Advance (GE, Milwaukee, WI, [MS03]) PET scanners. Transaxial

slice width was 6.75 mm with the ECAT scanner and 5.5 mm the GE scanner.

The ECAT scanner produces 15 and the GE scanner 35 transaxial slices. The

MR images were obtained with 1.5 T Magneton (Siemens, Erlangen, Germany).
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The physiological model was calculated into a sinogram using graphical PATLAK

[Ale93]. These static sinograms were utilized to reconstruct images for this study.

The size of a dynamic sinogram depends on the study and the scanner used.

The images of the striatum phantom were applied to the evaluation in Publica-

tion II. The phantom includes the striatum structure of a brain which consists of

the caudatus and putamen for both the hemispheres. These structures can be filled

with the same radiopharmaceuticals as used in subjects. This setting provides a

realistic situation for PET imaging. The images of the Hoffman brain phantom

(JB003, Nuclemed N.V./S.A., Roeselare, Belgium) were used for validation in

Publication V. The Hoffman brain phantom includes the main structures of the

brain. The cross-sections of applied magnetic resonance and positron emission

tomography images of the Hoffman phantom are shown on Figure 6.1. The

magnetic resonance image was coregistered spatially into the PET image.

The image material from human studies for the publications is summarized

in Table 6.1. The MRP reconstructed images acquired with the GE scanner were

from the same set of studies in Publications I, III–IV. The images acquired with

the ECAT scanner were from the same set in Publications I and II. In addition,

corresponding anatomical MR images were used in Publications II and III. The

anatomical references were provided only for these ten images. Of the eighteen

images, one was found to be miss-aligned after closer inspection and could not be

accepted for the final evaluation results.

6.2 Applied Algorithms and Implementations

6.2.1 Image Reconstruction

Two reconstruction methods were available for the study. The conventional FBP

method was applied to four human studies in Publication I and to the striatum

phantom in Publication II. For this experiment, a Hann filter was chosen for the

FBP method. All the other PET images were reconstructed in a standard way with

the iterative MRP method (Bayes weight, β = 0.3) to the size 128×128 [ARA98].

Voxel size in FDOPA and FDG images was 1.72mm × 1.72mm × 4.25mm and

in Raclopride images 2.3mm×2.3mm×4.25mm. The Hoffman phantom image
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Table 6.1: Image material from PET brain studies of healthy volunteers used with the

Publications.

Publication radiopharmaceutical scanner reconstruction n

I FDOPA ECAT FBP 4

” ” MRP 4

” GE ” 6

II FDOPA ECAT MRP 5

III FDG GE MRP 4

FDOPA ” ” 1

IV FDG GE MRP 18

V FDG GE MRP 17

VI FDG GE MRP 17

Raclopride ” FBP 4

was reconstructed with an optimal reconstruction zoom by using the MRP method

for Publication V. The reconstruction zoom was selected so as to make the brain

in the image as large as possible without losing details from the outer surface of

the brain.

6.2.2 PET and MR Brain Image Coregistration and Tissue

Classification

Three registration methods were available for the study: the hat and head method,

the AMIR method and the AIR method [Pel94], [ABH+95, Ero98], [WMC93,

Woo03]. Based on initial experiments with the images studied, the corresponding

anatomical MR images were coregistered to the PET images with the AMIR

method. The MR images were resliced according to the coregistration parameters

obtained. The voxels from the MR brain images were classified into grey matter,

white matter, cerospinal fluid, and background clusters [JD88]. SPM99 Matlab

software was applied for this task [SPM03, MI03]. The classified images were

not manually edited. However, the removal of certain structures from the clustered

MR brain images is a common procedure after voxel classification.
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The coregistration of PET and MR images had two applications in this study.

In Publication II, the surfaces extracted from functional PET images were su-

perimposed on the corresponding coregistered anatomical images to check the

delineation results. The second use for the registration of PET and MR images was

described in Publication III, where the extracted and then coregistered anatomical

reference surfaces were superimposed on the corresponding functional PET image

to obtain proper initial surfaces. Due to a known error in the applied coregistration

program, a fine adjustment of the coregistration was needed.

6.2.3 A New Lossless Compression Method for Emission

Tomography Images

Lossless compression is based on redundancy reduction. This can be performed

by universal or application specific methods. Because of the relatively low resolu-

tion of PET brain images compared to the corresponding anatomical MR images,

noise, and individual structures, compression of images requires the application of

specific method. In Publication I, we developed a new lossless block method for

functional brain images which utilizes local similarity in three dimensions. The

method reduces the image variance by subtracting transaxial image cross-sections.

The residual image was decomposed into small blocks, which were encoded with

a code selected from the parameterized Rice codes [HV93]. However, another

predefined library of codes could be used. Algorithms 1 and 2 on page 1242

in Publication I describe the encoding and decoding of an image. The static

arithmetic coding was used as a reference method [WNC87]. An overview of

the proposed image compression method is given in Figure 6.2.

6.2.4 Delineation of PET Brain Images

Thresholding

A new graphical tool for the delineation of volumetric structures from functional

images was developed. Surface delineation from images was based on the thresh-

olding and region growing methods. The surfaces extracted were described as

a set of regions, volume of interest (VOI), which can be exported as a set of
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region of interests (ROI). The structure extraction method is given by algorithms

1 and 2, pages 53-54, in Publication II. The tool provides a framework to make

a regional and volumetric analysis from functional emission tomography images.

In Publication II, the method was applied to regional quantification from the brain

PET images. The striatum structure was studied. The schema of the analysis

process is represented in Figure 1, on page 53, in Publication II.

Deformable curves

Two-dimensional deformable models were utilized to search the coarse cortical

surfaces in Publication III. We applied the energy-based curve model using the

local greedy optimization [WS92]. The implementation was based on the existing

software with minor modifications [LC95, Lai95, Lai03]. This software was

integrated into the graphical tool introduced in Publication II for the convenient

evaluation of the method with PET brain images.

The initial curves for the cortical structure were obtained from the correspond-

ing classified MR images. A set of curves for the brain surface and another set for

the white matter surface were delineated by the deformable curve method. The

brain surface and the white matter surface are marked in the sketch in Figure 3.1,

Chapter 3.1, where these surfaces limit the cortical area. Then, these curves were

minimized in the PET image plane by plane with the appropriate parameter values.

These included the regularisation λ, two ways to apply λ in energy calculation,

see Equations (5) and (6), pages 42 and 43 in Publication III, the size of the local

search space for a point and the resolution level of the search. The values were

manually selected for each transaxial plane during the delineation of the structure.

In addition, the automatic selection of the parameters to extract cortical structure

was studied. A set of rules was constructed according to the experiments done for

Publication III.

Deformable surfaces

A new three-dimensional deformable model was developed to delineate surfaces

from noisy images in [TM03]. Global optimization ensures that the method is

not sensitive to its initialization. A preliminary version of the deformable model
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applied in this study was featured in [Toh02]. In Publications V, VI and IV, the

new deformable model with dual surface minimization (DM-DSM) method was

applied to surface delineation from the PET brain images.

The new DM-DSM method combines the desired properties of existing models

into a single model. The surfaces are represented as triangulated meshes. Two

initial surfaces are iteratively applied to the search process, in principle, as with

the dual curve method in [GN97]. The global minimization of the energy allows

the use of generic initial surfaces such as an ellipsoid. This is a benefit, because

the construction of an optimal mesh for a freely selectable shape is a very complex

task.

The surface extraction procedure is presented in Publication VI (section 4, see

also Publications V and IV). The ellipsoid was applied as an initial surface for

the DM-DSM method for the automatic search of the brain surface. The DSM-

OS (DSM - outer surface) variant was applied because energy images usually

contain more noise inside the brain volume than outside it. The delineated brain

surface was used as an individual initial surface for the search of the white matter

surface. The standard DSM algorithm was applied for the white matter surface.

Experiments with the ellipsoid and the corresponding white matter surface from

the MR image were also conducted.

The DM-DSM method uses the local greedy method to find the energy min-

imum for the deformable surface in each iteration step [WS92]. With greedy

optimization, the surface can be frozen in a local minimum. At an early stage

of the study this was avoided by changing the size of the frozen surface. How-

ever, this method may cause unwanted movements in those surface parts which

are already in the global minimum. Therefore, the energy increase method was

introduced in Publication IV, Appendix A. The energy images for the DM-DSM

method were computed by the three-dimensional Sobel operator [ZH81]. The pre-

processing for FDG-PET and Raclopride images are described in Publication VI

(section 4.1).

In addition, the DM-DSM method was applied to the corresponding resliced

magnetic resonance images. However, delineation from MR images is a differ-

ent problem. In this study, it was used to obtain anatomical initial surfaces for

functional brain images. The brain surface and the white matter surface were
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extracted from the classified MR image by using the DM-DSM method. The

extracted brain surfaces from MR and PET images provided an automatic way to

adjust the anatomical white matter surface close to the corresponding structure in

PET image. The DM-DSM method was used to refine the given initial surface in

the PET image.

Iterative structure extraction and quantification

Accurate regional quantification is the aim with functional PET images. To im-

prove the accuracy of regional quantification, the whole process from the sino-

gram to the quantitative values needs to be considered. The MRP image recon-

struction method has excellent noise reduction properties without blurring of the

edges of the image. This provided a proper basis for the delineation task and

image compression in this study. The quantitative analysis procedure proposed

for the FDG-PET brain studies in Publication IV is presented in Figure 6.31.

The underlying idea was first to extract structures by identifying the brain

surface from the image. Substructures can iteratively be searched starting from

the brain surface. The coarse cortical structure based on the brain surface and the

white matter surface was extracted using the DM-DSM method. The non-cerebral

areas were removed from the structures and quantitative values were determined

from these structures.

In Publication VI (section 4.3) the mid-sagittal plane was determined using the

delineated brain surface. The symmetry-based algorithm used in this study is very

similar to that described in [LCR01]. This method is based on cross-correlations

determined from the symmetry of the brain surface.

6.2.5 Visualization of the Delineation

For image visualization, the cross-section views from three different angles were

used. The projections of the extracted surfaces were drawn on the images. The

1This schema is a part of the poster ”Methods to Improve Repeatability in Quantification of

Brain PET Images” which was presented in the World Congress of Neuroinformatics in Vienna,

2001.
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image cross-sections were shown on the screen, usually as grey scale images, and

printed on paper as seen on the figures in this study.

With the applied implementation of the two-dimensional deformable curve,

the evaluation process can be followed on the screen in real time. This was not

possible with the three-dimensional DM-DSM method. To provide easy access to

volume rendering and elaborate the evolution process, the intermediate surfaces

were exported from the minimization process and transferred into virtual reality

modelling language (VRML) format [con03]. The reference surface, the brain

surface, was delineated as two volumes of interest with user guided method intro-

duced in Publication II. Two VRML surfaces were created from the hemispheres

using the method from [ACK01]. This software was provided for this study as part

of a Master’s Thesis [Sep01]. A 3D Studio Max script was developed to obtain

a three-dimensional volume rendered animation and snapshots from the process

[MLIP02, Dis03]. The overview of the visualization process is represented in

Figure 6.42.

6.3 External and Developed Software Applied

The programs implemented for this study are summarized in Table 6.2. The image

analysis programs and some tool programs were provided by Turku PET Centre,

and they are summarized in Table 6.3 [Oik03]. Various utilities and software were

applied to handle and analyze images during the study. They are summarized

in Table 6.4. Parts of the software are available from the Internet, when the

address is given in the references. The applied medical image formats are Mayo’s

Analyze (version 7.5, [Cli03]) and ECAT (version 6.3). The standard formats of

the software used were also applied.

2This schema is a part of the poster ”Visualization of the Search of Brain Surface in PET”,

which was presented at the IX Turku PET Symposium, Finland, 2002
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Table 6.2: Summary of utilities implemented for this study.

Utility Description Language

Compression Image compression tools, Publication I. C++

ROI programs Tools to handle ROIs: for finding, combining,

splitting, and conversions.

C/C++, gawk

VOI program A graphical tool for extracting surfaces from

images, Publication II and III. The g-snake

method was integrated in the last version

[Lai95].

C/C++

DM-DSM method Deformable model matlab software, Publica-

tions V, VI and IV, [TM03, MI03]

matlab

MS-plane Determination of the mid-sagittal plane, Publi-

cation VI.

matlab

Visualization A script for 3D Studio Max to create animation

from the DM-DSM iteration [MLIP02, Dis03].

3DS Max

Table 6.3: Summary of utilities originating from Turku PET Centre.

Program Description

amirfit Automated medical image registration program [Ard95, Ero98].

cti2ana, ana2cti Image conversion tools from CTI format to the analyse format.

lmhdr, lshdr Programs to get header information from ECAT format images

[Oik03]

patlak A graphical program to analyse PET images [Ale93].

reslicer A program to reslice magnetic resonance images from the sagittal

to the transaxial orientation. Parameters can be determined, for

example, by using the amirfit [Ero98].

roi2kbq A program to calculate regional quantitative values, current

version is named as img2dft [Oik03]

surfacefit The hat and head coregistration program [Ero98, Pel94].

showimg A simple image and ROI viewer for ECAT format images.
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(a) (b)

Figure 6.1: Magnetic resonance (a) and positron emission tomography (b) images of

the Hoffman phantom. The MR image is coregistered to the same spatial space as

the PET image with the AMIR method [ABH+95]. Top down, sagittal, coronal, and

transaxial cross-section views.
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compressed PET
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division into 3D blocks

Figure 6.2: Lossless compression of emission tomography images in Publication I.

First the differential pulse code modulation (DPCM) was used to form original image.

Then the image was divided into volumetric blocks, which were encoded using Rice

codes [HV93].

blood curve

structurequantitative result

energy image

sinogram’ imagesinogram
reconstruction

deformable model

volume quantification

physiological model

quantification

Figure 6.3: Schema of volumetric quantitative analysis of PET brain studies from

sinogram to the quantitative result in Publication IV. The physiological model

was calculated into a sinogram resulting a static sinogram using graphical PATLAK

[Ale93]. This was reconstructed into a three-dimensional image with the MRP method

[ARA98]. Surfaces were delineated using the new deformable model as described

in Publication V [TM03]. Quantitative regional results were determined from the

extracted structures.
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Figure 6.4: Visualization of the search of brain surface in PET [MLIP02]. From

the search of the brain surface, the intermediate surfaces were extracted as VRML

files. The intermediate surface was the mesh from the current iteration step. The

reference surfaces were determined using the user guided method from Publication

II. A developed 3D Studio max script created the chosen snapshots and animation for

visualization.

Table 6.4: Summary of utilities and software applied in this study.

Utility Description

AIR Automated image registration method [WMC93, Woo03].

gsnake A program for two-dimensional deformable model [Lai95].

imagetool A program to view and analyse PET and MR images.

powercrust An algorithm for 3D surface reconstruction [ACK01, ACK03]

SPM96, SPM99 The matlab software for statistical functional image analysis

(fMRI, PET). Also includes image classification and registration

[SPM03].

Xite Image processing software for two-dimensional processing

[Bøe98]. Capable of handling three-dimensional images as a

stacked series of two-dimensional images [xit03].



Chapter 7

Results

T
HE study is summarized in Figure 7.1 which presents an overview of the

topics of this study with related publications. In Publication I the proposed

lossless method taking advantage of local similarities of PET brain images was

able to improve compression ratio as compared to a plain generic method while

keeping the execution time acceptable. The locally adaptive block partitioning

method was found better than the basic DPCM method with the arithmetic en-

coding method. The compressed size of PET images was 40–50% of the original

with MRP reconstructed images. The compression ratios for both methods can be

found in Table 1, a page 1243 in Publication I. The properties of images produced

with the MRP reconstruction method were more favourable for compression than

the FBP reconstructed images. It was expected, because of the higher noise level

in FBP images.

In Publication II the interactive software developed provided a convenient

framework to integrate other software into it and to study these with three-dimen-

sional functional images. With the the thresholding method, it was applied to

delineate and to quantify the striatum structure from FDG-PET brain images.

Separate threshold values had to be selected for the hemispheres. The method

produced the same structures and the same quantitative values in repeated delin-

eations if the initial settings were kept the same. The method was able to reduce

the analysis time and the quantitative values determined were comparable to the

manual delineation method. The calculated values are presented in Table 1 on

page 56 in Publication II. With the applied structure and pharmaceutical matter,
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[Publication V]

[Publication III]

MR

brain PET

compression

2D
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deformable models
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image

[Publication VI][Publication I]
visualization
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image analysis

surface delineation
automatic

[Publication IV]

Figure 7.1: Overview of the topics of this study. The publications of this study are

positioned near to its main topic.

the thresholding method was appropriate to determine structures. However, in

general, this method is applicable only to rather few structures in emission to-

mography.

In Publication III a general initialization, such as an ellipse, was found too

error prone when delineating the brain surface or white matter surface from PET

images. The noise and low contrast in the images prevented the use of automatic

initialization methods for the curve. Therefore, the initial curves were obtained

from the corresponding anatomical structure for the brain surface and the white

matter surface. Examples of initial curves are shown in Figures 1-5 overlayed on

the corresponding MR (a) and PET (b) image cross-sections, and the minimized

curves (c) in Publication III. Deformable curves were able to adapt individual

variances present in images which was not possible with the thresholding method

without user guidance. The deformable curve method was able to provide accept-

able approximations for uncontinuous parts of the edges. It was able to signif-

icantly improve the delineated structure compared to the superposition method.

With the same initial settings, the method produced the same curves in image
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cross-sections. However, many curves still needed manual adjustment and post-

editing to obtain a complete three-dimensional structure properly.

In principle, manual adjustment could be replaced by a set of rules guiding

structure delineation. These rules were based on knowledge from the structure

to be delineated with anatomical initializations. However, these experiments were

not successful even with a small set of studied images. The lower areas of the brain

structure were particularly difficult in image cross-sections, where they revealed

numerous small regions. The fully automatic extraction of three-dimensional

structures was found to be a rather hard task using the applied two-dimensional

deformable model.

The brain surface was successfully delineated from the studied FDG-PET

(Publications IV-VI) and Raclopride brain images (Publication V). Using the

extracted brain surface the mid-sagittal planes were determined for all the images

(Publication VI). The white matter surface was delineated from all the FDG-

PET brain images. Four example snapshots from the brain PET surface extraction

process with the DM-DSM method are shown in Figure 7.2 (a)-(d), where the

outer surface of the DM-DSM method and the reference surface are shown in

images. An example of the extracted mesh of the brain surface and the mid-

sagittal plane from one FDG-PET study is presented in Figure 7.3. This mesh

and the extracted white matter surface mesh are drawn on the cross-sections of

FDG-PET image and energy image in Figure 7.4. An example of the extracted

brain surface and mid-sagittal plane for the image from a Raclopride study is

presented in Figure 7.5 (Publication VI). The brain surfaces found were excellent

for these PET images as well the other studied PET images. The extracted white

matter surfaces determined from FDG-PET images were good. The underlying

assumptions used for the white matter structure were not as appropriate as for the

brain surface and the hemispheres were difficult to describe precisely with a single

spherical surface. However, the extracted structure is complete and follows this

difficult structure fairly well in the energy image. The coarse cortical structure can

automatically be determined from brain PET images based on the brain surface

found and the white matter surface. The left cortical and the right cortical volumes

of interest were determined for the all FDG-PET brain images in Publication VI.

The delineated brain surface and white matter surface from coregistered MR
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(a) (b)

(c) (d)

Figure 7.2: Example snapshots from the PET brain surface delineation process with

the DM-DSM method [MLIP02]. The reference surface and the outer surface of the

DM-DSM method are represented on images: the initial outer surface (a), intermediate

states of the outer surface (b) and (c), and the final outer surface. The snapshots were

created with the 3D Studio MAX animation software.

images were also good. Examples of extracted surfaces on the MR and the corre-

sponding PET images are shown in Figure 7.6. These surfaces were obtained from

the resliced MR images to provide initial surfaces for the experiments in this study.

The DM-DSM method could also be a potential method for delineating structures

from MR brain images. These experiments with MR images were intentionally

omitted from the Publications, because the focus of this study was on functional

images.

The general ellipsoid, shown for instance in Figure 7.2 (a), was found to be

appropriate initialization for the extraction of the brain surface. It also performed

well for the white matter surface. However, the most convenient initialization for

the white matter structure was the already extracted brain surface. It was found
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Figure 7.3: Three-dimensional rendering of brain surface mesh extracted from the

FDG-PET brain image. The determined mid-sagittal plane is shown on black.

that no corresponding anatomical images were needed in initialization to extract

these surfaces, because the DM-DSM method was insensitive to its initialization.

Therefore, these results were intentionally omitted from Publications.

The DM-DSM method was resistant to noise with functional PET brain im-

ages. It performed the structure delineation in a reasonable time, but not in real

time. In practice, with the applied brain surface extraction tasks, the required

iterations were usually between 200 and 2000, and at most below ten thousand

iterations for a successful search. The applied mesh size was 1280 points. The

fewer iterations in the search for white matter than the search of the brain surface

was explained by a tighter initialization used with DM-DSM method. With a 200
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MHz workstation, the delineation process of a surface takes from few a minutes

up to two hours. Figure 7.7 shows the development of the energies of the outer

and inner surfaces for the search of the the white matter surface. The outer surface

converged fairly fast in the process compared to the inner surface.

In Publication IV the coarse cortical structure was automatically extracted

with the DM-DSM method from the 18 MRP reconstructed FDG-PET brain im-

ages. On closer inspection of the images, one subject was afterwards found to be

misaligned. Hence it was not a relevant image for quantification. With the same

initial settings, the DM-DSM method produced the same surfaces. The average

influx constants for FDG in the extracted structures were found comparable to

the earlier findings with manual methods. The accuracy of regional quantification

from functional PET brain images can be improved by using the iterative MRP

method for the image reconstruction and the DM-DSM method in an iterative

way for the structure delineation.

This study produced new procedures for extracting brain surfaces from vol-

umetric PET brain images based on voxel intensity values. The method intro-

duced in Publications IV–VI is general and automatic approach using the new

deformable surface model developed jointly with this study [TM03]. The preced-

ing studies in Publications I–III provided useful methods and knowledge on PET

brain images, surface extraction and deformable models to accomplish the task.

Brain surface delineation process was the same for FDG-PET and Raclopride

PET images, except for pre-processing of images. No anatomical references

were needed in the delineation process. The delineated brain surface was used

to determine the mid-sagittal plane based on symmetry. Combining these and

the white matter surface, the left and right cortical structures from the FDG-PET

images were automatically determined.
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(a) (b)

Figure 7.4: Examples of delineation of cortical structures from one of the human PET

brain studies. Projections drawn on the PET image (a) and the energy image (b). From

the top, sagittal, coronal and transaxial cross-section views.
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Figure 7.5: Extracted brain surface and mid-sagittal plane from a Raclopride brain

image overlayed on the original image.
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(a) (b)

Figure 7.6: Example of delineation of brain surface and coarse white matter surface

from one of the MR brain study. Projections drawn on the MR image (a) and the PET

image (b). From top, sagittal, coronal and transaxial cross-section views.
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Figure 7.7: Calculated energies of one example search for the outer and inner surfaces

during the DM-DSM iterations when searching the white matter surface from the

FDG-PET brain image of the phantom. The iterations are stopped when the volume of

the inner surface exceeds over the outer surface.



Chapter 8

Discussion

C
OMPARISON of brain images originating from different subjects is impor-

tant for neurological studies. This topic was under active research with

functional imaging when the current study was started [FGH+97]. The problem

is to construct a realignment between two images so that their contents can be

compared. Usually images from different individuals are mapped to a common

space, for example, Talairach and Tourneux atlas or MNI atlas [Tal88, ECM+93].

Atlases provide a basis for comparative image analysis between subjects, see a

work with MR images [GDP+98]. The existing rigid image-to-image mapping

methods using affine transformations [PS85, Chapter 1] are appropriate when

comparing images originating from the same individual, for example, the surface

based method presented in [Pel94]. Between individuals the rigid methods are

not able to follow changes in structures and hence they produce inaccuracies

for comparisons of images, particularly with PET images. There were attempts

at normalizing individual PET images, for example in [ABW+93, FMK+96].

However, these were based on manual processing and did not utilize state-of-the-

art image segmentation methods. Elastic methods utilizing content of images are

addressed to overcome comparison problems [MRN94]. They apply a non-linear

transformation on top of affine transformations.

With PET brain studies, the elastic image mapping methods applied are based

on voxel intensity values [WMC93, ABH+95, AF97]. These approaches fullfill

many needs in medical image analysis, but not those requiring detailed volumetric

information about functions. The intensity values in PET image present the tracer

59
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uptake in a tissue. This depends on the applied radiopharmaceutical and individual

changes may be very large. Anatomical structures are not directly visible in PET

images, however it is possible to identify many structures, because the function

is linked to the anatomy. Visible structures in PET image could be applied as the

basis of many applications such as brain mapping. However, poor signal-to-noise

ratio and individual variations in the shapes and locations of structures require the

use of user guided delineation methods. Automatic methods can be applied, but

they usually require hand crafting to obtain acceptable delineation. A histogram

of PET images is individual and does not contain clearly distinguishable parts, see

Figure 1 in Publication VI. The software applied for delineating regions of interest

(ROIs) from transaxial cross-sections of the PET image was the user guided and

usually offered thresholding method, see for example in [SDT+93]. The goal

of this study became more concrete: to find a general method for segmenting

surfaces from PET brain images able to elastically adapt intensity values in an

image.

The standard approach to PET image segmentation in image analysis is the

superposition method. The externally determined surfaces are overlayed on a PET

image for delineating a desired structure. The external surfaces are mainly ob-

tained from the corresponding anatomical MR images, see for example [HKRT98].

The superposition method relies on accurate image registration. With PET images,

construction of an accurate registration to the MR images is difficult and it requires

a manual method. Obviously, this cannot be a basis for establishing correspon-

dences automatically between images, particularly with large image sets.

The segmentation of only the edges from axial cross-sections of an image does

not utilize all the available data from a volumetric PET image. An object present

in an image is volumetric and should be considered as a volume limited by its

surfaces. Publication II presented an interactive tool for delineating structures

from volumetric structures for PET image analysis. A thresholding method was

implemented first and it performed well for the image material studied. For a

more general approach, the author of this study proposed the use of deformable

models for the segmentation of PET images. Deformable models were found to be

a useful approach with anatomical images [KWT87, TWK88, MT96]. The energy

based two-dimensional deformable model [LC95] was next incorporated into the
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tool introduced in Publication III. The aim was to identify the desired properties

for the elastic segmentation method because of a lack of existing research with

PET brain images. The applied deformable model was able to adapt individual

variances present in PET brain images, which is needed for the elastic mapping.

Tests showed that a truly three-dimensional deformable model is required for the

automatic segmentation of structures from PET images; two-dimensional process-

ing was not able to utilize data from a third dimension. The applied deformable

curve model uses a local greedy optimization approach [WS92]. This requires

a close initialization, which is difficult to obtain for PET brain structures. With

MR brain images there are many possibilities for finding a close initialization, for

example the voxel classification, which was applied to creating initialization for

the search of cortical structure in [MKAE00, XPR+99]. Unfortunately, most of

these are not applicable with PET brain images. Voxels in PET image cannot be

classified as with the MR images because voxels depend on the radiopharmaceu-

ticals applied. Hence, energy optimization should be performed globally using

the prior information from the object to be delineated. This requirement excluded

many promising approaches applied to MR brain images such as topology adap-

tive deformable models [MT95, MT99].

Without any constraints, global optimization leads to computationally hard

problems which are of no use in practical image segmentation problems, such

as those considered in this study. For a two-dimensional deformable model the

intelligent global search approach was proposed in [GN97]. The idea was to use

two deformable curves instead of one. They were initialized in such a way that

the searched feature is located between the initializations. Using these two curves,

the whole area between these boundaries was globally searched, see more detail

in Chapter 4.4.

In this study, two-dimensional deformable models were found insufficient for

handling automatic surface delineation from PET brain images. There was clearly

a demand for using a three-dimensional method for the segmentation of PET

images. However, the existing three-dimensional deformable surface models were

not designed for noisy PET images. Therefore, in conjunction with this study, a

new three-dimensional deformable surface model was developed [TM03, Toh02].

The global optimization approach and low sensitivity to its initialization allowed
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the use of an automatic initialization. For the deformable model, there need to

be visible features in an image. For PET images, the pre-processing of images

depends on the radiopharmaceutical applied for the study. Two automatic ways of

creating energy images for two completely different radiopharmaceuticals, FDG

and Raclopride, were presented in this study, see Publication VI. Otherwise, the

same parameters were applied to all images for the deformable model, which is

a significant benefit over the other segmentation methods designed for a specific

application.

The first version of the new three-dimensional deformable surface model was

applied in Publication IV and the final version in Publications VI and V. In

Publication VI the extracted brain surface was used for automatically determining

the mid-sagittal plane from PET brain images. The very good brain surfaces

obtained allowed us to apply the existing symmetry based method from [LCR01].

In Publication VI, an automatic and robust segmentation method was found for

delineating surfaces from PET brain images. This could have much potential use

for automatic brain image analysis. Potential applications, reviewed in Chapter

3, for the automatic brain surface delineation include image compression, image

registration, brain warping as well as movement correction.

A standard approach for image compression is to identify redundant (e.g.

predictable) data which can be efficiently compressed and the data (e.g. noise)

which is difficult to compress. Then, a compression method can be selected to

reduce the redundancy. Data classification is an application specific problem and

it has been investigated for dynamic PET images, for example in [HF97]. The

compression method presented is not lossless limiting the use of compressed

image data for the quantitative analysis. This method was integrated into the

underlying database framework in [CFF00]. This would allow us to develop the

grid system for the storage and computation of neurological imaging [FKT01].

The lossless compression approach introduced for PET brain images in Publica-

tion I utilizes local similarities of three-dimensional brain data. This could be

improved by applying the extracted brain surface and, for example, compressing

the data inside it. Three lossless image compression schemas for medical images

were presented in [WN00]. These were applied to two-dimensional images, not

including PET images. However, some of the ideas presented could be extended
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for three-dimensional images. Newer compression methods could also be applied

to PET image compression such as JPEG2000 (Joint Photographic Experts Group)

[jpe03].

This study showed that deformable models can be applied to extract brain

surfaces automatically from PET brain images for determining the mid-sagittal

plane, even from the difficult images from Raclopride studies. In future, these

could be applied to develop a new elastic image registration approach needed for

the registration of images from different subjects (intra-modality, inter-subject)

and especially from different modalities (inter-modality, intra-subject). Existing

surface based registration and brain warping methods could also utilize the im-

proved surfaces [Tog99, Chapter 1].

In Publication IV, a principle idea of analysing PET brain image structure by

structure was presented. This way extracted structure could be identified and la-

beled for a more intelligent image analysis. Controlling structures in an intelligent

way has also been under investigation for MR images, for example in [LRMK99,

MTF+95, MHST02]. Combining structures from anatomical as well as functional

brain images is a challenge and has gained increasing interest [BR02]. Delineation

of structures from images could be controlled in a global manner using this kind

of advanced elastic systems. The surface based delineation procedure introduced

in this study provides new aspects for these purposes.

The movement correction from PET brain images would be an interesting

application for automatic surface delineation with the new deformable model.

The movement correction has earlier been studied with PET cardiac images in

[KH02]. An automatic approach handling movements could considerably im-

prove the quality of acquired surfaces from an image sequence. This way, it

would affect the accuracy of the quantification of structures. The new deformable

model applied in this study could be a useful tool for existing movement correction

approaches. A new motion compensation method based on surfaces could also be

developed for PET brain images.

This study proposed novel semi-automatic and fully automatic approaches for

the surface delineation from functional PET images, and proposed a new lossless

image compression approach for PET brain images. The new three-dimensional

deformable model using a global optimization was applied to automatic structure
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extraction from PET brain images, which was the aim of this study. This opens

up new possibilities for developing fully automatic applications for brain image

analysis between individuals as well as between modalities.



Chapter 9

Author’s Contribution to the

Publications

T
HE work for this study was conducted in close collaboration with the M2oBSI

group [Ruo03]. However, the author’s contribution to each publication has

been essential.

In Publication I a new lossless block method was developed for functional

brain images utilizing local similarity in three dimensions. The novelty of the

proposed method is that it combines existing ideas applicable to PET brain im-

ages. The author of this study participated in the development of the method,

performed the experiments and wrote the publication.

Publication II describes the development of a new graphical tool for the de-

lineation and quantification of volumetric structures from functional images. The

idea of the tool developed during the author’s visit (two months) to Turku PET

centre in spring 1997 [PET03]. The author of this study designed the overall

principles of the interface, programmed the software, performed the experiments

and wrote the publication.

In Publication III the existing two-dimensional deformable model was pro-

posed to search for brain surfaces from PET brain images. The use of deformable

models for PET image segmentation was proposed by the author after attending

the conference ”Third International Conference on Functional Mapping of the

Human Brain” (Copenhagen, Denmark, 1997) and the course on deformable
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models given by D. Metaxas, Ph.D. [FGH+97, TIC97, Met03]. The author of this

study participated in the development of the method, integrated the deformable

model into the software introduced in Publication II, performed the experiments

and wrote the publication.

In Publication IV a new three-dimensional deformable surface model, devel-

oped jointly with this study [TM03], was proposed for surface delineation for

determining a coarse cortical structure for quantification from FDG-PET brain

images. The standard dual surface minimization algorithm was applied for all

surfaces. The author contributed the automatic procedure for subsequent surface

segmentation to delineate complete structures. The author of this study partici-

pated in the development and implementation of the method, and performed the

experiments.

In Publication V an improved version of the new deformable model was ap-

plied to surface delineation from FDG-PET brain images. The one surface modi-

fication of the deformable model was proposed for the search of the brain surface

instead of the standard dual surface method. The author of this study performed

the experiments and wrote the publication.

In Publication VI the new deformable model was also applied to surface delin-

eation from Raclopride PET brain images. The mid-sagittal plane was determined

based on the brain surfaces extracted. The author of this study participated in the

design, development of image pre-processing procedure, software integration, the

experiments and wrote the main parts of the publication.
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