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Abstract 
 
Jan-Erik Antipin 
Bayesian Applications in Empirical Monetary Policy Analysis  
 
 
This thesis investigates effects of sudden movement in monetary policy 
stance in the euro area and assesses forecasting performance of 
estimated structural dynamic equilibrium model for the United States 
data. In the first three essays the focus is on an inspection of the dynamic 
effects of sudden changes in the monetary policy conduct of the 
European Central Bank (ECB) in EMU member countries. We propose 
that asymmetric monetary policy responses would imply that domestic 
monetary policy transmission mechanisms have not necessarily 
integrated even if EMU convergence criteria were met on time, and it 
would be at odds that the euro area constitutes an optimum currency 
area. The fourth essay assesses the forecasting performance of a modern 
macro model for U.S. data. The statistical inference of the thesis is 
Bayesian. 
 
In the first essay, we describe the dynamics of year-on-year consumer 
price inflation responses to an unanticipated expansionary monetary 
policy shock in the euro area with a vector autoregressive model (VAR) 
model. The variables and statistically testable short run restriction 
schemes ensuring identification are derivable from a new Keynesian 
macro model. A rather surprising finding is that traditional Cholesky 
identification is only weakly supported by the data. Impulse responses 
of year-on-year consumer price inflation to an expansionary monetary 
policy shock are calculated for a VAR model identified by the most 
probable identification scheme. In this identification scheme we let EMU 
member country information to affect simultaneously monetary policy 
instrument. Obtained results suggest asymmetric year-on-year price 
inflation responses to monetary policy conducted by the ECB.  
 
In the second essay, we first survey, with help of a variant of the Taylor 
rule, six information sets on which the ECB most likely bases its 
monetary policy decisions. Assessment of information sets is an obvious 
accretion to the literature on the conduct of monetary policy by the ECB. 
In the analysis we approximate euro area’s monetary conditions with an 
estimated VAR model for the suggested information set and calculate 
identified impulse responses of the difference in year-on-year producer 
price inflations in the euro area and few peripheral EMU member 
countries. According to results an unexpected variation in the monetary 
policy instrument conditioned on the information pertaining to the three 
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largest EMU member countries (Germany, France and Italy) will have 
asymmetric effects in year-on-year producer price inflation across the 
EMU member countries.  
 
In the third essay, we apply a new Keynesian open economy macro 
model in setting identifying restrictions for impulse response analysis of 
consumer price inflation in the euro area. The relevance of the implied 
simultaneous parameter cross-equation restrictions is assessed by 
posterior estimation of the hyperparameter that measures prior beliefs 
on identifying restrictions. The posterior evidence suggests that prior 
beliefs on simultaneous effects of model variables are of relevance while 
identifying the VAR model with an open economy new Keynesian 
macro model for the euro area. Contrary to outcome of the first essay, 
the drawn impulse responses support the claim that an expansionary 
monetary policy shock would not cause evident asymmetric price 
inflation responses in EMU member countries. However, the impulse 
responses from recursively identified VAR-model are in line with the 
ones reported in the first essay. 
 
The fourth essay evaluates a closed economy, log-linearized 3-variable 
new Keynesian model with an easily implementable method for the 
Bayesian analysis. It becomes evident that a small-scale modern macro 
model can rival commonly used forecasting tools, such as Bayesian 
VARs and forecasts based on random walks. According to the posterior 
evidence, the model manages to capture evolutions of U.S. 
macroeconomic variables, price inflation, short-term nominal interest 
rate and measure of output gap, fairly well.  
 
 
Keywords: Monetary policy, new Keynesian macro model, Vector 
autoregressive model, impulse response function, forecasting, Bayesian 
inference.  
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Tiivistelmä 
 
Jan-Erik Antipin 
Bayesian Applications in Empirical Monetary Policy Analysis  
 
 
Väitöskirjan kolmessa ensimmäisessä esseessä tutkitaan Euroopan Kes-
kuspankin (EKP) yllätyksellisen rahapolitiikkatoimenpiteen vaikutuksia 
rahaliiton jäsenmaissa. Työn neljännessä esseessä tarkastellaan Key-
nesiläisen dynaamisen stokastisen yleisen tasapainomallin ennustekykyä 
Yhdysvaltojen aineistolla. Kolmen ensimmäisen esseen analyysin kanta-
vana hypoteesina on olettamus, jonka mukaan rahaliiton jäsenmaiden 
rahapolitiikan välittymiskanavat ovat erilaiset. Tämä on mahdollista 
huolimatta siitä, että jäsenmaat olisivat täyttäneet EMU-lähentymiskri-
teerit ajallaan. Evidenssi rahaliiton jäsenmaiden epäsymmetrisistä rea-
goinneista EKP:n harjoittamaan yllätykselliseen rahapolitiikkaan tukisi 
väittämää, että euroalue ei olisi optimaalinen valuutta-alue. Väitöskirjan 
tilastollinen päätäntä on bayesiläistä. 
 
Väitöskirjan ensimmäisessä esseessä kartoitetaan yllätyksellisen rahapo-
litiikkashokin aiheuttamia vuosimuutoksia rahaliiton jäsenmaiden ku-
luttajahintaindeksisarjoissa. Empiirinen tarkastelu toteutetaan vektori-
autoregressiivisen aikasarjamallin identifioitujen impulssivastefunktioi-
den avulla. Analyysin muuttujajoukko on johdettavissa modernista mak-
romallista. Esseessä lasketaan kilpaileville impulssivastefunktion identi-
fioiville lyhyen aikavälin parametrirajoitteille posterioritodennäköisyy-
det. Esseen yllättävä tulos on, että havaintoaineisto tukee heikosti perin-
teistä rekursiivista (Cholesky) identifiointirakennetta. Sitä vastoin ha-
vaintoaineisto tukee identifiointirakennetta, joka sallii kansallisen kulut-
tajahintainflaation vaikuttaa EKP:n rahapolitiikkainstrumentin arvoon. 
Estimoidut kuluttajahintamuutokset yllätykselliselle rahapolitiikkatoi-
menpiteelle ovat tilastollisesti epäsymmetrisiä ja tukevat täten oletta-
musta, että rahapolitiikan välittymiskanavat rahaliiton jäsenmaissa ovat 
erilaiset. 
 
Toisessa esseessä tutkitaan informaatiojoukkoja, joiden oletetaan vaikut-
tavan EKP:n rahapoliittiseen päätöksentekoon. Esseessä oletetaan, että 
EKP:n käyttämää rahapolitiikkainstrumenttia voidaan kuvata Taylor-
säännön mukaisella rahapolitiikkasäännöllä. Esseessä lasketaan poste-
rioritodennäköisyydet kuudelle informaatiojoukolle, joiden uskotaan 
vaikuttavan rahapolitiikkainstrumentin arvoon. Posterioritodennäköi-
syydet osoittavat, että Saksan, Ranskan ja Italian yhdistetty kansallinen 
aineisto selittää merkittävissä määrin EKP:n rahapolitiikkainstrumentin 
vaihtelua. Lisäksi esseessä tarkastellaan kuinka tuottajahintaindeksiai-
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kasarjojen vuosimuutoksille estimoidut vektoriautoregressiivisen mallin 
impulssivastefunktiot käyttäytyvät ehdollistettuna eri informaatiojou-
koille. Lasketuista impulssivastefunktioista nähdään, että EKP:n yllätyk-
sellisen rahapolitiikkatoimeen vaikutus tuottajahintaindeksin vuosi-
muutoksiin on epäsymmetrinen rahaliiton jäsenmaissa. 
 
Väitöskirjan kolmannessa esseessä käytetään uuskeynesiläistä avoimen 
talouden makromallia kuvastamaan rahapolitiikan virittämistä ja vai-
kutusten välittymistä euroalueella ja yksittäisessä rahaliiton jäsen-
maassa. Toisin kuin toisessa esseessä, kansallisen informaation ei anneta 
vaikuttaa EKP:n käyttämän rahapolitiikkainstrumentin arvoon. Analyy-
sissä oletetaankin, että EKP ehdollistaa rahapolitiikkatoimenpiteensä 
euroalueen aggregaatti-informaatiolle. Tuloksista käy ilmi, että makro-
mallin implikoimat lyhyen aikavälin parametrirajoitteet ovat tilastolli-
sesti merkittäviä. Estimoitujen rakennemuodon impulssivastefunktioi-
den perusteella voidaan todeta, että kuluttajahintainflaation reagointi 
yllätykselliselle rahapolitiikkainstrumentin muutokselle on, vastoin 
väitöskirjan ensimmäisen esseen tulosta, tilastollisesti symmetrinen ra-
haliiton jäsenmaissa. Huomionarvoista on toisaalta todeta, että esseen 
Cholesky-identifioidut impulssivastefunktiot ovat linjassa ensimmäisen 
esseen tulosten kanssa. 
 
Neljännessä esseessä estimoidaan reaaliaikaisen havaintoaineiston 
avulla suljetun talouden Keynesiläinen dynaaminen stokastinen yleisen 
tasapainon malli helposti sovellettavissa olevalla estimointitavalla. Esti-
moidun tasapainomallin kykyä ennustaa Yhdysvaltojen korkoa, inflaa-
tiota ja tuotantoa verrataan perinteisten, yleisesti käytettyjen aikasarja-
mallien ennustekykyyn. Tulokset osoittavat, että estimoidun makromal-
lin ennustekyky on hyvä. Tulos on erittäin mielenkiintoinen, sillä alan 
kirjallisuudessa uskotaan, että vastaavaan ennustekykyyn päädytään 
kasvattamalla mallikokoa. 
 
 
Avainsanat: Rahapolitiikka, uuskeynesiläinen makromalli, 
vektoriautoregressiivinen malli, impulssivastefunktio, ennustaminen, 
bayesiläinen päättely. 
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1 Introduction  
 
This thesis empirically investigates the effects of common monetary 
policy in the euro area and presents forecast comparisons between 
estimated structural dynamic equilibrium model and traditional vector 
autoregressive models for the United States data.  
 
In the analysis of common monetary policy the focus is on inspection of 
the dynamic effects of sudden changes in the monetary policy conduct of 
the European Central Bank (ECB) in the euro area. The motivation pours 
partly from Clausen and Hayo (2002, 2006), Huchet-Bourdon (2003) and 
Durand et al. (2008) reporting that responses to a common monetary 
policy shock can expected to be seen asymmetric in the euro area. In 
addition, the analysis of Gros and Hefeker (2002, 2007) shows that 
monetary policy that minimizes the sum of national utility lossess will 
lead to a higher average utility in the euro area thus allowing leeway for 
inspecting a possibility that the monetary policy for the euro area might 
not be conditioned on euro area aggregates. Furthermore, De Grauwe 
(2000) and De Grauwe and Sénégas (2004, 2006) conclude that national 
information should be used in design of common euro area monetary 
policy. Moons and Van Poeck (2008) question the appropriateness of 
ECB’s monetary policy and argue that monetary policy exercised by the 
ECB does not fit individual EMU member countries equally well. In the 
spirit of these results we inspect information sets on which the ECB 
conditions its monetary policy and track down EMU member countries’ 
price inflation dynamics to a shock in monetary policy instrument. As far 
as the forecasting performance is concerned we motivate it by referring 
to Sungbae and Schorfheide (2007) who focus on development of new 
Keynesian model suitable for forecasting and quantitative policy 
analysis. We will be measuring the forecasting performance of a modern 
macro model estimated for U.S. data. In the introduction part of the 
thesis we lay grounds for the essays by briefly discussing theoretical 
developments of macro models and empirics within with monetary 
policy motivation. We also cast a quick glance at Bayesian econometrics.  
 
The thesis takes a positive viewpoint on model specification issues and 
estimation problems in monetary policy econometrics. It covers topics 
such as model uncertainty, forecasting performance and information sets 
used by modern central banks in conducting monetary policy. These 
topics are seen to be crucial for an applied economist developing and 
estimating economic models for policy analysis and forecasting 
purposes. The outcome of analysis of common monetary policy is that 
EMU member countries can be expected to face asymmetric price 
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inflation responses to monetary policy shocks. The contribution of 
forecasting analysis is that a small-scale modern macro model can rival 
traditional forecasting models in forecasting performance. The statistical 
inference of empirics in the thesis is Bayesian, as is the current practice in 
the field. 
 
The focus of the analysis is built on multivariate, dynamic time series 
models with identification restrictions derivable from economic theory. 
We apply both modern closed and open economy macro models in 
attaining these restrictions. Due to the dynamic nature of the 
phenomenon described in the essays, the statistical analysis is based on 
vector autoregressive (VAR) models, whose properties are widely 
known and the models are frequently applied to approximating the 
effects of unforeseen movements in the monetary policy instrument. The 
new Keynesian macro models provide theoretical motivations and help 
in drawing guidelines for identifying restrictions for simultaneous 
effects of the model variables.  
 
Particularly, we seek evidence on the potential asymmetric national price 
inflation responses in the EMU member countries to an unanticipated 
common monetary policy shock. These asymmetric inflation responses 
can give rise to asymmetric, undesirable real effects. Asymmetric real 
effects could reflect persistent underlying structural differences even in 
the case where EMU member country has fulfilled EMU convergence 
criteria on time. Evidence on real asymmetric responses would be at 
odds with the paradigm initially designating the euro area as a common 
currency, and throw doubt on claims that the EMU would constitute an 
optimum currency area (Mundell, 1961). For a more thorough treatment 
of important aspects of monetary integration in the economic context see 
De Grauwe (2003).  
 
One of the intensively debated topics in recent macroeconomic literature 
is forecasting performance of the new Keynesian dynamic stochastic 
general equilibrium (DSGE) models. Many recent studies have shown 
that the forecasting performance of new Keynesian DSGE models can be 
improved by specifying relatively complex DSGE model mechanisms. 
Our contribution in this thesis is to use quarterly U.S. data to evaluate 
forecasting performance of small-scale DSGE model in relation to 
traditional time series forecasting models. We use estimated model 
parameters to generate forecasts and to compare forecasting 
performance with abovementioned models.  
 
Empirical analysis relies heavily on Bayesian methods which has become 
a common practice in macroeconometrics. In Bayesian statistics the 
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inference is conditioned on information emanating from the observed 
data, and on prior knowledge. The rationale for using Bayesian statistics 
stems from the following: Bayesian methods allow data-consistent 
statistical inference of model parameters and statistical model 
comparison can be conducted in a transparent manner.  
 
In the following subsections we describe shortly advances in 
macroeconomic modeling and the past evolution of econometric 
methods linking real-life observations and macro models together in the 
monetary economics literature. Here we also justify the selection of 
model framework and estimation methods. A short introduction to 
Bayesian econometrics helps reader to understand Bayesian methods 
applied in thesis. Then summaries of the essays are presented. The latter 
part of the thesis comprises the original essays. 
 
 

1.1 Theoretical and Empirical Advances in Monetary Macro 
Models  

 

1.1.1 General Discussion  

 
Before we lay our hands on the thesis topics it is worthwhile to describe 
shortly how macroeconomic theory and empirical applications therein 
have developed over time. One can state that past advances in 
macroeconomic theory have accrued, roughly speaking, with respect to 
two aspects. The advances have taken place in building models as 
theoretical descriptions for a closed or open economy, or whether the 
models are meant to be dynamic or static descriptions of economy. In 
current economic theory it has come to be accepted that the state of an 
economy is dependent on previous states. This means that we expect 
that the current level of consumption depends on its level in future 
periods, since economic agents prefer a constant course of life-time 
consumption. For this reason, in dynamic macro models the Euler 
equation captures the evolution of an optimal consumption path of an 
economic agent. In similar vein, producers are aware that prices they set 
depend (among other things) on the level of demand, which is in turn 
dependent on the future path of consumption. Concurrently the model 
estimation methods have taken a giant leap. This can be seen enabled by 
increased low cost computational power required in the analysis of 
expectations augmented stochastic multivariate macro models. 
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A crucial topic in macromodelling is the model specification. Given the 
set of observations of reality, how should the estimating macro model 
look like? Empirical research provides one way to answer to this 
question via model selection methods that are based on the empirical fits 
of rivaling models for given observations of reality. It is commonly 
agreed that theoretical considerations and consistent statistical 
comparison of competing models facilitate model selection and 
development but some level of uncertainty about the true model 
specification will always remain. The Bayesian statistical methods enable 
consistent model comparison methods for model developers 
contemplating different model specifications. For instance, Rabanal and 
Rubio-Ramirez (2005), Lubik and Schorfheide (2005) and Del Negro 
(2003) use marginal likelihoods in evaluating the specifications of macro 
models. We, for instance, apply marginal likelihoods and fractional 
marginal likelihoods in deciding upon identification schemes for 
identification and lag structure of a vector autoregressive model and 
most probable information driving monetary policy decision in the euro 
area. 
 
The current mainstream macroeconomic modeling, the new Keynesian 
model framework, combines the favorable aspects and properties of 
macro models developed in the past decades. For new Keynesian macro 
models major efforts have been made to attain both empirically and 
theoretically feasible macro modeling framework. In these models short-
run nominal frictions, based on Keynesian assumptions1, are combined 
with Real Business Cycle (RBC) models2, which were introduced by 
Kydland and Prescott (1982). The synthesis emphasizes the stochastic 
behavior of macroeconomic variables and acknowledges the Lucas 
critique3.  
 

1.1.2 The new Keynesian Framework 

 
Theoretical motivations for the analysis of monetary policy effects (the 
three first essays) pour from the new Keynesian approach that manifests 
that in the short-run monetary policy may have non-neutral effects on 
                                                 
1 See Keynes (1936). 
2 Typically in RBC models flexible prices are assumed. With these models one may study how 
real shocks hitting economy could cause observed business fluctuations. Many RBC models also 
assume perfect competition, which is to imply that business cycle dynamics are Pareto efficient. 
Cooley (1995), for instance, provides a survey on RBC models. 
3 In his 1976 paper Lucas points out that we should be interested in deep parameters instead of 
reduced-form model parameters in understanding policy effects. He bases his reasoning on the 
claim that the estimated parameters of reduced-form models are not structural and are not 
policy-invariant. That is, if say monetary policy rule was changed then the estimates of 
parameters would be altered and lead to potentially misleading conclusions.  
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the real exchange rate, output and aggregate demand due to sticky 
prices and/or wages. Benigno (2004) writes that in the new Keynesian 
DSGE models for monetary union an asymmetry between different 
countries’ price rigidity leads to asymmetric effects of monetary policy. 
Then on the other hand, economic models built on assumptions of 
Classical Theory imply that, for example, money is neutral4 also in the 
short-run and that prices and wages will immediately adjust to keep the 
economy in equilibrium. In particular, Classical Theory thus suggests in 
particular that unforeseen movements in monetary policy would not 
cause asymmetric real effects. The working hypothesis in this thesis is 
that common monetary policy has asymmetric short-run real effects on 
EMU member countries.  
 
Why should one use new Keynesian macro models in policy analysis 
and in forecasting? The answer is two-fold. First, these models are 
constructed to ensure internal consistency of the model framework5. 
Second, new Keynesian DSGE models are dynamic in nature. Traditional 
IS-LM macro models, on the other hand, impose no dynamic restrictions 
on the model variables, so the theoretical link between the static-in-
nature IS-LM macro models and dynamic statistical modeling 
framework is evidently artificial.  
 
A closed economy new Keynesian macro model for monetary policy 
analysis consists of equations for aggregate demand, aggregate supply 
(inflation adjustment equation or new Keynesian Phillips curve) and 
monetary policy6. One of the implications of the new Keynesian Phillips 
curve is that nominal rigidities cause actual output deviate from fully 
efficient output in the short-run.  
 
As Clarida et al. (1999) we also believe that Keynesian nominal rigidities 
are the driving forces motivating the estimation of impulse responses to 
monetary policy shock. In the context of analysis of common monetary 
policy this implies that nominal rigidities can account for short-run real 
effects of an unanticipated monetary policy shock in the euro area. 
Evidently, EMU member countries will probably face real (output, 
unemployment etc.) monetary effects if national price inflation 
differentials do not remain constant after monetary policy shock. 
 
                                                 
4 A change in the rate of growth of the money supply, it will proportionally change the rate of 
inflation and the nominal interest rate but has no effects on a real facets of an economy.  
5 One could consider e.g. Gordon (1990), Mankiw and Romer (1990), Woodford (2003) and Walsh 
(2003) for a textbook on new Keynesian macro models in a dynamic stochastic general 
equilibrium (DSGE) setting. 
6 In addition, recent empirical studies by María-Dolores and Vázquez (2006), Sooreea (2007) and 
Nason and Smith (2008) shed light on Taylor rule specification in new Keynesian macro models. 
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1.1.3 Monetary Policy in new Keynesian Models 

 
More often than not in modern monetary policy models the interest rate 
is a key policy instrument. This seems to be in line with actual practice of 
modern central banks. A frequent specification for monetary policy in 
the literature is to presume that a modern central banker commits to 
adopting a policy instrument rule according to which central bank's 
policy instrument responses to information available to the central 
banker. For example, according to the Taylor rule (Taylor, 1993) the 
nominal interest rate is a linear function of current economic activity and 
inflation. Authors such as Clarida et al. (1998, 2000), Judd and Rudebush 
(1998), Gerlach and Schnabel (2000) and Martins et al. (2004) present 
evidence that different variants7 of the Taylor rule closely track the short-
run interest rate in the United States and in the euro area. 
 
The information set on which the central bank conditions its monetary 
policy is actively debated topic. The empirical evidence for the way price 
inflation and economic activity terms should be specified in the Taylor 
rule is conflicting; for instance Canova (2006) specifies a variant of the 
Taylor rule with lagged inflation and output gap8 together with an 
interest rate smoothing term for the United States and argues that his 
specification for monetary policy is consistent with the idea that the 
central banker observes lagged values of economic activity and inflation. 
In contrast, Lindé (2005) assumes that in addition to interest rate 
smoothing term the nominal interest rate responds to contemporaneous 
output and inflation while Clarida et al. (2000) estimate the Taylor rule 
with forward-looking inflation and output terms for the U.S. data. Kahn 
et al. (2007) provide an easy-to-follow discussion of the way the Taylor 
rule has influenced macroeconomic research and the Federal Reserve’s 
conduct of monetary policy. Given the mixed evidence on Taylor rule 
specifications, we see that in the near future empirical macroeconomic 
work will extend to comparison of new Keynesian macro models with 
different monetary policy rules.  
 

                                                 
7 Lindé (2005) specify the Taylor rule with an interest rate smoothing term to gain better 
empirical fit. Rotemberg and Woodford (1997) and Woodford (1999) analyzed variants of the 
Taylor rule from the point of view of transparency of monetary policy. 
8 Output gap, introduced by Okun (1962) into the macroeconomic analysis, is a broad measure of 
inflationary pressure in the economy. Theoretically, it is defined as the difference between actual 
output and its frictionless level. In new Keynesian models with Calvo pricing it proxies 
deviations of marginal cost from its frictionless level. Thus, positive values of the output gap 
imply that current marginal costs are on a higher level than they would be for the natural level of 
economic activity. Billmeyer (2004) discusses ways of measuring the output gap and evaluates 
their relative performance. In all papers here the one-sided HP filter is applied in estimating the 
potential output level. 
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Generally, the Taylor rule or its variants specified and estimated from 
data should possess a property that fulfils the Taylor principle. The 
Taylor principle is an essential and important part of the discussion of 
interest rate rules followed by central banks. According to the principle, 
interest rate should response more than one-to-one to an increase in 
inflation rate.  
 
The robustness of variants of the Taylor rule in different macro models 
has been examined, for instance by Levin et al. (1999). Rudebusch (2002), 
on the other hand, reports that variants of the Taylor rule can be seen to 
be robust especially to different model specifications of a closed 
economy. Svensson (2003) discusses the existence of instrumental rules 
and stresses that instrumental monetary policy rules should not be seen 
as mechanical rules but merely as guidelines for monetary policy 
conduct, leaving some room for judgment, as Taylor (1993, 2000) put it.  
 
 

1.1.4 Overview of the Empirical Monetary Policy Analysis: 
Calibration vs. Estimation  

 
In the 80’s and still in the 90’s general equilibrium models were 
frequently calibrated. The major issue with the calibration is that the 
economic model and the outcome of calibration need to be seen as highly 
sample-specific. Furthermore model comparison is obscured for 
calibrated models, since for calibration purposes one needs to assume ex-
ante that the calibrated model is the true model leaving no room for 
model uncertainty. For a reader interested Hansen and Heckman (1996) 
provide a fruitful discussion of calibration methods in economics and 
give calibration examples for the RBC model of Kydland and Prescott 
(1982). We claim that the robust likelihood-based parameter estimation 
fills the gap of econometric inference of large-scale economic models. We 
argue that by likelihood-based estimation of parameters we achieve 
consistent statistical analysis of parameters and may execute tractable 
model selection.  
 

1.1.4.1 Vector Autoregressive Monetary Models 
 
During recent decades VAR models are the most widely applied 
statistical models to analyze dynamic properties of macro models and 
form forecast for their variables. In the literature the VAR models are 
acknowledged to come with robust properties to analyze the dynamics 
of a set of variables which together form an endogenous system of 
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equations. VAR models are considered as empirical reduced-form 
approximations of underlying structural macro models, i.e. an 
approximation of underlying macro models, such as new Keynesian 
macro models. VAR models also allow empirical analysis of monetary 
policy abstaining from over-reliance on specific model structure. 
However, despite their robust properties as forecasting model the 
current literature questions the forecast performance of VAR models and 
suggests that theoretically tractable DSGE models can form an option. 
 
In a structural VAR (SVAR) model, for instance, we allow simultaneity 
of model variables (and their shocks) derived from underlying economic 
theory. Definitions of reduced and structural-form models were first 
presented by Haavelmo (1943), who addressed the identification 
problems in simultaneous equations. We see that a reduced-form model 
provides reduced representation of the model variables, whereas a 
structural-form model is a reformulation of the reduced form imposing a 
view suggested by the underlying economic theory.   
 
Dynamic effects of changes in monetary policy stance can be analyzed 
through identified unanticipated movements in the monetary policy 
instrument specified in VAR models. For analysis of the effects of 
monetary policy in the United States, the Federal Funds Rate (FFR) is 
taken as the monetary policy instrument describing the stance of policy. 
Researchers have adopted the view that in the euro area the Eonia9 
interest rate has the same role as the FFR. Unforeseen movements in the 
FFR or Eonia interest rates are assumed to provide good estimates of 
monetary policy shocks. 
 
Sims (1980) in his well-known article proposes that the underlying 
economic model is a good starting-point to derive identifying restrictions 
for VAR model parameters. Sims and Zha (1999) suggest that Bayesian 
statistics should be favored in structural SVAR models, especially in the 
case of an overidentified VAR model. The lag length of Bayesian VAR 
models is obtained by marginal likelihood-based inference or by 
calculating average discrepancy measures.  
 
Identification of a VAR model is required to inspect the dynamic effects 
of a structural shock in other model variables. Hence, orthogonal 
structural shocks are assumed and cross-equation restrictions are set in a 
matrix presenting the contemporaneous effects of VAR model variables. 
Bernanke (1986) holds that structural shocks are ´primitive´ exogenous 
forces not observed by an econometrician. The reason for regarding 
                                                 
9 Eonia (Euro overnight index average) is the weighted average of overnight Euro Interbank 
Offer Rates for inter-bank loans. 
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shocks as orthogonal is that they are primitive in nature and therefore do 
not have common causes and hence are uncorrelated. A closer, textbook 
inspection of VAR models can, for instance, be found in Hamilton (1994). 
Lütkepohl (2005) gives an exhaustive introduction to VAR models, while 
Sims and Zha (1999) deepen the discussion on identification issues and 
provide posterior-based confidence intervals for impulse responses. 
Giannini and Amisano (1997) elaborate the concept of rank identification 
of VAR models in the econometric context. A more philosophical 
discussion of usefulness and identification of economic measurements 
for policy and predictions is given in Marschak (1953). The bearing point 
in Marschak’s writings is that the policy maker does not necessarily need 
to know exactly the structure of an economy in order to make good 
policy decisions and limited knowledge of the economic structure might 
be sufficient. The message here is that statistical descriptions of reality 
can be enough for a policy maker and this is what it is all about in SVAR 
models. 
 
There is a large body of VAR literature on policy effects in the euro area. 
The most relevant are Clausen and Hayo (2006), Mojon and Peersman 
(2001), Peersman (2004) and Angeloni and Ehrmann (2004). A general 
message of these studies is that heterogeneous inflation persistencies and 
structural divergences across EMU member countries are to cause 
asymmetric responses to an unanticipated shock in monetary policy 
instrument. Bernanke et al. (2005) suggest a very promising direction of 
future research to measure monetary policy effects. They apply a factor-
augmented VAR (FAVAR) model that combines factor analysis of large 
data sets and traditional structural VAR modeling to have a 
comprehensive picture of the effect of monetary policy on economy. In 
similar vein, Milani (2008) assumes that decision makers have an access 
to wider information set on economic indicators than a mainstream 
economic model assumes and presents promising results by capturing 
the actual interest rate path smoothly. 
 
In the monetary policy analysis (three first essays) we describe dynamics 
of monetary policy shock transmission in the euro area relying on VAR 
model framework. We discuss uncertainty how to identify shocks in a 
VAR model for euro area inflation, output gap, monetary policy 
instrument and EMU member country inflation. We also show in 
Bayesian VAR model that the year-on-year producer price inflation’s 
reaction to monetary shock is asymmetric if the monetary policy is tuned 
and exercised conditional on Germany, France and Italy. We then 
estimate a Bayesian SVAR model for an open economy new Keynesian 
model between the euro area and EMU member country.  Our SVAR 
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model is then identified using parameter restrictions of the underlying 
model.  
 

1.1.4.2 Generalized Method of Moments and Likelihood-Based 
Estimation Methods 

 
Instead of estimating a VAR model to approximate the likelihood 
function of the new Keynesian DSGE model, underlying dynamic 
equations can be estimated by the GMM (generalized method of 
moments, see e.g. Hayashi, 2000) method or by a full information 
likelihood approach. In GMM or likelihood-based parameter estimation 
the economic model is estimated as it is in its structural form, whereas in 
VAR modeling the economic model is rather in a role suggesting 
identification restrictions to attain identified impulse responses. Hence, 
VAR models are more suitable for descriptive data analysis.  
 
Recent empirical studies of contemporary macroeconomic models apply 
full-information likelihood estimation methods. A major drawback in 
GMM parameter estimation is its vulnerability to use of instrumental 
variables, which often weakens the transparency of estimation results. 
Furthermore, Lindé (2005) reports that GMM estimation evidence on the 
new Keynesian Phillips curve is mixed, and the GMM estimation results 
of Galí and Gertler (1999), Roberts (2005) and Fuhrer (1997) suggest 
different specifications for the new Keynesian Phillips curve, indicating 
possible problems with instrumental variables.  
 
The role of VAR models as superior forecasters of macroeconomic 
variables has recently been rivaled. Before the studies by Smets and 
Wouters (2003), Del Negro et al. (2007) and Dib et al. (2008), it was 
common among new Keynesian macro model practitioners to relax 
cross-equation restrictions in a VAR model to gain an increase in model 
fit and obtain efficient forecasts. However, for instance, Del Negro et al. 
(2007) investigate the forecasting performance of the new Keynesian 
DSGE model and obtain evidence that the forecasting performance of 
large-scale new Keynesian DSGE models can be comparable to that of 
Bayesian VAR models. Antipin and Luoto (2008) (the fourth essay) come 
to the same conclusion for a small-scale new Keynesian DSGE model. 
These findings would suggest that new Keynesian DSGE models can be 
useful tools in forecasting and quantitative policy analysis. 
 
Recent empirical macro-economic studies have been made mostly in the 
Bayesian framework. This is because the classical theory of inference is 
seen to limp, for instance, in analysis of VAR models with 
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overidentifying restrictions and small sample sizes.  In addition, impulse 
response functions are (highly) non-linear functions of VAR model 
parameters and for finite sample sizes (their properties are tricky to 
attain). In classical statistics the empirical impulse responses can also be 
seen only approximative, since they are based on asymptotic results of 
estimators. This evidently reduces the advisability of applying classical 
statistical methods to VAR models and increases the attractiveness of 
Bayesian econometrics; see e.g. Hamilton (1994), Sims and Zha (1999) 
and Ni and Sun (2005).  
 
The likelihood-based estimation of the new Keynesian DSGE models 
may also involve problems. For example, the DSGE models come 
typically with multimodal likelihood function leading to challenges in 
maximum likelihood parameter estimation10. From the economic point 
of view a multimodal likelihood function suggests that the likelihood 
peaks in regions of parameter space on which the parameter values can 
be economically infeasible. This issue can be circumvented in Bayesian 
econometrics with informative prior distributions for structural 
parameters, so that the probability of parameter values at odds with 
those economically feasible is down-weighted. Similarly, informative 
priors will add curvature to the likelihood function to ease numerical 
maximization, as Sungbae and Schorfheide (2007) report. Limiting 
bounds for regions of feasible parameter values of DSGE models can be 
obtained, for instance, from microeconometric evidence while eliciting 
prior distribution of model parameters. 
 
The trade-off from using informative prior distributions is increased 
subjectivism in posterior analysis, which has been criticized in the 
literature. On the other hand, however, Fernández-Villaverde and 
Rubio-Ramírez (2004) argue that informative prior distributions may 
turn out to be useful in avoiding potential misspecification and can be 
eminently helpful in parameter identification. Furthermore, Bayesian 
analysis based on informative prior distributions allows tractable model 
selection, comparison and development methods through marginal 
likelihood values.  
 
A current and prominent area for future research is to evaluate the 
likelihood of a macro model solution for instance with Sequential Monte 
Carlo (SMC) methods. Here one needs not to linearize the underlying 
macro model and assume Gaussanity of model errors but instead 
approximate the likelihood implied by the approximated linear solution 

                                                 
10 See for instance Hamilton (1994) as a text book reference for maximum likelihood estimation of 
log-linearized DSGE model based on the Kalman filtering technique. 
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of the model, see Fernández-Villaverde and Rubio-Ramírez (2005, 2006 
and 2007) and Fernández-Villaverde (2009). 
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1.2 A Short Introduction to Bayesian Econometrics  

 
In this chapter we have an introduction to Bayesian statistics in context 
of statistical topics we have in the thesis essays. The chapter also 
comments major differences between the Classical and Bayesian schools 
of statistical inference.  
 
In Bayesian econometrics one collects a sample of observations, i.e. data 
(y), for some model Mi. The information content of the sample is then 
used in updating prior beliefs of unknown parameter θ described in 
( )iMp |θ  via the density of observations L(y|θ, Mi) (the likelihood 

function). Eventually, the statistical inference is based on the properties 
of the conditional distribution p(θ|y, Mi), called posterior distribution. In 
contrast, in non-Bayesian econometrics one starts with a blank mind 
regarding the parameter value, θ. 
 
In particular, a posterior distribution for θ of given data y and model Mi 

may be written as  
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Equation (1) is an updated version of the prior distribution. If the data 
come with high information content as to the location and the shape of 
the parameters’ distribution, and the prior knowledge is not analogous, 
we can expect the posterior distribution to differ from the prior 
distribution. The denominator in Equation (1) is the normalizing 
constant ensuring that the distribution integrates to one, and this is 
called the marginal likelihood. The marginal likelihood is a basic 
Bayesian measure of model fit and it is a key quantity for measuring 
posterior model probabilities, which have an important role in Bayesian 
decision-making (Andersson and Karlsson, 2007).  
 
 

1.2.1 Classical vs. Bayesian Statistics 

 
Two practical differences between the classical (non-Bayesian) and the 
Bayesian theory of inference are evident. First, the classical school 
conditions on unknown parameter and apply a likelihood function to 
learn from it using the observed data points. Bayesians, on the other 
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hand, base their inferences on the full density p(θ, y|Mi), having first 
specified the prior distribution of a parameter.  
 
Furthermore, additionally to the way how the conditioning is 
implemented, there is a conceptual difference between the classical and 
the Bayesian schools regarding the interpretation of parameter estimates 
and confidence intervals. Specifically, the Bayesian posterior intervals 
give us a specified probability p that the value of parameter θ lies within 
a certain confidence interval conditional on the observed data. The 
corresponding classical statement would be that the confidence interval 
would cover the true parameter value in a certain percentage of cases if 
the random experiment was repeated infinitely. This implies that 
according to classical theorists, a confidence interval can be obtained if 
calculations are repeated many times or a really large dataset is 
available. Even then, however, there is no guarantee that the calculated 
confidence interval would contain the unknown parameter value θ. This 
is not the case in the Bayesian theory of inference, as explained above; 
See O’Hagan (1988), Zellner (1971), DeGroot (1970), Poirier (1988) or 
Koop (2003) for a detailed treatment of the Bayesian approach in 
statistics and econometrics. Especially Bauwens et al. (1999) concentrate 
on dynamic models and the Bayesian econometrics therein. Geweke 
(2005) covers many important aspects of modern computational 
Bayesian econometrics. Additionally, Zellner (2008) provides a 
comprehensive summary of advances in Bayesian econometrics and 
relates the discussion to comparing Bayesian to classical methods.  
 
To sum up, with non-Bayesian statistics a sufficient number of 
observations is in most cases required to achieve eligible outcomes. As 
the name implies the asymptotic consistency of many relevant estimators 
of non-Bayesian econometrics is achieved only for high numbers of 
observations. Good examples are the frequently applied instrumental 
variable estimators, which attain their good properties specifically for 
large sample sizes. A statistician will run into problems in assessing the 
statistical significance of non-Bayesian parameter estimates of consistent 
estimators applied to low numbers of observations and such results 
should be seriously questioned. A low number of observations implies 
for Bayesians that the prior distribution will not be updated with an 
ample amount of information in the likelihood function. This is because 
the posterior distribution can be seen as a weighted average of the prior 
distribution and the likelihood function. The need to specify prior 
distributions suggests that one should be careful in eliciting prior 
distributions for small sample sizes in order to avoid overweighting the 
prior knowledge in parameter estimates.  
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1.2.2 Prior Distributions, VARs and Bayesian Model 
Comparison 

 
The prior distributions form a vital element in Bayesian statistics, and 
Bayesian theory is often criticized in the context of priors. It would seem 
that an econometrician could ex ante alter the posterior results and 
design such a prior distribution which produces subjectively favorable 
outcome. This would of course immediately contaminate the objectivity 
of results. To avoid issues of wrongly elicited informative prior 
distributions, Bayesian econometricians may decide to proceed with 
non-informative prior distributions. In line with these aspects Bayesian 
econometrics has a long history of non-informative prior distributions. In 
Jeffreys (1939, 1961) one finds through presentation of improper and 
non-informative priors, and Zellner (1971), Koop (2003) and Gelman et 
al. (2004) present eminently useful textbook treatments of these priors in 
various econometrical contexts.  
 
In lack of pre-knowledge of the parameter values of a VAR model, the 
posterior distribution is typically obtained by updating uninformative 
prior parameter distribution with sample information channeled 
through the likelihood function. Typically a constant prior for VAR 
model autoregressive parameters and Jeffreys-type11 uninformative prior 
distribution for the model error covariance matrix is specified. Such a 
joint prior distribution allows streamlined posterior distribution 
simulation in small-scale VAR models (i.e. VAR models especially 
designed for small numbers of variables), like VAR models for a closed-
economy setting. Phillips’ (1991) suggestion of specifying a joint Jeffreys 
prior on both autoregressive parameters and elements of error 
covariance matrix for a VAR model should be rejected, since a joint 
Jeffreys prior in time series models is found to be computationally 
inconvenient and highly sample-size dependent. Additionally, Berger 
and Bernardo (1992) point out that the likelihood function of high-
dimensional VAR model, i.e. a VAR model of many variables, should not 
be coupled with a Jeffreys prior, since this has been shown to produce 
undesirable results. In turn, in high-dimensional VAR models 
informative Minnesota priors á la Minnesota group (see more in 
Litterman, 1980, 1986, and Doan et al., 1984) could be used. Alternatively, 
one could follow the lines of Berger and Bernardo (1992), Yang and 
Berger (1994) and Berger and Strawderman (1996) in designing priors for 
high-dimensional VAR models. A rather rigorous treatment of selection 
for VAR models is provided in Kadiyala and Karlsson (1997). 

                                                 
11 Diffuse prior and Jeffrey’s prior may be found interchangeably used as synonyms in the 
literature. 
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Non-informative prior distributions appear with high variance or they 
belong to improper distributions, that is, they are non-integrable. A high 
prior variance of the underlying parameter or model probability 
indicates unawareness of the econometrician as to the true location of a 
parameter or model likelihood. Other motivations to assign a non-
informative prior distribution are cases where the econometrician has no 
idea as to the values the parameter might take or does not want his 
subjective prior knowledge to affect the posterior analysis. Generally 
seen, the choice of non-informative prior distribution rests on the notion 
that the econometrician lets the data speak for themselves as we do in 
the first three essays. Informative prior distributions will prove handy, 
especially in estimation of new Keynesian DSGE macro models, where 
the interesting posterior densities for parameters can be restricted with 
suitable informative prior distributions to regions which are feasible in 
the economic sense. Because of this reason we in essay 4 specify 
informative prior distributions for model parameters.  
 
Choice of a proper or improper prior distribution will affect model 
comparison. This is because the Bayes factor is defined as the ratio of the 
marginal likelihoods of two competing models. In elicitation of prior 
distribution one needs to know whether the model comparisons will be 
based on marginal likelihoods. Thus, if the prior distribution is 
improper, then the model comparison based on marginal likelihoods is 
not possible (The Bayes factor becomes indeterminate), since we do not 
know the normalizing constants of improper prior distributions. As 
Hoeting et al. (1999) and Wasserman (2000) emphasize, marginal 
likelihoods have a vital role in Bayesian model selection, since marginal 
likelihoods enable consistent comparison of nested and non-nested 
models. This should be seen as one of the very attractive features of 
Bayesian compared to Classical statistics.  
 
Model comparison can also been based on approximate marginal 
likelihoods, as O´Hagan (1995) suggests. Villani (2001), for example, 
invokes a fractional marginal likelihood approach in deciding the lag 
length for VAR models under improper parameter prior distribution. We 
also follow Villani (2001) and calculate fractional likelihood function 
values while deciding the lag length of a VAR model in the first three 
essays. Garratt et al. (2009) compare the approximate marginal likelihood 
values of competing models, relying on the asymptotic approximation to 
the marginal likelihood first presented in Schwarz (1978). In the second 
essay the most probable information set conditioning the ECB’s 
monetary policy decisions is obtained by calculating approximate 
marginal likelihood values using the Taylor rule as ECB’s monetary 
policy rule. 
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The posterior model odds calculated along these lines will favor the 
same model specification as would the Schwarz Bayesian Information 
Criterion (BIC). As an alternative to the marginal likelihood-based model 
comparison, Gelman et al. (2004) propose an average discrepancy 
measure which approximates the posterior expectation of the deviance 
between the data and the model. They advocate that the average 
discrepancy should be used in model comparison for improper prior 
distributions, since the estimated average discrepancy is not sensitive to 
the design of prior distribution. However, a number of questions should 
be dealt with before applying either average discrepancy or marginal 
likelihood approach in model comparison. Namely, the problem with 
average discrepancy is that it has no proper scale whereas model 
comparison based on marginal likelihood assumes that the list of 
rivaling models contains the true model.  
 
The posterior distribution ( )iMyp ,|θ  could be of the form of an 
unknown distribution when non-conjugacy12 prior distributions are 
used. To draw samples from the posterior distribution one then needs to 
apply numerical integration methods. Samples drawn from the posterior 
distribution are used in describing the statistical properties of the 
posterior distribution. A current practice is to use Markov Chan Monte 
Carlo (MCMC)-based methods in enabling the numerical evaluation of 
posterior distribution. The validity of Monte Carlo chains as 
representatives of samples drawn from the posterior must be checked 
with caution. This means that the convergence of the MCMC sampler to 
an ergodic distribution needs to be assessed with formal diagnostics. A 
textbook by Robert and Casella (2004) provides, with examples, an 
excellent updated discussion and a rigorous treatment of Monte Carlo 
statistics. 
 
 

                                                 
12 A family of prior probability distributions p(θ|Mi) is conjugate to a family of likelihood 
functions p(y|θ, Mi) if the resulting posterior distributions p(θ |y, Mi) are in the same family as 
p(θ|Mi).  
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1.3 Summaries of Thesis Studies 

 

1.3.1 Essay 1: Dynamics of Inflation Responses to Monetary 
Policy in the Euro Area 

 
In this essay we capture the dynamics of year-on-year consumer price 
inflation responses to an unanticipated expansionary monetary policy 
shock in the euro area with a VAR model. The variables and potential 
restriction schemes ensuring identification of a VAR model are derived 
from variants of the new Keynesian closed economy macro model. 
Variables specified govern inflation dynamics in the euro area and 
member countries, economic activity and monetary policy. The demand 
side of the economy is described by the difference of total industrial 
production from its potential level, while the supply side is captured 
with help of the new Phillips curve and monetary policy is conducted 
according to a variant of the Taylor rule, and instrumented with the 
Eonia interest rate. The monthly data cover the period 1999.1 to 2007.10.  
 
We motivate the research of this essay as follows. Before entering the 
EMU program an independent member country central bank could 
stimulate the domestic economy if deemed necessary. Now, in the EMU 
the independency of domestic central banks can be seen to be lost, the 
decision power invested in monetary policy tools being handed over to 
the ECB officials. The ECB declares that it will conduct a monetary policy 
feasible to all EMU member countries. Heuristically this means that the 
ECB should, with its monetary policy tools, provide and maintain fertile 
economic conditions in the euro area in such a way that no member 
country should suffer from its monetary policy actions. Past economic 
conditions in member countries imply that economic conditions have 
been and are heterogeneous per se, which means that common monetary 
policy actions based on euro area aggregate information will most likely 
cause asymmetric effects and the design of such monetary policy is 
suboptimal (De Grauwe (2000), De Grauwe et al. (2004, 2006)). Hence, we 
agree for instance with Clausen and Hayo (2002, 2006), Huchet-Bourdon 
(2003) and Durand et al. (2008) that the ECB should find itself confronted 
with challenges in tuning and conducting monetary policy. 
 
A VAR model is a natural choice for a statistical model to capture the 
correlation structure of the variables specified. In this essay we suggest 
different short-run simultaneous restriction schemes ensuring the 
identification of the VAR model. The most probable short-run restriction 
scheme is found by calculating the posterior model probabilities for a 
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VAR model identified by a different scheme. This is the main 
contribution of the essay.  
 
The data support an identification scheme in which the monetary policy 
rule is to have simultaneous effects on euro area and domestic price 
inflation. For the supported scheme the stance of the monetary policy in 
the euro area is also affected by domestic, EMU member country 
inflation. One important notion is that traditional Cholesky identification 
is weakly supported for variables specified. In the posterior estimation a 
Jeffreys-type prior distribution for short-run effects is assumed and the 
posterior distribution of the difference between impulse responses of 
euro area inflation and member country inflation to common monetary 
policy shock is simulated and compared with Cholesky identified VAR 
model impulse responses.  
 
Monthly euro area data supports the conception that unanticipated 
monetary policy operations of the ECB will cause asymmetric inflation 
responses in the euro area. Specifically, the amplitude of 
contemporaneous inflation responses will be heterogeneous in the EMU 
member countries. An interesting finding is that the immediate inflation 
response of Germany, France and Italy is more sluggish to an 
expansionary monetary policy shock that on average in the euro area. 
Clausen and Hayo (2006) report similar finding. 
 
 

1.3.2 Essay 2: Information Sets Used by the ECB in   
Determining Monetary Policy Operations and      
Dynamic Monetary Responses of Producer Price Inflation: 
A Quantitative Study 

 
In this essay we empirically survey information sets on which the ECB 
most likely bases its monetary policy decisions and investigate how 
year-on-year producer price inflation responses to an identified shock in 
the monetary policy instrument in the euro area. Assessment of the 
posterior probabilities of information sets is an obvious accretion to the 
literature on the conduct of monetary policy by the ECB. The 
information conditional on which monetary policy decisions are made 
are evidently crucial while the ECB steers overnight interest rates to 
stabilize price inflation and maintain fertile economic conditions in the 
euro area.  
 
We allow for information sets which only represent the subset of total 
information available. We do this by forming EMU member country 
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coalitions and construct relevant variables to be used in the Taylor rule 
and impulse response analysis. In view of known differences between 
the economic structures among the member countries, conduct of 
monetary policy conditioned not on the whole euro area information but 
instead on some subset of it, might have more or less favorable effects in 
the EMU member countries. This is the working hypothesis of the essay. 
For instance Kool (2005) finds that German economic conditions have a 
crucial role while the ECB tunes its monetary policy operations. 
However, we do not find statistical evidence in our data to say that 
German conditions would be driving the monetary policy through the 
Taylor rule in the euro area. 
 
In the analysis we assume that the variables specified in the Taylor rule 
constitute sufficient statistics to capture the monetary policy 
phenomenon in the euro area. We estimate a VAR model for the 
information set obtained and calculate impulse response function values 
for the difference in year-on-year producer price inflations in the euro 
area and a few peripheral EMU member countries. The estimation data 
comprise monthly data for period 1999.1 – 2006.4. 
 
The marginal likelihood calculations show that the economic conditions 
of the three largest EMU member countries (Germany, France and Italy) 
are acceptable as presenting the information set conditional on which the 
ECB rests in deciding on monetary policy actions. This backs up Clausen 
and Hayo (2006) who find that Germany, France and Italy share similar 
monetary policy transmission mechanisms. We could not find evidence 
for the assertion that the Bundesbank was the predecessor to the ECB as 
Buiter (1999) suggests.  
 
Drawn impulse responses of year-on-year producer price inflation 
suggest that unexpected variation in the monetary policy instrument 
conditioned on the information pertaining to the three largest EMU 
member countries has statistically asymmetric effects in year-on-year 
producer price inflation. The asymmetricity of the drawn impulse 
responses arises in two ways – the monthly euro area data supports both 
immediate and lagged asymmetric responses. In the case of Finland the 
asymmetric response is immediate and vanishes after 1 month. For 
Ireland and Portugal the asymmetric responses prevail for a month after 
an expansionary monetary policy shock, and die off in 5 months. These 
results give reason to expect that shocks to monetary policy instrument 
will cause changes in mutual demand for tradable sector goods 
produced in EMU member countries. 
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1.3.3 Essay 3: Are There Asymmetric Inflation Responses in the 
EMU? 

 

In this essay we apply the new Keynesian open economy macro model 
of Galí and Monacelli (2005) in setting identifying restrictions for 
impulse response analysis of consumer price inflation in the euro area. 
The five-equation macro model captures the evolutions of the inflation 
and output gap for both the euro area (excluding the domestic EMU 
member country) and the domestic member country. The model 
specifies terms of trade between the two economies modeled. The 
economic model is closed by the assumption that monetary policy is 
operated through a variant of the Taylor rule.  
 
The relevance of the implied parameter cross-equation simultaneous 
effect restrictions is assessed by posterior estimation of the 
hyperparameter that measures prior beliefs. In our VAR-analysis of 
monthly 1999.1-2006.4 euro area data the posterior evidence suggests 
that prior beliefs on simultaneous effects of model variables of the 
underlying new Keynesian open economy macro model are of relevance 
for these data.  
 
The drawn impulse responses support the claim that an expansionary 
monetary policy shock in the euro area does not imply asymmetric price 
inflation responses in EMU member countries. This result is partly at 
odds with the outcome of the first essay. One explanation to different 
impulse response results is that in this essay the dynamics of annualized 
price inflation were analyzed in open economy model framework 
whereas in the first essay we focus on dynamics of year-on-year price 
inflation series in a closed economy model. However, one should note 
that the impulse responses attained from recursive identification are in 
line with the ones of the first essay. 
 
 

1.3.4 Essay 4: Forecasting Performance of the Small-scale Hybrid 
 new Keynesian Model 

 
With this essay we provide a method for the Bayesian analysis of a 
simple closed economy new Keynesian DSGE macro model for U.S. data 
and compare the forecasting performance of the estimated model to that 
of naïve forecasts based on univariate random walks and Bayesian VAR 
models. In particular, the predictability of three key macroeconomic 
variables, inflation, short-term nominal interest rate and a measure of 
output gap, are studied. The analysis is conducted with both quarterly 
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US real-time and current vintage data from the period of 1953.2 to 
2004.4. The source of the current vintage data is the FREDII databank of 
the Federal Reserve Bank of St. Louis and the source of the real-time data 
is the Federal Reserve Bank of Philadelphia. The new Keynesian DSGE 
macro model is similar to one discussed in Clarida et al. (1999) and 
maximum likelihood estimated in Lindé (2005). 
 
The estimation method chosen, the Bayesian full-information method, 
proved to be more efficient than the method based on the Kalman filter, 
which has recently became current practice in the estimation of dynamic 
structural models. As did Lindé (2005), we also found that the full-
information maximum likelihood (FIML) estimates were sensitive to the 
starting values of maximization due to the multimodality of likelihood. 
We noted that the estimator easily converged to the parameter region of 
more or less infeasible parameter values even if the algorithm was 
restricted to an economically feasible region. The Bayesian full-
information estimation method managed to produce reliable parameter 
estimates. This is because it specifies an informative joint prior 
distribution for model parameters which both allows parameters to be 
estimated fairly freely and importantly, keeps the posterior distribution 
in economically feasible region. In closer detail, the marginal priors of 
the preference related and policy parameters are derived from micro-
level studies, while the priors of the autoregressive parameters are based 
on a simple parameter transformation, which forces the posteriors of 
these parameters to be located in the interval (–1, 1). The standard 
deviations of structural shocks are assumed to follow an inverse-gamma 
distribution with the shape and scale parameters yielding fairly loose 
priors.  
 
Forecasting performance evidence emanating from out-of-sample 
forecasts implies that in the entire forecast sample (period 1976.4-2004.4) 
the forecasts of the new Keynesian DSGE macro model outperform those 
of the Bayesian VARs. In the low inflation period (1990.1-2004.4) all the 
multivariate forecasting methods seem to produce equally accurate 
forecasts. Both the new Keynesian DSGE macro model and the Bayesian 
VAR models turned out to produce inflation forecasts which 
outperformed naïve forecasts for up to six quarters in all samples. The 
results presented in this essay are important, since Atkeson and Ohanian 
(2001) found that the one-year-ahead Federal Reserve’s Greenbook 
inflation forecast has not been superior on average to the naïve forecast 
since 1984.  
 
The results of this essay are particularly interesting, in that in the recent 
current literature various papers have suggested different ways to 
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improve the forecast performance of new Keynesian DSGE macro 
models at the cost of increasing the complexity of model mechanisms 
and model uncertainty, thus reducing the practicability of suggested 
approaches in applied work.  



 34 

References 

 

Andersson, M. K. and Karlsson, S. (2007), Bayesian forecast combination 
for VAR models, Sveriges Riksbank, Working paper series, No. 216. 
 

Angeloni, I. and Ehrmann, M. (2004), Euro Area Inflation Differentials, 
ECB Working Paper, No. 388. 
 

Antipin, J. and Luoto, J. (2008), Forecasting Performance of the Small-
scale Hybrid New Keynesian Model, Helsinki School of Economics Working 
Paper Series, No. W-451. 
 
Atkeson, A. and Ohanian, L. E. (2001), Are Phillips curves useful for 
forecasting inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 
Vol. 25, pp. 2–11. 
 
Bauwens, L., Lubrano, M. and Richard, J. F. (1999), Bayesian Inference in 
Dynamic Econometric Models, Oxford University Press. 
 
Benigno, P. (2004), Optimal Monetary Policy in a Currency Area, Journal 
of International Economics, Vol. 62, pp. 293-320. 
 
Berger, J. O. and Bernardo, J. M. (1992), On the Development of 
Reference Priors (with discussion), In Bayesian Statistics 4 (J. M. Bernardo 
et al. eds.), pp. 35-60.  
 
Berger, J. O. and Strawderman, W. E. (1996), Choice of Hierarchical 
Priors: Admissibility in Estimation of Normal Means, Annals of Statistics, 
Vol. 24, pp. 931–951. 
 
Bernanke, B. S. (1986), Alternative Explanations of the Money-Income 
Correlation, Carnegie-Rochester Conference Series on Public Policy, pp. 49-
100. 
 
Bernanke, B. S., Boivin, J. and Eliasz, P. (2005), Measuring the Effects of 
Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) 
Approach, The Quarterly Journal of Economics, Vol. 120, pp. 387-422. 
 
Billmeier, A. (2004), Ghostbusting: Which Output Gap Measure Really 
Matters?, IMF Working paper series, No. 04/146.  
 



 35 

Buiter, W. (1999), Six Months in the Life of the Euro, What Have We 
Learned?, Unpublished Manuscript. 
 
Canova, F. (2006), Monetary Policy and the Evolution of the US 
Economy, CEPR Discussion Papers, No. 5467. 
 
Clarida, R., Jordi G., and Gertler, M. (1998), Monetary Policy Rules and 
Macroeconomic Stability: Evidence and Some Theory, Quarterly Journal of 
Economics, Vol. 1, pp. 147-180.  
 
Clarida, R., Jordi G., and Gertler, M. (1999), The Science of Monetary 
Policy: A New Keynesian Perspective, Journal of Economic Literature, Vol. 
37, pp. 1661–1707. 
 
Clarida, R., Galí, J. and Gertler, M. (2000), Monetary Policy Rules and 
Macroeconomic Stability: Evidence and Some Theory, Quarterly Journal of 
Economics, Vol. 115, pp. 147–180. 
 
Clausen, V., and Hayo B., (2002), Asymmetric Monetary Policy Effects in 
EMU, ZEI Working Paper B04. 
 
Clausen, V., and Hayo B., (2006), Asymmetric Monetary Policy Effects in 
EMU, Applied Economics, Vol. 38, pp. 1123-1134. 
 
Cooley, T. (1995), Frontiers of Business Cycle Research, Princeton 
University Press. 
 
De Grauwe, P. (2000), Monetary Policy in the Presence of Asymmetries, 
Journal of Common Market Studies, Vol. 38, pp. 593-612. 
 
De Grauwe, P. (2003), Economics of Monetary Union, 5th edition, Oxford 
University Press, Oxford. 
 
De Grauwe, P. and Sénégas, M-A. (2004), Asymmetries in Monetary 
Policy Transmission: Some Implications for EMU and its Enlargement, 
Journal of Common Market Studies, Vol. 42, pp. 757-773.   
 
De Grauwe, P. and Sénégas, M-A. (2006), Monetary Policy Design and 
Transmission Asymmetry in EMU: Does Uncertainty Matter?, European 
Journal of Political Economy, Vol. 22, pp. 787-808.  
 
DeGroot, M. (1970), Optimal Statistical Decisions, New York: McGraw-
Hill. 
 



 36 

Del Negro, M. (2003), Fear of Floating: A Structural Estimation of 
Monetary Policy in Mexico, Manuscript, Federal Reserve Bank of Atlanta. 
 
Del Negro, M., Schorfheide, F., Smets, F. and Wouters, R. (2007), On the 
Fit and the Forecasting Performance of New Keynesian Models, Journal 
of Business & Economic statistics, Vol. 25, pp. 143-162. 
 
Dib, A., Gammoudi, M. and Moran, K. (2008), Forecasting Canadian 
Time Series with the New-Keynesian Model, Canadian Journal of 
Economics, Vol. 41, pp. 138-165. 
 
Doan, T., Litterman, R. B. and Sims, C. (1984), Forecasting and 
Conditional Projections Using Realistic Prior Distributions, Econometric 
Reviews, Vol. 3, pp. 1–100. 
 
Durand, J.-J., Huchet-Bourdon, M. and Licheron, J. (2008), Sacrifice Ratio 
Dispersion Within the Euro Zone: What Can Be Learned About 
Implementing a Single Monetary Policy?, International Review of Applied 
Economics, Vol. 22, pp. 601-621.   
 
Fernández-Villaverde, J. (2009), The Econometrics of DSGE Models, 
NBER Working Paper, No. 14667. 
 
Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2004), Comparing 
Dynamic Equilibrium Economies to Data: a Bayesian Approach, Journal 
of Econometrics, Vol. 123, pp. 153–187. 
 
Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2005), Estimating 
Dynamic Equilibrium Economies: Linear versus Nonlinear Likelihood, 
Journal of Applied Econometrics, Vol. 20, pp. 891-910. 
 
Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2006), Solving DSGE 
Models with Perturbation Methods and a Change of Variables, Journal of 
Economic Dynamics and Control, Vol. 30, pp. 2509-2531. 
 
Fernández-Villaverde, J. and Rubio-Ramírez, J. F. (2007), Estimating 
Macroeconomic Models: A Likelihood Approach, Review of Economic 
Studies, Vo. 74, pp. 1059-1087. 
 
Fuhrer, J. C. (1997), The (Un)Importance of Forward-Looking Behavior in 
Price Specifications, Journal of Money, Credit and Banking, Vol. 29, pp. 338-
350.  
 



 37 

Galí, J. and Gertler, M. (1999), Inflation Dynamics: A Structural 
Econometric Analysis, Journal of Monetary Economics, Vol. 44, pp. 195-222. 
 
Galí, J. and Monacelli, M. (2005), Monetary Policy and Exchange Rate 
Volatility in a Small Open Economy, Review of Economic Studies, Vol. 72, 
pp. 707-734. 
 
Garratt, A., Koop, G., Mise, E. and Vahey, S. P. (2009), Real-time 
Prediction with UK Monetary Aggregates in the Presence of Model 
Uncertainty, Journal of Business and Economic Statistics (forthcoming). 
 
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004), Bayesian 
Data Analysis, 2nd edition, Chapman & Hall/CRC. 
 
Gerlach, S. and Schnabel, G. (2000), The Taylor Rule and Interest Rates in 
the EMU Area, Economic Letters, Vol. 67, pp. 165-171. 
 
Geweke, F. J. (2005), Contemporary Bayesian Econometrics and Statistics, 
UK: Wiley.  
 
Giannini, C., and Amisano, C. (1997), Topics in Structural VAR 
Econometrics, 2nd edition, Springer Verlag. 
 
Gros, D. and Hefeker, C. (2002), Common Monetary Policy with 
Asymmetric Shocks, CESinfo Working Paper, No. 705. 
 
Gros, D. and Hefeker, C. (2007), Monetary Policy in EMU with 
Asymmetric Transmission and Non-Tradable Goods, Scottish Journal of 
Political Economy, Vol. 54, pp. 268-282.  
 
Gordon, R. (1990), What is New-Keynesian Economics?, Journal of 
Economic Literature. 
 
Haavelmo, T. M. (1943), The Statistical Implications of a System of 
Simultaneous Equations, Econometrica, Vol. 11, pp. 1-12. 
 
Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press. 
 
Hansen, P. L. and Heckman, J. J. (1996), The Empirical Foundations of 
Calibration, The Journal of Economic Perspectives, Vol. 10, pp. 87-104. 
 
Hayashi, F. (2000), Econometrics, Princeton University Press. 
 



 38 

Hoeting, J. A., Madigan, D., Raftery A. E. and Volinsky, C. T. (1999), 
Bayesian Model Averaging: A Tutorial, Statistical Science, Vol. 14, pp. 
382-417. 
 
Huchet-Bourdon, M. (2003), Does Single Monetary Policy Have 
Asymmetric Real Effects in EMU? Journal of Policy Modelling, Vol. 25, pp. 
151-178. 
 
Jeffreys, H. (1939), Theory of Probability, 1st ed. Oxford, UK: Oxford 
University Press. 
 
Jeffreys, H. (1961), Theory of Probability, 3rd ed. Oxford, UK: Clarendon 
Press. 
 
Judd, J. P. and Rudebusch, G. D. (1998), Taylor Rule and the Fed: 1970-
1997, FRBSF Economic Review, Vol. 3, pp. 3-16. 
 
Kadiyala, K. R., and Karlsson, S. (1997), Numerical Methods for 
Estimation and Inference in Bayesian VAR-Models, Journal of Applied 
Econometrics, Vol. 12, pp. 99–132.  
 
Kahn, G. A., Asso, P. F. and Leeson, R. (2007), The Taylor Rule and the 
Transformation of Monetary Policy, Federal Reserve Band of Kansas, 
Research Working Paper, No. 11.  
 
Keynes, J. M. (1936), The General Theory of Employment, Interest and Money, 
New York: Prometheus Books, reprinted in 1997. 
 
Kool, C. J. M. (2005), What Drives ECB Monetary Policy, Working Paper 
Series Utrecht School of Economics, No. 05-03.  
 
Koop, G. (2003), Bayesian Econometrics, West Sussex, UK: Wiley. 
 
Kydland, F. E. and Prescott, E. C. (1982), Time to Build and Aggregate 
Fluctuations, Econometrica, Vol. 50, pp. 1345-1370. 
 
Levin, A. T., Wieland, V. and Williams, J. C. (1999), Robustness of Simple 
Policy Rules under Model Uncertainty, In Monetary Policy Rules, ed. John 
B. Taylor, Chicago: NBER and University of Chicago Press, pp. 263–299. 
 
Lindé, J. (2005), Estimating New-Keynesian Phillips Curves: A Full 
Information Maximum Likelihood Approach, Journal of Monetary 
Economics, Vol.  52, pp. 1135–1149. 
 



 39 

Litterman, R. B. (1980), A Bayesian Procedure for Forecasting with 
Vector Autoregressions, mimeo, Massachusetts Institute of Technology. 
 
Litterman, R. B. (1986), Forecasting with Bayesian Vector Autoregression 
- Five Years of Experience, Journal of Business and Economic Statistics, Vol. 
4, pp. 25-38. 
 
Lubik, T. and Schorfheide, F. (2005), A Bayesian Look at New Open 
Economy Macroeconomics, NBER Macro Annual, pp. 313-366. 
 
Lucas, R. (1976), Econometric Policy Evaluation: A Critique, Carnegie-
Rochester Conference Series on Public Policy, Vol. 1, pp. 19–46. 
 
Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, 
Springer Verlag. 
 
Mankiw, G., and Romer, D. (1990), New Keynesian Economics, MIT Press, 
Boston. 
 
María-Dolores, R. and Vázquez, J. (2006), How Does the New Keynesian 
Monetary Model Fit in the U.S. and the Eurozone? An Indirect Inference 
Approach, Topics in Macroeconomics, Vol. 6. 
 
Marschak, J. (1953), Economic Measurements for Policy and Predictions, 
Studies in Econometric Method by Cowles Commission Research Staff 
Members, John Wiley & Sons, Inc., New York. 
 
Martins, F., Machado, J. A. F. and Esteves, P. S. (2004), Modelling Taylor 
Rule Uncertainty: an Application to the EURO area, Economic Modelling, 
Vol. 21, pp. 561-572. 
 
Milani, F. (2008), Monetary Policy With a Wider Information Set: A 
Bayesian Model Averaging Approach, Scottish Journal of Political 
Economy, Vol. 1, pp. 1-30. 
 
Mojon, B., and Peersman, G. (2001), A VAR Description of The Effects of 
Monetary Policy in the Individual Countries of the Euro Area, European 
Central Bank’s Working Paper Series, No. 92.  
 
Moons, C. and Van Poeck, A. (2008), Does One Size Fit All? A Taylor-
rule Based Analysis of Monetary Policy for Current and Future EMU 
Members, Applied Economics, Vol. 40, pp. 193-199. 
 



 40 

Mundell, R. A. (1961), A Theory of Optimum Currency Areas, American 
Economic Review, Vol. 51, pp. 657-665. 
 
Nason, J. M. and Smith, G. W. (2008), Identifying the New Keynesian 
Phillips curve, Journal of Applied Econometrics, Vol. 23, pp. 525-551. 
 
Ni, S. and Sun, D. (2005), Bayesian Estimates for Vector Autoregressive 
Models, Journal of Business & Economic Statistics, Vol. 23, pp. 105-117. 
 
Okun, A. M. (1962), Potential GNP: Its Measurement and Significance, 
Proceedings of the Business and Economics Statistics Section, American 
Statistical Association, pp. 98–103; reprinted in Okun, A. M. (1983), 
Economics for Policymaking, Cambridge, MA: MIT Press, pp. 145–158. 
 
O’Hagan, A. (1988), Probability: Methods and Measurement, London: 
Chapman and Hall. 
 
O’Hagan, A. (1995), Fractional Bayes Factors for Model Comparison, 
Journal of the Royal Statistical Society B, Vol. 57, pp. 99-138.  
 
Peersman, G. (2004), The Transmission of Monetary Policy in the Euro 
Area: Are the Effects Different Across Countries, Oxford Bulletin of 
Economics and Statistics, Vol. 66. 
 
Phillips, P. C. B. (1991), To Criticize the Critics: An Objective Bayesian 
Analysis of Stochastic Trends, Journal of Applied Econometrics, Vol. 6, pp. 
333-363. 
 
Poirier, D. J. (1988), Frequentist and Subjectivist Perspectives on the 
Problem of Model Building in Econometrics, Journal of Economic 
Perspectives, Vol. 2, pp. 121-144. 
 
Rabanal, P. and Rubio-Ramirez, J. (2005), Comparing New Keynesian 
Models of the Business Cycle: A Bayesian Approach, Journal of Monetary 
Economics, Vol. 52, pp. 1151–1166. 
 
Robert, C. and Casella, G. (2004), Monte Carlo Statistical Methods, Springer 
text in Statistics, Springer Verlag. 
 
Roberts, J. M. (2005), How Well Does the New Keynesian Sticky-Price 
Model Fit the Data?, Contributions to Macroeconomics, Vol. 5, pp. 1206-
1206.  
 



 41 

Rotemberg, J. J. and Woodford, M. (1997), An Optimization-Based 
Econometric Framework for the Evaluation of Monetary Policy, NBER 
Macroeconomics Annual, pp. 297-346. 
 
Rudebusch, G. D. (2002), Assessing Nominal Income Rules for Monetary 
Policy with Model and Data Uncertainty, The Economic Journal, Vol. 112, 
pp. 402—432. 
 
Schwarz, G. (1978), Estimating the Dimension of a Model, Annals of 
Statistics, Vol. 6, pp. 461-464. 
 
Sims, C. A. (1980), Macroeconomics and Reality, Econometrica, Vol. 48, 
pp. 1-48. 
 
Sims, C. A. and Zha, T. (1999), Error Bands for Impulse Responses, 
Econometrica, Vol. 67, pp. 1113–1155. 
 
Smets, F. and Wouters, R. (2003), An Estimated Stochastic Dynamic 
General Equilibrium Model of the Euro Area, Journal of the European 
Economic Association, Vol. 1, pp. 1123-75. 
 
Sooreea, R. (2007), Are Taylor-Based Monetary Policy Rules Forward-
Looking? An Investigation Using Superexogeneity Tests, Applied 
Econometrics and International Development, Vol. 2, pp. 87-94. 
 
Sungbae, A. and Schorfheide, F. (2007), Bayesian Analysis of DSGE 
Models, Econometric Reviews, Vol. 26, pp. 113–172. 
 
Svensson, L. E. O. (2003), What Is Wrong with Taylor Rules? Using 
Judgment in Monetary Policy Through Targeting Rules, Journal of 
Economic Literature, Vol. 41, pp. 426-477. 
 
Taylor, J. B. (1993), Discretion versus Policy Rules in Practice, Carnegie-
Rochester Conf. Ser. Public Policy, Vol. 39, pp. 195-214.  
 
Taylor, J. B. (2000), Using Monetary Policy Rules in Emerging Market 
Economies, in Stabilization and Monetary Policy: The International 
Experience, Bank of Mexico, pp. 441-457. 
 
Villani, M. (2001), Fractional Bayesian Lag Length Inference in 
Multivariate Autoregressive Processes, Journal of Time Series Analysis, 
Vol. 22, pp. 67-86. 
 
Walsh, C. E. (2003), Monetary Theory and Policy, MIT press, 2nd edition. 



 42 

Wasserman, L. (2000), Bayesian Model Selection and Model Averaging, 
Journal of Mathematical Psychology, Vol. 44, pp. 92-107.  
 
Woodford, M. (1999), Optimal Monetary Policy Inertia, NBER Working 
Paper, No. 7261. 
 
Woodford, M. (2003), Interest and Prices: Foundations of a Theory of 
Monetary Policy, Princeton University Press. 
 
Yang, R. and Berger, J. O. (1994), Estimation of a Covariance Matrix 
Using the Reference Prior, Annals of Statistics, Vol. 22, pp. 1195–1211. 
 
Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics, 
New York: J. Wiley and Sons, Inc. 
 
Zellner, A. (2008), Bayesian Econometrics; Past, Present and Future, 
Advances in Econometrics, Vol. 23, forthcoming. 



 
 
 
 
 
 
 

2 Essay 1:  Dynamics of Inflation Responses to 
Monetary Policy in the Euro Area 

 

 

 
Jan-Erik Antipin 

University of Tampere, 
Helsinki School of Economics 

and UNU-WIDER 
 
 
 
 
 

 

 
 
 
 
Abstract: 
 
This paper analyses the effects of the European Central Bank’s monetary 
policy on EMU member countries’ year-on-year inflation rates in a 
Bayesian structural vector autoregressive framework. The choice of 
variables capturing monetary conditions in the euro area is guided by a 
simple closed-economy new Keynesian macro model in which the 
interest rate is the channel for monetary policy transmission. Drawn 
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2.1 Introduction 

 

At the beginning of 1999 11 European countries1 were shifted into a 
monetary system with a common monetary policy. Before the European 
Monetary Union era central banks in member countries were able to 
conduct independent monetary policies. Policy operations could be 
implemented solely on the basis of domestic economy conditions – an 
independent central bank could for instance stimulate the domestic 
economy if deemed necessary. The independency of domestic central 
banks can be seen to be lost when countries joined the EMU and ever 
since monetary policy decisions have been made exclusively by the 
European Central Bank (ECB). An evident practical problem with this 
common monetary policy area is written in its history. De Grauwe (2000) 
and De Grauwe and Sénégas (2004, 2006) discuss that increase in degree 
of asymmetries in monetary transmission mechanism will reduce the 
effectiveness of monetary policy in the euro area. Looking at past 
economic conditions of EMU member countries immediately shows that 
conditions have been and are heterogeneous per se, which means that 
common monetary policy actions will most likely cause asymmetric 
effects in member countries. For this reason, the ECB inevitably finds 
itself confronted with challenges in tuning and conducting monetary 
policy. It may well be the diversity of economic and institutional 
structures across the EMU member countries which constitute the reason 
why common monetary policy shocks have impacts of different 
magnitudes in the economies in the euro area, especially in inflation. The 
essence of this is manifested in the year-on-year inflation figures of the 
various member countries, where in only few cases inflation series have 
converged to the 2 per cent inflation target, while the aggregate inflation 
has varied fairly closely around the target. Although it must conceded 
that the ECB’s monetary policy can have a stabilizing role and might be 
optimal at aggregate level, monetary policy effects in individual member 
countries can nevertheless be crucially asymmetric.  
 
The successful conduct of monetary policy in the euro area requires 
knowledge of the rate at which innovations in monetary policy are 
absorbed in member countries and of the actual magnitude of monetary 
policy effects. Then, for instance, it would be of interest to see how 
consumer price inflation in a given EMU member country responds to a 
common monetary policy shock in relation to aggregate euro area 
consumer price inflation. The monetary response dynamics of consumer 
price inflation in EMU member countries is important in that according 

                                                 
1 Greece joined the group two years later, in 2001.  
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to the ECB the (euro area) consumer price inflation plays a major role in 
the ECB’s monetary policy strategy and generally, relative price inflation 
among the member countries must also be seen to be important for 
welfare reasons. 
 
The literature provides a wide range of studies concerned to depict 
monetary conditions and monetary policy effects in the euro area. For 
detailed surveys see for example Mojon and Peersman (2001) and 
Peersman (2004). Angeloni and Ehrmann (2004) use quarterly euro area 
panel data over the period 1998:1-2003:2 to track down the sources of 
inflation differences among the EMU member countries. They find that 
the magnitude of inflation persistence is the driving force generating 
inflation divergence among the EMU member countries. Clausen and 
Hayo (2006) provide a semi-structural VAR (vector autoregression) 
study of asymmetric effects of monetary policy in large EMU member 
countries and find that monetary transmission mechanisms in Germany, 
France and Italy are similar. Huchet-Bourdon (2003) in turn estimate 
monetary policy reaction functions for the euro area over the period 
1980-1998 and report that some EMU member countries seem to be more 
sensitive to unanticipated monetary policy changes. Durand et al. (2008) 
VAR estimate sacrifice ratios with as an indicator for structural 
dispersion in the euro area using quarterly observations on real GDP 
and inflation rate for period 1972-2003. They conclude that data do not 
imply reduction in structural differences and this might imply 
asymmetric responses of EMU member country economies to common 
monetary policy shock. Antipin and Luoto (2005) construct a SVAR 
model in which short-run interaction restrictions are derived from a 
simple, small-scale closed-economy DSGE model. They report that the 
price inflation responses to an unanticipated monetary policy shock can 
be seen to be asymmetric on the euro area.  
 
Recent papers have focused on highly structural macroeconomic models 
(new Keynesian models) specified for both forecasting and policy 
analysis purposes; see Sungbae and Schorfheide (2007) for a survey. The 
drawback in these studies models is that they are typically extremely 
complex and tedious to estimate; see for instance Smets and Wouters 
(2003, 2005 and 2007). Hence, a descriptive statistical modeling approach 
would seem preferable to enable us to better describe the dynamics of 
conditions affecting the stance of monetary policy in the euro area.  
 
In this paper we capture the monetary policy effects in year-on-year 
price inflation dynamics with a statistical model which both allows 
empirical description of the dynamic responses of model variables and is 
sufficiently flexible in setting ex-ante restrictions on the 
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contemporaneous effects of variables specified in a model. We find the 
structural vector autoregressive (SVAR) models to be best suited for our 
purposes, since we agree with Peersman (2004) that to make valid cross-
country comparisons we need to construct a model wherein all member 
countries are exposed to the same monetary policy shock. Moreover, 
SVAR models are commonly applied in the monetary policy literature 
and the statistical properties of these models are widely reported and 
known. Batini (2006) and Batini and Nelson (2001) list and discuss three 
possible types of inflation persistence; 1) positive serial correlation in 
inflation, 2) lag between system monetary action and its effect of 
inflation and 3) lagged responses of inflation to shocks in monetary 
policy. With a SVAR model we can control for type 1 and type 3 inflation 
persistence. 
 
This paper provides updated empirical evidence on monetary policy 
transmission in the euro area derived from the following contributions: 
first, we use updated euro area data and a common reaction function 
across the EMU member countries and explicitly allow the size of the 
monetary policy shock to be the same across the member countries. 
Secondly, we derive posterior model probabilities to test the validity of 
ex-ante knowledge on the set of contemporaneous effects of the variables 
assumed to capture the monetary conditions for the euro area. More 
specifically, in model specifications we allow for EMU member country 
information to have an immediate effect on the monetary policy 
instrument as suggested by De Grauwe (2000) and De Grauwe and 
Sénégas (2004, 2006). Thirdly, the variables used in our SVAR model are 
the same as the ones frequently used in the analysis of monetary policy 
in closed economies. The variables we use are motivated by a new 
Keynesian closed economy monetary policy model where the output gap 
measures general economic activity, the Phillips curve presents the 
supply side and the interest rate instruments for monetary policy. We 
rely on Bayesian inference in SVAR models due to Sims and Zha (1999). 
 
The impulse response results obtained for an overidentified Bayesian 
SVAR model suggest that the euro area data lend support to the 
conception of short-run asymmetric price inflation responses to an 
unexpected expansionary monetary policy shock in the euro area.  
 
The rest of this paper is organized as follows: Section 2 presents 
econometric methods, Section 3 presents the data and results and Section 
4 comprises concluding remarks.  
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2.2 Econometric Methods 

 
European policy-makers evince an awareness of the existence of a delay 
between monetary policy action and its effect on inflation and on 
economies in general. Due to these reasons the ECB’s declaration of 
medium-term price stability is widely accepted to constitute the first 
pillar of monetary policy in the euro area. Furthermore it is publicly 
understood that today’s monetary policy actions are likely to have an 
impact on the future values of important macroeconomic variables such 
as inflation and output level. 
 
For the sake of dynamics, the monetary conditions in which the central 
bank needs to act should thus be seen as a dynamic process involving 
multiple endogenous macroeconomic variables. Evidently, for the 
aforesaid reasons we model monetary conditions for the euro area 
applying a statistical model which captures the dynamics of an 
endogenous system of variables. The analysis in this paper is based on a 
SVAR model framework. The model takes the form  
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0 δ ,         (1) 

 

where δ is a vector of constants, a nonsingular parameter matrix Γ0 
indicates how the variables listed in yt simultaneously interact, matrices 
Γi contain parameters of lagged values of yt, and unobservable structural 
shocks in νt are assumed to be normally distributed with zero means and 
the diagonal covariance matrix denoted as Λ. The orthogonality of 
structural shocks is typically assumed in the literature on SVAR models. 
The underlying idea of the SVAR approach is to impose theoretical 
restrictions2 on the data to identify structural shocks and then calculate 
identified impulse responses. In this study we identify the structural 
shocks of a SVAR model by specifying alternative short-run restriction 
schemes.  
 
The literature lists a number of studies where the monetary policy 
transmission mechanism is examined using SVARs. To name but a few, 
Bernanke and Blinder (1992) analyze the way unexpected changes in the 
Federal Funds Rate are transmitted to the U.S. economy, Sims (1992) 
explains the reasons for the price puzzle3 obtained in many VAR studies, 
Angeloni et al. (2003) compare euro area and U.S. monetary transmission 

                                                 
2 Short-run restrictions are set in the Γ0 matrix and long-run restrictions in matrices Γi. 
3 A contradictory monetary policy action causes inflation to rise, whereas inflation is expected to 
drop. 
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mechanisms. Christiano et al. (1999) provide a survey of monetary policy 
SVAR models.  
 
To capture the dynamics of the euro area monetary conditions we collect 
in yt the series of euro area year-on-year consumer price inflation rate 
(̟t), the output gap (xt) which measures euro area output deviations 
from steady-state levels4, (rt) to capture the status of monetary policy and 

( jt ,π̂ ) to measure the year-on-year consumer price inflation rate in a 

member country j. We thus specify yt = (̟t xt rt jt ,π̂ )′ in a SVAR model for 

a EMU member country j.  
 
The variables listed in yt are in line with the models presented in an 
excellent survey of new Keynesian models by Clarida et al. (1999). 
Accordingly, we define year-on-year price inflation rate (̟t) to capture 
the supply side and the output gap (xt) to depict demand in the euro 
area. As is common in the current monetary policy literature, the 
dynamics of monetary policy instrument (rt) are modeled in the spirit of 
Taylor (1993); see also Hetzel (2000). As the monetary transmission 
channel is the interest rate the central bank is assumed to be able to 
influence economic conditions by adjusting the real interest rate and thus 
affect aggregate consumption decisions; see Walsh (2003). The 
orthogonal property of structural shocks implies that for instance the 
cost-push shock to inflation is independent of any monetary policy shock 
and vice versa.  
 
The member country-specific output variable is excluded from the 
model, since the weight of a domestic output in the euro area aggregate 
is minor. Furthermore, the variation in member-country output and 
inflation series can be seen to be driven by the interest rate. This is 
because in the European Union both capital and labor force are both free 
to move frictionlessly across national borders. This paper comprises an 
analysis for twelve EMU member countries: Belgium, Germany, Greece, 
Spain, France, Ireland, Italy, Luxembourg, Netherlands, Austria, 
Portugal and Finland.  
 
As in Sims and Zha (1999), the SVAR model in Equation (1) is 
reparameterized such that 
 

                                                 
4 Galí and Gertler (1999) use the labor share of output as a proxy for marginal costs. However, 
Neiss and Nelson (2005), on the contrary, using data for the United States, the United Kingdom, 
and Australia, report that labor costs do not suffice to explain inflation dynamics as well as the 
output gap. Hence, we describe marginal costs with a measure of the output gap.  
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where A0 = Λ-1/2Γ0 and tη  = Λ-1/2νt. Hence tη ~N(0, I) due to 

standardization. Thus Var( tA η10
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The likelihood function of a SVAR model in Equation (2) can be 
expressed as 
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where E = (Y-XB)′(Y-XB), S = (Y-X B̂ )′(Y-X B̂ ), and the tth rows of Y, X, E 
are given by y′t, (1, y′t-1,…,y′t-p) and νt′, respectively. The matrix B is 

obtained by stacking the matrix product (A0-1Ai)′ and B̂  = (X′X)-1X′Y is a 
matrix of OLS parameter estimates.  
 
As noted above, the matrix A0 for the short-run effects of variables in yt is 
the focal point of this study. We seek information on the way variables in 
vector yt simultaneously interact and thereby identify the impulse 
response functions of an estimated SVAR model. The traditional mode of 
SVAR model identification is to assume recursive restrictions, i.e. 
Cholesky decomposition5. For given variable ordering in yt the 
frequently used Cholesky decomposition does not let simultaneous EMU 
member country information affect the monetary policy instrument as 
De Grauwe (2000) and De Grauwe and Sénégas (2004, 2006) suggest. To 
allow for this we will go beyond the simple Cholesky restrictions and 
concentrate on different simultaneous effects among the variables in yt. 
Especially we let EMU member country inflation have a simultaneous 
effect on the monetary policy instrument. In specifying restrictions other 
than recursive we need to ensure that the simultaneous restrictions do 
not lead to an underidentified SVAR model. To avoid 
underidentification issues we verify that simultaneous restrictions fulfill 
the rank condition6 for identification. See Giannini and Amisano (1997) 
for a discussion of identification of SVAR models in econometrics. 
 

                                                 
5 The Cholesky decomposition leads to an exactly identified model. Setting underidentifying 
restrictions in matrix A0 is of no interest, since in that case we cannot separate out the effects of a 
structural shock into model variables. 
6 See for instance Hamilton (1994). pp. 334, presenting a method to check the rank condition for 
identification. 
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We consider 7 different simultaneous effect schemes to identify the 
SVAR model in Equation (2). The Cholesky restrictions (7A0) and the six 
other identification schemes for contemporaneous values of  

yt = (̟t xt rt jt ,π̂ )′ in a SVAR model are as follows: 
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and the Cholesky identifying restrictions are 
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In the above matrices akjs denote the simultaneous effect of variable j on 
variable k. On a first row simultaneous effects of output gap (xt), 
monetary policy instrument (rt) and inflation in EMU member country 

( tπ̂ ) on euro area inflation are measured. The second row indicates how 

variables are interacted with the output gap contemporaneously. The 
effects of variables on the monetary policy instrument are on the third 
row and finally, the fourth row contains the effects on member country 
inflation. The lower-triangular matrix 7A0 is a Cholesky factor of the 
covariance matrix Σ. The restriction schemes 4A0, 5A0 and 7A0 provide an 
exactly identified SVAR model, whereas other schemes constitute an 
over-identified model. All the matrices iA0 above fulfill the rank 
condition for SVAR model identification.  
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A closer inspection of the foregoing identification matrices reveals that 
besides the matrices 4A0, 5A0 and 6A0, the monetary policy (instrumented 
by rt) is allowed only simultaneously to be affected by euro area year-on-
year inflation rate (̟t) and the output gap (xt), which is in accordance 
with the declared ECB monetary policy targets. By specifying restrictions 

4A0, 5A0 and 6A0 we suggest that member country’s year-on-year inflation 
rate can have weight in the ECB’s monetary policy decision-making by 

allowing jt ,π̂  to have a simultaneous effect on a monetary policy 

instrument (rt) (nonzero a34) together with euro area aggregates (̟t) and 
(xt). The nonzero assumption of a34 is hence in accordance with De 
Grauwe (2000) and De Grauwe and Sénégas (2004, 2006). Their general 
conclusion is that common monetary policy would benefit from using 
national information when national monetary policy transmission 
mechanisms are asymmetric and thus the design of monetary policy that 
uses only euro area aggregates (̟t and xt) needs to be seen suboptimal. 
 
Furthermore, Benigno (2004) shows that for inflation targeting policy 
purposes it requires that a higher weight for inflation should be given to 
regions with higher degree of nominal rigidity. This means that in 
identification schemes where a34 is set to zero it is assumed that nominal 
rigidities share the same degree and the terms of trade is insulated from 
monetary policy. 
 
The difference between the restrictions in 1A0 and 2A0 is that the euro 
area output gap is also allowed simultaneously to affect jth member 
country inflation dynamics (a42). Matrix 3A0 exhibits such restrictions that 
the euro area year-on-year inflation rate (̟t) cannot be seen to be 
contemporaneously affected by the euro area demand side (xt) (a13 = 0), 
and monetary policy is assumed to have a simultaneous impact only on 
member country year-on-year inflation rate7. Restrictions driven in 2A0 
and 4A0 are almost the same except that member country year-on-year 

inflation rate ( jt ,π̂ ) is allowed simultaneously to affect the value of the 

monetary policy instrument (rt) in 4A0. Restrictions in 5A0 suggest that 
monetary policy simultaneously affects euro area and member country 
inflation rates. Restrictions in 6A0 exhibit restrictions similar to 5A0 but 
member country inflation rate is not allowed to be simultaneously 
affected by the euro area output gap (xt).  
 
There are seven different competing identification schemes constituting 
7 models among which we should choose. We apply posterior model 

                                                 
7 Since the euro area year-on-year inflation is a population- and GDP -weighted average of 
member country inflations and unanticipated movements in monetary policy instrument are 
diluted while averaging over member countries figures.  
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probabilities to find the most likely restrictions matrix for the SVAR 
model. Given the data Y and seven rivaling identification schemes, the 
posterior model probabilities in SVAR models identified with 
restrictions iA0, i = 1, …, 7 can be expressed as 
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where the marginal likelihood of model k is defined as  
 

( ) ( ) ( )∫= kkkkkk dModelpModelYpModelYp θθθ , . 

 
Modelk and parameter vector θk refer to a SVAR model in Equation (2) 

identified with kA0 restrictions. ( )kk Modelp θ  is the prior density function 

of θk under model k and ( )kk ModelYp ,θ  is the likelihood function. We 

assume that the prior model probability of model k, ( )kModelp , is the 

same (one over seven, i.e. 1/7) for all seven SVAR models. 
 
To the best of our knowledge this is the first paper that ranks the 
identification schemes for a SVAR model using posterior model 
probabilities. In line with Garratt et al. (2009) we base the analysis on 
Schwarz (1978), by presenting an asymptotic approximation to the 
marginal likelihood function of the form 
 

log p(Y|Modeli) ≈ l – K log(T)/2,        (5) 
 
where l is the log of the likelihood function evaluated at maximum 
likelihood estimates, K is the number of parameters and T is the number 
of observations.  
 
To measure posterior model probabilities in Equation (4) we specify a 
likelihood function of a SVAR model for given restrictions iA0 (i = 1, …, 
7). For a Cholesky identified SVAR model (7A0) the concentrated 

likelihood function evaluated at maximum likelihood estimates B̂  and 

Σ̂  takes the form  
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where S* = (Y-X B̂ )′(Y-X B̂ ) under Cholesky restrictions and the 

maximum likelihood estimate of Σ is hence S = (Y-X B̂ )′(Y-X B̂ )/T, 

where B̂  = (X′X)-1X′Y. The trace of an identity matrix Imxm is m, the 
number of diagonal elements and m is the number of variables. 
 
The concentrated likelihood function evaluated at maximum likelihood 
estimates of B for SVAR models identified with other than Cholesky 
restrictions, i.e. iA0, i ≠ 7, is 
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To obtain a value for Equation (4) we calculate Equation (6) for a 
Cholesky identified SVAR model and maximize Equation (7) for SVAR 
models identified with restrictions iA0, i = 1,…, 6.  
 
With a SVAR model with suitable simultaneous restrictions in matrix A0 
we will establish whether there exist member country-specific 
asymmetric price inflation responses to an unanticipated expansionary 
common monetary policy shock. Following Sims and Zha (1999) we 
update uninformative prior knowledge of the reduced-form parameter 
values of a VAR model with the information summarized by the 
likelihood function. Sims and Zha (1999) set uninformative and 
improper prior distributions for A0 and B of a SVAR model identified 
with non-recursive restrictions (iA0, i ≠ 7). The full conditional and 
marginal posterior densities for the SVAR model specified with non-
recursive restrictions in A0 are 
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where k = mp + 1. The full conditional posterior distribution in Equation 
(8) is the multivariate normal and the marginal posterior distribution in 
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Equation (9) is not in a form of standard distribution, which means that 
we must use numerical integration methods to draw samples from it. 
 
Having an uninformative8 joint prior probability density function (p.d.f.) 
for B and Σ in a Cholesky identified SVAR model gives the marginal 
posterior distribution of Σ the following form  
 

  Σ|X, Y 
( )( )

( ){ }Strace
mmpT

1
2

11

5.0exp −
+++−−

Σ−Σ∝ .    (10) 

 
Equation (10) is the kernel of the inverse Wishart distribution for Σ, i.e.  
Σ ~ iWm(S, T-(pm+1)). The parameters β in a Cholesky identified SVAR 
model follow the multivariate normal distribution of Equation (8). 
 

Vectors β and β̂  in Equations (8)–(10) are formed by stacking the 

columns of B and B̂ , respectively. The motivation for using the Jeffreys 
prior in a Cholesky identified SVAR model is that the posterior 
distributions for B and Σ are known and drawing samples from them is 
trivial. The information content of a Jeffreys prior is in practice the same 
as in a flat prior for B and iA0, i = 1,…, 6, which Sims and Zha (1999) 
suggest to be used in non-recursive identification schemes. For a good 
reference on the Bayesian statistics one might consider Zellner (1971).  
 
To analyze the possibility of asymmetric price inflation responses to a 
common monetary policy shock we draw impulse responses for SVAR 
models identified with simultaneous restrictions which are supported by 
the data. For the impulse responses the size of a shock in the monetary 
policy instrument (rt) is normalized to one standard deviation in a SVAR 
model in Equation (2). The properties of the standard impulse response 
function for linear models are well known and documented in the 
literature; see for example Hamilton (1994) and Sims and Zha (1999). For 
a general case we define the standard impulse response function by 
letting clk be the response of variable yl,t+s to shock ηk,t, i.e., 
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The values of the response function depend only on the parameters of 
the structural model of Equation (2), and the values can be obtained 
using basic matrix operations.  
 

                                                 
8
 The joint prior distribution is constant in B and uses Jeffreys prior on Σ, as in Villani (2001).  
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2.3 Data and Results 

 
The analysis is based on monthly euro area data covering the period 
from 1999.1 to 2007.10 (106 observations). The data are collected from the 
sources of the online data bank services of the EuroStat.  
 
The series for the HICP (harmonized index of consumer prices) of EMU 
member countries and the euro area aggregate are neither work-day nor 
seasonally adjusted. Seasonally adjusted series of the index of industrial 
production9 (IIP) (excluding construction) in the euro area are used in 
the formation of the output gap (xt). The IIP series look back to the year 
1980. Monthly values for Eonia are used as a proxy for the ECB’s 
monetary policy instrument (rt). The series for the Eonia interest rate is 
calculated using the day-to-day interest rates without seasonal 
adjustment. The reference year for all HICP series is 2005, and 2000 is the 
reference year for the euro area IIP series.  
 
The monthly output gap (xt) is measured as the logarithmic difference 
between the actual and the potential output level. The logarithm of the 
potential output is proxied by a one-sided Hodrick-Prescott (HP) 
(Hodrick and Prescott, 1997) trend estimate of the unobserved trend 
component τt in a model 
 

gt = τt + ζ1t,         (12) 

(1 – L)2τt = ζ2t,        (13) 
 
where gt is the logarithm of a measure of actual output, L is the lag 
operator and ζ1t and ζ2t are mutually uncorrelated white noise sequences 
with a relative variance of q = var(ζ1t)/var(ζ2t). The value of q = 0.67x10-3 
is taken from Stock and Watson (1999). 
 

The year-on-year price inflation rates, ̟t and jt ,π̂  are constructed10 for 

both the euro area and individual EMU member countries, respectively.  
 
Figures 1-5 in Appendix section A plot the series of year-on-year  HICP 

inflation rates ( jt ,π̂ ) for EMU member countries together with the euro 

area year-on-year HICP inflation rate (̟t) and the Eonia interest rate (rt). 
                                                 
9 One could use aggregate GDP series instead of IIP series, but the problem is that there are no 
monthly data available for the GDP in the euro area. Furthermore, we could consider the IIP 
series to depict the manufacturing sector more accurately. Aksoy et al. (2002) use monthly 
industrial production series in their study tracking down the impact of economic and 
institutional asymmetries on the effectiveness of monetary policy in the euro zone with an 
explicit policy target rule. 
10 We use 1998 HICP values in calculating 1999 year-on-year inflation figures. 
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Figure 1 shows the year-on-year inflation rate in the euro area to be more 
or less an average of inflation figures for Germany, France and Italy. 
Additionally, the inflation rates plotted in Figure 1 all tend to converge 
to an overall 2 per cent inflation target. In Figure 2 the year-on-year 
inflation rates for the euro area, Belgium, Greece and Spain are plotted 
against time. The series for Spain and Greece vary similarly at higher 
levels than those for Belgium and the euro area. Convergence to the 
overall 2 per cent inflation target is not evident for these member 
countries.  
 
Figure 3 implies that year-on-year inflation rate for Finland has been at 
lower levels than in any other EMU member country. The year-on-year 
inflation rates in Ireland and Portugal have been historically higher than 
on average in the euro area. Figure 4 shows that since the beginning of 
2003 year-on-year inflation rates in the Netherlands and Austria have 
followed euro area inflation. Meanwhile, the year-on-year inflation rate 
in Luxembourg has been fluctuating relatively strongly, indicating no 
convergence to the overall 2 per cent annual target. Thus, a striking 
observation is that the aggregate euro area year-on-year inflation rate 
has varied closely around the declared inflation target, while inflation 
series for member countries have been fluctuating at different levels.  
 
Finally, in Figure 5, the Eonia interest rate (rt), output gap (xt) and year-
on-year euro area inflation rate (̟t) are plotted. The output gap, as a 
proxy variable for marginal costs, has not followed a constant pattern – it 
has fluctuated mainly on the negative side. Observations on consumer 
price year-on-year inflation rates and the output gap suggest that in the 
euro area inflation rate stabilization is allocated greater weight while the 
ECB decides the optimal value of the monetary policy instrument (rt).  
 
On the basis of Figures 1-4 we can hypothesize that asymmetric year-on-
year price inflation responses to a monetary policy shock are to be 
expected due to the somewhat heterogeneous HICP inflation dynamics 
among the EMU member countries.  
 
The posterior model probabilities in Equation (4) are calculated for seven 
SVAR models for each member country. Specifically, a SVAR model in 
Equation (2) with restrictions iA0 (i = 1, …, 7) and Equations (6) and (7) 
are maximized respectively conditional on the member country data. 
 

The data we feed into Equations (6) and (7) are yt = (̟t xt rt jt ,π̂ )′, where 

tπ  and jt ,π̂  are the year-on-year HICP inflation rates in the euro area 

and in the jth member country, respectively. Variable xt is the monthly 
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output gap obtained using filtering methods presented in Equations (12) 
and (13) and rt is the Eonia interest rate describing monetary policy 
instrument. 
 

Allowing for 7 identification schemes means that for each member 
country we get 7 posterior model probabilities, one for each 
identification scheme. Posterior model probabilities are reported in Table 
1 below. A lag length of five (5) was chosen, since it turned out to be the 
shortest lag length providing homoscedastic and autocorrelation-free 
model errors. 

 

TABLE 1. Posterior model probabilities. Bolded figures indicate the most 
probable identification scheme for a member country. 

 

SVAR(p), p=5 POSTERIOR MODEL PROBABILITIES 

COUNTRY IDENTIFICATION SCHEME 

   01 A  02 A  03 A  04 A  05 A  06 A  07 A  

Belgium  0.000 0.000 0.322 0.220 0.024 0.197 0.237 

Germany  0.000 0.000 0.232 0.179 0.018 0.391 0.179 

Ireland  0.148 0.000 0.214 0.142 0.022 0.253 0.221 

Greece  0.000 0.000 0.000 0.059 0.009 0.843 0.088 

Spain  0.000 0.000 0.108 0.146 0.021 0.517 0.208 

France  0.000 0.000 0.611 0.089 0.022 0.061 0.218 

Italy  0.000 0.001 0.049 0.275 0.051 0.116 0.509 

Luxembourg  0.000 0.000 0.129 0.179 0.018 0.493 0.179 

Netherlands  0.461 0.056 0.007 0.057 0.007 0.339 0.072 

Austria  0.000 0.000 0.000 0.168 0.017 0.648 0.168 

Portugal  0.836 0.098 0.015 0.007 0.001 0.029 0.013 

Finland  0.000 0.000 0.687 0.072 0.007 0.163 0.072 

 

The highest posterior model probability of a member country is 
highlighted in bolded font in Table 1 (the probabilities do not sum to one 
due to rounding). The last column indicates that commonly used 
Cholesky restrictions (7A0) are relatively weakly supported in the data. 
Only for Italy 7A0-restrictions seem to produce the best model fit. For the 
rest of the member countries the model fit of Cholesky restrictions is 
more or less moderate. Results for the Cholesky restrictions imply that 
the ECB gives higher weight for inflation to countries having relatively 
greater nominal rigidities. This is in line with Benigno (2004). 
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The data support restrictions 3A0 and 6A0 and restrictions according to 

2A0 are in fact faintly supported. A somewhat striking finding is the 
posterior model probability of a SVAR model under 5A0 restrictions is 
that low despite the restriction scheme being very similar to 6A0 

restrictions. The difference between 5A0 and 6A0 restrictions is that in 5A0 
the euro area output gap (xt) is allowed simultaneously to affect member 

country year-on-year inflation rate ( jt ,π̂ ). It emerges from Table 1 that 

6A0 restrictions are best supported in the data, i.e. the restrictions which 
allow the euro area (̟t) and member country consumer price year-on-
year inflation rate to be both simultaneously affected by monetary policy 
shock. 6A0 restrictions let monetary policy to be conditioned also on 
member country inflation. Furthermore, comparing the posterior model 
probabilities for identification schemes 2A0 and 4A0 we see that almost in 
all cases the data lend support to the conception that the ECB takes into 
account the inflation rate of an individual member country. This finding 
is in line with De Grauwe and Sénégas (2004, 2006) and Benigno (2004). 
 
To attain identified impulse responses we restrict the analysis to a SVAR 
model using 6A0 and 7A0 restrictions. The Cholesky restrictions (7A0) are 
also taken into the impulse response analysis, since typically SVAR 
models are identified with a recursive identification scheme and they 
thus provide a good reference to which compare 6A0 restricted VAR 
model impulse responses.  
 
For a Cholesky identified (7A0) SVAR model it is assumed that the 
contemporaneous effect of monetary policy (rt) on euro area year-on-
year inflation rate (̟t), i.e. contemporaneous interest rate elasticity, is by 
definition zero. This is not the case with 6A0 restrictions, since monetary 
policy can have an immediate effect on both the euro area inflation rate 

(̟t) and member country inflation rate ( jt ,π̂ ) and EMU member country 

inflation is assumed to be partly targeted in monetary policy instrument 
(a34 ≠ 0). In total we will be estimating 24 SVAR models, two for each 
member country – one SVAR model identified with Cholesky 
restrictions (7A0) and one with 6A0 restrictions.  
 
One should note that the SVAR model with 6A0 restrictions is such that 
the posterior p.d.f. in Equation (9) is not in the form of the standard p.d.f. 
To generate a Monte Carlo sample from the posterior of 6A0 we use a 
version of the random walk Metropolis algorithm for Markov Chain 
Monte Carlo (MMCMC). One could of course follow more sophisticated 
versions of the algorithm but the time and effort involved in refinements 
would not compensate the efficiency improvements.  
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The algorithm for the 6A0-restricted VAR models uses multivariate 
normal distribution for the jump distribution on changes in parameters 
in 6A0. We first simulate 15,000 draws using a diagonal covariance with 
diagonal entries 0.00001 in the jump distribution. These draws are then 
used to estimate the posterior covariance matrix of parameters in 6A0 and 
scale it by the factor 2.42/9 to obtain an optimal covariance matrix for the 
jump distribution; see Gelman et al. (2004). In estimating the SVAR 
models identified with 6A0 restrictions, we use 100,000 draws, discarding 
the first 10,000 as a burn-in period. As a convergence check three chains 
with different starting values are simulated. For each chain we pick 
every 100th draw to achieve a nearly independent sample. The potential 
scale reduction factor of Gelman and Rubin (1992) is between 1 and 1.08 
for each parameter in 6A0. The multivariate version of Gelman and 
Rubin's diagnostic, proposed by Brooks and Gelman (1997), is between 
1.00 and 1.05. Finally, the frequencies of accepted jumps are roughly 
0.24. Eventually our results for 6A0 restricted SVAR models are based on 
2,700 draws for each member country. For a Cholesky identified (7A0) 
SVAR model we generate 3000 draws from p.d.f.s given in Equations (8) 
and (10). The conditional posterior p.d.f. is multivariate normal and the 
marginal posterior p.d.f. of Σ is, as already noted, inverse Wishart 
distribution.  
 
When computing the posterior of impulse responses we follow Sims and 
Zha (1999) and calculate Bayesian 68 per cent error bands. In Figures 6-
17 in Appendix section B, for each member country in turn, the impulse 
responses drawn are 
 

  Ds,j = 
tr

st

,η
π
∂

∂ +  - 
tr

stj

,

,
ˆ

η

π

∂

∂ +
 for s = 0, …, 12 and j = 1, …, 12.   (14) 

 
The first term in Equation (14) is the annual euro area year-on-year 
inflation rate response to an unanticipated, one standard deviation 
expansionary monetary policy shock. The latter term in Equation (14) is 
the member country’s year-on-year inflation rate response. Black lines in 
Figures 6-17 are for a SVAR model with 6A0 restrictions and dotted lines 
a SVAR model identified with Cholesky restrictions, 7A0. In both 
identification schemes the middle line is the median impulse response 
value. For both 6A0- and 7A0 -identified VAR models we calculate 
impulse responses up to 13 periods (the length of a period is 1 month), 
including the shock period denoted as time 0 in the figures. If 68 per cent 
error bands contain the value Ds,j = 0, then the year-on-year inflation rate 
responses are statistically the same in the euro area and in any given 
member country j at 68 per cent posterior probability. 
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Next we will first discuss the impulse responses drawn for Cholesky 
identified SVAR models and thereafter comment on impulse responses 
obtained from an overidentified SVAR model with restrictions in 6A0. 
For Cholesky identified SVAR models, the monetary response of euro 

area inflation (̟t) is identically zero, i.e. trst ,ηπ ∂∂ + = 0 for s = 0. This 

implies that the immediate (s = 0) impulse response value is dictated 

solely by the second term trstj ,,
ˆ ηπ ∂∂ +  in Equation (14). Thus, if the 

immediate response of jth member country year-on-year inflation rate 

( tj ,π̂ ) to a shock in the monetary policy instrument ( tr ,η ) is positive, it 

will be shown in Figures 6-17 in that the D0,j assumes negative value.  
 
Impulse responses drawn for a Cholesky identified SVAR model with 

jt ,π̂  series for Belgium, Germany, Greece, France and Finland imply that 

the immediate year-on-year inflation rate responses are asymmetric with 
68 per cent posterior probability for these countries. However, with the 
exception of Greece, inflation rate responses for later periods are 
statistically the same as the euro area inflation rate response. This means 
that the posterior intervals contain the zero level of Ds,j for s > 0. Figure 9 
for Greece shows that during the last 5 periods (i.e. s = 8, …, 12) drawn 
responses exhibit persistent asymmetric year-on-year inflation rate 
responses.  
 
Drawn differences between the impulse response of the aggregate euro 
area and Luxembourg, Dutch, Portuguese and Italian year-on-year 
inflation rates convey asymmetric responses. Specifically, the 
Luxembourg inflation rate response is statistically more moderate than 
the euro area inflation rate response between 3 and 7 months after the 
initial monetary policy shock. Portuguese asymmetric inflation rate 
responses begin 5 months after the shock and have ever since remained 
different from those of euro area inflation. The Dutch responses are more 
aggressive /moderate than euro area inflation one/eleven months after 
the shock. Two months after the shock the inflation rate response in Italy 
is more moderate than the euro area response for 1 month. We see that 
the results from the Cholesky identified SVAR models suggest 
heterogeneous type 3 inflation persistence among the EMU member 
countries. Inflation rate responses in Ireland, Spain and Austria are 
statistically the same as the euro area responses.  
 
Posterior distributions show that immediate inflation rate responses 
(D0,j) are mixed for 6A0-identified SVAR models. In the model for 
Germany, France, Italy and Finland the immediate year-on-year inflation 
rate response is statistically stronger than the euro area year-on-year 
inflation rate response. For Belgium, Ireland, Greece, Spain, Luxembourg 
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and Austria the adjustment to a shock in the monetary policy instrument 
is not as rapid as it is on average in the euro area. The immediate year-
on-year inflation rate response in the Netherlands and Portugal is 
statistically the same as in euro area on average, as shown in Figures 14 
and 16.  
 
The 6A0-restricted SVAR model for the Belgian, Italian, Austrian and 
Finnish year-on-year inflation rate responses implies that it takes 1 
month for Belgium to adapt and Italy waits for 3 months, whereas 
Austria and Finland need 2 months to adjust. The difference between the 
euro area and Greek inflation rate responses exhibit lagged response 
behavior (type 3 inflation persistence;) during the 3 and 6 months after 
the shock the difference in responses is statistically positive, indicating a 
more sluggish inflation rate adjustment process in Greece than in the 
euro area. Inspecting the impulse responses drawn for Germany, France 
and Italy we see that inflation rate responses are similar, suggesting a 
similarity in price transmission mechanisms for monetary policy shock11. 
This finding is in line with that of Clausen and Hayo (2006). 
Furthermore, for 6A0 restrictions no persistent asymmetric inflation rate 
responses can be obtained for any member country. 
 
Following important findings can be derived from the impulse response 
analysis. Firstly, there occur statistically significant asymmetric 
immediate (s = 0) year-on-year inflation rate responses for SVAR models 
specified with both 6A0 and 7A0 restrictions for Belgium, Germany and 
Greece. Secondly, the different adjustment speeds (compared to euro 
area year-on-year inflation rate) in response to a monetary policy shock 
indicate that in the euro area inflation persistence is heterogeneous 
among the member countries.  

 
 

2.4 Conclusions 

 
In this paper we provide empirical evidence of transmission of the ECB’s 
monetary policy actions in year-on-year consumer price. The evidence is 
obtained using an actual monetary policy instrument and error bands for 
impulse responses which characterize the true shape of the likelihood, as 
Sims and Zha (1999) argue. 
 

                                                 
11 Note that the total weight of Germany, Italy and France in constructing the EMU aggregate 
series is high. 
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We calculate posterior model probabilities for SVAR models identified 
with a set of plausible identification schemes. We find that the data 
weakly supports Cholesky restrictions, while the strongest posterior 
support goes to an identification scheme possessing overidentifying 
restrictions which also let the EMU member country year-on-year 
inflation rate simultaneously interact with the monetary policy 
instrument and allow the monetary policy shock to have an immediate 
effect on euro area and EMU member country year-on-year inflation 
rates. We found evidence that the ECB also exploits national information 
while tuning and conducting monetary policy.  
 
Given the impulse response function calculations based on the posterior 
distributions we may state that the data bespeak short-run asymmetric 
consumer price year-on-year inflation rate responses to a monetary 
policy shock across the member countries in the euro area. This verifies 
also the hypothesis that the ECB’s monetary policy conduct needs to be 
seen as a complicated task, because if the ECB conducts its monetary 
policy conditional on union-wide aggregates (where the target of 
aggregate euro area inflation has a substantial role), unforeseen shocks in 
the monetary policy have an asymmetric impact on consumer price 
inflation across the member countries. This result is in line with the 
findings, for instance, of Clausen and Hayo (2006) and Huchet-Bourdon 
(2003). 
 
One possible way to understand the asymmetric inflation responses 
addressed is to allow nominal rigidity in firms’ price-setting, i.e. 
assuming that firms in individual member countries follow Calvo (1983) 
pricing with different price adjustment probabilities. Under Calvo 
pricing firms may adjust their prices with some constant probability, and 
since the adjustment probabilities vary across the member countries, 
deviations from the optimal price level will occur when adjustments are 
needed. This will evidently show in asymmetric inflation responses to a 
common monetary policy shock. These asymmetric effects operate 
through the output gap in the new Keynesian model.  
 
Finally, as a consequence of asymmetric inflation responses and a fixed 
exchange rate across the member countries, unanticipated monetary 
policy actions will influence relative prices in member countries, causing 
disturbances in mutual price competition and thereby indirectly altering 
consumption schemes, this will lead to changes in EMU member country 
welfare levels in the short-run. 
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FIGURES 1-2. Year-on-year HICP inflation rates and the Eonia interest rate. 

          Sample period for monthly data is Jan 1999 – Oct 2007.  
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FIGURES 3-4. Year-on-year HICP inflation rates and the Eonia interest rate. 

          Sample period for monthly data is Jan 1999 – Oct 2007.  
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FIGURE 5. Euro area output gap, the euro area year-on-year HICP inflation rate 

and Eonia interest rate. Sample period for monthly data is Jan 1999 – 
Oct 2007. 
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B. Impulse responses for SVAR model with 6A0 and 7A0 restrictions 
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FIGURES 6-11. Impulse responses of the difference in year-on-year HICP 

inflation between the euro area and various member countries 
to an expansionary monetary policy shock in 6A0 and 7A0 
(Cholesky) restricted SVAR model. The time horizon of the 
impulse responses is 12 months. The midmost lines are the 
medians and outer bands represent 68 per cent credible 
intervals. 
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Fig.12: Italy
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FIGURES 12-17.  Impulse responses of the difference in year-on-year HICP 
inflation between the euro area and various member countries 
to an expansionary monetary policy shock in 6A0 and 7A0 
(Cholesky) restricted SVAR model. The time horizon of the 
impulse responses is 12 months. The midmost lines are the 
medians and outer bands represent 68 per cent credible 
intervals. 
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Abstract: 

This is a descriptive study of the information sets most likely used by the 
European Central Bank (ECB) in deciding on monetary policy operations 
for the euro area. The most likely information set is found by calculating 
the marginal likelihood value of backward-looking Taylor-rule with 
interest rate smoothing term. We find that it is possible that the ECB 
conditions monetary policy on other information than that of the euro 
area aggregates. Furthermore, similar monetary responses of the year-
on-year Producer Price Index (PPI) inflation rates in peripheral EMU 
member countries (Finland, Ireland and Portugal) can be indicated 
whether we condition the monetary policy on euro area aggregates or on 
population and GDP-weighted coalition information on Germany, 
France and Italy.  
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3.1 Introduction  

 

This study quantitatively scrutinizes the conditional information sets on 
which the European Central Bank (ECB) most likely bases its monetary 
policy decisions in order to meet declared medium-run policy targets, 
i.e. conditions for sustainable economic growth and price inflation in the 
whole euro area. The study applies the most likely information set found 
to calculate values of the impulse response function for the difference in 
year-on-year producer price inflation to ascertain possible asymmetric 
monetary responses in peripheral EMU member countries. Our results 
based on marginal posterior likelihood analysis imply that other 
information sets than the euro area aggregates cannot be directly laid 
aside in contemplating what the forces guiding the monetary policy 
operations in the euro area might be. 
 
It is evident that a considerable amount of economic activity-depicting 
indices and indicators is constantly being measured, described, 
monitored and processed by economists and other professional 
personnel in the departments and affiliates of the ECB. This work is done 
to deliver updated and refined data for the purposes of the monetary 
policy decision-makers. Milani (2008) provides, in the spirit of Bernanke 
and Boivin (2003), quantitative analysis of optimal monetary policy in by 
deriving more cautious monetary policy rates in data-rich environment 
where the central bank is allowed to exploit wider information set than 
in mainstream models. He concludes that introduction of wider 
information set leads to smoother interest rate path than implied by 
dynamic optimization under traditional monetary models. However, in 
this paper we do not expand the ECB’s information set as Milani (2008) 
does but instead question whether some EMU member countries are 
given a greater weight while the ECB exercises its monetary policy 
through Taylor rule. In tentative spirit we thus surmise that the 
information loaded in the euro area aggregates is the information onto 
which monetary policy actions and decisions are eventually projected by 
the ECB. Obviously the information conditional on which monetary 
policy decisions are made plays a crucial role, since given the 
information set, the ECB steers overnight interest rates to stabilize price 
inflation and maintain fertile economic conditions on average in the 
EMU member countries represented in the information set.  
 
We justify the study by claiming that the information conditional on 
which the overnight interest rates are eventually steered represents only 
a subset (or even a typical agent) of euro area countries and we cannot 
rule out the possibility that the ECB sets its monetary policy in such a 
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way that it favors some individual EMU member country or a member 
country coalition. Having allowed this, there is a possibility that the 
effects of unanticipated monetary policy operations, namely 
unforeseeable adjustments of the overnight interest rates, can be more or 
less favorable to other EMU member countries not represented in the 
information set, this is due to the fact that the economic conditions of 
EMU member countries are assumed to be heterogeneous. The impulse 
response analysis section of the study is fully motivated, since monetary 
policy effects on general economic activity and price competitiveness in 
the short run are of considerable interest, not to mention the possibility 
of persistent effects. Two crucial questions arise inevitably – can we ex-
post say something about the information set on which the ECB might 
determine the euro area monetary policy, and secondly how does an 
unanticipated monetary policy shock affect EMU member countries, in 
the context, for example, production price inflation?  
 
Although this research topic is crucial, little empirical research has been 
done to shed light on the questions raised. There are a few studies, for 
example, Hayo and Hofmann (2005), who estimate monetary policy 
reaction functions and argue that the ECB reacts more aggressively to 
the output gap than the Bundesbank did, implying that the Bundesbank 
were more inflation aware in its conduct of monetary policy than the 
ECB. This result contrasts Buiter’s (1999) conclusion that the ECB has 
adopted many of the procedures and practices of the Bundesbank and 
thus the ECB will exercise monetary policy that emphasizes inflation 
stability on the euro area. Hayo (2006) argues that EMU member 
countries would have set interest rates differently1 if they had retained 
their monetary policy independence. Hayo finds that Germany is an 
exception – Germany has had to adopt much higher interest rates in the 
EMU era than it had under the Bundesbank. The results of Kool (2005) 
suggest that the conditions of the German economy are relatively more 
involved in ECB’s monetary policy actions and actual euro area interest 
rates are in line with German preferences. Further doubts on 
appropriateness of the ECB’s policy in the euro area are casted in Moons 
and Van Poeck (2008) where they argue that the ECB’s policy does not fit 
individual EMU member countries equally well. We feel that these 
somewhat polemic findings make it desirable to test quantitatively 
whether the information and preferences of the German economy alone 
can present the information the ECB most likely uses in monetary policy.  
 
Obviously, the present purpose is to construct information sets depicting 
the conditions of EMU member country coalitions and their information 
                                                 
1 Hayo (2006) concludes that in most cases independently set interest rates would have been set 
higher.  
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value in comparison. Regarding the question of monetary policy effects, 
it would appear to be more complex issue and structural parameter 
estimates for individual EMU member countries’ monetary reaction 
functions would be needed to understand the dynamic effects of the 
monetary policy shocks. Despite of this, in this paper we content 
ourselves to describe the effects of unanticipated monetary policy 
operations by drawing posterior distributions for the impulse responses 
of the difference in year-on-year producer price index (PPI) inflation 
rates between the EMU member country coalition (Germany, France and 
Italy) and peripheral EMU member countries. For comparison the 
impulse responses of the year-on-year PPI inflation rate difference 
between the euro area and peripheral EMU member country are also 
drawn. 
 
We inspect monetary policy effects in a peripheral EMU member 
country using a reduced-form model for which monetary policy is 
conducted conditionally on the information set found to be the most 
likely. Parallel research on the ECB’s monetary policy effects is reported 
for instance in Antipin and Luoto (2005). They find that monetary 
responses of the year-on-year HICP inflation rate difference between 
EMU member countries are asymmetric in the short run in a model 
where the ECB determines its monetary actions based on euro area 
aggregates. 
 
To summarize, this study has a twofold purpose – it first calculates 
marginal likelihood values to obtain the most likely information set 
which the ECB uses and then specifies a VAR-model to compare the 
impulse responses of year-on-year producer price inflation rates to 
expansionary unanticipated monetary policy shock. The analysis is 
conducted in a reduced-form model framework, since the purpose is to 
avoid being restricted to a certain specific model formulation but to offer 
a descriptive analysis, as for instance Marschak (1953) finds suitable for 
policy analysis. 
 
The study is organized as follows: first we present functions that we 
assume to capture the monetary policy conditions in the euro area. We 
then show the marginal likelihood calculations and obtain the most 
probable information set. The empirical section presents the data and 
statistical methods. Concluding remarks draw the results together. In the 
appendix section with test statistics, we plot figures for the data, show 
the posterior density function derivation and draw figures for impulse 
responses from different identification schemes to validate the impulse 
responses presented. 
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3.2 Modeling Monetary Policy Conditions for the Euro 
Area 

 

We assume that capturing the reduced-form data generating process 
(DGP) for the variables determined by a simple new Keynesian 
monetary policy model for a closed economy serves the purposes of a 
descriptive analysis of the conditions triggering the monetary policy in 
the euro area2. In small-scale closed economy new Keynesian models the 
expectations augmented forward-looking Phillips curve and demand 
equation (IS curve) derived based on Euler equation are typically 
coupled with a variant of the Taylor rule. We find it justified to use a 
linear reduced-form model in estimation, since the current literature 
does not present a specific model formulation to describe monetary 
conditions in the euro area3. As a side note, although we are not 
applying Rational Expectations (RE) theorem, an interested reader 
should see Kurmann (2006) who provides a reference how to exploit 
cross-equation restrictions imposed by new Keynesian model in the 
VAR-model estimation.  
 

We assume in Equation (1)4 that a monetary policy rule can be written as 
a function of lagged interest rate (it-1), future inflation rate (̟t+1|t) and 
common economic activity (xt) measured as deviation of output from its 
flexible-price level (usually called as potential output level). The interest 
rate rule takes a linear function form as 
 

( )tittttt xifi ,11 ,,, επ +−= ,        (1) 

 
where ti ,ε  is an i.i.d. zero mean shock to the monetary policy instrument 

it.  
 
We assume that the inflation dynamics is a linear function of future 
inflation rate (̟t+1|t) and the output gap (xt) and writes as  
 

                                                 
2 It is debated whether the ECB also takes into account, among other things, the level of large 
time deposits, institutional money-market funds etc. and the housing price index in tuning its 
monetary policy. To keep presentation streamlined we will not control for these here. 
3 There is another issue besides the exact specification of the structural form model to be used, 
namely how expectations are formed. Typically new Keynesian models are forward-looking and 
the common practice is that in the literature the rational expectations assumption is made 
assuming that agents know the model and make unbiased forecasts of their control variables. We 
feel, however, that this may not be a very realistic assumption.  
4 The interest rate rule in Equation (1) covers the Taylor rule often used in the literature. For more 
on Taylor rules and on new Keynesian macro models see Clarida et al. (1999), Clarida et al. (2000) 
and Svensson (2000). 
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( )ttttt xg ,1
,, πεππ += ,             (2) 

 
where t,πε  is an i.i.d. zero mean cost-push shock. Equation (2) presents 

new Keynesian Phillips curve capturing price setting of firms. 
 
The aggregate demand function in Equation (3) depicts common 
economic activity as a linear function of future inflation rate (̟t+1|t), 
future economic activity (xt+1) and interest rate (it) such as  
 

( )txtttttt ixhx ,11
,,, επ ++= ,            (3) 

 
where tx,ε  as a zero mean i.i.d. demand shock.  

 
We emphasize that we do not impose RE in the above model (1) - (3). 
Actually we want to allow for deviations from full rationality. Hence, 
borrowing from the learning literature (Eg. Evans and Honkapohja, 
2001) we specify the following forecast functions for π  and x. This means 
that future values of inflation and economic activity are estimated from 
the data using a linear combination of lagged values of inflation and 
output gap series, i.e.  
 

tttt
xLbLaa )()(01

++=+ ππ .        (4) 

 
Similarly, the future values of the output gap are predicted using the 
learning rule 
 

tttt
LdxLccx π)()(01

++=+ .         (5) 

 
Next we proceed to write the model in a VAR form. Forming forecasts as 
in Equations (4) and (5) allows us to freely find a lag length for the 
reduced form VAR model to obtain the best model fit. Letting agents 
form expectations using a univariate time series model is a somewhat 
restrictive assumption in the sense that correct variables are presumed to 
be included in the forecast equations and variable value forecasts for 
time t are assumed to be uncorrelated, since they are calculated 
independently by assumption. We feel comfortable to assume this since 
Stock and Watson (1999) and Marcellino et al. (2003) report that the 
prediction accuracy of univariate time series models is at least as good as 
the accuracy of the multivariate models. 
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3.3 Data 

 
The data for the euro area aggregates, Germany, France, Italy and the 
peripheral EMU member countries Finland, Ireland and Portugal, are 
collected from two data sources: seasonally adjusted and construction 
activities excluded industrial production monthly series (IIP) spanning 
the period from the beginning of 1980 to the end of the 1980s are from 
the OECD main economic indicators. EuroStat provides the rest of the 
IIP series up to April 2006.  
 
The annual series for GDP, population and monthly series for HICP and 
Eonia interest rates are downloaded from the databanks of EuroStat. 
Monthly series of the Producer Price Index (PPI) (without construction) 
over the period 1998 to April 2006 are seasonally non-adjusted (base year 
2000) and are likewise provided by EuroStat. The base year of the IIP 
index series is similarly 2000, GDP is measured in 2005 prices and 
exchange rates and the base year for the HICP indices is 2005. Annual 
population is a measure of the total population at the end of the current 
year. The GDP values are from the years 1991 to 2005 and the population 
variable covers the period from 1980 to 2005. The monthly series for 
HICP5 are from January 1999 to April 2006, likewise the series for the 
Eonia interest rate depicting the values of the monetary policy 
instrument.  
 
The output gap (xt) is measured as a logarithmic difference between the 
actual and the potential output level. We measure the output gap by 
constructing the series for the potential IIP output applying a one-sided 
HP filter in the data from the beginning of 1980 to April 2006 for each of 
the above-mentioned data sets. In the process we assume that marginal 
costs are procyclical, i.e. when the observed production level is high 
relative to potential output level, the competition for available 
production factors will increase prices and accelerate inflation. The one-
sided trend estimate depicts the potential IIP, which is calculated as the 
Kalman filter estimate Zt such that  

 
 ttt vZY += ˆloglog  

 ( ) ttZL ξ=− ˆlog1
2 , 

  
where tẐ  is an unobserved trend component approximating Zt and Yt is 
the actual IIP output series (Hodrick and Prescott, 1997). Variables vt and 
ξt are assumed to be mutually uncorrelated white noise sequences with 

                                                 
5 However, the values for 1998 are used in the calculation of annual changes. 
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relative variance δ = var(ξt)/var(vt); see Stock and Watson (1999). We 
follow Stock and Watson (1999) and set δ = 0.67x10-3 which 
approximately matches the spectral gain for the HP filter. The year-on-
year HICP inflation (̟t) series is calculated having a difference of 
logarithmized values of HICP index as [log(HICPt) – log(HICPt-12)]x100. 
 
In the empirics we will be using in all 6 different datasets to describe the 
conditions upon which we assume the ECB to determine its monetary 
policy decisions - these are labeled: euro area, Germany (1L), Germany, 
France, Italy (3L), Germany and Italy (2La), Germany and France (2Lb) 
and France and Italy (2Lc). In defining the weight of each country in the 
information set we give a 50 per cent weight for annual GDP figures and 
50 per cent for the population figures. The GDP values for the year 1991 
are used in calculating the weights for the 1980s, since we could not 
acquire these values. Then series are used to define a relative weight for 
the member country in question in a country coalition, and eventually 
applied to form an overall index for instance for the consumer prices 
index.  
 
Figures 1a-d in Section 1 in the Appendix show deviations of the IIP 
series from potential IIP levels and Figures 2a-d depict year-on-year 
HICP inflation series for information sets over the period 1999.1 – 2006.4. 
The Eonia interest rate is also added in figures. We see that the year-on-
year HICP inflation series of all information sets have converged to the 
ECB medium range inflation target of 2 per cent. Overall economic 
activity in the euro area is close to or converging on its potential levels, 
as indicated by the thick black line in Figures 1a-d. Convergence to 
potential is also typical for the country coalitions of 3L, 2La and 2Lb. 
Output levels for Germany (1L) and country coalition 2Lc tend to 
diverge from the potential levels. Figures 3a-b plot the year-on-year PPI 
inflation series for Finland, Ireland, Portugal, euro area and country 
coalition 3L. After a rather turbulent start in 2000 and 2001 the variance 
of Irish PPI inflation has converged to other series. The PPI inflation 
paths for the euro area and 3L are similar. 
 

 

3.4 Marginal Likelihoods in Model Selection  

 
We take the Bayesian route since in classical inference theory a sufficient 
number of observations is more important than in Bayesian statistics, 
and evidently in classical theory the precision of the parameter estimator 
is low under a small sample size, as is the case with the data used in this 
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study. Furthermore, there is a crucial conceptual difference between the 
classical school and Bayesians regarding the interpretation of the 
parameter estimate values – while classical empiricists need to rely on 
asymptotics, the Bayesians rely totally on observed data and prior 
distribution6. The Bayesians interpret the parameter estimate and its 
confidence interval on a data basis, meaning they obtain directly possible 
true values for the unknown parameter and need not calculate 
confidence intervals which might not even contain the true parameter 
value inherently present in classical statistics. 
 
To shed light on the question of the information set on which the ECB 
most likely conditions its monetary policy actions we calculate the 
values of the marginal likelihood function for different lag lengths for 
different data sets (information sets), keeping the statistical model the 
same.  
 
In our view the conditioning information set producing the highest 
marginal likelihood value for given values of the Eonia interest rate is 
most likely the set on which the ECB determines its monetary policy 
actions. The Bayes factors are calculated to quantitatively test the 
hypothesis regarding which data set should be coupled with the Eonia 
interest rate to depict the conditions underlying the monetary policy in 
the euro area. Bayes factors and marginal likelihoods are discussed, for 
instance, in Robert and Casella (1999), Gelman et al. (2004), Geweke 
(2005) and Zellner (1971).  
 
The Bayes factor in favor of Hi against Hj is given by  
 

Bij = 
( ) ( )
( ) ( )
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= ,        (6) 

 
where m(y|·) denotes a marginal likelihood7 and X contains regressors 
and y is the regressand.  
 

                                                 
6 However, despite the benefits of Bayesian statistics the Bayesians are criticized for using 
informative prior distributions probably biasing the estimation results – this could be avoided by 
using plausible uninformative priors, as in this study. 
7 The notation for Bij can be misleading in the sense that the variables/information set for which 
the value of the marginal likelihood function is calculated is changed under an alternative 
hypothesis. A posterior model probability of Model k over m different model specifications can 

be calculated using ( ) ( ) ( )

( ) ( )∑
=

=
m
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, where p(Modelk) is the 

prior probability of Model k  and m(Y|Modelk)  is the marginal likelihood of Model k. 
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We set hypothesis Hi and Hj as H1 and H2. H1 is fixed to describe the 
common belief (considered to be the true model) that euro area 
aggregates are used in the Taylor rule. Rejecting H1 and accepting the 
alternative hypothesis H2 would imply that underlying conditions for H2 
are more likely to be used in the monetary policy tuning of the ECB. The 
data sets to be used in place of H2 are those for Germany (1L), Germany, 
France and Italy (3L), Germany and Italy (2La), Germany and France 
(2Lb), Germany and Italy (2Lb) and France and Italy (2Lc). With Bayes 
factors we will be measuring how much our belief in H1 relative to H2 
changes after we have seen the data.  
 
When testing for the information set which most probably leads ECB 
monetary policy decisions we follow Canova (2006) and his monetary 
policy rule specification. He states that a backward-looking Taylor rule 
with an interest rate smoothing term is consistent with the idea that the 
central banker only observes lagged values of output gap and inflation 
in deciding the current level of the interest rate. Backward-looking 
specification is also eligible because of informational lags and the 
estimated correlation coefficient between current monthly values and 
once lagged data is really high (~0.90 or above). Furthermore, specifying 
the monetary policy rule in this manner avoids causing a bias to 
parameter estimates due to endogenous regressors.  
 
In line with Canova (2006) the monetary policy rule is a variant of the 
Taylor rule with interest rate smoothing term 
 

it = ψiit-1 + (1-ψi)[ζ + ψ̟̟t-1 + ψxxt-1] + εt,         (7) 
 
where xt stands for the output gap and ̟t for the inflation rate; it is for the 
monetary policy instrument (all the variables measured in percent) and ζ 
is a constant term. A variable εt is a zero-meaned stochastic error and 
Var(εt) = σ2. Following Geweke (2005) the likelihood function of a linear 
normal regression model coupled with conjugate prior distributions 
produces the following marginal likelihood (see Section 2A in the 
Appendix for details) 
 

m(y) = ̟-T/2{Г[(T+v0)/2]/Г(v0/2)}(|H0|/|H |)1/2( 2

0s )v0/2 

               [ 2

0s + 2s +(b- β )′X′X(b- β )+(b- β )′H0(b- β )]-(T+v0)/2      (8) 
 
In the calculation of Equation (8)8 we set E(σ2) = 1 in Equation (7) and v0 
= 10 such that 2

0s  = 8 = 10-2 due to E(σ2) = 2

0s /(v0-2). Following Taylor 

                                                 
8
 Here the ̟ is pi, not inflation rate.  
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(1993), the prior means of the parameters of Equation (7) [(1-ψi)ζ,, (1-ψi), 
ψ̟, (1-ψi)ψx, ψi] are [(1-0.9)*1, (1-0.9)*1.5, (1-0.9)*0.5, 0.9], since the 
variables are measured in percent. The prior precision matrix of slope 
parameters is by assumption a diagonal matrix having 0.1s as diagonal 
entries. The prior information can be considered uninformative (due to 
low precision and prior weight v0 in the posterior distribution).   
 
The marginal likelihood values are reported in Table 1 in Appendix 
Section 3A. The Bayes factor in Equation (6) receives values letting us 
propose that the economies of Germany, France and Italy (3L) present 
the information set which most likely guides the ECB’s monetary policy. 
The Bayes factor of the information contents of euro area aggregates and 
3L is 1.389, suggesting weak evidence on economic conditions in 
Germany, France and Italy being emphasized in the monetary policy 
reaction function in the euro area.  For constant prior model probability 
there is a 20% posterior probability that the Eonia interest rate is 
conditioned on 3L information, whereas euro area aggregates have 28% 
posterior probability. The assumption of German economic conditions 
(1L) being the driving force in euro area monetary policy is not 
supported by the data, since the marginal function value is lower than 
the values calculated for other information sets. This finding contradicts 
Kool (2005), where German economic conditions are found important for 
the ECB’s monetary policy operations. Similarly Buiter’s (1999) 
suggestion that the ECB is an inheritor of the Bundesbank is not verified 
by the data. 
 
Next we introduce the fractional marginal likelihood method, which we 
use in inferring the lag length of the VAR model. Thereafter posterior 
analysis of impulse responses under uninformative prior distributions of 
VAR model parameters is presented and conducted. 
 
To obtain the suggested lag length for a VAR model we follow Villani 
(2001), and denote  
 

tti

p

i

itt zDyy +Φ+Π=∑
=

−
1

                                                 (9) 

 
as a form for the reduced VAR model. In Equation (9) the matrix D is for 
the deterministic variables of the model. The reduced form errors zt are 

                                                 
9 Jeffreys (1961) suggests the following threshold values for Bayes factors: Bij < 1/10: Strong 
evidence for Hj,  1/10 < Bij < 1/3: Moderate evidence for Hj, 1/3 < Bij < 1: Weak evidence for Hj, 1 
< Bij < 3: Weak evidence for Hi, 3 < Bij < 10: Moderate evidence for Hi and Bij > 10: Strong 
evidence for Hi. 
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assumed to follow a Gaussian distribution with zero mean and Σ 
covariance matrix i.e. zt ~ N(0, Σ).  
 
The estimation form for the reduced VAR system is Y = XB + Z, in which 
matrix Y is a (T×m) matrix, X is a (T×k) matrix (k=1+pm), and Z a (T×m) 
matrix, whose tth rows are y′t,( y′t-1,…,y′t-p)′, and z′t respectively. B is a 
(k×m) matrix acquired by stacking Π′ and Φ′. 
  
Villani (2001) uses the following uninformative joint prior for Σ and B 
(the prior for elements in B is constant and Jeffreys prior for Σ)  
 

p(Π1, …, Πp, Φ, Σ) = p(B, Σ) 
( )
2

1+
−

Σ∝
m

,          (10) 

 
and the lags are p = 0, 1, ..., K. An uninformative prior is an objective 
prior implying that we have little or no pre-knowledge of the parameter 
values of the model and we let the likelihood function dominate the 
posterior distribution.  
 
Villani (2001) shows that Gaussian likelihood and the uninformative 
joint prior in Equation (10) gives the log of the fractional marginal 
likelihood function as  
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where Sp = (Y - X B̂ )′( Y - X B̂ )/T and Γ is the gamma function. We will 
set 8 as a maximum lag length for each data set and hence calculate the 
values of 8 fractional marginal likelihood functions. 
 
In applying a reduced-form multivariate time series model one should 
note that we cannot base our inference on causality links between the 
variables – higher values of the fractional marginal likelihood function 
compared to the values of the alternative hypothesis mean that we have 
in general a better model fit for the given lag length. We apply 
fractional10 likelihood methods, since we specify posterior distributions 
of lag parameters with uninformative prior distributions. We calculate 
the values of fractional marginal likelihood function under each 
hypothesis, setting the maximum lag length at eight11 (K = 8) and 
defining Y′ = [̟HICPj, log(IIPj/potIIPj), Eonia], where j = 1, …, 6 is for 
                                                 
10 The name fractional marginal likelihood derives from the fact that a fraction of data is used as a 
training sample. 
11 We see that limiting maximum lag length to 8 suffices to capture the data-generating processes 
of a 3-variable VAR model. 
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information describing data sets. Variable potIIPj is a potential output for 
dataset j and is estimated using the HP trend estimate tẐ . The output 
gap is hence xt = log(IIPj/potIIPj). We also calculate average discrepancy 
statistics due to Gelman et al. (2004) in Appendix Section 3C in Table 3. 
These results back the inference drawn from fractional marginal 
likelihood values. 
 
Table 2 in Section 3B in the Appendix shows the values of fractional 
marginal likelihood on a logarithmic scale for lag lengths from 1 to 8 for 
each information set. Table 2 shows that a candidate for the common lag 
length capturing the data generating process of the model for the euro 
area is of the order 312. We decided to use a lag length of order 3, since 
assigning a lag length of order 8 or even greater would lead to over-
parameterization of the VAR model.  
 
 

3.5 Specifying the Impulse Response Function 

 
We showed that the notion of controlling for the variation of the 
variables for the country coalition of Germany, France and Italy (3L) 
instead of the euro area aggregates is not an empty hypothesis. Given 
the result, we would be interested in seeing how an unanticipated 
monetary policy shock, while determining the monetary policy on either 
euro area or 3L aggregates, affects EMU member countries whose 
information content in conditioning sets can be considered minor. We 
see that the natural choices of small peripheral EMU member countries 
would be Finland, Ireland and Portugal13. Without going into details we 
note that Finland represents an economy in which nominal wages are 
historically centrally agreed and adjustments to common monetary 
policy shocks can hence be asymmetric. Like Finland, Ireland has gone 
through a technological change in the past decade and has absorbed 
massive amounts of foreign capital. Even so, Irish economic conditions 
cannot be seen to be same as/similar to those of Finland. Portugal on the 
other hand, as we see it, is a relatively less developed EMU member 
country and might gain relatively more from the stable conditions EMU 
membership provides in the long run, as for instance Figures 3a-b for 
year-on-year producer price inflations in the Appendix (Section 1) show.   
 

                                                 
12 Residuals for each estimated 3-variate VAR(3) models are verified to be non-autocorrelated 
and homoscedastic, and thus they are in line with model assumptions.  
13 Additionally, the relative weight of Finland, Ireland and Portugal in the construction of euro 
area aggregates is negligible.  
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To ascertain how an unanticipated monetary policy shock affects above 
EMU member countries we add a new variable to our system of 
equations. We propose that adding a variable measuring the difference 
in year-on-year producer price inflation enables us to investigate the 
short- and medium-term monetary policy effects of relative traded goods 
price competitiveness between the euro area (or 3L country coalition) 
and a peripheral member country14. Note that ̟HICP and deviation from 
output potential (which proxies output deviations from the flexible price 
equilibrium) are typically used in defining the loss function of the central 
bank. We could set as a hypothesis that in par the monetary response of 
the difference in producer price inflations should be statistically zero and 
then reason that mutual price competition is not sensitive to random 
shocks in the monetary policy instrument. The difference in year-on-year 
producer price inflation between conditioning area /country coalition 
and member country is chosen to avoid presenting the same variable, for 
instance series for year-on-year price inflations, twice in the statistical 
model, thus causing problems in inference. Figures 3a-b show that 
despite the Portuguese year-on-year producer price inflation spikes in 
the year 2000 the series for year-on-year producer price inflations have 
similar values.  
 
To draw an inference on the way a structural shock in a variable j affects 
the dynamics of variable i in a VAR model we need first to standardize 
the reduced-form errors to obtain an interpretation of one standard 
deviation shock. To start with we write the VAR in structure form  
 
                                                 
14 Adding a new variable to a system of equations may well be criticized on solid theoretical 
grounds, since the likelihood function of the model does not remain the same. However, we 
assume that it to be common practice for agents first to observe that a model for three variables 
capturing the supply, demand and monetary policy rule is a satisfactory model on a statistical 
basis to describe the monetary conditions for the euro area. Then, adding a new variable to the 
model for descriptive purposes would seem to be suitable even while conceding that this 
misspecifies the original three-variable macro model.  
We ran a block-exogeneity test  (Hamilton (1999), pp. 311-12) to test whether A2 is a zero matrix 
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where y1t= [̟HICPj, log(IIPj/potIIPj), Eonia]1t, x1t contains lagged values of y1t.  y2t is ̟PPIj- ̟PPIi and x2t 
is constructed similar to x1t but using values of y2t. Term c1 is a vector of constants and c2 is a 
scalar. Error processes are uncorrelated and assumed to follow a zero-mean Gaussian process. 
Block-exogeneity tests were ran using lag lengths 3-8 in models for Finland, Ireland and Portugal 
on the assumption that the monetary policy is determined using euro area and 3L aggregates. We 
found that in all lag lengths and in all models the variable ̟PPIj- ̟PPIi provides precision in 
forecasting variables in the original, three-variable model. Hence producer price inflation should 
be introduced into the model as well. We admit that this raises a problem and we suggest that a 
theoretically more plausible way of solving it would be to use a different macro model also 
providing structural equations for producer price inflation series. In that case we would no 
longer restrict ourselves to a closed-economy macro model. However, in view of the descriptive 
purposes of the study we point to this also as a possible direction for future research. 
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Γ(L)yt = c + εt,        (12) 
 

where Γ(L) = Γ0  - Γ1L  - … - ΓpLp and εt ~ N(0, Λ). We assume that the 
structural shocks are not simultaneously correlated, i.e. for instance the 
cost shock πε  does not simultaneously affect the monetary policy 

shock iε . Therefore the covariance (mxm) matrix Λ  of structural shocks is 
diagonal. The diagonal elements of simultaneous effects in matrix Γ0 are 
normalized to 1. Term c is a vector of constants. 
 
Standardization is done by premultiplying Equation (12) by Λ-1/2 to 
obtain A(L)yt = a + vt, where A(L) = Λ-1/2Γ0 - Λ-1/2Γ1L - … - Λ-1/2ΓpLp and 
Cov(vt) = I. The reduced-form model is 1

0
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 which can be written in the matrix form Y = XB + Z, where 

Y is a (T×m) matrix, X is a (T×k) matrix (k=1+pm), and Z is a (T×m) matrix 
whose tth rows are y′t,( y′t-1,…,y′t-p)′, and z′t respectively. Further, B is a 
(k×m) matrix achieved by stacking b′ and Bi′. The responses of model 
variables to one standard deviation shock in the jth variable are derived 
using a common route first transforming the VAR into moving average 
presentation and then differentiating w.r.t standardized shock of a 
variable j (see further discussion of this for instance in Hamilton, 1994).  
 

3.5.1 Posterior Distributions 

 
The likelihood function is assumed to be Gaussian, meaning that we 
assume symmetric shocks to linear Equations (1)–(3) and have a common 
form of  
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where S = (Y - X B̂ )′(Y - X B̂ ) and B̂  = (X′X)-1X′Y. 
 
To be in line with the marginal likelihood analysis we will use the same 
joint prior distribution for reduced-form parameters and the model error 
covariance matrix. In general, an uninformative prior distribution serves 
our purposes of descriptive data analysis well – we let the data speak by 
assigning uninformative prior knowledge to the model parameters.  
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In Section 2B in the Appendix it is shown how to derive the marginal 
posterior of Σ in Equation (14) and the full conditional posterior of β = 
vec(B) in Equation (15). We will generate values from the following 
density functions  
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and 
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We introduce a new variable into the model to measure the monetary 
responses of the difference in annual producer price inflation between 
coalition/country j and a peripheral EMU member country i. By adding 
this new variable to the system we can, without assuming any explicit 
functional form for it but a reduced VAR form, inspect how a monetary 
policy shock affects the relative production price competition of EMU 
member countries. In estimation we change the sign of the monetary 
policy instrument to enable us to make an inference as to how an 
expansionary monetary policy shock affects the model variables. The 
VAR is identified using Cholesky decomposition15, which obviously 
rests on the assumption that an unanticipated monetary policy shock is 
allowed simultaneously to have an effect on the difference in producer 
price inflation series together with HICP and IIP series. We define j = 
euro area and 3L and i = Finland, Ireland and Portugal. The variables 
used in VAR estimation are now Y* = [̟HICPj, log(IIPj/potIIPj), -Eonia, 
(̟PPIj- ̟PPIi)]. The identification of our 4-variable reduced-form VAR is 
obtained assuming simultaneous effects to possess a lower-triangular 
matrix in the form of 
 

A0 = 



















44434241

333231
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00

000

aaaa

aaa

aa

a

,      (16) 

 
where a parameter aij is the simultaneous effect of a variable j on a 
variable i. To fix the simultaneous effects of the VAR in the form of 
Equation (16) we need to cope with the assumption that the 

                                                 
15 Both the order and rank conditions for identification are fulfilled. Furthermore, using Cholesky 
decomposition and presenting the difference of year-on-year producer price inflation as the last 
variable in matrix Y* we in fact assume that the producer price inflation difference cannot have a 
simultaneous effect on other model variables.  
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simultaneous effect of both output gap and interest rate on HICP 
inflation is zero. We control the results for impulse responses using 
different identification schemes in the Appendix. Note that MCMC 
methods would be required if we were driving exact simultaneous 
restrictions implied by Equations (1) – (5) and allowed the monetary 
policy instrument to affect only the difference in producer price 
inflation16.  
 
 

3.6 Results for Monetary Policy Shock  

 
The lag length of all reduced-form VARs is estimated to be three (i.e. 
VAR(3)), as suggested in Table 2 in Appendix Section 3B. The assumed 
independence of the reduced-form residuals is verified by calculating 
autocorrelations crosswise – all the correlograms drawn indicate that the 
residuals are all well-behaving, i.e. autocorrelations between residuals 
are not significant at the 95 per cent level and we can rest on the 
assumption of white noise residuals and on a homoscedastic covariance 
structure of reduced-form residuals.  
 
Conditioning monetary policy on two different information sets (the 
euro area and 3L aggregates) and driving an unanticipated expansionary 
shock of the order of one standard deviation in the monetary policy 
instrument causes somewhat similar reactions in the difference in 
producer price inflations between the euro area/3L and Finland and 
Ireland. Portugal constitutes an exception – the 68 per cent posterior 
errors bands for responses are tighter if 3L information is used in 
monetary policy. The robustness of impulse responses in Figures 4 - 6 
presented in Appendix Section 4 is validated using the different variable 
ordering schemes for the Cholesky identification17. Variable ordering 
schemes and impulse responses are depicted and drawn in Section 5 in 
the Appendix. According to these validating results we can consider the 
impulse response drawn by Figures 4 – 6 as robust18.  

                                                 
16 To allow for over-restricted simultaneous effects we would need to assume, for instance, a 
constant joint prior instead of an uninformative prior. This would entail using the Metropolis-
Hastings step in fractional marginal likelihood calculation and posterior p.d.f. for reduced-form 
parameters. Even in this case we would not be able to run the VAR calibrated for simultaneous 
effects given by the model; it would be necessary to make further assumptions of zero-
simultaneous effects for variables in the VAR model to keep identification conditions (namely the 
rank condition) fulfilled. 
17 In Section 5 in the Appendix we show for 6 different variable ordering schemes that the 
monetary responses of annual producer price inflations have similar distributions and that the 
results are not sensitive to the ordering of model variables.  
18 To be more specific, this is the case when the instrument for monetary policy, the Eonia interest 
rate, is allowed to have a simultaneous effect on the PPI inflation differential ̟PPIj- ̟PPIi. 
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In Figures 4 – 6 we have plotted the 68 per cent posterior probability 
interval for the impulse response function for the difference in annual 
producer price inflations, i.e. dPPI(information set)–dPPI(member country 
j) to an unanticipated expansionary monetary policy shock. The middle 
line is the median response value. The lines in bold face are for the H1 
hypothesis that the ECB conditions monetary policy on euro area 
aggregates, meaning that these constitute the information set. 
Additionally, the thinner lines are for the H2 hypothesis, i.e. the 
assumption that the information content of the country coalition of 
Germany, France and Italy (3L) does have more weight than officially 
announced in the conduct of monetary policy. Note that the immediate 
response of the producer price inflation difference to a positive one 
standard deviation in monetary policy shock is labeled as the first value 
on the x-axis. 
 
Figure 4 shows that the Finnish year-on-year producer price inflation 
responds initially more aggressively to an expansionary monetary policy 
shock than on average in the euro area or in 3L. Thereafter the 
adjustment processes are statistically the same. The width of the 68 per 
cent posterior confidence interval is nearly the same for these two 
reduced form VAR models with different information content. The 
burden of Figure 5 is that in the short run the producer price inflation 
difference between the euro area/3L and Ireland behaves statistically 
similarly. However, there would seem to appear persistent asymmetric 
responses if we condition the monetary policy on the euro area 
aggregates – in this case the impulse responses drawn indicate that the 
euro area year-on-year producer price inflation is persistently higher 
than in Ireland. The width and the level of the confidence intervals is 
practically the same for the first 3 months after the shock and thereafter 
the location of the density function for impulse response values for a 
model conditioned on 3L aggregates shifts towards a statistically zero 
inflation difference.  
 
If we condition monetary policy with 3L coalition variables, we find for 
Portugal that the short-run impulse responses would show response 
patterns similar to those in Figure 5 – in the Portuguese case the inflation 
difference diminishes statistically to zero in 4 periods, while for Ireland it 
takes 5 periods to die out. A crucial finding in Figure 6 is that the 
immediate response of the year-on-year producer price inflation 
difference is statistically zero under both information contents. The 
Portuguese posterior density functions for producer price annual 
inflation do not generate similar patterns for euro area and 3L 
information content. Perhaps the results for Portugal could be influenced 
by implicitly different producer price inflation dynamics. In Figures 3a-b 
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in the Appendix we see that the Portuguese year-on-year producer price 
inflation remained over 10 per cent, peaking at nearly 20 per cent in the 
middle of the year 2000, while producer price inflation in the euro area, 
3L coalition, Finland and Ireland was more moderate. 
 
 

3.7 Concluding Remarks 

 
We described the monetary policy conditions in the euro area with 
variables specified in a closed economy new Keynesian macro model 
and assumed that central bank operations follow a Taylor rule -type 
instrument rule. We showed that the weight of the EMU member 
country coalition of Germany, France and Italy (3L) cannot be ignored as 
the information set possibly driving monetary policy operations 
conducted by the ECB. Our findings are not in line with the results of 
Kool (2005) and Buiter (1999). We found that the ECB does not weight 
relatively more German (1L) conditions while exercising monetary 
policy in the euro area. 
 
Monetary responses of the difference in year-on-year producer price 
inflation between the euro area (or the 3L country coalition) and three 
peripheral EMU member countries were found to be statistically 
asymmetric. Monetary policy determined on both (euro area and 3L 
aggregates) information sets produces immediate and for the first month 
positively asymmetric year-on-year producer price inflation responses 
for Finland. The Irish producer price inflation tends to adjust to an 
expansionary monetary policy shock more steadily than the euro area or 
in the 3L country coalition for 5 successive months after the shock. From 
the impulse responses for Ireland we deduce that persistent asymmetric 
monetary inflation responses prevail when the monetary policy is tuned 
conditional on euro area aggregates.  
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Appendix  

 
 

1. Figures 
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Figure 1a: Germany (1L), EMU-area and Eonia
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FIGURES 1A-B. Percentage deviations of IIP from potential level and Eonia 

            interest rate, sample period Jan 1999 – April 2006. 
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Figure 1c: 2La, EMU-area and Eonia
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Figure 1d: 2Lb, 2Lc, EMU-area and Eonia
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FIGURES 1C-D. Percentage deviations of IIP from potential level and Eonia 

            interest rate, sample period Jan 1999 – April 2006. 
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Figure 2a: Germany (1L), EMU-area and Eonia
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Figure 2b: 3L, EMU-area and Eonia
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FIGURES 2A-B. Year-on-year HICP inflation rates and Eonia interest rate, 

            sample period Jan 1999 – April 2006. 
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Figure 2c: 2La, EMU-area and Eonia
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Figure 2d: 2Lb, 2Lc, EMU-area and Eonia
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FIGURES 2C-D. Year-on-year HICP inflation rates and Eonia interest rate, 

            sample period Jan 1999 – April 2006. 
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Figure 3a: Finland, Ireland, Portugal and EMU-area
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Figure 3b: Finland, Ireland, Portugal and 3L
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FIGURES 3A-B. Year-on-year PPI inflation rates, sample period Jan 1999 – April 

            2006. 
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2. Marginal likelihood and posterior distributions 
 
A) Marginal likelihood of a normal linear regression with conjugate prior 
distributions 
 

 
The following derives from Geweke (2005). 
 
 
A normal linear regression model writes as 
 

y = Xβ + ε 
 
such that y|(β, h, X) ~ N(Xβ, h-1I). In the model y is a (Tx1) vector of observed 
outcomes and a (Txk) matrix X of covariates is a full rank matrix. Parameter h is 
the precision of each of the i.i.d. disturbances ε, h = 1/σ2 is precision and Var(εt) 
= σ2 and β is a (kx1) vector of coefficients.  
 
The likelihood function for the above model under Gaussian errors is 
 

p(y | β, h, X) = (2̟)-T/2hT/2exp(-h(y - Xβ)′( y - Xβ)/2). 
 
The conjugate prior distributions of β and h are  
 

( )022

0 ~ vhs χ  

 
and 
 

( )101

0 ,~| −− HhNh ββ , 

 
where β0, H0 and 1

0

−H  are the prior mean, prior precision and prior variance of 

β, respectively. Matrix H0 is a (kxk) positive definite matrix of constants. E(h) = 
v0/ 2

0s  and Var(h) = 2v0/ 4

0s  due to properties of the Chi-squared distribution. A 

change of variable yields the expected value of σ2, E(σ2) = 2

0s / (v0-2).  

 
The marginal likelihood of y is  
 

m(y) = ̟-T/2{Г[(T+v0)/2]/Г(v0/2)}(|H0|/|H |)1/2( 2

0s )v0/2 

           [ 2

0s + 2s +(b-β )´X´X(b- β )+(b- β )´H0(b- β )]-(T+v0)/2, 

 
where s2 = (y - Xb)′(y - Xb), b = (X´X)-1X′y, H = H0 + X′X, 
β  = 1−H (H0β0 + X´Xb) and Г denotes the gamma function.  
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B) Derivation of posterior distributions  

 
The product of likelihood Equation (11) and the joint prior produces the joint 
posterior distribution of B and Σ, and has the form 
 

p(B, Σ | X, Y) 
( ) ( ) ( )( )







 −−Σ−Σ−Σ∝ −−

++
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BBXXBBtrStr
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ˆˆ
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1
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1
exp '
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11

2
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. 

 
The marginal posterior of Σ is obtained by integrating over the range of 

possible values of reduced-form coefficients in matrix B. Matrices B and B̂  are 

vectorized, i.e. vec(B) = β and vec( B̂ ) = β̂ , then 
 

p(Σ | X, Y) 
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The integral term is 1. Then  
 

p(Σ | X, Y) 
( ) ( )
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is a matrix of constants. The marginal posterior of Σ is  

 

p(Σ | X, Y) 
( )
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1
2

1)1(

2

1
exp ,  

 
and above is the kernel for the inverted Wishart distribution –  
Σ ~ IW(T-(pm+1), S), S is a ( mxm ) scale matrix.  
 
Applying the rule p(B|X, Y, Σ) = p(B, Σ|X, Y) / p(Σ|X, Y) gives the conditional 
posterior of β as 
 

p(β|X, Y, Σ) ( ) ( )[ ]( )






 −⊗Σ−−∝ − ββββ ˆˆ
2

1
exp '1

'

XX . 
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3. Marginal likelihoods and estimated average discrepancy 
 
 
 

A) Marginal likelihood values of backward-looking Taylor rule 
 

TABLE 1. Logarithmic values of marginal likelihood and posterior model    
    probabilities (constant prior model probability) for backward-looking  
    Taylor rule. 
 

______________________________________________________________________________________________________________________________ 

Marginal likelihood values   
______________________________________________________________________________________________________________________________ 

  Euro area Germany (1L) 3L 2La 2Lb 2Lc 
______________________________________________________________________________________________________________________________

 

log(m(y|Model))        -33.2864 -34.5784 -33.6059 -33.6598 -34.3118 -33.8590 

p(Model |y)  0.277 0.076 0.201 0.191 0.099 0.156 
______________________________________________________________________________________________________________________________ 

 

 

B) Fractional marginal likelihood 
 

TABLE 2. Logarithmic values of fractional marginal likelihood for a given lag 
    length of the VAR model. 

 
____________________________________________________________________________________________________________________________ 

Fractional marginal likelihood values 
____________________________________________________________________________________________________________________________

 

Lag 
length 

 Euro area Germany (1L) 3L 2La 2Lb 2Lc 

____________________________________________________________________________________________________________________________ 

1  328.7073 308.7546 330.3278 327.5213 319.1078 330.4018 

2  330.4527 310.3252 331.8220 328.2585 320.6692 331.6629 

3  335.1425 314.5401 334.7345 331.9970 324.2190 331.0868 

4  334.5760 315.1097 334.1908 331.9968 323.8044 331.7844 

5  333.4834 314.8438 333.4710 331.1316 323.0003 332.0654 

6  332.0600 313.7257 332.8194 329.9786 322.4973 331.0811 

7  332.6861 313.3556 333.5474 330.4848 322.3325 332.2314 

8  334.0818 313.3434 333.6386 331.2437 322.4421 330.5382 
____________________________________________________________________________________________________________________________

 

 

 
C) Estimated average discrepancy  

 
The discrepancy between data and model depends on the parameters in θ as 
well as y. Bayesians are eventually interested in averaging the discrepancy itself 
over the posterior distribution  
 

( ) ( )[ ]yyDEyDAVG θ,= , 

 
whose value is estimated by calculating the estimated average discrepancy 
using posterior simulations θl in the formula 
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( ) ( )∑
=

=
L

i

lAVG yD
L

yD
1

,
1ˆ θ ,  

 
where the deviance is ( )θ,yD  = -2logp(y|θ) and L is the total number of draws. 
p(y|θ) denotes the Gaussian likelihood function. θl is the lth draw from the 
posterior density of β and Σ given in Equations (14) and (15). The small values 

of ( )yDAVG
ˆ  indicate a better model fit. 

 
 
TABLE 3. Estimated average discrepancy for a given lag length of the VAR 
    model. 
 

____________________________________________________________________________________________________________________________ 

Estimated average discrepancies for different information sets for lag lengths 
spanning from 1 to 8 
____________________________________________________________________________________________________________________________

 

Lag 
length 

 Euro area Germany (1L) 3L 2La 2Lb 2Lc 

____________________________________________________________________________________________________________________________ 

1  -634.3551 -512.8945 -644.1243 -626.9115 -576.0931 -644.4998 

2  -646.5801 -524.1016 -654.8497 -633.6168 -587.5718 -653.7335 

3  -676.7119 -552.0876 -674.3843 -658.4536 -611.1793 -653.4035 

4  -676.3681 -558.3638 -674.2018 -661.1106 -611.6683 -659.6845 

5  -673.3077 -559.1672 -672.7438 -658.1860 -608.7717 -664.3293 

6  -667.2893 -556.5937 -672.4192 -655.1114 -608.6847 -661.3049 

7  -675.5522 -557.5919 -680.5318 -662.0906 -612.8297 -671.4635 

8  -688.7311 -561.3821 -685.5297 -672.3674 -616.9058 -666.2163 
____________________________________________________________________________________________________________________________
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4. Impulse responses 
 
 
 

Figure 4: EMU/3L vs. Finland
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Figure 5: EMU/3L vs. Ireland
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Figure 6: EMU/3L vs. Portugal
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FIGURES 4-6.   Impulse responses of the difference in year-on-year producer 

price (PPI) inflation rates between euro area/3L and Finland, 
Ireland and Portugal to an expansionary monetary policy shock.  
The time horizon of the impulse responses is 15 months. The 
midmost lines are the medians and outer bands represent 68 per 
cent credible intervals. 
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5. Variable orderings  
 

 

 
Variable ordering *   

Y*′ = [̟HICPj, log(IIPj/potIIPj), -Eonia, (̟PPIj  - ̟PPIi)].  

The superscript j (euro area, 3L) is for the information content and i is for a 
peripheral EMU member country (Finland, Portugal, Ireland).  

Variable ordering #1 

Y1′ = [(̟PPIj  - ̟PPIi), ̟HICPj, log(IIPj/potIIPj), -Eonia] 

A monetary policy shock is not allowed to have a simultaneous effect on the 
year-on-year producer price inflation rate difference. Contemporaneous values 
of output gap and year-on-year HICP inflation rate affect the monetary policy 
instrument. 

Variable ordering #2 

Y2′ = [(̟PPIj  - ̟PPIi), log(IIPj/potIIPj), ̟HICPj, -Eonia] 

A monetary policy shock is not allowed to have a simultaneous effect on year-
on-year producer price inflation rate difference. Contemporaneous values of 
output gap and year-on-year HICP inflation rate affect the monetary policy 
instrument, but HICP inflation rate has no simultaneous effect on the output 
gap.  

Variable ordering #3 

Y3′ = [log(IIPj/potIIPj), ̟HICPj, -Eonia, (̟PPIj  - ̟PPIi)] 

The same as ordering * but ordering #3 has a changed order for the year-on-
year HICP inflation rate and the output gap. 

Variable ordering #4 

Y4′ = [-Eonia, ̟HICPj, log(IIPj/potIIPj), (̟PPIj  - ̟PPIi)] 

Model variables are not allowed to have simultaneous effect on the monetary 
policy instrument. The year-on-year producer price inflation rate difference is 
affected simultaneously by all model variables. 

Variable ordering #5 

Y5′ = [-Eonia, log(IIPj/potIIPj), ̟HICPj, (̟PPIj  - ̟PPIi)] 

The same as ordering #4 but the output gap and year-on-year HICP inflation 
rate have changed places.  

Variable ordering #6 

Y6′ = [-Eonia, (̟PPIj  - ̟PPIi), ̟HICPj, log(IIPj/potIIPj)] 

Model variables are not allowed to have simultaneous effect on the monetary 
policy instrument and only the monetary policy instrument has a simultaneous 
effect on year-on-year producer price inflation rate difference. 
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In the first column of Figures 7-9 we allow euro area aggregates to depict 
monetary policy conditions. In the second column 3L aggregates form the 
conditional information set. The thick lines are for impulse response function 
values for variable ordering Y*′ = [̟HICPj, log(IIPj/potIIPj), -Eonia, (̟PPIj  - ̟PPIi)]. 
The outer lines are the lower and upper bound limits for 68 posterior 
probability interval and the midmost is the median value. The thin lines and 
response patterns depicted with triangles are for impulse function values for 
variable ordering mentioned first and last in the title, respectively. Within each 
subfigure in Figures 7-9 impulse response functions from three different models 
are drawn and in some cases the values of impulse response functions are 
visually the same. 
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FIGURE 7.  Impulse responses of the difference in year-on-year producer price 
       (PPI) inflation rate between euro area/3L and Finland, Ireland and 

      Portugal to an expansionary monetary policy shock with variable 
      orderings 1, 2 and *. The time horizon of the impulse responses is 
     15 months. The midmost lines are the medians and outer bands 
      represent 68 per cent credible intervals. 
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FIGURE 8.  Impulse responses of the difference in year-on-year producer price 
      (PPI) inflation rate between euro area/3L and Finland, Ireland and 
      Portugal to an expansionary monetary policy shock with variable 
      orderings 4, 5 and *. The time horizon of the impulse responses is 
     15 months. The midmost lines are the medians and outer bands 
      represent 68 per cent credible intervals. 

 

 
 
 
 
 
 
 
 
 
 



 108 

 
 
 

dPPI_EMU - dPPI_FIN, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.1
5

0
0
.1
5

0
.3

dPPI_3L - dPPI_FIN, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.1
5

0
0
.1
5

0
.3

dPPI_EMU - dPPI_IRE, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.1
5

0
0
.1
5

0
.3

dPPI_3L - dPPI_IRE, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.1
5

0
0
.1
5

0
.3

dPPI_EMU - dPPI_POR, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.4

-0
.2

0
0
.2

0
.4

dPPI_3L - dPPI_POR, ordering 3 and 6

0 2 4 6 8 10 12 14

-0
.4

-0
.2

0
0
.2

0
.4

 
 
 

FIGURE 9.  Impulse responses of the difference in year-on-year producer price  
                 (PPI) inflation rate between euro area/3L and Finland, Ireland and 
                 Portugal to an expansionary monetary policy shock with variable 
                 orderings 3, 6 and *. The time horizon of the impulse responses is 15 
                 months. The midmost lines are the medians and outer bands 
                 represent 68 per cent credible intervals. 
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4.1 Introduction 

 

The word inflation appears to be one of the most commonly used 
economic terms among the general public. People are interested in 
inflation because most think that inflation hurts their standard of living, 
as Shiller (1997) puts it. Consequently, the complicated challenge of 
modern central banks is to practise low inflation policy to keep the 
consumption path of the general public stable. This challenge may be 
even more complicated for the European Central Bank (ECB), because 
the diversity in the economic and institutional structures across the 
member countries constitutes a rationale for the expectation that a 
common monetary policy will have impacts of different magnitudes in 
the member countries in the European Monetary Union (EMU) area. 
Thus, due to nominal rigidities in the euro area (see for instance Burda 
(2001) and López-Salido et al. (2005)), possible asymmetric inflation 
responses may indeed lead to undesired real effects in EMU member 
countries and monetary policy loses its stabilising role in the short or 
medium term. 
 
Not surprisingly, there is a body of vector autoregressive (VAR) studies1 
in which the monetary policy shock in each of the individual countries of 
the euro area is investigated and cross-country comparisons are made. 
The differences in the results presented in this literature are striking, 
since a host of theoretical, statistical and data issues are involved in 
empirical analyses. We pinpoint the following major problems in this 
literature, also highlighted by Peersman (2004): 

i) Typically, the same model is estimated for each individual 
country. This tends to be misleading, since each country has a 
different economic structure and has its own monetary policy 
reaction function. 

ii) The size of the estimated monetary policy shock differs across 
countries. This tends to complicate the comparability of the 

                                                 
1 For more detailed surveys, see for example Mojon and Peersman (2001) and Peersman (2004). 
See also Angeloni and Ehrmann (2004), who use quarterly EMU panel data over the period 
01/1998-02/2003 to track down the sources of the inflation differences among the EMU member 
countries. They employ a similar but open-economy version of the model to that we use by, 
letting the real exchange rate variable exist in both the Phillips and IS equations. They estimate a 
structural 12-country model consisting of all (original) EMU member countries with instrumental 
variable techniques and then simulate the model. They also perform a sensitivity analysis, 
changing the values of interesting parameters inside their confidence intervals. They find that the 
magnitude of inflation persistence is the driving force generating inflation divergence, not the 
monetary policy transmission mechanism, as has been suggested in the literature. One could also 
read Sala (2001) and Clements et al. (2001) on transmission of monetary policy in the euro area. 
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effect of shocks. 

iii) It is not clear whether differences in monetary policy 
responses between countries are statistically significant, given 
the relatively wide confidence bands around the responses. 

 
Peersman (2004) takes into account the aforementioned and finds 
support for statistically significant asymmetric price level responses in 
the euro area. His empirics are based on synthetic euro area data for 
seven EMU member countries and a large-scale near-VAR model. We 
find it problematic in Peersman’s analysis that, while the autoregressive 
coefficients are estimated consistently, the standard bootstrapped error 
bands for impulse responses may well be biased as a consequence of 
small sample size; this is especially the case in the presence of non-
stationary data; see arguments for this view for instance in Kilian (1998).  
 
This paper adds to the literature in the following respects: empirical 
results are based on actual European Central Bank’s monetary policy 
conduct, guaranteeing that the size of the monetary policy shock is the 
same across the EMU member countries. Secondly, in model estimation 
we follow an approach which adopts the structural VAR (SVAR) model 
using parameter restrictions derived from the macro model to achieve 
the identification of structural in VAR model. This means that we can 
deduce identifying parameter restrictions from a 5-equation open-
economy dynamic stochastic general equilibrium (DSGE) model that 
captures economic conditions of the euro area.  
 
The parameter restrictions implied by the underlying model are taken as 
a priori knowledge in estimating the posterior distribution of the SVAR 
model. The approach parallels Sims’ (1980) suggestion that one should 
restrict the VAR model parameters consulting economic theory. A 
fruitful general discussion of new Keynesian DSGE models can be found 
e.g. in, Clarida et al. (1999, 2000), Hetzel (2000), Roffia and Gerdesmeier 
(2003) and Walsh (2003). The survey of Sungbae and Shorfheide (2007) 
summarizes advances made in Bayesian estimation of DSGE models. 
 
Thirdly, in this study we employ a posterior distribution of structural 
VAR parameters to calculate empirical impulse responses of inflation in 
the euro area aggregate and the individual EMU member country to an 
unanticipated shock to a common monetary policy instrument. We 
emphasize that using posterior-based error bands rather than classical 
confidence bands allows us to report bands which characterize the true 
shape of the likelihood. This provides unbiased statistical analysis, 
especially in the case of finite samples or nearly unit root series; see e.g. 
Sims and Zha (1999). 
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The empirical results of the paper are in contrast to those of Peersman 
(2004), Antipin and Luoto (2005) and Antipin (2008). This paper finds 
that data very weakly supports asymmetric price inflation responses to a 
common monetary policy shock in the euro area. Only for Belgium, 
Germany, Spain, Netherlands and Portugal one sees slight asymmetric 
price inflation response behaviour. However, these inflation responses 
vanish one month after the shock.  
 
The paper is organized as follows: Section 2 presents the statistical 
framework, Section 3 illustrates the estimating data and comments on 
the drawn impulse response functions and Section 4 comprises 
concluding remarks. 
 

 

4.2 Estimating Model 

 
In the model presented below we assume that the euro area’s jth 
member country represents the domestic small open economy. Secondly, 
we let the rest of the member countries in the euro area together 
represent the rest of the world. Thus, in what follows, a foreign country 
is a small EMU member country, and variables with * superscripted 
correspond to the rest of the euro area. 
 
Model equations2 write as  
 

{ } { } +∆+∆−= ++ tttttt ssEE ˆˆ
31211 ααπαπ  
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*

54
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* ˆ
ttttt zyE ββπβπ −+= + ,        (2) 
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{ } { }( )*

1
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1
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1

* ˆˆ ++ −−= tttttt EryEy πψ         and       (4) 

{ } ( )*31211
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tttttt zzssEs −++= −+ γγγ ,         (5) 

 

where consumer price inflation is defined as ( )1/log −= ttt PPπ  and zt and 
*

tz  are total factor productivity (TFP) following both independent AR(1) 

processes with i.i.d. technology shocks, ut and *

tu , respectively. 

 

                                                 
2 The model is based on Galí and Monacelli (1999) and Galí and Monacelli (2005). The detailed 
derivations of the model equations are available upon a request. 
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Equations (1) and (2) are derived from optimal price-setting conditions 
of firms located in the individual EMU member country and in the euro 
area. These equations govern the inflation dynamics (supply side) of the 
respective economies. Equation (3) determines the demand in EMU 
member country as a function of the euro area demand. Equation (4) is 
the output gap measuring demand in the euro area. Equation (5) is the 
stochastic difference equation for the terms of trade (TOT) and it has 
been derived assuming that the weight of the imports in the euro area’s 
consumer price index can be considered negligible, and that at time t, 

euro area ( )*tπ  and individual EMU member country ( )tπ  inflation series 

are mutually uncorrelated. *

tr  is the euro area’s nominal interest rate and 

will eventually be modelled using a variant of the Taylor rule.  
 
The model3 described in Equations (1) – (5) contains forward looking 
variables. One can write these as function of past values of model 
variables and exogenous TFP processes such as 
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We presume that the form of the theoretical model might be unknown 
for households and firms, but we assume that they know that 
endogenous variables depend on autocorrelated exogenous processes 
(TFP)4. Endogenous variables are autocorrelated also since the TPF 
processes are autocorrelated by assumption. Households and firms use 
available information to form expectations of relevant variables i.e. these 
forecasts are consistent with the model framework outlined above. 
Hence, we borrow from the learning literature (Eg. Evans and 

Honkapohja, 2001) and specify forecasting functions for π , *π , *ŷ  and 

                                                 
3
 We drop Equation (3) from the system, since by assumption domestic (individual EMU member 

country) output term has no influence on the rest of the system. 
4 The model in Equations (1) – (5) (excluding Eq. (3)) is of form xt = BEt(xt+1) + Gzt where zt = ρzt-1 
+ ut with diagonal covariance matrix for ut. The minimum state variable (MSV) solution for a 
model is xt = Qzt (it is assumed that households know this). Hence Et(xt+1) = ρQzt which leads to 
xt = [BρQ + G]zt = [BρQ + G]ρQ-1xt-1 + [BρQ + G]ut. 
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ŝ . Since the prediction accuracy of univariate time series models is 
reported to be at least as good as the accuracy of the multivariate 
models, we thereby assume that households and firms apply univariate 
autoregressive models in forming their inflation, output gap, and/or 
terms of trade expectations; see Stock and Watson (1999) and Marcellino 
et al. (2003). Specifically, forecast functions for the model variables are  
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 { } ( ) ttt sLbsE ˆˆ
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where bi(L) is the polynomial of lag operator L with lag length p. 
Equations (6) and (7) are backward-looking Phillips curves. Equations (8) 
and (9) are attained in the spirit of equations of the log-linearized model 
above. One should note that we have assumed that the processes have 
converged, providing that decisions made by agents are optimal.  
 
When it comes to choosing the statistical model, we could use e.g. a 
simple, empirical-based interest rate rule and approach the problem as 
do by e.g. Christiano et al. (2005) and generate values for the impulse 
response function from the structural model. However, we find that 
there is a possibility that a simple structural model cannot approximate 
the true data generating process sufficiently satisfactorily and we 
therefore suggest the following strategy to generate impulse responses 
from a SVAR model using the information of the model presented 
above; see for a discussion of the identification of SVAR models, e.g. 
Sims (1986), Gordon and Leeper (1994), and Cushman and Zha (1996). 
We assume that the ECB uses an empirical-based Taylor rule with a 
smoothing term in its conduct of monetary policy. Now, having defined 
the necessary variables we combine Equations (1)-(9) and write the 
estimating model in a form  
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The empirical analysis is based on the Equations (10)–(14). In particular, 
as Sims and Zha (1998, 1999) we specify and estimate SVAR model of the 
following form  
 

 ( ) ( ) ( )tDtyLA η=+ ,         (15) 

 
where y(t) is an (mx1) vector of observations, A(L) is an (mxm) matrix 
polynomial of lag operator L with lag length p and non-negative powers, 
D is a constant vector, A = Λ-0.5Γ, and η(t) = Λ-0.5ε(t) so that  
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suggesting that A(0), where the zero restrictions are set using the system 
of Equations (10)-(14), is a non-singular matrix, so that the model 
provides a complete description of the p.d.f. for the data conditional on 
the initial observations.  
 
Equation (15) is of the same form as the system of Equations (10)-(14), 
except that the unobservable error vector ε(t) approximates the moving 

average of the productivity shocks tu  and *

tu  (except the third row of the 

vector, that is 
trt ,

*ε ), and there are zero restrictions only on the A(0) 

matrix. We write the model in Equation (15) in matrix form 
 

  EXAYA =− +0 ,         (16) 
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where the tth rows of the Y (Txm) matrix, the X (Txk) matrix, and the E 
(Txm) matrix are given by y(t), (1 y′(t-1) ... y′(t-p))′, and η(t) respectively. 
Thus, k = mp+1 is the number of coefficients corresponding to X, T is the 
number of observations, A(0)’ = A0 (mxm) matrix and A+ is the (kxm) 
matrix of parameters of lagged model variables. 
 
Since the model errors in Equation (15) are assumed to be normally 
distributed, we specify the likelihood function of the model accordingly. 
The likelihood function takes the following Gaussian form  
 

  ( ) ( ) ( ){ }++ −−−∝ XAYAXAYAtrAAYL
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00 5.0exp .    (17) 

 
We denote vec(A0) = a0 and vec(A+) = a+. By defining a = (a′0 a′+)′, we are 
now able to write the joint prior p.d.f. of a as 
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where p0(a0) is the marginal distribution of a0 and ( )HaN ,~
+  is the 

standard multivariate normal p.d.f. with +a
~  as mean and H as 

covariance matrix. Thus, the posterior density of the parameters in 
vector a writes 
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Although the posterior density in Equation (19) is non-standard in 
general, the exponent in Equation (19) is quadratic in a+ for given a0. This 
suggests that the conditional distribution of a+ for a0 is Gaussian, 
allowing Monte Carlo sampling and analytic integration along the a+ 
dimension; see Sims and Zha (1998). 
 
We assume that the elements in vector a+ are zero a priori. To specify our 
prior variance for parameters (a+) of lagged variables (we call the model 
of this prior specification Model 1), we let a+i represent the regression 
parameters of lagged variables of the ith equation in linear multivariate 
model in Equation (15). Then 
 

( )








= −

−

+

                                                           parameter constant  afor    ,   

        (14)-(10) equations of system in the 'parameters' zerofor    ,

 (14)-(10) equations of system in the parameters zero-nonfor    ,

3

1

2

1

1

λ
λ
λ
p

p

aVar i

 



 117 

As usual, p denotes the lag length, and the hyper parameters λi (i = 1, 2, 
3) control the tightness of prior beliefs. We set the hyper parameters λ1 = 
λ3 = 10,000 and evaluate the posterior density of hyper parameter λ2. In 
setting the prior variance, we do not use typical scale factors, as e.g. 
Kadiyala and Karlsson (1997) and Sims and Zha (1998), since we have no 
prior knowledge of these. One could follow Litterman (1986) and choose 
prior variances as the sample standard deviations of residuals from 
univariate autoregressive models. However, we feel uncomfortable 
doing this since, at least in principle, these should be chosen on the basis 
of a priori reasoning or knowledge. 
 
The idea behind the prior variance structure of Model 1 is that with a 
smaller value of λ2, the linear multivariate model in Equation (15) is 
closer to the form of the system of Equations (10)-(14), while high values 
of λ1 and λ3 indicate the importance of lagged variables which the system 
of Equations (10)-(14) predicts to have influence on left-hand side 
variables. However, it is reasonable to assume that the importance of the 
lagged variables decreases with lag length; see e.g. Kadiyala and 
Karlsson (1997). 
 
One can show that, for the posterior in Equation (19), with an 
exponential prior for hyper parameter λ2, the conditional distribution of 
a+ and the joint marginal distribution of λ2 and a0 can be derived as  
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where H is chosen to match the prior variance defined above. Parameter 
τ is the prior mean of hyper parameter λ2 and 
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In the estimation, we set τ = 100 so that the prior variance of hyper 
parameter λ2 is 10,000. We use a flat prior on A(0); see Sims and Zha 
(1998) for a discussion of flat priors.  
 
In order to satisfy the rank condition for identification, we fix the Taylor 
rule parameters such that β1 = 1.5, β2 = 0.5, and ρ = 0.9; see on motivation 
for use of these parameter values of β1, β2, and ρ as in Roffia and 
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Gerdesmeier (2003). Specifically, we acquire posterior modes of 
parameter matrices Γ(0) and Λ in linear multivariate model in Equation 
(15), where diagonal elements of Γ(0) are normalized to one and β1, β2 
and ρ remain fixed5. We transform the estimated modes of Γ(0) and Λ 
back to the A(0) parameter space using the following relation A(0) = 
Γ(0)Λ-0.5. We apply transformed values to set the non-zero restrictions on 
the elements a0,31 and a0,32 in matrix A(0). 
 
Since the sign of a row of A(0) can be reversed without changing the 
likelihood function, we follow Waggoner and Zha (1997) and Sims and 
Zha (1999) in choosing a normalization for each draw that minimises the 
distance of A(0) from the posterior mode estimate of A(0). As Sims and 
Zha comment, this method will tend to hold down spurious sign-
switching of impulse responses and thereby deliver sharper results than 
e.g. normalization, where diagonal elements of Γ(0) are normalized to 
one. 
 
We also modify the specification of Model 1 such that we assume large-
country variables to be block-exogenous with respect to small-country 
variables (let us call this Model 2). For Model 2, we use a posterior density 
of Equation (19) with zero prior mean for a+ and prior variance specified 
as 
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where λ1 = λ3 = 10,000 and λ2 = 0.005. Our exogenous prior restrictions for 
lagged variables are determined using the assumption that the terms of 
trade and the small open economy’s inflation has zero effects on the euro 
area inflation, output and interest rates series (see Cushman and Zha, 
1996). The prior for A(0) is equal to that above and the conditional and 
marginal posterior densities are 
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+

−
+ +⊗−+⊗−× ,        (23)    

 

                                                 
5 We use a flat prior on A(0),  which is transformed to the (Γ(0), Λ) parameter space, including the 
appropriate Jacobian term |Λ|-(m+1)/2; see Sims and Zha (1999) and Waggoner and Zha (1997). 
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in which H is chosen to match the (exogenous) prior variances defined 
above, and 
 

( ) ( )( )+−−− +⊗+⊗= aHaYXIHXXIa ~1
0

'11'

0 . 

 
The joint marginal p.d.f. of a0 and λ2 for Model 1 in Equation (21) and 
marginal p.d.f. of a0 for Model 2 in Equation (23) are not in the form of a 
standard p.d.f. We have therefore used a version of the random walk 
Metropolis algorithm for Markov Chain Monte Carlo (MCMC) sampling 
to generate a Monte Carlo samples from them. 
 
 

4.3 Data 

 

The euro area data and the series for each EMU member country6 are 
downloaded from two data sources. Seasonally adjusted and 
construction activities excluded, monthly industrial production indices 

(IIP; in empirics *ˆ
ty  is calculated using euro area’s IIP and its potential 

level) from the beginning of 1980 to the end of the 80s are from the 
OECD main economic indicators. The EuroStat provides the IIP series up 
to April 2006. The annual series for gross domestic product (GDP), 
population, and monthly series for the harmonized index of consumer 

price (HICP; *

tHICP  and tHICP ) and Euro overnight index average 

(Eonia, *

tr ) interest rates are also downloaded from EuroStat. The 

monthly series of the producer price index (PPI) (without construction) 
over the period 1998 to April 2006 is seasonally unadjusted with base 
year 2000, and is also provided by EuroStat. The base year for the IIP 
index is 2000, the GDP is measured in 2005 prices and the base year for 
the HICP indices is 2005. Annual population is a measure of the total 
population at the end of the current year. GDP values are from 19917 to 
2005 and the population variable covers the period from 1980 to 2005. 
The monthly series for HICP8 are from January 1999 to April 2006, as are 
series for the Eonia interest rate depicting the values of the monetary 
policy instrument.  
 

                                                 
6 EMU member countries are Belgium, Germany, Spain, Austria, France, Italy, Ireland, 
Luxembourg, Netherlands, Portugal and Finland. No dataset for Greece is constructed, since 
Greece has been an EMU member country only from the beginning of 2001, and hence we would 
not have an equal body of observations. 
7 GDP values for 1991 are used to replace the unavailable GDP values for the years 1980 to 1990. 
8 However, values for 1998 are used in the calculation of monthly and year-on-year differences of 
HICP series required in Model 1 and Model 2 and robustness VAR model specifications. 
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Leaving the empirics in line with the model we assign each EMU 
member country in turn to be the small country and let the rest of the 
member countries represent the large country whose variables are 
denoted with the *-superscript as indicated above. We will construct in 
total 11 different datasets such that the observations for the given EMU 
member country (small country) are neglected while calculating the 
variable values for the euro area (large country). In so doing, we assume 
that the annual GDP and the annual population both have 50% weight in 
constructing the weight of the given country. In empirics, the original 
monthly series for the HICP and PPI series are used for the member 
country j and the values of the relevant variables for the euro area (large 
country) are constructed such that we first multiply the variable values 
of the remaining member countries with the annual weight share and 
sum these to obtain the GDP and population-weighted averaged 
variables. Proceeding thus ensures that the information content of the 
member country variables is not included in the euro area variables. 
 

In the estimation of Model 1 and Model 2 we let y′(t)= ( )ttttt sry ˆˆ *** ππ , 

where  
*

tπ  is the annualized price inflation rate for the euro area i.e.  

12log( *

tHICP / *

1−tHICP ), 

tπ  is the annualized price inflation rate for member country i.e. 

12log( tHICP / 1−tHICP ), 
*ˆ
ty  is the euro area output gap, 
*

tr  is the eonia interest rate and 

tŝ  is the terms of trade between the euro area and the member country; 

log( *

tPPI / tPPI ).  

 

Additionally in chapter 4.5 while validating the robustness of Model 1 

and Model 2 results we use year-on-year inflation rates (denoted as a *

tπ  

and a tπ ) together with monthly and annual IIP growth rates (denoted as 
*log tY∆  and *

12 log tY∆ ). 

 
Figure A (in Appendix 1) plots the euro area IIP aggregate and Eonia 
interest rate series, and Table 1 below Figure A contains the simple 
correlation coefficients between the log-differenced values for the actual 
euro area IIP aggregate and log-differenced9 values for the above 
described IIP series. One notes that the correlation coefficients are high. 

                                                 
9 To avoid the possibility of spurious regression (correlation), we use first a differenced series of 
variables in calculating the correlation coefficients. 
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Figures B-E draw the euro area annualized HICP inflation series together 
with the annual HICP inflation series for each EMU member country 
together with the Eonia interest rate. In Figure B, we see that in general, 
the HICP inflation series for the euro area and Germany, France, and 
Italy indeed show convergent behavior, while this is not the case for the 
rest of the EMU member countries. Table 2 collects the correlation 
coefficients between the log-differenced values of the constructed euro 
area HICP and the actual euro area HICP series. From the table we 
observe that these coefficients are really high. The estimated sample 
correlation coefficients indicate nearly perfect correlation (excluding 
Germany). 
 
Figure F shows how the producer price inflation in the euro area and the 
Eonia interest rate both have evolved during the common monetary 
policy era. Interestingly, while the euro area producer prices have had an 
upward trend and the values of the monetary policy instrument have 
practically remained constant. As shown in Table 3, the correlation 
coefficient between the log-differenced values of the constructed euro 
area PPI and the actual euro area PPI series are high, but not as high as 
the correlation coefficients for the log-differenced HICP series. 
 
We use a one-sided version of the Hodrick-Prescott (HP) filter (Hodrick 
and Prescott, 1997) to produce a trend estimate for the euro area’s IIP10 

series when we measure the output gap for the euro area ( *ˆ
ty ). The one-

sided trend estimate approximating the potential output is constructed 
as the Kalman filter estimate in the model 

  ttt vZY += ** ˆloglog         (24) 

  ( ) tZL ξ=− *

t

2 ˆlog1 ,        (25) 

 

where *ˆ
tZ  is the unobserved trend component, and vt and ξt are mutually 

uncorrelated white noise sequences with relative variance δ = 
var(ξt)/var(vt). We follow Stock and Watson (1999) and set δ = 0.67x10-3, 
which approximately matches the spectral gain for the HP filter. 
 
In the literature, for example in Galí and Gertler (1999), the labor’s share 
in output is also used as a proxy for marginal costs in spite of the output 
gap variable. Neiss and Nelson (2005), in contrast, report using data for 
the United States, the United Kingdom, and Australia, where labor costs 
do not suffice to explain inflation dynamics as well as the output gap. 
                                                 
10 Most of the methods which detrend output variables use both future and past values of the 
series. This makes these methods unsuitable for forecasting purposes because households and 
firms cannot observe future observations when they form their expectations.  
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4.4 Results 

 
We begin the analysis by first estimating the lag length for Models 1 and 
2 (we estimate in total 22 SVAR models). VAR model lag length 
estimates are based on the fractional marginal likelihoods (FML) of the 
models; see Villani (2001). The lag lengths of the estimated SVAR models 
are reported in Table 5 in Section B in Appendix 2.  
 
To generate a Monte Carlo sample from the joint posterior of the 
elements of a0 and λ2 in Equation (21) and the posterior of the elements of 
a0 in Equation (23), we use a version of the random walk Metropolis 
algorithm for Markov Chain Monte Carlo (MMCMC). The algorithm 
uses a multivariate normal distribution for the jump distribution on 
changes in the elements of a0. In the case of Model 1, our simulation 
procedure is as follows (others are close variants of this). We first 
simulate 20,000 draws using a diagonal covariance matrix with diagonal 
entries 0.00001 in the jump distribution. Then we use the last 10,000 
draws to estimate the posterior covariance matrix of λ2 and the elements 
of a0 and scale it by the factor (2.4)2/11 (since there are 11 unknown 
parameters) to obtain an optimal covariance matrix for the jump 
distribution; see e.g. Gelman et al. (2004). If necessary, we continue the 
simulation and use these new draws to calculate a more accurate 
covariance matrix for λ2 and the elements of a0. Finally, we run 50,000 
draws, and after eliminating the burn-in period, we pick up every 100th 
draw. In the other cases, the Markov Chains converge to stationary 
distributions after 50,000 draws. The convergence diagnostics, numbers 
of draws, the burn-in period and the acceptance ratios are listed in Table 
4 in Appendix 2, Section B. The acceptance ratios indicate that chains 
were moving in the sampling process and Geweke z-statistics display 
that chains have converged to stationary distributions (see Eg. Roberts et 
al., 1997). 
 
Figures 1a and 1b in Section 2 in Appendix 1 show the difference in the 
response of inflation in the area-wide inflation (excluding domestic 
values) with the individual country inflation response. The impulse 
responses shown are based on Model 1 and Model 2. The figures display a 
point estimate (median) of the impulse response and 68 per cent 
posterior intervals. The monetary policy shock has the size of one 
standard deviation. 

 
The impulse responses show that the reactions of inflation to a shock to a 
common monetary policy are similar across the EMU countries. That is, 
our data lend rather strong support for the impulse responses being 
zero. This result contradicts the results of Peersman (2004). The major 
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reason for the difference between his and our results could be due to our 
standard treatment of unit root price series; we use the log-differenced 
series while Peersman estimates his model with variables in levels. We 
also note that standard bootstrapped confidence intervals may give too 
optimistic a view of precision due to the assumption of stationary data-
generating processes, which does not typically hold when the variables 
are modelled in levels (Kilian, 1998). 
 
Taking a closer look at the impulse responses drawn, we see that 
immediate asymmetric inflation responses can be found for Spain. 
However, since responses die out during the first period, we should be 
very careful in asserting that the ECB’s monetary policy causes 
asymmetric price responses in the euro area. A finding that inflation 
responses are similar across EMU member countries is due to that the 
error bands of the impulse responses contain zero. Worthwhile to note is 
that in most cases also the median response is fairly close to zero. 
 
Finally, Table 4 in Appendix 2 (Section B) shows central tendency 
estimates (median and mean) of hyper-parameter λ2. The hyper-
parameters are estimated to be relatively small, suggesting that 
parameter zero restrictions derived from the underlying macro model 
should be acknowledged in the estimation.  
 

4.5 Robustness of Results 

 
To control for the robustness of the results we derive impulse responses 
from the reduced-form VAR models. We identify the VAR models using 
a recursive approach (Cholesky identification) with different orderings 
of variables.  
 
The estimation form of a reduced VAR is given by 
 

  ( ) ( ) ( )tvDtyLB =+ ,        (26) 

 
where y(t) is a (mx1) vector of observations, B(L) is a (mxm) matrix 
polynomial of lag operator L with lag length p and non-negative powers, 
D is a vector of constants, B(0) = I and vector of error terms v(t) is 
assumed to be normally distributed with zero mean and Ω covariance 
matrix. In the linear multivariate model above, we use normal likelihood 
coupled with traditional uninformative Jeffreys’ priors for the model 
parameters, and lower triangular identification restrictions to generate 
identified impulse responses. For further discussion of Jeffreys priors in 
multivariate regressions see Zellner (1971). 
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Section A in Appendix 2 gives alternative orderings of variables in the 
estimated reduced-form VAR models. The lag lengths used in the 
reduced-form VAR models for different variable orderings are listed in 
Table 5 in the Appendix 2 (Section B). The lag lengths were attained in 
the way as they were for Model 1 and Model 2. 
 
Figures 2a-c in Appendix 1 (Section 3) draw the impulse responses of the 
Cholesky identified VAR models with different ordering of variables. In 
general, we find moderate support in the data for symmetry of inflation 
responses. Specifically, the differences of the response of inflation in the 
euro area from the individual EMU member country inflation response 
are flat except in the cases of Belgium, Germany, Spain, Netherlands and 
Portugal, for which the Cholesky identification yields asymmetric 
behavior in inflation responses. A closer inspection shows that these 
results are in line with the impulse responses drawn in the first essay 
where Cholesky decomposition of similarly ordered variables was also 
used. 
 
However, the Cholesky identification produces spurious results for the 
ECB’s reaction function. We find that the Taylor rule parameter 
estimates indicate counterintuitive monetary policy. That is, according to 
our estimation results (not reported to save space), the ECB would aim 
for lower (higher) interest rates during a high (low) inflation and output 
period. Thus, in our case we must exercise extreme caution regarding the 
results based on these exactly identified VAR models. 
 
 

4.6 Conclusions 

 

In this paper we estimated structural vector autoregressive (SVAR) 
models to describe the posterior distribution of impulse responses of the 
difference in response of inflation in the euro area from that of 
individual EMU member country inflation response. We acquired prior 
knowledge of parameters’ zero restrictions from the underlying new 
Keynesian open-economy macro model. We found that using economic 
theory to specify an econometric model is crucial, since e.g. a traditional 
exactly identified recursive approach produced parameter estimates 
indicating spurious regression. 
 
Our results indicate that the euro area monthly data does not support 
the claim that the consumer price inflation responses to an unanticipated 
common monetary policy shock are asymmetric in the EMU member 
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countries. The result contradicts the finding of Peersman (2004), Antipin 
and Luoto (2005) and Antipin (2008). It seems fair to say that responses 
of inflation in EMU member countries to monetary policy conducted by 
the ECB is not likely to cause undesired real income differences between 
EMU member countries in consequence of unexpected, asymmetric 
fluctuations in demands of domestic goods.  
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Appendix 1: Figures of Data and Impulse Responses 

 

 

1. Figures (A-F) and Tables (1-3) 
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FIGURE A: Industrial Production Index (IIP) for the euro area (base year 2000) 

     and the Eonia interest rate series. 
 

 

 

 

 

TABLE 1. Correlations between log-differences of the constructed and actual IIP 
   series for the euro area. 

 
___________________________________________________________________________________________________________________ 

Sample 1980/m2 – 2006/m4 
____________________________________________________________________________________________________________________ 

BEL GER SPA FRA IRE ITA LUX NETH AUST POR FIN 
0.80 0.67 0.77 0.75 0.79 0.78 0.79 0.78 0.79 0.78 0.79 

___________________________________________________________________________________________________________________ 
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FIGURES B-C: Actual year-on-year HICP inflations for Germany, France, Italy 

(Fig. B), and Belgium, Spain and the Netherlands (Fig. C) together with 
 the euro area year-on-year HICP inflation and the Eonia interest rate 
 series, sample period is Jan 1999 – April 2006. 

 

 

 



 132 

-1
0

1
2

3
4

5
6

Figure D

%

1999 2000 2001 2002 2003 2004 2005 2006

Austria

Ireland

Luxembourg

EMU area

Eonia

-1
0

1
2

3
4

5
6

Figure E

%

1999 2000 2001 2002 2003 2004 2005 2006

Portugal

Finland

EMU area

Eonia

 
 
 
FIGURES D-E: Actual year-on-year HICP inflations for Austria, Ireland, 

           Luxembourg (Fig. D), and Portugal and Finland (Fig. E) together 
           with the euro area year-on-year HICP inflation and the Eonia 
           interest rate series, sample period is Jan 1999 – April 2006. 

 

 

 

 

 

TABLE 2. Correlations between log-differences of constructed HICP and actual 
   HICP series for the euro area. 

 
___________________________________________________________________________________________________________________ 

Sample 1999/m1 – 2006/m4 
____________________________________________________________________________________________________________________ 

BEL GER SPA FRA IRE ITA LUX NETH AUST POR FIN 
0.98 0.88 0.98 0.97 0.98 0.96 0.98 0.98 0.98 0.98 0.98 

___________________________________________________________________________________________________________________ 
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Figure F: Year-on-year Producer Price inflation for the euro area and the Eonia  

interest rate series (Left y-axis is for year-on-year PPI inflation 
values), sample period is Jan 1999 – April 2006. 

 

 

 

 

 

TABLE 3. Correlations between log-differences of constructed PPI and actual 
   PPI series for the euro area. 

 
___________________________________________________________________________________________________________________ 

Sample 1999/m1 – 2006/m4 
____________________________________________________________________________________________________________________ 

BEL GER SPA FRA IRE ITA LUX NETH AUST POR FIN 
0.99 0.97 0.85 0.84 0.88 0.83 0.88 0.85 0.87 0.87 0.88 

___________________________________________________________________________________________________________________ 
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2. Impulse responses for structural VAR model (Figures 1a and 1b) 
 
 
 

Belgium

0 1 2 3 4 5 6

-0
.0
3

-0
.0
1

0
0
.0
1

0
.0
3

Germany

0 1 2 3 4 5 6

-0
.0
1

-0
.0
0
5

0
0
.0
0
5

0
.0
1

Spain

0 1 2 3 4 5 6

-0
.0
1

-0
.0
0
5

0
0
.0
0
5

0
.0
1

Austria

0 1 2 3 4 5 6

-0
.2

-0
.1

0
0
.1

0
.2

0
.3

France

0 1 2 3 4 5 6

-0
.1

-0
.0
5

0
0
.0
5

0
.1

Italy

0 1 2 3 4 5 6

-0
.0
1

-0
.0
0
5

0
0
.0
0
5

0
.1

 
 
 
FIGURE 1A.   Impulse responses of the difference in annualized HICP inflation  

between euro area and EMU member countries to an 
expansionary monetary policy shock. The time horizon of the 
impulse responses is 6 months. The midmost lines are the 
medians and outer bands represent 68 per cent credible intervals. 
Thick lines are for Model 1 and thinner lines are for Model 2. 
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FIGURE 1B.   Impulse responses of the difference in annualized HICP inflation 

between euro area and EMU member countries to an 
expansionary monetary policy shock. The time horizon of the 
impulse responses is 6 months. The midmost lines are the 
medians and outer bands represent 68 per cent credible intervals. 
Thick lines are for Model 1 and thinner lines are for Model 2. 
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3. Impulse responses for VAR model identified with Cholesky 
factorization (Figures 2a, 2b and 2c) 
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FIGURE 2A.   Impulse responses of the difference in HICP inflation between  

euro area and EMU member countries to an expansionary 
monetary policy shock. The time horizon of the impulse responses 
is 6 months. The midmost lines are the medians and outer bands 
represent 68 per cent credible intervals. Each VAR model is 
Cholesky identified. The thick lines are for the variable ordering 
scheme mentioned first in the title. 
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FIGURE 2B.   Impulse responses of the difference in HICP inflation between  

euro area and EMU member countries to an expansionary 
monetary policy shock. The time horizon of the impulse responses 
is 6 months. The midmost lines are the medians and outer bands 
represent 68 per cent credible intervals. Each VAR model is 
Cholesky identified. The thick lines are for the variable ordering 
scheme mentioned first in the title. 
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FIGURE 2C.   Impulse responses of the difference in HICP inflation between  

euro area and EMU member countries to an expansionary 
monetary policy shock. The time horizon of the impulse responses 
is 6 months. The midmost lines are the medians and outer bands 
represent 68 per cent credible intervals. Each VAR model is 
Cholesky identified. The thick lines are for the variable ordering 
scheme mentioned first in the title. 
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Appendix 2: Cholesky VAR Decompositions and SVAR 

diagnostics 

 
A. The Ordering of Variables for Cholesky identified VAR Models 
 

 

In the different versions of the VAR model in Equation (26), we define 
the vectors of observations as 
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Variable *

taπ  is year-on-year HICP inflation in the euro area and 
*log tY∆ and *

12 log tY∆  are monthly and annual growth in the euro area’s 

industrial product output (IIP), respectively. The reduced-form VAR 

model specified with ty
1  is set to allow a direct comparison between the 

structural VARs. Accordingly, a reduced-form VAR of ty
2  and ty

3  will 

be estimated to have a comparison between ty
1  and a structural form 

VAR. Models specification ty
4 - ty

6  are to investigate how the terms of 

trade (TOT = tŝ ) adds to model dynamics. 
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B. Summary Statistics for SVAR models 
 

TABLE 4. SVAR model lag lengths and convergence diagnostics of Model 1 
    and Model 2 for individual EMU member countries. 
 

__________________________________________________________________________________________________________________________________________ 

 Belgium Germany Spain Austria 
 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

__________________________________________________________________________________________________________________________________________ 

lag (p) 6 6 7 7 8 8 2 2 

Number of draws 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 

Acceptance ratio  25% 28% 22% 23% 21% 30% 18% 25% 

Burn-in period  10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

Thinning interval 100 100 100 100 100 100 100 100 

  

Geweke z-statistics  
a0,11 1.4 0.9 -1.0 -1.5 -0.2 1.0 0.3 -1.3 

a0,21 1.3 0.8 -0.2 1.7 -1.2 1.0 -1.0 0.2 

a0,12 -1.2 -1.1 0.3 -1.2 -0.5 -0.1 -0.3 -0.8 

a0,22 0.6 0.4 -0.9 -1.5 -0.5 0.9 1.1 -1.1 

a0,42 -0.3 -0.9 0.4 0.4 0.0 0.3 1.6 -0.1 

a0,23 1.3 0.4 -0.4 -1.0 -1.4 0.2 -0.4 -0.7 

a0,33 -0.2 -0.6 0.6 -1.1 -0.3 0.9 -1.1 -1.2 

a0,44 0.4 -0.3 -0.1 0.1 0.9 0.7 -0.4 1..0 

a0,45 -0.1 -0.6 0.2 -0.6 0.7 -0.2 -1.7 0.6 

a0,55 -0.5 -1.2 0.0 1.2 -0.3 0.3 0.1 -0.6 

λ2 -0.3 NA 0.1 NA 0.0 NA 0.0 NA 

Median of λ2 46.7 NA 69.5 NA 45.0 NA 20.4 NA 

Mean of λ2 53.1 NA 76.1 NA 51.5 NA 51.5 NA 
__________________________________________________________________________________________________________________________________________ 

 France Italy Ireland Luxembourg 
 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

__________________________________________________________________________________________________________________________________________
 

lag (p) 4 4 4 4 4 4 7 7 

Number of draws 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 

Acceptance ratio  24% 25% 20% 26% 20% 25% 24% 25% 

Burn-in period  10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

Thinning interval 100 100 100 100 100 100 100 100 

  

Geweke z-statistics  
a0,11 1.5 0.7 -1.7 0.2 0.7 0.2 0.0 0.5 

a0,21 -0.6 -0.3 0.8 0.1 -0.6 -1.5 1.1 0.1 

a0,12 -1.8 0.3 -0.8 1.4 0.1 -0.7 -0.6 -0.5 

a0,22 1.3 0.9 0.0 1.2 0.5 -0.5 -0.6 0.5 

a0,42 -0.7 0.0 0.3 -1.3 1.0 -0.2 -0.7 0.8 

a0,23 -0.2 -0.4 0.5 -1.4 -1.0 0.7 -0.1 -0.5 

a0,33 -1.0 1.1 1.1 1.2 0.9 -0.4 -1.6 -0.8 

a0,44 0.2 -1.7 0.7 -0.2 0.9 0.0 0.4 0.5 

a0,45 -0.1 1.7 -0.7 0.2 1.0 0.3 0.7 -1.1 

a0,55 0.5 -0.4 -0.8 -1.66 0.8 0.9 1.2 1.6 

λ2 0.0 NA 0.1 NA -0.7 NA 1.3 NA 

Median of λ2 87.3 NA 7.7 NA 8.23 NA 17.9 NA 

Mean of λ2 99.4 NA 11.3 NA 12.7 NA 20.3 NA 

__________________________________________________________________________________________________________________________________________
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TABLE 4 - continued 
________________________________________________________________________________________________________________ 

 The Netherlands Portugal Finland   

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2   
________________________________________________________________________________________________________________ 

lag (p) 3 3 3 3 3 3   

Number of draws 50,000 50,000 50,000 50,000 50,000 50,000   

Acceptance ratio  15% 18% 17% 21% 22% 25%   

Burn-in period  10,000 10,000 10,000 10,000 10,000 10,000   

Thinning interval 100 100 100 100 100 100   

  

Geweke z-statistics  

a0,11 -1.1 -0.1 -0.5 1.7 0.5 -0.1   

a0,21 1.5 0.2 -0.8 0.9 -1.4 -0.2   

a0,12 -1.4 -0.2 1.2 -0.7 -0.6 -0.2   

a0,22 -1.1 -0.1 -0.1 1.1 -0.6 -0.3   

a0,42 0.8 0.6 -0.3 -1.1 0.5 0.7   

a0,23 1.1 1.1 -0.7 -0.9 1.6 1.6   

a0,33 0.3 0.7 -0.5 1.2 -0.8 0.7   

a0,44 0.1 -0.5 -1.4 1.2 0.2 0.1   

a0,45 0.6 -1.0 -0.4 -0.4 0.1 0.1   

a0,55 -0.3 -0.5 -0.7 -0.2 0.2 0.6   

λ2 -0.2 NA -0.8 NA -0.2 NA   

Median of λ2 58.5 NA 49.9 NA 34.0 NA   

Mean of λ2 65.5 NA 57.6 NA 40.4 NA   
_________________________________________________________________________________________________________________ 

 

 

 

 

 

TABLE 5. Information on reduced-form VAR models lag lengths.  

 
______________________________________________________________________________________________________

 

Estimated lag length (p) 
______________________________________________________________________________________________________

 

Country Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Spec 6 
______________________________________________________________________________________________________

 

Belgium 6 6 9 6 6 3 

Germany 7 7 10 7 7 4 

Spain 8 10 3 8 8 3 

Austria 2 4 7 3 4 3 

France 4 4 5 4 4 5 

Italy 4 4 7 4 4 3 

Ireland 5 6 4 5 5 7 

Luxembourg 7 6 7 6 6 3 

Netherlands 3 3 4 3 4 4 

Portugal 3 3 3 3 3 5 

Finland 3 6 3 3 3 4 
______________________________________________________________________________________________________
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Abstract: 
 
This paper uses quarterly ex post and real-time U.S. data to show that 
the very simple hybrid new Keynesian model of Clarida, Galí and 
Gertler [1999, The Science of Monetary Policy: A New Keynesian 
Perspective, Journal of Economic Literature, Vol. 37, pp. 1661-1707] can 
provide forecasts comparable to those based on Bayesian reduced-form 
vector autoregressive models. The issue is important since several recent 
papers have suggested different ways to improve the forecast 
performance of new Keynesian models at the cost of increasing the 
complexity of model mechanisms, this reducing the practicability of 
these approaches. 
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5.1 Introduction 

 
There is an increasing volume of literature focusing on the development 
of new Keynesian (NK) models suitable for forecasting and quantitative 
policy analysis; see Sungbae and Schorfheide (2007) and references 
therein. Within this literature, Smets and Wouters (2003, 2005 and 2007), 
Christiano et al. (2005), Adolfson et al. (2007a) and Adolfson et al. (2005, 
2008), construct large-scale NK models aiming to find a structural 
macroeconomic model which has a fit comparable to that of reduced-
form Bayesian vector autoregressive (VAR) models. In these studies, 
additional shocks, frictions and measurement errors are introduced to 
the NK model mechanisms until the desired fit is achieved. This 
approach ignores model uncertainty, leading to inferences which are 
over-confident and decisions which are riskier than the policy-maker 
believes them to be. A promising alternative strategy is provided by Del 
Negro and Schorfheide (2004). In their approach an NK model is used to 
generate a prior distribution for the parameters of the VAR to improve 
the forecast and policy analysis performance of these models. Although 
this approach is promising, it is nonetheless complicated and the 
numerical methods required in estimation are time-consuming. Its 
practicability can therefore be questioned; see also Del Negro et al. 
(2007). In the light of recent NK literature, it would thus be interesting to 
see whether a simple NK model, including only few shocks and 
standard price rigidity, can achieve a fit comparable to other forecasting 
methods such as the Bayesian VARs commonly used as benchmark. 
 
This paper has two objectives. First, it provides a method for the 
Bayesian analysis of a simple hybrid NK model by Clarida et al. (1999). 
The method is very easy to implement and leads to savings in the CPU 
time required in posterior simulation, compared to the commonly used 
Kalman filter approach. Lindé (2005) estimates a version of the hybrid 
NK model by the full information maximum likelihood (FIML) method 
using U.S. data. We for our own part adopt a Bayesian full-information 
framework, since the FIML estimates turned out to be very sensitive to 
starting values and since Bayesian methods allow incorporation of prior 
information, which facilitates numerical maximization.  
 
Our second objective is to compare the forecasting properties of the 
hybrid NK model against commonly used forecasting tools such as 
Bayesian VARs and naïve forecasts based on univariate random walks. 
Using quarterly U.S. data we show that the hybrid model can provide 
forecasts for key macroeconomic variables, inflation and short-term 
nominal interest rate, and a measure of the output gap comparable to 
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forecasts based on reduced-form Bayesian VARs. Our results also 
indicate that the hybrid model predicts more accurately than naïve 
forecasts based on univariate random walks. In particular, these results 
hold for both ex post and real-time data, which are available to policy-
makers when forecasts are being made. Our results also confirm the 
finding of Smets and Wouters (2007) that the cross-equation restrictions 
implied by NK models work especially well in forecasting at medium-
term horizons (from four to twelve quarters). For policy-makers, 
comparisons of forecasts at horizon longer than one quarter are of 
interest, since policy actions typically depend on expected future 
developments in the economy. 
 
Finally, we find two major reasons for the good forecasting performance 
of the hybrid model. Firstly, the model allows both for the endogenous 
persistence in inflation and output and for the persistence of exogenous 
shock processes. This approach is commonly used in large-scale NK 
models, which forecast well. Secondly, our joint prior is well designed in 
allowing the parameters to be estimated fairly freely, while being 
sufficiently informative to safeguard the posterior distribution away 
from economically non-meaningful values. 
 
The remainder of the paper is organized as follows. In section 2, we 
discuss the model, the prior and the data and continue the analysis by 
reporting the posterior distributions of the parameters. In section 3, we 
explain the forecasting comparison methods, and present and discuss the 
results of a forecasting exercise. Section 4 concludes the paper. 
 

 

5.2 Likelihood, Prior, Data and Posterior 

 

In this section we introduce a hybrid NK model. Its likelihood and the 
joint prior density function of the structural parameters are specified. We 
then describe the data and continue the analysis by reporting the 
posterior distributions of the parameters. 
 

5.2.1 Model Likelihood 

 
Let us consider the following hybrid NK model for period t inflation1, ̟t, 
and a measure of the output gap, xt, respectively, 
 

                                                 
1Price inflation is defined as the per cent change in the price level from t – 1 to t. 
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( ) tttttt xE ,11 1 πεγπαπαπ ++−+= −+ ,        (1) 

 

( ) ( ) txtttrtttt ERxxEx ,111 1 επβββ +−−−+= +−+ ,      (2) 

 
where parameters α and β satisfy the conditions 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. 
Equation (1) is the hybrid new Keynesian Phillips curve (NKPC), similar 
to that analyzed in Rudd and Whelan (2006), while Equation (2) is the 
aggregate demand equation. The model is very close to that carefully 
studied in Clarida et al. (1999). 
 
The disturbance terms ε̟,t and εx,t in Equations (1) and (2) are assumed to 
follow univariate AR(1) processes: 
 

ttt u ,1,, ππππ ερε += − ,          (3) 

 

  txtxxtx u ,1,, += −ερε ,          (4) 

 

where ∈xρρπ , (–1, 1), and u̟,t and ux,t are independently and identically 

distributed (i.i.d.) random variables with zero means and variances 2

πσ  

and 2

xσ , respectively.  

 
We close the model with the following Taylor rule for the nominal 
interest rate Rt,  
 

( )( ) tRttxtt RxR ,11 εργπγρ π +++−= − ,       (5)

  
where the parameter ∈ρ (0, 1) measures the degree of interest rate 

smoothing, the disturbance term εR,t obeys εR,t = ρRεR,t-1 + uR,t, ∈Rρ (–1, 1), 

and uR,t is an i.i.d. random variable with zero mean and variance 2

Rσ . 

 
The model in Equations (1)-(5) can be solved analytically by standard 
first-order log-linear methods. In particular, this paper follows Lindé 
(2005) in applying the solution algorithm of Söderlind (1999). The 
solution gives the equilibrium law of motion for the relevant state 
variables. Specifically, the state equation is given by zt = Czt-1 + vt, where 
zt = (ε̟,t, εx,t, εR,t, ̟t-1, xt-1, Rt-1)′, vt = (u̟,t, ux,t, uR,t, 0, 0, 0)′ and C is a 
nonlinear function of structural parameters. Given that the shocks are 
normally distributed and that the vector of observables yt = (̟t, xt, Rt)′  is 
a linear combination of the state variables, the common approach is to 
specify a recursive likelihood function for the model using the Kalman 



 147 

filter. The estimates of the model can then be obtained using standard 
non-linear optimization methods. 
 
Alternatively, the analytical solution of the model can be written as a full 
information system of the vector of observables; see Lindé (2005). 
Specifically,  
 

   ttyt CyCy εε+= −1 ,          (6) 

 
where εt = (ε̟,t, εx,t, εR,t)′ and Cy and Cε are partitions of the solution matrix 
C conformably with yt and εt, respectively. 
 
Then denote εt = Ρεt-1, where Ρ is a diagonal matrix whose diagonal 
entries are given by ρ̟, ρx and ρR. The likelihood function for a sample of 
T observations can be written as 
 

   ( ) ( ){ }'5.0exp; 12/
UUtrCYL

TT −−−
Λ×−Λ∝ εθ ,      (7) 

 
where θ = (β, α, βr, γ, γ̟, γx, ρ, ρ̟, ρx, ρR, σ̟, σx, σR)′ is a vector comprising 
all model parameters and Λ a diagonal covariance matrix with diagonal 

entries 2

πσ , 2

xσ and 2

Rσ . Furthermore, the tth rows of (Txm) matrices Y and 

U are given by yt′ and ut′, respectively, where m is the number of 
observables and 
 

   ( )( )2

1

1

11

−
−

−
−− Ρ+Ρ+−= tytytt yCCCyCCCyCu εεεεε .      (8) 

 
In what follows, we adopt the full-information approach of Equation (7), 
since the optimization algorithm based on it proved faster than the 
algorithm based on the recursive Kalman filter. Specifically, the Kalman 
filter approach requires roughly 4.5 times as much CPU time for 
posterior simulation as our approach (with a sample of 200 
observations). Furthermore, both estimation methods were also found to 
produce similar results. 
 
The model described in Equations (1)-(5) contains 13 parameters, 
collected in θ. Maximum likelihood (ML) estimation of the model turned 
out to be a challenging task. In particular, the ML estimates of the 
parameters were very sensitive to the starting values of maximization 
due to a multimodal likelihood. This problem remained even when the 
parameter space was restricted to an economically feasible region. To 
illustrate this problem we give an example from the previous literature. 
Lindé (2005) estimates a version of the model in Equation (1)-(5) on U.S. 
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data with full information maximum likelihood (FIML).2 He finds 
positive and highly significant parameter estimates for the slope 
coefficients γ (≈ 0.05) and βr (≈ 0.09). However, there prevails a local 
equilibrium in which the likelihood is higher than that in Lindé’s 
solution. At this equilibrium the slope coefficients γ and βr are still 
positive, but rather close to zero. According to Lindé (2005), the 
estimation can with different starting values converge to local equilibria 
with more or less plausible parameter values. To facilitate numerical 
maximization, we suggest using Bayesian methods, which allow 
incorporation of prior beliefs on parameters. While restricting, for 
example, the slope coefficients γ and βr to be equal to some theoretical 
values gives an example of a very strong prior belief, other kinds of 
beliefs cannot easily be considered in the classical framework.  
 
As seen in the current literature, Bayesian methods have become a 
standard workhorse in analysing NK models. Sungbae and Schorfheide 
(2007) provide an excellent review of such methods developed in recent 
years to estimate and evaluate this class of models (see also Adolfson et 
al., 2007b). Rather than elaborating the details of Bayesian methods in 
analysing the NK models, which is already done in Sungbae and 
Schorfeide (2007), we discuss our choices of marginal prior distributions 
in the following subsection. 
 

 

5.2.2 Marginal Priors 

 
The starting-point in the Bayesian analysis is to determine the prior 
density function of the parameters, p(θ), which together with the 
likelihood function (7) yields the posterior density 
 

   ( ) ( ) ( )
( ) ( )∫

=
θθθ

θθ
θ

dYLp

YLp
Yq

;

;
.         (9) 

 
A typical informative prior reflects the researcher’s subjective beliefs, 
summarizes information from the data not included in the estimation 
sample, or is based on both. Often the underlying economic theory 
provides a natural starting-point for the prior elicitation. We will use a 
very simple structural model as the basis for our prior knowledge. The 
model can be obtained by log-linearizing the aggregation of individual 
firms’ pricing decisions and the consumption Euler equation without 

                                                 
2 Lindé (2005) adds additional lags in the aggregate demand equation (2) and the monetary 
policy rule (3) to make disturbance terms εx,t and εR,t white noise. 
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using ad hoc assumptions such as backward inflation indexation or habit 
formation in consumption. Specifically, the prior means of the 
parameters in θ are based on the following model, 
 

( )( )( )
tttt x

b
bE

κ
ζκκ

ππ
+−−

+= +

111
1 ,      (10) 

( )11 ++ −−= tttttt ERxEx π ,       (11) 

 
where b is the subjective discount factor, κ the frequency of price 
adjustment and ζ the elasticity of labor supply. Note that, for simplicity, 
a standard assumption on prior independence of parameters is used; see 
e.g. Zellner (1971). Del Negro and Schorfheide (2008) criticize this 
assumption as having the drawback that the resulting joint prior 
distribution may assign a non-negligible amount of probability mass to 
regions of the parameter space where the model is unreasonable. It is 
fairly easy to see this undesirable property suggested is not present in 
our joint prior.  
 
Table 1 in Appendix 1 lists the marginal prior distributions of the 
parameters. The beta prior distributions of the parameters α and β are 
concentrated towards unity, but are nonetheless only weakly 
informative (see Equations 10 and 11 for motivation). The prior mean of 
the slope coefficient βr is set at unity, while the prior mean of γ (1.00) can 
is obtained by setting the subjective discount factor, the elasticity of labor 
supply and the frequency of price adjustment at their standard 
calibrated values, e.g. 0.99, 2 and 0.57, respectively, in Equation (10). The 
prior variances of these parameters (γ, βr) are set to be small enough to 
keep the posterior distribution away from economically non-meaningful 
values. The prior means of the policy parameters γ̟ (1.50) and γx (0.50) 
are obtained from Taylor (1993).3 However, some interest rate smoothing 
is also allowed a priori. That is, the prior mean of ρ is set at 0.50. With the 
given prior variances, the marginal prior distributions of these 
parameters (γ̟, γx, ρ) turned out to be practically uninformative.  
 
The standard deviations σ̟, σx, and σR are assumed to follow inverse-
gamma distributions with shape and scale parameters yielding fairly 
loose priors. Finally, the normal prior distribution with zero mean and 
0.752 variance is used for the transformed parameters 
 

                                                 
3 In Taylor (1993), the interest rate and the inflation rate are expressed on a yearly basis. Since we 
express them on a quarterly basis, the prior mean of γx should be set at 0.125 (0.5 divided by 4). 
However, the standard deviation of the measure of the output gap used in Taylor (1993) is 
markedly higher than that used in this paper. Thus, the prior mean of 0.5 can be seen in our case 
to be justified. 
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These marginal priors force the posterior distributions of the 
autoregressive parameters ρ̟, ρx and ρR to be located in the interval 
(–1, 1).  
 
The marginal priors are also particularly loose, but turned out 
nevertheless to improve simulation efficiency. 
 
 

5.2.3 Data and Results 

 
Throughout this study the quarterly U.S. data from 1953:2 to 2004:4 are 
used. In addition to the entire sample, the models are estimated for the 
subsample periods 1953:2-1982:2 and 1982:3-2004:4, capturing the “Great 
Inflation” and “Great Moderation” periods, respectively. This serves as a 
convenient check for robustness and parameter constancy. We are aware 
that the nominal interest rate, as the instrument of monetary policy, 
provides a reasonable description of the Federal Reserve’s operating 
procedures only after 1964; see Clarida et al. (1999). However, the first 
ten years of data are required to have a sufficiently long out-of-sample 
forecasting period. We form out-of-sample forecasts from 1976:4 to 
2004:4 to have a forecast series which covers a diverse spectrum of 
inflation volatility. 
 
The output gap is measured as a logarithmic difference between the 
actual and the potential output level. Two measures of actual output are 
used: real gross domestic product (GDP) and non-farm business (NFB) 
sector output. The logarithm of the potential output is proxied by the 
one-sided Hodrick-Prescott filter (Hodrick and Prescott, 1997) trend 
estimate in the model 
 

gt = τt + η1t,         (13) 
 

(1 – L)2τt = η2t,        (14) 
 
where gt is the logarithm of the measure of actual output, L is a lag 
operator and η1t and η2t are mutually uncorrelated white noise sequences 
with the relative variance q = var(η1t)/var(η2t). The value of q = 0.67x10-3 
is taken from Stock and Watson (1999). We use the previous 
approximation of potential output, since our focus is on forecasting and 
since it does not use the future values of the detrended variable, as the 
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optimal two-sided trend extraction HP-filter for Equations (13) and (14) 
does.4 Furthermore, Stock and Watson (1999) find, after experimenting 
with several methods suitable for forecasting, that this procedure 
produces plausible gap estimates which work fairly well in inflation 
forecasting. 
 
Price inflation is measured as the log difference of the implicit price 
deflator of GDP (NFB). All the series are seasonally adjusted. The source 
of the final vintage data is the FREDII databank of the Federal Reserve 
Bank of St. Louis, while that of the real-time data is the Federal Reserve 
Bank of Philadelphia. The Federal Funds rate (FFR) is used as the 
instrument of monetary policy. The nominal interest rate and inflation 
rate series are measured as quarterly changes corresponding to their 
appearance in the structural model. Finally, the data are demeaned prior 
to estimation. 
 

The estimation results5 are presented in Table 1 in Appendix 1, in the 
topmost panel (A) for the entire sample and in the lower panels (B and 
C) for the two subsample periods. The data appear to be particularly 
informative in all these samples. That is, the variances of the posterior 
distributions are found to be systematically smaller than the prior 
variances. The posteriors are also relatively stable between the data sets 
and the subsamples with two exceptions. The variances of the stochastic 
error processes seem to have fallen in the second subsample period. Sims 
and Zha (2006) and Smets and Wouters (2007) find similar evidence in 
U.S. data concerning the variance of monetary policy shocks. Our results 
also indicate that the Federal Reserve seemed to respond to the output 
gap and inflation more strongly during the second subsample period. 
The latter result is in accordance with that of Boivin and Giannoni (2006) 
and Smets and Wouters (2007), while Bernanke and Mihov (1998), 
Leeper and Zha (2003) and Canova (2006) find a relatively stable interest 
rate rule for the post WW II sample.  
 
The Taylor principle is fulfilled in all samples. This is in contrast to the 
findings of Clarida et al. (2000), who report that the Federal Reserve 
responded less than one-to-one to inflation during the period 1960-1979 
(pre-Volcker period), thus violating the Taylor principle. In line with our 

                                                 
4 We also tested for detrending linear and quadratic trend methods which are suitable for 
forecasting, and found that the results presented are not sensitive to use of these measures of 
potential output. Furthermore, we ran several regressions with the dataset used in Lindé (2005). 
The results of the regressions with our and his datasets were fairly similar. 
5 Appendix 1 describes in more detail the practical prodecure we applied to generate draws from 
the posterior distribution. 
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results, for example, Smets and Wouters (2007) and Rabanal and Rubio-
Ramírez (2005) find that the inflation coefficient to be greater than one. 
 
The point estimate of α (0.08) indicates a very insignificant role for 
forward-looking behavior in the Phillips curve. This result is in accord 
with those of Fuhrer (1997), Lindé (2005) and Rudd and Whelan (2006), 
but at odds with Smets and Wouters (2003, 2005 and 2007), Adolfson et 
al. (2005) and Galí et al. (2005). The latter authors obtain relatively low 
parameter estimates for the degree of price indexation. Our estimates 
were obtained using a statistical measure of the output gap. Galí and 
Gertler (1999) and Galí et al. (2005) have suggested that the key reason 
for the lack of success of the forward-looking NKPC is that the 
detrended output is not a good proxy for real marginal costs. Contrary to 
their finding, Rudd and Whelan (2006), who used both the output gap 
and labor's share as a proxy for real marginal cost, found that the 
evidence for forward-looking behavior in the NKPC was very weak. 
 
The point estimates of β are high, supporting the traditional forward-
looking intertemporal Euler equation. Previous studies have typically 
observed a high degree of habit persistence; see e.g. Christiano et al. 
(2005), and Smets and Wouters (2007). However, there seems to be a 
trade-off between the forward-looking behavior of the demand equation 
and the persistence of autoregressive demand shocks. In our paper, the 
high autoregressive parameter of the exogenous shock process (ρx = 0.79) 
takes into account the degree of persistence observed in the data. In 
Smets and Wouters (2007), the habit formation of consumption takes into 
account its high persistence, while the autoregressive parameter of 
exogenous shocks is estimated to be relatively small (0.36). Smets and 
Wouters (2007), however, assume a high habit parameter 0.7 (with 0.01 
prior variance), a priori. Finally, the persistence of monetary policy 
shocks (ρR) is relatively low and equal to that estimated by Smets and 
Wouters (2007). Parameter γ in Equation 1 is updated downwards in the 
posterior distribution. This might suggest that a priori assumption that 
the elasticity of labour supply parameter ζ takes a value 2 is too high. 
 

 

5.3 Forecast Comparison 

 

In this section we first discuss the forecasting methods. We then provide 
some details for the forecasting comparison methods. Finally, we report 
the results of a forecasting exercise. 
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5.3.1 Measuring the Prediction Performance of Competitive 
Models 

 
It is fairly easy to see that Equation (6) can be treated as a reduced-form 
VAR with lag-length 2 and normally distributed errors with covariance 
matrix Σ = CεΛCε′. Thus, the conditional predictive distribution of 
Equation (6) for the joint lead time 1 through H, p(yt+1,…,yt+H|Y, θ), is 
multivariate normal; see Lütkepohl (1993). This facilitates 
straightforward simulations from p(yt+1,…,yt+H|Y, θ), given the posterior 
probability density function (p.d.f.) of θ. The method for obtaining the 
posterior p.d.f. of θ was explained in the previous section.6 
 
The predictive performance of the hybrid NK model is compared to two 
Bayesian VARs and to naïve forecasts based on univariate random 
walks. The VAR systems consist of the same three variables, yt = (̟t, xt, 
Rt)′, as the hybrid NK model. The data are not however demeaned prior 
to estimation. Diffuse and Normal-Diffuse priors are used for the 
parameters of the VAR models; see Kadiyala and Karlsson (1997) for 
discussion. Parameterization of the Normal-Diffuse prior is based on the 
assumption that the variables behave as if they had random walk 
components; see Litterman (1980). That is, the prior means are set at zero 
except for the elements corresponding to the first own lag of each 
variable. The prior variances of the parameters in the ith equation of a p-
lag VAR (k = 1,…, p)7 are given by ̟1/k, ̟2si2/sj2k (i ≠ j) and ̟3si2, for the 
parameters on own lags, foreign lags and a constant, respectively; see 
Litterman (1986) and Kadiyala and Karlsson (1997) for the motivation of 
this prior variance specification. A scale factor accounting for the 
different scales of the variables, si2 is set at the residual standard error of 
equation i. The relative tightness of the prior is set at the commonly used 
values of hyper-parameters, ̟1 = 0.05 and ̟2 = 0.005; see e.g. Kadiyala 
and Karlsson (1997) and Litterman (1986).  The tightness of the constant 
terms is set at ̟3 = 0.05, which shrinks the processes towards a driftless 
univariate random walk. This prior specification provides a suitable 

                                                 
6 In a rolling forecast exercise, a total of 113 chains were simulated from each model. The 
posterior estimates of θ are based on 30,000 draws. The first 6,000 draws were discarded as a 
burn-in period. To reduce the size of output files, every 12th draw was saved. The predictive 
likelihoods are thus computed on the basis of 2000 draws from the Markov chain. Geweke (1992) 
proposed a convergence diagnostic for Markov chains based on a test for the equality of means of 
the first and last parts of the chain (in this paper the first 10% and the last 50% of observations 
were used). The test statistic is a standard Z-score; the difference between the two sample means 
divided by its estimated standard error. The standard error is estimated from the spectral density 
at zero and so takes into account any autocorrelation. The hypothesis of the equality of means 
was not rejected for most parameters at the 5 % significance level. 
7 In our paper, p is set at 4. The fractional marginal likelihoods (FML) of Villani (2001), which 
were used in preliminary data analysis, supported this choice in over 99% of the estimated 
regressions. 
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description for the processes of inflation, nominal interest rate and 
detrended output. The posterior distributions were simulated using the 
Gibbs sampling algorithm8 of Kadiyala and Karlsson (1997) for the 
Normal-Diffuse prior specification and the matricvariate Student’s t 
distribution for the Diffuse prior specification. The predictive likelihoods 
were computed on the basis of 2,000 draws from the posteriors. 
  
The forecasting performance of the models is examined using the 
standard rolling forecast procedure, which entails making forecasts 
using data dated before the forecasting period. The forecasting 
procedure is as follows: using data up to a given time point T all the 
parameters in the model are estimated and the predictive distribution 
over yT+1,…,yT+H is computed.9 Moving forward one period, all the 
parameters are re-estimated and the forecast distribution of yT+2,…,yT+H+1 
is computed. This is continued until no more data are available to 
compute the one-step-ahead forecast errors. The period over which the 
dynamic forecast distributions are computed in this manner is 1976:4 
through 2004:4. In addition to the entire forecasts sample, the forecasts 
are also compared for the subsample period 1990:1-2004:4 (the sample 
period of Smets and Wouters, 2007). This serves as a check of robustness 
of the results and enchances the comparability of our results to those in 
previous literature; especially in the paper of Smets and Wouters (2007). 
Adolfson et al. (2007a) recommend use of several univariate and 
multivariate measures to determine the accuracy of the point forecasts. 
The two commonly used univariate measures of accuracy, the root mean 
squared forecast error (RMSE) and the mean absolute forecast error 
(MAE) are computed as 
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,,,
ˆ  is the ith element of the h-step-

ahead forecast error, 
tht

y +
ˆ  the h-step-ahead posterior median forecast of 

yt+h and Nh the number of the h-step-ahead forecasts (h = 1, …, H). 

                                                 
8 2,200 draws were simulated and the first 200 draws from the Markov chain were neglected as a 
burn-in period. 
9 Note also that when the forecasts are evaluated the data are demeaned and the gap estimates 
are computed using the data up to time T. Furthermore, when the analysis is based on demeaned 
data, the posterior median forecasts are computed and the means are added to the median 
forecasts.  



 155 

However, only the RMSEs are reported, since these two measures were 
found to produce equal results. 
 
Two multivariate accuracy measures of point forecast, the log 
determinant statistic and the trace statistic, are also used in addition to 
the univariate measures. The multivariate statistics are based on the 
scaled h-step-ahead mean squared error (MSE) matrix  
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where ( ) ( )heMhe tt

1−=  and M is a scaling matrix accounting for the 

different scales of the variables being forecast.10 As discussed in 
Adolfson et al. (2007a), the forecasting performance of the least 
predictable dimensions, that is, those corresponding to the highest 
eigenvalues of the square matrix TM(h), mainly determine the trace 
statistic tr[TM(h)] = λ1+…+λm, while the log determinant statistic log 
|TM(h)| = log λ1+…+log λm also takes into account the forecasting 
performance of the most predictable dimensions (the lowest 
eigenvalues). It is also obvious that when the lowest eigenvalue of TM(h) 
approaches zero, the most predictable dimension determines the log 
determinant statistic. 
 
Finally, in view of the increasing interest for forecast uncertainty, we also 
compare the prediction performance of the competitive models using the 
log predictive density score (LPDS), which is a measure of the accuracy 
of multivariate density forecasts; see Adolfson et al. (2007a). To be more 

concrete, let thty |
ˆ + and Ωt+h|t denote the posterior mean and covariance 

matrix of the h-step-ahead forecast distribution pt(yt+h). Then, under the 
normality assumption of pt(yt+h), the LPDS of the h-step-ahead predictive 
density at time t is defined as 
 

( ) ( )htthtt ypyS ++ −= log2  
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We report the averages of the LPDSs over the evaluated h-step-ahead 
forecasts, 
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10 We follow Adolfson et al. (2007a) and set M equal to the diagonal of the sample covariance 
matrix of the yt from 1976:4 to 2004:4 (1990:1 to 2004:4). 
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This measure takes into account the forecasting performance of the 
predictive density as a whole. 
 
 

5.3.2 Results 

 
Figures 1-3 in Appendix 2 summarize the forecasting performance of the 
competitive models. Specifically, Figure 1 shows the RMSEs in quarterly 
percentage terms, Figure 2 the log determinant and the trace statistics, 
and Figure 3 the averages of the LPDS statistic. Figures 4-6 gives the 
corresponding statistics for the forecasts based on real-time data. The 
results based on NFB data were similar to those based on GDP data and 
in order to save space we report only the latter. All the statistics are 
reported at the 1- to 12-quarter horizons. 11 In the figures, a small value 
favors the model. 
 
A few key findings emerge from the figures. Firstly, although the models 
are very simple they seem to forecast particularly well. According to the 
RMSEs, the small-scale models appear to produce more accurate point 
forecasts, on both inflation and the Federal Funds rate,12 than the large-
scale Bayesian VAR of Smets and Wouters (2007). In addition, the 
models turned out to produce real-time inflation forecasts which 
outperformed the naïve forecasts up to six quarters in the 1990:1-2004:4 
subsample (see Figure 4). This result gives some perspective on the 
forecast accuracy of the hybrid model, when we take into account the 
finding of Atkeson and Ohanian (2001) that the one-year-ahead Federal 
Reserve’s Greenbook inflation forecast has not been better on average 
than the naïve forecast since 1984. 
 
Secondly, all the forecast comparison methods appear to yield similar 
conclusions. In the entire sample the forecasts of the hybrid model 
outperform those of the Bayesian VARs, while in the low inflation 
subsample (1990:1-2004:4) all the multivariate forecasting methods seem 
to produce equally accurate forecasts. Thus, the restrictions (stationary 
and cross-equation) implied by the hybrid model appear to help in 
forecasting especially well during high inflation periods. According to 
the univariate and multivariate measures of forecast accuracy, this result 
is most obvious at medium-term horizons. One exception is the nominal 
interest rate. The hybrid model forecasts this series particularly well in 

                                                 
11 We do not report the marginal likelihood, since it captures only the one-step-ahead predictive 
performance of the full model and is therefore too restricted for forecasting comparison. 
12 The GDP forecasts are not directly comparable to the results of Smets and Wouters (2007), since 
they use the log difference of GPD series, while we use the GDP gap series. 
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all samples and forecasting horizons (see Figure 1 and 4). In particular, 
all these results hold for both ex post and real-time data. 
 
Taking a closer look at the figures we see that the hybrid model is 
superior to the naïve forecasts in all samples and horizons, except for the 
longer horizon inflation forecasts in the low inflation subsample. In this 
latter, the Bayesian VARs also give slightly better inflation and output 
gap forecasts than the hybrid model, according to the RMSEs. However, 
the improvement in the predictability of the variables is clearly 
negligible. 
 
It would also appear that the shrinking prior does not improve the 
forecasting performance of VARs in terms of point forecasting accuracy. 
This is not surprising, since the VAR systems are particularly 
parsimonious and, hence, do not suffer from the over-parameterization 
problem. However, the LPDS statistics (see Figures 3 and 6) support a 
slightly better forecasting density for the Normal-Diffuse prior 
specification in the low inflation subsample. Over the entire sample the 
LPDSs support Bayesian VARs at the shorter forecasting horizons (1 to 4 
quarter); however, the hybrid model again outperforms the VARs at the 
longer horizons. 
 
In sum, it seems fair to say that the simple hybrid NK model captures the 
predictable behavior of the three U.S. key macroeconomic variables 
particularly well. The reason for its good forecasting performance may 
be that the model allows both for the endogenous persistence in inflation 
and output and for the persistence of the exogenous shock processes. 
This approach is commonly used in large-scale NK models, which 
forecast well. Our joint prior is also well designed in allowing the 
parameters to be estimated fairly freely, while being informative enough 
to keep the posterior distribution away from economically non-
meaningful values. 
 

 

5.4 Conclusions 

 

Several recent papers have suggested different ways to improve the 
forecast performance of new Keynesian models. Unfortunately, 
improvement in fit is achieved at the cost of increasing the complexity of 
model mechanisms, which reduces the practicability of these 
approaches. This paper, in contrast, has shown that the very simple 
hybrid new Keynesian model of Clarida et al. (1999) can provide 
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forecasts comparable to those based on commonly used benchmark 
models such as reduced-form Bayesian VARs and univariate random 
walks. 
 
Our forecasting evidence indicates that the restrictions implied by the 
hybrid model work especially well in high inflation regimes. According 
to several univariate and multivariate measures of forecast accuracy, the 
forecasts of the hybrid model outperform those of the Bayesian VARs 
when high inflation periods are forecasted. In the low inflation forecast 
subsample, the methods produce equally accurate forecasts. One 
exception was the nominal interest rate. The hybrid model seems to 
forecast this series eminently well in all samples and horizons. The 
hybrid model also predicts more accurately than the naïve forecasts 
based on univariate random walks. Finally, we note that all these 
findings hold for both ex post and real-time data. 
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Appendix 1: MCMC-procedure, Priors and Posteriors 

 
The MCMC procedure to sample from the posterior distribution: 
 
To generate a Monte Carlo sample from the posterior of θ we used a 
version of the random walk Metropolis algorithm for Markov Chain 
Monte Carlo (MMCMC). The algorithm uses a multivariate normal 
distribution for the jump distribution on changes in θ. Our simulation 
procedure was as follows: we first simulated 10,000 draws using a 
diagonal covariance matrix with diagonal entries 0.00001 in the jump 
distribution. We then used these draws to estimate the posterior 
covariance matrix of θ and scale it by the factor 2.42/13, to obtain an 
optimal covariance matrix for the jump distribution; see e.g. Gelman et 
al. (2004). We continue by simulating 10,000 draws and calculated a more 
accurate covariance matrix for θ. We repeated this for 2 times. We then 
added noise to the posterior median to obtain overdispersed starting 
values and simulated three chains of length 30,000.  We excluded the 
first 5000 simulations as a burn-in period in each chain and picked out 
every 25th draw from the Markov chain, yielding a sample of 3000 draws, 
which economizes on storage space and reduces autocorrelation across 
draws. The convergence of the chains was checked using Gelman and 
Rubin’s convergence diagnostic R (also called potential scale reduction 
factor); see Gelman and Rubin (1992).  The diagnostic values close to 1 
indicate approximate convergence and values smaller than 1.1 are in 
most cases acceptable. In our case the diagnostic was estimated to be 
between 1.01 and 1.03 for all parameters and all models. The 
multivariate version of Gelman and Rubin's diagnostic proposed by 
Brooks and Gelman (1998) was between 1.01 and 1.02 for each model; the 
convergence was thus fairly good. The frequencies of accepted jumps 
were roughly 0.21. Finally, the previous adaptive Metropolis algorithm 
is used because the covariance matrix estimate based on the local 
behavior of the posterior at its highest peak turned out to give too 
optimistic a view of precision, and thus failed to yield an efficient 
covariance matrix for the normal jump distribution.
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TABLE 1. Priors and Posteriors of the Hybrid new Keynesian Model. 
 

_________________________________________________________________________________________________________________________
 

 Prior Distr. Posterior Distr. (GDP) Posterior Dist. (NFB) 
_________________________________________________________________________________________________________________________ 

Panel A: Sample 1954:2 – 2004:4 
_________________________________________________________________________________________________________________________ 

Par. Distr. Mean St.Dev. Median 5% 95% Median 5% 95% 
α Beta 0.67 0.24 0.08 0.02 0.19 0.08 0.02 0.18 

γ Gamma 1.00 0.32 0.03 0.02 0.05 0.03 0.02 0.05 

β Beta 0.67 0.24 0.75 0.65 0.84 0.74 0.65 0.83 

βr Gamma 1.00 0.32 0.10 0.05 0.16 0.12 0.07 0.20 

γπ Gamma 1.5 0.61 1.82 1.50 2.32 1.82 1.46 2.34 

γx Gamma 0.5 0.35 0.59 0.40 0.87 0.49 0.33 0.76 

ρ Beta 0.5 0.22 0.87 0.83 0.91 0.89 0.85 0.92 

ρπ Normal 0 0.54 -0.38 -0.46 -0.28 -0.42 -0.50 -0.33 

ρx Normal 0 0.54 0.79 0.67 0.87 0.78 0.66 0.86 

ρR Normal 0 0.54 0.12 -0.00 0.24 0.11 -0.00 0.24 

σπ Invgam. 0.40 3.96 0.29 0.26 0.32 0.34 0.31 0.37 

σx Invgam. 0.40 3.96 0.16 0.12 0.20 0.21 0.16 0.28 

σR Invgam. 0.40 3.96 0.22 0.20 0.24 0.22 0.20 0.24 
_________________________________________________________________________________________________________________________

 

Panel B: Sample 1954:2 – 1982:2 
_________________________________________________________________________________________________________________________

 

α Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.21 

γ Gamma 1.00 0.32 0.05 0.03 0.07 0.05 0.03 0.07 

β Beta 0.67 0.24 0.79 0.66 0.94 0.77 0.66 0.92 

βr Gamma 1.00 0.32 0.19 0.11 0.32 0.21 0.12 0.35 

γπ Gamma 1.5 0.61 1.86 1.46 2.46 1.81 1.41 2.47 

γx Gamma 0.5 0.35 0.52 0.29 0.86 0.47 0.25 0.77 

ρ Beta 0.5 0.22 0.84 0.78 0.90 0.87 0.80 0.92 

ρπ Normal 0 0.54 -0.35 -0.48 -0.21 -0.41 -0.52 -0.28 

ρx Normal 0 0.54 0.77 0.60 0.87 0.76 0.60 0.87 

ρR Normal 0 0.54 0.11 -0.06 0.29 0.10 -0.06 0.27 

σπ Invgam. 0.40 3.96 0.34 0.30 0.39 0.41 0.36 0.46 

σx Invgam. 0.40 3.96 0.24 0.17 0.34 0.32 0.22 0.43 

σR Invgam. 0.40 3.96 0.28 0.25 0.31 0.28 0.25 0.32 
_________________________________________________________________________________________________________________________

 

Panel C: Sample 1982:3  – 2004:4 
_________________________________________________________________________________________________________________________

 

α Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.20 

γ Gamma 1.00 0.32 0.05 0.03 0.08 0.04 0.03 0.06 

β Beta 0.67 0.24 0.83 0.70 0.97 0.86 0.73 0.98 

βr Gamma 1.00 0.32 0.19 0.11 0.32 0.23 0.13 0.37 

γπ Gamma 1.5 0.61 2.65 1.93 3.64 2.63 1.88 3.75 

γx Gamma 0.5 0.35 0.89 0.57 1.35 0.69 0.42 1.08 

ρ Beta 0.5 0.22 0.90 0.86 0.93 0.91 0.87 0.94 

ρπ Normal 0 0.54 -0.35 -0.50 -0.17 -0.37 -0.50 -0.22 

ρx Normal 0 0.54 0.88 0.79 0.94 0.88 0.80 0.94 

ρR Normal 0 0.54 0.29 0.11 0.47 0.34 0.16 0.52 

σπ Invgam. 0.40 3.96 0.22 0.19 0.25 0.24 0.20 0.28 

σx Invgam. 0.40 3.96 0.09 0.06 0.12 0.11 0.08 0.16 

σR Invgam. 0.40 3.96 0.12 0.10 0.13 0.11 0.10 0.13 
____________________________________________________________________________________________________________________________ 
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Appendix 2: Forecast Comparison Figures  
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FIGURE 1. The root mean squared forecast errors for the competitive models. 
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FIGURE 2. The log determinant statistics and the trace statistics for the  
      competitive models. 
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FIGURE 3. The average log predictive density scores for the competitive models. 
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FIGURE 4. The root mean squared forecast errors for the competitive models 
     (real-time data). 
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FIGURE 5. The log determinant statistics and the trace statistics for the  
      competitive models (real-time data). 
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FIGURE 6. The average log predictive density scores for the competitive models 
     (real-time data). 
 




