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Abstract
This thesis focused on the classification of benthic macroinvertebrates by us-
ing machine learning methods. Special emphasis was placed on multi-class
extensions of Support Vector Machines (SVMs). Benthic macroinvertebrates
are used in biomonitoring due to their properties to react to changes in water
quality. The use of benthic macroinvertebrates in biomonitoring requires a
large number of collected samples. Traditionally benthic macroinvertebrates
are separated and identified manually one by one from samples collected
by biologists. This, however, is a time-consuming and expensive approach.
By the automation of the identification process time and money would be
saved and more extensive biomonitoring would be possible. The aim of the
thesis was to examine what classification method would be the most appro-
priate for automated benthic macroinvertebrate classification. Two datasets
were used in the thesis. One dataset contained benthic macroinvertebrate
images from eight taxonomic groups and the other images from 50 species
of benthic macroinvertebrates. The thesis produced several novel results.
Firstly, a new tie situation resolving strategy was introduced when one-vs-
one SVM together with majority voting method was used. Secondly, a novel
approach to parameter selection for SVMs was proposed. Thirdly, a new
approach to class division problem in Half-Against-Half SVMs was devel-
oped by applying Scatter method. Lastly, a new classification method called
Directed Acyclic Graph k-Nearest Neighbour was introduced. In this the-
sis altogether four multi-class extensions of support vector machines and 12
other classification methods were used. SVMs were tested with seven kernel
functions, and several feature sets were used in the tests. SVMs were very
suitable for the benthic macroinvertebrate classification. With the smaller
dataset one-vs-one method achieved over 97% accuracy and half-against-half
support vector machine achieved around 96% accuracy. Eleven classification
methods other than multi-class support vector machines were tested with the
smaller dataset. Of these methods the best ones were Quadratic Discriminant
Analysis, Multi-Layer Perceptron and Radial Basis Function network. These
methods attained around 94% accuracy. The larger dataset was tested with
two classification methods. The accuracies achieved with these methods were
around 80%. According to the classification results support vector machines
are suitable for automated benthic macroinvertebrate classification when a
proper feature set, kernel function and optimal parameter values are found.
Keywords: Machine learning ⋅ Support Vector Machine ⋅ Classification ⋅

Benthic macroinvertebrate ⋅ Water quality
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Chapter 1

Introduction

Automated taxa identication of insects has long been a dream of taxono-
mists. However, it has encountered many obstacles. Gaston and O’Neill [20]
considered the following to be some of the reasons why automated species
identification has not come into general use:

• It is too difficult.

• It is too labour intensive.

• It is too threatening.

• It is too different.

• It is too costly.

Despite the problems encountered, some systems have been developed for
automated species identification. ABIS, for instance, was made for auto-
mated bee identification [20, 42]. DAISY system was developed for general-
purpose identification and it has been applied to several arthropod classi-
fication [20, 42, 51]. Moreover, ALIS [20] was made for leafhopper identi-
fication and SPIDA [42] for spider identification. The most recent system,
BugID [50, 69], has been developed for benthic invertebrate identification.

This thesis focused on the classification of benthic macroinvertebrates.
Generally speaking, automated benthic macroinvertebrate classification has
gained scant attention [76] compared to applications such as fingerprint iden-
tification, handwritten digit recognition, or face recognition. However, there
are studies on aquatic insect classification. In [42, 43, 50, 53, 69] stonefly iden-
tification was examined when in [44] insect species classification from EPT
orders (Ephemeroptera, Plecoptera, and Trichoptera) was tested. Moreover,
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INTRODUCTION

in [33, 37, 38, 39, 76, 89] the classification of benthic macroinvertebrates was
investigated.

The classification of benthic macroinvertebrates reverts to image classi-
fication. Preprocessing of images such as feature extraction using ImageJ
[32] and other image processing stages are beyond the scope of this thesis
and the classification itself was made according to completely preprocessed
data, where the features were extracted from images. In this thesis two pre-
processed datasets were used. One dataset contains data from 1,350 images,
which are altogether from eight taxonomical groups of benthic macroinver-
tebrates. The other dataset includes data from 4,868 images, which are from
50 taxonomic groups of benthic macroinvertebrates. The smaller dataset was
also used in [33, 37, 38, 39, 89]. In [37, 38, 39] the emphasis was on the use of
artificial neural networks such as Multi-Layer Perceptron (MLP) and Radial
Basis Function network (RBFN). Support Vector Machines were applied to
benthic macroinvertebrate classification in [33, 38]. Bayes classifier, decision
tree, random forest and random Bayes forest were used in [89].

The thesis consists of five publications, where in Publications I-IV smaller
dataset was used and in Publication V the larger dataset was examined.
This thesis addressed three research problems. Since the main focus was
on applying SVM to benthic macroinvertebrate classification, the first re-
search problem was to compare SVM with other classification methods.
SVM was used in Publications I-III and V, whereas Publication IV add-
ressed other classification methods. In Publication IV 11 classification meth-
ods were investigated in benthic macroinvertebrate classfication. These were
k-Nearest Neigbour method (k-NN), Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Minimum Mahalanobis Distance
Classifier (MMDC), Classification Tree (CT), Multinomial Logistic Regres-
sion (MNLR), Naïve Bayes (NB), K-Means, Self-Organizing Map (SOM),
MLP and RBFN.

The second research problem was to investigate which multi-class ex-
tension of SVM would be the most suitable for benthic macroinvertebrate
classification. Existing multi-class extensions for SVM were investigated in
Publications I-III and V. In Publication I One-vs-One (OVO) method [70]
was applied together with majority voting method. Publication II was a
straightforward continuation to Publication I. Publication II compared OVO
and One-vs-All (OVA) [70] methods with each other. Because OVO with a
majority voting method sometimes produces ties, a new tie situation solving
strategy was introduced in Publication I. The solving strategy used k-NN
with k = 1 to solve the tie situations. In OVA method tie situations are
also possible, thus the same solving strategy was also used to resolve ties
in Publication II. Moreover, in Publication II a new approach to parameter
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selection was introduced which was an alternative to typically used accuracy.
In Publication III HAH SVM [46] was applied to the benthic macroinver-

tebrate classification. This was the first time that HAH SVM was used in
this application. The greatest theoretical problem in HAH SVM is to find the
optimal class division in a node and in [46] only a suboptimal solution based
on hierarchical clustering was given. In Publication III the class division
problem was solved by means of Scatter method [34, 72, 73] and it was used
in every node. Platt et al. [63] introduced DAGSVM and it was applied to
benthic macroinvertebrate classification in Publication V, investigating the
larger dataset. DAGSVM was used for the smaller dataset in [33]. Moreover,
a classification method called DAGKNN was introduced and combined the
DDAG learning architecture and k-NN classification method.

The third research problem was to find the right kernel function for SVMs
and the most suitable feature set to the benthic macroinvertebrate classifi-
cation. In Publications I-III and V seven kernel functions were used. These
were: linear, polynomial kernel functions (degrees 2-5), Radial Basis Func-
tion and Sigmoid kernel function. The smaller dataset contained 25 features
and the larger dataset 32 features. Several feature subsets were used in Pub-
lications I-V. In Publication I 15D (the union of statistical and geometrical
features) and 24D feature sets were used. Statistical features (7D), geomet-
rical features (8D) and a random eight-feature subset from 15D were tested
in Publication II. In Publication III four different feature sets were used and
these were 7D, 15D, 17D (randomly chosen) and 25D. For Publication IV
only 15D feature set was used and in Publication V the 50 species dataset
was divided into ten species groups and for each group the feature selection
was made by Scatter method. The use of Scatter method in the feature
selection was a novel approach in this application. In [37, 38, 39, 89] 15D
feature set was used as a basis for the experimental tests.

Benthic macroinvertebrate classification is a demanding task. The differ-
ences between images may be very small and the positions and the sizes may
vary in each image. Moreover, images may contain overlapping or damaged
specimens with lack of antennae or legs for instance. Hence the classification
of benthic macroinvertebrates requires a lot of the classification methods
themself. They need to be reliable and at the same time efficient.

The automated classification of benthic macroinvertebrates is not only
an interesting application from the perspective of data mining and machine
learning, but it would be a valuable tool in practice. Benthic macroinver-
tebrates are organisms without a backbone. They inhabit the bottom sub-
strates of their habitats for at least part of their life cycle [86]. Common
habitats for benthic macroinvertebrates are rivers, streams, lakes and ponds.
The practical importance of benthic macroinvertebrates occurs in several sit-
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INTRODUCTION

uations. Firstly, benthic macroinvertebrates are an important food source for
fish, and, are therefore indirectly important for humans. Secondly, benthic
macroinvertebrates are commonly used in biomonitoring, which means the
use of biological responses to assess changes due to anthropogenic causes [86].
The aim of biomonitoring regarding benthic macroinvertebrates is to assess
water quality. The reason behind the use of benthic macroinvertebrates in
biomonitoring can be explained by the fact that several species of benthic
macroinvertebrates are sensitive to changes in water quality, making them
excellent indicators of the health of freshwater ecosystems. Moreover, even
the most minute changes in water quality can be seen in them after long
periods of time, so they can be used for long-term biomonitoring.

The use of benthic macroinvertebrates in water quality assessment re-
quires that the number of samples collected from the freshwater areas is
large. Collection of benthic macroinvertebrate samples itself is a relatively
easy task and inexpensive [42]. The most laborious task is their sorting and
identification. The specimens are manually separated from the samples and
identified individually. This traditional human-made classification is time-
consuming [76]. The human-made identification process may take several
days or weeks. Moreover, it demands special expertise (taxonomists) since
many benthic macroinvertebrate species are difficult to distinguish from each
other. Hence the total costs of biomonitoring can be very high (see for exam-
ple [2]). By the automation of the benthic macroinvertebrate classification
costs can be significantly reduced and it would enable large-scale biomoni-
toring [42].

The introductory part of this thesis is divided as follows. Chapter 2
depicts the biological motivation for the thesis. It gives a brief overview
of benthic macroinvertebrates and their use in biomonitoring. Chapter 3
concentrates on several key issues in machine learning, such as feature selec-
tion and evaluation. In Chapter 4 Support Vector Machine is introduced in
binary classification problems and its multi-class extensions, used in Publica-
tions I-III and V, are presented. Results from the individual publications are
considered in Chapter 5. Chapter 6 is reserved for discussion and conclusions
and Chapter 7 clarifies personal contribution of the publications.
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Chapter 2

Biological Background

2.1 Benthic Macroinvertebrates
Freshwater ecosystems include a wide diversity of organisms. One large and
important group in freshwater ecosystems is benthic macroinvertebrates. The
name benthic macroinvertebrate can be divided into three parts linguistically.
Firstly, benthic means bottom. Secondly, macro means large and, thirdly,
invertebrate signifies being without a backbone. Hence, benthic macroinver-
tebrates could be characterized as animals without a backbone living on the
river beds. However, this is not a very precise definition. A more accurate
definition is given in [86]:

Benthic macroinvertebrates are organisms without backbones that
inhabit the bottom substrates of their habitats, for at least part
of their life cycle.

Benthic macroinvertebrates are a diverse group of organisms. There are
thousands of species of benthic macroinvertebrates and the exact number of
species is impossible to determine since from time to time new species are
found.

Some classification of benthic macroinvertebrates can be made by compar-
ing the length of their life cycles. One of the largest and the most long-lived
benthic macroinvertebrate is the river pearl mussel which can have a life cycle
of several decades [66]. Crayfish instead may have a life cycle of several years
[66], but the typical life cycle of benthic macroinvertebrates ranges from 1-2
years [76]. The life cycle of most benthic macroinvertebrates can be divided
into two groups [17]:

1. Complete metamorphosis

2. Incomplete metamorphosis.

5



BIOLOGICAL BACKGROUND

In complete metamorphosis insects at the larvae stage differ significantly from
adults. The transformation to adult occurs at the pupae stage. A diagram
of the phases of complete and incomplete metamorphosis can be found in
Figure 2.1.

Benthic macroinvertebrates can be classified with four different approaches
[66]:

1. Structural, i.e., morphological properties

2. Functional feeding groups

3. Habitat requirements

4. Biome.

Morphological properties are the most common and the oldest way to
classify benthic macroinvertebrates and the taxonomy of benthic macroinver-
tebrates has been developed from this approach [66]. Taxonomy originated
in ancient Greece and its modern formulation goes back to the 18th century,
when Linnaeus introduced the basis of binomial classification (genus is pre-
sented first and then the species) which is still used in biology [21]. It has
been used ever since with some modification during the centuries. When a
detailed classification of benthic macroinvertebrates is made, the concept of
taxon is needed.

Taxon (plural taxa) refers to any attained determination unit (taxonomic
category) for animals (or plants) in taxonomy [66]. Taxonomy is a hierar-
chical structure of different taxa. The goal in identification is to achieve
maximum accuracy. The most accurate level in the taxonomy of animals is
species. In plant taxonomy it is possible also to determine subspecies. In
practice the identification of benthic macroinvertebrates is made by biologists
or taxonomists specialized in insect identification. For example, Hydropsyche
siltalai has been identified to species level, but often the identication is left

adult nymph

eggs

(a) Incomplete meta-
morphosis

pupae

adult eggs

larvae
(b) Complete meta-
morphosis

Figure 2.1: Stages of incomplete and complete metamorphosis.
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2.1. BENTHIC MACROINVERTEBRATES

Table 2.1: Hierarchy of taxonomic ranks and an example Hydropsyche siltalai
of how to use them.

Taxon Taxon in Latin Example
Kingdom Regnum Animalia
Phylum Phylum, divisio Arthropoda
Class Classis Insecta
Order Ordo Tricophtera
Family Familia Hydropsychoidea
Genus Genus Hydropsyche
Species Species Hydopsyche siltalai

at a more general level such as genus or family, since the differences between
species (or genera) may be very slight and the exact species (genus) may be
impossible to determine. Table 2.1 presents the hierarchy of taxonomy [17]
and an example of its use in the case of the Hydropsyche siltalai species. In
Table 2.1 species level is the most accurate taxon and kingdom is the most
general taxon.

A commonly seen abbreviation in benthic macroinvertebrate identifica-
tion or more generally in insect identification is sp. (species) or in plural
spp. (species pluralis). This means that the identification has been left at
genus rank. For instance, the smaller dataset of benthic macroinvertebrates
examined contains one taxonomic group, Isoperla sp., where this abbrevi-
ation occurs. This means that although the genus Isoperla is known, the
exact species could not be determined. If the abbreviation spp. occurs, it
means that from the same genus several species have been found without
being more accurately determined.

A noticeable structural property is also the size of an animal. Hence, a
dichotomy between the benthic macroinvertebrates and benthic meioinverte-
brates can be established [66]. The difference between these two concepts is
that benthic macroinvertebrates are that subset of the benthic animals which
can be seen with the naked eye. Benthic meioinvertebrates can be seen only
with a microscope and they may consist of a totally separate species or the
early stages of benthic macroinvertebrates [66]. The size difference between
benthic macroinvertebrates and benthic meioinvertebrates is that the former
are collected with a 500µm sieve [66] and the latter are with finer sieves. Fig-
ure 2.2 presents an example image from eight taxonomic groups of benthic
macroinvertebrates. The images are from the smaller dataset.
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BIOLOGICAL BACKGROUND

Functional feeding groups are another way to classify benthic macroin-
vertebrates and they are divided into four categories [17, 45, 66]:

1. Shredders

2. Collectors

3. Scrapers

4. Predators.

Shredders consume coarse non-living organic matter such as leaves [17,
66]. Shredders break down the organic matter into a convient form so it can
be handled by other benthic macroinvertebrate groups. The main growth
period is in late autumn and in winter when there is an abundance of food
available in the rivers [66]. Shredders are found in the upper course of a
river more often than the lower course [66]. Examples of shredders are, for
instance, Limnephilidae and Lepidostomatidae families, which belong to the
Trichoptera order, i.e., to the order of caddisflies [66].

Figure 2.2: An example image from eight taxonomic groups of benthic
macroinvertebrates. The order of taxonomic groups from top left to bottom
right is Baetis rhodani, Diura nanseni, Heptagenia sulphurea, Hydropsyche
pellucidulla, Hydropsyche siltalai, Isoperla sp., Rhyacophila nubila and Tae-
niopteryx nebulosa.

Collectors can be divided into two groups:

1. Gathering collectors

2. Filtering collectors.

8



2.1. BENTHIC MACROINVERTEBRATES

Gathering collectors collect fine particulate non-living organic matter
from the river bed on which surface bacteria live [66]. Gathering collectors
are common in middle and lower courses where there is usually an abundance
of fine pieces of organic matter. Several mayflies, for example, belong to the
group of gathering collectors [66]. Filtering collectors catch non-living and
living fine organic matter which drift with the current [66]. Moreover, filter-
ing collectors have several kinds of structural and behavioural adaptations
which help them in nutrition. As an example, one of the most important
filtering collector family in Finnish rivers is Hydropsychidae [66, 85]. Species
Hydropsyche pellucidulla and Hydropsyche siltalai, for instance, belong to the
Hydropsychidae family and are in the smaller dataset.

Scrapers feed on benthic algae from the solid substrates of the river bed
[66]. Scrapers’ richness is at its highest point in summer when there is an
abundance of benthic algae. Scrapers are usually adapted in their morpho-
logical and behavioural properties to stay in place at the solid surfaces despite
a strong current [66]. Many mayflies and snails are scrapers. The last func-
tional feeding group is predators. They feed on other invertebrates either
seizing them directly or with the assistance of traps [66]. Some stonefly and
caddisfly species are predators. For the predators the larvae of blackflies and
chironomids are important food source [66, 86].

The third alternative for the classification of benthic macroinvertebrates
is the habitat requirements. There are various requirements for a habitat in
the case of benthic macroinvertebrates. In [66] five of these were listed:

1. Lithophilious

2. Psammophilious

3. Burrowing

4. Xylophilous

5. Phytophilous.

Some stonefly species favour lithophilious habitat while some dragonfly species
favour more xylophilous habitat [66]. The diversity exploration of river habi-
tats is dependent on the situation and different kinds of subhabitats can be
distinguished. From vegetation, for instance, smaller habitats can be distin-
guished such as mosses, benthic algae or reeds and each one of these smaller
habitats has its own species. If we want to determine the habitat at its most
general level, we can use the concept of biome, which is the fourth possible
way to classify benthic macroinvertebrates [66]. Nowadays, within a biome
ecoregions are separated. As an example in Finland, which belongs to the
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boreal region, three ecoregions can be distinguished. These are the southern,
middle, and nothern boreal regions [66].

2.2 Biomonitoring
Environmental issues have become an important part of modern society. Con-
tinually growing needs in all sectors of society pose a challenge for the envi-
ronment to adapt to these changes. Water is at the centre of our lives but it
is often taken for granted. Water is essential for all organisms, including hu-
mans, to survive [58]. Earth’s water supplies can be divided roughly into two
parts: salt water areas and freshwater areas. Freshwater is in the minority
when taking account all water resources in Earth. Oki and Kanae state in
[58] that only about 2.5% of Earth’s water resources are freshwater. More-
over, a major part of the freshwater resources is stored as glaciers or located
in deep groundwater [58]. Thus only a small fraction of freshwater is at our
disposal. Due to the global population explosion, industry and agriculture,
for instance, there is a constantly growing need for freshwater.

The rising trend in water demand has inconvenient consequences. Illegal
dumping, oil emissions and pollution such as heavy metals, are a constant
threat to freshwater ecosystems such as rivers, lakes, ponds and streams.
Hence biological monitoring or more simply biomonitoring is needed. Biomon-
itoring can be defined as the use of biological responses to assess changes
of anthropogenic origin [86]. When benthic macroinvertebrates are used in
biomonitoring, the aim is to assess water quality.

Water quality assessment can be done through short-term or long-term
studies. From short-term studies chemical samples are typically used. How-
ever, chemical samples give researchers only a snapshot of the water quality
[76]. Due to the intermediate length of life cycle benthic macroinvertebrates
are suitable for long-term biomonitoring [76]. According to Voelz [83] long-
term studies are crucial for ascertaining the differences between natural and
anthropogenic changes in water quality. Benthic macroinvertebrates reveal
some biochemical, genetic, morphological or physiological changes when they
are affected by anthropogenic stressors [86]. This is one reason why benthic
macroinvertebrates should be used in biomonitoring. In the literature are nu-
merous studies using benthic macroinvertebrate communities as indicators of
environmental stressors [76] (see for example [11, 12, 22, 23, 28, 52, 57, 83]).

More specificlly, benthic macroinvertebrates have several advantages for
use in biomonitoring. Vuori et al. [84] as well as [23], [66] and [86] listed some
of the advantages of using benthic macroinvertebrates in biomonitoring:

1. Benthic macroinvertebrates are small enough to be easily collected.
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Sampling requires only few people and minimal equipment.

2. Benthic macroinvertebrates can be defined fairly easily in several taxo-
nomical groups.

3. Benthic macroinvertebrates are an important food source for fish thus
having an essential meaning for people.

4. Sampling methods are highly standardized and different methods have
been developed for special needs.

5. Benthic macroinvertebrates are common in most aquatic habitats.

6. There are relatively ample information on the responses of different en-
vironmental pressures to the occurrences of different species and ben-
thic macroinvertebrate commmunities.

7. There are a large number of benthic macroinvertebrate species. Thus
different benthic macroinvertebrate communities are diverse.

8. Benthic macroinvertebrates generally have limited mobility so they are
indicators of localized environmental conditions.

9. Benthic macroinvertebrates are often suitable for experimental studies.

10. Benthic macroinvertebrates have a relatively long life cycle so they can
be used in long-term biomonitoring. Even a short-time low dissolved
oxygen level or low pH-value in a freshwater ecosystem can be seen in
them after a long period of time.

Although several advantages have been listed for the use of benthic macroin-
vertebrates in biomonitoring, there are also disdvantages. In [66],[84] and
[86], a few of the disadvantages are noted:

1. Benthic macroinvertebrates do not respond to all environmental pres-
sures.

2. Quantitative sampling requires a large number of samples to achieve
reliable results.

3. Processing of samples and identification of benthic macroinvertebrates
are laborious tasks and these processes need special expertise.

4. The occurrence and the abundance of benthic macroinvertebrates are
seasonal, especially in the case of aquatic insects.
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5. The spectrum of different biological and diversity indices is wide and
can be a source of dissatisfaction in experimental results.

6. Some benthic macroinvertebrates may enter the sampling area due to
drifting.

7. Calculated biological indices from the data are geographically restricted.

8. The value of diversity indices is heavily dependent on the sampling
method.

The best seasons for benthic macroinvertebrate sampling are in the spring
or autumn if the sampling is done in inland waters [66]. If sampling is done
in maritime areas, summer is also a possible season for sampling [66]. Diffe-
rent seasons have their own advantages for sampling. In spring samples also
include larger benthic macroinvertebrates due to overwintering and these
specimens can better explain winter phenomena [66]. Moreover, larger ben-
thic macroinvertebrates are easier to identify. If sampling is performed in
autumn, benthic macroinvertebrates maturing in summer can be obtained as
samples.

Sampling methods are divided into qualitative and quantitative methods
[66]. When using quantitative methods, the number of benthic macroinver-
tebrates is found per known area. In other words, the density of benthic
macroinvertebrates can be evaluated [66]. A common way to use quantita-
tive method in practice is to use Surber sampler. Of the qualitative methods
one of the most used methods is kick-net method, which is applicable to
various surfaces [66]. Usually kick-net sampling goes in practice as follows:
A biologist disturbs the substratum by kicking and, thus, all the material
together with benthic macroinvertebrates drifts into the net where the ben-
thic macroinvertebrates are separated [66]. This way the kicking area can be
fixed and the kicking time can be made constant [66]. Generally speaking,
sampling methods are highly standardized and the regulations are precise
(see, for example [35]).

Proper preprocessing of samples can make the later stages easier [66].
One problem is to separate the non-important living and non-living material
from a sample, but usually the most time-consuming stage is the separation
of specimens from samples. This is done manually one by one and needs
special attention. The process can be made easier using subsampling [66],
but the workload of this stage can still be onerous. When the specimens
have been preserved, they are identified manually one by one. The identifi-
cation process and the specimen separation are the two most laborious and
cost-intensive stages in the benthic macroinvertebrates classification. Fully
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automated benthic macroinvertebrate identification (see [50, 69]) of all possi-
ble species of benthic macroinvertebrates is probably only a dream, but if the
major part of specimens could be identified automatically, the costs could be
significantly reduced. The remaining specimens not automatically identified
could be identified manually afterwards.

There is a wide variety of criteria and indices when benthic macroinverte-
brates are used in water quality assessment. Dahl, Johnson and Sandin [12]
used 84 single metrics alone in detecting organic pollution of streams. Vuori
et al. [84] propose five general criteria for assessment:

1. Taxonomic composition

2. Abundances

3. The absence of important taxonomic groups

4. The proportion of sensitive and non-sensitive taxa

5. Species diversity.

Taxonomic composition refers to species and species groups that exist in a
particular bounded environment [84]. Abundance can be described with the
number of individuals of a species in a sample ( ind.

sample) by density ( ind.
m2 ) or by

relative proportion of species [84]. The total abundance is not a very sensi-
tive indicator of anthropogenic impacts in less disturbed aquatic ecosystems
[84]. However, the influence of severe stress, regulation or high content of
toxic substances typically clearly reduce the abundance [84]. Variables that
account for both taxa abundances and taxonomic composition (e.g. Percent
model affinity) are more sensitive than variables representing only species
composition [66].

Another good indicator of anthropogenic pressure is the absence of impor-
tant taxonomic groups typically occurring occur in natural state lake sites.
This may indicate changes in the functionality of an ecosystem [84]. Benthic
macroinvertebrate species tolerate different environmental pressure in diffe-
rent ways. The proportion of sensitive and non-sensitive taxa is closely re-
lated to community composition and distinct tolerance of species with respect
to environmental factors. A common measure to describe the relation be-
tween sensitive and non-sensitive taxa is the EPT ratio [66]. This represents
the proprotion of EPT taxa (Ephemeroptera=mayfly, Plecoptera=stonefly,
Trichoptera=caddisfly) and other taxa. EPT order is often used because the
families within these orders are dominant in clean waters [86] and the dete-
rioration of water quality can be seen in them quickly. Generally speaking,
benthic macroinvertebrates represent a wide spectrum of pollutant tolerance
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(see, for example [86]). Diversity can be measured by using species richness
[84]. The most simplest to measure species richness is to use species density
in which the number of species is proportioned within a fixed area. Moreover,
the abundances between species can be measured with evenness [84].

Benthic macroinvertebrates communities are used routinely in numerous
assessments [66]. The responses of benthic macroinvertebrate communities
are practicable as a coarse level indicator of environmental changes. Ben-
thic macroinvertebrates can be used as an indicator of the presence of toxic
substances in water system stress with three ways [66]:

1. Measuring the residues of toxic compounds from benthic macroinver-
tebrates.

2. Analysing the health of populations using biomarkers.

3. Testing the level of pollutants in the water or sediment in laboratory
and field experiments.

Morphological deformations have proved to be useful biomarkers (see, for
instance [85]). The simplest way to ascertain the injurious effects of toxic
substances using benthic macroinvertebrates is to investigate the frequency
of deformed individuals in the polluted areas compared to some non-polluted
reference target [66].
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Chapter 3

Machine Learning

3.1 Definition
We are overwhelmed with data. The amount of data in the world,
in our lives, seems to go on and on increasing - and there’s no end
in sight. As the volume of data increases, inexorably, proportion
of it that people understand decreases, alarmingly. Lying hidden
in all this data is information, potentially useful information, that
is rarely made explicit or taken advantage of. A scientist’s job
(like a baby’s) is to make sense of data, to discover the patterns
that govern how the physical world works and encapsulate them
in theories that can be used for predicting what will happen in
new situations. [87]

Data mining is defined as a process of discovering patterns in data [87].
Machine learning algorithms have a great practical value in many application
domains and one of these applications is data mining [54]. Classification is an
important subset of data mining and applying machine learning algorithms
to these tasks is nowadays active. Machine learning algorithms seem to
have great practical value but how can we define machine learning exactly?
Mitchell [54] defines it first broadly by saying that machine learning includes
any computer program that improves its performance at some task through
experience. More specifically, machine learning can defined as follows [54]:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance P , if its perfor-
mance at tasks in T , as measured by P , improves with experience
E.

By adapting the aforementioned definition, the classification of benthic
macroinvertebrates could be defined as follows:
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• Task T : classifying benthic macroinvertebrate taxa within images.

• Performance measure P : percentage of benthic macroinvertebrates cor-
rectly classified.

• Training experience E: a database of benthic macroinvertebrate images
with given taxa.

In other words, in classification problems, generally speaking, the aim
of using machine learning algorithms is to find a model from the available
data that can predict the class labels for the unknown objects. Moreover,
the set of class labels is limited. Classification is predicting a label from the
predefined set of classes for the unknown objects. Commonly used machine
learning methods for classification are decision trees [87], artificial neural
networks [26], Bayesian learning [8], SVM [7, 70] and clustering algorithms
such as SOM and K-Means [8].

Learning paradigms (machine learning algorithms) can be divided into su-
pervised, unsupervised and reinforcement learning. Unsupervised learning,
quite often referred to as clustering, involves a process that automatically
reveals a structure in data and needs no supervision [8]. In other words,
when considered a classification problem, we do not know the class labels
of the examples and the goal is to collect similar cases to their own groups.
Typical examples of unsupervised learning are K-Means [8] and SOM [26].
Supervised learning is the opposite of unsupervised learning. In supervised
learning we have a collection of data and their characterization as discrete
labels [8]. In other words, when supervised learning is used we have data and
the class labels of examples are known. Support Vector Machines [7, 70] and
neural networks [26] are typical examples of supervised learning. Reinforce-
ment learning is a learning paradigm between unsupervised and supervised
learning. It is guided by signals that could be sought as a generalization of the
more detailed supervision signals used in supervised learning [8]. Probably
the most familiar reinforcement learning algorithm is Q-learning algorithm
[54]. However, reinforcement learning is beyond the scope of this thesis.

3.2 Preprocessing

3.2.1 Image Processing

Before any classification method can be applied to a dataset, preprocessing of
the data is needed. Preprocessing is a multi-stage process which in the case
of benthic macroinvertebrate classification begins when the biologists have
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collected the samples from rivers. A thorough preprocessing is a requirement
for successful classification. The first actual preprocessing stage is when
the benthic macroinvertebrates are separated from the samples. When the
specimens have been separated and preserved, taxonomists identify them in
the traditional way. After this specimens are scanned onto a computer in
single species batches using a flatbed scanner [89].

Now the actual preprocessing of the images can be done. For the datasets
of the thesis, segmentation for each batch-scan picture file was performed in
four steps [89]. These were:

1. An estimation of the image background was obtained by median filter-
ing an image with a kernel size larger than the radius of the largest
object in the image.

2. The background image was used to normalize the background value of
each pixel in the original image to the average of the background level.

3. A global threshold was used to generate a mask that separated the
specimens from the background in the normalized image. This proce-
dure enables the detection of individual specimens as connected areas in
the mask. An automatic technique was used in the choice of threshold
value.

4. If the specimens were touching or overlapping, the segmentation was
resolved manually.

After segmentation of all greyscale batch-scan picture files, feature ex-
traction from the images was done [89]. Using ImageJ [32] an individual was
automatically separated from the background of the image and the features
were extracted [89]. This procedure is explained in [89], where a smaller
dataset (1350 images) was used. In the smaller dataset case 25 features were
extracted using ImageJ and in the larger dataset 32 features were extracted.
Table 3.1 shows all the features extracted from the images using ImageJ. In
Table 3.1 the first five columns present those features occurring in the smaller
dataset, and the larger dataset contained all the features presented in Table
3.1. Precise definitions of all features extracted can be found in [32].

3.2.2 Data Presentation and Preparation

In classification tasks the data is assumed to be in matrix form. A data matrix
is an n×m-matrix where the rows represent the examples (instances,samples
or cases) and the columns represent features (attributes or variables). Ex-
amples are the things to be classified and each one of them are characterized
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Table 3.1: Features extracted from the images.

Mean XM Kurt BX Minor FeretX Round
StdDev YM Area BY Angle FeretY Solidity
Mode IntDen X Width Circ. FeretAngle
Min Median Y Height Feret MinFeret
Max Skew Perim. Major %Area AR

by the values of a set of predetermined features [87]. In other words, ex-
amples represent entities described by one or more features [8]. If examples
are described with more than one feature, the data used in classification can
be referred to as a multivariate data [8]. Otherwise, the data is univariate.
Features are described by a set of corresponding values and examples which
have the same features are grouped to form a dataset [8]. More specifically,
features can dichotomized to qualitative and quantitative features. Qualita-
tive and quantitative features have different kinds of values and have their
own levels of measurements [61]. There are four levels of measurements and
the order is based on how much information they carry [61]. These levels
are nominal, ordinal, interval and ratio scale. Nominal and ordinal scales
belong to qualitative features and features having interval or ratio scale are
quantitative features.

A nominal scale signifies that there is no natural order between values
[8]. A typical example from nominal scale feature is gender which usually
can be assigned as 0 or 1 [61]. Thus it is also a special binary case of nominal
features. Frequencies, percentages and modes are commonly used statistical
measures with nominal scale features [61]. Ordinal scale implies that there
is some kind of order between values [8]. An example of ordinal scale is a
5-point scale (1=very bad, 2=bad, 3=neutral, 4=good, 5=very good) which
is typical in questionnaires. Descriptive statistics that rely on rank ordering
(e.g. median) can be used together with percentages, frequencies and modes
[61].

Interval scale differs from the two aforementioned such that values are
ordered and it is rational to talk about the difference between two values
[87]. Moreover, the values on an interval scale are measured in fixed and
equal units [87]. Temperature in degrees Celsius is a classic example of
interval scale. All the common parametric statistics such as means, standard
deviations etc. can be applied to the data with an interval scale [71]. The
values in a ratio scale are the most permissive, since they are treated as
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real numbers [87]. Hence, any mathematical operations are allowed with the
values of a ratio scale [87]. A ratio scale has a fixed zero point and ratio
scale features can be multiplied by a positive constant without violating the
ratio of the values. Weight is a common example of a ratio scale feature. In
the thesis all features are in ratio scale in both datasets. Table 3.2 presents
an example of a data matrix of an eight-class classification problem. The
first column represents the class label (species) of examples and the other
columns represent the features.

Missing values are a commonly encountered problem in real world datasets
and need special attention. Many algorithms have been developed for the
imputation of missing values. If the number of missing values is small and
the dataset is large, an easy solution is to exclude examples having missing
values from the dataset. However, this is seldom feasible. Another way to
handle missing values is to impute them by using some common statistical
value such as median, mode or mean. A hot deck imputation [8] is a possible
solution to missing values and in it for each example with missing values the
most similar example is found and the missing values are imputed from that
example. In this study we have an ideal situation, i.e. both datasets were
complete and there were no missing values. Hence, a more detailed overview
of this subject is beyond the scope of the thesis.

Table 3.2: Data matrix with a class label (species) and five features.

Species Area Mean Width Height Kurtosis
Baetis rhodani 30813 108.062 380 503 -1.072
Diura nanseni 239404 93.967 1302 694 -1.552
Heptagenia sulphurea 83741 97.758 958 460 0.026
Hydropsyche pellucidulla 368784 40.928 1175 740 0.542
Hydropsyche siltalai 122618 52.798 531 57 0.317
Isoperla sp. 36800 70.507 269 565 -0.876
Rhyacophila nubila 159612 55.82 957 466 -0.088
Taeniopteryx nebulosa 47759 49.584 373 657 -0.631

In a dataset features may have significantly different ranges where the
values lie. Hence it is often useful to make some transformations to the
data so that the features are in balance with each other. Moreover, it usu-
ally improves the classification. For instance, in Table 3.2 Area feature has
considerably greater values than Mean or Kurtosis. Hence, such dispropor-
tion can greatly influence the classification and in this case Area feature can
largely control the classification results. Thus, a common practice is to use
standardization [87] for features. In standardization statistical mean and
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standard deviation are evaluated from feature values and from each value
the mean is subtracted and the results divided by the standard deviation.
This procedure is known as z-score standardization. By means of standard-
ization the columns of a data matrix have a mean of zero and unit variance.
Other transformations can also be made such as linear scaling to interval
[a, b] where a < b. In this thesis standardization was the only transformation
used. Transformations should be made carefully since every transformation
draws us farther from the original data and understanding the nature and
behaviour of original data becomes more difficult.

3.3 Feature Selection
Dimensionality reduction of an example by means of feature extraction and
feature selection is one of the most fundamental steps in data processing
[8]. Feature selection is an important phase for several reasons. Firstly, high
number of features require more computational power. Secondly, with proper
feature selection classification results can be improved because irrelevant fea-
tures are eliminated.

Numerous algorithms have been developed for feature selection and the
research continues. In [89], for instance, the number of features was reduced
by canonical discriminant analysis and in [8] several feature selection algo-
rithms were presented. However, if the number of features is small, the best
possible feature subset can be searched by trial and error method. When the
number of features is high, more sophisticated methods can be used, such
as PCA [8]. Moreover, an important approach to feature selection is to use
knowledge from other studies of the same application. Human expertise can
also be a valuable source of information for feature selection, especially in
medicine and biology.

In this thesis Scatter method [34, 72, 73] was used for two purposes.
Firstly, in the class division problem (described in more detail in Chapter 4)
and in feature selection. Scatter method is an algorithm which evaluates a
measure for separability. Scatter algorithm computes results from data on
the basis of four alternatives [34]:

1. A common scatter value for the whole dataset

2. Scatter values for all classes by means of a whole dataset to express
separation between each class vs. rest.

3. Scatter value for all features using the whole dataset.

4. Scatter values for all features within each class vs. rest.
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The main idea in Scatter algorithm is to pick a random example and to
go through the dataset always going to the closest unvisited example [34]. In
the search for the closest example Euclidean distance is used [34]. Moreover,
when traversing the examples through the corresponding class labels are
saved in a list [34]. The list indicates how well the classes are grouped in the
input space. A complete representation with details of Scatter algorithm can
be found in [34], but the core of the algorithm goes as follows:

1. Preprocessing. Normalize all variable values into the same interval of
[0,1]. For nominal variables first perform their binarization.

2. Create a class label list:

2.1. Initialize an empty list A. There are pairs (ai, li) where ai ∈ Rt, i =
1,2, . . . , n and li is the corresponding class label of ai. Moreover,
ai ∈D where D is the dataset.

2.2. Select a random example x ∈D so that every example has an equal
probability to be chosen.

2.3. Search for a closest example y of x with respect to Euclidean dis-
tance. If y is not unambiguously determined, choose y randomly
from the corresponding examples.

2.4. Insert the class label of x to the end of list A.

2.5. Update D ∶=D∖{x} and consider the case y obtained in Step 2.3..
In other words update x = y.

2.6. If D ≠ ∅, return to 2.3..

3. Computing class changes. Hereafter only list A is considered.

3.1. Let us change counter to be v = 0 and index i = 1.

3.2. Take the classes of li and li+1.

3.3. If li ≠ li+1, then v = v + 1.

3.4. i = i + 1

3.5. If i < n, return to step 3.2..

4. Computing a scatter value.

4.1. Compute the theoretical maximum number w of changes:

4.1.1. Find the sizes of classes c1, c2, . . . , ck, i.e., the numbers of their
cases.
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4.1.2. From c1, c2, . . . , ck, search for the largest class ci. Let its size
be

S(ci) = n −M = n −∑
j≠i
S(cj),

where M is the size of the counterclass (the other classes to-
gether) of ci. If there are several classes ci of the equal maxi-
mal size, go to 4.1.5.

4.1.3. Decide:
4.1.4. If S(ci) >M , then assign w = 2M

4.1.5. else assign w = n − 1.
4.2. Evaluate the scatter value s = v/w which is in interval (0,1].

5. Computing a statistical baseline z: Prepare a simulated class label list
applying the class distribution of an original dataset given: generate a
random list of class labels according to the frequencies of the classes of
the dataset. Repeat steps 2-4 at least 30 times for simulated class label
lists to give average scatter values with small standard deviations and
z as their mean.

6. Computing separation power F :

F = z − s.

3.4 Evaluation
In classification evaluation is the final stage. It is an important stage since
it reveals the success of classification. In order to gain some perspective on
classification, certain measures are needed. Different measures yield different
perspectives on the classification. Two commonly used measures are accuracy
and classification rate (also known as true positive rate or sensitivity) [8].
Accuracy measures how many samples have been classified correctly from all
examples. More specifically, accuracy can defined as follows:

ACC = 100 ⋅
∑

M
i=1 tpi
∑

M
i=1 pi

%

where M is the number of classes, tpi is the number of correctly classified
samples in ith class and pi is the size of class i. Classification rate measures
how many examples have been classified correctly from a specific class. In
other words, the classification rate for the ith class is

CRi = 100 ⋅
tpi
pi

%.
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Although accuracy is the most common measure, it has a disadvantage,
especially when the class distribution is markedly skewed [41]. If a dataset
contains one or two classes significantly larger than the other classes, accu-
racy can be close to 100% although the smaller classes may be misclassified
completely. Hence it is advisable also to report other measures than accu-
racy. Throughout of this thesis accuracy and classification rate have been
used as a measures. ROC curves [8], for instance, have been omitted from
the thesis.

How can these measures be used in practice? The evaluation of perfor-
mance measures such as accuracy and classification rate require some modifi-
cations to a dataset of n examples. The basic approach is to divide a dataset
into two disjoint subsets called training and test set [8] and from these perfor-
mance measures can be evaluated. This data division method is also called
the holdout method [87]. A classifier uses a training set to construct a model
from the data and a test set is used to measure the classifier’s generalization
ability, i.e. the classifier’s ability to predict unseen examples.

There are several suggestions for the proportion of training and test set.
It was suggested in [8] that 2

3 of a dataset should be used for training and
the rest for testing. The main point is to use the majority of the data for
training. A common approach is to use 90% of the data for training and 10%
for testing. Generally, the proportion is heavily dependent on the size of
the dataset. If a dataset has a skewed class distribution, a stratified holdout
should be used in order to ensure that every class is represented in the training
and test tests [87]. Moreover, holdout procedure can be performed several
times and in each iteration the training and test sets are chosen randomly.
This is called repeated (stratified) holdout and the performance measure can
be averaged [87]. The disadvantage in the repeated holdout method is that
one cannot be sure how many times an example occurs in the training and
test sets. Sometimes a classifier has parameters which need to be tuned up to
maximize the results in the test set. Thus a dataset needs to be divided into
three subsets: training, validation and test sets [26, 87]. Usually a dataset
is first divided into training and test sets and then the training set is again
divided into two. In the division of a training set the holdout method can be
used again in a similar way as before.

In real world situations data are usually limited and independent training,
validation and test sets cannot be indefinitely chosen for classification. There-
fore some other ways need to be considered. Nowadays a commonly used
technique is cross-validation [8, 26, 87]. The main idea in cross-validation is
to divide the dataset into a fixed number of folds [87]. Hence, from the cross-
validation name k-fold cross-validation is typically used where k < n and n
is the number of examples. In k-fold cross-validation the dataset is divided
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into k disjoint subsets of equal sizes. To ensure that every subset contains
examples from each class, cross-validation can be done using stratification.
Thus the cross-validation is called stratified k-fold cross-validation.

When using k-fold cross-validation, the classification process is performed
k times. In every round k − 1 subsets are used for training and one subset
for tests [8]. Hence every subset (and every example) is once a test set and
k − 1 times a training set. To ensure that the cross-validation partition does
not effect the classification results, k-fold cross-validation can be repeated m
times with different partitionings, which can be referred to as m times k-fold
cross-validation. When cross-validation is used in classification, the mean of
the performance measures is evaluated. The choice of k in cross-validation
is entirely data dependent. If a dataset is small, then k = 3 or k = 5 may be
good choices. However, in practice k = 10 is a common alternative and often
10-times 10-fold cross-validation is used in classification. An extreme variant
in k-fold cross-validation is to use the leave-one-out method [26], where n−1
examples are used for training and only one example for testing. This process
is repeated n times and each time a different example is left for testing.

If a classification method needs parameter tuning and cross-validation
is applied to a dataset, a slightly different approach can be used. In these
situations so-called nested cross-validation can be used, where a dataset is
first partitioned with k-fold cross-validation and in each round another k-
fold cross-validation is applied to a training set (k − 1 subsets). However,
this solution is very time-consuming. Another way is to take a validation set
from every training set and use them in parameter tuning. There are also
other methods such as bootstrapping, where the same example can be used
a second time whenever examples are taken for a training set [8, 87].

3.5 Statistical Testing
Usually a classification process is repeated with several methods using the
same test setup and a comparison between results is made. Statistical analy-
sis is necessary to find the significant differences among the results, especially
when the methods perform in a similar manner. A typical situation where
statistical analysis is done is the comparison of accuracies (see preceding
section) of different methods.

The Wilcoxon signed ranks test [61, 71] is a widely used non-parametric
test to analyse paired data. When statistical analysis is performed, the data
need to satisfy the assumptions of selected methods. The Wilcoxon signed
ranks test assumes that [61]:

1. The data are paired observations from a single randomly selected sample,
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constructed either through matched pairs or through utilizing subjects
as their own control.

2. The data to be analysed must have at least ordinal scale both within
and between pairs of observations.

3. There is symmetry of the difference scores about the true median.

The null hypothesis (H0) and alternative hypothesis (H1) of the Wilcoxon
signed ranks test are [71]:

H0: Components of the paired data have same medians.

H1 ∶ Components of the paired data have unequal medians.

The actual process for using the Wilcoxon signed ranks test in practice
is as follows [61, 71]:

1. Evaluate the signed difference of the paired data.

2. Calculate the absolute values of the differences.

3. Rank the absolute values of the differences between the two variables
from lowest to highest. If a tie situation occur, assign the mean of the
tied ranks.

4. Give each rank a positive or negative sign according to the sign of the
original difference.

5. From the analysis drop those pairs which are equal. Determine n, the
number of nonzero differences.

6. Determine T , the sum of the positive ranks.

To test the hypothesis, test statistic z is formed [61]:

z =
x − µ

σ
=

T − [n(n + 1)/4]
√
n(n + 1)(2n + 1)/24

.

If z > zcritical, reject H0. The value zcritical can be checked, for example,
from the tables. The region of rejection must be adjusted appropriately for
a two-tailed hypothesis.
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Chapter 4

Support Vector Machine

4.1 Binary Classification Problem

Support Vector Machine is a computer algorithm that learns by examples to
assign labels to objects [55]. It was originally developed for two-class (binary)
classification problems. SVM [4, 5, 7, 9, 24, 70, 80] has gained wide popularity
among practitioners and researchers. The ongoing research around SVM is
very active and improvements are constantly being developed. SVM has
been applied to numerous applications such as image classification [6, 13],
and land cover classification [27]. Moreover, SVM has become popular in a
wide variety of biological applications [3, 55]. One example of these biological
applications is benthic macroinvertebrate classification [33, 38, 76].

The idea of SVM originated in the case where a dataset of two classes was
linearly separable. The principle in SVM is to construct a hyperplane (a lin-
ear decision function) which separates the classes in dataset. The hyperplane
on which the points x lie, satisfies the equation

f(x) = ⟨w,x⟩ + b = 0

where w ∈ Rm is a weight vector (normal to the hyperplane) and b ∈ R is a
bias term (also known as a threshold) [5]. Moreover ⟨⋅, ⋅⟩ is an inner product
(dot product in Rm). However, a separating hyperplane is not unique and
the problem was to find a separating hyperplane that will generalize well [9].
This problem was solved in 1965 with the realization that a separating hy-
perplane should have maximum margin in order to have good generalization
ability [9]. Maximum margin means that the distance between the separating
hyperplane and the closest examples of both classes is maximized. These ex-
amples are called support vectors since they define the margin, and support
vectors usually form a relatively small subset of all training examples. Hence,
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SVM is also known as a maximum margin classifier. Figure 4.1 presents an
example of a linearly separable data where optimal margin and hyperplane
have been found. The black circles and rectangles lying on the dashed lines
(canonical hyperplanes) represent the support vectors.

Figure 4.1: Example of an optimal separating hyperplane and optimal margin
in a two-dimensional linearly separable data.

How can a separating hyperplane be found exactly if the dataset is lin-
early separable? Assume that we have a collection of training examples
{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi ∈ Rm, i = 1,2 . . . , n are training ex-
amples and yi ∈ {−1,1}, i = 1,2, . . . , n are the corresponding class labels of xi.
In a linearly separable case support vectors lie on the canonical hyperplanes
∣⟨w,xi⟩+b∣ = 1 for some i = 1,2, . . . , n and the distance between the canonical
hyperplanes (total margin) is 2

∥w∥ [7]. Training examples can be presented
with the inequalities

yi[⟨w,xi⟩ + b] ≥ 1, i = 1,2, . . . , n.

Maximizing the margin is equivalent to minimizing the norm ∥w∥ [4]. Hence,
finding a separating hyperplane with maximum margin returns to solving the
following problem:

min
w,b

1
2∥w∥2 subject to yi[⟨w,xi⟩ + b] ≥ 1, i = 1,2, . . . , n. (4.1)
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The optimization problem in (4.1) is a convex Quadratic Programming
(QP) problem, since the objective function is convex and the points satis-
fying the constraints form a convex set [5]. To derive the solution for w, a
Lagrangian formulation of the problem needs to be introduced [5]. There
are two kinds of Lagrangian formulations: primal and dual. The primal
Lagrangian formulation is:

L(w, b,α) = 1
2∥w∥2 −

n

∑
i=1
αi[yi(⟨w,xi⟩ + b) − 1] (4.2)

where Lagrange multipliers αi ≥ 0, i = 1,2, . . . , n. Primal Lagrangian L is
maximized with respect to αi’s and minimized with respect to w and b. By
solving the saddle point, the derivatives of the primal Lagrangian formulation
with respect to w and b must vanish [70] and, hence,

n

∑
i=1
αiyi = 0

and

w =
n

∑
i=1
αiyixi

are obtained [70]. According to the Karush-Kühn-Tucker (KKT) conditions
[5, 70] Lagrange multipliers, which are non-zero at the saddle point, satisfy
the constraints in (4.1) and training examples with αi > 0 are support vectors.
Since the optimization problem is a convex QP problem, a dual formulation
can likewise be solved. The dual formulation [70] of the optimization problem
is

maxW (α) =
n

∑
i=1
αi −

1
2

n

∑
i=1

n

∑
j=1
αiαjyiyj⟨xi,xj⟩ (4.3)

subject to
αi ≥ 0, i = 1,2, . . . , n

and
n

∑
i=1
αiyi = 0.

The optimal hyperplane can be found by solving either the primal or the
dual Lagrangian formulation. The solution for the weight vector w is

w =
n

∑
i=1
αiyixi.
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Now the hyperplane has the form

f(x) =
n

∑
i=1
αiyi⟨xi,x⟩ + b.

A formula for the bias term can be evaluated from the KKT conditions

αi[yi(⟨w,xi⟩ + b) − 1] = 0, i = 1,2, . . . , n

by choosing any i for which αi ≠ 0 and evaluating b [5]. Thus,

b = yi − ⟨w,xi⟩.

Another way to compute b is to take the mean of all values b obtained from
the condition αi ≠ 0 [5]. The output value of f(x) is a real number. However,
the output space is the set {−1,1}, so a class label for a new example x is
obtained by evaluating

f(x) = sgn(
n

∑
i=1
αiyi⟨x,xi⟩ + b).

Unfortunately linearly separable data is seldom encountered in practice.
When the data is linearly non-separable, we need to introduce a modified
version from the original optimization problem. Cortes and Vapnik [9] intro-
duced the soft margin SVM and in this modified version the concept of slack
variables ξi ≥ 0 is needed. The slack variable measures the deviation of an
example from the ideal condition of example separability [26]. Now training
examples can be presented with inequalities

yi[⟨w,xi⟩ + b] ≥ 1 − ξi, i = 1,2, . . . , n.

The optimization problem can now be presented as follows:

min
w,b,ξ

1
2∥w∥2 +C

n

∑
i=1
ξi (4.4)

subject to yi[⟨w,xi⟩ + b] ≥ 1 − ξi and ξi ≥ 0, i = 1,2, . . . , n. Moreover, the
user-defined parameter C (also known as the box constraint) is important
in classification. It is a trade-off parameter between maximum margin and
minimum classification error. The calculation of an optimal hyperplane goes
analogously (see for example [5]) as in the linearly separable case. The dual
formulation is now the same as in linearly separable case and the slack vari-
ables do not occur in it, but the difference from the linearly separable case is
that in the former Lagrange multipliers are bounded above with a constant
C.
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Kernel function [5, 7, 9, 70] is a key concept in SVM. The use of kernel
functions allows us to move from linear support vector classifiers to nonlinear
support vector classifiers. The main idea in the use of kernel functions is to
map the training examples from the input space to a higher dimensional fea-
ture space where the examples are linearly separable. Hence the separating
hyperplane can be constructed in a feature space and new examples can be
classified there. However, explicit mapping into the feature space can be very
difficult and the feature space could be of infinite dimensions. Fortunately,
the actual mapping of training examples to the feature space does not need
to be done. It has been shown that the inner products between the train-
ing examples in the input space can first be evaluated and then a nonlinear
transformation of the value of the result can be made [9]. An example of a
linearly non-separable data in a two-dimensional space is presented in Fig-
ure 4.2, which is mapped with a nonlinear transformation φ to another two
dimensional feature space where the data is linearly separable. The dashed
lines in Figure 4.2 represent the margin and the black rectangles and circles
are support vectors. Moreover, a solid line represents the decision boundary.
More specifically, kernel functions can be defined as follows [7],

Definition 1. A kernel is a function K, such that for all x, z ∈X

K(x, z) = ⟨φ(x), φ(z)⟩,

where φ is a mapping from the input space X to an (inner product) feature
space F .

An important note is that when kernel functions are used, it is necessary
to ensure that a kernel function is valid. If a kernel function satifies the
conditions of Mercer’s theorem [7, 70], it is a valid kernel function.

Theorem 1. Mercer’s theorem. Let X be a compact subset of Rm. Suppose
K is a continuous symmetric function such that the integral operator TK ∶

L2(X)→ L2(X),
(TKf)(⋅) = ∫

X
K(⋅,x)f(x)dx,

is positive, that is

∫
X×X

K(x, z)f(x)f(z)dxdz ≥ 0,

for all f ∈ L2(X). Then we can expand K(x, z) in a uniformly convergent
series (on X ×X) in terms of TK’s eigen-functions φj ∈ L2(X), normalized
in such a way that ∥φj∥L2 = 1, and positive associated eigenvalues λj ≥ 0,

K(x, z) =
∞
∑
j=1
λjφj(x)φj(z).
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Figure 4.2: An illustration of the use of kernel function in SVM.

There are some commonly used kernel functions in the literature which
are also applied to the tests in this thesis. These are:

1. Linear: ⟨x,z⟩,

2. Polynomial: (⟨x,z⟩ + 1)d where d ∈ N is the order of the polynomial
kernel function,

3. Radial Basis Function: e−
∥x−z∥2

2σ2 where σ > 0,

4. Sigmoid: tanh(κ⟨x,z⟩ + δ) where κ > 0 and δ < 0.

When using kernel functions, the dual formulation of the optimization prob-
lem is written in the form:

maxW (α) =
n

∑
i=1
αi −

1
2

n

∑
i=1

n

∑
j=1
αiαjyiyj⟨φ(xi), φ(xj)⟩

subject to
n

∑
i=1
αiyi = 0 and 0 ≤ αi ≤ C, i = 1,2, . . . , n.

Moreover, the use of kernel functions leads to a decision function in the form

f(x) = sgn(
n

∑
i=1
yiαiK(x,xi) + b)
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and bias b can be obtained, for instance, by taking the mean

b = yj −
n

∑
i=1
yiαiK(xj,xi)

over all points with αj > 0 [70].
Training a support vector machine requires solving a very large QP opti-

mization task [64]. Platt [64] introduced a new algorithm in 1998 for train-
ing SVMs called Sequential Minimal Optimization (SMO). SMO divides the
large quadratic programming optimization problem into a series of the small-
est possible QP problems and solves each of them analytically, which speeds
up the training process [64]. SMO is a widely used algorithm, but it is be-
yond the scope of this thesis. Another way in SVM training is to use the
Least Squares Support Vector Machines (LS-SVM) [74, 75] which has been
used in this thesis. LS-SVM differs from the traditional approach in that
now the primal classification problem takes the form

min
w,b,e

1
2∥w∥2 +

γ

2

n

∑
i=1
e2i

subject to equality constraints

yi[⟨w, φ(xi)⟩ + b] = 1 − ei, i = 1,2, . . . , n.

The error terms ei, i = 1,2, . . . , n play a role similar to that of slack variables
in QP formulation and γ is a user-defined parameter as is a box constraint
in QP presentation. The Lagrangian formulation has now the form:

L(w, b,e,α) = 1
2∥w∥2 +

γ

2

n

∑
i=1
e2i −

n

∑
i=1
αi(yi[⟨w, φ(xi)⟩ + b] − 1 + ei)

where αi’s can now take positive and negative values [75]. The optimality
conditions are [74]:

∂L

∂w
= 0 → w =

n

∑
i=1
αiyiφ(xi)

∂L

∂b
= 0 →

n

∑
i=1
αiyi = 0

∂L

∂ei
= 0 → αi = γei, i = 1,2, . . . , n

∂L

∂αi

= 0 → yi[wTφ(xi) + b] − 1 + ei = 0, i = 1,2, . . . , n.
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Eliminating w and b yields

[
0 yT

y Ω + γ−1I
] [

b
α

] = [
0
1 ]

where yT = [y1, . . . , yn], 1T = [1, . . . ,1], and I is an n×n identity matrix [75].
Kernel trick can be applied to the matrix Ω. Thus,

Ωij = yiyj⟨φ(xi), φ(xj)⟩

= yiyjK(xi,xj).

Hence, instead of using quadratic programming classifier

f(x) = sgn[
n

∑
i=1
αiyiK(x,xi) + b]

is obtained by solving a linear set of equations (for more information see
[74, 75]).

4.2 Multi-Class Extensions

4.2.1 One-vs-All

Since SVM was originally developed for two-class classification problems, a
natural interest awoke to extend SVM to also concern multi-class problems.
One-vs-all (also known as one-vs-rest, OVA) [13, 19, 29, 49, 65, 70] is one
of the most commonly used multi-class extensions. The basic idea is very
simple. In an M class (M > 2) classification problem M individual binary
SVM classifiers are constructed. Each one of M classifiers is trained to sep-
arate one class from the others. OVA method has its pros and cons. The
advantage is in the small number of classifiers, but the disadvantage lies in
the training phase, which is computationally heavy because every classifier
needs to handle full training data. When a new example is to be classified,
all M classifiers are run and a classifier giving the positive output for the
example assigns the class label for the new example.

However, occasionally situations are encountered where a new example
obtains a positive output from more than one classifier, or every classifier
gives a negative output. In other words, a tie situation has occurred. A com-
mon way to solve these tie situations is to apply a winner-takes-all method
[70], where the real outputs of SVM classifiers are compared. More specifi-
cally, the winner-takes-all method selects the class having the largest (most
positive) output from the tied classes. In other words

class of x = arg max
i∈T

(⟨wi, φ(x)⟩ + bi). (4.5)
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where T is the set of indices of tied classes. In Equation (4.5) wi is the weight
vector of the ith classifier and φ(x) is the mapped new example and bi is the
bias from the ith classifier. If all outputs are negative, the smallest output
defines the class label. Hong [29] introduced another way to solve ties based
on probabilistic ordering by using Naïve Bayes classifiers and in this thesis a
new tie solving strategy based on k-NN is introduced.

4.2.2 One-vs-One

Another typically used multi-class extension of SVM is the one-vs-one method
(also known as pairwise classification, OVO) [15, 19, 49, 70]. OVO differs
from OVA in several ways. In OVO a classifier for each possible pair of classes
is trained [70]. Hence the total number of classifiers is M(M−1)

2 in an M class
(M > 2) classification problem. Whereas in OVA every classifier handles the
full training data, in OVO every classifier is trained only with the training
examples of ith and jth classes (i < j). Although the number of classifiers
is decidedly greater than in OVA, the training time needed for an individual
classifier is significantly shorter. Therefore it is possible to save time when
using OVO method instead of OVA [70].

The information from the individual classifiers needs to be somehow col-
lected together. A commonly used method is the majority voting method
(also known as the max-wins rule), where every binary classifier gives a vote
for the predicted class [19]. The class having the most votes assigns the class
label to a new example. This approach, however, has a drawback. Ties arise
from time to time and some tie situation solving strategy needs to be applied.
In the thesis tie situations were solved by applying the k-NN method. Sev-
eral other methods have also been developed for combining the information
from individual classifiers in the OVO method (see for example [19]).

4.2.3 Directed Acyclic Graph Support Vector Machine

Platt et al. [63] introduced a learning architecture called Decision Directed
Acyclic Graph (DDAG) to combine multiple binary classifiers into a multi-
class classifier [63]. Decision DAG is a graph where there are no cycles and
the vertices have a direction. Moreover, DDAG consists of M(M−1)

2 nodes and
each of the nodes corresponds to a binary classifier [49] and in DAGSVM the
binary classifier in a node is an SVM classifier.

The training phase of DAGSVM is the same as in OVO, since the number
of classifiers is equal [13]. However, the testing phase differs from the previ-
ously introduced methods. The classification of a new example begins from
the root node and according to the result of a classifier, via left or right edge
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will be moved to the next node until a leaf is reached where there is the final
class label for the new example. The path from the root node to the leaf is
called an evaluation path [63]. Altogether M − 1 comparisons are needed to
solve the predicted class label for a new example.

DDAG is equivalent to operating in a list, where each node eliminates
one class from the list [63]. A decision node is formed by taking the first
and the last elements on a list. When a test example is evaluated in a
decision node, a class which was not chosen is eliminated from the list and
DDAG continues to again test the first and the last elements on the list. The
advantage of DAGSVM lies in the fast testing phase. It was also developed
for the purpose to solve the unclassifiable regions which occur in OVA and
OVO methods. However, DAGSVM also has a disadvantage. The order of
the list (or DDAG) can be arbitrary and every order can produce different
classification results. Moreover, the number of possible list (or DDAG) orders
is M ! in an M class problem and even with small values of M such as 8 or
10 the number of possible orders is very large. In practice it is impossible or
a computationally very demanding task to test every possible order. Figure
4.3 presents an example of a four-class DAGSVM architecture. To conclude,
exhaustive search here is reasonable only for small values of M .

D C B A

C vs D B vs C A vs B

B vs D A vs C

A vs D

A
B
C
D

B
C
D

A
B
C

C
D

B
C

A
B

not A not D

not B not D not A not C

Figure 4.3: An example of a four-class DDAG learning architecture.

4.2.4 Half-Against-Half Support Vector Machines

In [46] an interesting multi-class extension of SVM called Half-Against-Half
Support Vector Machines was introduced. It uses a binary tree structure in
each node of which there is an SVM classifier. HAH SVM has altogetherM−1
nodes, which is less than in OVA, OVO and DAGSVM methods. Moreover,
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A B C D E F G H

A vs B C vs D E vs F G vs H

{AB} vs {CD} {EF} vs {GH}

{ABCD} vs {EFGH}

Figure 4.4: An example of an HAH SVM in an eight class classification
problem.

the training phase is similar to OVO method [46]. The key point in HAH
SVM is to divide classes in an optimal way into two groups. In the root node
all classes are handled and they are divided into two groups. In other nodes
the root node groups are recursively divided into smaller groups until the
predicted class label is found in a leaf. An eight class example of an HAH
SVM is shown in Figure 4.4.

The biggest challenge in HAH SVM is to find optimal class divisions in
the nodes. Lei and Govindaraju [46] used hierarchical clustering for class
division. This approch was used as a suboptimal solution and optimal divi-
sion was left as an open problem. Moreover, an optimal recursive division of
classes into two groups was left as an open research question. In the thesis
the division problem was solved by using Scatter method [34, 72, 73], which
is a novel approach to this theoretical problem. Scatter method was also
used in every node.
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Chapter 5

Results

5.1 Publication I - One-vs-One & Tie Situa-
tions

The purpose of this publication was to examine how OVO [18, 19] method
works in the benthic macroinvertebrate classification and, secondly, to inves-
tigate the effect of kernel function choice on the number of tie situations in the
majority voting method. The motivation for using OVO was that in [38, 76]
it was applied successfully. The motivation for examining tie situations more
closely was that they occur in practice relatively often and are typically left
with little attention although they may have a great effect on classification
results. Tie situations are typically solved with some low level way, such as
choosing the smaller index of tied classes or automatically choosing the larger
class. However, in this publication a new tie situation solving strategy was
presented and was based on k-NN classifier. Furthermore, statistical infor-
mation about the frequency of tie situations was given in the case of every
kernel function used. The final class label for the problematic test example
was solved such that k-NN classifier was trained with the training data of
tied classes and with the configuration k = 1 a final class label was assigned
to the test example. The k value was chosen to be 1 because it was the only
value which certainly gives a unique solution. With other k values there is a
theoretical possibility of encountering another tie situation when multi-class
classification is in question.

In the classification seven kernel functions, i.e. linear, polynomial kernel
functions (degrees 2-5), Radial Basis Function and Sigmoid kernel function
were used. The number of parameter combinations tested was 20 or 400
depending on the kernel function. In Sigmoid case we decided on κ = −δ
due for computational reasons. In the classification procedure the dataset
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was divided 250 times such that 90% of the dataset (1,215 examples) was
left to the training set and the rest of the dataset (135 examples) was left
for testing. This procedure was repeated for every parameter combination.
More information concerning the species of the smaller dataset and the sizes
of the taxonomical groups can be found in the Appendices.

Standardization of training data was applied separately to each binary
classifier, but no other transformations such as linear scalings for the dataset
were made. The final parameter values were chosen with the method pre-
sented in Publication II. The difference from Publication II was that we
fixed the box constraint to be the same despite the kernel function selection.
Moreover LS method [74, 75] was used to find an optimal hyperplane.

Classification was repeated with two feature sets. These were 15D and
24D feature sets. The 15D feature set was the union of the statistical and
geometrical features given in [38, 89]. The dataset contained altogether 25
features and one feature, Area Fraction (%Area), was excluded. The idea of
using 15D features came from [38]. The 24D feature set has not been used
in any other publication so there is no baseline for the 24D results.

Regarding the results with 15D features, classification errors with linear
and RBF kernel functions were less than 6%, which is similar to the SVM
results in [38]. However, the quadratic kernel function achieved less than
4% classification error which is slightly better than the best SVM result in
[38], but it was at the same level as the best classification error obtained by
MLP in [38]. The 24D feature set results were slightly better than the 15D
results. The linear, quadratic and RBF kernel functions achieved less than
3% classification error, which was an improvement on the earlier results. The
other kernel functions yielded clearly poorer results.

Tie situation analysis followed a pattern similar to the accuracies with
the kernel functions. If the accuracy was low, the number of ties was high
and, conversely, if the accuracy was high, the number of ties was low. In
the statistical information on tie situations means and standard deviations
of the number of tie situations were given. With the linear, quadratic and
RBF kernel functions the average number of ties was below 2 (less than
1.5%) regardless of the feature set used. Sigmoid kernel function, instead,
had the highest mean of ties, being over 43, which was over 30% of the test
examples. Kernel selection had a major impact on the number of ties. More-
over, OVO method proved a good alternative for benthic macroinvertebrate
classification.
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5.2 Publication II - One-vs-One, One-vs-All &
Tie Situations

Publication II was a natural continuation of the first publication, since OVA
and OVO methods are the most commonly used multi-class extensions. The
aim in this publication was to compare OVA and OVO methods against each
others. This was an interesting comparison because in [37, 38, 39, 76, 89] it
was not used for benthic macroinvertebrate classification. Moreover, in OVA
ties are a common problem and therefore tie situations were considered again
in this publication. The k-NN method with k = 1 was used for solving the
tie situations as in Publication I.

Classification was performed by dividing the dataset 250 times in every
parameter combination case. The division of the dataset was made such that
90% was left to the training set (1,215 examples) and 10% (135 examples)
to the test set. The mean of the results was evaluated as in Publication I.
Final parameter values were chosen as in Publication I, but now the method
was explained in detail. The main idea was that the mean classification rates
(sensitivities, true positive rates) obtained from every parameter combination
together with their indices were arranged classwise in a decreasing order
in a new table. Now the most frequent parameter index in the first row
determined the final parameter values. This method may not yield the best
classification result, but it avoids the problems that accuracy may cause when
the class distribution is skewed.

In Publication II the same seven kernel functions were used as in Publi-
cation I. Compared to Publication I the number of parameter combinations
tested was greater. Linear and polynomial kernel functions were tested with
40 parameter values and RBF and Sigmoid (called MLP kernel function in
the publication) were tested with 1600 parameter combinations. In Sigmoid
kernel function again κ = −δ was set for computational reasons. Otherwise, in
Sigmoid the number of parameter combinations tested would have increased
to 403 = 64,000. Features were standardized to have zero mean and unit
variance and this was done separately for each binary classifier, as in Publi-
cation I. No other transformations such as linear scalings to intervals [−1,1]
or [0,1] were made in order to keep the classification procedure as natural as
possible. The baseline for feature selection was a 15D feature set. However,
the 15D feature set itself was not used since it had already been tested in
Publication I. In this publication the statistical feature set (7D) and geo-
metrical feature set (8D) and a random eight-feature subset (R8D) from the
15D feature set were used. In [37, 38, 39, 89] the division into statistical and
geometrical feature sets was made but no random feature subset was used in
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other related articles.
Publication I showed the importance of the kernel function selection when

considering tie situations and the same tendency also continued in Publica-
tion II. When OVO method was applied, RBF kernel function had the lowest
number of ties (mean frequency below 2.0) despite the choice of feature set.
Moreover, the linear, quadratic and cubic kernel functions had a mean less
than 7.0 in the number of tie situations. By contrast Sigmoid had a mean
over 36 (over 26% of test examples) in ties notwithstanding the feature set.
With a higher degree of polynomial kernel functions there was a greater dif-
ference between the number of ties when statistical and other features were
compared. When the statistical feature set was used together with the 4th
degree polynomial kernel function, the mean of tie situations was below 3
when other feature sets had a mean around 12. Furthermore, in the case of
the 5th degree polynomial kernel function the mean of tie situations with the
statistical feature was 8 when in other feature set choices the mean was over
20.

The tie situation analysis with OVA method showed a totally different
kind of mean numbers, but some similarities with the OVO results were ap-
parent. Firstly, in all feature set selections RBF again gained the lowest mean
in ties (range 12%-28% of test examples) and, moreover, Sigmoid had the
highest means (over 90% of test examples) despite the feature set selection.
However, in OVA the higher degree of polynomial kernel functions gained
smaller means than the linear or quadratic kernel functions. Among the
polynomial kernel functions (the linear kernel function included) the means
varied widely. With the geometrical feature set the means ranged from 81 to
around 111, while with the statistical feature set the corresponding range was
from around 23 to almost 110. Finally, with the random feature set range
was from around 35 to almost 95. Overall, with OVA method tie situations
were more frequent than with OVO and the choice of kernel function had a
major influence on the number of ties.

Tie situations can have a significant effect on classification results if these
situations are incorrectly solved. Furthermore, when OVA and OVO meth-
ods were compared against each other, with OVO ties seemed to be more
infrequent than with OVA. This result is quite natural, because in OVA we
have only M classifiers (in M class problem) and each one of them is trained
to separate one class from the rest. Furthermore, in OVA we use all the avail-
able training data in every classifier and, hence, the training data is likely
to be more difficult to separate. When using OVO method, each binary
classifier handles only the training data of ith and jth class instead of all
the available training data. Thus the training data of an individual binary
classifier in OVO may be more readily separable than in OVA.
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When comparing the accuracies of OVA and OVO methods, we made
some interesting discoveries. The accuracies gained with the geometrical fea-
ture set together with OVA and OVO methods were quite similar except
with the Sigmoid kernel function, which achieved around 11% better accu-
racy with OVA than OVO. Otherwise, RBF kernel function was the best
alternative with accuracies around 77% (OVA) and 78% (OVO).

The use of the random feature set increased the level of accuracies with
RBF, linear and polynomial kernel functions. In OVA the cubic and 4th
degree polynomial kernel function and RBF kernel function obtained the
highest accuracies of 87.4%-89.5%. The quadratic, cubic and RBF kernel
functions were instead the best choices with OVO method and the random
feature set. These accuracies ranged from 88.9% to 90.4%.

The statistical features proved to be the best feature set among the fea-
ture sets tested. In OVA, out of seven possible kernel functions only one,
RBF, achieved over 90% accuracy, being 91.1%. However, the 4th and 5th
degree polynomial kernel functions also reached accuracies of nearly 90%. In
OVO method only two kernel functions, Sigmoid and the 5th degree polyno-
mial kernel function, were left below 90% accuracies and from these two the
polynomial kernel function reached around 89% accuracy. The quadratic,
cubic and RBF kernel functions achieved 93.7% accuracy. In Publication
I the linear, quadratic and RBF kernel functions were the best ones, and,
compared to the results of Publication II, the use of the quadratic and RBF
kernel functions with OVO method got more support. Moreover, the use of
RBF kernel function also gained confirmation from OVA method.

5.3 Publication III - Half-Against-Half Support
Vector Machines

Publication III examined the suitability of HAH SVM for benthic macro-
invertebrate classification. In this publication as in Publications I and II
the smaller dataset was used. The publication had two novelties. Firstly,
HAH SVM was used in this application for the first time. Secondly, a Scat-
ter method [34] was applied to a class division problem, which is the most
challenging problem in this multi-class extension. Lei and Govindaraju [46]
left the determination of an optimal division unresolved problem and were
satisfied with the suboptimal solution given by hierarchical clustering. Fur-
thermore, in [46] optimal recursive division of the classes was left as an open
question.

In Publication III the structure of a directed binary tree was created
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beforehand from the full dataset. Scatter method was applied to each of the
nodes separately and class divisions were decided according to the concept
of the separation power given by Scatter method for the classes. That half
of the classes which had the highest separation powers formed their own half
and the rest formed the other half of the classes in a node. This procedure
was repeated in every node until there was only one class in the leaf. As a
baseline for the Scatter method another binary tree construction was made
by making a random choice of class divisions in every node.

The dataset was standardized to have zero mean and unit variance in the
preprocessing stage and no other transformation was made for the data. In
Publications I and II the term accuracy was used as a synonym for classi-
fication rate (sensitivity,true positive rate), but now accuracy is referred to
as defined in Section 3.4. For the classification, the dataset was divided 100
times into training, validation and test sets such that 80% (1,080 examples)
of the dataset was left for training, 10% (135 examples) to the validation
set and the rest of the data was left for the test set (135 examples). In
Publication III four feature sets were used. These were 7D (familiar from
Publication II), 15D (used in Publication I), a randomly chosen 17D feature
set and finally 25D, which contained all the available features. The same
seven kernel functions were used as in Publications I and II. The number of
parameter combinations tested was significantly greater than in Publications
I and II. Polynomial kernel functions, including the linear kernel function,
were tested with 100 parameter values. The RBF and Sigmoid kernel func-
tions were tested with 10,000 parameter combinations and in Sigmoid case
the same κ = −δ was agreed on as in the other publications. The accuracies
obtained by Scatter method and random choice were also examined using
two-tailed Wilcoxon signed ranks test with p < 0.05.

The use of 7D feature set produced good results in Publication II. The re-
sults with HAH SVM and 7D feature set were again relatively good. From the
3rd to 5th degrees the polynomial kernel functions obtained above 90% accu-
racies with Scatter and random choices. The differences between these results
were less than 1%. The best results were achieved with RBF. With Scatter
method 93% accuracy was obtained and with random choice 93.2% accuracy.
In the 15D feature set case only with three kernel functions (quadratic, cubic
and RBF) accuracies were above 90% achieved in both division alternatives.
Of these three kernel functions RBF was the best one and the corresponding
accuracies were 95.2% with Scatter method and 95.9% with random division.
These two accuracies were also the highest among all results in Publication
III.

The 17D feature set, which was not used in the preceding publications,
was the poorest alternative. With the cubic kernel function the best accu-
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racies were obtained in both divisions. Using Scatter method yielded 90.3%
accuracy and random division 91.2% accuracy. When RBF was the best
alternative in 7D and 15D cases, it reached the 90% limit and gained the
second place with both methods. The last feature set was 25D, where all
the available features were used. The best accuracy was now achieved with
the quadratic kernel function with both division methods. The results were
similar to the 7D results. With Scatter method 93% accuracy was achieved
and 93.4% accuracy with random choice. The RBF kernel function again
showed its power reaching above 90% accuracy with both methods and be-
ing in second place.

An interesting detail was that regardless of the division method the best
accuracies within a specific feature set was achieved by the same kernel func-
tion. For instance, in the 15D feature set case RBF achieved the highest
accuracy with Scatter and random methods. When the best accuracies of
Scatter and random methods were compared against each other, random di-
vision yielded better accuracy in all cases and in three feature set cases the
difference between accuracies was statistically significant (100 cases). A note-
worthy detail was that the difference between the best accuracies of Scatter
and random methods was less than 1% in all feature set cases. Hence, from
the practical point of view, both division methods were equally good.

5.4 Publication IV - A Comparison of Classifi-
cation Methods

The purpose of this publication was to investigate the suitability of sev-
eral classification methods in classification of benthic macroinvertebrates.
This publication gave a good baseline for the SVM results in Publications
I-III since the smaller dataset was also used in this publication. Alto-
gether 11 classification methods were tested. These included: k-Nearest
Neighbour [59, 60, 62, 79] , Linear Discriminant Analysis [48, 56, 60, 77],
Quadratic Discriminant Analysis [8, 89] Minimum Mahalanobis Distance
Classifier (MMDC) [88], Classification Tree [16, 48], Multinomial Logistic
Regression (MNLR) [1], Naïve Bayes [3, 31, 47], K-Means [8, 25], Self-
Organizing Map [26, 67, 68], Multi-Layer Perceptron [10, 26, 82] and Ra-
dial Basis Function network [26]. Of these methods, MMDC and MNLR, for
instance, were used for first time for benthic macroinvertebrate classification.

Classification was performed with the 15D feature set also used in Pub-
lications I and III. Accuracy was chosen as the main performance measure
in the comparison of the classification methods. In the preprocessing stage
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the features of the dataset were standardized to have zero mean and unit
variance. No other transformations were made for the dataset. Stratified 10
times 10-fold cross-validation was applied to the dataset. Hence 100 training
and test sets were obtained. In the case of Radial Basis Function network
and Multi-Layer Perceptrons training sets were divided into a smaller train-
ing set and validation set such that 80% of the dataset was the training set,
10% was the validation set and the last 10% was left as the test set. Radial
Basis Function network was tested with 40 different values of σ (the width of
Gaussian basis function) and MLP was tested altogether with 240 different
configurations. When the best configurations for the RBFN and MLP were
found by comparing the mean accuracies of the validation sets, RBFN and
MLP were trained again with full training data and evaluated with the test
sets.

For K-Means and SOM class tags of each cluster (or neurons in SOM)
had to be defined for the classification task. In these methods the major-
ity principle was applied. If a tie occurred in class tag determination with
K-Means, the closest sample (from the tied classes) with respect to the cen-
troid of a cluster determined the final class tag for the cluster. K-Means was
tested with 93 (8-100) different K values. Moreover, SOM was tested with
43 configurations (the number of neurons in a topology altered from 8 to 50).
In the case of k-NN odd values from 1 to 51 were used, since the choice of
odd values decreases the probability of a tie situation in classification. More-
over, classification with k-NN was repeated with four measures: Euclidean,
cityblock, cosine and correlation measures.

The classification methods produced several interesting results. The k-
NN method worked relatively well with all measures. The best mean ac-
curacies were obtained, despite the k value, with Euclidean and cityblock
measures. The cosine measure was the third best and the lowest accuracies
were achieved with the correlation measure regardless of the k value. A gen-
eral trend with k-NN was that the increment of k usually diminished the
accuracy. This happened with all measures. With Euclidean and cityblock
metrics the highest mean accuracies were obtained with k = 1 or k = 3 and the
mean accuracy was above 92%. The fact that k = 1 gave such a good results
strengthened the value of the tie situation strategy presented in Publications
I and II.

Classification trees (CT) are a widely used method and in this publication
CART algorithm [16] was applied to the classification. With CT around 85%
accuracy was achieved and the result was similar to C4.5 performance in [89],
where the mean error rate was 0.1731. Naïve Bayes classifier produced poor
results. It reached only a 77.8% mean accuracy, which was the lowest one
when taking all classification methods into account except the correlation
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measure in k-NN. MNLR gave 90.8% accuracy, which is a relatively good
result. MMDC gained a slightly higher accuracy being 92.6%, so it proved to
be a good choice for benthic macroinvertebrate classification. Linear (LDA)
and Quadratic Discriminant Analysis (QDA) are widely used methods and
in this publication LDA reached 90.1% accuracy and QDA 93.7% accuracy.
In [89] QDA achieved a mean test error of 0.0736 so the levels in the results
were similar to each other.

Unsupervised methods did not work very well in the classification. K-
Means gave 84.4% mean accuracy, which was 1% lower than CT. The result
was achieved using 100 clusters. SOM gave accuracy quite similar to those of
K-Means. More specifically, it reached 82.6%, this accuracy being the next
lowest result. The accuracy was achieved using 50 neurons in a lattice.

The last aggregate was to use artificial neural networks. RBFN proved a
good choice for this classification task since it achieved a mean accuracy of
93.7%. It was the next highest mean accuracy of all classification methods
used and it achieved the same accuracy as that of QDA. The best accuracy
was obtained when σ = 3.0. The other artificial neural network method was
MLP. The best accuracy, 94.1%, was achieved with configuration 15×15×7×8
and this accuracy was the highest of all methods used in Publication III.

5.5 Publication V - Directed Acyclic Graph Sup-
port Vector Machines vs Directed Acyclic
Graph k-Nearest Neighbour

The aim of Publication V was to examine the appropriateness of DAGSVM
and DAGKNN for benthic macroinvertebrate classification. The first differ-
ence from Publications I-IV was that in Publication V a larger 50 species
dataset was used. DAGSVM [63] was used in [33] for benthic macroinverte-
brate classification with great success and this encouraged us to apply this
multi-class extension to a larger dataset. DAGKNN classification method is
introduced in Publication V. The basic idea in DAGKNN is the same as in
DAGSVM, but now each node contains a k-NN classifier instead of an SVM
binary classifier. Species names and the sizes of the species subsets can be
found in the Appendices. Another novelty in Publication V was that feature
selection was made using Scatter method [34, 72, 73].

Before making the actual classifications, the 50 species dataset was di-
vided into groups of 10 species. The division was made according to the
numbers of examples of the species. The first group was formed from the ten
largest species etc. and the fifth group contained the ten smallest species.
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Thus enough examples for the training and tests were obtained. The benthic
macroinvertebrate specimens had been scanned three times, but in Publica-
tion V the data from the first scanning was used. Because the sizes of groups
1-5 varied so much, the same cross-validation technique could not be used for
the classification. Thus, 10 times 10-fold cross-validation to the datasets of
groups 1 and 2 was applied. To group 3 the 10 times 5-fold cross-validation
and to the datasets of groups 4 and 5 10 times 3-fold cross-validation was
applied. The dataset from every group was standardized separately to have
zero mean and unit variance. No other transformations were made for the
datasets. Feature selection was made separately for each group using Scatter
method and the threshold value for the selection of feature was 0.1.

In the classification seven kernel functions, the same as in Publications
I-III, were used. In the case of DAGKNN four distance measures were used
and these were the same as those used in Publication IV with k-NN. With
DAGKNN only the odd k values which were less or equal to the smallest
species size in the group were tested. The polynomial kernel functions (linear
kernel function included) were tested with 40 parameter values. The RBF
and Sigmoid kernel functions were tested with 1,600 parameter combinations
and in Sigmoid the same agreement of κ = −δ was made as in Publications
I–III.

In this study a new approach to parameter choice in SVM was used.
Generally, it can be presented as follows: After cross-validating the group’s
data we obtained 10 × µ disjoint training and test sets. Firstly, each binary
SVM was trained with a suitable subset from the full training set. Secondly,
the accuracy of a training set was determined by giving the full training set
as a test set for the trained SVMs. Thirdly, the accuracy of a real test set
was evaluated. The final accuracy for the respective parameter combinations
was the average of 10 × µ accuracies. Thus, every parameter combination
yielded a pair of values, the first of which was the mean accuracy from the
training set and the second element was the mean accuracy of the test sets.
The final parameters were chosen by evaluating

arg min
i

[(1 −ACCTRAIN,i) + 2 ⋅ (1 −ACCTEST,i)]

where i is the index for the parameter combination. Weighting was done to
prevent possible tie situations and to separate those parameter values causing
overfitting.

In Publication V total classification times were measured. Time was
measured with every kernel function and with every distance measure used in
DAGKNN. The time analysis showed that DAGKNN is faster than DAGSVM,
but in the times measured it should be noted that DAGSVM was usually
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tested with more parameter combinations than DAGKNN. An advantage of
DAGKNN compared to DAGSVM was the simplicity of the k-NN classifier
with respect to the more complex SVM classifier, where parameter tuning
and finding the right kernel function can be time-consuming. Moreover, in
DAGKNN the k values tested are bounded above while in SVM the param-
eter values are not so bounded. Differences were found among the measures
tested. When using DAGKNN, Euclidean and cityblock metrics were faster
to evaluate than correlation or cosine measures. Moreover, in DAGSVM the
linear kernel function was the fastest to evaluate and the other polynomial
kernel functions were also relatively fast. The most time-consuming kernel
functions were the RBF and Sigmoid kernel functions.

A general observation in the DAGKNN results was that the small odd k
values from 1 to 9 were the best alternatives in all classification problems of
groups 1-5. In Publication V only the results obtained from the three best
k values were presented in the case of all measures. It seems that small k
values are generally good choices for benthic macroinvertebrate classification,
since in Publication IV the choice of k = 1 resulted in the best accuracy when
k-NN was used. Moreover, the choice of k = 1 was a good choice for solving
tie situations in OVO and OVA methods.

In the classification of group 1 DAGKNN achieved 78.7% mean accu-
racy with cityblock metric, but the Euclidean metric resulted in only 1%
lower mean accuracy. Overall, with all measures used, the range of accura-
cies presented was only 4%. The use of DAGSVM in group 1 classification
yielded a wider range of accuracies. Now the quadratic, cubic and RBF kernel
functions achieved the best accuracies and from these the quadratic kernel
function reached to 86.7% accuracy. The cubic kernel function obtained 0.3%
lower accuracy so they can be considered of equally good from the practical
point of view. Moreover, RBF reached an accuracy of nearly 85%. Hence the
difference between the best accuracies of DAGKNN and DAGSVM in group
1 classification was 8%.

The classification results in group 2 showed similar trend to that of the
group 1 classification. Euclidean measure with k = 5 achieved the best accu-
racy, namely 76.5%. Again, all distance alternatives achieved accuracies quite
close to each other since the interval in which the best accuracies located was
within 5%. Compared to DAGSVM the best accuracies of DAGKNN lost to
the corresponding accuracies of DAGSVM. The quadratic and RBF kernel
functions were the best alternatives and these achieved 81.4% and 82.2% ac-
curacies. A noteworthy detail was that now the difference between the best
accuracies of DAGSVM and DAGKNN was below 6% while in the group 1
classification it was 8%.

The results for the group 3 classification were interesting. DAGKNN
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yielded the best accuracies of all DAGKNN results in this group. Euclidean
and cityblock metrics had above 83% accuracies and more specifically city-
block metric with k = 3 achieved a mean accuracy of 83.6%. Again the re-
ported DAGKNN accuracies were very close to each other (within 5% range).
With DAGSVM the linear, quadratic and RBF kernel functions worked best.
RBF had the best accuracy being 85.9%, and thus the difference between the
best accuracies of DAGSVM and DAGKNN was below 3%.

In the group 4 classification the results were poorer in DAGKNN than in
the group 3 classification. The cityblock and Euclidean metrics were again
the best alternatives. Cityblock metric achieved an accuracy of 80.4% when
k = 3. Otherwise, accuracies below 80% were achieved. The interval in which
the accuracies were located was less than 4% (76.6%-80.4%). A similarity
between groups 3 and 4 classification results was found. In both cases the
linear, quadratic and RBF kernel functions yielded the best accuracies. Now
the RBF kernel function had the highest accuracy, 86.3%, and the accuracies
of the linear and the quadratic kernel functions were remainded at 84.2%
and 83.2%. The difference between the best accuracies of DAGKNN and
DAGSVM was therefore around 6%.

Group 5 was the smallest group and the results presented from DAGKNN
were spread over a more wider interval. Cityblock with k = 3 achieved the
best accuracy, but now the accuracies were spread over an interval of 71.2%-
79.0%. The next best measure choice was Euclidean, as frequently before. In
DAGSVM the typical kernel functions were the best ones. The linear kernel
function (82.6%) and RBF kernel function (82.9%) were the best alternatives
while the other kernel functions achieved below accuracies 80%.
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Chapter 6

Conclusions

This thesis focused on the classification of benthic macroinvertebrates [33,
37, 38, 39, 76, 89], which has generally attracted little attention [76]. Gen-
eral tools for automated benthic macroinvertebrate identification have proved
to be difficult to develop, but BugID [50, 69] is proof that the automated
processing and identification of benthic invertebrate samples can indeed be
implemented in practice. The need for automated classification of benthic
macroinvertebrates is great, because benthic macroinvertebrates are com-
monly used in biomonitoring to assess water quality. However, the actual
classification of benthic macroinvertebrates is traditionally done manually by
taxonomists, but this is a highly cost-intensive and time-consuming process.
With the help of machine learning methods the classification task could be
accomplished more effectively. Biologists and taxonomists are in a key role,
also their willingness to use alternative methods in taxa identification [76].

Two datasets were examined in the thesis. The one of them contained
1,350 images from eight taxonomic groups of benthic macroinvertebrates.
The other dataset contained 4,868 images from 50 species of benthic macroin-
vertebrates. All the image processing stages, such as feature extraction from
the images was done beforehand by researchers in the Finnish Environment
Institute, Jyväskylä, Finland. The classifications performed in the thesis
used preprocessed data. In the preprocessing stage ImageJ software [32] was
used and more details on the preprocessing are presented in [89]. All tests
were performed in Matlab environment.

Altogether 16 different classification methods were used in the thesis, but
the main emphasis was given to multi-class extensions of SVM. The the-
sis was composed of five publications and in Publications I-III and V SVM
was in a key role. Publication IV included a comparison where classification
methods other than SVM were used. The smaller dataset was used in Pub-
lications I-IV and in Publication V the larger dataset was examined. The
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smaller dataset has also been used in articles [33, 37, 38, 39, 76, 89]. More
specifically in [37, 38, 39] special attention was paid to the application of
artificial neural networks such as MLP and RBF network. SVM together
with OVO method were used in [38, 76] and DAGSVM in [33]. Moreover,
Bayes classifier, decision tree, random forest and random Bayes forest were
applied in [89].

Since automated benthic macroinvertebrate classification has been so lit-
tle researched, the thesis presents a lot of new experimental information
from this application. The first research question concerned the juxtaposi-
tion of SVM versus other classification methods. In Publications I-III and
V SVM yielded excellent results with both datasets. The best results in
Publications I (maximum accuracy with 15D feature set 96.2% and 24D fea-
ture set 97.7%) and III (maximum accuracy with 15D feature set 95.9%)
outperformed other classification methods in Publication IV (maximum ac-
curacy 94.1%). Moreover, the best accuracies in Publication II with OVO
(93.7%) and OVA (91.1%) methods were better than most of the accuracies
obtained in Publication IV, although in Publication II smaller feature sets
were used than in Publication IV. Furthermore, the results in Publications
I and III were comparable and in some cases also better than the results in
[38, 37, 39, 76, 89]. However, it should be remembered that in these articles
there were different test arrangements and this may affect the results. Fur-
thermore, in [38, 37, 39, 89] only a 15D feature set was used. There are so
far no other studies on the larger dataset than the publication included in
this thesis. There is no point of comparison for the results in Publication V.

The second research question concerned what multi-class extension would
be the best alternative for benthic macroinvertebrate classification. Publica-
tion I focused on applying OVO method and Publication II was a comparison
of OVA and OVO methods. From these two alternatives OVO was the bet-
ter one. From the practical point of view OVA would be better since the
number of classifiers is only O(M) while in OVO the corresponding num-
ber of classifiers is O(M2). However, the tests yielded a better performance
for OVO. Publication III applied HAH SVM. DAGSVM was applied to a
smaller dataset in [33]. This publication was not included in the thesis, but
it still achieved good results. For the classification of the smaller dataset
HAH SVM and OVO methods showed a great capability to classify benthic
macroinvertebrate examples with good accuracy.

DAGSVM and DAGKNN were used in Publication V. Of these two classi-
fication methods DAGSVM yielded better results. The best groupwise accu-
racies fell into an interval of 82.2%-86.7% for DAGSVM, whereas the corre-
ponding DAGKNN accuracies were between 76.5% and 83.6%. The results
with DAGKNN and DAGSVM were good when taking into account that
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classification methods were applied to 10 class classification problems. Usu-
ally the general trend in classification problems is that the performance de-
clines when the number of classes increases. At this stage DAGSVM is more
suitable than DAGKNN for the classification of benthic macroinvertebrates
in the larger dataset.

The third research problem was to identify the best kernel function and
feature set for the classification problem. Throughout the thesis seven kernel
functions were tested. Five of the kernel functions were polynomial ker-
nel functions (the linear kernel function included) and the other were RBF
and Sigmoid (called MLP in Publications I and II). In Publication I linear,
quadratic and RBF kernel functions proved to be the best ones. Publication
II suggested RBF and the 4th and 5th degree polynomial kernel functions
for use with OVA and the performances of OVO method favoured for the
quadratic, cubic and RBF kernel functions. When HAH SVM was tested in
Publication III, the results had similar tendency to that in Publication II.
Now the best alternatives were the quadratic, cubic and RBF kernel func-
tions. In Publication V the quadratic, cubic and RBF kernel functions were,
generally speaking, the best choices for benthic macroinvertebrate classifi-
cation. Overall, a noticeable trend is discernible in the publications. The
quadratic and RBF kernel functions nearly always yielded the best results.
As a final choice the RBF kernel function would be the best one for benthic
macroinvertebrate classification.

Feature selection can greatly affect classification. Feature reduction is
an important part since making the number of features as low as possible
reduces the computational demands in classification. Moreover, by elimi-
nating the "‘bad features"’, classification results may improve. In the thesis
feature selection was done in Publications I-IV by using the knowledge from
the articles [37, 38, 39, 89] or by a random choice as in Publication II (R8D
feature set) or Publication III (17D feature set). Publication V differs from
the Publications I-IV since in it the feature selection was done by the Scatter
method [34]. The 15D feature set (the combination of statistical and geo-
metrical features) and statistical feature set (7D) alone proved to be good
choices for benthic macroinvertebrate classification. The 15D feature set also
obtained good results in [37, 38, 39, 89]. Scatter method proved to be a viable
alternative to feature selection and its results were promising.

The thesis showed that benthic macroinvertebrate classification is possi-
ble with high accuracy when the classifier is properly chosen and possible
parameters have been appropriately adjusted. In the thesis four multi-class
extensions of SVM were investigated and all these methods managed to clas-
sify benthic macroinvertebrate examples well. Publication IV focused on
other classification methods than SVM, and from these classification meth-

53



CONCLUSIONS

ods MLP, RBF network, QDA, MMDC and k-NN with Euclidean or cityblock
metrics also succeeded well in classification, but they did not beat the results
of SVM. Overall, the thesis has produced valuable information on automated
benthic macroinvertebrate classification. Many of the classification methods
used in the thesis were applied for the first time to this application.

Although this thesis had a strong emphasis on the practical side, new
methodological results were obtained. New k-NN variant, DAGKNN, was
presented and achieved relatively good results although it did not beat the
best DAGSVM results. Tie situations are a common problem in OVA and
OVO methods, and their resolution often has been left for little attention.
A new tie situation resolving strategy for the majority voting method was
presented based on 1-NN classifier. This strategy was used in Publications
I and II. Accuracy is a commonly used performance measure in the param-
eter selection, but there is a drawback in its use, especially when the class
distribution is skewed. In Publications I and II a different approach was
usd for parameter selection. It was based on ordering the mean classwise
classification rates from all parameter combinations. The final parameter
combination was that including the topmost classification rates. HAH SVM
is a relatively new variant in the multi-class extensions of SVM. The greatest
theoretical problem is to find the optimal class divisions in nodes. In [46] a
suboptimal solution based on hierarchical clustering was presented. However,
in this thesis Scatter method [34] was applied to the class division problem
and this was a new approach to this problem. Moreover, the search for an
optimal class division was conducted in every node separately.

There remains much research to be done in the benthic macroinvertebrate
classification. Firstly, there are other multi-class extensions, not used in this
thesis, such as Adaptive Directed Acyclic Graph (ADAG) [36], Error Cor-
recting Output Codes (ECOC) [14, 40] and all-together method [70, 78] to be
tested. Moreover, many of the multi-class extensions were originally devel-
oped for SVM, but it would be interesting to apply OVA, OVO, HAH, DAG,
ADAG and ECOC methods, for instance, to other classification methods
such as k-NN, LDA or QDA. For example, in [81] OVA and OVO methods
were used with k-NN and SVM classifiers and in the thesis DAG structure
was used with k-NN classifier.

The excellent results from various applications speak in favour of using
SVM. In benthic macroinvertebrate classification SVMs also proved to be
a suitable classification method. However, there are some challenges with
SVM which need to be overcome if it is to be applied in practice. The results
of SVM depend heavily on the right choice of parameter values and kernel
functions. The linear and, more generally, the polynomial kernel functions
are better choices from the practical point of view because there is only

54



one parameter to be tuned up. When using RBF, the number of optimized
parameters is two and in the case of Sigmoid there are three parameters to be
optimized. How to choose the right kernel function is still an open question
and often the only option is to test different kernel functions and choose the
best one.

The search for optimal parameter values is usually made in practice by
using grid-search [30] (as in this thesis) since this is the easiest way to proceed.
The problem occurs if the number of parameter value combinations is high
and the datasets are large. Thus the search for optimal parameter values
requires much computational power because training a binary SVM classifier
needs to be done several times and this is a most time-consuming process.
The testing phase is minor compared to training. If an extensive parameter
value search is made using an average level PC, the training phase can easily
take days or weeks. Nowadays, PCs have multi-core processors, making it
possible to use parallelization in the search for optimal parameter values.
This speeds up the search but the computational requirements can still be
high. Parallelization is feasible, since the parameter value combinations are
independent of each other. In future research an adaptive approach could
provide an interesting starting point for parameter value optimization.

To sum up, the thesis was concerned with applying machine learning
methods to the benthic macroinvertebrate classification. Special attention
was paid to SVM and its multi-class extensions. The results in Chapter 5
proved that automated benthic macroinvertebrate classification is possible
with good accuracy. This thesis gave a wide perspective on the existing
classification methods and introduced a new variant of k-NN. Altogether 16
classification methods were applied in the thesis. Furthermore, the thesis
proposed new strategies for interesting theoretical problems such as tie sit-
uations in OVA and OVO methods and the class division problem in HAH
SVM. Two datasets were used and in future the focus will be on research
with the larger dataset.
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Chapter 7

Personal Contributions

In the following the contribution of the present author is described. The
author of the thesis worked together with Martti Juhola (hereafter referred
to as MJ).

I. The present author designed the test setup and performed the tests.
The publication was written by the author. MJ supervised the research
and proposed the idea of examining tie situations.

II. The present author designed the test setup and performed the tests.
The publication was written by the author. MJ proposed the idea of
examining tie situations and supervised the research.

III. Publication III is the author’s own work. Jorma Laurikkala conducted
the statistical tests. MJ commented the manuscript. Scatter method
was based on articles [34, 72, 73].

IV. The present author designed the test setup and performed the tests.
The publication was written by the author. MJ supervised the research.

V. The present author designed the test setup and performed the tests.
The publication was written by the author. MJ supervised the research.
Scatter method was based on articles [34, 72, 73].
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Appendices

Table 1: Species in the smaller dataset and their corresponding class sizes.

Species Size Species Size
Baetis rhodani 116 Hydropsyche siltalai 271
Diura nanseni 129 Isoperla sp. 311
Heptagenia sulphurea 172 Rhyacophila nubila 83
Hydropsyche pellucidulla 102 Taeniopteryx nebulosa 166

Table 2: Species in the larger dataset and their corresponding class sizes.

Species Size Species Size
Agapetus 24 Gammarus lacustris 38
Ameletus inopinatus 113 Gyraulus 20
Arctopsyche ladogensis 65 Habrophlebia 81
Asellus aquaticus 328 Heptagenia fuscogrissea 19
Atherix ibis 31 Heptagenia sulphurea 54
Athripsodes 13 Hydraena 113
Baetis digitatus 20 Hydropsyche pellucidulla 117
Baetis muticus 290 Lepidostoma hirtum 37
Baetis niger 181 Leptophlebia 40
Baetis rhodani 136 Leuctra 176
Bithynia tentaculata 292 Limnius volckmari 167
Caenis luctuosa 66 Micrasema gedium 70
Caenis rivulorum 70 Micrasema setiferum 291
Callicorixa wollastoni 84 Myxas glutinosa 228
Capnia 29 Nemoura 246
Ceratopsyche nevae 36 Ophiogomphus cecilia 11
Ceratopsyche silfvenii 222 Oulimnius tuberculatus 31
Ceratopogodinae 61 Oulimnius tuberculatus larvae 13
Cheumatopsyche lepida 126 Paraleptophlebia 12
Chimarra marginata 52 Pisidium 50
Dicranota 27 Radix balthica 24
Elmis aenea 185 Sericostoma personatum 60
Ephemera aurivillii 236 Sigara semistriata 39
Ephemera ignita 116 Tanypodinae 62
Ephemera mucronata 55 Wormaldia subnigra 11

69



70



Publication I

Kernel selection in multi-class support vector
machines and its consequence to the number of
ties in majority voting method

Henry Joutsijoki and Martti Juhola
Copyright ©2011 Springer-Verlag. Reprinted, with permission, from H.
Joutsijoki and M. Juhola. Kernel selection in multi-class support vector mac-
hines and its consequence to the number of ties in majority voting method.
Accepted to Artificial Intelligence Review, 2011.

Available at:
http://dx.doi.org/10.1007/s10462-011-9281-3

71



72



Artif Intell Rev
DOI 10.1007/s10462-011-9281-3

Kernel selection in multi-class support vector machines
and its consequence to the number of ties in majority
voting method

Henry Joutsijoki · Martti Juhola

© Springer Science+Business Media B.V. 2011

Abstract Support vector machines are a relatively new classification method which has
nowadays established a firm foothold in the area of machine learning. It has been applied
to numerous targets of applications. Automated taxa identification of benthic macroinverte-
brates has got generally very little attention and especially using a support vector machine
in it. In this paper we investigate how the changing of a kernel function in an SVM classi-
fier effects classification results. A novel question is how the changing of a kernel function
effects the number of ties in a majority voting method when we are dealing with a multi-class
case. We repeated the classification tests with two different feature sets. Using SVM, we
present accurate classification results proposing that SVM suits well to the automated taxa
identification of benthic macroinvertebrates. We also present that the selection of a kernel
has a great effect on the number of ties.

Keywords Classification · Support vector machines · Kernel function ·
Majority voting method · Benthic macroinvertebrates

1 Introduction

Every day our environment encounters all kinds of challenges. Global warming and other
natural catastrophes together with ecological disasters like oil catastrophes are a constant
threat for changing the balance in our surrounding nature. This is why we need to improve
our knowledge about the state of our every day environment. A most interesting research
subjects is aquatic ecosystems due to their diversity. Aquatic ecosystems contain numer-
ous smaller ecosystems and one of these is benthic ecosystem. Benthic ecosystems are very
sensitive to any changes and the first signs where the consequences of the catastrophes or
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extensive changes are seen is in the number of benthic macroinvertebrates. Thus, the constant
biomonitoring of aquatic ecosystems is an important issue.

Continuously growing interest towards biomonitoring has increased the amount of bio-
logically oriented data largely. Despite this fact, the automated benthic macroinvertebrate
recognition has gained little attention (Tirronen et al. 2009). The automatic recognition and
classification of benthic macroinvertebrates (Larios et al. 2008; Lytle et al. 2010; Sarpola et
al. 2008) are difficult tasks and so we need fast and reliable classification tools to solve this
problem. Nowadays, Support Vector Machine (SVM) is a widely used classification tool in
many applications. It is a relatively new method within machine learning theory while it was
invented in the mid 1990s by Cortes and Vapnik (1995). SVM differs from the other clas-
sification methods significantly. Its purpose is to generate a separating hyperplane between
two classes, which minimizes the generalization error, but at the same time, maximizes the
margin, i.e. the distance between separating a hyperplane and the data.

SVM was originally generated for the binary (two-class) classification tasks, but later on it
was generalized also for the multi-class cases for which the classification may sometimes be
caught in a tie situation between classes. SVM became quickly very popular, because it gave
very good results in many real-world problems. From the computational point of view, SVM
is very fast and the only problem is in finding an optimal hyperplane. As a matter of fact,
finding an optimal hyperplane is an NP-complete problem in general but making suitable
constraints we can avoid the NP-completeness (Cortes and Vapnik 1995).

This is a preliminary paper in automated taxa identification of benthic macroinvertebrates.
We have three objectives in this papers. Firstly, we investigate how one-vs-one method suits
for benthic macroinvertebrate identification. Secondly, we examine what kernel function is
the best alternative for automated benthic macroinvertebrate classification problem in our
dataset. Thirdly, we research what happens to the number of tie situations with different
kernel functions when the majority voting method is used.

In Sect. 2 we introduce basic information about macroinvertebrates. Section 3 briefly han-
dles the basic theory of SVM in linearly separable, linearly non-separable and multi-class
extension. Section 4 explains data description and result analysis. In Sect. 5 discussion and
further research topics are considered.

2 Macroinvertebrate data

The following text is mainly based on (Riverlife project 2011). Before we can use SVM or any
other classification method to classify benthic macroinvertebrates, there has been background
work for reaching this stage. Firstly, biologists have collected numerous samples from the
freshwater areas. There are two main approaches for this stage: qualitative and quantitative.
The difference between them is that when using a quantitative method, we know the amount
of benthic organisms per known area. If the qualitative method is used, then sample area
cannot be accurately defined. Secondly, samples will be preprocessed for actual identifica-
tion. Thirdly, benthic macroinvertebrates are separated from the samples and, lastly, they are
recognized and classified into their own taxa.

Recognizing and classifying individual samples itself is a very challenging task. Spe-
cialists do not always have consensus about the determination of species (or even genus)
of benthic macroinvertebrates in a sample. In these cases a common way is to leave the
recognition to a genus level (or some upper level instead of guessing the right species). We
notice these situations when in the name of the taxonomic group we have an abbreviation
of sp. which tells us that the identification has been left to the genus level. For instance, in
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our dataset we have seven taxonomic groups identified to a species level and one, Isoperla
sp., has been left to a genus level. Alone in one river, there might be hundreds of species of
macroinvertebrates, so the common way is to interpret taxon number instead of listing all
possible species. Because the differences between the species and more generally between
the taxa can be very small, taxa identification is very careful and time consuming work.

The term benthic organisms is a top level concept for all those invertebrates (animals with-
out backbone) that are dependent on aquatic environment sometimes during their life cycle.
The class of invertebrates is very large and has been diversed widely. There are thousands
of different of invertebrates making their automated recognizing very challenging. Benthic
macroinvertebrates have several ecological importances. Firstly, they are an important part of
the food chain, because they are, among others, an essential foodsource for fishes. Secondly,
benthic invertebrates are also indicators of the current situation of aquatic environment. A
sudden decrease in the taxa richness of benthic macroinvertebrates can tell us about the rad-
ical changes of benthic environments or, on the contrary, a sudden increase can tell us about
the improvement of the quality of environment.

Benthic macroinvertebrates suit well for monitoring the water quality, because they have a
long life cycle. For example, river pearl mussel can have a life cycle of decades and crabs can
have life cycle of several years. Typically benthic macroinvertebrates have a life cycle from
1 to 2 years Tirronen et al. (2009). Benthic macroinvertebrates can be used as an indicator of
the toxic substances in a water system with several different ways. We present two usages.
Firstly, from benthic macroinvertebrates the residues of the toxic substances can be mea-
sured. Secondly, the health of the population can be analyzed with the help of biomarkers,
such as the morphological deformations of the benthic macroinvertebrates.

At our disposal, we have a wide collection of benthic macroinvertebrates in different taxo-
nomic groups and sorting them demands high level of expertise. Benthic macroinvertebrates
can be divided into four groups according to their properties. These properties are:

1. Morphological properties,
2. Functional feeding group,
3. Demands of the habitat,
4. Biome.

Morphological properties are the oldest and the most common way to make the taxon of
benthic macroinvertebrates. Mostly this division reaches up to the species. Also, the size
of an animal is an important morphological property. Hence, usually we see the dichotomy
to benthic macroinvertebrates and benthic meioinvertebrates. Benthic meioinvertebrates are
small animals that can be seen only with a microscope, and they contain their own species
and groups or the youth stages of benthic macroinvertebrates. Benthic macroinvertebrates
are normally that part of benthic animals which can be seen with the naked eyes.

In our dataset members from each taxonomical group were imaged by a flatbed scan-
ner (HP Deskjet 4850) and the used software was Vuescan 8.4.57 Ärje et al. (2010).
Scanning was performed with 1,600 dpi resolution and the images were saved in a JPG
format. Each sample in the scanned images was saved as an individual image. Before
this could have been done, the thresholding and segmentation of the images were made
with ImageJ program. Moreover, images were normalized such that using dilation and
erosion the benthic macroinvertebrates were deleted from the images and then the bright-
ness of the background was equalized consistent for the whole image. Feature extrac-
tion was made also for the each benthic macroinvertebrate image by using ImageJ
program.

12375



H. Joutsijoki, M. Juhola

3 Methods

3.1 Linearly separable case

In classification methods which are based on machine learning there are two starting points.
These are choosing training and test sets. A training set is a collection of training examples.
Let the input space be X and output space Y . Usually we have X ⊆ Rn and Y = {−1, 1} for
SVM. Let the training set be

S = {(xi , yi ) | xi ∈ X, yi ∈ Y, i = 1, 2, . . . , l}
where the xi ’s are the training examples and values yi , i = 1, 2, . . . , l, are the corresponding
class labels from {−1, 1}.

Definition 1 Let X ⊆ Rn and x ∈ X . A hyperplane is of the form

f (x) = 〈w, x〉 + b =
n∑

i=1

xiwi + b = 0 (1)

where w is the weight vector and b is a bias term.

We can present a training set in the form

〈xi , w〉 + b ≥ 1, for yi = 1

〈xi , w〉 + b ≤ −1, for yi = −1.

Combining these inequalities we obtain

yi [〈xi , w〉 + b] ≥ 1 for i = 1, 2, . . . , l. (2)

When we have a linearly separable case, we can rescale the weight vector and bias term such
that the nearest points from the both classes (support vectors) are at the distance of 1/‖w‖
from the hyperplane. These planes can be represented as |〈w, x〉 + b| = 1, and hence we get
that the distance between the planes is 2

‖w‖ . This distance is called the margin. More details
about the margin concept can be found from Schölkopf and Smola (2002).

For finding the formulas for the w and b, we need to minimize ‖w‖ in order to maxi-
mize the margin. Because minimizing ‖w‖ is equivalent with minimizing 1

2‖w‖2, our goal
is to minimize 1

2‖w‖2 subject to the constraints in (2) (Fletcher 2009). Thus we can perform
the optimization problem as a Quadratic Programming (QP) problem. Term 1

2‖w‖2 need
to satisfy the Karush-Kühn-Tucker conditions (Burges 1998; Schölkopf and Smola 2002;
Theodoridis and Koutroumbas 2006). Hence

∂

∂w
L P = 0, (3)

∂

∂b
L P = 0, (4)

αi ≥ 0, i = 1, 2, . . . , l (5)

αi [yi (〈xi , w〉 + b) − 1] = 0, i = 1, 2, . . . , l (6)

where αi ’s are Lagrange multipliers and L P is the primal formulation of the Lagrange func-
tion defined as
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L P = 1
2‖w‖2 −

l∑

i=1

αi [yi (〈xi , w〉 + b) − 1]. (7)

We need to minimize L P with respect to w and b.
Now from the Eqs. (3), (4) and (7) it follows that

w =
l∑

i=1

αi yi xi and
l∑

i=1

αi yi = 0. (8)

Because of the constraint in (5), an optimal solution of w is a linear combination where there
are no zero multipliers, that is,

w =
∑

i∈SV

αi yi xi

where SV is the set of indices of the support vectors. A bias term can be calculated easily
when we choose an arbitrary i ∈ SV and use equation (6) to solve b. Thus

b = yi − 〈xi , w〉.

A common habit is to take an average over all of the support vectors in SV (Fletcher 2009).
Putting Eqs. in (8) to (7) we obtain the dual presentation L D of the primal form. Hence

L D =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiα j yi y j 〈xi , x j 〉 (9)

is subject to αi ≥ 0 ∀i and
∑l

i=1 αi yi = 0. A new example x can be classified according to
the sign of decision function f (x) = 〈x, w〉 + b.

3.2 Linearly non-separable case

When extending SVM to handle also non-separable data, we need a new concept called non-
negative slack variables, ξi , i = 1, 2, . . . , l (Cortes and Vapnik 1995). We have to relax the
constraints introduced to linearly separable case. This is done by

yi [〈xi , w〉 + b] ≥ 1 − ξi .

Now the primal formulation has the form

L P = 1
2‖w‖2 + C

l∑

i=1

ξi −
l∑

i=1

αi [yi (〈xi , w〉 + b) − 1 + ξi ] −
l∑

i=1

μiξi (10)

where αi , μi , ξi ≥ 0 ∀ i . The error term has chosen to be C
∑l

i=1 ξi instead of C(
∑l

i=1 ξi )
k ,

where C is a parameter (also called as a box constraint) to be chosen by the user (Burges
1998), because then the optimization problem has QP form and it also vanishes in dual for-
mulation. Also, the box constraint bounds the influence of outliers in the data that would
otherwise have greater αi (Christiani and Shawe-Taylor 2003; Howley and Madden 2004).

12377



H. Joutsijoki, M. Juhola

Fig. 1 Linear separation in a two-dimensional feature space

Analogously as in the linearly separable case we get

∂L P

∂w
= 0 ⇒ w =

l∑

i=1

αi yi xi , (11)

∂L P

∂b
= 0 ⇒

l∑

i=1

αi yi = 0, (12)

∂L P

∂ξi
= 0 ⇒ C = αi + μi , (13)

αi [yi (〈w, xi 〉 + b) − 1 + ξi ] = 0 ∀i, (14)

and

μiξi = 0. (15)

Substituting the equality constraints in Eqs. (11)–(13) into Eq. (10) we derive the dual
formulation

L D =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiα j yi y j 〈xi , x j 〉 (16)

subject to 0 ≤ αi ≤ C ∀i and
∑l

i=1 αi yi = 0. The dual problem is a maximizing problem
and as we see, the only difference between dual formulation in linearly separable and linearly
non-separable cases is that in the latter one the Lagrange multipliers are bounded above with
a box constraint C .

When the data is not linearly separable, we can use so called “kernel trick” to map the
feature vector from the input space to a higher dimensional feature space by using a non-lin-
ear transformation. Illustration of the kernel trick is in the Fig. 1. A feature space is usually
referred to as a Hilbert space (Schölkopf and Smola 2002) which can be thought as a gen-
eralization of the Eucledian space. Kernel trick can be justified by Cover’s theorem (Cover
1965).
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Definition 2 Kernel K is a symmetric function such that K (x, z) = 〈φ(x), φ(z)〉,∀x, w ∈
X , where φ is a nonlinear mapping from an input space to a feature space.

When we apply mapping φ to Eq. (1), this obtains a form

f (x) = 〈w, φ(x)〉 + b = 0 (17)

Moguerza and Muñoz (2006). Now, the Lagrangian to be minimized is

L P = 1
2‖w‖2 + C

l∑

i=1

ξi −
l∑

i=1

αi [yi (〈φ(xi ), w〉 + b) − 1 + ξi ] −
l∑

i=1

μiξi . (18)

Thus, we get

w =
l∑

i=1

yiαiφ(xi )

by performing the similar calculations to those in Eqs. (11)–(15). Furthermore, we can easily
evaluate the threshold b in the similar manner as in the previous cases. Moreover, the dual,
maximizing problem with respect to α has the form

L D =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiα j yi y j K (xi , x j )

such that
∑l

i=1 yiαi = 0 and C ≥ αi ≥ 0. A new example x can now be classified according
to the sign of (17).

A major benefit in using kernel functions is that we do not need to know the actual map-
ping and so all what we need to know is the inner products between the test example and
the training examples. This is, from the computational point of view, a very important aspect
which makes SVM so useful in many real-world problems.

Not all kernel functions are valid and the following theorem, called Mercer’s theorem
(Christiani and Shawe-Taylor 2003; Vapnik 2000), gives us necessary and sufficient con-
ditions for proper kernel functions. In Mercer’s theorem Hilbert space L2(X) is the set of
functions f for which

‖ f ‖L2 =
∫

X

| f (x)|2dx < ∞,

where X is a subset of Rn .

Theorem 1 Let X ⊆ Rn be compact (closed and bounded subset). Suppose that K is a con-
tinuous symmetric function K (x, z) = K (z, x) such that the integral operator TK : L2(X) →
L2(X),

(TK f )(·) =
∫

X

K (·, x) f (x)dx

is positive, that is
∫

X×X

K (x, z) f (x) f (z)dx dz ≥ 0,
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for all f ∈ L2(X). Then we can expand K (x, z) in a uniformly convergent series (on X × X)
in terms of Tk’s eigen-functions φ j ∈ L2(X), normalized in such a way that ‖φ j‖L2 = 1,
and positive associated eigenvalues λ j ≥ 0,

K (x, z) =
∞∑

j=1

λ jφ j (x)φ j (z).

We theoretically consider an infinite number of valid kernels. By choosing, for exam-
ple, two Mercer’s condition satifying kernel functions, their every linear combination with
positive coefficients is also a valid kernel function. However, there are few commonly used
kernels. These are:

1. Linear kernel 〈x, z〉,
2. Polynomial (1 + 〈x, z〉)d where d ∈ N is the order of the kernel,
3. Multi-Layer-Perceptron (MLP) tanh(κ〈x, z〉 + δ) for parameters κ > 0 and δ < 0,

4. Radial Basis Function (RBF) e− ‖x−z‖2

2σ2 where σ > 0.

We have found an optimal hyperplane by using QP optimization, but there are also some
other methods for this task. Maximal margin optimization can end up to very large and time
consuming and a lot of memory demanding QP problems. We can also use the Sequential
Minimal Optimization (SMO) introduced by Platt (1998). SMO divides large QP problems
into smaller ones to be solved separately and analytically. This can speed up the training
process significantly. Another way to optimise the margin is to use the Least Square (LS)
method. LS difference is in the penalty term C

2

∑l
i=1 ξ2

i . In LS the Lagrangian has the form

L P = 1
2‖w‖2 + C

2

l∑

i=1

ξ2
i −

l∑

i=1

αi [yi (〈w, φ(xi )〉 + b) − 1 + ξi ].

Detailed information about LS can be found from Suykens and Vandewalle (1999).

3.3 Multi-class extension

Suppose that we have a training data of M classes where M > 2. We have two alternatives
for the multi-class extension. These are one versus all (OVA) and one versus one (OVO)
methods. In OVA we construct M binary classifiers such that each one of them is trained to
separate one class from the other. A test sample is input to each classifier and a final class
for the test sample is given according to the winner-takes-all method. In OVO we first train
M(M − 1)/2 individual binary classifiers between all pairs of classes. When a new sample
is classified, it is tested with every binary classifier, and then the final class is chosen for the
test sample with some voting method. In this work we use the OVO method.

There are several voting methods to solve the final class for a test sample. In this work
we use the majority voting method. We obtain, from each classifier, a vote to which class
a sample should belong. Then the method counts which class gains the highest number of
votes and choose it as the final result. The method is very easy and it brings good results,
but problems arise when ties occur. It cannot solve these cases directly and we need some
additional tools to solve the problem. Other voting methods like the winner-takes-all method
and error-correcting codes are also typically used (Hong et al. 2008).

However, the majority voting system in OVO consist of a problem when the voting goes
to a tie situation with two or more classes. These cases need special attention. Hong and Cho
(2008) introduced a tie solving method by using Naïve Bayes classifiers. In this work we
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used the traditional k-nearest-neighbor (k-NN) method to solve the tie situations between
the classes. Always when a tie appeared, we trained k-NN with the same training data of the
tied classes as used with the SVMs. After that we classified the problematic test sample.

In order to prevent the situation that k-NN gives a new tie situation, which is always
possible, when we are dealing with more than two classes, we need to consider a carefully
used k value. In a binary problem we can choose the k value to be odd. If k is even, then a tie
can occur again. In multi-class cases for every k value, whether it is even or odd and greater
than one, there is a chance that a tie can appear again. In this work, we have an eight class
classification problem. Thus, when using OVO, we have 28 binary SVM classifiers which
means 28 votes for each test example. Then, theoretically, our worst case scenario is that we
have a seven class tie, each class having four votes for each. In order to prevent this situation
we have chosen k = 1 which gives certainly a unique solution for each tie situation.

Tie analysis is an interesting issue and it has not been investigated as much as it should
have been done. Theoretically these examples which are not classifed into any class or are
not classified unambiguously need special tools. Here we also investigate the number of ties
in the cases of kernel functions used. How to choose a right kernel is still an open question.
A novel question is how the selection of a kernel function will effect the number of ties.
If the amount of ties is small, then these examples do not have a major impact on the final
classification distribution, but if the number of ties is greater, then the tie situations will effect,
maybe crucially, the classification itself.

4 Experimental tests

4.1 Data description

The image database consists of altogether 1,350 images from eight different taxonomical
groups of benthic macroinvertebrate: Baetis rhodani, Diura nanseni, Heptagenia sulphurea,
Hydropsyche pellucidulla, Hydropsyche siltalai, Isoperla sp., Rhyacophila nubila and Tae-
niopteryx nebulosa. In the following we will refer to the classes with capital letters A-H and
in Fig. 2 there is an example image from every class.

Fig. 2 An example image on every taxonomical group. Taxa order from upper left to bottom right is A-H.
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In the preprocessing stage (see details Ärje et al. 2010) features have been calculated such
that, first, the whole image has been thresholded and then all individual particles have been
searched for what in this case means benthic macroinvertebrates. Outliers have been removed
according to their area with predicted conditions in an image. Features have been calculated
from the images by using a free public Java-based image processing program called ImageJ
(ImageJ).

The data includes 26 attributes (ImageJ). Excluding the identification number and area
fraction we have used all the given features. In (Kiranyaz et al. 2010, 2011) divided features
into two categories: geometrical and statistical. They used 15 features from all 26 possible.
The statistical features used are: {Mean, Standard deviation Mode, Median, Integrated Den-
sity, Kurtosis, Skewness}, where the Integrated Density means the sum of the values of the
pixels in the image or selection. Respectively the geometric features were: {Area, Perime-
ter, Width, Height, Feret’s Diameter, Major Minor, Circularity}, where Feret’s Diameter is
the longest distance between any two points along the selection boundary. Other features
which we used but not in (Kiranyaz et al. 2010, 2011) are: {Min, Max, X, Y, XM, YM, BX,
BY, Angle} where {X, Y, XM, YM, BX, BY} are the features concerning coordinates of a
smallest rectangle enclosing the selection in the image or coordinates of the center of the
fitted ellipse. A reader can find the accurate description about all features from (ImageJ). We
repeated the classification procedure for the feature sets, both smaller and extended one. In
the result tables these sets are referred to with the abbreviations 15D and 24D, which means
the dimensions of each sample.

The classification process was repeated 250 times for each of 28 classifier, for which
means of the results were calculated as a final result. Each column vector in the data matrix
was normalized to have zero mean and unit variance. In the classification procedure a training
set was selected to be 90% of the whole data set and the rest 10% was the test set. With these
assumptions sizes of the training and test sets were 1,215 and 135. Training and test sets
were selected by weightening to obtain results more truthfully when the sizes of the groups
alternated from 83 to 311. Weightening was made by the sizes of the taxonomic groups. In
each round the elements of the training and test sets were chosen randomly. In training and
testing the Bioinformatics Toolbox of Matlab was used.

From Table 1 we see the used parameter values. The second column represents the box
constraint (bc) value, which corresponds to the regularization value in a soft-margin case.
Parameters κ, δ and σ are the parameters in MLP and RBF kernels. The last column depicts
the k value for which each classifier was tested in the case of a tie situation in voting.

Table 1 Parameter values of kernels

Kernel Box constraint Kernel parameters

bc κ δ σ k

Linear 0.5, . . . , 10 − − − 1

MLP 0.5, . . . , 10 0.5, 1.0, . . . , 10 −10,−9.5, . . . , −0.5 − 1

Polynomial (d = 2) 0.5, . . . , 10 − − − 1

Polynomial (d = 3) 0.5, . . . , 10 − − − 1

Polynomial (d = 4) 0.5, . . . , 10 − − − 1

Polynomial (d = 5) 0.5, . . . , 10 − − − 1

RBF 0.5, . . . , 10 − − 0.5, 1.0, . . . , 10 1
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In classifying the data, each of the 28 SVM classifiers was trained and tested with linear
kernel together with 20 parameter values. We also tested the polynomial kernels, degree
d ∈ {2, 3, 4, 5}, with 20 parameter values. In the MLP kernel case we made the agreement
that κ = −δ. Also, the values σ were chosen to be equal with κ and −δ in order to get
the comparison of the classification results more consistent. Hence the parametric space is
equal to the parameters κ, δ and σ . So both MLP and RBF were tested with 20 · 20 = 400
combinations of the parameters. We performed the tests for the both feature sets, 15D and
24D, with the same combinations of the parameters.

4.2 Results

We used seven different kernel functions altogether. Tables 2 and 3 show the results of the
linear kernel. As seen, we obtained excellent performances with the 24D feature set. Classes
D, F, G and H were classified perfectly and the other classes with over 90% accuracy. For the
classes B, C and E expanded feature set did not bring any crucial information which would
have improved the recognition accuracy. The recognition of other classes was improved at
least 4% with the 24D feature set. In Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 each
row indicates the distribution, how the test samples from specific class have been classified
within all the classes. Tables are not symmetric, because the group sizes alternate within the
classes.

Table 2 Results by linear kernel with 15D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 94.5 0.0 0.0 0.0 5.5 0.0 0.0 0.0

Class B 0.0 96.5 2.9 0.0 0.6 0.0 0.0 0.0

Class C 1.5 0.0 92.0 0.0 6.5 0.0 0.0 0.0

Class D 0.0 0.0 0.0 93.2 0.0 0.0 6.8 0.0

Class E 1.8 0.8 1.6 0.0 95.8 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 95.1 0.0 4.9

Class G 0.0 0.0 0.0 5.3 0.0 0.0 94.7 0.0

Class H 0.0 0.0 0.1 0.0 0.0 4.7 0.0 95.2

Table 3 Results by linear kernel with 24D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 98.9 0.0 0.0 0.0 1.1 0.0 0.0 0.0

Class B 0.0 96.2 2.9 0.0 0.9 0.0 0.0 0.0

Class C 1.7 0.0 91.3 0.0 7.0 0.0 0.0 0.0

Class D 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

Class E 1.1 0.4 2.3 0.0 96.2 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

Class G 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Class H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
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Table 4 Results by quadratic kernel with 15D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 93.5 0.0 0.1 0.0 6.4 0.0 0.0 0.0

Class B 0.0 98.0 0.6 0.1 1.3 0.0 0.0 0.0

Class C 0.0 0.2 96.0 0.0 3.8 0.0 0.0 0.0

Class D 0.0 0.0 0.0 98.2 0.0 0.0 1.8 0.0

Class E 0.6 1.1 1.5 0.0 96.8 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 96.0 0.0 4.0

Class G 0.0 0.0 0.0 3.1 0.0 0.0 96.9 0.0

Class H 0.0 0.0 0.0 0.0 0.0 5.0 0.0 95.0

Table 5 Results by quadratic kernel with 24D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 95.8 0.0 0.0 0.0 4.2 0.0 0.0 0.0

Class B 0.0 97.7 0.9 0.0 1.4 0.0 0.0 0.0

Class C 0.6 0.6 91.8 0.0 7.0 0.0 0.0 0.0

Class D 0.0 0.0 0.0 99.9 0.0 0.0 0.1 0.0

Class E 1.3 1.0 1.7 0.0 96.0 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

Class G 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Class H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 6 Results by cubic kernel with 15D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 86.9 0.0 1.2 0.0 11.7 0.0 0.0 0.2

Class B 0.0 94.6 1.5 0.1 1.7 0.5 1.5 0.1

Class C 0.1 1.7 84.0 0.0 13.8 0.3 0.0 0.1

Class D 0.1 0.0 0.4 94.7 0.0 1.0 3.1 0.7

Class E 2.0 1.4 3.8 0.2 92.3 0.2 0.0 0.1

Class F 0.1 0.0 0.0 0.0 0.0 89.9 0.0 10.0

Class G 0.0 0.1 1.1 3.0 0.0 0.1 94.5 1.2

Class H 0.4 0.0 0.0 0.0 0.0 21.7 0.0 77.9

Changing the kernel into quadratic did not make any major differences comparing to the
linear kernel. In the extended feature set class B was recognized slightly better than in the
case of the linear kernel, but the difference is very small. The most interesting aspect in
this kernel was that class C was classified over 4% better in the 15D feature set than in the
extended one. More details can be found from the Tables 4 and 5.
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Table 7 Results by cubic kernel with 24D feature set and bc = 8.0 (Boldfaced numbers indicate correctly
classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 87.9 0.1 2.3 0.0 9.7 0.0 0.0 0.0

Class B 0.4 94.8 2.9 0.0 1.1 0.2 0.0 0.6

Class C 0.4 4.9 76.1 0.0 18.6 0.0 0.0 0.0

Class D 0.0 0.0 0.0 97.1 0.0 2.0 0.8 0.1

Class E 2.9 2.9 9.6 0.0 84.6 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 99.9 0.0 0.1

Class G 0.0 0.0 0.0 0.0 0.0 1.2 98.5 0.3

Class H 0.0 0.0 0.0 0.0 0.0 0.8 0.0 99.2

Table 8 Results by polynomial kernel (d = 4) with 15D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 87.4 0.3 0.5 0.0 10.0 1.0 0.0 0.8

Class B 1.8 90.8 0.8 3.5 2.4 0.0 0.7 0.0

Class C 0.8 5.9 70.7 0.0 21.4 0.1 0.0 1.1

Class D 1.6 0.0 0.3 92.7 0.2 0.2 3.4 1.6

Class E 2.6 2.7 6.2 0.3 86.7 0.5 0.1 0.9

Class F 0.3 0.0 0.2 0.1 0.5 83.3 0.0 15.6

Class G 0.6 1.0 0.8 3.5 0.5 0.3 88.9 4.4

Class H 0.3 0.0 1.8 0.0 1.9 28.7 0.0 67.3

Table 9 Results by polynomial kernel (d = 4) with 24D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 85.4 0.1 1.7 0.0 12.5 0.0 0.0 0.3
Class B 1.4 91.6 4.0 0.6 2.3 0.1 0.0 0.0
Class C 1.5 4.5 67.2 0.0 25.3 0.0 0.0 1.5
Class D 2.1 0.3 0.0 93.2 0.2 0.3 3.2 0.7
Class E 3.4 2.9 11.9 0.0 80.8 0.3 0.1 0.6
Class F 0.1 0.0 0.0 0.0 0.0 97.8 0.0 2.1
Class G 0.2 0.0 0.7 1.5 1.0 0.3 91.2 5.1
Class H 0.0 0.0 0.5 0.0 1.2 7.2 0.0 91.1

Altering the degree of the polynomial kernel into 3 made the results worse than in the two
aforementioned ones. Classes A, C and E yielded clearly worse results than before, which
is a sign of possible overfitting. Otherwise, the rest of the classes was quite well classified.
Table 6 shows that classes C and E have been classified better with the 15D feature set than
with the extended feature set. The rest of the classes has poorer performances than those of
the corresponding classes in Table 7. The difference is considerable in class H. The same
kind of tendency, as in the 3rd degree of the polynomial kernel, was also present for the 4th
degree of the polynomial kernel. With the smaller feature set we achieved better results in
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Table 10 Results by polynomial kernel (d = 5) with 15D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 79.3 0.6 0.2 0.0 12.1 3.5 0.0 4.3

Class B 0.2 83.2 1.3 4.8 1.9 2.4 5.4 0.8

Class C 0.1 9.1 60.9 0.6 24.2 2.9 0.2 2.0

Class D 1.5 0.1 0.5 87.1 1.8 3.2 3.7 2.1

Class E 2.8 3.1 8.1 0.2 82.4 1.5 0.1 1.8

Class F 0.4 0.0 0.2 0.0 1.1 85.5 0.0 12.8

Class G 0.5 1.8 0.8 3.7 6.2 4.8 79.2 3.0

Class H 0.3 0.0 3.0 0.0 5.8 29.0 0.0 61.9

Table 11 Results by polynomial kernel (d = 5) with 24D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 73.7 0.3 6.3 0.0 18.7 0.4 0.0 0.6

Class B 3.5 83.4 3.6 0.0 7.0 0.5 0.0 2.0

Class C 2.1 7.1 56.1 0.0 33.9 0.4 0.0 0.4

Class D 1.4 0.0 0.0 84.1 0.0 7.8 4.5 2.2

Class E 4.4 3.5 13.1 0.0 78.5 0.3 0.0 0.2

Class F 0.0 0.0 0.0 0.0 0.1 95.6 0.0 4.3

Class G 0.0 0.0 0.3 1.8 1.1 16.4 77.1 3.3

Class H 0.5 0.0 1.1 0.0 2.4 16.8 0.0 79.2

Table 12 Results by RBF kernel (σ = 7.0) with 15D feature set and bc = 8.0 (Boldfaced numbers indicate
correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 93.9 0.0 0.0 0.0 6.1 0.0 0.0 0.0

Class B 0.0 97.1 2.3 0.0 0.6 0.0 0.0 0.0

Class C 1.9 0.0 92.7 0.0 5.4 0.0 0.0 0.0

Class D 0.0 0.0 0.0 94.1 0.0 0.3 5.6 0.0

Class E 3.2 2.1 1.2 0.0 93.5 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 93.9 0.0 6.1

Class G 0.0 0.0 0.0 3.8 0.0 0.0 96.2 0.0

Class H 0.0 0.0 0.0 0.0 0.0 4.9 0.0 95.1

classes A, C and E from which class C has been difficult to recognize for every kernel. When
d = 5, classes A, C, D, E and G were better classified with the smaller number of features.
This assures the possible overfitting problem in the higher degrees of polynomial kernels.
Tables 8, 9, 10 and 11 show the exact results when d = 4 and d = 5.

RBF and MLP kernels are very interesting cases because their results are total opposites.
With RBF when σ = 7.0 and bc = 8.0 classification results were excellent and as good as
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Table 13 Results by RBF kernel (σ = 7.0) with 24D feature set and bc = 8.0 (Boldfaced numbers indicate
correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 98.7 0.0 0.0 0.0 1, 3 0.0 0.0 0.0

Class B 0.0 96.8 2.4 0.0 0.8 0.0 0.0 0.0

Class C 1.9 0.0 91.7 0.0 6.4 0.0 0.0 0.0

Class D 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

Class E 3.0 1.7 1.4 0.0 93.9 0.0 0.0 0.0

Class F 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

Class G 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Class H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 14 Results by MLP kernel (κ = −δ = 0.5) with 15D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 67.8 0.1 3.9 0.6 9.9 9.2 0.9 7.6

Class B 0.2 85.4 4.4 2.3 3.8 0.4 2.9 0.6

Class C 4.3 11.6 45.3 4.8 15.0 4.4 6.6 8.0

Class D 1.1 7.2 2.6 74.8 2.4 2.3 8.0 1.6

Class E 13.4 3.8 18.0 1.8 43.9 7.2 2.3 9.6

Class F 10.3 0.2 3.2 1.7 5.6 48.8 5.5 24.7

Class G 1.5 7.5 4.7 12.9 4.1 5.8 55.3 8.2

Class H 8.5 0.5 6.7 1.3 6.9 21.3 6.5 48.3

Table 15 Results by MLP kernel (κ = −δ = 0.5) with 24D feature set and bc = 8.0 (Boldfaced numbers
indicate correctly classified samples in specific class in percentage)

Class A Class B Class C Class D Class E Class F Class G Class H

Class A 72.3 0.1 3.2 0.2 9.5 5.0 1.1 8.6

Class B 0.2 71.7 8.8 4.8 6.8 0.6 5.6 1.5

Class C 4.4 10.9 32.6 5.6 19.0 3.9 8.4 15.2

Class D 0.8 13.6 3.8 55.4 3.0 4.6 16.4 2.4

Class E 13.6 3.9 20.0 2.5 28.6 6.5 4.8 20.1

Class F 9.4 0.4 3.9 3.1 7.1 42.0 9.5 24.6

Class G 2.5 6.6 6.9 14.4 4.9 9.1 46.7 8.9

Class H 9.5 0.8 8.1 2.3 8.9 19.0 9.3 42.1

with the linear kernel. One half of the classes was perfectly recognized and the other half had
over 90% accuracy. With the smaller feature set every class was recognized with over 90%
accuracy, but none of them had perfect 100% result. MLP was clearly the worst alternative
for classifying the benthic macroinvertebrate images. Only two classes reached over 70%
accuracy in both feature set options, and the major part of the rest classes had less than 50%
performance. In RBF, when we fixed σ and changed the box constraint value, final results did
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Table 16 Number of the ties

Numbers in the parenthesis are
the results when used the smaller
feature set and correspondingly
other numbers are from the
extended feature set

Mean Standard deviation

Linear 0.4 (0.3) 0.6 (0.5)

Polynomial (d = 2) 1.4 (1.0) 1.1 (1.0)

Polynomial (d = 3) 7.8 (6.8) 2.7 (2.5)

Polynomial (d = 4) 10.2 (13.0) 2.9 (3.4)

Polynomial (d = 5) 16.0 (21.1) 3.7 (4.2)

MLP 47.8 (43.2) 5.6 (5.7)

RBF 0.1 (0.4) 0.4 (0.6)

Table 17 Weighted means of the
correctly classified samples in
percentage

15D 24D

Linear 94.8 97.7

Polynomial (d = 2) 96.2 97.6

Polynomial (d = 3) 88.9 91.9

Polynomial (d = 4) 82.5 87.3

Polynomial (d = 5) 77.8 80.1

RBF 94.3 97.3

MLP 54.8 45.0

not alternate significantly. The same situation was when we fixed κ in MLP. Then changing
bc did not change the final results barely all. Moreover, the same situation was also in the case
of the linear kernel and for all polynomial kernels used. Accurate information is presented
in Tables 12, 13, 14 and 15.

How did changing the kernel function effect the number of ties? The answer is that chang-
ing the kernel did have a major impact on the amount of ties. The mean altered from less
than 1 to a over 40. The interval is very large and it creates several other questions about the
importance of tie analysis. Table 16 show the means and standard deviations of the numbers
of ties. As expected, a number of ties is directly connected to the classification results. When
a kernel fits well to the data, a number of ties is low and, on the contrary, if a kernel does
not fit to the data, ties are more frequent. We have calculated the statistical parameters in
both feature set cases. An interesting aspect is that the amount of ties did not differ largely,
although we increased the number of features from 15 to 24. This can be seen from Table 16
by comparing the numbers, which are in the parenthesis and which are not in the parenthesis.
Table 16 shows that the ties need to be concerned when dealing with SVM. To Table 17 we
gathered the weighted means of correctly classified samples from the result Tables 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15 for easyning the analyzation of the results.

5 Discussion

The automated recognition of benthic macroinvertebrates is a very demanding task because
of the huge variety of species. Applying SVM in the classification of the benthic macroinver-
tebrates has been under research only for a short time and so there remains a lot of research
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to be done in this area. Macroinvertebrates are an important part of the aquatic ecosystems
and they are an important indicator of the current state of the aquatic ecosystem.

Our results tell that SVM is a very promising tool in classifying the benthic macroinver-
tebrates. There has been an open question from the mid 1990s since the invention of SVM
what kernel would be the right choice for a given application. General rules have not been
discovered so far, and here we have researched the choice of a right kernel function for the
macroinvertebrate image data set. The results showed that the basic and simplest kernel,
linear kernel, gave very good results. Furthermore, RBF gave also very good performance.

Choosing a right kernel for an application is an open question (Moguerza and Muñoz
2006) and finding right parameter values is also an interesting question. In practice this is
solved by forking the best interval of parameter values or fixing the interval in the beginning
and finding the best combination of values in it. Theoretically, the most interesting question
is the ties occurring in voting. These cases are difficult to handle and are often solved by
selecting randomly the class within the tied classes or to choose the class which has the most
training examples.

However, these methods are not 100% accurate and this is why we need to develop more
theoretical tools for solving such situations. As seen from Table 16 that ties are not so rare
events that they should be dismissed. On the contrary, tie situation can exist in over 30% of
all test examples which has a major effect on classification. Kernel choice and its effect on
the number of ties is a question that needs more research.

Moreover, feature selection is very important question. We made the classification tests
with two different feature sets, but further research is needed. The separation of features into
two categories brings up the question how classification would succeed if we used either
statistical or geometrical features. Moreover, would the feature selection effect the number
of ties? Furthermore, in the future research it is important to investigate how classification
succeeds with other multi-class methods such as one-versus-all and LIBLINEAR (Fan et al.
2008). Also, it is interesting to test other classification methods than support vector machines
to this application area.
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Abstract. This paper investigates automated benthic macroinvertebrate identifi-
cation and classification with multi-class support vector machines. Moreover, we
examine, how the feature selection effects results, when one-vs-one and one-vs-
all methods are used. Lastly, we explore what happens for the number of tie situ-
ations with different kernel function selections. Our wide experimental tests with
three feature sets and seven kernel functions indicated that one-vs-one method
suits best for the automated benthic macroinvertebrate identification. In addition,
we obtained clear differences to the number of tie situations with different kernel
funtions. Furthermore, the feature selection had a clear influence on the results.

Keywords: Support vector machines, machine learning, benthic macroinverte-
brates, water quality, kernel function.

1 Introduction

Water is a part of our every day life. We drink it daily and we use it in our daily rou-
tine activities. Thus, we often can take it for a granted thing. Nevertheless, when we
encounter problems, like problems in the water systems and the occurrences of natural
catastrophes or chemical disasters, the actual need of water and its quality are quickly in
people’s minds. Macroinvertebrates are used in biomonitoring to study human induced
changes on aquatic ecosystems [20]. Benthic macroinvertebrates are excellent indica-
tors of the state of ecosystems and water quality, because they react quickly to any
changes in water quality. If the number of benthic macroinvertebrate species is high
and the population of each species is large, ecosystem is in good condition. Otherwise,
we can assume that something unnatural has happened.

Support vector machines (SVM), compared to other classification methods, have
been under research only for a short time of period, since they were developed by Vap-
nik et al. [4,19] no later than in the mid 1990s. SVM has gained wide popularity and
the ongoing research is very active. Especially, the selection of a right kernel function
[2] and the optimal parameter search have been a relevant research topic from the be-
ginning. SVM has been applied to numerous applications such as visual object recog-
nition [8], text categorization [17], automated musical instrument classification [13]
and automated video content analysis [12], but automated benthic macroinvertebrate
identification [9,10,11,14,18,20] has got very little attention. Traditionally classifica-
tion of macroinvertebrate samples has been made by the specialists, but this approach

P. Perner (Ed.): MLDM 2011, LNAI 6871, pp. 399–413, 2011.
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is time-consuming and expensive [20]. Furthermore, when hundreds or even thousands
of samples are classified manually one by one, the probability of human mistakes in-
creases. By automatization of the identification process as accurate as possible, we can
reduce the costs of human-made taxa identification and the use of time to it.

The identification of benthic macroinvertebrates and classification of their images are
difficult problems from the pattern recognition point of view, because differences be-
tween the species of benthic macroinvertebrates can be very small. Moreover, the sizes,
positions and shapes differ in each image raising the level of the problem even higher.
Generally speaking, the purpose of the articles and researches concerning classification
methods is to find and develop thoretical tools such that they work in real-world ap-
plications as well as possible. Applications, especially, with biologically stressed datas,
reveal us how complex and diversed the nature surrounding us is really, and usually the
nature proves to be more complex than we think, and the results give often suprising
aspects. This paper clarifies the dissimilarities and the similarities between the taxo-
nomical groups from the pattern recognition aspect. We can analyze with the help of
the results, which species can be separated and cannot be separated by means of existent
classification methods.

The research of automated benthic macroinvertebrate has also influence on other ar-
eas. This is a relatively new application area in pattern recognition and, therefore, there
is a lot of research in this area, while the Globe consists of thousands of species of
benthic macroinvertebrates and we have examined only a small portion of them by the
methods of machine learning. The investigation and development of benthic macroin-
vertebrate identification help us to improve the water quality control. Hence, we can
notice and react to the changes of the aquatic ecosystems and examine the reasons be-
hind the changes. On the basis of pattern recognition we can automate the mechanical
identification process and act better for the improment of freshwater areas.

We have three objectives in this paper. Firstly, we investigate, whether one-vs-all is
a better method than one-vs-one in classifying the benthic macroinvertebrate images.
Secondly, we examine how the feature selection effects the classification in one-vs-one
and one-vs-all methods, and thirdly, we examine the number of tie situations, when
using the one-vs-all method and the majority voting method in the one-vs-one method.

In Sect. 2 we describe the general theory of binary SVMs and we discuss the multi-
class extensions and their pros and cons. In Sect. 3 we describe the test arrangements
and give the data description as well as we present the experimental results and analyze
them. Section 4 is left for conclusions and further research topics.

2 Method

2.1 Linearly Separable Case

Support Vector Machines [1,3,4,19] were originally developed for the binary classifi-
cation problems. Let the input space be X ⊆ Rn and the output space Y = {−1, 1}.
Let the training set be {(x1, y1), (x2, y2), . . . , (xl, yl)} ∈ Rn × Y , where xi ∈ Rn,
i = 1, 2, . . . , l, are the training examples and values yi ∈ Y are their corresponding
class labels. Our task is to find a hyperplane f(x) = 〈x, w〉+ b = 0 separating the two
classes from each other.
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Separating hyperplane is not an unique one, but adding the constraint that the margin,
i.e., the distance between the data and the hyperplane, is maximized, then we find a
unique hyperplane. We can represent our training data in the form yi[〈xi, w〉 + b] ≥
1,i = 1, 2, . . . , l. When we have a linearly separable case, we can rescale the weight
vector w and the bias term b such that the hyperplane is at the distance of 1

‖w‖ from the
closest points (support vectors) of both classes. In other words, canonical hyperplanes,
where the support vector lies on, can be represented as |〈xi, w〉 + b| = 1 for some
i. Hence, the margin (the distance between the canonical hyperplanes) is the equal to

2
‖w‖ . Maximizing margin is an equivalent problem to minimizing 1

2‖w‖2 subject to
yi[〈xi, w〉 + b] ≥ 1, i = 1, 2, . . . , l.

Thus, we can use the Quadratic Programming (QP) method to find the formulas for
the w and b. Primal form of the Lagrangian is

LP =
1

2
‖w‖2 −

l∑

i=1

αi[yi(〈xi, w〉 + b) − 1],

where αi ≥ 0 ∀i. We need to minimize the Lagrangian with respect to w and b and
maximize it with subject to Lagrange multipliers αi. By computing the Karush-Kühn-
Tucker (KKT) conditions (see [1,3]) we obtain

w =

l∑

i=1

αiyixi and
l∑

i=1

αiyi = 0.

Sometimes the primal formulation can be hard to solve, so it is better to represent the
problem in dual formulation. Moreover, from the dual presentation we can solve the
αi’s. Hence

LD =

l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyj〈xi, xj〉 (1)

subject to αi ≥ 0 ∀i and
∑l

i=1 αiyi = 0. The Lagrangian of LD is maximized with
respect to αi’s. Because the support vectors have positive αi’s and the rest are equal to
0, the optimal solution of w can now be presented as

w =
∑

i∈SV

αiyixi, (2)

where SV is the set of indices of the support vectors. The bias term can be easily
evaluated by choosing an arbitrary i ∈ SV and from the KKT condition αi[yi(〈xi, w〉+
b) − 1] = 0 we obtain a formula for the b. That is, b = yi − 〈xi, w〉. A numerically
safer option is to take the mean of all possible values of b [1]. A new example x can be
now classified according to the sign of the decision function

f(x) = 〈x, w〉 + b. (3)

If the sign is positive, an example gets the class label of 1 and otherwise it obtains the
label −1.
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2.2 Linearly Non-separable Case

In the real world the datasets of applications are rarely linearly separable, when the
finding of hyperplane is easy. For this reason, we need the tools to handle also the
linearly non-separable datasets. The first extension was the invention of slack variables
[4] ξi ≥ 0, i = 1, 2, . . . , l, where each ξi measures the penalty of misclassification of
the training point xi. Hence, we can represent our data by the inequalities

yi[〈xi, w〉 + b] ≥ 1 − ξi,

i = 1, 2, . . . , l. Now, the objective function to be minimized has the form:

1
2‖w‖2 + C

l∑

i=1

ξi.

Thus,

LP =
1

2
‖w‖2 + C

l∑

i=1

ξi −
l∑

i=1

αi[yi(〈xi, w〉 + b) − 1 + ξi] −
l∑

i=1

μiξi,

where αi, μi, ξi ≥ 0, i = 1, 2, . . . , l. Again, LP is minimized with respect to variables
w, b and maximized subject to αi, μi, i = 1, 2, . . . , l. Parameter C, also called box con-
straint, is a trade-off parameter, which controls the influence of outliers in the data and
controls the trade-off between maximum margin and minimum classification error [5].
Furthermore, the dual presentation is otherwise same than in (1), but the constraints are
now 0 ≤ αi ≤ C and

∑l
i=1 αiyixi = 0. So, the difference between the presentations

of LD in the linearly separable and linearly non-separable cases is that in the latter one
αi’s are bounded above with constant C. As in the linearly separable case, the solution
for w equals (2) in the linearly non-separable case. Bias can be calculated by choosing
a support vector satisfying 0 < αi < C and noticing the KKT condition as before [1].
A new example x is classified according to the equation (3).

2.3 Nonlinear Support Vector Machines

The use of kernel functions [1,3,4] was a groundbreaking innovation that extended the
opportunities of SVMs widely. The basic idea is to map the feature vector from an input
space to a higher dimensional feature space by a nonlinear transformation φ. Hence,
the kernel function evaluates the inner product between training points and classifying
a new example, it counts inner products between training points and test example.

Definition 1. Kernel function is a symmetric function such that

K(x, z) = 〈φ(x), φ(z)〉 ∀x, z ∈ X,

where φ is a nonlinear mapping from an input space to a feature space.
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Analogously, as in the previous cases, we get

LP =
1

2
‖w‖2 + C

l∑

i=1

ξi −
l∑

i=1

αi[yi(〈φ(xi), w〉 + b) − 1 + ξi] −
l∑

i=1

μiξi,

and

LD =

l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi, xj).

Now, equation (2) has the form

w =
∑

i∈SV

yiαiφ(xi).

and b = yi − 〈φ(xi), w〉 or we can take the mean of all possible values of b. A new
example x can be classified according to the sign of the decision function

f(x) = 〈φ(x), w〉 + b =
∑

i∈SV

αiyiK(x, xi) + b.

We have some restrictions for the use of kernel functions. Necessary and sufficient
conditions for the valid kernel functions are presented in Mercer’s theorem [1,3,19].
There are a few commonly used kernels also used in this work. These are:

(i) Linear (or dot product) 〈x, z〉,
(ii) Polynomial (1 + 〈x, z〉)d where d ∈ {2, 3, 4, 5} is the order of the kernel,

(iii) Multi-Layer Perceptron (MLP) tanh(κ〈x, z〉 + δ) for parameters κ > 0 and
δ < 0,

(iv) Radial Basis Function (RBF) e− ‖x−z‖2

2σ2 where σ > 0.

We have a few commonly used multi-class extensions for the SVMs. Two of these
are one-vs-all and one-vs-one methods [8]. In the following we will refer to them with
the abbreviations OVA and OVO.

2.4 One-vs-All

Suppose that we have a problem of M classes and M > 2. In OVA we train M individ-
ual binary classifiers, where each one of them separates one class from the rest. Every
classifier is trained with a full training set, meaning that the training set from each class
is needed to separate an individual class from the rest of the classes. A test sample is
classified into a specific class according to the results of the binary classifier. In an SVM
classifier the output of a binary classifier is either 1 or −1. Number 1 indicates that the
test sample belongs to the class k and correspondingly −1 indicates that the test sample
belongs to the rest of M − 1 classes, i.e to the class set {1, 2, . . . , k − 1, k + 1, . . .M}.

Now, the desired situation in classifying the test sample with the OVA method is
that one binary classifier gives output 1 and the other classifiers give −1. Hence, the
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class with output 1 is chosen. Unfortunately, we encounter sometimes tie situations.
These situations can be divided into two categories. Firstly, we have two or more bi-
nary classifiers with output 1 and secondly, every classifier gives −1. Tie situations
are difficult to handle and they need special attention. In this work we have used the
k-nearest-neighbor method, with k = 1.

The OVA method is usually more time-consuming than OVO, although the number
of classifiers is significantly smaller, but the size of the training set for every classifier
is larger than in OVO. Rifkin and Klautau [15] argued that OVA is as accurate as any
other multi-class method. They assumed that the used binary classifiers are well-tuned
regularized classifiers such as SVMs. A comparison between OVA and OVO will be
considered in Section 3.

2.5 One-vs-One

In OVO we first train M(M−1)
2 binary classifiers, where every pair (k, m) is such that

k < m and k, m ∈ {1, 2, . . . , M}. Although the number of binary classifiers is greater
than in the OVA method, training process is faster, because the sizes of the training sets
are much smaller for every binary classifier than in OVA. For a new test example, each
classifier gives a vote to which class the test sample should belong. The final class will
be evaluated with the majority voting method, where the class gained the most votes
will be chosen. The majority voting method is simple to construct and it gives very
good results in many cases [7]. Tie situations can happen also in OVO and they can
be handled with different ways, but in this work we have used the k-nearest-neighbor
method, with k = 1. Any other alternative than k = 1 could produce a new tie situation,
when we are dealing with multi-class problems.

3 Experimental Tests

3.1 Data Description and Test Arrangements

Image dataset has altogether 1350 images from eight different taxonomical groups of
benthic macroinvertebrates. The Latin-based names of the classes are: Baetis rhodani,
Diura nanseni, Heptagenia sulphurea, Hydropsyche pellucidulla, Hydropsyche siltalai,
Isoperla sp., Rhyacophila nubila and Taeniopteryx nebulosa. In the Figure 1 there is
a sample image from all groups. Group sizes differ from each other and they are 116,
129, 172, 102, 271, 311, 83 and 166. In Tables 2-7 and in the following text we will
refer to the groups with the capital letters A-H.

Data has been collected and classified first by the taxonomic experts [20]. After that
collected benthic macroinvertebrate samples were scanned by a flatbed scanner (HP
Deskjet 4850) and saved in the JPG format. In the preprocessing stage the images were
segmented and normalized [20] and outliers were removed. Lastly, the features were
extracted and calculated with a public java-based ImageJ program [6]. The data has 26
attributes altogether, where 25 of them were features and the last attribute was iden-
tification number. Kiranyaz et al. [9,10,11] and Ärje [20] selected 15 features from
all possible and they divided the chosen features into two categories: geometrical and
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Fig. 1. Image from each taxonomic group

statistical. The statistical features were {Mean, Standard deviation, Mode, Median, In-
tegrated Density, Kurtosis, Skewness}, where Integrated Density means the sum of the
values of the pixels in the image or selection. Moreover, the geometrical features were
{Area, Perimeter, Width, Height, Feret’s Diameter, Major, Minor, Circularity}, where
Feret’s Diameter is the longest distance between any two points along the selection
boundary. Width and height are the measures of the smallest rectangle enclosing the
selection in the image. Major and minor are the axes of the best fitting ellipse. Other
10 features not used in this work are {Min, Max, X, Y, XM, YM, BX, BY, Angle, Area
Fraction}. Features {X, Y, XM, YM, BX, BY} concern the coordinates of the smallest
enclosing rectangle and the center point of the selection as well as the first order spa-
tial moments [6]. Features Min and Max are the minimum and maximum gray values
within the selection [6]. Angle is the angle between the primary axis and a line parallel
to the x-axis in the image [6].

We used three different feature sets and every feature set was tested with seven kernel
functions, presented in the previous section. Firstly, we used only the aforementioned
statistical features. Secondly, the geometrical features were used. Thirdly, we chose a
random eight feature subset from the union of geometrical and statistical features. In
this way we got the following feature set: {Area, Mean, Width, Height, Minor, Inte-
grated Density, Kurtosis, Skewness}. Detailed information about each feature can be
found from [6]. Experimental tests showed in [7] that the union of geometrical and sta-
tistical features is a good choice for classifying the macroinvertebrate images. Thus, in
this paper we wanted to use alone statistical, geometrical and a randomly chosen eight
feature subset.

We performed the classification process 250 times for each parameter combination
of the kernel functions. Because in every round the training and test sets were chosen
randomly, the classification results differ for every round. That is why we calculated the
mean of the 250 round’s classification results as a final result and the final result table
was presented in percentages. From Table 1 we see the parameter values of the kernel
functions, and the last column indicates the k-value used in tie situations. The com-
mon parameter for all kernel functions is the trade-off parameter bc, also known as the
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box constraint value. Other more specific kernel parameters are σ, κ and δ. Parameters
bc, σ, κ have the same parameter space. An exception from the previous parameters is
δ < 0 in MLP. We made an agreement of κ = −δ due to the computational reasons, be-
cause, otherwise, the tested parameter combinations would have increased significantly.
With these assumption, we tested linear and polynomial kernel functions (degrees of
2, 3, 4 and 5) with 40 parameter combinations and RBF and MLP with 1600 parameter
combinations. We have used the binary SVM implementation of Bioinformatics Tool-
box of Matlab as a basis for our tests. All the implementations and tests were made with
Matlab. Moreover, we have used the Least Square method [16] in finding the optimal
hyperplane. The data was divided into training and test sets such that 90% of the data
was selected to be a training set and the rest of the data was left for its test set. In each
round the members of the training and test sets were chosen randomly. Because the
class sizes vary from 83 to 311, the random selection of a training set within the classes
was made according to the sizes of the classes.

Table 1. Parameter values of kernel functions

Kernel Box constraint Kernel parameters
bc κ δ σ k

Linear 0.5, 1.0, ..., 20 − − − 1
MLP 0.5, 1.0, ..., 20 0.5, 1.0, ..., 20 −20, −19.5, ..., −0.5 − 1

Pol. (d = 2) 0.5, 1.0, ..., 20 − − − 1
Pol. (d = 3) 0.5, 1.0, ..., 20 − − − 1
Pol. (d = 4) 0.5, 1.0, ..., 20 − − − 1
Pol. (d = 5) 0.5, 1.0, ..., 20 − − − 1

RBF 0.5, 1.0, ..., 20 − − 0.5, 1.0, ..., 20 1

How is the best parameter combination chosen? Usually, we do not find one param-
eter combination, which would produce the best classification result for every class.
Hence, we applied the following procedure. We present it in general form. Suppose that
we have a M class problem. Moreover, we have made the tests with N different pa-
rameter combinations. Now, we have N result tables of size M × M . Each row of the
result table indicates the total distribution in percentages, how the members of the spe-
cific class has been divided within all classes. Hence, the diagonal members are those,
which tell us, how many members in percentage from a specific class has been clas-
sified correctly. Let Dii,j be the ith diagonal member from the jth result table, when
i ∈ {1, 2, . . . , M} and j ∈ {1, 2, . . . , N}. Furthermore, let us index the parameter com-
binations such that Ij , j ∈ {1, 2, . . . , N}, is the jth used parameter combination. Now,
we form a table T of a size N × 2M , where we sort, alongwith each column, all the
members Dii,j , i ∈ {1, 2, . . . , M} and j ∈ {1, 2, . . . , N}, together with corresponding
Ij into decreasing order. Thus, we choose such index that, which has the most occur-
rences in the first row of T . That index corresponds to the best parameter combination
and it defines the best result table which will be chosen. If we have a tie situation, we
take the occurrences of the tied indices and their corresponding classification rates that
are not in the first row of T . Thus, we choose such index (among the tied indices) that
has more topmost classification rates than the other indices, when the occurrences of
the first row of T is excluded.
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Example 1. Let us consider a three class classification problem, where we have tested
RBF kernel function with three parameter combinations. Let I1 = (1, 1.5), I2 = (2, 2.5)
and I3 = (3, 3.5), where the first parameter is the box constraint value and the sec-
ond one is a value of σ. Let D11,1 = 50.0, D22,1 = 70.0, D33,1 = 80.0, D11,2 =
30.0, D22,2 = 40.0, D22,3 = 20.0, D11,3 = 40.0, D22,3 = 90.0 and D33,3 = 90.0.
Now, the table T is

Index Class 1 Index Class 2 Index Class 3
1 50.0 3 90.0 3 90.0

3 40.0 1 70.0 1 80.0

2 30.0 2 40.0 2 20.0.

Hence, from the first row of T we can choose index 3, because it has the most occur-
rences. Thus, the best parameter combination would be (3, 3.5).

In Tables 2-7 we have compressed the results such that we have presented only the
diagonal elements of the result tables, i.e., the percentage of the correctly classified
test samples from each class and the results have been taken from the best parameter
combination of the kernel function (optimal parameter values are in the parenthesis). In
Tables and in the following text the term accuracy is used to mean classification rate.
Moreover, in Table 8 we have collected the general weighted mean classification scores
from each kernel function with every used feature set and multi-class method case for
facilitating the analyzation of the results.

3.2 Results

Let us first consider the results of the geometrical features. From Table 2 we see that
class A includes the lowest identification percentage of all classes. Classes B and D are
quite well classified in most kernel function cases. Other classes have been identified
with less than 80% accuracy (one exception in RBF case) and the classes F, G and H
have, with one exception, under 70% results. Comparing to the corresponding results
in Table 3, in OVO method, we have significant changes. Class A, which had the worst
accuracy in OVA, has now improved accuracy in each kernel function case. Improve-
ment is nearly 40% at its best. At the same time class F has a lower precision than in
OVA, when the fourth degree polynomial kernel excluded. Otherwise, any clear general
trends between OVA and OVO cannot be said, since both methods obtained either better
or worse results. Complete results of OVA and OVO with the geometrical features can
bee seen from Tables 2 and 3.

Tables 4 and 5 show the results when randomly selected eight features were used.
The increment in a general accuracy can clearly be seen from the tables, since there
are noticeably over 90% accuracies in many classes and kernel function cases. In OVA
classes B and E consist of in most kernel cases at least 90% accuracy and the rest
of classes have often over 80% results. This is a clear improvement in comparison
with the geometrical feature results. In Table 5 we find some classes, which had below
90% in OVA, having now obtained over 90% accuracy. In addition, we do not find as
many below 70% results from the classes as in OVA. The 5th degree polynomial kernel
function and MLP are exceptions.
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Table 2. Average accuracies in percentages: One-vs-all method with different kernel functions
and geometrical features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 1.0) 35.8 94.2 67.1 82.6 79.0 62.5 56.6 63.3

Pol. (d = 2, bc = 20.0) 33.5 93.1 74.8 90.6 82.5 60.0 59.6 67.0
Pol. (d = 3, bc = 5.0) 34.5 95.3 78.9 89.2 86.0 59.0 65.0 67.6
Pol. (d = 4, bc = 1.0) 33.6 92.1 78.0 86.1 87.5 60.0 66.3 68.4
Pol. (d = 5, bc = 0.5) 32.9 76.4 74.4 74.6 86.6 61.4 65.7 66.6

RBF (σ = 0.5, bc = 20.0) 42.9 97.4 85.7 92.6 88.7 68.2 74.4 65.7
MLP (κ = 0.5, bc = 0.5) 32.1 82.6 50.3 71.4 76.7 58.8 41.2 50.0

Table 3. Average accuracies in percentages: One-vs-one method with kernel functions and geo-
metrical features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 13.5) 73.5 95.1 70.9 76.8 80.8 37.5 63.2 76.5

Pol. (d = 2, bc = 19.5) 67.9 95.7 80.1 90.1 79.2 43.9 68.1 79.8
Pol. (d = 3, bc = 2.0) 66.7 96.9 85.2 91.6 83.7 52.9 64.4 72.2
Pol. (d = 4, bc = 0.5) 62.5 97.0 72.5 89.4 85.6 61.1 64.2 65.9
Pol. (d = 5, bc = 0.5) 53.6 93.2 65.5 78.0 82.8 60.4 58.8 59.5

RBF (σ = 1.0, bc = 15.0) 65.7 97.9 88.2 92.2 88.2 64.3 76.5 64.3
MLP (κ = 0.5, bc = 0.5) 38.0 82.2 41.3 57.4 51.2 45.3 29.4 47.5

Table 4. Average accuracies in percentages: One-vs-all method with kernel functions and ran-
domly selected features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 11.5) 88.3 96.7 70.5 81.3 88.7 76.8 72.8 62.1

Pol. (d = 2, bc = 11.5) 89.1 97.2 82.6 84.6 90.5 83.8 77.6 70.6
Pol. (d = 3, bc = 20.0) 92.1 97.1 82.6 93.0 91.8 88.3 84.8 74.1
Pol. (d = 4, bc = 0.5) 90.4 94.6 81.6 91.5 92.0 88.0 86.3 75.3
Pol. (d = 5, bc = 0.5) 84.1 74.6 65.5 78.9 90.8 85.5 83.3 76.1

RBF (σ = 1.0,bc = 19.0) 91.5 96.3 89.3 96.8 95.1 85.6 87.0 78.2
MLP (κ = 0.5, bc = 1.0) 53.2 60.6 39.8 57.9 52.9 52.2 33.5 38.0

Table 5. Average accuracies in percentages: One-vs-one method with kernel functions and ran-
domly selected features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 1.0) 94.3 97.6 74.8 93.1 92.2 82.3 87.7 84.8

Pol. (d = 2, bc = 20.0) 95.4 98.5 90.1 96.8 90.8 81.7 89.6 88.1
Pol. (d = 3, bc = 1.0) 92.1 97.5 86.5 92.9 93.7 83.5 90.7 81.2
Pol. (d = 4, bc = 0.5) 86.6 95.7 75.1 90.2 90.6 85.5 85.0 72.5
Pol. (d = 5, bc = 0.5) 79.1 77.9 58.4 79.8 84.6 75.7 60.1 65.2

RBF (σ = 1.50, bc = 17.0) 90.9 97.3 90.9 94.8 95.3 85.9 93.4 80.3
MLP (κ = 0.5, bc = 2.0) 64.8 71.7 40.9 66.8 43.7 44.3 41.5 45.7
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In the third instance, for the statistical feature set, we obtained interesting results. Al-
though the number of the features is one smaller than in the previous sets, the results are
still good. Class D had, for example, in Table 6 almost perfect 100% accuracy, for the
RBF kernel function. Moreover, RBF achieved also over 90% accuracies in other four
classes. A large part of the kernel functions gained over 80% results, which is a good
result in such a difficult classification problem. The linear kernel function succeeded
remarkably better in the statistical features in the one-vs-one method than in one-vs-all.
The difference between these two cases was over 30% being a clear improvement. Be-
sides the linear kernel, a large part of the other kernel functions in OVO obtained better
results than in OVA. With this in mind we can say that statistical features together with
the one-vs-one method is a good alternative for classifying the benthic macroinvertebate
images.

Table 6. Average accuracies in percentages: One-vs-all method with kernel functions and statis-
tical features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 12.5) 75.5 85.2 57.2 58.7 74.9 85.1 60.0 69.6

Pol. (d = 2, bc = 8.0) 83.5 87.9 73.9 87.8 76.5 87.1 72.8 72.1
Pol. (d = 3, bc = 12.0) 87.1 91.4 81.3 93.9 80.5 90.2 89.5 77.0
Pol. (d = 4, bc = 0.5) 86.9 89.9 82.3 95.6 88.5 92.7 90.6 85.7
Pol. (d = 5, bc = 0.5) 85.7 90.5 82.5 87.6 88.5 94.3 90.0 89.9

RBF (σ = 1.0, bc = 17.5) 91.4 95.6 83.6 99.1 87.2 94.7 94.6 88.3
MLP (κ = 0.5, bc = 0.5) 42.2 52.2 43.0 53.4 46.0 56.8 31.9 41.8

Table 7. Average accuracies in percentages: One-vs-one method with kernel functions and statis-
tical features

Class A Class B Class C Class D Class E Class F Class G Class H
Linear (bc = 1.0) 95.2 97.0 85.3 92.4 83.7 95.6 89.4 93.5

Pol. (d = 2, bc = 13.5) 94.6 98.4 89.1 95.8 88.1 96.0 93.4 97.8
Pol. (d = 3, bc = 0.5) 94.2 98.9 88.9 97.3 89.6 96.0 95.3 93.4
Pol. (d = 4, bc = 1.0) 93.0 94.3 85.7 96.9 87.6 93.9 96.1 91.4
Pol. (d = 5, bc = 0.5) 88.9 89.6 79.4 94.8 86.7 94.6 91.0 84.0

RBF (σ = 2.5, bc = 8.0) 94.3 99.3 89.3 96.4 87.5 95.9 97.6 96.2
MLP (κ = 0.5, bc = 12.5) 75.7 73.6 56.0 81.6 48.8 73.1 76.0 60.5

Table 8, where the accuracies have been calculated according to the sizes of the
classes, affirms the aforementioned observations of the preceding result tables. The
geometric features are clearly the worst alternative in OVA and OVO methods, but
the evenness of average accuracies is interesting between the kernel function results
in OVA and OVO. All kernels, except MLP, are very close to each other. Alone in OVA
or OVO, the differences between the kernels are quite great. When the random features
were used, the linear and the 5th degree polynomial kernel functions had a considerable
gap in the average results for the OVA and OVO methods. These cases had a nearly
8% difference, when other kernel functions had quite even results. Alone in OVA the
best result was achieved with RBF as well as in OVO. The greatest general improvent
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in results was in the statistical features. Here the linear kernel function and MLP had
almost an 18% increasement and the other kernels, except the 5th degree of the polyno-
mial kernel function, made also betterments, but smaller than with the two mentioned
kernel functions. Otherwise, RBF gained the best results in OVA, and quadratic, cubic
and RBF obtained the same 93.7% percentage result.

Table 8. Weighted means of the accuracies

One-vs-all One-vs-one
Kernel Geom. Stat. Random Geom. Stat. Random
Linear 68.3 73.3 79.6 68.5 91.1 87.3

Pol. d = 2 70.3 80.4 84.8 72.0 93.7 89.8
Pol. d = 3 71.9 85.5 87.8 74.6 93.7 88.9
Pol. d = 4 71.9 89.0 87.4 73.9 91.6 85.0
Pol. d = 5 68.9 89.2 81.1 69.2 88.6 73.9

RBF 76.9 91.1 89.5 78.2 93.7 90.4
MLP 60.0 47.5 49.2 49.1 65.6 49.9

Tie situation analysis is an interesting topic. We gathered statistical information
about the numbers of tie situations, when OVA and OVO were used, and we also see
the effect of a kernel function on tie situations. All information is found from the Tables
9 and 10. Table 9 shows that the average number of ties is very low in many kernel
function cases, but the selection of features has a great influence on the amount of ties.
The linear, quadratic, cubic and RBF kernels had only few tie situations in each feature
set case. The polynomial kernels (degrees of 4 and 5) had a clear difference between the
statistical features and the rest feature sets. MLP had the topmost number of ties with
every feature set. When comparing the number of ties and the average classification
results from Table 9, we see that these two have a common factor. If the number of ties
is high, the results are usually worse than otherwise.

In OVA the number of ties has spread to a wider interval than in OVO. For instance,
in the column of the statistical features, the minimum is 17.2 and the maximum is
123.8. The higher degrees of the polynomial kernel functions have, in every feature set
case, smaller numbers of ties than the linear and quadratic kernels. This is an opposite
situation compared to OVO. RBF still had the lowest frequency in ties, but, when the

Table 9. The numbers of ties when using a one-vs-one method and different kernel functions

Geometrical Statistical Random
Kernel Mean Std Dev Mean Std Dev Mean Std Dev
Linear 2.9 1.6 0.5 0.7 1.2 1.1

Pol. d = 2 2.6 1.7 0.4 0.6 1.2 1.1
Pol. d = 3 6.3 2.5 0.6 0.8 3.8 1.8
Pol. d = 4 11.9 3.3 2.9 1.6 12.2 3.3
Pol. d = 5 20.4 4.3 8.0 2.9 23.6 4.5

RBF 1.8 1.3 0.1 0.3 0.8 0.9
MLP 44.9 5.7 36.5 6.1 47.0 5.9
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Table 10. The numbers of ties when using a one-vs-all method and different kernel functions

Geometrical Statistical Random
Kernel Mean Std Dev Mean Std Dev Mean Std Dev
Linear 110.6 3.9 109.7 4.0 94.9 4.5

Pol. d = 2 94.7 4.3 78.3 5.2 57.3 4.6
Pol. d = 3 83.5 5.0 42.4 5.0 38.0 4.9
Pol. d = 4 81.0 5.3 27.0 4.2 35.4 4.7
Pol. d = 5 82.0 5.2 23.3 4.1 48.1 4.7

RBF 38.4 5.1 17.2 3.7 18.8 3.6
MLP 123.4 4.7 123.8 4.2 125.9 3.6

differences are so great, tie analysis can have a really enormous influence on the results.
Furthermore, the method also has a great effect, and from this point of view OVO is
preferable to use instead of OVA. The difference between numbers of tie situations in
OVA and OVO can be explained with nature of the methods. Because OVO has, in this
application, 28 classifiers giving the votes, the ties are not so frequent. In OVA we have
only 8 classifiers and it gives a greater probability to induce ties more frequent.

4 Discussion

In this paper, we examined the SVM multi-class extensions of one-vs-one and one-vs-
all, and their applicability to classify the benthic macroinvertebrate images. We per-
formed wide tests with three feature sets, and each one of them was tested with seven
different kernel functions. Altogether we made 42 test set-ups together with wide pa-
rameter spaces of the kernel functions. Our experiments showed that, although the clas-
sification of benthic macroinvertebrate is a difficult problem, one-vs-one method with
statistical features obtained highly promising results. More specifically, in this feature
set the quadratic, cubic and RBF kernel functions obtained over 93% accuracies for
weighted mean results. This is a very good result, when the number of the features is
below one third of all possible features.

In the one-vs-all method, the statistical and randomly selected feature sets were quite
even, but with the geometrical feature set, the average identification percentage was
lower. Nevertheless, the best results with the statistical features were still behind the
one-vs-one results. From the kernel functions Gaussian RBF had the best mean accu-
racies in every feature set. The same detail also occurred for the one-vs-one method.
Overall, SVM is a very promising technique in classifying macroinvertebrate images
and these results give a good basis for further research and development. The next stage
is to solve how other classification methods, such as k-nearest-neighbor, decision trees,
naïve Bayes, linear discriminant analysis, will succeed in this classification problem.
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Abstract—In this paper we investigated how Half-Against-Half
Support Vector Machine (HAH-SVM) succeed in the classification
of the benthic macroinvertebrate images. Automated taxa iden-
tification of benthic macroinvertebrates is a slightly researched
area and in this paper HAH-SVM was for the first time applied
to this application area. The main problem in HAH-SVM is to
find the right way to divide the classes in a node. We solved the
problem by using two different approaches. Firstly, we applied
the Scatter method which is a novel approach for the class
division problem. Secondly, we formed the class divisions in
an HAH-SVM by a random choice. We performed extensive
experimental tests with four different feature sets and tested every
feature set with seven different kernel functions. The tests showed
that by the Scatter method and random choice formed HAH-
SVMs performed from classification problem very well obtaining
over 95% accuracy. Moreover, the 7D and 15D feature sets
together with the RBF kernel function are good choices for this
classification task. Generally speaking, HAH-SVM is a promising
strategy for automated benthic macroinvertebrate identification.

I. INTRODUCTION

The growing interest towards biological issues in the past
decades has increased our knowledge about the nature and
the environment surrounding us. The interest is still expanding
and the exponentially growing amount of information brings us
continuosly more challenges to develop computationally better
and more reliable tools for analyzing the data. Due to the
nature’s diversity and, hence, its complexity general tools are
difficult to invent.

An important part of the nature is freshwater areas. These
are in a minority position when taking account into all aquatic
environments in the Globe and, that is why, the constant
biomonitoring is needed. Due to the environmental legislation,
the need of biomonitoring has increased in the past decades
[19]. Benthic macroinvertebrates are an essential part of the
freshwater areas. They live on the bottom of the waterbodies
and their life cycle is usually from 1-2 years [19]. Benthic
macroinvertebrates react quickly to changes in water quality
and the observed changes in them are good indicators for the
situation of a freshwater area [20]. Chemical samples give a
short snap-shot of the situation for the researchers, but for

long-lasting biomonitoring benthic macroinvertebrates or more
generally biological organisms are better indicators [19].

If the benthic macroinvertebrates are used in an extensive
biomonitoring, this requires that the identification methods of
the benthic macroinvertebrates are good and reliable. Generally,
the automated taxa identification of benthic macroinvertebrates
[4]–[6], [8]–[12], [14]–[16], [20] has received minor attention
in the areas of pattern recognition and machine learning.
Traditionally, the identification of benthic macroinvertebrate
samples is made by the taxonomic experts. The biggest problem
for using automated taxa identification techniques in real life
is the the reluctance of taxonomic experts [19]. By automated
taxa identification the costs of identification process could be
decreased greatly and it would make the identification more
effective. By this means more extensive biomonitoring could
be made and the problems of the freshwater areas could be
prevailed.

Support Vector Machines (SVMs) [1], [21] has been applied
for the automated taxa identification of benthic macroinverte-
brates with great success. One-vs-all and one-vs-one methods
were examined in [4] and in [4], [5] special attention for the
problem of the tie situations was given. Tie situation problem
can be reflected in the benthic macroinvertebrate identifica-
tion to a situation where the taxon of a new sample cannot
be uniquely determined. In real world the tie situations are
not rare at all, because often taxonomists encounter samples
which cannot be unambiguously determined, when different
taxonomists can have different opinions what species is in
question. Directed Acyclic Graph Support Vector Machine
(DAGSVM) was applied in [6] and it showed to be a good
choice for the classification of benthic macroinvertebrates.

There are three main points in this paper. Firstly, we want
to investigate how Half-Against-Half Support Vector Machines
introduced by Lei and Govindaraju [13] contrive to classify the
benthic macroinvertebrate samples at our disposal. Secondly,
we examine which kernel function is the best one for this
multi-class extension, whereas in [4]–[6] the one-vs-all, one-
vs-one and DAGSVM multi-class extensions were investigated.
Thirdly, we contemplate how the HAH-SVM built by the

978-1-4673-1938-6/12/$31.00 c© 2012 IEEE
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Scatter method (algorithm described exactly in [7]) manages
compared to a randomly builded HAH-SVM.

In Section II we describe shortly the theory of SVM [1], [2],
[21] and we introduce the Half-Against-Half Support Vector
Machines [13] method. Section III is devoted to the results and
we also present the technical details how the experimental tests
were arranged. The last section is left to discussion, conclusion
and further research questions.

II. METHODS

A. Support Vector Machine

Let us have a given training set
{(x1, y1), (x2, y2), . . . , (xl, yl)} where xi ∈ Rn are the
training examples and yi ∈ {−1, 1} are the corresponding
class labels of xi, i = 1, 2, . . . , l. The goal is to find a
hyperplane f(x) = 〈w, x〉 + b = 0 classes separating with
maximum margin where w is a weight vector and b ∈ R is
a threshold. The closest points to the hyperplane are called
as support vectors and the margin has the value of 2

‖w‖ (see
details [1], [4]). An optimal hyperplane can be found by
solving the quadratic programming problem:

min
w,b,ξ

1
2‖w‖2 + C

l∑

i=1

ξi (1)

subject to yi(〈w, xi〉 + b) ≥ 1 − ξi and ξi ≥ 0, i = 1, 2, . . . , l,
where ξi’s are the slack variables. The optimatization problem
in (1) can be solved more easily in the dual form:

max L(α) =

l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyj〈xi, xj〉 (2)

subject to
∑l

i=1 αiyi = 0 and 0 ≤ αi ≤ C where C is a
user-defined parameter, which controls the trade-off between
maximum margin and minimum classification error. New ex-
ample x can be classified according to the sign of the decision
function

f(x) =
l∑

i=1

αiyi〈x, xi〉 + b (3)

where b can be evaluated, for instance, as a mean of all possible
values of b (see details [4], [5]).

The use of kernel trick [1] enlarged the capabilities of
SVM. The main point is to map the training data into higher
dimensional space by a nonlinear transformation φ. In the
feature space the data, which is linearly non-separable in the
input space, can be separated with a hyperplane. Fortunately,
with the help of the kernel function, K(x, z) = 〈φ(x), φ(z)〉, we
can evaluate the separating hyperplane without doing the actual
mapping to the higher dimensional space. Commonly used (also
in this paper) kernel functions are: linear kernel function 〈x, z〉,
polynomial kernel functions (1 + 〈x, z〉)d where d ∈ N is the
order of the kernel function. Furthermore, there are Radial Basis
Function (RBF) exp(−‖x− z‖2/2σ2) with σ > 0 and Sigmoid
kernel function tanh(κ〈x, z〉 + δ) with κ > 0 and δ < 0. All
valid kernel functions need to satisfy the conditions of Mercer’s

theorem [21]. Calculations for the optimal hyperplane with the
kernel functions go analogously as in the linearly separable and
linearly non-separable cases. Now, the decision function in (3)
has the form

f(x) =

l∑

i=1

αiyi〈φ(x), φ(xi)〉 + b (4)

and a new example is classified according to the sign of f(x).

B. Half-Against-Half Support Vector Machines

HAH-SVM is an interesting variation for extending SVM
to also concern multi-class cases. It was introduced by Lei
and Govindaraju [13]. HAH-SVM is a mixture of one-vs-one,
one-vs-all and DAGSVM methods, since the complexity of the
training phase is similar to one-vs-one [13] and the number of
classifiers is O(K) as in the one-vs-all method and the structure
has the same kind of exterior features as DAGSVM has. Every
node in an HAH-SVM contains of a binary SVM classifier.
The classification of a new example begins at the root node
and according to the results of an SVM classifier, we move via
right or left edge until we are in a leaf where the final class
label of the test example can be found.

The greatest problem in HAH-SVM is to find the optimal
way to divide the classes in each node. When the number
of classes is small, we can use a prior knowledge about the
classes or simply choose randomly the divisions. If the number
of classes is high, we need to use some more sophisticated
methods to solve optimal way to divide the classes. In this
paper we have used the Scatter method [7] for finding the
optimal class divisions in each node. We divided the classes
into two groups according to the results of the Scatter method.
To the first group was chosen to include such a half of the
classes which had the best separability in the sense of the
Scatter method. This procedure was repeated in every node.
This approach is novel and the exact description of the Scatter
method can be found from [7]. In Figure 1 there are the HAH-
SVMs (Scatter and random division) which were used in this
paper. More theoretical and experimental information about
HAH-SVM can be found from [13].

III. EXPERIMENTAL RESULTS

A. Data Description and Test Arrangements

Data is compounded of 1350 images from eight taxonomical
groups of benthic macroinvertebrates: {Baetis rhodani, Diura

nanseni, Heptagenia sulphurea, Hydropsyche pellucidulla, Hy-

dropsyche siltalai, Isoperla sp., Rhyacophila nubila and Tae-

niopteryx nebulosa}. Group sizes alternate and are 116, 129,
172, 102, 271, 311, 83 and 166. We will refer to the groups
with the capital letters A-H. Example images about benthic
macroinvertebrates can be found, for example, from [4]–[6],
[8]–[10], [19], [20].

We used in classification the usual training, validation, test
sets techinique. We divided the data 100 times into training,
validation and test sets such that 10% of the data was selected
to be a test set and another 10% was a validation set and the
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A F B D C H E G

A vs F B vs D C vs H E vs G

{AF} vs {BD} {CH} vs {EG}

{ABDF} vs {CEGH}

A G B C D F E H

A vs G B vs C D vs F E vs H

{AG} vs {BC} {DF} vs {EH}

{ABCG} vs {DFEH}

Figure 1: Scatter HAH-SVM on the left and random HAH-SVM on the right.

rest of the data, 80%, was left to the training set. Firstly, we
trained the SVMs with the training data. Secondly, we evaluated
the performance of a trained model with the validation set.
Thirdly, we took the mean of the 100 accuracies obtained
from the validation sets. Parameter values were selected for the
final testing phase by selecting those parameter values which
gained the best mean accuracies. When the parameter values
were chosen, SVMs were trained again with the training data
including the validation set.

We had four different parameters depending on the kernel
function. All kernel functions have one common parameter, box
constraint, and whose parameter space was {0.1, 0.2, . . . , 10}.
RBF has two parameters, σ and box constraint, and they had
the same parameter space {0.1, 0.2, . . . , 10}. Sigmoid kernel
function has three parameters: box constraint, κ > 0 and δ < 0.
For the box constraint and κ parameter spaces were the same
as before, but now δ ∈ {−10.0, −9.9, . . . , −0.1}. The obtained
optimal parameter values can be seen in Table I.

We tested 100 parameter values in the case of polynomial
kernel functions. Furthermore, the RBF and Sigmoid kernel
functions were tested with 10000 parameter combinations and
for Sigmoid kernel we made an agreement of κ = −δ because,
otherwise, the number of parameter combinations would have
increased from 10000 to 1003. In feature selection we have
used the knowledge from [4]–[6] and one feature set, 17D, was
a mixture of 15D and 25D features. Three other feature sets
were 7D, 15D and 25D. The data had altogether 25 features
and the features can be divided into two categories: simple
shape features and grey value features. Features were extracted
from the images by using ImageJ [3]. The descriptions of 7D,
15D and 25D feature sets can be found from [4]–[6] and 17D
feature set was {Area, Mean, Max, X, Y, XM, YM, Perimeter,
BX, BY, Width, Height, Major, Circularity, Feret, Integrated
Density, Median}. The definitions of all features can be found
from [3] and more details about the preprocessing stage can be
found from [20].

We performed our tests with Matlab and we used the
SVM implementation of Bioinformatics Toolbox of Matlab.
Furthermore, we used the Least Square [18] method in finding
the optimal hyperplane. In the result tables we compressed
the results so that every row indicates the mean of classwise

classification rates (true positive rates) with a specific kernel
function. Accuracies obtained from the kernel functions and
their statistical comparison are presented in the last result
table. Accuracies were compared statistically with the two sided
Wilcoxon signed ranks test [17] when p < 0.05. In the result
tables we boldfaced the best result of each column to make the
analysis more easier for a reader.

B. Results

The smallest feature set 7D achieved very good results in
[4], [6] when one-vs-one, one-vs-all and DAGSVM were used.
The same tendency continued also for the present HAH-SVM
case. Tables II and III show the exact results of 7D feature
set and different kernel functions. A noticeable fact is that in
every result table Sigmoid kernel function obtained the worst
results. This may be a consequence from the preprocessing
stage where the data was only standardized to have zero
mean and unit variance and no transformations such as linear
scaling or normalization were made. The results show that
randomly formed and with the Scatter method formed HAH-
SVMs obtained good results with 7D features. In both cases
classes B, D, F, G and H were classified with classification
rates over 90% which is an excellent achievement. The rest of
the classes were classified very well also since they reached
above 88% classification rates. From the kernel functions RBF
was the best one in Tables II and III. Also, polynomial kernel
functions from the cubic to the 5th degree of polynomial kernel
function gained good results.

Table IV shows the results of 15D feature set. The general
level of the classification rose from the 7D case a bit. Now,
RBF kernel function achieved the best classification rate in
seven classes from eight possible. Class H was the only class
which was classified better with other than RBF kernel. Classes
D and E were classified with 98% and 98.4% classification
rates and all the rest of the classes were classified above 90%
classification rate.

In Table V there is more deviation compared to the previous
table. The topmost results were spread over the quadratic, cubic
and RBF kernel functions. Overall, the highest classification
rates classwise examined did not alternate very much between
Scatter and random HAH-SVMs. A suprising aspect is that
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Table I: The best kernel parameters obtained with the Scatter HAH-SVM and random HAH-SVM

Scatter Random
Kernel 7D 15D 17D 25D 7D 15D 17D 25D
Linear (1.7) (7.0) (9.3) (9.9) (2.5) (9.2) (5.9) (8.5)

Pol. deg = 2 (9.5) (2.1) (4.9) (1.7) (9.6) (1.7) (6.2) (0.9)
Pol. deg = 3 (1.3) (0.1) (0.3) (0.1) (1.9) (0.1) (0.2) (0.1)
Pol. deg = 4 (0.5) (0.1) (0.1) (0.1) (0.4) (0.1) (0.1) (0.1)
Pol. deg = 5 (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.3)

RBF (9.9,1.0) (10.0,1.7) (9.9,2.2) (9.6,2.8) (9.7,1.0) (10.0,1.6) (10.0,2.4) (9.9,3.2)
Sigmoid (2.0,0.1,-0.1) (0.4,0.1,-0.1) (0.3,0.1,-0.1) (0.1,0.1,-0.1) (1.8,0.1,-0.1) (0.2,0.1,-0.1) (0.1,0.1,-0.1) (0.1,0.1,-0.1)

Table II: Scatter HAH: Classification rates (%) with kernel functions and 7D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 41.2 71.8 54.2 84.2 76.9 67.9 0.0 27.6

Pol. deg = 2 76.3 78.1 87.3 83.2 93.5 87.8 78.6 60.4
Pol. deg = 3 87.9 89.2 87.0 92.3 92.3 95.6 87.0 85.7
Pol. deg = 4 88.4 89.4 87.2 93.0 91.2 97.0 92.4 91.8
Pol. deg = 5 85.7 86.5 83.3 92.5 91.4 95.6 92.6 92.2

RBF 89.7 96.1 88.2 98.5 91.4 96.5 93.2 90.2
Sigmoid 53.4 35.9 42.7 46.8 49.1 55.2 41.8 46.2

Table III: Random HAH: Classification rates (%) with kernel functions and 7D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 93.3 95.2 70.5 34.1 60.4 96.9 14.4 20.8

Pol. deg = 2 87.1 98.3 85.7 80.8 74.0 95.0 87.4 79.9
Pol. deg = 3 91.6 92.4 88.1 87.8 86.6 96.0 94.8 88.6
Pol. deg = 4 88.8 91.3 88.1 91.4 87.5 96.5 93.7 92.4
Pol. deg = 5 84.5 87.3 84.4 91.8 89.0 95.7 95.0 93.2

RBF 91.1 98.7 88.8 98.5 88.2 97.0 96.2 91.3
Sigmoid 78.8 71.7 52.0 54.3 63.7 59.1 61.6 31.9

the linear kernel function did not contrive well from the
classification although in [4] it gained good results. The reason
behind this may be in the structure of HAH-SVM. For instance,
in the root node there were training examples from more than
two classes to be separated with a single binary SVM, so the
input space (or the feature space) is too complicated to be
separated with linear kernel function. On the other hand, in one-
vs-one method each SVM classifier has only training examples
from no more than two classes, and, therefore the space is easier
to separate using the linear kernel function.

In the 17D feature set case the level of classification de-
creased compared to the previous result tables. Classes C and
H were the most difficult classes to recognize when the HAH-
SVM was created by the Scatter method and in the case of
a random choice class C was the only one which remained
below 90% classification rate. In the Scatter case the topmost
classification rates were spread over four kernel functions and
in the random HAH-SVM the highest classwise classification
rates were distributed within three kernel functions. The cubic
kernel function and RBF were the best choices with the 17D
feature set. More details about the 17D results can be found
from Tables VI and VII.

In Tables VIII and IX there are the results given by 25D
feature set. Now the level of classification is similar to the 7D
results. In Table VIII the worst class to recognize was class
H and the best one was class E. The topmost classification
rates were yielded by the quadratic and RBF kernels. Random
method results differ slightly from the results obtained by the

Scatter method. By the random method every class had above
90% classification rates including class H which obtained below
90% classification rate in the previous case. Table IX shows that
the highest classification rates were among quadratic, cubic and
RBF kernel functions. A suprising detail is that the 25D features
set did not manage to classify benthic macroinvertebrate images
better than 7D feature set although it has over three times more
features than in 7D feature set.

In the Table X we see an interesting result. When comparing
the best accuracies of the Scatter and random columns in each
feature set case, we see that the same kernel functions obtained
the best performances. Moreover, the difference between the
best accuracies using the Scatter method and random choice
was below 1%. In every feature set case a random choice
produced the better result, but from the practical point of view
these results are equally good since their difference was so
small. The best feature set choice would be 15D together with
RBF kernel function. The 7D and 25D feature sets had quite
similar results and the 17D feature set was the poorest one.

IV. DISCUSSION

In this paper we applied Half-Against-Half multi-class SVMs
in automated taxa identification of benthic macroinvertebrates.
We formed two binary trees where the first one was created by
using Scatter method [7] recursively in each node where was an
SVM classifier. The other decision tree was created randomly
to have a point of comparison for the decision tree builded by
Scatter method. Experimental tests were extensive. We tested
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Table IV: Scatter HAH: Classification rates (%) with kernel functions and 15D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 73.7 91.2 71.0 58.0 91.6 92.5 68.1 40.3

Pol. deg = 2 90.3 92.8 91.7 93.7 93.8 93.1 84.8 84.7
Pol. deg = 3 90.2 89.8 89.3 91.9 96.9 95.4 90.5 91.5
Pol. deg = 4 87.5 71.8 77.8 76.9 93.3 94.1 87.2 92.4
Pol. deg = 5 76.4 51.5 56.7 51.5 86.8 89.1 76.1 81.9

RBF 92.5 95.9 93.2 98.0 98.4 96.1 94.5 90.7
Sigmoid 48.2 52.5 25.3 47.0 52.2 54.1 28.3 33.5

Table V: Random HAH: Classification rates (%) with kernel functions and 15D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 81.7 95.4 79.9 85.3 91.8 95.9 49.6 60.5

Pol. deg = 2 93.1 97.1 92.0 89.4 91.7 97.8 92.4 88.9
Pol. deg = 3 94.8 94.1 94.2 88.7 93.2 96.2 96.0 94.5
Pol. deg = 4 88.7 63.4 83.1 63.6 91.5 95.8 92.7 91.6
Pol. deg = 5 76.2 36.9 68.7 39.6 84.6 85.4 86.1 83.7

RBF 92.1 98.4 93.7 98.0 97.1 97.1 98.3 92.1
Sigmoid 21.3 75.0 50.1 47.4 37.4 47.2 45.2 19.1

Table VI: Scatter HAH: Classification rates (%) with kernel functions and 17D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 67.8 76.3 62.3 79.0 94.1 85.3 33.5 8.4

Pol. deg = 2 90.1 91.6 85.8 93.6 93.2 95.0 93.0 68.0
Pol. deg = 3 94.7 87.0 82.7 89.3 92.9 94.1 93.1 85.7
Pol. deg = 4 92.5 58.1 67.2 63.7 85.4 93.1 74.2 88.7
Pol. deg = 5 79.4 42.6 48.3 45.4 69.9 85.1 56.7 77.9

RBF 96.4 95.0 88.5 94.1 93.4 90.2 92.9 73.3
Sigmoid 39.8 43.0 36.7 33.7 30.0 43.5 25.7 28.5

Table VII: Random HAH: Classification rates (%) with kernel functions and 17D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 91.4 95.0 74.3 83.3 79.8 94.8 35.1 47.5

Pol. deg = 2 96.9 96.7 87.0 83.6 87.3 96.8 97.3 79.9
Pol. deg = 3 96.1 85.8 89.9 82.1 87.4 96.3 98.0 91.9
Pol. deg = 4 92.3 44.1 70.7 50.7 86.0 95.3 95.1 95.2
Pol. deg = 5 81.8 28.8 59.6 34.5 67.5 83.4 73.7 84.6

RBF 95.6 97.0 88.3 91.6 90.8 94.7 98.1 74.6
Sigmoid 41.2 31.3 25.0 43.8 60.6 54.3 47.0 20.5

Table VIII: Scatter HAH: Classification rates (%) with kernel functions and 25D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 72.6 91.2 80.4 58.0 91.4 91.6 76.5 35.5

Pol. deg = 2 93.4 92.0 92.2 95.1 96.1 94.9 93.5 84.2
Pol. deg = 3 89.5 80.8 81.5 87.8 91.9 93.1 87.8 88.4
Pol. deg = 4 77.1 60.0 59.3 64.3 79.2 78.6 67.0 79.5
Pol. deg = 5 74.6 51.2 62.4 54.8 69.5 71.5 77.1 77.4

RBF 95.6 95.9 89.8 95.2 94.0 93.0 91.5 81.5
Sigmoid 28.8 49.8 30.6 33.4 32.6 28.5 19.2 30.4

Table IX: Random HAH: Classification rates (%) with kernel functions and 25D feature set.

Kernel Class A Class B Class C Class D Class E Class F Class G Class H
Linear 83.8 93.4 79.3 86.8 89.1 95.0 58.2 64.8

Pol. deg = 2 96.9 97.1 94.0 87.1 92.0 95.4 95.0 88.8
Pol. deg = 3 91.3 78.4 84.0 71.3 89.3 91.9 94.6 91.7
Pol. deg = 4 79.0 48.7 72.3 49.9 75.6 76.0 88.3 82.7
Pol. deg = 5 73.7 43.3 68.4 44.4 67.0 67.8 84.0 78.7

RBF 95.9 96.4 89.7 92.5 93.1 95.9 97.2 84.6
Sigmoid 42.6 28.5 23.1 33.8 37.9 32.5 36.5 22.4
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Table X: Accuracies from the scatter HAH and random HAH (%) and the results of the statistical tests. Statistical significance
between the accuracies obtained by Scatter method and random choice is marked with an asterisk.

7D 15D 17D 25D
Kernel Scatter Random Scatter Random Scatter Random Scatter Random
Linear 58.1 66.6∗ 77.3 83.8∗ 68.6 78.5∗ 78.1 84.1∗

Pol. deg = 2 82.7 85.8∗ 91.3 93.3∗ 89.2 90.6∗ 93.0 93.4
Pol. deg = 3 90.5 90.8 92.9 94.2∗ 90.3 91.2∗ 88.6∗ 87.6
Pol. deg = 4 91.9∗ 91.4 87.2∗ 86.5 80.9 81.7∗ 72.7 72.7
Pol. deg = 5 90.6 90.5 75.3∗ 74.0 67.2 67.7 68.1∗ 66.4
RBF 93.0 93.2∗ 95.2 95.9∗ 90.0 90.9∗ 91.9 93.0∗

Sigmoid 47.8 58.4∗ 44.7∗ 42.4 35.9 43.1∗ 31.7 32.0

four different feature sets and every feature set was tested with
seven kernel functions. Altogether we made 56 different test
arrangements.

In the class division Scatter method worked well although
it obtained a bit lower accuracies than the random division.
Overall, the data was very well classifiable and it may be that
even if we made the feature selection and class division in
the nodes by using whatever algorithm, we would not get any
better results. An important aspect is that there was less than
1% difference between the highest accuracies gained by the
random and scatter methods in each feature set case.

In the future we need to research HAH-SVM with larger
benthic macroinvertebrate datasets and also with some more
”exotic” kernel functions not used in this paper. For the
class division problem in the future we need to examine how
clustering methods such as K-Means work in it. Furthermore, it
is interesting to apply other classification methods, for example,
linear discriminant analysis, k-nearest neighbour method, Naïve
Bayes and Logistic regression with the HAH structure in
benthic macroinvertebrate image classification.
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Abstract In this research we examined the automated taxa
identification of benthic macroinvertebrates. Benthic macro-
invertebrates are in an important role in biomonitoring. They
can be used in the assessment of a water quality. Identifica-
tion of benthic macroinvertebrates is made usually by bi-
ologists, but this approach has high costs and, hence, the
automation of this identification process could reduce the
costs and would make wider biomonitoring possible. The
automated taxa identification of benthic macroinvertebrates
returns to image classification. We applied altogether 11 dif-
ferent classification methods to the image dataset of eight
taxonomical groups of benthic macroinvertebrates. Wide ex-
perimental tests were performed. The best results, around
94% accuracies, were achieved when Quadratic Discrimi-
nant Analysis, Radial Basis Function network and Multi-
Layer Perceptron were used. Also, Minimum Mahalanobis
Distance Classifier obtained almost 93% accuracy. On the
basis of the results, it can be said that the automated taxa
identification of benthic macroinvertebrates is possible with
high accuracy.

Keywords Benthic macroinvertebrates· Classification·
Machine learning· Water quality

1 Introduction

Freshwater areas are in a minority position when consid-
ered all aquatic environments in the Globe. Hence, it is im-
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portant to keep the current freshwater areas in good condi-
tion. Water quality monitoring has gained more and more
interest when the environmental issues have come into the
centre in all levels of the society. One way to monitor the
water quality is to use benthic macroinvertebrates. Benthic
macroinvertebrates are excellent indicators of the state of a
freshwater area, like rivers, ponds or lakes. Moreover, ben-
thic macroinvertebrates are good in environmental research
(see for example [2,4,7,25]). Benthic macroinvertebratesor
more simply benthos are sensitive to changes in water qual-
ity. A common way to investigate the water quality is to take
chemical samples from a freshwater area, but this approach
only gives a snapshot about the situation of a freshwater area
[26]. Benthic macroinvertebrates instead can give not onlya
view of current situation, but also a broader point of view
about changes in the water quality after a long period. The
life cycle of benthic macroinvertebrates is usually 1-2 years
[26] and this fact supports the use of benthic macroinver-
tebrates in water quality assessments. Benthic macroinver-
tebrates have several advantages, why they should be used
in biomonitoring. Firstly, benthic macroinvertebrates appear
in all aquatic habitats and we know plenty about the con-
sequenes of environmental effects to them [24]. Secondly,
benthic macroinvertebrates are relatively immovability,so
they express well localized environmental conditions [24].
Thirdly, benthic macroinvertebrates are easily to collectand,
thus, they are suitable for experimental purposes [24].

Benthic macroinvertebrates are diverse organisms, since
there are hundreds or even thousands of different species of
benthic macroinvertebrates. A common way to interpret the
situation of a freshwater area is to present the taxa richness
instead of presenting the full list of species. In practice there
are still benthic macroinvertebrate which cannot be identi-
fied to a species level. So, taxa richness is one measure to
investigate the condition of a freshwater area. Taxa richness
and water quality are connected to each other. If the taxa
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richness suddenly decreases, it indicates that the water qual-
ity has also got worse. On the other hand, if the taxa richness
or the number of benthic macroinvertebrates in several spe-
cies has increased, it can point out that the water quality has
also improved. If a sudden decrease in the taxa richness hap-
pens, it can indicate that something unnatural has occured.

Support Vector Machines (SVMs) have become a very
popular classification method. SVM was developed for bi-
nary classification, but soon the interest moved to expand
SVM to also concern multi-class cases. Different multi-class
expansions were quickly developed and from these the most
frequently used methods are One-Vs-One (OVO), One-Vs-
All (OVA) and Directed Acyclic Graph Support Vector Ma-
chines (DAGSVM). In [12] OVO strategy was applied to
benthic macroinvertebrate classification and the problem of
tie situations in OVO was examined. The OVO strategy was
used also in [13,26] for automated taxa identification of ben-
thic macroinvertebrates. Moreover, in [11] OVO and OVA
strategies were used in benthic macroinvertebrate classifica-
tion and the tie situations were closely concerned. DAGSVM
was applied to the same application with a great success in
[10]. Lastly, in [9] a bit rarely used variant of multi-class
SVMs, the Half-Against-Half [18] strategy, was used for
the benthic macroinvertebrate classification. All these arti-
cles showed that the automated taxa identification of benthic
macroinvertebrates is possible to made with a high accuracy.
Furthermore, SVM proved to be a very good choice for the
automated taxa identification of benthic macroinvertebrates.

Generally speaking, the automated taxa identification of
benthic macroinvertebrates [13,14,15,26,27] is a relatively
new application area compared to areas such as handwritten
digit recognition [20], text classification [23] or ECG clas-
sification [22]. The research around automated taxa identifi-
cation of benthic macroinvertebrates has many advantages.
Usually, the identification process is made by biologists (or
taxonomists), but due to human-made identification, costs
are high and the identification is a slow process. Hence,
the automation of the identification process would cut costs
greatly. Often the identification of benthic macroinvertebra-
tes can be routine work for human experts. Hence, the au-
tomation of this process could relieve the workload of bi-
ologists to solve some other problems. An automated pro-
cess would also enable biologists to collect larger numbers
of samples, which is recommended when benthic macroin-
vertebrates are used in biomonitoring.

Identifying benthic macroinvertebrates from images is a
demanding task from the pattern recognition point of view
since differences between species or even genera can be small.
There are still some taxonomical groups which are difficult
to define even for taxonomists [24], so it raises the level of
the problem. Furthermore, the sizes, positions and shapes of
the benthic macroinvertebrates vary in each image and there
can be overlapped benthic macroinvertebrates in the images

which need special attention. The classification of benthic
macroinvertebrates need to be reliable because, if samples
are classified wrong, this can give a wrong view of the cur-
rent situation of an aquatic habitat.

In this research the goal is to compare different clas-
sification methods in the automated taxa identification of
benthic macroinvertebrates. Altogether 11 different classi-
fication methods are used. These are:k-Nearest-Neighbour
Searching (with four different distance alternatives), Lin-
ear Discriminant Analysis, Quadratic Discriminant Analy-
sis, Minimum Mahalanobis Distance Classifier, Classifica-
tion Tree, Multinomial Logistic Regression, Naïve Bayes,
K-Means, Self-Organizing Map, Multi-Layer Perceptron and
Radial Basis Function network. Experiments with Learning
Vector Quantization [16] were so poor that it was left out
from this research.

In Section 2 the theory of used classification methods
are presented in briefly. Section 3 explains the test arrange-
ments, data description and the experimental results and their
analysis. Section 4 concludes the research.

2 Method

2.1 k-Nearest-Neighbour

The k-Nearest-Neighbour (k-NN) method [5] is one of the
most used classification methods. Ink-NN the classes ofk
nearest examples are investigated by using some distance
function. The class label of a new example is defined by
the majority principle. That is, the class having the most ex-
amples within thek-nearest training examples of a new ex-
ample assigns the final class label for this new example. To
decrease the opportunity of a tie situation, it is a common
habit to use only the odd values ofk. In this research, for
instance, oddk values 1,3,5, . . . ,51 were used. There are no
any exact rules for choosing the bestk value. Thus, the usual
approach is to try different values and to choose the value
which gives the best performance. Another important aspect
in k-NN method is the choice of distance function. There are
numerous alternatives to choose, likewise Euclidean, City-
block or L∞ metrics for example. We performed the tests
with four measures. These were:
Euclidean distance

D(x,y) =

√
n

∑
i=1

(xi − yi)2,

Cityblock distance

D(x,y) =
n

∑
i=1

|xi − yi|,

Cosine measure

D(x,y) = 1− x ·y
‖x‖‖y‖
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and Correlation measure

D(x,y) = 1− (x−x) · (y−y)

‖x−x‖‖y−y‖ ,

wherex andy are the mean vectors. In the presentation of
the distance functions we assumed thatx,y ∈ Rm and the
norm in the cosine and correlation measures is Euclidean.

2.2 Quadratic Discriminant Analysis

The following representation is based on [3] and [27]. Let
us have a set of classes{c1,c2, . . . ,cN}. Let P(ci) denote a
priori probability of theith class,i = 1,2, . . . ,N. Now we
have

N

∑
i=1

P(ci) = 1.

Assume that an examplex ∈ Rm. The class conditional prob-
ability density function isp(x | ci) for a classci, i = 1,2, . . . ,N.
By applying the Bayes theorem we obtain

P(ci | x) =
p(x | ci)P(ci)

p(x)
=

p(x | ci)P(ci)

∑N
i=1 p(x | ci)P(ci)

, i = 1,2, . . . ,N

wherep(x) is the unconditional probability density function
for an examplex. Bayes’ classification rule assigns the ex-
ample to the class with the highest a posteriori conditional
probabilityP(ci | x), i = 1,2, . . . ,N.

Bayes classification rule can be presented by means of
discriminant functions

di(x) = ln p(x | ci)+ lnP(ci), i = 1,2, . . . ,N. (1)

We need to assume that examplex has a multivariate nor-
mal Gaussian distribution within each class. Hence, every
component of examplex is normally distributed within all
classes. Now the probability density function in the classci

is

p(x | ci) =
1

(2π)
m
2 |ΣΣΣ i|

1
2

exp[−1
2(x− µµµ i)

T ΣΣΣ−1
i (x− µµµ i)],

(2)

i = 1,2, . . . ,N,

whereµµµ i is the mean vector of theith class feature vec-
tor and |ΣΣΣ i| is the determinant of theith class covariance
matrix. By substituting equation (2) into equation (1) and
after eliminating the constant termm2 ln2π we obtain

di(x) = −1
2

ln|ΣΣΣ i|−
1
2
(x− µµµ i)

T ΣΣΣ−1
i (x− µµµ i)+ lnP(ci), (3)

when i = 1,2, . . . ,N. In equation (3) there is the quadratic
form for the discriminant function and, hence, the Bayes

classifier can be called as Quadratic Discriminant Analysis
(QDA). QDA assumes that the covariance matrices are not
equal, i.e.,ΣΣΣ i 6= ΣΣΣ j wheni 6= j. In the discriminant form a
new sample will be assigned to the class having the greatest
discriminant value.

2.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a very important spe-
cial case from Quadratic Discriminant Analysis. It can ob-
tained when assuming the covariance matrices to be equal
for all classes, i.e.,ΣΣΣ i = ΣΣΣ , i = 1,2, . . . ,N. Then the dis-
criminant function from equation (3) can be expressed as
follows:

di(x) = −1
2

ln|ΣΣΣ |− 1
2
(x− µµµ i)

T ΣΣΣ−1(x− µµµ i)+ lnP(ci), (4)

i = 1,2, . . . ,N.

Since the term−1
2 ln|ΣΣΣ | is not dependent on the clas-

ses, we can drop it out. When multiplying the vector-matrix-
vector-product open, we notice that1

2xT ΣΣΣ−1µµµ i =
1
2µµµT

i ΣΣΣ−1x,
because covariance matrix and its inverse are symmetric ma-
trices. Furthermore, term12xT ΣΣΣ−1x is class independent, so
it can be dropped out. Thus, equation (4) has the form

di(x) = µµµT
i ΣΣΣ−1x− 1

2µµµT
i ΣΣΣ−1µµµ i + lnP(ci), (5)

where i = 1,2, . . . ,N. Equation (5) states now a linear
discriminant function ofx. The classi, which has the great-
est discriminant valuedi(x), will be chosen as a final class
for x.

2.4 Minimum Mahalanobis Distance Classifier

Assume that we have equal covariance matrices for alli,
i = 1,2, . . . ,N and for all classesP(ci) = P. Since lnP and
−1

2 ln|ΣΣΣ | are independent from the classes we can leave th-
ese terms out from the equation (3). Moreover, we can ne-
glect the constant12. Hence, the discriminant function is

di(x) = −(x− µµµ i)
T Σ−1(x− µµµ i), i = 1,2, . . . ,N.

Now di(x) defines the squared Mahalonobis distance ofx.
The classifier selects the classci for which x is the closest
(when dealing with the Mahalanobis distance) to the mean
vectorµµµ i. In other words we seek

argmin
i

−(x− µµµ i)
T ΣΣΣ−1(x− µµµ i), i = 1,2, . . . ,N.
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2.5 Classification Tree

The following presentation is based on [5]. Let us assume
that we have a classification problem ofN classes. Classifi-
cation tree (CT) is a general classification method which can
be used with numeric and categorical variables. One com-
monly used classification tree algorithm is CART developed
by Breiman et al. CART is a general approach to form differ-
ent decision trees. A decision tree consists of nodes where
in each one of them a split is made. The forming of a deci-
sion tree begins at the root node where the full training data
is split. In other nodes split can be made recursively and
the total number of splits is not uniquely determined and it
can vary throughout a tree. An important fact is that every
decision tree can be presented with binary decisions. Infor-
mation about multiway splits can be found for example from
[5].

Our goal is to make a decision tree as simple as possible.
We want to find such features that divide the data well, since
then CART works best. For this reason we need the concept
of impurity. We definei(A) to denote the impurity of a node
A and we want thati(A) = 0 for all samples that reach the
node having the same class label. Moreover, we wanti(A)
to be large, if the classes are equally represented. Very often
entropy impurity is used as a measure

i(A) = −∑
j

P(c j) log2 P(c j),

whereP(c j) is the fraction of samples at nodeA that are in
classc j, j = 1,2, . . . ,N. Another definition for the impurity
is the Gini impurity

i(A) = ∑
i 6= j

P(ci)P(c j) =
1
2
[1−∑

j
P2(c j)]

that CART algorithm also uses.
When using decision trees, an important question is when

to stop splitting. If a decision tree is constructed so that ev-
ery leaf node corresponds to the lowest impurity, data can be
overfitted. Hence, the cross-validation technique suits very
well for this purpose. Another alternative is to set a threshold
value for impurity. It is also possible to use statistical signif-
icance, likewiseχ2-value, as a stopping criterion. Pruning is
a relevant topic when CTs considered and it is an alternative
to stopped splitting. In pruning nodes linked to a common
antecedent node, one level above, are considered for elimi-
nation. Any pair whose elimination decreases the impurity
is eliminated and, hence, the common antecedent node be-
comes a leaf. By this means we can simplify the structure
of a decision tree and to increase the generalization ability
of CT. After pruning a tree, it is common that it can be un-
balanced. A different pruning method is based on rules. In
this case a full tree can be represented by a large list of rules
where a rule is reserved for each leaf.

One of the easiest tasks in CT is to assign the class labels
for leaf nodes. If the full CT is used, each leaf node corre-
sponds to samples in a single category. If stopped splitting
or pruning is used and the leaf nodes have positive impurity,
each leaf should be labelled by the class having the most
samples represented. If there are missing attribute values,
we can evaluate the impurity at a nodeA using only present
attribute information. There are also other methods to han-
dle cases with missing attribute values and more information
about this can be found from [5].

2.6 Multinomial Logistic Regression

The following presentation is based on [1]. Multinomial Lo-
gististic Regression (MNLR) belongs to the group of multi-
nomial logit models. MNLR is a generalization of the tra-
ditional logistic regression where a response can have only
two values. Moreover, MNLR can have both categorical and
ordinal responses and the explanatory variables can be con-
tinuous or discrete. Letπ j(xi) denote the probability of re-
sponsej, j = 1,2, . . . ,N, at theith setting of values ofr ex-
planatory variablesxi = (1,xi1,xi2, . . . ,xir)

′. Now the gener-
alized logit model in terms of the response probabilities is

π j(xi) =
exp(βββ ′

jxi)

∑N
h=1exp(βββ ′

hxi)
(6)

whereβββ ’s are vectors for the regression coefficients. For
identifiability, we takeβββ N = 0. Hence, the equation (6) ob-
tains the form

πN(xi) =
1

∑N
h=1exp(βββ ′

hxi)
.

Moreover, we obtain

log

[
π j(xi)

πN(xi)

]
= βββ ′

jxi, j = 1,2, . . . ,N −1.

Hence, we needN −1 logit equations in order to define re-
sponse variable withN −1 categories.

When seeking the maximum likelihood estimates (pa-
rameter values which maximizes this function), we need to
maximize the independent multinomial likelihood with re-
spect to constraint in equation (6). Multinomial likelihood
function is

N

∏
i=1

π#i
i

where #i is the number of responses in classi. By taking log-
arithm from the multinomial likelihood function we obtain
the log likelihood function

L =
N

∑
i=1

#i logπi,
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which is concave and, therefore, we can find the estimate
by using some iterative process such as Newton-Raphson
method. More information about MNLR can be found from
[1].

2.7 Naïve Bayes

The following text is based on [19]. Assume that we have
a set of classesC = {c1,c2, . . . ,cN} and an examplex =

(x1,x2, . . . ,xn). The goal is to find classci, i = 1,2, . . . ,N,
which has the highest posterior probability forx. Naïve Bayes
can be derived from Bayes theorem. Bayes theorem for the
classci and examplex can be stated as:

P(ci | x) =
P(ci)P(x | ci)

P(x)
. (7)

Because we do not knowP(ci | x), it must be estimated from
the data, which can be a difficult task to make it directly.
Bayes rule suggests to estimate probabilitiesP(x | ci), P(ci)

andP(x) to evaluateP(ci | x). Estimation ofP(x | ci) con-
sists of a problem, since there can be an arbitrary number
of values forx = (x1,x2, . . . ,xm). Hence, a commonly used
method is to assume decomposition

P(x | ci) =
m

∏
j=1

P(x j | ci)

where the occurrence of particular value ofx j is statistically
independent of any otherx j′ when the examplex is from the
classci. Thus, we obtain equation (7) to the form

P(ci | x) =
P(ci)∏m

j=1 P(x j | ci)

P(x)
. (8)

In classification problems we choose the classci for the
new sample such thatP(ci | x) is the highest. Equation (8)
now defines the Naïve Bayes classifier. Because the denom-
inator of the equation (8) is class independent, it can be
dropped out and the equation obtains a form

P(ci | x) = P(ci)
m

∏
j=1

P(x j | ci).

2.8 K-Means

K-Means algorithm [3] is one of the first clustering meth-
ods. The basic idea is very simple. Assume that we have
samplesx1,x2, . . . ,xn andxl ∈ Rm, l = 1,2, . . . ,n and we are
interested in dividing the samples intoc clusters. Before we

can representK-Means algorithm, we need to define some
concepts. Firstly, the sum of dispersion is

Q =
c

∑
i=1

n

∑
l=1

uil‖xl −vi‖2 (9)

where the squared norm is the Euclidean distance between
xl and prototypesvi. Secondly, in the equation (9)U = [uil ]
is the partition matrix, which allocates the samples to the
clusters. For the partition matrix

uil =

{
1 if xl belongs to clusteri,
0 otherwise.

Partition matrixU satisfies the following two conditions:

0<
n

∑
l=1

uil < n, i = 1,2, . . . ,c and
c

∑
i=1

uil = 1, l = 1,2, . . . ,n.

Our task is to minimizeQ and to construct partition matrix
U and a set of prototypes.

K-Means algorithm can be represented with a four stage
algorithm.

1. Choose randomly one prototype for each cluster. Hence,
we have a set prototypesvi, i = 1,2, . . . ,c.

2. Iterate.
2.1. Construct a partition matrixU such that

uil =

{
1 if d(xl ,vi) = mini 6= j d(xl ,v j)

0 otherwise.

2.2. Update the prototypes by evaluating weighted aver-
age

vi =
∑n

l=1 uilxl

∑n
l=1 uil

until Q does not change anymore, or until the changes
are negligible.

2.9 Self-Organizing Map

The following text is based on [6]. Self-Organizing Map
(SOM) known as Kohonen map is a widely used cluster-
ing method. The main idea is to transform an input vector
into a one- or two-dimensional lattice and to make the trans-
form adaptively in a topologically ordered fashion. Assume
that the input space ism-dimensional. Letx = (x1, . . . ,xm)T

be an input vector andw j = (w j1, . . . ,w jm) be the synaptic
weight vector of neuronj. After the initialization of a net-
work, there are three processes to be performed in forming
the feature map:

1. In competition the neurons in the lattice compute a dis-
criminant value for each input vector (or minimize the
Euclidean distance between the vectorsx andw j). Such
a neuron wins that has the highest discriminant value
and, hence, the input vector is assigned for this neuron.
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2. Cooperation means that the winning neuron determines
the activated neurons inside its topological neighborhood.

3. In synaptic adaptation phase neurons inside the topolog-
ical neighborhood can increase their discriminant values
related to the input vectors by adjusting their weights.

There are four important properties in SOM.

1. A continuous input space of activation samples.
2. Network topology is normally in the form of one- or

two-dimensional lattice of neurons defining a discrete
output space.

3. A time-varying neighborhood functionh j,i(x)(t) defined
around a winning neuron.

4. A learning-rate parameterη(t) which has the initial value
of η0 and decreases whent → ∞, but never reaches zero.

For the neighbourhood function we define

h j,i(x)(t) = exp

(
−

d2
j,i

2σ2(t)

)
, t = 0,1,2, . . . , (10)

whered2
j,i = ‖r j − r i‖2 is the Euclidean distance between

the position of activated neuronj and the discrete position
of the winning neuroni. Moreover, we have

σ(t) = σ0exp

(
− t

τ1

)

whereσ0 is the initial value of the SOM algorithm andτ1 is
a time constant. For the learning parameterη(t) we have

η(t) = η0exp

(
− t

τ2

)
, t = 0,1,2, . . . , (11)

whereτ2 is another time constant in SOM algorithm.
SOM algorithm can be summarized with five steps:

1. Choose randomly initial values for weight vectorsw j(0)

such thatw j(0) is different for eachj = 1,2, . . . , l where
l is the number of neurons in the lattice. Another alterna-
tive for initialization is to choose weight vectorsw j(0),
j = 1,2, . . . , l randomly from the set of input vectors.

2. Take some input vectorx ∈ Rm from the input space.
This vectorx represents the activation sample, which is
applied in the lattice.

3. Seek the winning neuroni(x) at the time stept by using
criterion

i(x) = argmin
j

‖x(t)−w j‖, j = 1,2, . . . , l.

4. Update the weight vectors of all neurons by the formula

w j(t +1) = w j(t)+η(t)h j,i(x)(t)(x(t)−w j(t))

whereη(t) is a learning-rate parameter andh j,i(x) is the
neighbourhood function centred around the winning neu-
roni(x). Both of these parameters are dynamically changed
during learning.

5. Repeat the steps 2-4 until the feature map is unchanging.

2.10 Multi-Layer Perceptron

The presentation of Multi-Layer Perceptron (MLP) and back-
propagation algorithm follows the presentation from [6] and
[14]. MLP belongs to the group of artificial neural networks
(ANNs) and it is a feed-forward network which has an input
layer, one or more hidden layers and an output layer. Hid-
den layers contain neurons that are no part of the input or
output layer. An input layer is only a passive layer where
no computations are made. Every neuron (also known as
node) in MLP usually includes a nonlinear activation func-
tion. An activation function in MLP is smooth, i.e., differen-
tiable everywhere and the common alternative for the acti-
vation function is sigmoid or hyperbolic tangent (tanh). The
use of a nonlinear activation function in MLP is important
since, otherwise, using a linear activation function wouldre-
duce to a single-layer-perceptron [14]. All elements in an in-
put layer are connected to the first hidden layer neurons with
the corresponding weights. Moreover, hidden layer neurons
are connected with all neurons in the next hidden layer or
with the neurons in the output layer. An example of an MLP
network is illustrated in Figure 1. It has an input layer, two
hidden layers and an output layer.

Fig. 1 An example MLP with two hidden layers.

For feed-forward ANNs the most used training algorithm
is the back-propagation (BP) algorithm. It has been applied
also to the automated taxa identification of benthic macroin-
vertebrates in [13,14,15]. BP is a gradient descent algorithm
in the error space which can remain to a local minimum.
Therefore, the choice of weights in the beginning is an im-
portant question. In BP algorithm the goal of the learning
process is to minimize average error energyEav. Minimizing
Eav can need several epochs, the complete presentations of
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the training set. In practice, we usually need several epochs
to achieve the best training result, but too large a number of
epochs can lead to overfitting to be avoided. Overfitting can
reduce the generalization ability of a network.

Before we can present the summary of the BP algorithm,
we need to define some notations. In notationsn denotes the
iteration round, i.e., presentation of thenth training example.

1. The symbolx(n) depicts thenth input vector andx j(n)
is the jth element of thenth input vector.

2. The notationE(n) depicts the sum of error energy and
Eav is the average of all values ofE(n).

3. The symbole j(n) means the error signal at the output of
neuronj

4. The notationr j(n) denotes the desired output for the
neuronj.

5. The notationy j(n) denotes the function signal appearing
at the output of neuronj.

6. The symbolw ji(n) refers to the connection weight be-
tween the output of neuroni to the input of neuronj.

7. The notationv j(n) refers to the weighted sum of all in-
puts plus threshold of neuronj.

8. The symbolϕ j(·) denotes the activation function in neu-
ron j.

9. The notationb j denotes the bias applied to neuronj.
Furthermore, the effect ofb j is represented by the weight
w j0 = b j being connected to a fixed input equal to 1.

10. The symbolok(n) refers to thekth element of the overall
output vector.

11. The notationml denotes the number of nodes in layerl,
l = 0,1,2, . . . ,L.

Back-propagation algorithm can be described with five
steps:

1. Initialize the weightsw(l)
ji and the biasesb(l)

j randomly,
whenl = 0,1,2, . . . ,L.

2. Present the training examples for the network in some
order and perform the forward and backward computa-
tions, presented in Steps 3 and 4, for each example.

3. Compute (layer-by-layer)

v(l)
j (n) =

ml

∑
i=0

w(l)
ji (n)y(l−1)

i (n)

wherey(l−1)
i (n) is the output signal of neuroni in a layer

l − 1 at the iterationn. Moreover,w(l)
ji (n) is the weight

of neuron j in layer l that is fed from neuroni in layer

l−1. If i = 0, we havey(l−1)
0 (n) = 1 andw(l)

j0 (n) = b(l)
j (n)

which is the threshold in neuronj in layer l. Thus, the
output signal of neuronj in layerl is

y(l)
j = ϕ j(v j(n)) or y(0)

j = x j(n),

if neuron j is in the first hidden layer. If neuronj is in the

output layerL, we havey(L)
j (n) = o j(n). Furthermore,

compute the errore j(n) = r j(n)−o j(n).

4. Compute the local gradients, theδs, of the network

δ (l)
j (n) = e(L)

j ϕ ′
j(v

(L)
j (n)),

if neuron j is in the output layer and

δ (l)
j (n) = ϕ ′

j(v
(l)
j (n))∑

k

δ (l+1)
k (n)w(l+1)

k j (n)

if neuron j is in the hidden layerl. Furthermore, indexk
goes through from 1 to the maximum number of neurons
in the output layer. Update the weight in layerl accord-
ing to the rule

w(l)
ji (n+1) = w(l)

ji (n)+α[w(l)
ji (n−1)]+ηδ (l)

j (n)y(l−1)
i (n)

whereη is the learning-rate parameter andα is the mo-
mentum constant which controls the feedback loop act-
ing around the weight correction.

5. Repeat forward and backward computation in steps 3
and 4 with the new epochs (complete presentation of
training examples) of training examples until the stop-
ping criterion is achieved.

More details about BP algorithm and MLPs can be found
from [6].

2.11 Radial Basis Function Network

The following presentation is based on [6] and [14]. An-
other commonly used feed-forward ANN is the Radial Basis
Function network (RBFN). Compared to MLP, RBFN has a
slightly different structure. RBFN has an input layer, one
hidden layer and a linear output layer. Now the neurons in
the hidden layer apply a nonlinear transformation to input
signals. An illustration of RBFN is in Figure 2.

Fig. 2 An example of a Radial Basis Function network.
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A difference to MLP is also that RBFN has linear weights
only between the hidden layer and the output layer. Every
neuron in the hidden layer contains an activation function.
Activation function for theith RBF unit is

yi = ϕ
(‖x− µi‖

σ2
i

)

whereϕ is the radial basis function,µi is the center of ra-
dial basis function andσi is the width of the peak around
the centerµi [15]. The most used activation function is the
Gaussian basis function

yi = exp

(
− ‖x− µi‖

2σ2
i

)
,

whereµi andσ2
i are the mean and the variance. Moreover,

in the Gaussian basis function the Euclidean norm is used.
More information about RBFN can be found from [6].

3 Experimental Results

3.1 Test arrangements and the data description

Our dataset (1350 images) contains images from eight dif-
ferent taxonomical groups of benthic macroinvertebrates.Th-
ese are:Baetis rhodani, Diura nanseni, Heptagenia sulphu-
rea, Hydropsyche pellucidulla, Hydropsyche siltalai, Isop-
erla sp.,Rhyacophila nubila andTaeniopteryx nebulosa. Se-
ven of these taxonomical groups were identified to a species
level and one,Isoperla sp., was recognized only to a genus
level. We will refer to the groups in tables and in the follow-
ing text with the abbreviations BAE, DIU, HEP, PEL, SIL,
ISO, RHY and TAE. Corresponding group sizes were 116,
129, 172, 102, 271, 311, 83 and 166.

In the testing phase we used 10 times 10-fold cross-
validation to the dataset. Hence, we obtained 100 training
and test sets. Cross-validation distributions were selected
so that every training set had as equal number of training
examples from every group as possible. The same cross-
validation distributions were used with all classificationmeth-
ods. In the case of RBF network and Multi-Layer Perceptron
we divided every training set into a smaller training set and
validation set. The best configuration and parameter values
were selected according to the mean accuracy of the valida-
tion sets. When the best configuration was found, RBF net-
work and Multi-Layer Perceptron were trained again with
the full training set (union of smaller training set and valida-
tion set). Finally, RBFN and MLP were tested with the test
sets obtained by cross-validation and a mean of the results
was evaluated as a final result.

In RBF network we varied the value ofσ (width of the
Gaussian basis function) from 0.5,1.0, . . . ,20.0 and the best
value of σ was determined according to the mean accu-
racy of the validation sets. Moreover, MLP was tested with

a single hidden layer and with two hidden layer configura-
tions. More specifically, we tested MLP with configurations
15× i × 8 wherei = 1,2, . . . ,15 and 15× i × j × 8 where
i, j = 1,2, . . . ,15. Altogether, MLP was tested with 240 dif-
ferent configurations. In RBF networks we limited the num-
ber of epochs to 100 for ensuring that no overfitting would
happen and in MLP we set the maximum number of epochs
to 150. Otherwise, we used the default values of Matlab.

We testedk-NN method with four different distance func-
tions: Euclidean and cityblock metrics and cosine and corre-
lation measures presented in Subsection 2.1. Thek-NN met-
hod was tested with the odd integersk from 1 to 51. For
the LDA, QDA, MMDC, MNLR and NB the default values
of Matlab were used as well as in the case of CT, where
the pruning of trees was made automatically such that the
splitting criterion was 10 or more observations in impure
node. We performed the classification with SOM altogether
for different 43 lattices. The number of neurons varied from
8 to 50 in a lattice. Moreover,K-Means was tested with the
cluster numbers ranging from 8 to 100. Because SOM is an
unsupervised method, we had to define the class tag for each
neuron in a lattice. This was made according to the major-
ity principle where the class tags were determined based on
the number of class members in the neuron. A class hav-
ing the most samples in a neuron determined the class tag.
Class tags were determined with a similar way inK-Means
and, furthermore, if a tie situation happened when using the
majority principle, the closest sample to the centroid in the
cluster determined the final class tag for the cluster.

The dataset had altogether 25 features where 15 of them
were selected to this paper. These features were divided into
a geometrical and statistical features. Geometrical features
included {Area, Perimeter, Width, Height, Feret’s Diameter,
Major, Minor, Circularity} and statistical features included
{Mean, Standard Deviation, Mode, Median, Integrated Den-
sity, Kurtosis, Skewness}. More specifically, Feret’s Diam-
eter is the longest distance between any two point along the
selection boundary. Major and minor are the major and mi-
nor axes of the smallest ellipse. Integrated Density is the
sum of the pixel values of a image or selection [8]. More
detailed information and exact definitions about the features
used can be found from [8]. Before presenting the data to the
classifiers, the dataset was standardized to have zero mean
and unit variance. We did not make any other transforma-
tion such as normalization of the features or features scaling
into intervals[−1,1] or [0,1], because we wanted to keep the
classification process as natural as possible. Every transfor-
mation moves the data farther from the input space. About
the preprocessing stage of the data, i.e., how the features
were extracted from the images and how the scanning of
the benthic macroinvertebrate were made can be found from
[27]. All the tests were made with Matlab together with Sta-
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Fig. 3 An example image on every taxonomical group

tistical Toolbox, Neural Network Toolbox and Bioinformat-
ics Toolbox of Matlab.

3.2 Results

In the result tables the boldfaced numbers in the diagonal
are the classification rates. Moreover, the rows of the results
tables indicate the true classes and the columns indicate pre-
dicted classes. Because the group sizes vary, the contents of
tables are not symmetric. In the case ofk-NN we present the
classwise classification rates with allk values used and we
do not present the complete mean confusion matrices. Ac-
curacies were determined by evaluating the trace of a con-
fusion matrix (not changed into percentages) divided by the
sum of the elements in a confusion matrix.

Firstly, we consider the results ofk-NN. Figure 4 shows
interesting results. Thex axis presents the specifick value
and they axis is the corresponding classification rate with
the k value. Class BAE was identified with all distance al-
ternatives very well and the classification rates were simi-
lar with all distances. Generally, the level of classification
in BAE was around 90% with all distances. A small in-
crease to the classification rates came with correlation and
cosine distances whenk > 20. The second class, class DIU,
was classified nearly perfectly with all distance alternatives.
The same tendency continued although thek value was in-
creased. Class HEP had a bit different kind of curves with
the classification rates. Now for the first time, we obtained
clear differences between the distance alternatives. Euclidean
and cityblock measures were the best ones in the case of
class HEP. Both of them obtained the best classification rates
with smallk values, likewisek = 1,3,5. The best classifica-
tion rate was obtained whenk = 1. Classification rates de-
creased when thek value became larger and this occurred
with all distance alternatives. The order of the distances was
that Euclidean and cityblock measures were the best ones.
The third was cosine measure and the poorest results were
achieved with correlation measure. The interval, in which

the results spread, was quite wide since the best classifica-
tion rate was above 90% and the lowest classification rate
was around 50%.

For class PEL, classification rates formed interesting cu-
rves. All distance alternatives achieved similar results with
all k values. Whenk = 1, classification rates were as their
highest being nearly 100% and after that the classification
rates decreased almost linearly until fork > 11 the classifi-
cation rates stabilized with all distances to a level of around
80%. Class SIL again obtained very good results and the
level of classification remained steady being within the in-
terval of 90%-100%. The change of a distance did not bring
any crucial differences to the results. Compared to the clas-
ses earlier analyzed, SIL managed likewise BAE and DIU.
In class SIL correlation and cosine measures were slightly
worse than Euclidean and cityblock measures but the differ-
ences were minimal. The next taxonomical group wasIsop-
erla sp. (identified only to a genus level). Class ISO man-
aged from the classification relatively well except with the
correlation measure which obtained about 20% lower classi-
fication rates with everyk value compared to other distances
used. An interesting detail is that cosine measure achieved
the highest classification rates whenk > 7. Otherwise, Eu-
clidean and cityblock measures were equally good and the
results were above 90%.

Class RHY obtained very different results compared to
the previous taxonomical groups. Now the diversity of the
results was wider than before. A noticeable detail is that
class RHY is the smallest taxonomical group in the data.
With smallk values Euclidean metric and cityblock and co-
sine measures obtained similar results, whereas for larger
k value the results with cosine measure dropped dramati-
cally. Classification rates with Euclidean and cityblock mea-
sures remained similar despitek value, but the general trend
was downwards, whenk value was increased. In the begin-
ning the results with correlation measure were the poorest,
but whenk > 35 the roles between correlation and cosine
measures changed. Then the classification rates with corre-
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Fig. 4 Results (%) whenk-NN used with differentk values and measures.
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lation measure were higher than with cosine. The drop in the
classification rates when using cosine was significant. The
highest results were achieved whenk = 1, and it was then
above 90%. On the contrary the lowest classification rate
was obtained whenk = 51, and it was then below 40%. The
last class to analyze ink-NN was TAE. TAE was the only
class which did not exceed 90% classification rate with any
k value or distance alternative. The results of TAE were di-
chotomous. Euclidean and cityblock metrics remained within
70%-80% interval when the results with correlation and co-
sine were located in the interval of 50%-70%. Classification
rates of these distances did not alter despite the increment
to thek values. When considering all classes together, we
noticed that the smallerk values were better than the larger
k values. Especially whenk = 1 almost every class obtained
the highest classification rate.

Results, when Linear Discriminant Analysis (LDA) was
applied to the benthic macroinvertebrate classification, can
be seen from Table 1. LDA proved to be a good choice as the
results showed. Altogether six classes from eight possible
were classified above 90% classification rate. The smallest
class RHY was classified perfectly and this can mean that
the class RHY could be a totally separate cluster in the in-
put space compared to the other taxonomical groups. From
the first and the third row of Table 1 it can be seen that the
majority of the misclassified points of the classes BAE and
HEP were located to the class SIL. Moreover, nearly 15%
of the misclassified samples of class PEL were identified as
class RHY samples. Classes HEP and PEL were the hardest
classes to classify and these two classes were the only ones
which remained below 90% classification rates. In the case
of class ISO nearly all misclassified samples were classified
as class TAE samples and nearly 8% of TAE samples were
identified incorrectly to class ISO. Overall, LDA classified
well the benthic macroinvertebrate samples and the high-
est number of classes where the misclassified samples were
spread was three and this happened in the case of class HEP
which had also the lowest classification rate.

In Table 2 there are the results given by Minimum Ma-
halanobis Distance Classifier (MMDC). MMDC achieved
very good classification rates in seven classes. Class SIL
was the only class having below 90% classification rate. It
obtained around 83% classification rate and the misclassi-
fied points of class SIL spread among classes BAE, DIU
and HEP. From these classes BAE and HEP were the same
as in the results of LDA. Classes DIU, HEP and SIL were
identified with nearly perfect score. There was a significant
improvement, over 16%, in classes HEP and PEL compared
to the corresponding results in Table 1. Moreover, in class
RHY the classification rate decreased nearly 10% from LDA
results being now a bit over 90%. Moreover, all misclassified
points were located in class PEL. In classes ISO and TAE all
wrong classified samples were identified to the same classes

as in LDA results and these classes were classified better
than in Table 1.

Next we have the results of Quadratic Discriminant Anal-
ysis (QDA) in Table 3. An interesting detail is that the class
TAE had identical results than in Table 2. Furthermore, in
the rest of the classes, except class DIU, the misclassified
samples were classified identically into the same classes as
in Table 2. This might stem from the reason that QDA and
MMDC are related to each other in theoretical sense. QDA
obtained, generally speaking, better results than LDA or
MMDC. More closely considered QDA obtained above 95%
classification rates in six classes. The only exceptions were
classes SIL and ISO. When compared to MMDC results,
betterments were achieved in classes RHY and SIL and the
greatest decrease in classification rates was in class HEP
which was classified into MMDC results with nearly perfect
score.

Table 4 shows the results when Classification Tree met-
hod (more specifically CART algorithm) was applied. Com-
pared to the previous tables we can notice immediately a
phenomenon that there was much more diversity in the re-
sults than before. Firstly, a majority of the classes obtained
below 90% classification rates. Secondly, the misclassified
samples were spread into more classes than in Tables 1-
3. We still got some similarities with the previous tables.
Firstly, the majority of the misclassified samples in class
HEP were classified into class SIL as in Tables 1 and 3.
Secondly, the classes of wrong classified samples in classes
ISO and TAE were the same as in Tables 1 and 3. Thirdly,
nearly 8% of the class SIL samples were identified as class
HEP members and this confusion was also in the results
of MMDC. When considering the diagonal elements of Ta-
ble 4 it can be noticed that class TAE was identified be-
low 80% classification rate and this result was the lowest
classification rate hitherto. Classes DIU and PEL were the
only ones which rose above 90% classification rate. Also,
classes BAE, SIL and ISO obtained nearly identical classi-
fication rates. Although the general level of the results de-
creased from the previous ones, the results were still reason-
ably good.

Next we had the results of the Naïve Bayes (NB) met-
hod. At the first sight we can notice that only two classes,
classes BAE and DIU, had above 90% classification rate,
which can be thought as a limit for very good result. Espe-
cially, class DIU with 97% identification was a high-class
result. Moreover, only class PEL together with the afore-
mentioned ones reached above 80% classification rate. The
rest of the classes remained below 80%. Classes HEP and
RHY were classified around 62% and 66% classification
rates. These results were the lowest ones. Classes SIL and
ISO were identified with very close results to each other. The
analysis of the misclassified samples is again an important
thing. From Table 5 it can be seen the same phenomenon as
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Table 1 Results (%) when Linear Discriminant Analysis used. The rows of the results tables indicate the true classes and the columns indicate
predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 94.2 0.0 0.0 0.0 5.8 0.0 0.0 0.0
DIU 0.0 92.7 6.9 0.0 0.4 0.0 0.0 0.0
HEP 1.2 5.7 78.5 0.0 14.6 0.0 0.0 0.0
PEL 0.0 0.0 0.0 82.4 0.0 2.9 14.7 0.0
SIL 3.0 0.0 3.9 0.0 93.1 0.0 0.0 0.0
ISO 0.0 0.0 0.0 0.0 0.3 90.2 0.0 9.5
RHY 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
TAE 0.0 0.0 0.0 0.0 0.0 7.7 0.0 92.3

Table 2 Results (%) when Minimum Mahalanobis Distance Classifier used. Therows of the results tables indicate the true classes and the columns
indicate predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 94.5 0.0 1.0 0.0 4.5 0.0 0.0 0.0
DIU 0.0 97.3 2.7 0.0 0.0 0.0 0.0 0.0
HEP 0.0 0.4 99.0 0.0 0.6 0.0 0.0 0.0
PEL 0.0 0.0 0.0 99.0 0.0 0.0 1.0 0.0
SIL 2.3 2.0 13.1 0.0 82.6 0.0 0.0 0.0
ISO 0.0 0.0 0.2 0.0 0.0 92.3 0.0 7.5
RHY 0.0 0.0 0.0 9.6 0.0 0.0 90.4 0.0
TAE 0.0 0.0 0.0 0.0 0.0 4.6 0.0 95.4

Table 3 Results (%) when Quadratic Discriminant Analysis used. The rows of the results tables indicate the true classes and the columns indicate
predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 96.6 0.0 0.8 0.0 2.6 0.0 0.0 0.0
DIU 0.0 97.1 2.5 0.0 0.4 0.0 0.0 0.0
HEP 0.0 0.2 94.5 0.0 5.3 0.0 0.0 0.0
PEL 0.0 0.0 0.0 98.6 0.0 0.0 1.4 0.0
SIL 6.5 1.6 3.4 0.0 88.5 0.0 0.0 0.0
ISO 0.0 0.0 0.0 0.0 0.0 92.0 0.0 8.0
RHY 0.0 0.0 0.0 2.7 0.0 0.0 97.3 0.0
TAE 0.0 0.0 0.0 0.0 0.0 4.6 0.0 95.4

Table 4 Results (%) when Classification Tree used. The rows of the results tables indicate the true classes and the columns indicate predicted
classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 85.4 0.0 1.6 1.0 5.9 3.4 0.0 2.7
DIU 0.0 95.8 1.3 0.0 2.9 0.0 0.0 0.0
HEP 0.3 0.8 80.2 0.3 11.8 1.2 2.9 2.5
PEL 2.0 0.0 1.9 91.6 0.8 2.2 1.4 0.1
SIL 1.7 0.8 7.6 0.6 85.3 1.7 0.0 2.3
ISO 1.4 0.0 1.2 0.5 2.4 85.8 0.6 7.9
RHY 0.0 0.0 5.3 3.6 0.4 3.0 87.4 0.3
TAE 1.4 0.0 3.0 0.0 3.3 14.8 0.2 77.3

Table 5 Results (%) when Naïve Bayes used. The rows of the results tablesindicate the true classes and the columns indicate predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 93.1 0.0 0.0 0.0 1.7 2.6 0.0 2.6
DIU 0.0 97.0 3.0 0.0 0.0 0.0 0.0 0.0
HEP 1.7 4.0 66.1 0.0 26.1 0.9 0.0 1.2
PEL 3.0 0.0 0.0 82.4 8.8 0.0 5.8 0.0
SIL 13.1 1.2 6.1 0.4 76.6 1.4 0.0 1.2
ISO 8.2 0.0 0.6 0.0 1.3 74.0 0.0 15.9
RHY 2.9 2.1 0.1 7.0 8.5 5.1 62.1 12.2
TAE 2.4 0.0 3.0 0.0 0.0 15.6 0.0 79.0
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from Tables 1,3 and 4: a great number of the misclassified
samples in class HEP were classified as class SIL members.
Furthermore, a majority of the wrong classified samples in
class ISO were located to class TAE and the same in vice
versa. Overall, NB did not contrive very well from the clas-
sification compared to the previous classification methods.

Multinomial Logistic regression (MNLR) is never be-
fore used in the benthic macroinvertebrate classification.Re-
sults from Table 6 showed that MNLR was a relatively good
choice for this classification problem. There were three clas-
ses, HEP, RHY and TAE, having below 90% classification
rate. Now the best class was SIL recognized with nearly 96%
classification rate and, also, DIU was identified very well
since the classification rate achieved nearly 95%. Table 6 in-
dicated that misclassified samples from classes BAE, DIU,
HEP and PEL spread into exactly the same classes as in Ta-
ble 1 where LDA was used. Furthermore, the tendency that
the majority of the wrong classified samples from class ISO
were identified as TAE members and vice versa, happened
again. This phenomenon can also be seen from the result
tables in article [12] where SVM together with one-vs-one
method was applied to the benthic macroinvertebrate classi-
fication.

The first clustering method applied to the benthic macroin-
vertebrate classification wasK-Means and the correspond-
ing results can be seen in Table 7. This table was achieved
by using 100 clusters. Results withK-Means were promis-
ing but they did not manage to win LDA, QDA or MMDC
results. The results were comparable with the obtained Clas-
sification Tree results. Now there were three classes (DIU,
PEL and SIL) which gained classification rates over 90%.
Otherwise, the classification rates remained to 80%-90% ex-
cept with class HEP, which achieved below 80% classifi-
cation rate and class TAE having below 70% classification
rate. The same phenomenon occured with the misclassified
examples of classes BAE, HEP, ISO and TAE as in many
previous result tables. Compared to the results in Table 4,
the diagonal entries of classes BAE, DIU, ISO and RHY
were quite close to each other. Moreover, in both methods
class TAE was identified with the lowest classification rate.
A noticeable detail was that class RHY was classified quite
well, although it was the smallest class in the dataset.

Another clustering method used in the benthic macroin-
vertebrate classification was SOM and the corresponding re-
sults can be seen from Table 8. The results showed similar
behaviour as in Table 7. Now classes DIU and SIL obtained
over 90% classification rates. Classes ISO and TAE were
classified in the same way. When considering the misclassi-
fied samples, we noticed the similar phenomena in the clas-
ses BAE, HEP, ISO and TAE as before. Moreover, we ob-
tained similarity betweenK-Means and SOM when exam-
ined more closely wrong classified samples in class RHY.
The majority of these samples were located to class ISO.

So, we obtained generally interesting patterns, how some of
the classes interfere with each other despite the classifica-
tion method. Overall, SOM achieved a bit worse results than
K-Means. There were two classes below 80% classification
rate and one class yielded below 70% classification rate. The
class with the lowest result was the same as in Tables 4, 6
and 7.

The last two result tables considered artificial neural net-
works and the first one of them was Multi-Layer Perceptron.
Compared to the previous result tables we obtained a signif-
icant improvement to the results. The results of QDA in con-
trast to Table 9 are similar since in both cases the results are
very good. Class TAE was the only class having below 90%
classification rate and it was 89.6% result. In a misclassified
sample analysis there did not happen any dramatic changes.
Classes DIU, PEL, SIL and ISO were identified above 95%
classification rates which is always a noticeable detail. Com-
pared to Table 3, the results contained some individual dif-
ferences. Firstly, the first four classes were classified bet-
ter than with QDA, but classes SIL and ISO were, on the
contrary, classified better with MLP. Especially, in the case
of class SIL the difference was significant being nearly 8%.
The last two classes were again recognized better with QDA.

The last classification method was RBF networks which
achieved results at quite the same level as MLP did. Class
TAE was the worst class to identify as in Tables 4,6,7 and
8. Misclassified samples of the classes BAE, HEP, ISO and
TAE were located in the similar manner as before. Com-
pared to Table 9 individual differences appeared. The great-
est improvement happened in class RHY where RBF net-
work classified it nearly 4% better than MLP. The other, but
smaller, improvements occurred in classes BAE, HEP and
SIL. Classes DIU and PEL were recognized quite evenly
with both ANN methods. Class TAE was identified worse
with RBF network than MLP. Overall, the results of RBF
network were similar to the QDA results.

From Figure 5 we can see the accuracies of thek-NN
method with differentk values and distances. Cityblock and
Euclidean measures were very close to each other with all
k values, but cityblock was little better than Euclidean mea-
sure. The best accuracy was obtained with the cityblock mea-
sure together withk = 1 being a bit over 90%. Cosine mea-
sure was below Euclidean measure all the time but it still
achieved relatively good results. The poorest results were
obtained with the correlation measure, which had over 80%
accuracy as its best. A common fact for distance alternatives
was that the increase ink decreased the accuracy. Overall, it
can be said thatk = 1 is the bestk value for this dataset.

From Table 11 the obtained mean accuracies of the 10
different classification methods can be seen. The analysis of
Tables 1-10 can be confirmed with the observations in Ta-
ble 11. Naïve Bayes obtained the lowest accuracy among all
classification methods. Self-Organizing Map,K-Means and
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Table 6 Results (%) when Multinomial Logistic Regression used. The rows ofthe results tables indicate the true classes and the columns indicate
predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 92.2 0.0 0.0 0.0 7.8 0.0 0.0 0.0
DIU 0.0 94.7 3.8 0.0 1.5 0.0 0.0 0.0
HEP 1.5 1.2 83.6 0.0 12.7 0.0 0.0 1.0
PEL 0.0 0.0 0.0 92.6 0.0 3.2 4.2 0.0
SIL 0.8 0.2 3.1 0.0 95.8 0.0 0.0 0.1
ISO 0.0 0.0 0.0 0.6 0.0 92.8 0.0 6.6
RHY 0.0 0.0 0.0 4.4 0.0 5.7 89.9 0.0
TAE 2.2 0.0 0.0 0.5 0.0 15.2 0.4 81.7

Table 7 Results (%) when K-means with 100 clusters used. The rows of the results tables indicate the true classes and the columns indicate
predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 84.6 0.0 0.3 0.0 14.1 0.0 0.0 1.0
DIU 0.0 94.7 3.4 0.0 1.9 0.0 0.0 0.0
HEP 1.6 1.1 77.9 0.0 18.7 0.6 0.0 0.1
PEL 0.1 0.0 0.3 90.8 2.5 3.1 3.1 0.1
SIL 2.8 0.1 5.3 0.2 91.1 0.5 0.0 0.0
ISO 0.0 0.0 0.0 0.3 1.4 83.8 1.9 12.6
RHY 0.0 0.0 1.0 2.8 0.0 10.3 85.5 0.4
TAE 0.7 0.0 0.0 0.4 0.2 29.6 0.3 68.8

Table 8 Results (%) when Self-Organizing Map with 50 clusters used. Therows of the results tables indicate the true classes and the columns
indicate predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 80.1 0.0 0.2 0.0 18.7 0.0 0.0 1.0
DIU 0.0 92.5 6.2 0.0 1.3 0.0 0.0 0.0
HEP 1.2 1.7 72.1 0.0 23.4 1.0 0.0 0.6
PEL 1.3 0.0 0.2 83.4 3.0 4.9 7.2 0.0
SIL 1.8 0.2 5.4 0.0 92.2 0.3 0.0 0.1
ISO 0.0 0.0 0.0 0.0 1.8 84.9 1.3 12.0
RHY 0.0 0.0 1.0 1.7 0.0 16.2 79.8 1.3
TAE 0.7 0.0 0.0 0.0 0.1 30.7 0.2 68.3

Table 9 Results (%) when Multi-Layer Perceptron with configuration 15×15×7×8 used. The rows of the results tables indicate the true classes
and the columns indicate predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 93.4 0.0 0.8 0.0 5.2 0.3 0.1 0.2
DIU 0.2 95.9 1.7 0.0 1.4 0.1 0.4 0.3
HEP 1.3 0.5 92.6 0.0 4.9 0.2 0.1 0.4
PEL 0.1 0.0 0.4 95.8 0.1 0.4 3.1 0.1
SIL 1.3 0.5 2.1 0.0 96.0 0.0 0.0 0.1
ISO 0.1 0.0 0.1 0.0 0.1 95.3 0.2 4.2
RHY 0.0 0.0 0.3 6.0 0.0 1.2 92.2 0.3
TAE 0.0 0.0 0.4 0.0 0.1 9.8 0.1 89.6

Table 10 Results (%) when RBF network withσ = 3.0 used. The rows of the results tables indicate the true classes and the columns indicate
predicted classes.

BAE DIU HEP PEL SIL ISO RHY TAE
BAE 90.7 0.0 0.0 0.0 9.3 0.0 0.0 0.0
DIU 0.0 96.0 2.5 0.0 1.5 0.0 0.0 0.0
HEP 1.7 0.0 90.7 0.0 7.0 0.0 0.0 0.6
PEL 0.0 0.0 0.0 96.3 1.0 1.5 1.2 0.0
SIL 0.6 0.3 1.0 0.0 98.0 0.1 0.0 0.0
ISO 0.0 0.0 0.0 0.3 0.0 94.0 0.0 5.7
RHY 0.1 0.0 0.0 2.5 0.0 1.4 96.0 0.0
TAE 0.0 0.0 0.0 0.0 0.0 12.7 0.0 87.3
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Fig. 5 Accuracies with differentk values and used measures.

Table 11 Obtained weighted mean accuracies (%) with different meth-
ods.

Method Accuracy Method Accuracy
LDA 90.1 MMDC 92.6
QDA 93.7 CT 85.4
NB 77.8 MNLR 90.8
K-means (100 clusters) 84.4 SOM 82.6
RBFN 93.7 MLP 94.1

Classification Tree (CT) obtained mean accuracies close to
each other, whereas CT achieved the highest score. The rest
of the classification methods reached above 90% accuracy.
LDA and MNLR had less than 1% difference between their
accuracies. Moreover, QDA and RBF network obtained the
same accuracy and their difference to the best classification
method, Multi-Layer Perceptron, was only 0.4%. Although
QDA, RBF network and MLP achieved very good results
together with the high accuracies, they did not manage to
beat SVM together with one-vs-one method, which obtained
above 96% accuracy with 15D features in [12].

4 Conclusion

In this research we examined the automated taxa identifica-
tion of benthic macroinvertebrates. This application is anin-
frequently researched area. In this research we applied alto-
gether 11 different classification methods consisting of both
unsupervised and supervised methods. The dataset included
25 features from which 15 were selected to the classifica-
tions. These features were the same as used in [12,10,9,13,
14,15,26,27] and they are the union of geometrical and sta-
tistical features.

We made extensive experimental tests wherek-NN was
tested with 26 differentk values and with four different dis-
tance alternatives. Moreover, the tests withK-Means were
repeated with 93 differentK values. Self-Organizing Map
was tested with 43 different numbers of neurons and RBF
network with 40 different values ofσ . Finally, Multi-Layer
Perceptrons were tested with configurations 15× i×8, when
i = 1,2, . . . ,15 and 15× i× j×8, wheni, j = 1,2, . . . ,15. Al-
together MLP was tested with 240 different configurations.

The obtained results were good. Many of the classifica-
tion methods reached above 90% accuracy. Especially, Quad-
ratic Discriminant Analysis, RBF network, Multi-Layer Per-
ceptron and Minimum Mahalanobis Distance Classifier sho-
wed their power in the classification. MLP achieved the best
mean accuracy being over 94% and RBF network and QDA
obtained nearly 94% accuracies. Furthermore, MMDC rea-
ched nearly 93% accuracy. Although the results were good,
they did not managed to win SVM used in [12,11,10,9].

Our future research will concentrate on a larger, 50 spe-
cies, dataset of benthic macroinvertebrates. With this dataset
SVM together with different multi-class extension will be
tested. Also, other classification alternatives, employedin
this research, will be applied to the larger dataset. An inter-
esting research topic is how different multi-class extensions
which are developed for SVM will work on other classifica-
tion methods. This topic is an infrequently researched area.
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Abstract. In this paper we examined the suitability of the Directed Acyclic
Graph Support Vector Machine (DAGSVM) and Directed Acyclic Graph k-Nea-
rest Neighbour (DAGKNN) method in classification of the benthic macroinver-
tebrate samples. We divided our 50 species dataset into five ten species groups
according to their group sizes. We performed extensive experimental tests with
every group, where DAGSVM was tested with seven kernel functions and DAG-
KNN with four measures. Feature selection was made by the scatter method [8].
Results showed that the quadratic and RBF kernel functions were the best ones
and in the case of DAGKNN all measures produced quite similar results. Gener-
ally, the DAGSVM gained higher accuracies than DAGKNN, but still DAGKNN
is a respectable option in benthic macroinvertebrate classification.

Keywords: Directed acyclic graph support vector machine, directed acyclic
graph k-nearest neighbour, machine learning, benthic macroinvertebrates, water
quality, kernel function.

1 Introduction

Biological issues are an important part of the modern society. Different threats are con-
stantly present in our everday life and we need to invent new methods for monitoring
and predicting the state of the surrounding nature. Freshwater areas are a sensitive part
of the environment and changes in it are quickly seen with the naked eye. Illegal dump-
ing, oil emissions and other effluents can be some of the reasons for destruction of the
sensitive fauna in the water systems. How can we investigate the exact consequences of
the human induced actions? Benthic macroinvertebrates live on the bottom of the wa-
terbodies and they quickly react to any changes in the state of the aquatic environment
[18]. This is why the benthic macroinvertebrates are commonly used in biomonitoring.

Benthic macroinvertebrates consist of a large variety of species. One freshwater area
can have dozens of species from many taxonomical groups. Wide diversity of the ben-
thic macroinvertebrates makes their automatic taxa identification a challenging task.
Differences between species can be very small making the automated identification
process even harder from the pattern recognition point of view. Traditional approach
to the identification is human-based when usually biological experts, taxonomists, per-
form the classification. A disadvantage of this approach is that it is time-consuming and,
hence, the costs are high. The main idea is to automatize the classification procedure as

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 439–453, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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far as it can be done. Thus, taxonomists and other biologists can focus their attention
from often so routine identification process on more difficult and interesting problems.
Moreover, biological experts can centralize their energy into solving the reasons behind
the changes in the aquatic environments and to find out the solutions for these problems.

The classification of the benthic macroinvertebrates [5,6,7,10,11,12,13,14,17,18] is
a difficult problem. Since the differences can be small between taxonomical groups,
classification requires reliable and efficient methods. For the classification of benthic
macroinvertebrates, the benthic animals are scanned and each scan was saved as an
individual image. The identification of the benthic macroinvertebrates becomes even
harder because they are not imaged in the same position. Moreover, the size and shape
of the benthic macroinvertebrates vary in each image. Data is then heterogeneous and
reflects the diversity of nature.

In this paper we have two aims to solve. Firstly, we want to investigate how Directed
Acyclic Graph Support Vector Machine (DAGSVM) [5,15], a multi-class extension of
SVM [1,2], succeeds in the classification of the benthic macroinvertebrate samples.
Secondly, we present rarely in benthic macroinvertebrate classification used Directed
Acyclic Graph k-Nearest Neighbour method (DAGKNN) and we examine how it works
in this application. In feature selection we use a novel approach called scatter method
[8]. In Section 2 we give a short overview of the SVM in a binary case [2,6,9] and
we introduce DAGSVM [15] and DAGKNN. In Section 3 we describe data and test
arrangements and, moreover, we analyse results. Section 4 is left for the discussion and
further research questions.

2 Methods

2.1 Support Vector Machine

Suppose that we have a training data (x1, y1), . . . , (xl, yl) where xi ∈ Rn are the train-
ing examples and yi ∈ {−1, 1} is the corresponding class label of xi. In the input
space a separating hyperplane is f(x) = 〈w, x〉 + b where w ∈ Rn is a weight vector
and b ∈ R is a bias term. A decision function can now be stated as the sign of the
f(x). If we have a linearly separable training data, we can rescale weight vector and
bias term such that the closest members of both classes lie in the canonical hyperplanes
|〈w, x〉 + b| = 1. In other words the closest training points to the hyperplane are at
the distance of 1

‖w‖ from the hyperplane. Hence, the distance between the canonical

hyperplanes equals 2
‖w‖ . We can maximize the margin by minimizing 1

2‖w‖2 subject to
yi(〈w, xi〉 + b) ≥ 1, i = 1, 2, . . . , l. This optimization problem can be solved by means
of Lagrangian theory. Now, we want to minimize the primal Lagrangian:

min
w,b

LP (w, b, α) =
1

2
‖w‖2 −

l∑

i=1

αi[yi(〈w, xi〉 + b) − 1]

where the Lagrange multipliers αi’s are non-negative. Moreover, LP is maximized
subject to α. By evaluating the derivatives respect to w and b and making a suitable
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resubstitution, we obtain the dual form of the optimization problem. The dual form is
more convenient to solve:

max LD(α) =

l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyj〈xi, xj〉, (1)

subject to αi ≥ 0 and
∑l

i=1 αiyi = 0. Training examples having positive αi are called
as the support vectors. When we have linearly non-separable problems, we need more
tools. An important factor in SVM theory was the invention to use the kernel trick where
the training examples in the input space are mapped with a nonlinear transformation into
a higher dimensional feature space where the optimal hyperplane can be constructed
again. This method can be justified according to the Cover’s theorem [3]. The difference
between the equation (1) and the feature space version is that in the latter one x is
replaced with φ(x). It is

max LD(α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyj〈φ(xi), φ(xj)〉,

subject to 0 ≤ αi ≤ C and
∑l

i=1 αiyi = 0. An important fact is that actually we do not
need to make mapping into a higher dimensional space and compute the inner products
〈φ(xi), φ(xj)〉 there, because we can use kernel function K(xi, xj) = 〈φ(xi), φ(xj)〉.
Now, the decision function can be expressed as a sign of f(x) =

∑l
i=1 αiyiK(x, xi)+b

where αi’s are optimal.

2.2 DAGSVM and DAGKNN

Decision Directed Acyclic Graph (DDAG) is a learning structure introduced by Platt
et al. [15]. DDAG is a graph where there are no cycles and the edges have directions.
The main point for this structure is to combine the binary classifiers to a multi-class
classifier. The classification of a test sample begins at the root node where the classi-
fication continues via the left or right edge depending on the result of a classifier in a
node. In this way we get an evaluation path for the test sample from the root node to the
leaf where the final class label for the test sample exists. In M class case we need only
M − 1 comparisons in order to solve the final class for the test sample.

DDAG structure can also be represented on a list, where every node eliminates one
class from the list. In this approach a test sample is evaluated against the node which is
formed from the first and the last element on a list. A test sample obtains either the class
label i or j from the node and the class label that the classifier gives for a test sample
remains in the list and the other will be removed from the list. Hence, we get the same
result that a test sample needs only M − 1 comparisons in order to solve the final class.
DDAG has M(M−1)

2 nodes where in everyone there is an SVM (or k-NN) classifier.
DAGSVM has some advantages. Firstly, the training phase is similar that of one-vs-one
method and, hence, it is computationally lighter than one-vs-all method. Secondly, the
evaluation phase is fast and we do not need to handle any tie situations, when the order
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of the list (or DDAG) is fixed. DAGKNN uses the same learning structure as the DAG-
SVM but now in the node there is a k-NN classifier instead of an SVM classifier. An
example of a four-class DAGSVM can be found from [5,9]. DAGSVM and DAGKNN
also contain a disadvantage which exists in the graph construction itself. We can form
the list (or DDAG) in different orders. For instance, if we have an M -class classifica-
tion task, the list can be formed up to M ! different orders and each one of these can
produce different results. One of the problems is to find the optimal order. Platt et al.
[15] made some limited experimental tests with different orders and they did not notice
any crucial differences between the results. Because the term M ! grows extremely fast
when M increases, it is in practise impossible (or computationally very heavy) to go
through every possible order. For example, in ten class cases list can be put to 3628800
different orders.

3 Experimental Tests

3.1 Data Description and Test Arrangements

Our dataset has altogether 50 species of benthic macroinvertebrates. Benthic macroin-
vertebrates were scanned three times and the scannings were identified with a label
set1, set2 or set3 [18]. The following preprocessing steps were made according to data
including all scannings. Firstly, we sorted the species in the data into decreasing order
according to their group sizes. Secondly, we divided the species into five disjoint groups
such that the number of samples of each species within a group would be as equal as
possible. More specifically, ten largest species were chosen to group 1 and the next ten
species were chosen to group 2 etc. until the ten smallest classes formed group 5. When
the division was made, the final step was to take the samples from the first scanning
for the classification. This procedure explains why in Tables 1 and 2 the sizes are not
always in a decreasing order. From Tables 1 and 2 the species and their sizes can be
seen. Moreover, from the [5,6,7,10,11,12,17,18] some example images of the benthic
macroinvertebrates can be found.

Table 1. Species and their corresponding number of samples in groups 1, 2 and 3

Group 1 Group 2 Group 3
Species Size Species Size Species Size
Asellus aquaticus 328 Leuctra 176 Micrasema gedium 70
Baetis muticus 290 Limnius volckmari 167 Ceratopogodinae 61
Bithynia tentaculata 292 Baetis rhodani 136 Caenis rivulorum 70
Micrasema setiferum 291 Cheumatopsyche lepida 126 Arctopsyche ladogensis 65
Nemoura 246 Hydropsyche pellucidulla 117 Ephemera mucronata 55
Ephemara aurivillii 236 Ephemera ignita 116 Sericostoma personatum 60
Myxas glutinosa 228 Hydraena 113 Caenis luctuosa 66
Ceratopsyche silfvenii 222 Ameletus inopinatus 113 Pisidium 50
Elmis aenea 185 Callicorixa wollastoni 84 Heptagenia sulphurea 54
Baetis niger 181 Habrophlebia 81 Chimarra marginata 52
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Table 2. Species and their corresponding number of samples in groups 4 and 5

Group 4 Group 5
Species Size Species Size
Tanypodinae 62 Agapetus 24
Leptophlebia 40 Radix balthica 24
Sigas semistriata 39 Gyraulus 20
Ceratopsyche nevae 36 Heptagenia fuscogrissea 19
Lepidostoma hirtum 37 Baetis digitatus 20
Atherix ibis 31 Oulimnius tuberculatus larvae 13
Oulimnius tuberculatus 31 Athripsodes 13
Gammarus lacustris 38 Ophiogomphus cecilia 11
Capnia 29 Paraleptophlebia 12
Dicranota 27 Wormaldia subnigra 11

Collected benthic macroinvertebrate samples were scanned by a flatbed scanner (HP
Deskjet 4850) and saved in the JPG format. Features were extracted from the images
and calculated with a public Java-based ImageJ program [4]. The data has 32 features
altogether. Features can be divided into two categories: simple shape features and grey
value features. Accurate definitions from every feature can be found from [4]. Features
in the data consists of the same features as what are used in [5,6,7,10,11,12,18] and
the features {FeretX, FeretY, FeretAngle, MinFeret, AR, Round, Solidity}. The final
feature selection for the classification was made with the help of the scatter method
[8]. The full description of the scatter method algorithm can be found from [8]. We ran
the scatter method with ten iterations for every group case to ensure that the obtained
features are appropriately chosen. Furthermore, a criteria for the selected features was
that their separation power in the scatter method was atleast 0.1. With the scatter method
we got the following feature sets:

– Group 1:{Min, Integrated Density, Area, Perimeter, Minor, Circularity, Feret, Min-
Feret, AR, Round, Solidity}

– Group 2:{Mean, Mode, Min, YM, Integrated Density, Median, Skewness, Area, Y,
Perimeter, Major, Minor, Feret, FeretX, MinFeret, AR, Round}

– Group 3:{Mean, Standard Deviation, Mode, Min, Max, XM, YM, Integrated Den-
sity, Median, Skewness, Kurtosis, Area, X, Y, Perimeter, Width, Height, Major,
Minor, Circularity, Feret, FeretX, MinFeret, AR, Round}

– Group 4:{Mean, Standard Deviation, Mode, Min, Max, YM, Integrated Density,
Median, Skewness, Area, Y, Perimeter, Major, Minor, Circularity, Feret, MinFeret}

– Group 5:{Mean, Standard Deviation, Mode, Integrated Density, Median, Skewness,
Area, Perimeter, BX, Major, Minor, Circularity, Feret, MinFeret, AR, Round, So-
lidity}.

Because the range of the sizes of the species alternate greatly, we applied different tech-
niques. We used a crossvalidation technique in every classification such that in case of
groups 1 and 2 we utilised 10 times 10-fold crossvalidation. For group 3 10 times 5-fold
crossvalidation was used and in the case of groups 4 and 5 10 times 3-fold crossvalida-
tion was applied. Hence, we got enough samples for each training and test sets. Before
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representing the data for SVM and k-NN classifiers, we standardized the columns of
the data matrix in every group case to have zero mean and unit variance. Other tranfor-
mations, such as normalization or principal component analysis or linear scalings, were
not used because we wanted to perform the classification procedure as close as possible
to the original input space. Thus, the classification is more truthfully. We used the same
parameter spaces for different kernel parameters as in [6]. Thus, for box constraint, σ
and κ parameter space was {0.5, 1.0, . . . , 20.0} and for δ in Sigmoid parameter space
was {−20.0, −19.5, . . . , −0.5}. Hence, the RBF and Sigmoid kernel functions were
tested with 1600 parameter combinations and the linear and polynomial kernel func-
tions (degrees of 2, 3, 4 and 5) were tested with 40 parameter values. Furthermore,
we made an agreement of κ = −δ because, otherwise, the number of the parameter
combinations in Sigmoid kernel function would have increased from 1600 to 64000.

Table 3. Classification times with DAGSVM

Kernel Group 1 Group 2 Group 3 Group 4 Group 5
Linear 1h 54min 36s 29min 19s 4min 35s 1min 55s 1min 40s
Pol. d = 2 2h 27min 47s 35min 32s 5min 2s 1min 59s 1min 40s
Pol. d = 3 2h 45min 28s 38min 18s 5min 21s 2min 3s 1min 42s
Pol. d = 4 3h 3min 31s 41min 9s 5min 30s 2min 7s 1min 43s
Pol. d = 5 3h 19min 52s 42min 53s 6min 21s 2min 15s 1min 53s
RBF 191h 27min 41h 53min 20s 5h 41min 10s 1h 50min 37s 1h 26min 10s
Sigmoid 155h 30min 20s 35h 45min 4h 37min 35s 1h 40min 14s 1h 15min 11s

We performed all the experimental tests with Dell Latitude E6500 laptop having
4GB of memory and 2.8GHz Intel Core 2 Duo processor. From the Table 3 we can
see how much time was spent to classifications with different kernel functions, when all
parameter combinations were tested. For the DAGKNN we performed the classification
with the odd k values, which were less or equal to smallest species size in the group.
Furthermore, we repeated the classification procedure with the DAGKNN altogether
with four different measures. These were standard Euclidean and cityblock metrics and
correlation and cosine measures and the spent time for the DAGKNN classification can
be seen from Table 4. Results show that DAGKNN is faster than DAGSVM, but we need
to remember that in DAGKNN we tested less k values than the parameter combinations
in DAGSVM. We used the binary SVM implementation of Bioinformatics Toolbox of
Matlab as a basis for our tests and all tests were made with Matlab. We used the Least
Square method [16] in finding the optimal hyperplane.

Optimal parameter values in DAGSVM were chosen the following way. We present
it in a general way. We had 10×μ disjoint training and test sets. Firstly, we trained each
binary SVM using suitable subsets from the full training data. Secondly, we evaluated
the accuracy of the training set by giving the full training set as a test set to trained
SVMs. Thirdly, we evaluated the accuracy of the real test set with the trained SVMs.
The final accuracy for the specific parameter combination was the average of the 10×μ
accuracies. Hence, for all parameter combinations we obtained a pair of values where
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Table 4. Classification times with DAGKNN

Distance Group 1 Group 2 Group 3 Group 4 Group 5
Euclidean 1h 24min 54s 11min 47s 2min 27s 36s 11s
Cityblock 1h 23min 26s 11min 45s 2min 26s 35s 11s
Correlation 1h 27min 29s 13min 10s 2min 43s 40s 12s
Cosine 1h 27min 9s 12min 48s 2min 40s 39s 12s

Table 5. Kernel parameter values

Kernel Group 1 Group 2 Group 3 Group 4 Group 5
Linear (20.0) (19.5) (1.5) (18.5) (5.5)
Pol. d = 2 (16.5) (7.0) (0.5) (0.5) (0.5)
Pol. d = 3 (0.5) (0.5) (0.5) (0.5) (0.5)
Pol. d = 4 (0.5) (0.5) (0.5) (0.5) (0.5)
Pol. d = 5 (0.5) (0.5) (0.5) (1.0) (0.5)
RBF (20.0, 1.0) (20.0, 1.5) (20.0, 1.5) (20.0, 3.5) (18.0, 3.5)
Sigmoid (19.5, 20, −20) (20, 19.5, −19.5) (9.5, 19.5, −19.5) (17.5, 10, −10) (16, 4.5, −4.5)

the first element was the mean accuracy of the training sets and the second element was
the mean accuracy of the test sets.

Overfitting is always an existent problem when using SVM. If too large parameter
values are given to SVMs, a model becomes too complex and its generalization ability
weaken. Thus, the classification error in a training set tends to zero and in a test set
it tends to one. Hence, the final parameters were chosen with an easy method. We
calculated

argmin
i

[(1 − ACCTRAIN,i) + 2 · (1 − ACCTEST,i)]

where i is the index for parameter combination and ACC is the accuracy. In other
words we sought that parameter combination index which gained the minimum of the
weighted sum of the training and test set classification errors. Weightening was made in
order to prevent possible tie situations and to separate those parameters which caused
overfitting. By this means we do not always get those parameters which give the best
accuracy in the test set, but we get a compromise where the accuracy of a training set
is determined from a full training set and we take also into account the accuracy of the
test set. Other possible ways to determine the best parameter values are nested cross-
validation which is time-consuming or to use a validation set technique. In both cases
a disadvantage is that the optimal parameter values are determined from a smaller set
than the actual training data. In Table 5 we see the obtained kernel parameter values
from each group. In kernel functions from the linear to the 5th degree of polynomial
kernel function, we had only one parameter, box constraint, and it is in the parenthesis.
In RBF the first value is the box constraint and the second one is σ. In Sigmoid the first
value in the parenthesis is the box constraint, the second value is κ and the last one is δ.
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3.2 Results

In the following tables we have compressed the results such that when the results of
DAGSVM are presented, every row in the result table indicates the classification rates
with a specific kernel function. When DAGKNN is in question, a row of the result table
indicates the classification rates with specific distance alternative and k value. Further-
more, the last column in the result tables depicts accuracy obtained from a specific
kernel function or specific distance alternative with some k value for easyning the anal-
ysis of the results. Class labels in result tables are abbreviations from the latin-based
names of the species in Tables 1 and 2. We boldfaced the best classification rate (or
classification rates in the case of tie situations) from each column of the result tables
for facilitating analysis. Sigmoid kernel function was the worst kernel function in each
group so we do not take it into account in our analysis. Reasons behind the poor re-
sults with Sigmoid kernel funtions may lie in the preprocessing. Normalization of the
data or linear scaling to interval [−1, 1] or [0, 1] after the stardardization could have
increased the general level of Sigmoid, but every transformation what we make to the
data draws the situation more away from the original input space. Throughout all clas-
sification results with DAGKNN small k values (odd integers from 1 to 9) gave the
best results. From Tables 6 and 7 we find the results when DAGKNN and DAGSVM

Table 6. DAGKNN: Results (%) with different distance alternatives and k values in group 1

ASE MUT BIT SET NEM AUR MYX SIL ELM NIG Mean accuracy
Euclidean k = 5 78.5 71.5 88.9 90.4 47.3 65.9 84.2 96.2 89.4 61.2 77.7

k = 7 78.9 72.9 89.4 89.7 47.8 65.8 83.1 96.5 87.9 60.7 77.7
k = 9 78.8 73.2 89.2 89.6 47.7 64.7 83.1 96.0 88.4 63.1 77.7

Cityblock k = 5 80.4 73.6 88.4 91.3 49.3 66.2 84.1 95.7 88.9 66.5 78.7
k = 7 78.1 75.2 89.6 91.1 49.1 66.2 84.5 96.1 88.1 66.2 78.7
k = 9 77.8 75.2 90.6 90.3 48.9 66.1 84.0 95.5 86.9 66.5 78.5

Correlation k = 3 79.4 64.4 87.1 89.7 54.8 62.3 79.4 94.8 74.9 56.2 75.1
k = 5 77.1 66.8 87.1 89.5 54.5 62.5 81.9 94.2 77.8 54.3 75.3
k = 7 76.1 68.7 88.2 89.4 53.8 62.3 81.3 95.4 76.1 55.0 75.4

Cosine k = 3 77.6 66.8 85.6 90.6 53.6 64.1 82.2 94.8 87.1 60.3 76.6
k = 5 75.9 67.0 85.6 91.1 53.7 63.6 83.3 95.4 87.9 59.6 76.5
k = 7 73.8 67.9 86.0 90.4 54.5 64.4 84.6 96.3 88.3 60.9 76.8

were used to classify group 1. The DAGKNN achieved very similar accuracies with all
measures. Accuracies in Table 6 were within 4% interval, but the best accuracy, nearly
79%, was obtained by the cityblock metric when k = 5 and k = 7. Classes BIT, SET
and SIL were identified above 90% classification rate and from these classes SIL was
recognized with classification rate over 95% which is a very good result. Class ELM
got nearly 90% classification rate and other classes which obtained above 80% classi-
fication rate were MUT and MYX. The poorest results were in the classes NEM, AUR
and NIG. These classes had below 67% classification rates and especially NEM clearly
separated from other classes having below 55% classification result.
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Table 7. DAGSVM: Results (%) with different kernel functions in group 1

ASE MUT BIT SET NEM AUR MYX SIL ELM NIG Mean accuracy
Linear 77.8 71.2 77.2 96.0 67.6 71.0 86.8 93.1 89.3 76.0 80.3
Pol. d = 2 85.0 80.3 92.4 97.2 73.5 77.6 93.5 96.6 93.5 76.5 86.7
Pol. d = 3 84.7 78.8 94.1 97.4 71.0 76.4 92.5 96.4 94.5 76.8 86.4
Pol. d = 4 78.3 75.8 91.5 98.0 70.3 69.5 89.2 83.4 93.6 68.1 82.1
Pol. d = 5 61.8 66.9 86.3 97.0 64.5 58.0 86.2 56.1 93.0 57.1 73.0
RBF 84.6 76.7 92.3 96.4 66.6 73.6 90.4 96.2 93.3 76.8 84.8
Sigmoid 0.7 21.0 34.8 67.5 32.3 33.6 77.4 57.5 38.7 13.5 36.8

DAGSVM succeeded in the classification of group 1 better than DAGKNN. Five
from the seven kernel funtions obtained over 78.7% accuracy. Particularly the quadratic
kernel function obtained a high accuracy being 86.7%. Almost the same accuracy was
the cubic kernel function which was only 0.3% inferior to the quadratic kernel function.
The third noteworthy kernel was RBF which obtained nearly 85% accuracy. The same
classes, as in DAGKNN, NEM, AUR and NIG were the hardest classes to identify.
Classes BIT, SET, MYX, SIL and ELM got very high classification rates, since the
results of these classes were over 93%. Classes NEM, AUR and NIG were the three
hardest classes to classify as in the corresponding DAGKNN case.

Table 8. Results (%) with different distance alternatives and k values in group 2

LEU LIM BAE CHE PEL IGN HYD AME CAL HAB Mean accuracy
Euclidean k = 3 74.7 87.9 66.8 78.4 68.9 68.4 99.9 61.4 91.5 43.8 75.1

k = 5 75.5 89.2 76.8 78.6 68.5 68.0 99.6 63.6 94.2 40.2 76.5
k = 7 74.5 88.7 77.4 79.1 67.2 63.1 100.0 62.7 93.9 35.7 75.5

Cityblock k = 5 75.5 87.5 71.7 76.9 69.0 65.5 100.0 60.7 97.6 38.0 75.3
k = 7 73.5 88.1 74.9 76.9 68.4 64.9 100.0 60.8 96.0 35.1 75.0
k = 9 72.3 88.0 76.8 78.7 66.6 64.2 100.0 60.5 96.2 32.3 74.8

Correlation k = 3 80.1 85.7 66.6 77.5 68.1 58.8 99.2 55.6 88.5 30.9 72.8
k = 5 81.6 86.9 71.3 78.4 68.1 57.9 98.4 52.5 87.3 26.4 73.0
k = 7 81.2 85.6 70.3 78.8 66.2 55.2 98.2 52.6 88.2 28.1 72.4

Cosine k = 3 80.9 86.0 72.5 77.3 73.3 58.1 98.4 56.5 90.7 43.0 75.0
k = 5 80.1 86.2 69.8 77.6 71.5 55.5 98.2 56.7 92.1 43.4 74.3
k = 7 81.0 85.6 68.2 76.2 70.6 53.4 98.2 57.8 91.5 39.2 73.6

Tables 8 and 9 show the compelling results for group 2. Compared to Table 6 the
general level of classification decreased a bit. Now, the best accuracy was gained by the
Euclidean metric when k = 5, but all the accuracies still were within 5% range. An eye-
catching detail was that the class HYD obtained a perfect 100% classification rate four
times when using DAGKNN, but in Table 9 we do not see any kernel function which
would have managed to do this. Another very well recognized class was CAL which had
almost 98% classification rate. Furthermore, classes LEU and LIM achieved above 80%
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Table 9. Results (%) with different kernel functions in group 2

LEU LIM BAE CHE PEL IGN HYD AME CAL HAB Mean accuracy
Linear 80.5 92.6 65.5 79.5 71.8 67.1 99.1 61.4 92.3 74.8 78.7
Pol. d = 2 80.0 94.7 74.6 80.0 71.7 73.8 99.2 69.4 96.3 72.5 81.4
Pol. d = 3 75.7 91.0 73.7 81.1 62.3 70.2 99.2 68.0 85.3 70.5 78.1
Pol. d = 4 53.5 81.2 61.5 67.9 43.2 47.4 99.6 59.8 71.3 50.4 63.9
Pol. d = 5 35.2 73.0 48.3 60.3 25.5 50.3 98.4 50.6 70.9 35.2 54.5
RBF 82.6 92.4 75.5 80.9 83.6 71.3 99.8 65.8 91.9 75.2 82.2
Sigmoid 27.8 7.1 37.7 43.3 44.6 24.4 94.5 49.4 72.3 4.4 38.5

classification rates which is always a good result. Other classes obtained below 80%
classification rates and especially HAB distinguished from all classes having clearly
under 50% classification rate. Also, classes IGN and AME were quite poorly recognized
since they obtained below 70% classification rates. Rest of the classes were identified
above 70%, but still under 80% classification rates.

Table 10. Results (%) with different distance alternatives and k values in group 3

GED CER CAE ARC MUC SER LUC PIS SUL CHI Mean accuracy
Euclidean k = 1 95.7 98.4 77.4 97.0 55.5 74.2 75.9 90.6 67.5 87.5 82.4

k = 3 95.1 98.4 77.7 97.1 51.7 78.7 79.6 87.9 70.0 90.6 83.1
k = 5 93.5 98.4 76.0 98.5 51.1 77.7 81.1 88.1 71.2 89.3 82.9

Cityblock k = 1 95.3 98.4 77.5 98.2 56.4 76.0 78.9 89.2 73.1 84.8 83.2
k = 3 94.7 98.4 78.3 97.9 54.5 79.3 79.0 87.4 71.0 91.4 83.6
k = 5 94.0 98.4 77.7 98.5 53.3 78.5 79.3 89.0 73.3 89.9 83.5

Correlation k = 1 93.9 98.4 78.0 99.2 54.0 71.5 69.4 86.7 56.9 83.9 79.8
k = 3 94.7 98.2 80.5 100.0 51.8 73.2 74.2 85.7 44.3 84.5 79.6
k = 5 95.1 98.2 77.5 100.0 48.1 76.4 77.3 85.7 44.3 79.1 79.1

Cosine k = 1 94.2 98.4 79.0 99.8 56.3 68.0 73.6 90.7 50.3 84.6 80.1
k = 3 95.5 98.4 80.7 100.0 51.4 71.8 79.0 86.3 48.8 87.0 80.7
k = 5 95.1 98.4 76.5 100.0 49.3 73.7 81.0 87.8 48.0 84.4 80.2

When in group 1 five kernel functions achieved better accuracies than the maximum
accuracy with DAGKNN, now in group 2 four kernel functions had better accuracies
than the maximum accuracy, 76.5%, with the DAGKNN. However, the best kernel func-
tions were again the quadratic and RBF kernels which obtained classification rates over
80%. The RBF obtained the highest classification rate being 82.2%. Class HYD had a
nearly perfect score and was clearly the most distinguished class together with CAL and
LIM among all classes. Below 90% but above 80% classification rates were obtained
for LEU, CHE and PEL. The lowest identifications were attained to the classes BAE,
IGN, AME and HAB which got below 80% classification rates. When doing a search
for equal classwise results between Tables 8 and 9, our eyes are focused on classes LEU,
BAE, CHE, HYD and CAL. Other classes obtained larger differences. The general level
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of DAGSVM results was lower than in Table 7 and this tendency was seen analogously
in DAGKNN results. It needs to remember that the results between groups are not di-
rectly comparable since they consist of a totally different species and the group sizes
vary greatly between groups.

Next we have classification results in group 3. In Table 10 we obtained interesting
results. Firstly, the level of classification between different species was widely spread.
Secondly, classes GED, CER, ARC, PIS and CHI were identified very well having
above 90% classification rates and, specially CER was recognized with a nearly perfect
score with all measures and ARC obtained a perfect classification when using corre-
lation and cosine measures. Classes CAE and LUC got above 80% classification rates
with cosine and Euclidean measures. Other classes were left below 80% classification
rate and the most difficult class to recognize was MUC having the maximum classifi-
cation rate below 60%. Accuracies were also separated since Euclidean and cityblock
metrics achieved accuracies over 82%, but cosine and correlation measures were left
below 81% accuracies.

Table 11. Results (%) with different kernel functions in group 3

GED CER CAE ARC MUC SER LUC PIS SUL CHI Mean accuracy
Linear 92.7 96.7 81.3 98.5 66.2 79.9 73.4 89.6 84.8 88.9 85.3
Pol. d = 2 95.0 96.7 78.6 97.4 61.9 72.5 79.7 93.2 73.7 83.5 83.5
Pol. d = 3 92.3 95.6 79.9 78.7 58.3 66.3 71.6 86.1 66.2 72.3 77.2
Pol. d = 4 89.2 91.4 75.8 64.4 53.9 64.9 65.7 82.7 69.2 75.4 73.5
Pol. d = 5 77.8 87.6 72.9 54.2 52.4 62.4 63.7 78.0 65.9 69.0 68.5
RBF 93.1 96.7 80.9 98.3 61.3 81.9 79.7 91.7 81.2 92.3 85.9
Sigmoid 52.7 59.0 49.6 93.1 15.4 32.8 45.0 81.6 17.8 7.8 46.5

When compared DAGKNN accuracies with the DAGSVM accuracies, DAGKNN
accuracies were left behind the DAGSVM accuracies. The linear and RBF kernel func-
tions gained better accuracies than the maximum accuracy in the DAGKNN results.
Three kernel functions of the seven possible were distinguished from the rest. These
were the linear, quadratic and RBF kernel functions and these three kernel functions
were also the best ones in Table 11. It seems that the quadratic and RBF kernels are the
best choices for this classification task. In classwise examination, again, classes GED,
CER, ARC, PIS and CHI were the best classifiable classes. This is consistent with the
DAGKNN results. Furthermore, in the cases of CAE, SER and LUC differences be-
tween the best results of DAGKNN and DAGSVM were not large. The most significant
differences came in classes MUC and SUL. Class MUC was identified almost 10%
better with DAGSVM than with DAGKNN. Moreover, class SUL was recognized over
11% better in DAGSVM with the linear kernel function. With the linear and RBF kernel
functions above 85% accuracy was achieved when the quadratic kernel obtained 83.5%
result. The cubic, 4th and 5th degree of the polynomial kernel functions and Sigmoid
got below 80% accuracies.

DAGKNN succeeded in the classification of the fourth group quite similarly to group
1 classification. The Euclidean and cityblock metrics, when k = 3 or k = 5, got 79%
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Table 12. Results (%) with different distance alternatives and k values in group 4

TAN LEP SIG NEV HIR IBI OUL GAM CAP DIC Mean accuracy
Euclidean k = 1 86.1 71.8 95.3 93.9 59.3 51.3 88.0 89.6 65.6 70.4 78.4

k = 3 90.6 80.9 95.3 93.0 54.6 60.0 94.3 88.3 60.3 63.7 79.8
k = 5 93.0 80.0 96.0 94.2 48.2 51.3 97.7 84.8 60.8 65.4 79.0

Cityblock k = 3 90.9 83.1 95.8 93.8 57.1 56.0 97.8 88.8 63.1 58.6 80.4
k = 5 92.7 80.7 96.3 95.0 48.6 47.0 98.4 84.5 63.4 63.1 78.9
k = 7 92.9 82.2 97.1 95.8 43.2 40.9 97.8 82.4 62.1 61.4 77.7

Correlation k = 1 89.0 63.1 89.9 92.2 56.2 61.9 93.3 89.3 67.5 46.0 76.6
k = 3 94.5 60.3 91.9 93.1 58.0 56.5 99.7 87.2 60.7 47.4 77.1
k = 5 96.9 58.9 94.5 94.2 55.7 47.4 100.0 85.3 61.6 55.2 77.2

Cosine k = 1 88.3 67.8 90.1 93.2 63.2 59.3 95.8 89.6 64.7 52.2 78.1
k = 3 91.0 69.6 97.4 96.6 58.0 55.2 99.7 88.8 58.1 48.4 78.4
k = 5 93.2 72.0 96.6 93.9 48.7 48.1 100.0 84.7 61.9 51.2 77.2

or higher accuracy, but the difference between the worst and the best accuracy was only
less than 4%, so the same trend continued in group 4 classification than in the previous
ones. Three from seven kernel functions achieved better accuracy than DAGKNN with
the cityblock metric when k = 3. In this particular case DAGKNN obtained an accuracy
over 80%. The linear, quadratic and RBF kernels performed above 83% accuracy which
is a very good result and the highest accuracy 86.3% was reached by the RBF. When
examining the DAGKNN results more closely, we noticed that a large part of the highest
classification rates were among the correlation and cosine results.

Table 13. Results (%) with different kernel functions in group 4

TAN LEP SIG NEV HIR IBI OUL GAM CAP DIC Mean accuracy
Linear 90.6 72.0 88.1 96.9 70.4 77.3 94.7 89.8 81.4 75.0 84.2
Pol. d = 2 88.5 83.3 93.0 97.5 70.1 68.3 93.5 80.9 78.5 70.0 83.2
Pol. d = 3 80.5 78.9 81.3 90.3 53.8 64.4 91.6 67.8 64.3 54.4 73.8
Pol. d = 4 68.2 73.0 69.8 77.8 50.4 55.9 85.8 62.3 63.7 51.6 66.3
Pol. d = 5 65.2 68.2 63.8 70.5 47.1 48.7 81.6 59.7 61.0 52.2 62.2
RBF 93.7 83.6 94.5 95.6 73.7 71.9 93.9 91.7 75.7 78.3 86.3
Sigmoid 72.4 44.5 41.5 84.5 33.8 36.6 58.8 42.8 34.2 25.3 49.7

The best classification results can be divided into three categories. Firstly, the classes
TAN, SIG, NEV and OUL got excellent classification rates being above 96%. Espe-
cially, in the case of class OUL we obtained a perfect 100% classification rate with cor-
relation and cosine measures. Compared to DAGSVM, where the classes also achieved
above 90% classification rates, there are not any perfect scores. Secondly, in the DAG-
KNN classification rates of classes LEP and GAM were located into interval 83%-90%.
The best classification rate of class LEP in the DAGSVM was nearly identical with the
classification rate in DAGKNN. Thirdly, the rest of the classes in DAGKNN had below
71% classification rates and these classes were consistently classified better with DAG-
SVM. The RBF kernel function in Table 13 obtained six topmost classification rates
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Table 14. Results (%) with different distance alternatives and k values in group 5

AGA RAD GYR FUS DIG TUB ATH OPH PAR WOR Mean accuracy
Euclidean k = 1 90.7 84.7 62.8 81.2 71.5 65.8 46.3 72.7 56.0 88.8 73.8

k = 3 93.7 75.4 76.0 85.8 80.0 65.2 49.0 54.9 56.8 86.4 75.0
k = 5 91.2 80.3 82.1 86.4 84.1 62.1 44.7 46.9 53.0 82.0 75.0

Cityblock k = 1 90.3 88.0 78.3 85.7 81.5 66.5 63.2 67.4 56.0 83.8 78.4
k = 3 89.9 80.4 81.2 88.0 87.8 74.2 55.7 62.4 58.5 88.8 79.0
k = 5 89.4 82.5 84.1 85.3 86.6 69.2 46.8 47.2 52.2 88.8 76.5

Correlation k = 1 85.6 72.4 65.3 74.8 85.6 64.7 40.5 73.0 44.3 74.8 70.4
k = 3 83.5 69.0 73.4 79.5 94.4 76.5 38.8 70.5 53.7 84.5 73.9
k = 5 78.4 68.3 76.8 76.4 92.3 80.0 29.0 72.2 34.4 83.9 71.2

Cosine k = 1 89.0 71.6 61.7 76.7 85.2 61.5 47.3 71.3 56.0 82.1 72.0
k = 3 84.8 71.7 73.8 81.1 93.0 76.7 46.5 70.5 56.0 87.3 75.6
k = 5 82.6 69.6 78.0 77.5 91.8 77.7 33.0 71.5 38.2 86.7 72.7

from all classes and the rest of the classes were classified with the highest classification
rates when the linear and quadratic kernel function were used. More details about the
results of group 4 can be found from Tables 12 and 13.

Table 15. Results (%) with different kernel functions in group 5

AGA RAD GYR FUS DIG TUB ATH OPH PAR WOR Mean accuracy
Linear 91.8 75.8 82.5 83.9 86.9 84.5 86.5 69.6 74.4 80.7 82.6
Pol. d = 2 85.7 78.3 78.1 89.3 83.4 69.8 75.8 51.2 60.9 87.7 77.9
Pol. d = 3 84.5 62.3 75.1 87.6 77.9 70.3 73.0 32.7 47.8 71.7 70.7
Pol. d = 4 82.8 57.0 68.6 87.2 70.7 62.5 69.2 22.9 48.8 65.0 66.1
Pol. d = 5 76.8 57.0 60.8 85.9 66.1 55.7 70.3 26.6 52.2 64.6 63.7
RBF 85.6 89.1 87.1 83.2 86.6 79.7 72.2 70.7 74.1 87.7 82.9
Sigmoid 27.4 60.3 64.0 68.9 46.7 51.4 21.8 54.4 16.2 31.6 46.4

In the last group the classification level of DAGKNN was spread out more wide
interval than in the previous cases. Table 14 shows that the accuracies were spread from
70.4% to 79% which was achieved by the cityblock metric. The highest classification
rates were obtained among the Euclidean, cityblock and correlation distances. Two of
ten classes were identified above 90% classification rate and these two classes AGA and
DIG gained 93.7% and 94.4% results. Classes RAD, FUS and WOR were recognized
with classification rate 88% or 88.8%. Also, classes GYR and TUB gained classification
rates of 80% or higher. Classes ATH, OPH and PAR were the hardest classes to classify
and from these OPH gained 73% and the rest were left below 64% results. Compared
to DAGKNN, DAGSVM (see Table 15) did not succeeded much better. Now, only two
of seven kernel functions got higher accuracies than 79%. These were the linear and
RBF kernel functions and their corresponding accuracies were 82.6% and 82.9%. The
linear kernel obtained five times the topmost classification rate among all classes and
the RBF got four times the topmost results. Only the class AGA was classified with a
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classification rate over 90% in DAGSVM, in DAGKNN there were two classes which
got above 90% classification rate. Classes ATH, OPH and PAR were also the hardest
classes to identify as it was in DAGKNN case. The best classification rates of the rest
of the classes were between 84.5% and 89.1%. Accuracies of the linear and RBF kernel
function were very close to each other since they had only 0.3% difference. The linear
and RBF kernel functions were the only ones that achieved above 80% accuracies when
taking into account also the results of DAGKNN.

4 Discussion

We applied in this paper DDAG learning structure to SVM and k-NN classifiers. DAG-
SVM was applied to benthic macroinvertebrate identification in [5] with great success
and it inspired us to examine how DAGKNN succeeds in this classification problem
compared to DAGSVM. Generally, in all groups the linear, quadratic and RBF kernel
functions and from these kernels especially the quadratic and RBF showed their power
in this classification task. DAGKNN method did not manage to obtain higher accura-
cies than DAGSVM, but it is still a very comparable classification method since the
simplicity of k-NN compared to SVM is from the pratical and computational point of
view much more user-friendly. The DAGKNN method contains only two parameters:
the choice of distance and k value. In SVM the choice of a kernel function and the
tuning of the parameters are the key factors for successful classification. How to find
the right kernel and the right parameter values can be computationally demanding prob-
lem as Table 6 showed. How to speed up the parameter tuning and how to choose the
right kernel functions are problems to be researched more closely in the future. Also,
we need to examine how other machine learning methods such as Linear Discriminant
Analysis or Naïve Bayes manage in benthic macroinvertebrate classification when us-
ing the DDAG learning structure. Furthermore, other multi-class methods of SVMs and
classification methods need to be considered in the further research. Feature selection
is an important factor in classification problems. In this paper we solved this problem
by using the scatter method [8] which is a novel approach. From the results we can con-
clude that the scatter method is a valid feature selection method for the classification
of benthic macroinvertebrates. Results also showed that the fully automated benthic
macroinvertebrate identification is possible when the classifiers are tuned up.
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