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Abstract 

This thesis presents an approach for synthesizing software architectures 
with genetic algorithms. Previously in the literature, genetic algorithms 
have been mostly used to improve existing architectures. The method 
presented here, however, focuses on upstream design. The chosen genetic 
construction of software architectures is based on a model which contains 
information on functional requirements only. Architecture styles and 
design patterns are used to transform the initial high-level model to a 
more detailed design. Quality attributes, here modifiability, efficiency and 
complexity, are encoded in the algorithm’s fitness function for evaluating 
the produced solutions. The final solution is given as a UML class 
diagram. While the main contribution is introducing the method for 
architecture synthesis, basic tool support for the implementation is also 
presented.  

Two case studies are used for evaluation. One case study uses the sketch 
for an electronic home control system, which is a typical embedded 
system. The other case study is based on a robot war game simulator, 
which is a typical framework system. Evaluation is mostly based on 
fitness graphs and (subjective) evaluation of produced class diagrams. 

In addition to the basic approach, variations and extensions regarding 
crossover and fitness function have been made. While the standard 
algorithm uses a random crossover, asexual reproduction and 
complementary crossover are also studied. Asexual crossover corresponds 
to real-life design situations, where two architectures are rarely combined. 
Complementary crossover, in turn, attempts to purposefully combine 
good parts of two architectures.  

The fitness function is extended with the option to include modifiability 
scenarios, which enables more targeted design decisions as critical parts of 
the architecture can be evaluated individually. In order to achieve a wider 
range of solutions that answer to competing quality demands, a multi-
objective approach using Pareto optimality is given as an alternative for 
the single weighted fitness function. The multi-objective approach 
evaluates modifiability and efficiency, and gives as output the class 
diagrams of the whole Pareto front of the last generation. Thus, extremes 
for both quality attributes as well as solutions in the middle ground can be 
compared. 

An experimental study is also conducted where independent experts 
evaluate produced solutions for the electronic home control. Results show 



 

that genetic software architecture synthesis is indeed feasible, and the 
quality of solutions at this stage is roughly at the level of third year 
software engineering students. 
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Tiivistelmä 

Tämä väitöskirja esittelee menetelmän, joka käyttää geneettisiä algoritmeja 
ohjelmistoarkkitehtuurisynteesissä. Geneettisiä algoritmeja on aiemmin 
käytetty lähinnä parantamaan olemassa olevia arkkitehtuureja; nyt 
esitetyssä tutkimuksessa pyritään puolestaan selvästi luomaan uusia 
arkkitehtuureja. Valittu geneettinen mallinnus perustuu pelkästään 
toiminnallisiin vaatimuksiin, joiden avulla muodostetaan arkkitehtuurin 
perusta, n.s. ”nolla-arkkitehtuuri”. Tätä korkean tason ilmentymää 
arkkitehtuurista muokataan ottamalla käyttöön arkkitehtuurityylejä ja 
suunnittelumalleja, jolloin lopputuloksena on huomattavasti 
yksityiskohtaisempi suunnitelma arkkitehtuurista. Tuotettuja 
arkkitehtuureja on arvioitu kolmen laatuvaatimuksen suhteen: 
muunneltavuus, tehokkuus ja ymmärrettävyys. Laatuattribuutteja on 
mitattu metriikoilla, jotka on koottu genettisen algoritmin 
hyvyysfunktioon. Lopputulos tuotetaan UML-luokkakaaviona. Vaikka 
pääpaino on syntetisointiprosessin esittelyssä, esitellään väitöskirjassa 
myös työkalu, joka tarjoaa peruskäyttöliittymän syntetisoitujen 
arkkitehtuurien tuottamiseen.  

Arvioinnissa on käytetty tapaustarkastelua, jossa on kaksi erilaista 
järjestelmää. Toinen tapauksista on luonnos e-kotijärjestelmästä, joka on 
tyypillinen sulautettu järjestelmä. Toinen tapaus perustuu robottisota-
pelisimulaattoriin, joka on tyypillinen kehysjärjestelmä. Arvioinnissa on 
käytetty hyvyysfunktiograafeja sekä (subjektiivista) evaluointia tuotetuista 
luokkakaavioista. 

Geneettisen algoritmin perustoteutuksen risteytykseen ja 
hyvyysfunktioon on kehitetty erilaisia parannuksia. Perusalgoritmin 
käyttäessä satunnaista risteytystä kokeita on tehty myös aseksuaalisella 
lisääntymisellä sekä täydentävällä risteytyksellä. Aseksuaalinen 
lisääntyminen kuvaa parhaiten arkkitehtuurisuunnittelun todellisuutta, 
sillä on erittäin harvinaista, että kaksi kilpailevaa 
arkkitehtuurisuunnitelmaa yhdistettäisiin satunnaisesti. Täydentävä 
risteytys puolestaan on suunniteltu tilanteisiin, jossa yritetään yhdistää 
kahden eri arkkitehtuurin parhaat puolet. 

Hyvyysfunktiossa voidaan myös huomioida skenaariot, jotka 
mahdollistavat kohdennettujen suunnitteluratkaisujen käytön 
tunnistamalla arkkitehtuurin kriittisiä osia ja auttamalla niiden 
yksityiskohtaisemmassa arvioinnissa. Skenaarioiden käytön lisäksi 
esitellään vaihtoehtoinen, monioptimoiva versio hyvyysfunktiolle. Tämä 
Pareto-optimaalisuutta käyttävä hyvyysfunktio pystyy tuottamaan laajan 



 

skaalan erilaisia ratkaisuja, jotka täyttävät eri laatuvaatimuksia. 
Monioptimoiva menetelmä arvioi erikseen muunneltavuutta ja 
tehokkuutta, ja antaa tuloksena koko Pareto-rintaman ratkaisut 
luokkakaavioina. Täten voidaan helposti vertailla ääriratkaisuja 
kummankin laatuvaatimuksen suhteen perusmenettelyllä saavutettujen 
keskivertoratkaisujen lisäksi.  

Väitöskirjassa esitellään myös kokeellinen tutkimus, jossa riippumattomat 
asiantuntijat ovat arvioineet automaattisesti tuotettuja (syntetisoituja) 
ratkaisuja e-kotijärjestelmälle. Tuloksista voidaan päätellä, että 
geneettisellä algoritmilla syntetisoidut ohjelmistoarkkitehtuurit ovat yhtä 
hyviä kuin kolmatta vuotta opiskelevien ohjelmistotuotannon 
opiskelijoiden tuottamat arkkitehtuurit.  
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1 Introduction 

1.1 RESEARCH CONTEXT 
Designing software architectures is a critical and highly demanding task. 
Successful software architects have years of expertise and tacit 
information, which they have gathered from previous projects and by 
learning from their mentors. As a result, software architecture design is 
often considered more like art than a form of engineering. Just like artists 
can study different painting techniques and how to draw different types 
of objects, software architects can take advantage of known best practices 
in architecture design. However, just like a piece of art is much more than 
just strokes of a brush, and truly only gains value from the artist’s own 
effort, no good architecture can be designed simply by collecting bits and 
pieces of technical knowledge from the literature. No book can give the 
ultimate answer to architecture design or how to create beautiful software 
architectures. While existing literature can provide guidelines and 
answers to small (technical) sub-problems, combining these guidelines 
and making sure that the architecture meets all the given functional and, 
usually conflicting, quality requirements, always requires personal 
contribution in the end. 

While there may be as many methods for software architecture design as 
there are software architects, the main idea is always the same: the 
architect starts with a set of functional and quality requirements and 
produces a design, i.e., a composition of functional components, which 
implement the functional requirements and satisfy the quality 
requirements to an acceptable degree. In addition, hardware and 
implementation platform constraints must be considered, different 
stakeholders must be consulted, the required effort in coding certain 
functional solutions must be understood and changes in requirements 
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must be handled. Bosch [2000] describes the design effort as follows: “The 
architectural design process can be viewed as a function taking a 
requirement specification that is taken as an input to the [design] method 
and an architectural design that is generated as output. However, this 
function is not an automated process and considerable effort and 
creativity from the involved software architects is required”. Frankel [2003] 
expresses the same idea while discussing the design process related to 
MDA, where a functional implementation can be generated from a 
computational model (architecture): “In an ideal world a requirements 
analyst would simply submit requirements models to generators that 
would produce the required systems. In practice, you have to refine a 
requirements model into a computational model […] that a generator can 
process.”. 

The combination of growing complexity in the field of software 
architecture design and the outcome of designs relying solely on some 
hidden knowledge does not sound very reliable. Thus, would it not be 
beneficial, if the function described by Bosch could actually be an 
automated process? What if the ideal world described by Frankel could be 
accessible? From Bosch’s point of view, which is probably adopted by 
most software engineers, the answer would most likely be no; such 
automation would not be possible. However, Frankel’s view appears more 
optimistic. I believe that the ideal world where design can be (partially) 
automated is reachable to some extent, and so the answer could be yes, if a 
suitable method is found. I see the answer in meta-heuristic search 
algorithms, and attempt to seek how far the automation of software 
architecture design can be taken.  

Meta-heuristic search algorithms are used when the search space is too 
large to travel through with a brute-force algorithm, and no deterministic 
algorithm can be implemented that would produce a solution within 
reasonable time. The field of software engineering and especially 
architecture design is more than suitable for such an algorithm, as there 
are theoretically innumerous ways of composing architectures for any 
system. One of the most popular search algorithms is the genetic 
algorithm (GA). Unlike most search algorithms, GAs are able to perform 
global searches as they always operate with several solutions at a time and 
are not confined to working within the boundaries of a fixed 
neighborhood. Thus, GAs would appear most suitable for such a complex 
problem as software architecture design.  

Current research in the area of applying meta-heuristic search algorithms 
to software (architecture) design can be roughly divided into four 
categories: software clustering, systems integration, software refactoring 
and architecture design. While there are differences on the level of 
abstraction (e.g., clustering deals with components, refactoring deals with 
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methods and class structure), what most of the existing studies have in 
common is that they all require a starting point where the design process 
is already significantly advanced. In these studies the input is usually a 
complete design where quality requirements have already been 
considered at some length. As a result, rather than giving actual proposals 
to an architect dealing with the design problem, they suggest some minor 
improvements to the structure or act as confirmation devices for the 
selected design choices. The solution space is usually also quite limited, as 
assuming that the initial solution truly is a good one, there is not much an 
algorithm can do to further optimize the solution in terms of software 
architecture design. In order to find a completely new search path, the 
algorithm may actually need to “restart” the search by introducing a large 
amount of changes that would initially decrease the quality of a solution. 
However, it would be highly unlikely that a human designer would trust 
such a suspicious looking algorithm. A simpler starting point, 
nevertheless, is required if the algorithm is expected to find solutions that 
would actually give some new ideas for the architect. Thus, an approach 
requiring only basic information on functional requirements of the system 
would save the initial design time (no actual architectural design would be 
required), and give the algorithm a chance for a more thorough traverse 
through the search space. This kind of approach would thus enable the 
algorithm to produce solutions the designer might never have thought of, 
as architectural designs are first and foremost based on the experience of 
the architect. I will present such an approach in this thesis. 

1.2 RESEARCH QUESTIONS 
This research is a quest for possibilities. I attempt to find out how far the 
automation of software architecture design can be taken with GAs. In 
order to do this, I will examine several subproblems to study how the GA 
should be optimized for software architecture synthesis. After the GA has 
been optimized, the quality of produced designs can be evaluated against 
those designed by humans. The subproblems are formulated below as the 
research questions this thesis attempts to resolve. 

1. What information of the system (and its architecture) under 
design is required as input for the GA in order to perform the 
synthesis? I will attempt to use GAs strictly for upstream design 
instead of merely improving an already validated solution like 
previous studies do. I also intend to give only the minimal 
amount of information, and leave as much as possible to the 
algorithm.  
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2. How can the architecture be numerically evaluated in the fitness 
function? The GA is not a human with hidden knowledge, and 
needs a well-defined formula to calculate the quality of a 
proposed solution. Are current software metrics sufficient for 
this, and what kinds of methods are needed to achieve accurate 
evaluation? 

 
3. Is a traditional and simple GA enough, or should some more 

complex operations be studied, in order to comply with the 
problem of software architecture design? 
 

4. How far can the automated design be taken? What is the level of 
quality that can be achieved with automation? This final 
question is the most interesting of all. 
 

As a summary, the goal of this research is to discover whether automated 
software architecture design is possible, and if so, how much background 
information of the system is required and how should the algorithm be 
constructed to achieve satisfactory results.  

1.3 THE GA APPROACH 
The approach presented here for genetic software architecture synthesis 
uses minimal information of the system that is gathered during 
specification of requirements. In traditional software design, use cases are 
a standard starting point for defining the functional requirements for a 
software system. If the use cases are defined to a detailed enough level, 
simple responsibilities of a system can be extracted. Further on, refined 
use cases can be used to straightforwardly produce sequence diagrams, 
from which classes can be elicited, and responsibilities can now be seen as 
distinct operations or data entities  

After defining the functional requirements for the software system in the 
way described above, the resulting very basic class diagram is given to the 
GA. The GA operates based on concepts from biology and evolution. Thus, 
an encoding for the architecture is required. The presented approach uses 
an encoding where each operation and the information related to it can be 
basically encoded as a vector. These operation vectors are then combined 
and this combination of operations represents the entire architecture. The 
initial solution where the GA starts the design process is simply the 
collection of all operations and data entities elicited from use cases, 
encoded into a form understandable to the algorithm. 
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The actual design or synthesis of architecture is achieved by introducing 
standard architectural design decisions, here architecture styles and 
design patterns, to the initial solution (representing functional 
requirements), and thus building different, more sophisticated solutions. 
The solutions are evaluated with a fitness function based on classic 
software metrics. The metrics are enhanced so that knowledge about the 
effect of interfaces and other design choices can be taken into account in 
addition to the simple inheritance and class coupling metrics. 

This basic approach, crudely described above, should answer research 
questions 1 and 2. However, the genetic operators should be further 
studied in order to answer research question 3. Two variations have been 
made of the crossover operator, as well as two alternatives or extensions to 
how the solutions are evaluated and selected. These further studies help 
determining how the GA should be implemented in order to best resemble 
the real-life design process and thus produce solutions that would be as 
good (or better) as a human designer’s. 

The choice of using only GA could be questioned. Additionally, from a 
scientific viewpoint, it would be interesting to try a combination of GAs 
and some other meta-heuristic search method. A local search would either 
begin the search, in which case the GA would have a significantly 
improved starting point than the simple null architecture. The other 
option would be to first use the GA, and then use another algorithm to 
improve the solution provided by the GA. 

Regarding these issues, initial experiments in software architecture 
synthesis [Räihä et al., 2010] have been made where the GA was combined 
with simulated annealing (SA) [van Laarhoven and Aarts, 1987]. The 
preliminary results suggest that simulated annealing could be beneficial in 
the case where GA is used to produce a solution with good quality, which 
is then further improved with SA. Simulated annealing is significantly 
faster than the genetic algorithm, and thus a longer evolution can be 
performed quicker when part of it can be replaced by the SA. However, 
curiously enough, tests [Räihä et al., 2010] also show that SA by itself is 
not capable of producing satisfactory solutions, and applying GA to 
further improve a solution given by SA does not provide good results 
either. Thus, the initial decision on using GA for the software architecture 
synthesis is confirmed with respect to SA. 

1.4 RESEARCH METHOD 
The research is conducted by implementing a genetic algorithm in the 
described manner and performing case studies on two different sample 
systems. The case studies are used to answer research questions one, two 
and three. As for question four, an experimental study is conducted where 
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the synthesized solutions are compared with those produced by humans 
(for the same system).  

Case studies are a useful research method when the research questions 
begin  with “how” or “why” [Yin, 2003]. The research questions defined 
above could all be presented beginning with “how”: How should the 
input be presented; How should the algorithm be defined; How should 
the evaluation be made; and finally, How good is the algorithm? Case 
studies are particularly well-suited for theory-forming research, where 
there are no clear hypotheses in the beginning of the research [Järvinen, 
1999], as is the case here. I do not have a particular theory, apart from the 
optimistic view that meta-heuristic search algorithms could aid in 
software architecture design, and this research is aimed at finding out how 
far the synthesis can be taken with GAs. 

There are eight steps to performing a case study [Järvinen, 1999]. The first 
step is to define the research question. The research question should be 
formed so that there is a clear focus, but it should have as little theory or 
hypotheses as possible, as they might bias or limit the findings. In this 
thesis the main research question is, as stated, finding out the possibilities 
of genetic algorithm based software architecture synthesis. 

The second step is selecting the cases. Cases are selected based on the goal 
of the research. In my research, the goal is to find as general answers as 
possible, i.e., the algorithm should not be designed for just one type of 
architectures. Thus, I chose two cases which differ from one another as 
much as possible.  

One case is an electronic home control system. This is a typical embedded 
system with quite few and large components. There are not many 
dependencies between different components, and only the user interface 
and main controller component use several other components. The ehome 
control system is not expected to be highly efficient, but should be 
modifiable so that new components (devices in the home) can be easily 
added.  

The other case is a robot war game simulator. This is a typical framework 
type system, and has several small components. There is more 
communication between different components than in the case of ehome, 
and the main controller and user interface have a much smaller role. The 
robot war game simulator should be efficient as lagging is very 
undesirable in a gaming application, but also modifiable as components 
should be easily customized. 

The two systems used for the case studies are different both structurally 
and in what they have as quality requirements. Thus, if the GA is able to 
produce satisfactory results for both systems, it is reasonable to expect that 
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the synthesis is, in principle, applicable for various kinds of software 
systems and architectures. 

The third step is crafting instruments and protocols, i.e., determining what 
kind of data is collected and how. I have collected two kinds of data: the 
numerical fitness values that the algorithm uses for evaluation as well as 
the synthesized architectures given as class diagram outputs. This 
combination of quantitative and qualitative data should provide enough 
information to evaluate the results from both theoretical and practical 
viewpoints. 

The fourth step is “entering the field” [Järvinen, 1999]. When performing 
case studies, it is common that gathering and analyzing data overlap. This 
is also true in the case of this thesis: the research setup and approach was 
quickly altered according to results from previous data analysis, rather 
than keeping the same setup for all experiments. 

The fifth step is the actual analysis of data. Data is analyzed both within-
case and between cases. Within-case analysis gives a clearer 
understanding how varying certain aspects, e.g., the fitness function, affect 
the outcome, while between cases analysis provides information of the 
generality of the approach, and how much the actual system under design 
affects the outcome rather than the algorithm. The same parameters were 
used for both cases, while in reality the designer would likely try to 
optimize the algorithm to suit a certain type of system. By giving the same 
parameters for the algorithm in both cases it is easier to do between case 
comparison and see how the particularities of the system under design 
affect the outcome. 

The sixth step is shaping the hypotheses. This is done by analyzing the 
results from the two cases and refining the method for architecture 
synthesis accordingly. The seventh step is comparing the theory with 
existing literature; in my study, this has been done before the actual 
studies. The final step is bringing the research to closure and providing 
new concepts, a conceptual framework, propositions or mid-range theory. 
I will conclude the case study by providing propositions of the 
possibilities of genetic software architecture synthesis. 

1.5 CONTRIBUTIONS AND OVERVIEW 
The contributions of this thesis are the following. 

1. A novel pattern-based approach using genetic algorithms 
for software architecture synthesis (publications [I], [II] and 
[VIII]). 
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2. A method for encoding modifiability related scenarios as a 
fitness function for GAs, which resembles human evaluation 
and enables more detailed design choices (publication [III]). 

3. An approach to use asexual reproduction with genetic 
algorithms in software architecture synthesis, which most 
resembles actual architecture design, as parts of two 
architectures are rarely combined (publication [IV]). 

4. An approach for purposefully combining two architectures 
which satisfy different quality requirements. This is 
implemented as complementary crossover, which is more 
realistic than randomly combining parts of two architectures 
(publication [VII]). 

5. A thorough review of research in the area of search-based 
software design (publication [VI]). 

6. Preliminary tool support which provides a user interface to 
the synthesizer (publication [V]). 

7. Multi-objective evaluation with Pareto optimality is defined 
for software architecture synthesis with two objectives, 
modifiability and efficiency (publication [IX]).  

 

This thesis consists of an introductory part and nine original articles 
published previously. The introductory part presents background to the 
research questions and summarizes the studies made in the original 
publications. The introductory part proceeds as follows: the background 
and previous studies in this area are presented in Chapter 2. The approach 
for genetic software architecture synthesis is described in Chapter 3. 
Studies involving variations and extensions to the basic mechanism are 
presented in Chapter 4. The different studies are evaluated, summarized 
and discussed in Chapter 5, and concluding remarks are presented in 
Chapter 6. 
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2 Background 

In order to understand genetic software architecture synthesis, 
background information on both the software engineering aspect and the 
algorithmic aspect is required. In this chapter, the concepts related to 
software architecture design and its evaluation are first discussed, 
followed by an introduction  to the core concepts of GAs. Finally, existing 
studies on applying search algorithms to software engineering design 
problems are discussed. 

2.1 SOFTWARE ARCHITECTURES 
The core of every software system is its architecture. Designing software 
architecture is a demanding task requiring much expertise and knowledge 
of different design alternatives, as well as the ability to grasp high-level 
requirements and transform them into detailed architectural decisions. In 
short, designing software architecture takes verbally formed functional 
and quality requirements and turns them into an architectural model, 
which is used as a base for implementation. The ISO standard [ISO, 2007] 
defines software architecture as “the fundamental concepts or properties 
of a system in its environment embodied in its elements, relationships, 
and in the principles of its design and evolution”. Software architectures 
can be described by using different views or structures, e.g., module 
structure (units are work assignments), physical structure (mapping 
software onto hardware) or data flow (programs or modules are linked 
with information about the data they exchange) [Bass et al., 1998]. In this 
thesis I use the class structure to model architecture designs.  

The focus in this thesis is on quality-driven software architecture design, 
which most resembles the GA process. The GA does not consider any 
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other drivers or stakeholders in the design process than the quality 
attributes encoded into its fitness function. In traditional software 
architecture design, there are several quality-driven approaches, e.g., the 
quality-driven architecture design and quality analysis (QADA) method 
[Matinlassi, 2006; Evesti, 2007] and the attribute-driven design method (ADD) 
[Wojcik et al., 2006]. The genetic synthesis approach presented in this 
thesis proceeds in a very similar manner as the quality attribute-oriented 
software architecture design method (QASAR) [Bosch, 2000]. This design 
method consists of three phases: functionality-based architecture design, 
architecture evaluation and architecture transformation. The functionality-
based architecture design roughly corresponds to what is given as input 
for the genetic algorithm, while the transformations and evaluation are 
performed iteratively by the algorithm in the form of mutations and 
fitness evaluation. In QASAR, the design is an iterative process, and two  
levels of iteration are used. The “outer” iteration considers functional 
requirements; only a subset of functional requirements can be used in the 
beginning and other, less critical requirements, can be added later on. The 
“inner” iteration considers the transformations and evaluation. I will 
proceed to describe the architecture design process the way it is generally 
implemented (as according to QASAR) as well as basic steps to achieve 
the functionality-based architecture design (independent of the selected 
design method). 

 

2.1.1 Software architecture design process 

No matter what methodology is used, software development always 
follows roughly the following steps: 1) gather requirements, 2) analyze 
requirements, 3) produce high-level design (architecture), 4) produce code, 
5) test, and 6) perform maintenance [Kleppe et al., 2003]. Today, one of the 
most popular design methodologies, and also the one used in this thesis, is 
the object-oriented methodology, where steps 1 and 2 of the software 
development cycle can be combined under one term, analysis [Booch, 1991; 
Rumbaugh et al., 1991]. I assume that this analysis phase is always a 
manual task and must be done by a human software engineering expert. 
The transmission from step 2 to step 3, however, can be automated, as I 
will demonstrate further on. 

I will now briefly discuss the design process (steps 1-3), and in particularly 
how the analysis phase can be performed and what is required to proceed 
from analysis to architecture. Examples are based on an electronic home 
control sample system, called hereafter ehome, which is also used as a case 
study in the genetic synthesis. Firstly, it should be noted, that while in a 
real-life design situation several business and organizational factors 
influence the design of software architecture, they are not considered here. 
Secondly, this description is slightly idealized. A real-life design situation 
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is unlikely to be as straightforward and would most probably produce 
many other ways of depicting the requirements, such as other UML 
diagrams in addition to those mentioned here. Thus, it should be 
emphasized that the following design process description does not intend 
to depict an actual situation, but rather to define basic concepts and give 
enough background to understand what is required from the analysis 
phase in the case of genetic software architecture synthesis.  

The design process in any design method, including QASAR, begins by 
making a requirement specification based on the demands of different 
stakeholders. The requirements specification contains both the functional 
requirements of a system as well as quality requirements. The actual design 
process for QASAR then proceeds with a subset of the functional 
requirements (the most critical ones).  

In QASAR, the functional requirements are used to construct a 
functionality-based architecture design, which does not yet take into 
consideration the quality requirements. While the original description for 
QASAR [Bosch, 2000] specifies a certain methodology to create this 
rudimentary design, a more simplistic, object-oriented approach is used in 
this thesis. The outcome, however, is basically the same:  an initial view of 
an architecture, which depicts functional requirements, their mapping to 
components and the relationships between them, but does not take into 
account quality requirements.  

In this thesis, the following approach for creating the functionality-based 
design is used. Firstly, in order to formalize functional requirements, the 
domain must be understood; for this purpose a conceptual model of the 
system under design is created. A conceptual model captures the domain 
knowledge of the system, and contains the key concepts that can then be 
used as a basis for eliciting the actual requirements. Thus, once the key 
concepts are recognized, distinct functional requirements are defined. For 
this purpose, use cases are created. In a use case, the different actors 
operating with the system are specified, and their actions with the system 
are defined.  

In the case of ehome, we first consider what kind of devices there can be 
found. Four different devices are specified: heater system, drapes, coffee 
machine and music system. In addition, there should be some kind of user 
registry where user info can be set. Based on these, use cases for ehome 
can describe, e.g., making coffee, setting the room temperature, changing 
the unit for temperature display, logging in, playing music and moving 
the drapes. Figure 1 gives the use case diagram for ehome. The PlayMusic 
case is specified with more detail than other use cases, as it will be used as 
an example in the following. Other use cases may also include “sub use 
cases”, but they are not specified in the diagram given in Figure 1.  
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Figure 1. Use case example (ehome) 

 
Figure 2. Sequence diagram example (ehome, play music) 
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Use cases can be refined and transformed into sequence diagrams. Sequence 
diagrams specify the functionality of a system as a sequence of calls 
(messages) between different objects/classes. Sequence diagrams can 
easily be extracted from use case diagrams by collecting verbs 
(messages/calls) and nouns (objects/attributes). 

The sequence diagram elicited from the “play music” use case for ehome 
is given in Figure 2. The process begins with a command from the user to 
play music. The user interface calls the Music Files component in order to 
access the selected music file. The Music Files component then calls the 
Music System in order to actually process the file and use the speakers. 
The Music System then contacts the Speaker Manager component. 

Sequence diagrams give quite a good view already of the underlying 
software architecture, as they contain all the required objects (components) 
and the calls (relationships) between them. An architectural view based on 
sequence diagrams can thus be used as the functionality-based 
architecture, as required in QASAR. The design process now moves on to 
consider quality requirements. 

Quality requirements usually deal with a set of different quality attributes, 
such as modifiability, maintainability, performance, usability, portability, 
and reliability [Bass et al., 1998]. Each quality attribute must be evaluated 
separately, and they should be balanced. This is a demanding task, as 
when trying to optimize a design in terms of one quality attribute, one 
usually has to apply modifications that deteriorate the design in terms of 
another quality attribute. 

In the case of ehome, we can quickly define several critical quality 
requirements. Firstly, there are requirements related to usability: no one 
likes such a high-tech home if it is not easily controlled. Secondly, 
performance is critical: there is no point in automatically moving the 
drapes if it is slower than the respective manual operation. Thirdly, ehome 
should be easily extendable to cover new equipment. Finally, the system 
should be reliable: no one wants to be left outside or be locked in their 
own home because of a system malfunction. 

These quality requirements are still quite abstract, and when analysis 
progresses, they should be further defined and broken down to more exact 
requirements. For example, usability related requirements should clearly 
define what parts of the user interface they concern, and performance 
related requirements should define limits for lag times. A useful way of 
further defining quality attributes is to build scenarios for each attribute. 
Evaluating quality requirements is discussed in more detail further on.  

At this point, we have dealt with steps 1 and 2, and are now moving on to 
step 3 of the software development process: producing an architecture. 
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The architecture makes sure that the system fulfills the functional 
requirements while still considering the quality requirements. In QASAR 
this phase is called architecture transformation. The architecture is 
transformed by applying quality attribute optimizing solutions in order to 
fulfill the given quality requirements. Bosch [2000] defines architecture 
optimizing solutions (transformations) as imposing architecture styles 
[Shaw and Garlan, 1996; Bass et al., 1998], imposing architectural patterns, 
applying design patterns [Gamma et al., 1995], converting quality 
requirements to functionality or distributing requirements.  

In this thesis, transformations are made by imposing architecture styles 
and applying design patterns. Applying a certain architecture style 
usually resolves major issues regarding how communication between 
components should be handled on a higher level, while design patterns 
are applied in questions related to a group or just one component or class. 
Intelligently applying these design choices will eventually produce a 
software architecture that best answers the given quality requirements. 
The specific architecture styles and design patterns used in this this study 
are described in the following subsection. 

As stated, QASAR is an iterative process, and at this stage only one 
iteration has been made. After the architecture has been transformed, it is 
once again evaluated based on the quality requirements. If they are not 
satisfied, it is further transformed. This inner iterative process is continued 
until the quality requirements for the selected functional requirements 
have been resolved. After this, more functional requirements can be added 
and the base architecture extended, i.e., the outer iteration is continued. 
The quality attribute based (inner) iteration thus starts again. The iterative 
processes of adding functional requirements and then performing 
evaluations and transformations are repeated until all desired functional 
requirements are included. The (inner) iterative process of transformations 
and evaluations closely resembles the way the genetic algorithm processes 
the software architecture. However, at this stage the GA only works with 
one iteration of functional requirements, i.e., all functional requirements 
are given in the beginning of the design process, and the iterative phase 
only considers adjusting the architecture to meet the quality requirements.  

 

2.1.2 Software architecture styles and design patterns 

Software architectures and their design have been studied for decades, 
and good practices for certain design problems have been identified and 
documented as architecture styles and design patterns. Design patterns 
are different for different practices, i.e., object-oriented designs have 
certain patterns, while service-oriented architectures have other kinds of 
patterns. Software architectures [Shaw and Garlan, 1996] and object-
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oriented design patterns [Gamma et al., 1995] have been collected into 
catalogues which define proper use for each style and pattern. While the 
catalogues contain dozens of different styles and patterns, I will here 
concentrate on the ones used in this thesis. 

In this work I use two architecture styles, message dispatcher and client-
server. These architecture styles were selected, as they consider fairly low-
level alterations to the architecture. Applying either of these styles 
requires only structural modifications, and the styles can be visualized at 
class diagram level, which is essential from the viewpoint of this thesis. 
Also, applying either architecture style does not require any knowledge of 
the semantics of different operations.  

The message dispatcher style can be seen as an instance of the event-
based/implicit invocation style [Shaw and Garlan, 1996]. This architecture 
style is based on having a messaging component, the dispatcher, in the 
centre of the architecture. Its only purpose is to receive and send messages 
between other components. The “basic” components are not 
communicating directly with each other, but one component merely sends 
messages to the dispatcher, which then forwards the message to (an)other 
component(s). There can be direct communication as well, but to get the 
most out of the message dispatcher style, as many calls between different 
components as possible should be handled through the message 
dispatcher. The main benefit of having a dispatcher is independency; 
components do not need to know anything about each other, they merely 
need to know what kind of message to send in every different situation. 
This increases modifiability and flexibility. The drawback is mostly related 
to efficiency, as having a message dispatcher means that extra time is 
needed for composing, sending and interpreting messages. Also, 
complexity increases significantly, as each component communicating 
with the message dispatcher should implement an interface for receiving 
messages and a method for sending messages. Furthermore, instead of 
one call between two components, there are two: one between the sending 
component and the dispatcher, and another between the dispatcher and 
the receiving component. The message dispatcher style is commonly used 
in systems with a large number of components communicating with each 
other in different ways, and thus a unified communication method is 
required. Another common use for message dispatcher is in distributed 
systems, where components are placed in different nodes in a bus, and the 
nodes then communicate through the dispatcher, while components 
within the same node communicate directly. 

The other architecture style used here is the client-server style [Shaw and 
Garlan, 1996]. This style is used to encapsulate certain resources. The 
client merely asks for a certain service from a server, which then provides 
that service along with the resources. The asking and providing of a 
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service is usually handled in one session, and thus whatever any other 
component or server does during that time does not affect the provision of 
the service. The servers usually also work in their own threads, and thus, 
are more separated from the clients than traditional classes in object-
oriented designs. The servers are usually idle, and merely wait for the 
clients’ requests. The client-server architecture is often used when there is 
a large database; the database is located in a server, and the components 
requiring the data become the clients.  

In addition to the two architecture styles, I have used five design patterns. 
While architecture styles can be considered very high-level design choices, 
patterns can be considered mid-level or low-level design choices. From the 
design pattern catalogue presented by Gamma et al. [1995] I have used 
two patterns, Façade and Mediator, which can be seen as mid-level design 
choices, and three patterns, Adapter, Strategy and Template Method, which 
are low-level design choices. These particular patterns were chosen to get 
samples of both mid-level and low-level design choices. The chosen 
patterns can be implemented with simple structural modifications, and 
need not know of any particular semantics of the operations. Thus, as this 
thesis considers architectures at class diagram level, the chosen patterns 
are particularly well-suited. 

It should be noted that the patterns are only considered from the 
structural point of view, i.e., how the patterns alter the class diagram and 
how they improve the architecture. Creating instances of classes (objects) 
is considered to be a part of the actual implementation and not the high-
level architecture, on which this thesis focuses. Thus, object-related 
concerns in the patterns are omitted or interpreted in terms of classes 
and/or interfaces.  

The Façade pattern is suited for situations where several classes use a 
group of classes, which also have connections between themselves, and 
thus the group can be thought of as a subsystem.  Thus, in order to 
decrease coupling, the Façade provides a common interface for other 
classes to use the subsystem. Technically, the Façade consists of a class 
and interface: the Façade class requires an interface from all the classes in 
the subsystem in order to access the actual methods, and the Façade 
interface is provided for other classes to use the subsystem through the 
Façade. The Façade increases modifiability by decreasing coupling 
between classes and hiding information. When the Façade is in place, the 
calling classes do not even need to know which class will ultimately 
implement the method they need from the Façade interface. 

The Mediator is beneficial in cases where there is a large number of 
connections between a group of objects (classes). The Mediator is thus 
used to control and coordinate the interactions of this group and it keeps 
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the objects (classes) from referring to each other directly, thus reducing the 
number of connections. This pattern is similar to Façade in the sense that it 
provides a common interface for a group of classes to use. In the case of 
Mediator, however, there is no need to separate the classes into groups 
(although it is possible), but all classes can both require methods from the 
interface provided by the Mediator, as well as provide an interface for the 
Mediator. The Mediator, similarly to Façade, increases modifiability 
through decreasing coupling and increasing encapsulation. The Mediator 
is here considered from a class oriented viewpoint, and object related 
matters are omitted. 

The Adapter is designed for situations where a class requires an interface, 
and a suitable interface already exists, but it is incompatible with the 
request. Thus, the Adapter provides a technical interface which is 
compatible with the request, and a technical class which then accesses the 
actual interface. Using the Adapter also makes it easy to change the final 
interface, if needed, as the requesting class is now always provided with 
the compliant Adapter interface. 

The Strategy pattern aids in situations where there are several possibilities 
for implementing a certain algorithm (method). When alternatives need to 
be provided, Strategy provides a common interface which is implemented 
by different classes, all providing a somewhat different implementation of 
the same method. Again, as with Mediator, the Strategy is defined only in 
terms of changes to the class structure; and object-related matters (creating 
a concrete Strategy object, etc.) are not considered here. 

The Template Method pattern is used when a method (the “template 
method”) has both invariant and variant parts. The invariant parts can be 
implemented straightforwardly, but there should be an easy way to 
change the implementation of the varying parts. When applying the 
Template Method pattern, the class containing the “template method” is 
made abstract, and the varying parts of the “template method” are defined 
as abstract, primitive methods. These primitive methods are given 
concrete implementations in a subclass. The inherited methods now 
override the original ones, and if they need to be changed, only the 
subclass needs to be modified.  

 

2.1.3 Software architecture quality metrics 

There are several ways to perform software architecture evaluation, e.g., 
using simulations, mathematical modeling, experience-based assessment 
and scenario-based evaluation [Bosch, 2000]. In object-oriented design, 
software metrics are also a useful way to predict the quality of the design. 
The most relevant ways of evaluating the quality of software architecture 
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regarding this thesis are using software metrics and scenario-based 
evaluation, which are discussed in the sequel in more detail. 

Metrics are usually based on some combination of calculating coupling 
between classes and cohesion within classes. High coupling and low 
cohesion indicate poor design choices in terms of modifiability, efficiency 
and maintainability. More refined metrics are also available (as given, e.g., 
by Losavio et al., [2004]), but they either require intricate information on 
the implementation of the software system, or a human expert is required 
for some portion of the evaluation process, i.e., not all values can be 
automatically deduced from the system. While metrics have the drawback 
of not being able to capture some essential entities of software systems 
which cannot be deduced from code or class structure, they have the 
benefit of being able to examine the entire system. Thus, given well-
defined conditions, metrics can be used to evaluate the system in, 
theoretically, any given situation. Using human expertise, however, is 
always dependent on the knowledge and experience of the particular 
experts making the evaluation. Other experts, even using the same quality 
attributes as a basis for their evaluation, may produce a different result. 
Humans may also have difficulties in evaluating the system as a whole, if 
it is very large. However, as opposed to metrics, humans are not confined 
to structures and are able to grasp very abstract concepts, and can thus 
make very complex evaluations.  

The most known metrics suite is presented by Chidamber and Kemerer 
[1994] (called hereafter the CK metrics), and it is based on four principles 
that rule object-oriented design process: identification of classes (and 
objects), identification of semantics of classes (and objects), identification 
of relationships between classes (and objects) and implementation of 
classes (and objects).  Based on these principles, Chidamber and Kemerer 
[1994] formulate a metrics suite that consists of six different metrics: 
weighted methods per class (WMC), depth of inheritance tree (DIT), 
number of children (NOC), coupling between object classes (CBO), 
response for a class (RFC), and lack of cohesion in methods (LCOM). CBO 
and LCOM are classic indicators for modifiability, as discussed above. 
WMC indicates reusability. A high value for DIT predicts negative aspects 
of complexity and maintainability but a positive aspect of reusability. A 
high value of NOC indicates that extensive testing should be performed, 
but this metric can also be used to evaluate efficiency and reusability. 
Finally, RFC can be used to measure understandability, maintainability 
and testability.  

A combination of the CK metrics or some modified versions of them are 
often used in maintenance work, e.g., in refactoring [Du Bois and Mens, 
2003]. However, as the metrics are very basic, also the refactoring 
operations based solely on these metrics are usually simple, such as 
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moving a method or somehow modifying the class hierarchy. As the CK 
metrics are widely used and the basis for many other metric suites, their 
validity has also been studied by, e.g., Briand et al. [2000] and Olague et al. 
[2007]. The more recent study by Olague et al. [2007] concludes that the 
CK metrics, as well as the QMOOD (Quality Model for Object-Oriented 
Design) suite [Bansiya and Davis, 2002], which will be discussed in the 
following, are truly effective in detecting error-prone classes. 

One example of metrics based on the CK metrics suite is given by 
Sahraoui et al. [2000]. They present a list of inheritance and coupling 
metrics, where the simplest metrics are NOC, CBO and number of 
methods (NOM), which is a simpler form of WMC. The rest, however, are 
more specialized extensions of the CK metrics, such as class-to-leaf depth, 
number of methods overridden and information-flow-based inheritance 
coupling. Detailed metrics such as these can be used to apply more 
sophisticated refactorings, such as creating specialized subclasses and 
aggregate classes. 

As in the ISO standard [2007], the software architecture definition should 
also consider its evolution; no software system stays the same during its 
lifecycle, as changing requirements and maintenance operations alter the 
system. Mens and Demeyer [2001] present evolution metrics, which help 
evaluating how suitable the system is for evolution. Here the main metric 
is the distance between classes, which can, however, be defined as desired. 
The distance can measure, e.g., the number of methods, number of 
children or depth of inheritance tree. Large distances between classes can 
indicate a complex system.  

Losavio et al. [2004] define the ISO quality standards model for software 
architectures. This model is somewhere in between pure metrics and 
evaluation using human expertise. The ISO 9126-1 quality model’s 
characteristics are functionality, reliability, usability, efficiency, 
maintainability and portability [Losavio et al., 2004].  In the ISO model, the 
quality characteristics are refined into sub-characteristics, which are again 
refined to attributes. The attributes are then measured by metrics. Thus, 
the model needs human expertise in making the refinements, but the end 
result is a measurable value related to the architecture.  

Finally, a more recent approach (compared to the CK metrics) to metrical 
software evaluation is the QMOOD metrics suite by Bansiya and Davis 
[2002]. Bansiya and Davis wanted metrics that would be particularly 
suitable for the design phase. Thus, they defined the quality attributes for 
QMOOD to be functionality, effectiveness, understandability, extendibility, 
reusability and flexibility. These attributes are evaluated by design 
properties, which can be refined into metrics. There are in total 11 
different design properties, and one metric for each property. These 
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properties are then combined in different ways in order to evaluate the 
quality attributes. The actual metrics are design size in classes, number of 
hierarchies, average number of ancestors, number of polymorphic 
methods, class interface size, number of methods, data access metric, 
direct class coupling, cohesion among methods of a class, measure of 
aggregation and measure of functional abstraction. The QMOOD metrics 
suite is not that different from the CK metrics in the end, but does take 
some more intricate information about the design into account. The 
QMOOD metrics suite also defines what metrics to use for which quality 
attributes more clearly than the CK metrics, and the actual quality 
attributes are clear and well justified, which explains the popularity of the 
QMOOD suite.  

To summarize, metrics are mostly elicited from class hierarchies and the 
different relationships between classes. Quality metrics are effective in 
indicating problems in object-oriented designs, particularly when 
considering efficiency, modifiability and complexity/understandability. 
Thus, metrics can be used as guidelines to determine the quality of object-
oriented systems, but they usually require quite intricate information 
about the design, and some more sophisticated metrics require 
information that is not available before implementation. The usefulness 
and accurateness of different metrics suites have been demonstrated in 
several studies.  

 

2.1.4 Software architecture evaluation 

When moving on to evaluation made by humans, the evaluation usually 
begins with the following questions: How does an architecture resolve 
quality requirement x? Why is one solution better than another? These 
questions alone demonstrate the difference between using metrics to give 
values to quality attributes and using human expertise to evaluate the 
system: no metric can answer questions like “how” and “why” when 
discussing the positive and negative aspects of different architectural 
options. Metrics may also give very good scoring to individual quality 
requirements, but as a whole, the architecture may not be at all suitable for 
the system in question. Hence, although metrics can aid in architecture 
evaluation and are basically the only way of automated evaluation, they 
cannot completely replace the evaluation of experts. 

The most widely used and known method for architecture evaluation is 
the Architecture Trade-off Analysis Method (ATAM) by Clements et al. 
[2002]. The main goals of ATAM are to define the key quality attribute 
requirements concerning the architecture, to refine design decisions for 
the architecture, and based on the two previous goals, to evaluate the 
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architectural design decisions to determine if they fulfill the quality 
attribute requirements satisfactorily.   

Each quality attribute is evaluated with a set of scenarios. A scenario 
basically describes an interaction between a stakeholder and the system. 
Scenarios are used to analyze whether the architecture fulfills the critical 
quality requirements and to see potential risks involved in the architecture. 
A scenario describes a prospective real-life situation related to a particular 
quality attribute. For example, usability related scenarios mostly deal with 
the user interface and its implementation, while maintainability or 
modifiability related scenarios might try to predict changes or additions to 
functionalities or their implementations. Scenarios are given a level of 
priority and in the case of change scenarios, an estimate of their 
probability. Based on these, experts can concentrate on the most likely and 
most important scenarios. While the initial analysis regarding quality 
requirements is done by software architecture experts, all possible 
stakeholders are involved in brainstorming the scenarios in order to find 
all possible risks and considerations involved with the architecture 
[Clements et al., 2002]. After the scenarios have been assessed, the 
architecture should be evaluated against the scenarios, and changes to the 
design should be made accordingly, if the initial design does not meet the 
quality requirements satisfactorily. 

As can be seen, ATAM relies purely on human expertise, and the 
evaluation of architecture is partially done simultaneously with 
development. Some basic architectural approaches are first presented 
based on the known structure of the system, and as the quality attribute 
requirements of the system become clearer, the architecture undergoes 
several iterations of analysis, while the architecture is being refined and 
different approaches may be considered. The “goodness” of the 
architecture can be defined and measured by how well it satisfies the 
quality requirements and how “easily” it responds to the scenarios related 
to the quality attributes. 

To summarize, human-based evaluation relies on both knowledge of the 
system as well as guesswork concerning potential changes to the system 
and its environment. The main benefit of human-based design is the 
ability to capture all critical quality requirements, as there are no limits to 
how they can be expressed and measured. Thus, human evaluation 
usually gives a more dependable evaluation of the quality of an 
architecture than metrics, as abstract concepts are not detectable by 
metrics. Also, the collected expertise of stakeholders performing, e.g., the 
ATAM analysis, is far beyond what can be achieved with metric 
calculations. 



 

39 

 

2.2 GENETIC ALGORITHMS 
Genetic algorithms belong to the family of meta-heuristic search 
algorithms, and are used as a way to seek for solutions in a very large 
search space. When a deterministic search is not feasible, but the problem 
can still be formalized as a search problem, genetic algorithms provide a 
sophisticated way to quickly search for a sufficiently good solution 
[Mitchell, 1996]. Holland [1975] structured the idea of GAs as a way for 
computer science to take advantage of the phenomena present in natural 
evolution.  

Evolution is described by Darwin’s theory of natural selection: the 
individuals that are best fit to the environment they are living in will 
survive, and the ones who are poorly adjusted to the environment will die. 
Over time, this kind of natural selection will ensure that species that have 
been able to produce properties that enhance their probability of survival 
will be spared. Thus, such species will be able to produce fitter offspring. 

Genetic algorithms, by definition, work with the same concepts that are 
involved in the evolution of species. The core of each living being is in its 
DNA. DNA, in turn, can be separated into strings of chromosomes. Each 
chromosome consists of genes, which specify different properties for the 
individual. For example, one gene is in charge of the color of eyes, one of 
the shape of the face, and so on. Each gene usually has several options, e.g., 
the eyes can be blue or brown and the face can be round or oval; these 
different variations are called alleles. A gene always has a specific place in 
the chromosome; this is called the locus. Collectively, the chromosome(s) 
containing these genes specify the entire individual. A set of individuals at 
a certain time point is called a population, and generation indicates how 
many iterations the evolution has performed.  

Naturally, for evolution to appear, there must be reproduction in order to 
bring new individuals into the population and thus enable natural 
selection. Reproduction is most commonly achieved with mating between 
two individuals, which is referred to as crossover. Crossover combines 
parts of two individuals (parents) and aims at producing offspring, which 
contain genes from both parents. The offspring is then added to the 
existing population. When the amount of individuals exceeds the amount 
a population can hold, natural selection occurs to discard the unfit 
individuals.  Crossover is, however, very slow when an individual needs 
to adapt to a quickly changing environment. In order to accommodate to a 
new environment, mutation is required. On chromosome level, mutation 
usually changes the value of one or more genes (i.e., one allele is chosen 
over another, and new possible alleles may be produced).  

In order to know which individuals are better fit than others, the 
individual’s fitness is calculated. The fitness is related to the probability 
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that an individual has for participating in crossover and surviving 
through to the next generation. 

A formalization of the GA is given in Algorithm 1.  In the following 
subsections I will go over how to work with a genetic algorithm in more 
detail by using the knapsack problem as an example. In the knapsack 
problem, we have a set of items that all have different weights and 
volumes, and a subset of those items should be chosen so that their 
combined weight is maximized, while the combined volume cannot 
exceed the volume of the knapsack. 

Algorithm 1 geneticAlgorithm 
Input: formalization of solution, initialSolution 
 population  createPopulation(initialSolution) 
 while NOT terminationCondition do  
  foreach chromosome in population 
    p  randomProbability 
   if p > mutationProbability then  
   mutate(chromosome) 
   end if 
  end for 
  foreach chromosome in population 
   cp  randomProbability 
   if cp > crossoverProbability then 
   addToParents(chromosome) 
   end if 
  end for 
  foreach chromosome in parents 
   father chromosome 
   mother selectNextChromosome(parents) 
   offspring  crossover(father, mother) 
   addToPopulation(offspring) 
   removeFromParents (father, mother) 
  end for 
  foreach chromosome in population 
   calculatefitness(chromosome) 
  end for 
  selectNextPopulation() 
 end while 
 

 

2.2.1 Encoding 

The very first step when applying genetic algorithms is to encode 
individuals (the possible solutions) so the algorithm can work with them. 
As stated, the GA works with concepts from biology, so the encoding 
mechanism should be such that the solution can be thought of as a 
chromosome and be divided into genes. Apart from that, there are no 
restrictions regarding encoding. 
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The best encoding mechanism depends on the problem in question. What 
might work well for one problem might not be sufficient or even feasible 
to encode another type of problem. The most common encoding 
mechanism is to use a string or vector of bits, so that one bit corresponds 
to one gene. A bit in a specific index (locus) usually indicates the inclusion 
(bit value 1) or exclusion (bit value 0) of the data represented by that gene, 
i.e., the different variations 0 and 1 are considered alleles, specifying a 
certain property for a particular gene in one locus. However, this form of 
encoding is highly insufficient for more complex problems. For example, if 
the problem is an ordering problem (e.g., the traveling salesman problem, 
where the goal is to find the optimal order for visiting the cities), a simple 
inclusion/exclusion encoding is not enough, as all the bits (cities) need to 
be included. For the most complex problems, even a single value isn’t 
enough, but the gene itself may also be a vector. The gene may also 
contain different kinds of fields for different types of data; in this case the 
gene may be called a supergene [Amoui et al., 2006]. 

If we consider the knapsack problem, the simple bit vector encoding is 
quite sufficient. For n items, the solution can thus be encoded as a vector 
with n bits, where 0 represents not including the corresponding item in the 
knapsack, and 1 represents including it. The order of the items can be 
anything, the most natural one being ascending based on either weight or 
volume (i.e., the item represented by the gene in locus 1 would have the 
smallest weight or volume). The only requirement is that each item is 
fixed to be represented by a specific bit. The information about the 
weights and volumes can be stored separately. Thus, if in our example we 
have seven items, and items four and seven are included in the knapsack, 
the individual representing this solution would be encoded as 0001001. 

When the GA begins to search for a solution, an initial population is first 
needed. An initial population can be constructed roughly in three ways: 1) 
creating random individuals by administering mutations to a “null” 
individual, 2) creating the individuals intelligently, or 3) inserting “ready” 
individuals into the population. The best policy for creating the initial 
population depends on the problem at hand, and basically anything goes 
as long as the GA is provided with a starting point to begin the 
evolutionary process.  

 

2.2.2 Mutations 

After an initial population is created, mutations are applied for each 
individual in order to create diversity. The actual implementation of 
mutations is completely dependent on the encoding of the solution. 
However, a mutation most often changes the value of one gene. If the gene 
is a combination of values, i.e., is a vector itself or a supergene, a mutation 
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can change the gene completely or just one value within the gene. The 
problem can permit several mutations, i.e., an individual can be modified 
in many different ways. Whatever the mutations are, the result should 
always still be a feasible solution. It is also possible to have a separate 
“correction mutation” that will check the chromosome after a mutation to 
see that it is still valid. If the mutation has caused the chromosome to 
become unnatural, i.e., it does not belong to the solution space anymore, 
corrective actions will take place. Such actions do not necessarily just 
revert the mutation that caused the problem, but might do even bigger 
changes to the chromosome. The chromosome can even be completely 
discarded from the population.  

The locus where the mutation is applied to is usually selected randomly, 
but in some cases intelligent methods can be used to search for particular 
genes where mutations should be performed. Mutations are also given a 
probability, the so-called mutation rate. If the mutation rate is 10%, then 
during one generation, approximately 10% of the individuals will be 
subjected to that particular mutation. Thus, not all individuals are 
mutated during every generation, as mutation probabilities are quite often 
rather low. 

In the knapsack example, only one logical mutation exists: changing a bit 
from 0 to 1 or vice versa. Considering the solution in the previous 
subsection, we may now mutate the solution so that we apply the 
mutation to locus three. The bit vector would now change from 0001001 to 
0011001, and item three is included in the knapsack. Figure 3 illustrates 
the mutation. 

 
Figure 3. Mutation 

 

2.2.3 Crossover 

After mutations are administered to the chromosomes, the GA proceeds to 
perform crossover. Crossover combines parts of two individuals (the 
parents) in order to produce new solution(s) (their offspring) to the 
population. Crossover is also given a probability, i.e., a specified crossover 
rate, and is usually applied more often than mutations. This probability, 
i.e., the likelihood of an individual being involved with crossover, can at 
its simplest be randomly assigned (as in Algorithm 1), but in practice this 
is rare. It is more common to select parents based on their fitness values or 
ranks, so the better a fitness one has, the bigger is the likelihood of being 
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involved in crossover, and thus passing on favorable properties to its 
offspring.  

The crossover operation can combine simply two “halves” of parents (one-
point crossover) or several blocks of genes (two-point or multi-point 
crossover). Selecting the crossover point or points can be done randomly, 
or heuristics can be used to find the best crossover point(s) to preserve the 
most desired qualities of both parents. If the crossover points are selected 
randomly, it is common to produce at least two new individuals. If, 
however, the crossover points are selected in a purposeful way to combine 
the best parts of parents, it is more natural to produce only one offspring, 
as another(s) only contains “leftover” genes. The offspring can replace the 
parents or just be added in the generation. If they replace the parents, then 
it is assumed that offspring is always better than the parents, as there are 
no “extra” individuals that could be discarded in natural selection.  

In the knapsack example, we can perform a simple single-point crossover 
where the crossover point cp is selected randomly. Crossover takes the 
genes (bits) from one individual (mother), from loci 1 to cp, and the bits in 
loci from cp+1 to n from another individual (father). These genes are 
combined to produce a new individual (child1), which now contains bits 
from both parents. Another child (child 2) can be straightforwardly 
created by taking genes from the father from loci 1 to cp and genes from 
the mother from loci cp+1 to n. An example of perfoming the crossover for 
the knapsack case is given in Figure 4. Here the crossover point is in locus 
three, and two children are produced. 

 
Figure 4. Crossover 

 

2.2.4 Fitness  

The fitness function determines the quality of a solution. For example, in 
the case of the travelling salesman problem the fitness would be the length 
of the route, and it should be minimized. However, in the case of creating 
a test case for a software system, the fitness would be the coverage of the 
test case, which should be maximized (and is far more complex to 
calculate than the length of the route for the salesman). Correctly defining 
the fitness function is crucial, as it is the only thing guiding the genetic 
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algorithm in its search for as good solutions as possible. The fitness 
function rarely gives an absolute quality of a solution, i.e., if one solution 
has a fitness value 1, and another a fitness value 10, it should not be 
assumed that the second solution is ten times better than the first one. 
Rather, the fitness value should be thought of as a relative indicator of the 
order of solutions, when examined against the quality attributes. 

In the case of our knapsack example, the fitness function is simple: the 
fitness function is the sum of weights of the included items, while 
regarding the constraint that the volume cannot exceed a set limit. For our 
example with seven items, we can specify that item one has a weight of 
one unit, item two weighs two units, and so on, and their volume would 
be reversed, i.e., item one has a volume of seven units, item two has a 
volume of six units, and so on. We assume that the knapsack has a 
maximum volume of 10. The fitnesses of the individuals in Figure 4 can be 
determined as follows: the fitness for the mother is 2+5+7 = 14, for the 
father 3+4+7 = 14, the fitness for the first child is 2+4+7 = 13, and the 
fitness of the second child is 3+5+7 = 15. Thus, the best solution would 
appear to be the second child, with a fitness of 15. However, we need to 
consider the volume restriction. The volumes are 10 for the mother, 10 for 
the father, 11 for the first child and 9 for the second child. As the 
maximum volume is 10, the first child is discarded, and the second child 
remains the fittest individual. 

 

2.2.5 Selection 

As according to the biological analogy, natural selection is applied in the 
GA to discard the weakest individuals (with respect to the used fitness 
function) from the population. As crossover produces “extra” solutions, 
the size of the population at the end of one generation is always bigger 
than the specified population size. Selection can thus simply discard as 
many individuals as have been added through crossover, and so the 
population size will always be the same at the start of each generation. 
The selection operator should be defined so that the fittest survive (as in 
natural selection) but also so that there still remains variation in the 
population so the evolution does not get stuck to a local optimum.   

The simplest way of defining a selection operator is to use a purely elitist 
selection. This selects only the very best individuals in terms of fitness. 
Elitist selection is easy to understand and simple to implement; one can 
simply discard the weakest individuals in the population. However, elitist 
selection on its own is not an ideal selection operator, as elitist algorithms 
tend to converge towards local optima too quickly.  
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Another way of defining the selection operator is to use a fitness-
proportionate selection. In this case, the  probability of being selected for the 
next generation depends on fitness values. However, differences in actual 
quality are rarely directly comparable to absolute fitness values. In order 
to take this into account, the fitness-proportionate selection can be rank-
based. When the selection is based on rank, the individuals are ordered 
according to their fitness values. The probability of being selected to the 
next generation thus increases according to the rank – not according to 
absolute fitness values. The basic fitness-proportionate selection as well as 
its rank-based variation can be implemented, for example, with a 
“roulette-wheel” sampling [Mitchell, 1996; Michalewicz, 1992; Reeves, 
1995]. Here, each individual is given a slice of the “wheel” that is in 
proportion to the “area” that its fitness has in the overall fitness of the 
population. In simple fitness-proportionate selection, the size of the slice is 
calculated directly based on the absolute fitness values, while in rank-
based selection the size is proportionate to the rank, and thus the sizes 
increase in a linear fashion when compared to the order of the individuals. 
Either way, the individuals with higher fitnesses have a larger area in the 
wheel, and thus have a higher probability of getting selected. The wheel is 
then spun for as many times as there are individuals needed for the 
population. An alternative to the roulette wheel method is to use, e.g.,  the 
tournament technique to select the next generation [Miller and Goldberg, 
1995]. 

A common selection operator is a crossing of the two methods presented 
above; the survival of the very fittest is guaranteed by choosing a few of 
the best individual(s) with elitist methods, while the rest of the population 
is selected with the probabilistic method in order to ensure variety within 
the population.  

There are different approaches to using the selection operator. Mitchell 
[1996] and Reeves [1995] consider that the selection operator selects the 
individuals that are most likely to reproduce, i.e., become parents. 
Michalewicz [1992] uses the selection operator in order to find the fittest 
individuals for the next generation. Both approaches keep the same 
selection probabilities for all individuals during the entire selection 
process, i.e., an individual with a high fitness value may be selected to the 
next population more than once. Thus, there are no specific rules to how 
the selection operator should be defined, as long as the GA generally 
follows the guidelines of natural evolution. 

 

2.2.6 Parameters 

Correctly defining the different operations (mutations, crossover and 
fitness function) is vital in order to achieve satisfactory results. However, 
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as seen in Algorithm 1, there are also many other parameters regarding 
the GA that need to be defined and greatly affect the outcome. These 
parameters are the population size, number of generations (often used as 
the terminating condition) and the mutation and crossover probabilities. 

Having a large enough population ensures variance within a generation, 
and enables a wide selection of different solutions at every stage of 
evolution. However, at a certain point the results start to converge, and a 
larger population always means more fitness evaluations and thus 
requires more computation time. Similarly, the more generations the 
algorithm is allowed to evolve for, the higher the chances are that it will be 
able to reach better results. However, again, letting an algorithm run for, 
say, 10 000 generations will most probably not be beneficial: if the 
operations and parameters have been chosen correctly, a reasonably good 
solution should have been found much earlier.  

Mutation and crossover probabilities both affect how fast the population 
evolves. If the probabilities are too high, there is the risk that the 
implementation of genetic operations becomes random instead of guided. 
Vice versa, if the probabilities are too low there is the risk that the 
population will evolve too slowly, and no real diversity will exist.  

Thus, all parameters should be carefully considered. There is no single 
method for finding the optimal or “correct” parameters, but the most 
common way is to simply perform trial-and-error iterations until results 
are satisfactory. 

2.3 SEARCH-BASED SOFTWARE DESIGN 
Search-based software engineering has applied meta-heuristic search 
algorithms to software engineering problems since the ‘70s [Clarke et al., 
2003]. Problems in the area of testing, especially in automated generation 
of test cases, have been most studied [Harman et al., 2009]. However, the 
area most relevant to this thesis is the field of search-based software 
design (SBSD). In SBSD, search algorithms are used to tackle problems 
related to different stages of software design: assigning methods to classes, 
designing the architecture with patterns or styles, QoS-optimization on 
service-oriented architectures, and re-design. While subjects more related 
to re-design (i.e., maintenance or re-engineering), such as clustering (e.g., 
[Di Penta et al., 2005; Doval et al., 1999; Harman and Tratt, 2007; Seng et al., 
2005]) and refactoring (e.g., [Du Bois and Mens, 2003; O’Keeffe and Ó 
Cinnéide, 2006, 2008; Seng et al., 2006; Quaum and Heckel, 2009]), have 
been studied for a couple of decades, now also problems regarding direct 
software design, such as solving the class responsibility assignment (CRA) 
problem and applying design patterns, have attracted more interest. The 
most prominent studies in SBSD published (and electronically available) 
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by December 2009 are described in detail in publication [VI].  More recent 
studies are briefly discussed here. 

 

2.3.1 Class design 

Simons et al. [2010] study using evolutionary, multi-objective search and 
software agents to aid the software architect in class design. Use cases are 
used as a starting point. Actions (verbs) in the use cases are transformed 
into methods, and data (nouns) is transformed to attributes. The methods 
and attributes are then grouped into classes. Each class should have at 
least one method and one attribute, and no method or attribute can be in 
more than one class. One individual (solution) is thus the design 
containing all methods and attributes (and their class distribution). For 
mutation, a set of methods and/or attributes is selected and relocated to a 
different class. Crossover is applied so that the attributes and methods of 
two classes are swapped. Coupling and cohesion are used to calculate 
fitness.  

The evolutionary search is performed by a software agent. Simons et al. 
suggest that a global multi-objective search is unnecessary, and the search 
should be narrowed towards the “most useful and interesting candidate 
designs”. They attempt to achieve this by isolating discrete zones from the 
search space, and then using a local search within these zones. Local 
search is conducted using a single-objective genetic algorithm, which only 
considers coupling in the fitness calculations.  The designer is then 
presented with the results of these local searches. The designer can 
manually specify diversity thresholds to control when a zone is isolated, 
or an agent can do it automatically.  

Bowman et al. [2010] have applied a multi-objective genetic algorithm 
(MOGA) to assist in the CRA problem. The CRA problem is similar to the 
class design problem studied by Simons et al., as it attempts to solve the 
assignment of responsibilities (methods) into classes and the interaction 
between classes. Bowman et al. also use coupling and cohesion to measure 
the fitness of their solution, and aim rather at providing interactive 
feedback to a designer than at producing a whole design. Their MOGA 
takes a class diagram as input, as well as user-defined constraints on what 
can and cannot change in the class diagram. The class diagram is then 
evaluated, and possible improvements are suggested. The MOGA 
ultimately provides alternative solutions to the user.  

 

2.3.2 Low-level architecture transformations 

Jensen and Cheng [2010] present an approach based on genetic 
programming (GP) for generating refactoring strategies that introduce 
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design patterns. The authors have implemented a tool, REMODEL, which 
takes as input a UML class diagram representing the system under design. 
The system is refactored by applying “mini-transformations”: abstraction, 
abstract access, partial abstraction, delegation, encapsulating construction, 
and wrapping.  The encoding is made in tree form (suitable for GP), where 
each node is a transformation. A sequence of mini-transformations can 
produce a design pattern. A subset of the patterns specified by Gamma et 
al. [1995] is used: Abstract factory, Adapter, Bridge, Decorator, Prototype 
and Proxy. Mutations are applied by simply changing one node 
(transformation), and crossover is applied as exchanging sub-trees.  

The QMOOD [Bansiya and Davis, 2002] metrics suite is used for fitness 
calculations. In addition to the QMOOD metrics, the authors also give a 
penalty based on the number of used mini-transformations and reward 
the existence of (any) design patterns. The output consists of a refactored 
software design as well as the set of steps to transform the original design 
into the refactored design. This way the refactoring can be done either 
automatically or manually; this decision is left for the software engineer. 

 

2.3.3 High-level architectural transformations 

Praditwong et al. [2011] introduce a multi-objective approach for 
automated software module clustering, as well as two formulations: the 
equal-size cluster approach and the maximizing cluster approach. The 
equal-size cluster approach favors clusters that have on average the same 
number of modules while the maximizing cluster approach favors a 
minimal amount of clusters with only one module. A two-archive Pareto 
optimal GA is mainly used, but a single objective hill climbing algorithm 
is also implemented for comparison.  Their primary findings suggest that 
in order to have solutions with high cohesion and low coupling, the equal-
size cluster approach to the multi-objective problem produces the best 
results overall. This study is an example of the several studies in clustering, 
which ultimately work more on the refactoring area.  

Martens et al. [2010] present an approach which attempts to automatically 
improve a given architecture model with respect to performance, 
reliability, and cost. The approach is best suited for component-based 
software architectures. Martens et al. they attempt to optimize four 
degrees of freedom: processor speed, number of servers, component 
allocation and component selection. It is assumed that components with 
the same interface provide the same functionality, and thus no attention to 
the functionality of the system is needed. The approach is implemented in 
the PerOpteryx tool. The tool requires as input a component-based 
architecture model with performance, reliability and cost annotations. The 
tool then searches for Pareto optimal candidate solutions. When mutating, 
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one or several design options (degrees of freedom) are varied. In crossover 
some of each candidate’s design option values are taken and combined. 
Solutions that violate quality requirements are eliminated during selection. 
After elimination, only the Pareto optimal solutions are kept. The authors 
list a significant amount of limitations to their approach, such as 
questionable efficiency, no regard for uncertainties, limited degrees of 
freedom, simplistic cost model and limited genetic encoding (an array of 
choices). 

Aleti et al. [2009] present the ArcheOpterix tool. It is an Eclipse plug-in 
that provides a platform to implement different architecture evaluation 
and optimization algorithms, and uses AADL as the architecture 
description language.  So far, only deployment metrics (data transmission 
reliability and communication overhead) have been implemented for 
evaluation, and the authors present an example of optimizing a 
deployment architecture. ArcheOpterix uses Pareto optimality as a 
primary method for finding best solutions, but a single-objective fitness 
function is also implemented. When a near Pareto front has been found, 
ArcheOpterix draws the near Pareto front line, which contains all the non-
dominated solutions found by the algorithm.  

 

2.3.4 Comparison to presented work 

The studies by Simons et al. [2010] and Bowman et al. [2010] are close to 
the approach presented here, as in the case of Simons et al., the direction 
of design is clearly upstream, and with Bowman et al. there is also 
potential for upstream design. However, both stay at class level, and do 
not consider how the actual classes interact. Also, both only use coupling 
and cohesion as metrics, which is natural when dealing with “simple” 
class structure only, but insufficient if, e.g., interfaces are considered, as 
their value is not apparent if the fitness relies solely on these simple 
metrics. 

While Bowman et al. [2010] and Simons et al. [2010] study lower level 
design than what is discussed in this thesis, the studies by Praditwong et 
al., [2011], Martens et al. [2010] and Aleti et al. [2010] operate on a 
significantly higher level. These studies assume that the class level design 
is complete and concentrate on components. Martens et al. [2010] even 
assume that they assume that interchangeable components produce 
similar functionality, which is a fair assumption given that they attempt to 
optimize the architecture in terms of performance, reliability and cost, and 
the main methods of doing this is reallocating components to servers and 
considering the number of servers used. However, this assumption makes 
it clear that the designs of the actual components are not under 
consideration.  As for the study by Aleti et al. [2010], they have 
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implemented a tool which should be capable of using different 
evolutionary approaches, fitness functions and architectures, but only 
provide an example for a deployment architecture. So, at this point it 
seems that they are not interested in the class level design of the 
architecture. Finally, the study by Praditwong et al. [2011] is an example of 
the many studies made in software clustering. It differs from the approach 
presented in this thesis both on the direction of the design and on level of 
detail, as studies in clustering rarely consider what the modules contain 
and how the clusters are ultimately connected, but are only interested 
whether they are connected or not. 

The approach by Jensen and Cheng [2010] is the most similar to the one 
presented in this thesis. However, they clearly have a refactoring oriented 
approach instead of pure upstream design. They also construct design 
patterns piece by piece through mini-transformations, instead of applying 
whole patterns. The existence of patterns, no matter what kind, is, 
however, greatly rewarded. Obviously, there is a risk that a large number 
of incomplete patterns is left in the architecture, and that the patterns are 
not applied in the best places.  

To summarize, the more recent approaches give a fairly good view of the 
overall status of search-based software engineering. Upstream approaches 
are still scarce, and the present studies only change the design in very 
small steps. However, when a good architecture “simply” needs to be 
optimized, there are many studies on different levels on how to do that 
automatically. Using design patterns is one of the most recent trends, but 
no other study applies them to upstream software architecture synthesis 
in a manner similar to the one used in this thesis. 
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3 Genetic Software 
Architecture Synthesis 

In this chapter the actual method for genetic software architecture 
synthesis is described, and implementing the synthesizer is discussed. 
Experimental results with this approach have been presented in 
publications [I], [II] and [VIII]. Two case studies were used in the 
experiments: the ehome, and a robot war game simulator, called hereafter 
robo. The approach is, however, applicable for any system in principle. I 
will here describe the method on a general level, and use ehome as a 
running example to demonstrate how the synthesis process works in 
practice. Results from case studies are briefly presented. Also, I will briefly 
present the Darwin tool, which provides a user interface for software 
architecture synthesis with the presented algorithm. The tool support is 
discussed in more detail in publication [V].  

3.1 METHOD 
Genetic software architecture synthesis, by definition, uses GAs to 
synthesize software architecture design. Thus, the requirements set by 
GAs themselves, as defined in Section 2.2, dictate how the synthesis is 
actually implemented. In this section I will describe how functional 
requirements are encoded for the GA, how the architecture is transformed 
through mutations and the search space explored with crossover, and how 
the different quality attributes are expressed in the fitness function. The 
result of the synthesis process (the best individual in the last generation) is 
illustrated as a class diagram. The GA described here has been 
implemented with Java 1.5 as a command-line based program. The 
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original synthesizer implementation uses UMLGraph [2011] and 
GraphViz [2011] for producing the class diagrams.  

 

3.1.1 Input 

Each software system is designed to serve a certain purpose. This purpose 
is formulated in functional requirements. As GAs cannot synthesize the 
actual purpose of the software system, the specification of functional 
requirements must be done manually. However, only the minimal amount 
of effort should go into elaborating the requirements, as the idea is to 
exploit the power of the GA as much as possible. The functional 
requirements of the system under design are gathered in the way 
described in Section 2.1. To give a complete view of the synthesis process, 
I will here use a new example for ehome. 

Specifying requirements begins with giving use cases. Here, I will take as 
an example the “adjust room temperature” use case for ehome. The use 
case is illustrated in Figure 5. The user simply places a command that the 
temperature should be adjusted (for the sake of simplicity, we can here 
consider elevation), and ehome adjusts the temperature by turning on the 
heater. 

The sequence diagram for the temperature adjustment use case is given in 
Figure 6. The process begins with a call from the user to set the 
temperature to a new level. The system then calls the temperature 
regulation component, which measures the current temperature, and then 
sets the heater on. After the correct temperature is reached, the heater is 
turned off. 

While sequence diagrams already give a good understanding of how the 
different operations depend on each other, a structural view still needs to 
be obtained, as patterns cannot be inserted into sequences of calls. 
Fortunately, sequence diagrams can easily be turned into class diagrams.  
At this point, the class diagram would not consist of anything but the 
classes, their methods and attributes, and connections between classes, as 
defined in the sequence diagram. 
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Figure 5. Use case for ehome (adjust temperature) 

 
Figure 6. Sequence diagram for adjust temperature use case 

Transforming a simplistic call sequence to a class diagram is 
straightforward. Using the temperature adjustment use case as an 
example, the class diagram would have three classes, the UI, the 
Temperature Regulation and the Heater Manager. It should be noted that 
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the “UI” considers here all user interface related matters, and handles all 
calls to the actual functional components. The UI may, in practice, contain 
several classes for handling all the user interface requirements. However, 
these implementation details are omitted here.  

Calls between the different objects in the sequence diagram would be 
made into methods inside these classes. Information relating to 
temperature state would be an attribute in the Temperature Regulation 
class, and the class would contain accessor methods for it. The Heater 
Manager class would similarly have attributes for its state. In the class 
diagram, there would be “use” relations between the UI and Temperature 
Regulation, and between Temperature Regulation and Heater Manager 
classes (as according to the sequence diagram). The example class diagram 
for this use case is given in Figure 7.  

 
Figure 7. Class diagram example for ehome (temperature control) 

Collecting all use cases would ultimately produce a complete class 
diagram of the system. This complete class diagram is called here the null 
architecture. As described, the null architecture is extremely simplistic. It 
does not contain any information about implementation or any specific 
design choices. The null architecture is merely a picture which gives a 
certain view of the gathered functional requirements. 

The null architecture for ehome is given in Figure 8. Although here only 
classes are given, each class also provides an interface which is 
implemented by all operations (in that class) that are required by other 
classes. These interfaces can be seen as part of good design/coding 
practice, and not a part of actual design. Similarly, while it is assumed that 
attributes have accessor (getX() and setX()) methods, they are not 
portrayed in the null architecture, as they are considered as part of the 
coding process and standard good practice. 
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Figure 8. Null architecture for ehome 

It should also be noted that while the calls given in the sequence diagram 
are marked as operations (methods) in the resulting class diagram, this 
does not dictate the actual implementation. In practice, each operation can, 
and often will, be implemented as a set of more detailed methods. The 
operations as used here describe functional entities (responsibilities) of the 
system. 

Two case studies are used in this thesis, one of them being ehome, which 
has been used as a running example. The other case study is robo, which 
has been briefly discussed in Subsection 1.4. The null architecture for robo 
can be elicited through use cases and sequence diagrams (similarly to 
ehome). These steps will not be repeated here, but in order to compare the 
resulting architectures produced by the GA to the starting point, the null 
architecture for robo is given in Figure 9. 
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Figure 9. Null architecture for robo 

In addition to simply specifying the functional requirements as a set of 
operations and dependencies between them, some characteristics of the 
operations can also be evaluated. For example, in the case of ehome, it can 
quite easily be deduced that calculating an optimal positioning for drapes 
requires much more data than, say, turning on the heater. Similarly, music 
is probably played much more often than a password needs to be changed. 
From the software development point of view, it is not difficult to predict 
that it is quite probable that several different options can be created for 
showing the music list or the coffee machine status. On the other hand, 
water will probably always be added to the coffee machine in a similar 
manner, and there will not be a need to provide optional implementations 
for that. Doing similar comparisons between all operations, relative values 
for parameter size, frequency of use and sensitiveness to variation (called 
hereafter simply variability) can be estimated. These, in turn, aid in 
achieving a more accurate evaluation of the architecture’s quality.  
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3.1.2 Encoding 

The information given in the null architecture must be encoded for the GA 
to follow the biological analogies. There are two kinds of data regarding 
each operation oi: basic information (given as input) and architectural 
information. The basic input information contains the operations Oi = {oi1, 
oi2, …, oik} depending on oi, as can be deduced from the sequence diagram. 
An operation ok depends on oi if oi is preceded by ok in the sequence 
diagram. Furthermore, the basic information contains the name ni, type di, 
frequency fi, parameter size pi, variability vi and the predetermined null 
architecture class MCi  of the operation oi. Naturally, the null architecture 
class is also architectural information, but it is specified in the input and 
not modified by the GA. Frequency, parameter size and variability can be 
given relative values: 1 for low, 3 for medium and 5 for high.  

The architectural information, in turn, contains data regarding operation 
oi’s “place” in the architecture: the class Ci it belongs to, the interface Ii it 
implements, the message dispatcher Di it uses, the operations ODi ⊆ Oi 
that call it through the dispatcher, and the design pattern Pi it is a part of. 
The dispatcher is given a separate field as opposed to other patterns for 
practical reasons. In practice, in the current implementation there is only 
one possible dispatcher that can be used, but the encoding leaves an 
opportunity to easily extend the approach so that several dispatchers may 
be present in the system. 

All the information defined above is gathered together into one supergene, 
where each data particle is given a separate field. Thus, one supergene 
represents one operation in the system. Figure 10 depicts a supergene sgi. 
If n is the number of operations in a system, the collection <sg1, sg2, …, sgn> 
of these operations defines the entire system when collected into one 
chromosome (the chromosome thus being a vector of supergenes).  

 
Figure 10. Supergene sgi 

Again, I use ehome as an example. In the null architecture phase, if the 
TemperatureRegulation class is given #ID 2 (and the interface #ID 2), the 
supergene for the operation “measureTemperature” (#id 9) would have 
the following values: O9 = #idSetRoomTemperature, n9 = 
measureTemperature, d9 = f (as in functional), p9 = 3, f9 = 1, v9 = 3, C9 = 2, 
I9 = 0, D9 = 0, OD9 = 0, MC9 = 4, P9 = 0. The interface has value 0, as 
measureTemperature is only required by setRoomTemperature, which is 
in the same class, and thus does need an interface to access this operation. 
The fields for message dispatcher and pattern have values 0, as no 
architectural solutions are included in the null architecture. As the 
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operation is here located in the original null architecture class, the values 
for C and MC are the same. 

Note, that the encoding is indeed operation-centered. Thus, modifications 
to the architecture are considered from the viewpoint of how one 
particular operation can be accessed, and not how two classes 
communicate with each other. In practice, the null architecture is encoded 
into a text file, which is given as input for the algorithm, with each 
operation in its own line. 

After encoding is done, the genetic synthesis can begin. However, a single 
base solution is not enough, as the GA requires a whole population to 
work with. The initial population is created by cloning the “base 
chromosome”, i.e., null architecture, a desired number of times (in this 
work, 100 is used as the default), and then mutating each of the clones 
once. Thus, the initial population does not only contain clones, but has 
some versatility. 

 

3.1.3 Mutation and crossover 

Mutating the solutions (chromosomes) is done by inserting or deleting 
design patterns and software architecture styles. In addition, a “null 
mutation” is used, i.e., the chromosome remains the same for the next 
generation. The patterns and styles are those specified in Subsection 2.1.2. 
Each mutation is by default targeted to one operation (supergene) only 
(the message dispatcher makes a small exception, which will be discussed 
later). However, if the mutation (pattern) in question requires so, other 
supergenes may also be mutated in the process (as in the case of, e.g, 
Façade). Mutations are implemented as pairs of adding or removing a 
pattern. Each mutation (both addition and removal) is given a separate 
mutation probability. When adding a pattern, it is first checked that the 
operation is not already involved in another pattern, i.e., the field Pi must 
have value 0. Thus, the removal of patterns is only possible through the 
removal mutation – patterns cannot simply replace other existing patterns. 
Each mutation is now described from two viewpoints: how it is encoded 
in the supergene and how it affects the architecture. 

Strategy: The precondition for the Strategy pattern is that the operation oi, 
to which the pattern is targeted, is called by some other operation ok from 
within the same class. When adding a Strategy pattern, a respective 
pattern instance SP is created. SP contains information of the common 
interface SI provided by the Strategy, the concrete implementing class(es) 
SC (as the actual number cannot be known at this point, only one class is 
used, which is enough to demonstrate the use of Strategy), and the 
operations which it concerns. The supergene sgi (representing oi) is then 
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updated so that the value for Ci is set to SC, the value for Ii is set to SI, and 
the value for Pi is set to SP.  

When removing the pattern, the value for Ci is reset to the same value as 
MCi (i.e., the operation is moved back to its null architecture class), the 
value for Ii is set to 0 and the pattern instance SPi is removed, so the value 
for P is set to 0.  

Figure 11 depicts how the architecture is altered when a Strategy pattern is 
added; again, ehome is used as an example, and the measureTemperature 
operation is subjected to mutation. Following the notation above, SC is 
represented by StrategyClass, SI by StrategyInterface, class Ci by 
TemperatureRegulation, operation oi is measureTemperature and 
operation ok is setRoomTemperature. Thus, SP would contain all this 
information (SC, SI, Ci, oi and ok), which defines the pattern. Here the 
Strategy class uses the original class, as the measureRoomTemperature 
operation requires temperature data from the TemperatureRegulation 
class. The TemperatureRegulation class may have an interface, but it is 
irrelevant here, as the data accessory methods are not provided by the 
interface (by default, each attribute is only used by operations in the same 
null architecture class). 

 

Figure 11. Strategy mutation 

Adapter: The precondition for Adapter is simply that the operation oi 
where it is applied is called by some other operation from a different class. 
When adding an Adapter pattern, a respective pattern instance AP is 
created. AP contains information of the common interface AI provided by 
the Adapter, the concrete implementing class AC, and the operations 
which it concerns. The supergene is then updated so that the value for Pi is 
set to AP. Removing an Adapter is done by simply resetting the value for 
Pi to 0. 
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The Adapter is illustrated with a technical class and interface, i.e., the 
adapter class and adapter interface do not contain specific methods, but 
simply illustrate where the Adapter should be applied. Figure 12 depicts 
how the architecture is altered when an Adapter pattern is added to access 
the operations in HeaterManager. Here, AC would be AdapterClass, AI is 
represented by AdapterInterface, and operations conserned with the 
pattern would be setRoomTemperature, which uses the HeaterManager, 
and setHeaterOn and setHeaterOff, which are the operations required by 
setRoomTemperature. AP would thus contain information of the 
aforementioned interface, two classes and three operations. 

 
Figure 12. Adapter mutation 

Template Method: The precondition for Template Method is that the 
operation oi (the “template method”), where the pattern is applied to, 
must require (an)other operation(s) ok,…,ot from within the same class. 
When adding a Template Method pattern, a respective pattern instance TP 
is created. TP contains information of the concrete implementing 
(sub)class TC, and the operation(s) which it concerns. The supergenes of 
all operations oi and ok,…,ot involved in the TemplateMethod are then 
updated so that the values for Pi and Pk,…,Pt are set to TP. Note, that the 
classes of operations are not changed, as the operations ok,…,ot in the 
TemplateMethod subclass still have abstract versions in the original class. 
The algorithm, however, knows the presence of the TemplateMethod by 
checking the Pattern field of the supergene, thus enabling evaluation 
based on it. Removing the pattern is done by simply changing the values 
of Pi and Pk,…,Pt to 0.  

Template Method is illustrated with the subclass (containing the 
operations ok,…,ot) which inherits the class where oi resides. Figure 13 
depicts how the architecture is altered when a Template Method pattern is 
added for setRoomTemperature. Following the notation above, here 
setRoomTemperature is the actual “template method” oi, and 
measureRoomTemperature, being the required method ok from within the 
same class, is placed in the subclass. In the example, the concrete subclass 
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TC is represented by TemplateMethodClass and the operations concerned 
are setRoomTemperature (the template method), and 
measureRoomTemperature (the interchangeable method). 

In addition to creating a new subclass, the original class is made abstract. 
This, however, is not recorded in the supergene, as the fitness function 
does not consider abstract classes. The information of making the class 
abstract is encoded in the Pattern instance, and is only used for drawing 
the class diagram.  

 
Figure 13. Template Method mutation 

Façade: The precondition checks that a suitable structure can be found for 
the Façade, i.e., there must be a subsystem that could benefit from a 
common interface, as described in Subsection 2.1.2. When adding a Façade 
pattern, a respective pattern instance FP is created. FP contains 
information of the common interface FI provided by the Façade, the 
concrete implementing class FC, and the operations which it concerns. The 
supergene is then updated so that the value for Pk,…,Pt for each operation 
that is called through the Façade is set to FP. Removing Façade is done by 
simply changing the values for Pk,…,Pt  for each involved operation to 0. 

The Façade pattern is illustrated, similarly to the Adapter pattern, with a 
technical class and interface. Figure 14 depicts how the architecture is 
altered when a Façade pattern is added. Ehome’s null architecture does 
not provide a natural placement for Façade, thus a general example is 
used here. The classes A,...,F can also have interfaces, but they are not 
portrayed here. Operations are also omitted, as on class diagram level, 
only connections between classes are shown. The pattern instance FP 
would in this example contain references to FacadeClass, FacadeInterface, 
and all the operations in classes A,…,F which are involved with the 
Façade pattern, i.e., either call an operation which is available through the 
FacadeInterface, or implement the FacadeInterface. 
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Figure 14. Façade mutation 

Mediator: Adding and removing the Mediator pattern is done similarly to 
Façade (in terms of how the supergene is updated). The precondition is as 
described in Subsection 2.1.2; there must be a group of classes which 
communicate with each other. Mediator is illustrated in a similar manner 
as Façade. Figure 15 depicts how the architecture is altered when a 
Mediator pattern is added. Again, ehome’s null architecture does not 
provide a natural placement for Mediator, thus a general example is used 
here as well. Similarly, interfaces and operations are omitted from the 
illustrations, and the pattern instance for Mediator is constructed in the 
same fashion as in the case of Façade.  

 
Figure 15. Mediator mutation 

Client-server architecture style: Adding the client-server architecture style 
is made simply by creating a respective pattern instance, which is given in 
the pattern field of the chosen operation. The server is considered to affect 
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the entire class where the operation is. Moreover, there is a precondition 
that the class should contain at least three operations for it to be sensible to 
use a server connection to access them. Using the client-server style is 
illustrated with a “server” stereotype. Thus, any class using this server 
class becomes a client. Removing the pattern is done by simply setting the 
pattern value of the operations involved to 0. Figure 16 depicts how the 
architecture is altered when a server is introduced to one of the operations 
in TemperatureRegulation. Thus, the TemperatureRegulation class is 
stereotyped as server, and all classes using TemperatureRegulation 
become clients (not illustrated in the class diagrams). 

 
Figure 16. Client-server mutation 

Message dispatcher architecture style: The message dispatcher 
architecture style is exceptional, as it must be introduced in two phases. In 
phase one the actual message dispatcher component is brought to the 
architecture. This is done by adding a “dummy” supergene to the 
chromosome. This dummy gene only contains information that the 
message dispatcher is present (D = 1), and all other values are 0. After the 
presence of a message dispatcher is verified, operations can use the 
message dispatcher for communication (phase two).  

Only connections between operations in different null architecture classes 
can be handled by the message dispatcher, i.e., if an operation is 
“temporarily” in a different class (for example, after applying a Strategy 
pattern), it cannot use the message dispatcher to access, e.g., the data, from 
its original null architecture class. Adding a message-based 
communication to operation oi is done by simply adding one of the 
depending operations (i.e., one of the operations in set Oi) to the set of 
operations which is using the message dispatcher to communicate with oi 
(set ODi). If operation oi does not receive any direct calls but only 
messages from the dispatcher, then Oi = ODi.  

Removing a message dispatcher connection to oi is done by simply 
removing the respective connecting operation from the set ODi. Removing 
the entire message dispatcher is more difficult; the message dispatcher can 
only be removed if no operation is using it for communication. Thus, in 
order to completely remove the message dispatcher style, each connection 
between operations must be removed from the message dispatcher, after 
which the dispatcher itself can be removed (by deleting the dummy gene). 

Figure 17 depicts how the architecture is altered when two operations use 
message dispatcher for communication; in particularly, the setHeaterOn 
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operation is subjected to mutation. It is assumed here that the message 
dispatcher is available in the architecture. In the example, setHeaterOn is 
required by setRoomTemperature, and thus the (ID of the) latter is a part 
of the dependingOperations set O for the former. After the mutation, the 
ID for setRoomTemperature operation is added to the set OD of 
setHeaterOn.  

 
Figure 17. Message dispatcher connection mutation 

Although the presented approach uses only the defined small set of object-
oriented design patterns and architecture styles as mutations 
(transformations), it should be noted that it is by no means limited to such 
patterns. Any kind of transformation to the architecture can be used as a 
mutation. For example, simply changing the class of an operation could be 
used as a mutation. Also, new patterns suitable for a certain system under 
design can be defined for the synthesis, as transformations basically 
operate by simply creating new classes and interfaces and reallocating 
operations – the GA does not know whether this collection of changes to 
architecture actually corresponds to some known pattern.  

The crossover is implemented as a random single-point crossover (see 
Subsection 2.2.3). Thus, one crossover point is selected randomly, and the 
crossover produces two new individuals. Both children are added to the 
population. In this approach, both parents are also kept in the population. 
The crossover is given a base probability. However, in this approach, the 
fitness of an individual affects its likelihood to participate in the crossover. 
If the individual is ranked in the better half of the population, its crossover 
probability is increased in linear proportion to its rank. However, if an 
individual is ranked in the lower half, its crossover probability is cut in 
half. This should aid better individuals to produce offspring more often 
than worse individuals.  

The mutation probabilities and the crossover probability are collected to a 
“roulette wheel”, where the sizes of the slices of the wheel correspond to 
the probabilities. The actual probabilities can be set as desired. Here, the 
probabilities are given so that addition mutations have a bigger 
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probability than removal mutations, and the low-level patterns and 
architecture styles have bigger probabilities than medium-level patterns.  

The “wheel” is then spun, to determine which mutation is performed. If 
the wheel lands on a mutation (not crossover), the wheel is spun a second 
time after the mutation is performed, as all individuals should have the 
possibility for mating in each generation, even if they are also mutated. If 
the wheel lands on a mutation the second time as well, the second 
selection is not considered. However, if it lands on crossover the second 
time, the individual may participate in crossover. If the crossover is 
selected (first or second spin), the individual is collected to the parent pool. 
After each individual has gone through the mutation/crossover selection 
and the pool contains all prospective parents, crossover is administered by 
simply collecting two individuals (parents) at a time from the pool and 
performing the crossover operation. The parents are not returned to the 
parent pool after the crossover, and thus each prospective parent can be 
used for one crossover only (per generation). 

After the chromosomes are mutated (and individuals have mated), a 
corrective function is used to check that the architectures are legal. The 
corrective function checks certain “architectural laws”. For example, when 
removing a pattern, the interface of an operation is set to 0. However, if 
the operation is required by an operation in another class, it should 
implement the interface provided by its class. Additionally, the function 
checks that all interfaces that are required by at least one class. The 
corrective function is also used to check that there are no contradicting 
patterns as a result of crossover. For example, it may be that operation ok 
would be part of a Template Method pattern (i.e., ok is placed in the 
“TemplateMethod”subclass of class I, class I contains oi, and oi requires ok,) 
in the mother, but in the father ok is placed behind a Strategy pattern. If 
the crossover point would now be between loci i and k, the patterns would 
not transfer to the offspring as whole, but the operations would be part of 
contradicting patterns. Thus, one of these patterns must be removed to 
make the architecture valid again. 

 

3.1.4 Fitness and selection 

At this point (mutations and crossover having been applied) the 
population is larger than in the beginning of the generation, as all the 
children produced by crossover have been added to the collection of 
chromosomes. The concept of natural selection now steps in, as the 
weakest individuals must be discarded from the population. This is done 
by first evaluating each individual and then performing selection. 

As discussed in Subsection 2.1.3, evaluating software architecture quality 
is very difficult, and several viewpoints should always be considered. For 
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the GA the evaluation must be done using some kind of metrics, as the 
algorithm has to be able to straightforwardly order the architectures 
according to their quality. I have used three different quality attributes to 
evaluate the synthesized solutions: modifiability, efficiency (performance) 
and complexity. Modifiability is a natural choice, as the main purpose for 
which the design patterns are used is to increase the maintainability and 
modifiability of a system. Efficiency, in turn, is a counter attribute to 
modifiability, as many modifiability-enhancing modifications to 
architectures have a direct (negative) effect on efficiency. Thus, when 
examining the power of the algorithm, it is natural to concentrate on how 
much the algorithm manages to increase modifiability (from the zero state 
of null architecture). Having efficiency as a counter-weight makes sure 
that the algorithm is given some kind of restrictions, and can not wildly 
apply design patterns at every possible location. Complexity is used to 
ensure that modifiability has a contradicting quality attribute also in those 
cases where there is no clear efficiency drawback (e.g., in the case of 
applying a Template Method pattern). 

Constructing the fitness function began by inspecting different software 
metrics and what properties they measure. The CK metrics (the ones 
suitable here, i.e., disregarding class hierarchies) were chosen as the base 
line for the fitness function. The CK metrics were chosen because applying 
them did not require any information of the semantics of operations, and 
clearly focused on class structure only. These metrics were then refined 
and extended so that they also consider the solutions that are not defined 
in the original metrics, such as the message dispatcher and server. While 
metrics were being defined, they were grouped according to whether they 
have a positive or negative impact on modifiability or efficiency. 
Complexity is evaluated with a simple formula. Thus, the actual fitness is 
composed of five sub-functions: positive modifiability, negative 
modifiability, positive efficiency, negative efficiency and complexity. 
Negative sub-functions are given coefficient -1, as they should always give 
values below zero. The total values for modifiability and efficiency are 
thus the sums of their respective sub-functions. Each sub-function is 
normalized so they have the same range. Each sub-function is also given a 
weight, so if one wants to emphasize one quality attribute over another, it 
can be assigned a larger weight.  

The fitness function has constantly evolved during the research process. 
However, after several iterations, the fitness function is defined as follows. 
When wi is the weight for the respective sub-function sfi, the core fitness 
function fc(x) for solution x can be expressed as   

fc(x) = w1sf1  – w2sf2 + w3 sf3 – w4 sf4– w5 sf5. 
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Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 

positive efficiency, sf4 negative efficiency and finally sf5 measures 
complexity. The sub-functions are defined as follows (|X| denotes the 
cardinality of X): 

sf1 = (|calls to interfaces| * ∑ (variabilities of operations called through 
interfaces)) + (|calls through dispatcher|)  ∑ (variabilities of 
operations called through dispatcher)) – |unused  operations in 
interfaces|  β ,  

sf2 = |calls between operations in different classes, that do not happen 
through a pattern|* ∑ (variabilities of called operations) + |calls 
between operations in same class|* ∑ (variabilities of called 
operations) * 2, 

sf3 = ∑ (|operations dependent of each other within same class|  
parameterSize) + ∑ (|usedOperations in same class|  
parameterSize + |dependingOperations in same class|  
parameterSize),  

sf4 = ∑ ClassInstabilities + (2 * |dispatcherCalls| + |serverCalls|)  
∑( frequencies of operations called through dispatcher or server) + 
|calls between operations in different classes|, 

sf5 = |classes| + |interfaces|. 

The multiplier β (β > 1) in sf1 means that having unused operations in an 
interface is almost like breaking an architecture law, and should be more 
heavily penalized. It should also be noted that in sf1, most patterns also 
provide an interface. In sf3, “usedOperations in same class” means a set of 
operations in class C, which are all used by the same operation from class 
D. Similarly, “dependingOperations in same class” mean a set of 
operations in class K, which all use the same operations in class L. 
ClassInstabilities measures the relation of calls between and within classes 
[Amoui et al., 2006]. 

As stated, the fitness function has evolved during the research process. 
However, the core of the fitness function (division into five sub-functions) 
has stayed the same. Most alterations have been to coefficients and some 
minor calculations. One of the notable changes concerns the impact of the 
message dispatcher and its connections on positive modifiability (sf1). In 
the experiments discussed in publications [I-V], [VII] and [VIII], sf1 
calculated the product of the (variabilities of) connections instead of the 
sum, as given above. This was changed in the final version of the fitness 
function, as in certain circumstances (discussed in Chapter 4), 
modifiability significantly overpowered the fitness value due to using the 
product of connections. Due to a typing error the fitness function formula 
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presented in publications [I-IV] suggests that the sum of (variabilities of) 
connections is used. In fact, the product of message dispatcher connections 
has been used in all other publications (with experiments) except 
publication [IX] and this thesis, where the latest version of the fitness 
function is used. This error, however, does not affect the presented results, 
which are based on complete (sub)fitness values, as the actual coded 
fitness function has been essentially the same for all publications [I-V], 
[VII] and [VIII].  

It should be noted that all the patterns actually increase modifiability and 
decrease efficiency and complexity. The architecture is most efficient and 
simplest at null architecture stage, as there is minimal amount of classes 
and interfaces and connections between them. Also, no high-impact 
design choices, such as the message dispatcher, are present at this stage. 
Thus, when the synthesis progresses and patterns are added, efficiency 
and complexity values for the architectures decrease while the 
modifiability value increases (vice versa, if patterns are removed, 
modifiability will decrease while the other quality values increase).  

 
Figure 18. Example fitness graph for ehome 

An example fitness curve for ehome achieved with the fitness function 
defined above is given in Figure 18. This is the average fitness curve of 20 
runs, and displays how the average fitness of the ten best individuals (the 
elite) in each generation develops. The fitness curves for different quality 
attributes have been extracted to show what kind of balancing act it is to 
find architectures that have good quality from all viewpoints. 

After each individual has been evaluated, they are ordered according to 
their fitness values. The very top of the population, the elite, is transferred 
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straight to the next generation. For the others a rank-based roulette wheel 
selection is made. Each individual is given a slice which corresponds in 
size to the rank the individual has in the population. A rank-based 
selection is more realistic, as the fitness function hardly gives absolute 
values in terms of how much “better” one individual is compared to 
another. After each spin of the wheel the selected individual is moved to 
the next generation and the sizes of slices are adjusted so that there are 
always as many slices in the wheel as there are individuals still left in the 
“old” population. After 100 (as many as in the initial population) 
individuals have been selected, the rest are discarded. 

The process of mutation, crossover, fitness evaluation and selection is 
repeated for a defined number of generation; in this thesis 250 generations 
is used as the default length of an evolution. After the evolution is finished, 
the best solution of the last generation is given as a class diagram.  

 

3.1.5 Case studies 

I will briefly present results from the two case studies. The fitness graphs 
and example architectures presented here have been achieved with the 
fitness function and mutation specifications defined above. The case study 
results are intended to give an idea of what kind of fitness values the 
approach produces and how do the designs look like. Evaluation and 
validation of results is given in publications [I], [II] and [VIII] and in 
Chapter 5.  

The fitness graph for ehome is given in Figure 19, and the fitness graph for 
robo is given in Figure 20. The graph for ehome is actually the same graph 
as in Figure 18; here the different sub-functions simply are not separated 
in order to make it easier to compare the ehome fitness graph to the one 
given for robo. 

In both cases the fitness value plummets right after the evolution begins, 
and after this there is a rapid ascend. For ehome (Figure 19) the initial 
ascend in the curve is much bigger than for robo. However, after very fast 
development during the first 50 generations, the curve stabilizes, and 
although it does not seem to have come to a complete halt, there is not 
very much improvement. 
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Figure 19. Fitness curve for ehome 

 
Figure 20. Fitness curve for robo 

In Figure 20, however, the curve for robo develops quite differently. The 
initial ascend is much slower than for ehome, but the fitness keeps 
improving for the entire evolution, and actually seems to even speed up 
after 150 generations. However, in the very end the fitness curve seems to 
slightly stabilize. 

An example architecture for ehome is given in Figure 21. This is not the 
actual class diagram produced by the synthesizer, as it would be too 
space-consuming and quite complex to interpret. The example is a 
simplified class diagram, where operations are omitted and the design 
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choices (patterns and styles) made by the algorithm are emphasized. The 
same kind of notation is used for all examples given from now on in this 
thesis. Intelligent selection of design choices is the purpose of the 
algorithm, and thus making the interpretation of the example diagram 
easy will best serve the purpose of examining how the algorithm works.  

Figure 21. Example architecture for ehome 

The example in Figure 21 is quite a typical architecture achieved with the 
standard method, where all quality attributes (sub-fitnesses) are weighted 
equally. As can be seen, the message dispatcher architecture style is 
present in the architecture, but it is used very little; only the 
CoffeeMachine/WaterManager and the DrapeManager/DrapeRegulation 
connections are handled through the message dispatcher. Also, the client-
server style is present; in reality, the simultaneous existence of these two 
architecture styles would probably not be accepted. In the example there 
are instances of all the lower level design patterns. The large number of 
TemplateMethod pattern instances is quite common for ehome solutions. 
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All solutions also usually contain some Adapter patterns, while the 
amount of Strategy patterns varies; even though this particular example 
has several Strategies, some solutions achieved with the same parameters 
do not have any Strategy instances. 

Figure 22. Example architecture for robo 

An example architecture for robo is portrayed in Figure 22. Here the 
message dispatcher is also present, and although its full capacity is still 
not used, the level of communication through the message dispatcher is 
significantly higher than in the case of ehome. This could be partially due 
to the restriction that only operations in different null architecture classes 
may use the message dispatcher for communication (robo has twice the 
number of classes already at null architecture level), but this does not 
completely explain why the GA has so much favored the message 
dispatcher. Again, like with ehome, the client-server style is introduced 
alongside the message dispatcher architecture style. In the case of robo, 
there are also several instances of the Template Method pattern, and few 
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instances of Adapter and Strategy. This type of structure is quite common 
for robo. 

To summarize, when using the standard parameters and no quality 
attribute is favored over another, the test results for both cases are quite 
similar. The message dispatcher is present in the system, but only handles 
a part of the communication between different classes. The usage of 
message dispatcher appears stronger in the case of robo. For both cases, 
the client-server architecture style is used in addition to the message 
dispatcher style; a human designer would probably use only one or the 
other. As for the design patterns, solutions for both cases usually contain 
several instances of Template Method patterns, and some instances of 
Adapter and Strategy patterns. No instances of the Façade or Mediator 
pattern were found for either case.  

3.2 TOOL SUPPORT 
As the presented research is mostly based on conducting a large number 
of experiments, a quick and easy to use practical tool is required. I will 
here describe the tool only briefly, as it is only meant to assist in applying 
the synthesis, and the main contribution of this thesis is providing the 
methodology for the synthesis itself. The tool essentially provides a user 
interface for defining the requirements, easily adjusting different 
parameters for the algorithm and viewing the results – both the fitness 
graph and the end result in the form of a class diagram.  

The tool “Darwin” is an Eclipse [2011] plug-in and uses UML2Tools [2011] 
to produce the class diagram in the end as well as in the requirement 
specification phase. A plug-in called JFreeChart [2011] is used to display 
the fitness graphs. The tool is based on a “GA engine”, which essentially is 
the algorithm (synthesizer) described in the previous section. A user 
interface is provided for specifying the requirements, after which they are 
given to the algorithm.  

Requirements can be given as encoded files, similarly as in the original 
implementation. However, the functional requirements of the system 
under design can also be defined with the tool itself. The tool provides a 
user interface for creating use cases and sequence diagrams, and provides 
automated support for transforming the sequence diagrams into the class 
diagram representing the null architecture. After the null architecture is 
somehow specified (either with an input file or through specifying use 
cases with the tool), a simple press of a button is required to start the 
evolution for synthesis.  

The algorithm provides the end result (class diagram) which is converted 
into an editable form and displayed by the tool. The author’s contribution 
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to the tool is the GA engine (and interfacing it with the tool) as well as 
participation in designing the tool. Other members of the project team are 
responsible for implementing the actual user interface and interfacing 
with Eclipse, UML2Tools and JFreeChart.  

 
Figure 23. Screenshot of Darwin tool portraying a fitness graph 

A screenshot of the tool is given in Figure 23, which shows the results of  
an example run with ehome. In the lower left corner is the information 
regarding each individual in a population. One can select the desired 
generation, and the fitness values for the respective population are 
displayed. Any individual can be selected for viewing; this way the 
transformations made to the architecture can be backtracked.  

In the lower right corner one can set the desired weights for all 
subfunctions. In this example, modifiability has been given an 
exceptionally large weight, which is clearly portrayed in the fitness graph, 
as it makes quite fast improvement in the beginning. Note, that in this 
example the fitness graph is the result of only one run. The tool also 
provides options to view all the different sub-fitness graphs at once and to 
create an average fitness graph from several runs. In the upper right 
corner there are two tabs: Mutations and Settings. In the Settings tab (open 
in the figure) one can set the number of elites, the size of population and 
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number of generations. In the Mutations tab the probabilities for different 
mutations are set.  

A screenshot with a different view of the tool is given in Figure 24. In this 
case the best individual of the final generation is selected for viewing. 
Here the UI and Control classes call the Dispatcher, which in turn calls the 
UserRegistry and the TemperatureControl interfaces. An instance of the 
Strategy pattern can also be seen, as one of the operations in UserRegistry 
has been separated and placed behind a Strategy interface. The class 
diagram is completely editable, contrary to the class diagram given by the 
original implementation, which was in picture format. 

The tool essentially eases using the synthesizer, as all information can be 
given through the user interface. Much more information on the 
development of solutions can also be provided to the user, and a live 
viewing of the architecture development can be made possible. The tool 
and its implementation are discussed in more detail in publication [V]. 

 
Figure 24. Screenshot of Darwin tool showing an example solution 
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4 Variations and Extensions 

As discussed in Chapter 1, it is not given that a standard, “simple”, 
implementation of the GA would be best for such a complex problem as 
software architecture design. Thus, several variations to the basic method 
described in the previous chapter were made and experimented with. 

The crossover operator is essential in GAs, as it differentiates GAs from 
local searches by enabling large jumps within the search space from one 
solution to another. Thus, correctly defining the crossover operator is 
critical in order to thoroughly explore the search space and avoid getting 
stuck in local optima. A simple single-point random crossover did not 
seem sufficient for the problem of software architecture synthesis, and 
thus two variations for the traditional crossover were examined.  

Firstly, one option for crossover was to discard it completely, and use 
some other method for reproduction. In real world, no two architects 
would randomly swap parts of their designs, but rather develop 
alternative designs independently. Thus, in publication [IV] it was 
experimented whether crossover was required at all. This would more 
accurately follow the real-life procedure where one architecture design is 
developed at a time, and if there are competing designs, only one is 
selected, and it is selected as a whole.  

Secondly, a logical alternative to completely discarding the crossover 
would be to make the crossover operator more intelligent, and swap parts 
of architectures more purposefully. This complementary crossover can 
operate on two levels. One way is to only select designs which as a whole 
fulfil competing quality requirements, and then randomly combine them 
in the effort to produce an all-around good design. Another way is to 
inspect the architectures in more detail, and purposefully combine distinct 
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(best) parts of the competing designs. These two versions of 
complementary crossover were implemented and experimented with in 
publication [VII]. 

Just as crossover is critical in exploring the search space, the fitness 
function is critical in order for the algorithm to find the correct solutions. If 
the fitness function is poor, the algorithm will search for the “wrong” 
solutions, and the outcome will be just as wrong. Thus, while the single 
weighted fitness function presented in Subsection 3.1.4 is shown to 
measure all the right things, the problem of architecture design just seems 
too complex to evaluate with simply a combination of metrics.  

Firstly, as discussed in Section 2.1, evaluating architectures is extremely 
difficult, and thus it is no surprise that a single weighted fitness function is 
very hard to calibrate so that it would produce satisfactory results. Thus, 
in publication [III] it was studied whether adding more specific 
information of possible modifiability needs would help in making more 
detailed decisions.  

Secondly, as a single weighted fitness function provides minimal answers 
to how a solution fulfils specific quality requirements, and it would be 
good to have several candidate solutions instead of just one, a multi-
objective approach was implemented with Pareto optimality. Pareto 
optimality enables producing several potential solutions and evaluating 
each quality attribute separately. This multi-objective approach and initial 
results achieved with it are discussed in publication [IX]. 

In this chapter I will discuss the variations and extensions described above. 
Results from case studies are discussed briefly; further evaluation is given 
in the publications and in Chapter 5. Note that the setup for experiments 
made with different variations differ slightly from that presented in the 
previous chapter (and from each other); small adjustments to the fitness 
function, the mutation probabilities and some restrictions to mutations 
have been made during the research process. 

4.1 ASEXUAL REPRODUCTION 

4.1.1 Method 

As stated, in a real-life design situation it would be quite abnormal for two 
software architects to come up with completely different suggestions for a 
given system and then start randomly swapping parts of the designs. Only 
one architecture is usually designed, and it is iteratively developed until it 
meets given quality requirements sufficiently well. Thus, it seemed logical 
to experiment whether simply applying mutations would be sufficient in 
order to achieve synthesized architectures with reasonable quality. 
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While the main idea was not to use crossover, the concept of natural 
selection which is essential in GAs should still be kept. In order to perform 
natural selection, the size of the population should be grown so that there 
would actually be “extra” individuals that could be discarded. As 
crossover would not be present to produce offspring, increasing the 
population size should be done in some other way. 

The problem was solved using asexual reproduction. In nature there exist 
cases where individuals of certain species can change sex and thus 
reproduce by themselves. The same ideology was used here. The 
implementation for a GA relying solely on mutations and asexual 
reproduction, and not using crossover, was made so that in the beginning 
of each generation every individual was cloned twice (resulting in three 
clones of the same individual). This triple-sized population was then 
subjected to mutation. Natural selection now had very good grounds, as 
the population was much larger than ever accomplished with crossover. 
The same elitist selection combined with rank-based roulette wheel 
selection was used as described in Subsection 3.1.4. Otherwise, the 
implementation was similar to the basic method, i.e., it used the same 
mutations and same algorithmic procedure. 

 

4.1.2 Case studies 

Results from the two case studies showed that asexual reproduction 
performed much faster than the regular crossover-based method, as can be 
expected. The fitness curves ascended much sooner and the ascent was 
also very steep. However, the curve seemed to settle to its optimum very 
soon: no improvement could be seen after the first 100 generations or so. 
Even tests with increased number of generations looked the same; after 
100 generations the fitness curve simply remained flat. The fitness curves 
for ehome and robo are given in Figures 25 and 26, respectively, and were 
calculated as averages of 10 runs.  
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Figure 25. Fitness curve for ehome, asexual reproduction 

 
Figure 26. Fitness curve for robo, asexual reproduction 

Thus, it could be concluded that while asexual reproduction was faster in 
the beginning, it failed in thoroughly exploring the search space and 
quickly landed to a local optimum. While further examining the fitness 
data to find reasons for this, a curious phenomenon was discovered: in the 
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last populations there was very little or no variance in the fitness values of 
the top half of the population. Thus, it would appear that in the end the 
population mostly consists of clones of the same solution. This is a result 
of the elitist selection keeping the best individuals (eases keeping several 
clones of the best solution), having also included the “null” mutation and 
having quite strict preconditions for mutations. If the preconditions for a 
mutation are not met, the mutation cannot be applied, and in effect, 
several solutions stay the same for many generations. When they are 
cloned several times, the end result is, indeed, a population of clones.  

When the actual solutions were studied, it was clear that the GA had 
favored a very limited amount of design choices. The solutions did not 
contain any instances of the message dispatcher style (the client-server 
style was scarcely used as well) and relied heavily on the Template 
Method design pattern. Another design pattern that was commonly used 
was the Adapter, while Strategy was hardly ever found. The Adapter 
pattern is easier to apply than Strategy, as the precondition is looser. The 
Template Method, in turn, penalizes efficiency and complexity the least. 
Thus, also the solutions indicate that asexual reproduction is unable to 
effectively investigate the search space, and goes about building the 
architectures quite single-mindedly. Typical examples of the resulting 
architectures for ehome and robo are given in Figures 27 and 28, 
respectively.

 
Figure 27. Example solution for ehome, asexual reproduction 
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Figure 28. Example solution for robo, asexual reproduction 

To summarize, asexual reproduction does not use crossover, but only 
transforms the architecture with mutations. In order to enable natural 
selection, individuals are cloned to create a sufficiently large population, 
after which the strongest are chosen with roulette-wheel selection. Results 
indicate that this approach leads to faster evolution but quickly lands on a 
local optimum. This variation to crossover is discussed in more detail in 
publication [IV]. 

4.2 COMPLEMENTARY CROSSOVER 

4.2.1 Method 

As asexual reproduction did not produce the desired outcome, and the 
random crossover is not very close to a real-life design situation, the idea 
of enhancing the crossover operator so that it would act in a more 
purposeful way seemed appealing. Thus, the complementary crossover and 
the complementary gene-selective crossover were implemented. Biologically, 
complementary crossover corresponds to the theory of genetic 
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compatibility [Zeh and Zeh, 1996], i.e., that some individuals are 
genetically more compatible with each other than others. Genetically 
compatible individuals are more likely to produce viable offspring, and 
partners are sought so that the individuals have complementing 
properties. Thus, their offspring would inherit as many desirable 
properties as possible. In software design, the complementary crossover 
corresponds to a situation where two architects exchange ideas on their 
designs, and attempt to combine the best parts of two competing solutions. 

In simple complementary crossover the objective is to purposefully 
combine two parents which satisfy different quality requirements. 
Modifiability and efficiency were chosen as the pair of competing quality 
attributes. In the beginning of each generation, the population was ranked 
based on both modifiability and efficiency. If an individual’s modifiability 
rank was higher than its efficiency rank, it was considered that the 
individual satisfied modifiability related requirements better (and vice 
versa in terms of efficiency). The modifiable individuals were labeled as 
mothers and the efficient individuals were labeled as fathers.  

After the population was divided into mothers and fathers, the mutation 
operation and parent-selection for crossover were performed normally. 
However, when crossover was actually applied, the individuals in the 
parent pool were inspected more thoroughly. The fathers were placed in a 
subpool of their own, and the mothers similarly to their own subpool. The 
crossover was then administered by choosing a pair of parents so that one 
came from the father pool and one from the mother pool. If one pool had 
more individuals than the other, these remaining individuals were not 
used for crossover. The actual crossover point, however, was still chosen 
randomly. The ideology was that these two individuals with different 
strengths would complement each other and produce offspring which 
fulfills both quality attributes. 

As the crossover point in this simple complementary crossover was 
chosen randomly, there was the risk that the best parts, i.e., the parts of 
individuals that have the biggest impact in satisfying the quality 
requirements, might be lost. Thus, a more intricate version, the gene-
selective complementary crossover, was implemented. 

When using the gene-selective complementary crossover, the ranking and 
pooling of parents was done similarly to simple complementary crossover. 
However, when the actual crossover was performed, the crossover point 
was no longer selected randomly. In order to find the best crossover point, 
the most modifiable section of the mother and the most efficient section of 
the father were sought. These sections were identified by using the 
maximum contiguous sub-sequence sum [Weiss, 1998]. Each supergene 
was calculated a value by how much it influenced the modifiability or 
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efficiency value. In other words, the operation defined by that particular 
supergene was inspected in terms of its impact on the different sub-
fitnesses. The best sequence of supergenes was selected as the modifiable 
or efficient section. 

The crossover point was then selected randomly from the indexes that 
were in between the found sections. Only one individual was produced, 
and that individual was thus combined so that it contained the best 
sections of both its mother and its father. The gene-selective 
complementary crossover is depicted in Figure 29. Here index l is the 
starting index of the most modifiable section of the mother, while k is the 
end index. For the father, m is the start index of the most efficient section, 
and p is the end index. The crossover point cp should now land between k 
and m in order to retain both sections for the child. 

 
Figure 29. Gene-selective complementary crossover 

 

4.2.2 Case studies 

The fitness curves for both cases are portrayed in logarithmic scale. The 
fitness function used in this study (as well as for asexual reproduction) 
was able to give exponential reward for the use of message dispatcher, if it 
was used very heavily. The message dispatcher was rewarded in this way 
as it is not fully beneficial until it is used throughout the whole 
architecture, and not only between a few operations. Once the usage is 
intensive, it makes the architecture much more modifiable on a general 
level than individual design patterns. As the complementary crossover 
made such usage possible, the fitness values also developed exponentially, 
and logarithmic curves were required to evaluate the development of 
fitness values. Fitness values were calculated as averages of 20 runs.  
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Figure 30 illustrates the fitness curves for ehome. The curve for the 
standard method remains quite unchanged at just above 1000. Some 
development did happen, but not so much that it would show on 
logarithmic scale. The curves for complementary crossover actually 
descend for the first 100 and so generations, after which they start 
ascending, and reach quite high values. 

Figure 31 shows the respective fitness curves for robo. Here the standard 
curve behaves similarly as in the case of ehome, while the difference 
between standard and complementary crossover curves is drastic. Because 
the difference between the two cases was so big, tests with 750 generations 
were made. These tests (discussed further in publication [VII]) showed, 
that with this longer evolution, ehome was also able to reach values as 
high as robo already did at 250, and the shape of the curve resembled 
much more those of robo as well. The fitness curves for longer evolution 
with ehome are given in Figure 32. The fitness curves for robo with longer 
evolution (750 generations) did not differ significantly from those 
achieved with shorter evolution (250 generations).  

 
Figure 30. Fitness curves for ehome, complementary crossover 
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Figure 31. Fitness curves for robo, complementary crossover 

 
Figure 32. Fitness curves for ehome, complementary crossover, 750 generations 

The architecture proposals achieved with complementary crossover 
illustrated quite well why the fitness curves behaved the way they did. 
The main difference between solutions achieved with complementary 
crossovers and the standard crossover was the presence and level of usage 
of the message dispatcher. When the standard random crossover was used, 
no solution contained the message dispatcher for either case. However, 
when complementary crossover was used, 18 of the 20 solutions for 
simple complementary crossover in ehome already contained the 
dispatcher, and in solutions with gene-selective crossover for ehome, and 
both complementary crossovers for robo, the message dispatcher was 
present in all the solutions. 
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The example solutions for ehome and robo, given in Figures 33 and 34, 
respectively, portray typical solutions with gene-selective complementary 
crossover. The example solution for ehome has been achieved after 750 
generations, while the example for robo is the result of a 250 generations 
long evolution. It seems ehome is slightly more difficult to deal with from 
the algorithm point of view, and it takes a longer time to effectively use 
the message dispatcher. This explains the descend of fitness curves in the 
beginning: when the message dispatcher is present in the architecture but 
very poorly used, the penalty for it is much larger than the reward, and 
thus the fitness curve descends. 

Both solutions have very centralized use of the message dispatcher, and 
also several instances of the different design patterns. The longer 
evolution for ehome seems to have affected also the number of patterns, as 
all low-level design patterns have been brought to the system, while for 
robo there are no Adapters, and the amounts of Template Methods and 
Strategies are significantly lower than for ehome. 

 
Figure 33. Example solution for ehome, complementary crossover 
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Figure 34. Example solution for robo, complementary crossover 

To summarize, the simple complementary crossover combines parents 
which fulfill different quality requirements. The gene-selective 
complementary crossover similarly seeks complementary parents, but also 
inspects the parents and only produces one offspring with the best parts of 
the two parents. The complementary crossover is able to produce 
solutions with delayed reward, and the difference to simple random 
crossover is significant (to the better). This variation is discussed in more 
detail in publication [VII]. 

4.3 SCENARIOS 
As discussed in Subsection 2.1.3, scenario-based evaluation, ATAM in 
particular, is one of the most popular methods for evaluating software 
architecture quality in practice. Thus, to ease evaluating modifiability 
(which is more difficult to elicit from the class diagram by metrics), the 
core fitness function was extended with a scenario-based sub-fitness 
function. This enables giving modifiability related scenarios where the 
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changes are targeted to certain operations. Evaluating the correct 
placement of patterns is thus more specific and the results more accurate.  

 

4.3.1 Method 

In ATAM or any other scenario-based evaluation methodology the 
scenarios are usually specified in free-form. Thus, the first thing to do in 
order to enable the GA to use scenarios is to develop an encoding for 
different types of scenarios. In this work, I have concentrated on 
modifiability-related scenarios, and have divided them into two main 
categories: changing scenarios and adding scenarios.  A change scenario 
indicates that a function will be changed in some manner, and an adding 
scenario indicates that alternative implementations for a functionality will 
probably be given.  

Each scenario is also labeled as dynamic or static. A dynamic scenario 
should be executable during runtime, i.e., it should not require changes to 
the code, and portrays changes from the user viewpoint. A static scenario 
should be executable during implementation, i.e., it may require small 
changes to the code, and concerns changes from the developer’s point of 
view. Additionally, for each change scenario it is defined whether the 
change concerns implementation or semantics. Scenarios concerning 
implementation are more common, and they simply predict that the 
implementation of an operation is changed. Scenarios concerning 
semantics are rarer, and indicate that an operation may be changed to 
something completely different. Additionally, each scenario is given an 
estimated probability, which roughly describes how critical it is.  

Each scenario is defined for one operation only. Thus, when encoding the 
scenarios they contain information about which operation they concern, 
about the three different classifications discussed above, and their the 
estimated probability. For example, a scenario for ehome could be “the 
developer should be able to change the way the optimal positioning of 
drapes is calculated with a probability of 80%”. This scenario concerns 
development time changes, and is thus labeled as static, and requires the 
change of implementation, and is thus labeled as a changing scenario, 
which in this case concerns implementation. The encoded format of this 
scenario thus contains the name of operation concerned 
(calculateDrapePosition), the defined labels, and the probability (80%). 
The collection of encoded scenarios is given for the scenario interpreter as a 
text file. The scenario interpreter transforms the scenarios into a further 
encoded format for the synthesizer to process. 

From the GA point of view, a mechanism is needed to evaluate how well 
the architecture responds to the scenarios. Evaluation is made by ranking 



 

89 

 

the possible design solutions (i.e., design patterns and general structural 
solutions) according to their suitability for each possible scenario type 
(based on all three categorizations), i.e., each scenario type is given a 
preference list of suitable design decisions. For example, in the case of a 
statically changing implementation scenario, the best way to prepare for 
this kind of modification would be to use a Template Method (if 
applicable), which would now be placed on top of the preference list. The 
second best way would be to use a Strategy pattern, in which case the new 
implementation could be offered as an alternative algorithm. Using 
Strategy would now be second on the preference list. Other design 
solutions would similarly be examined and ordered in the preference list 
accordingly. It should be noted that no guidance is given for particular 
scenarios, as the rankings are only defined as per scenario categorization – 
not according to individual scenarios. The preference list is handled by the 
scenario interpreter. 

When the GA calculates a scenario fitness value, it goes through the given 
list of encoded scenarios and compares the current solutions in the design 
at hand to the preference list provided by the scenario interpreter. The 
design is then rewarded points from each scenario; the points are scaled so 
that the higher the sub-solution regarding the scenario is in the preference 
list, the more points are rewarded. The actual scenario fitness value for 
one solution is achieved by simply summing the points gained from each 
scenario. 

Formally, the scenario sub-fitness function sfs can be expressed as  

sfs  = ∑scenarioProbability*100/scenarioPreference. 

Adding the scenario sub-fitness function to the core fitness function would 
result in the overall fitness, f(x) = fc(x) + ws*sfs. As the scenario sub-fitness 
function measures modifiability, it may also be used to replace the 
modifiability functions sf1 and sf2. 

 

4.3.2 Case studies 

For both cases (ehome and robo) 15 different modifiability scenarios were 
invented based on the assumed evolution of these kinds of systems.  
For example, scenarios for ehome include: 

 the user should be able to change the way the music list is showed 
(scenario probability 90%) 

 the developer should be able to change the way water is connected 
to the coffee machine (50%) 

 the developer should be able to add another way of showing the 
coffee machine status (60%). 
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Scenarios for robo include: 
 the player should be able to change the appearance of a robot (80%) 
 the developer should be able to add an alternative armor control 

(80%) 
 the developer should be able to change the implementation of the 

robot intelligence control (90%). 
These scenarios are then analyzed to fit the classification framework of 
scenarios discussed above. The first ehome scenario is a changing scenario 
that regards implementation and should be handled dynamically. The 
second ehome scenario is a changing scenario that should be handled 
statically and concerns the semantics of the component, i.e., the interface 
may need to be changed. The final ehome scenario is a static adding 
scenario concerning implementation.  

The first robo scenario is a changing scenario that should be handled 
dynamically and concerns implementation. The second robo scenario is an 
adding scenario that should be handled statically and again handles 
implementation. The last robo scenario is a changing scenario to be 
implemented statically. 

When inspecting the fitness curves, the effect of adding the scenario sub-
fitness function was evaluated in two different ways in the case studies. 
Firstly, the standard fitness curve with only the core fitness function was 
evaluated against the fitness function where the scenario fitness was 
added. The fitness curves for ehome and robo illustrating the difference 
that adding the scenario fitness makes are given in Figures 35 and 36, 
respectively.  As can be seen, the curve where the scenario fitness is added 
naturally achieves higher values, as scenario sub-fitness may only increase 
the overall fitness value. However, the graphs also show that the time 
period where most of the development is made in the beginning of the 
evolution is 10 to 20 generations longer when the scenario fitness is 
applied. It appears that adding scenarios and thus enabling more detailed 
evaluation prevents the algorithm from converging to a local optimum too 
soon. 
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Figure 35. Fitness curves for ehome, total fitnesses with and without scenarios 

 
Figure 36. Fitness curves for robo, total fitnesses with and without scenarios 

Secondly, it was tested whether the GA would be able to introduce 
scenario satisfying solutions if it was unaware of the scenarios. This was 
experimented by calculating the scenario fitness value but not using it for 
the GA evaluations (curve “scenario not calculated”), and comparing 
these fitness curves to the ones where the scenario fitness value was given 
for the GA to be used in evaluation. These curves for ehome and robo are 
given in Figures 37 and 38, respectively. These curves illustrate the 



 

92 

 

scenario fitness only, and does not take into account the other sub-fitness 
functions. 

As can be seen, the results are quite similar to those already seen in the 
case where complete fitness curves where compared. When the scenarios 
are used for evaluation, the fitness curve has a longer period of rapid 
development, and achieves overall higher values than when scenarios 
have not been taken into account. Also, in the case of ehome (Figure 37), 
the scenario fitness curve actually starts to descend in the end when the 
scenarios are not used for evaluation. This indicates that if the GA is not 
aware of scenarios, it may start to favor solutions which work on a more 
general level only.  

Overall, the fitness curves show that adding the scenario fitness function 
indeed aids the GA to find more intricate solutions that consider detailed 
parts of the system. 

Figure 37. Scenario fitness curves for ehome 
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Figure 38. Scenario fitness curves for robo 

Once using the scenario fitness had been validated in the case where all 
sub-fitnesses were given an equal weight, the true affect of scenario-based 
evaluation could be studied. As the scenarios only deal with modifiability, 
experiments were also made where the modifiability and scenario sub-
fitnesses where given significantly larger weights than efficiency. This 
enabled studying what kind of solutions the GA would be able to produce 
when it was mainly guided by scenario evaluation. Example solutions 
from such scenario enhancing experiments for ehome and robo are given 
in Figures 39 and 40, respectively.  

The example solution for ehome (Figure 39) was achieved from an 
experiment where the scenario and general modifiability sub-fitnesses 
were significantly overweighted in relation to efficiency and complexity. 
As a result, the message dispatcher is present and quite well used 
(courtesy of overweighting general modifiability) and there are several 
instances of different low-level design patterns (somewhat due to 
overweighting scenarios). For example, the Adapter patterns for Heater 
Manager and Water Manager respond to given scenarios, as these 
components interface with changeable hardware, and thus the semantics 
are likely to change. Similarly, showing the music list and coffee machine 
status have been dealt with Strategies, which is a preferred design solution 
for the related scenarios.  
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Figure 39. Example solution for ehome when scenarios included and overweighted 

The example solution given for robo is not, contrary to other case studies, 
made with the same parameters as the one for ehome. In the example 
solution for robo the scenario sub-fitness function has completely replaced 
the basic modifiability sub-fitnesses. Thus, positive modifiability and 
negative modifiability were both neglected, and scenarios were heavily 
overweighted in comparison to efficiency and complexity. This setup 
serves two purposes: 1) it allows us to see whether scenarios themselves 
are sufficient in evaluating the architecture as a whole, and 2) the 
versatility of the algorithm can be evaluated. The second point relates to 
the definition of the scenario sub-fitness function, where patterns are 
ranked according to how well they support a certain type of scenario. This 
may raise the concern that this dictates the direction of design too much, 
i.e., the design becomes rather deterministic and GA may not use its full 
potential.  

The example solution for robo, given in Figure 40, shows that when 
scenarios are used instead of the general modifiability fitness and are 
heavily overweighted, the result is still quite sensible, and thus scenarios 
can be used for evaluation. However, the amount of patterns is rather 
small, and thus a larger number of scenarios would be needed if the 
scenario sub-fitness was used as the only evaluator for modifiability.  
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Also, the versatility of the genetic algorithm is clear. For example, the 
scenario for Armor support states that it is highly probable that the 
developer would want to add an alternative way to control the armor. 
Thus, a Template Method or Strategy pattern would seem natural ways to 
handle the situation. However, as seen in Figure 40, the GA has chosen to 
use Adapter instead. Since an Adapter allows the changing of the interface 
as well, this solution provides even stronger support for modifications 
than directly required by the scenarios, with fairly small cost regarding the 
overall complexity of the system.  
 

 
Figure 40. Example solution for robo when scenarios overweighted and replacing general 

modifiability 

The robo example shows well how scenarios may also be supported 
indirectly. For example, a scenario related to the Intelligence component 
states that the intelligenceControl operation should be easily changed by 
the developer; this would be best handled with a Template Method. 
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However, there is no method within the Intelligence component that uses 
the intelligenceControl operation, and thus the Template Method cannot 
be implemented there, as according to the preconditions of the mutation. 
However, as can be seen in Figure 40, the findRobot operation has been 
placed behind a Strategy pattern in the Intelligence component. Thus, the 
GA has chosen an alternative way to satisfy the scenario: as findRobot is 
used by intelligenceControl, changeability is achieved by separating 
findRobot behind a pattern, and thus making the intelligenceControl at 
least partially more modifiable. In many solutions the situation was 
actually handled similarly: the operations used by the “main” operation of 
a component were placed behind a Strategy or a Template instead of the 
“main” operation.  

To summarize, modifiability-related scenario-based evaluation is enabled 
by categorizing scenarios and encoding them for a scenario interpreter, 
implemented as an extension to the GA. The interpreter provides a 
preference list of design solutions, which the GA uses to evaluate how 
well detailed design sub-problems have been handled within the 
architecture. Results indicate that the scenario sub-fitness enables more 
detailed evaluation and can be used to enhance the modifiability aspect of 
designs. This extension to the basic method is discussed in more detail in 
publication [III].  

4.4 MULTI-OBJECTIVITY 
No matter how detailed the calculation of different quality attributes is, 
combining two attributes into one function is still a bit like summing 
apples and oranges. In other words, while the fitness value may be 
accurate, it is not very informative unless the distribution of the different 
quality attributes is known. A solution which receives 1000 points for 
efficiency and 0 for modifiability is quite different to one that receives 500 
points for both properties – just like having 10 apples is quite a different 
case to having five apples and five oranges, even though in both cases the 
ultimate value, be it fitness or the number of fruits, is still the same. Thus, 
the most natural way to handle conflicting quality attributes, such as 
modifiability and efficiency, is to use multi-objectivity. This enables the 
evaluation of individuals from both viewpoints separately, and selection 
of individuals is made based on these individual values, not the combined 
sum value. 

 

4.4.1 Method 

Multi-objective software architecture synthesis is possible through 
application of Pareto optimality [Deb, 1999]. Pareto optimal selection 
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evaluates individuals from all viewpoints, and rather than providing one 
“optimal” individual, a range of satisfactory individuals is presented.  

If solutions are measured according to n properties, a solution x can be 
described by a vector x = [f1(x), f2(x), …, fn(x)], where fi(x) is the value of 
ith property in x. For convenience, it can be assumed that all properties 
should be maximized. When the properties represent conflicting quality 
criteria, it is unlikely to find a solution in the solution space S which 
would be optimal with respect to all the quality criteria. In such a situation, 
Pareto optimality provides a way to compare the solutions. 

We say that a solution x’  S is Pareto optimal if for each x  S, we have 
either fi(x) = fi(x’), for all i = 1, …, n, or there is at least one property i such 
that fi(x) < fi(x’). That is, x’ is Pareto optimal if there exists no feasible 
solution x that increases some criterion without causing a simultaneous 
decrease in at least one other criterion. Typically, there is not a single 
solution that is Pareto optimal, but a set of Pareto optimal solutions. The 
Pareto optimal solutions of a set of feasible solutions are said to form a 
Pareto front. 

In order to apply Pareto optimal selection, each quality attribute needs to 
be evaluated separately. In order to be able to view results in a two-
dimensional graph, this study only concentrates on two quality properties, 
modifiability and efficiency. The fitness for each solution is thus given in 
the form f(x) = [sf1(x), sf2(x), sf3(x), sf4(x)] (using the notation for sub-
fitnesses as given in Subsection 3.1.4). For evaluation, the complete values 
of both quality attributes are used. The complete modifiability value mf for 
solution x is defined as mf(x) = sf1(x) - sf2(x) and the complete efficiency 
value ef respectively as ef(x) = sf3(x) - sf4(x). Each individual thus has two 
fitness values, mf and ef, instead of just one fitness value where the two 
quality attributes are summed. 

Once the fitness values have been calculated, the individuals are ranked 
based on modifiability (efficiency could be used as well).  The Pareto front 
is then selected so that the most modifiable individual is naturally 
included, as it represents one of the extreme choices; this can be given the 
identifier pf1. The ranked individuals are then processed so that if the 
potential front individual pfn has an efficiency value ef(pfn) > ef(pfn-1), it is 
selected for the front (note, that mfn < mfn-1, as the individuals are ranked 
in descending order according to modifiability values). 

As the population contains 100 individuals, the Pareto fronts obtained 
with the presented approach usually contain approximately five to ten 
individuals. Hence, when selecting a population, one front is not enough 
for the genetic algorithm to progress. Thus, in my approach, when the 
mutations and crossovers for population pn have been performed, the 
Pareto front of pn is selected for the next generation (population pn+1). 
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After this, the Pareto front of the remaining individuals, i.e., the Pareto 
front of population pn \ pn+1, is selected and transferred to the next 
generation. This iterative process is repeated until the population pn+1 has 
at least 100 individuals. 

Once the evolution process is complete, the outcome is not just one class 
diagram, but the class diagrams (synthesized architectures) of the entire 
Pareto front of the final population. This enables the architect to view the 
different extremes without having to manipulate weights for the fitness 
function. 

 

4.4.2 Case studies 

The case studies were used to study two different aspects: 1) how do the 
Pareto fronts evolve during the evolution, and 2) what kind of solutions 
are produced in a front, especially how much does the most efficient 
solution differ from the most modifiable solution. 

 
Figure 41. Initial Pareto fronts for ehome 
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Figure 42. Initial Pareto fronts for robo 

Firstly, the Pareto fronts of both cases were studied. Figure 41 shows the 
Pareto fronts of 20 runs for ehome in the beginning of evolution (after 50 
generations), and Figure 42 shows the respective Pareto fronts for robo. 
Each Pareto front (different run) is represented by a distinctive marker. As 
can be seen, in the begininning the fronts are quite clustered in the 
efficient section of the graph, and in Figure 41 (ehome) no individual 
actually has a positive modifiability value at this point. In Figure 42 (robo) 
there are some individuals which have positive modifiability, but they are 
few, and the trend is the same as with ehome, as individuals are quite 
clustered and focused on the efficient section. 

Figures 43 and 44 show how the Pareto fronts have evolved as the figures 
portray the final Pareto fronts at the end of evolution for ehome and robo, 
respectively. The Pareto fronts have moved towards the modifiable section 
of the graph, and the efficient solutions are still quite tightly clustered, 
while within the modifiable solutions there is much more variance. This is 
expected, as efficient solutions are close to the null architecture, i.e., have 
as few mutations as possible, while good modifiability values can be 
reached with a practically endless number of pattern combinations.  
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Figure 43. Final Pareto fronts for ehome 

Figure 44. Final Pareto fronts for robo 
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Figure 45. Example solution for ehome from modifiable end of Pareto front 

Secondly, the example solutions for both case studies where inspected. 
The final Pareto front of one of the test runs was selected for exemplary 
purposes for both ehome and robo. The most modifiable solution from 
this exemplary Pareto front for ehome is illustrated in Figure 45, and the 
most efficient solution from the same Pareto front is given in Figure 46. 
The difference between these two solutions is substantial. In the 
modifiable solution the message dispatcher style is central, and there are 
several instances of all low-level design patterns. On the other hand, in the 
efficient solution the message dispatcher is not present, the number of 
design patterns is much smaller. Also, in the efficient solution, most of the 
design patterns are instances of Template Method, which has the least 
effect on efficiency. This represents quite a typical front for ehome, 
although several fronts also had the message dispatcher in the most 
efficient solution as well, but it only had one or two connections, so it was 
very poorly used. 
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Figure 46. Example solution for ehome from efficient end of Pareto front 

As for robo, the most modifiable solution of the exemplary Pareto front is 
portrayed in Figure 47, while the most efficient individual from that same 
front is given in Figure 48. The solutions are very similar to those achieved 
with ehome: in the modifiable solution the message dispatcher is heavily 
used, and there are several instances of all low-level design patterns. In 
the efficient solution there are no Strategy patterns, which give the highest 
penalty in terms of efficiency, and the message dispatcher is not used at all. 
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Figure 47. Example solution for robo from modifiable end of Pareto front 
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Figure 48. Example solution for robo from efficient end of Pareto front 

To summarize, the multi-objective approach, implemented using the 
Pareto optimality concept, provides a way to evaluate each solution from 
different viewpoints. It also provides several candidate solutions instead 
of only one. This equips the designer with two kinds of information: 1) by 
examining the solution and fitness distributions it is easier to see how a 
chosen quality attribute affects the outcome of the design and 2), by seeing 
several solutions at once, using one solution as a starting point for the 
actual design can be done with more confidence, as opposed to using the 
one solution produced by a single weighted function, when it is not clear 
why the algorithm suggests that one particular solution. 



 

105 

 

Results from case studies show that the extremes of Pareto fronts are very 
different, and thus the entire front gives a complete view of what kinds of 
solutions the algorithm is able to produce. The multi-objective approach is 
discussed in publication [IX]. 
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5 Evaluation 

While the previous chapters presented the method for GA-based software 
architecture synthesis and its different variations, the results still need 
validation. In this chapter, I will begin by summarizing the results – how 
different variations affect the outcome and what are the differences 
between the case studies. I will then present evaluation for the multi-
objective approach by examining the individuals of a Pareto front against 
ATAM-type scenarios. After this, an experimental study is presented to 
evaluate the results obtained by the (basic) GA approach by comparing 
the synthesized solutions with human-made solutions. Finally, the 
different factors affecting the outcome of case studies and the 
experimental study are discussed, as well as different aspects related to 
the synthesis that were discovered during the research process but not 
covered in the publications or case studies.  

5.1 SUMMARY OF RESULTS 
In order to provide a compact comparison of the effect of different 
variations to the basic method, the results from case studies with different 
variations are summarized. In Chapter 3, the basic method and case 
studies were presented. The basic synthesizer uses a single weighted 
fitness function, and thus the main issue becomes scaling the weights so 
that all quality attributes are equally appreciated, as by default the 
architecture should satisfy as many quality requirements as possible. Thus, 
the resulting solution proposals support all three attributes to some extent. 
The solutions for both ehome and robo are not especially good from any 
particular quality viewpoint, but they are not particularly bad, either. 
While these designs are acceptable, i.e., they show that automation is 
possible, they are far from the quality of a “final” design, and much 
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revision would be required from the architect. Also, as only a single fitness 
value and a single solution is provided after each evolution, it would 
require much knowledge from the user of how the algorithm should be 
tuned in order to achieve better results. 

The case studies for asexual reproduction, discussed in Section 4.1, 
showed that asexual reproduction can be used to speed up the evolution, 
as it is significantly faster than the standard version with random 
crossover, but that the GA tended to converge to a local optimum. The 
resulting solutions were quite focused on only a couple of low-level 
design choices, and there was little variation between results. The same 
kind of results have actually been achieved with simulated annealing 
[Räihä et al., 2010], which also operates with mutations only. The main 
difference is that the solutions with simulated annealing were heavily 
relying on the message dispatcher, while with asexual reproduction and 
the GA they relied on low-level patterns. The trend is, however, the same: 
only few design options are used to refine the solution. 

Complementary crossover, as presented in Section 4.2, produced much 
better results, as both the fitness values and produced solutions achieved 
quite a different level of quality than any tests until then. Purposefully 
combining parents seemed to enable solutions with delayed reward, 
which resulted in solutions concentrating around the message dispatcher, 
which has a big effect on both modifiability and efficiency. The solutions 
also utilized the low-level patterns in addition to the message dispatcher. 

In Section 4.3 the scenario-based extension to the core fitness function was 
given. The purpose of using scenarios was to enable more detailed fitness 
evaluation by drawing attention to the specific needs of individual 
operations. Using the scenario fitness function as an extension to the core 
fitness or as a substitute for the basic modifiability fitness produced 
solutions where the patterns were better targeted to the operations 
specified in the scenarios. However, scenarios did not appear well-suited 
to make higher-level design decisions for the architecture. 

As mentioned earlier, there are many problems which come from using a 
single weighted fitness function. Thus, a multi-objective variation using 
the Pareto optimality concept was discussed in Section 4.4. This effectively 
solves the problem of only having average individuals, as a set of 
individuals is always produced, and the set contains solutions from both 
extremes of the modifiability-efficiency space. No weights are needed for 
this approach, although they were used in the experiment to reduce 
misconceptions due to scaling. When examining the Pareto optimal 
solutions, the difference between the two extreme ends is evident: the 
modifiable solutions typically employed the message dispatcher as well as 
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several low-level design patterns, while the efficient solutions contained a 
few low-level patterns only, usually those with least effect on efficiency.  

When comparing the two case studies, robo seems “easier” to deal with 
from the GA point of view. It has many small classes, but most still have 
more than one functional operation. Thus, there are many options to 
introduce both low-level and high-level solutions. On the other hand, in 
the case of ehome, there are much fewer classes, which makes the design 
slower especially in terms of low-level patterns. The “maximum” number 
of simultaneous patterns is met much faster than with robo, and thus the 
old patterns need to be removed before new, better-suited ones can be 
introduced. Also, fewer connections between classes means less 
opportunities to apply the message dispatcher, which makes it difficult to 
retain the dispatcher in the architecture, if delayed reward is not 
supported. The solutions for both case studies were quite similar in terms 
of how low-level patterns were used, and the main difference was the use 
of the message dispatcher style.  

Thus, to summarize, much variation in solutions could be seen when 
conducting within-case analysis between different variations to the 
synthesis. However, analysis between cases revealed only small 
differences in solutions, the main difference being the level of message 
dispatcher usage.  

5.2 EVALUATION OF PARETO FRONTS 
In addition to the traditional case studies, an empirical study was 
executed with the multi-objective approach in order to investigate 
whether the Pareto front corresponds to the idea that a human software 
engineer has regarding what is modifiable and where should efficiency be 
emphasized. The solutions from five randomly chosen Pareto fronts for 
ehome were evaluated against scenarios (simulating an ATAM-like 
evaluation) in order to see whether the Pareto fronts correspond to real-
life distribution in the modifiability-efficiency space. Use cases were used 
to construct five efficiency related scenarios, one for each major subsystem 
(coffee machine, user registry, drape control, temperature control and 
music system). Each scenario gives efficiency penalty ep to solution x 
according to the following formula: 

ep(x) = – ∑calls between different classes  
 – d*∑calls via dispatcher   

– s*∑calls to server, 

where d and s are cost factors of message-based and client-server 
communications, respectively (relative to straight calls). In these 
experiments both d and s were set to 2.  
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For evaluating modifiability, software engineering experts not involved in 
this study were asked to construct 4-5 modifiability related scenarios for 
ehome, in a similar fashion as described in Section 4.3. The experts 
produced a total of 12 modifiability related scenarios, which covered each 
of the major subsystems. A solution was evaluated against a scenario by 
awarding 0, 1, or 2 points in the following fashion: 

0 points: existing code would have to be changed (no support), 

1 point: existing code need not be changed, but the architecture 
supports development time variation rather than run-time 
variation (partial support), 

2 points: existing code need not be changed (full support). 

The points were then multiplied with the probability of the scenario (a real 
value between [0, 1]) to achieve the total modifiability reward value for an 
architecture.  

Every solution of each of the five fronts was evaluated against each 
modifiability and efficiency scenario, and the scenario points were 
compared against how the solutions were distributed in the Pareto front. 
In particular, if a solution received the least efficiency penalty from 
scenarios (i.e., it is highly efficient), it should also be the most efficient 
solution of the Pareto front. Similarly, the solution which received the 
highest modifiability points from the scenarios should be the most 
modifiable solution of the Pareto front.  

 
Figure 49. Efficiency scenarios 
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Figure 50. Modifiability scenarios 

Figure 49 shows the scatter plot for efficiency. Each Pareto front has a 
distinctive marker in the plot. The y-value is the efficiency rank, i.e., 
number 0 is the first, and thus the most efficient, individual of the front 
(considering fitness values). Thus, the lower a marker, the closer to zero 
(small penalty) it should be on the x-axis. As can be seen, the solutions 
with foremost ranks perform the best and those in the last ranks perform 
the worst in the scenarios as well, while in the middle there is some 
variation. This is quite logical and expected, as the differences in these 
kinds of “in-between” solutions are usually quite small. They often have 
moderate usage of design patterns, and may use the message dispatcher to 
some extent, but usually there are no distinct differences so that one “in-
between” solution would be intuitively better in terms of some quality 
attribute than another “in-between” solution.  

Figure 50 gives a similar scatter plot for the modifiability scenarios. The 
markers here are the same as in Figure 49, i.e., the front represented by 
triangles in Figure 49 is represented by triangles in Figure 50 as well. 
Again, the individual with rank 0 is the most modifiable one of a given 
front, so the lower a mark, the higher its x-value (modifiability reward) 
should be. The relationship between high modifiability in fitness values 
and high scenario reward is clear, although the result is not quite as good 
as with efficiency, as there is significantly more variance in the solutions in 
the middle of the Pareto fronts. This is natural, as the scenarios do not 
capture the particularities of the entire system, but merely attempt to 
cover the modifiability requirements with examples, which may have the 
drawback of producing inconsitent results. This drawback is emphasized 
in the case of modifiability.  
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Performing statistical analysis on the scenario data produces correlation 
coefficient r values r = 0.79 for efficiency and r = -0.62 for modifiability. 
This indicates a high linear correlation between efficiency scenario points 
and the Pareto front rank, and a moderate correlation between the 
modifiability scenario points and the Pareto front rank. The corresponding 
coefficients of determination R2 values are R2 = 0.62 for efficiency and R2 = 
0.52 for modifiability, meaning that 62% of the variation in efficiency 
scenario penalty points can be explained by the Pareto rank, and similarly, 
52% of variance within modifiability scenario reward points can be 
explained by the Pareto rank. Finally, the Student’s t-tests for both data 
sets show that the impact of the rank in scenario points is significant with 
a 95% confidence (i.e., there is a significant correlation between rank and 
scenario points with p < 0.05), and thus, the scenario points depend on the 
Pareto rank (i.e., the higher the rank, the better it performs in the 
scenarios). This experiment is discussed in publication [IX]. 

5.3 EMPIRICAL STUDY 
As shown in the case studies, genetic software architecture synthesis is 
able to produce reasonable architecture proposals, although obviously 
they still need some human polishing. However, fitness values do not 
have a straightforward correlation with expert evaluations of “good” 
architectures. Thus, in order to answer the final and ultimate research 
question of how far the synthesis can be taken, an empirical study was 
conducted. In this experiment the quality of the generated architectures is 
studied in relation to the quality of architectures produced by students. 
This empirical study is further discussed in publication [VIII]. 
 

5.3.1 Setup 

First, a group of 38 students from an undergraduate software engineering 
class was asked to produce an architecture design for ehome. Most of the 
students were third year Software Systems majors from Tampere 
University of Technology, having participated in a course on software 
architectures. 

The students were given essentially the same information that is used as 
input for the GA, i.e., the null architecture, the scenarios, and information 
about the expected frequencies of operations and their expected 
sensitiveness to variation. In addition, students were given a brief 
explanation of the purpose and functionality of the system. They were 
asked to design the architecture for the system using only the same 
architecture styles and design patterns that were available for GA. The 
students were instructed to consider efficiency, modifiability and 
complexity in their designs, with an emphasis on modifiability. It took 90 
minutes on average for the students to produce a design.  



 

112 

 

The synthesized solutions, in turn, were achieved in 38 runs, resulting in 
38 architecture proposals. Each run took approximately one minute (i.e., it 
took one minute for the synthesizer to produce one solution).  

The assistant teacher for the course (impartial to the GA research) graded 
the  student designs as test answers on a scale of 1 to 5, 5 being the 
highest. The solutions were then categorized according to the points they 
achieved, and one solution from each of the categories of 1, 3 and 5 was 
randomly selected. These architectures were presented as grading 
examples to four software engineering experts. The experts were 
researchers and teachers at the Department of Software Systems, Tampere 
University of Technology. They all had a M.Sc. or a Ph.D. degree in 
Software Systems or in a closely related discipline and several years of 
expertise from software architectures, gained by research or teaching. 
They were given the same information as the students regarding the 
requirements for ehome. 

In the actual experiment, the experts were given 10 pairs of architectures. 
One solution in each pair was a student solution, selected randomly from 
the whole set of student solutions, and one was a synthesized solution, 
also selected randomly. The solutions were edited in such a way that it 
was not possible for the experts to know which solutions were synthesized, 
while still keeping all information of architectural design decisions. The 
experts were not told how the solutions were achieved, i.e., that they were 
a combination of student and synthesized solutions. They were merely 
asked to help in evaluating how good solutions a synthesizer could make. 
The experts were then asked to give each solution 1, 3 or 5 points. The 
setup is discussed in more detail in publication [VIII].  

 

5.3.2 Results 

The scores given by the experts (e1-e4) both to the automatically 
synthesized architectures (a1-a10) and architectures produced manually by 
the students (m1-m10) are given in Table 1. As the experts viewed the 
solutions pair-wise, the points in Table 1 are also organized in pairs of 
synthesized and manually produced solutions. The result of each 
comparison within a solution pair is one of the following 

 the synthesized solution is considered better (ai > mi, denoted 
later by +) 

 the student solution is considered better  (mi > ai , denoted later 
by -), or 

 the solutions are considered equal  (ai = mi, denoted later by 0). 
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Table 1. Points for synthesized solutions and solutions produced by the students 

 

The best synthesized solutions appear to be a3 and a10, with two 3’s and 
two 5’s. In solution a3 the message dispatcher was used, and there were 
quite few patterns, so the design was easy to understand while still being 
modifiable. However, a10 was quite the opposite: the message dispatcher 
was not used, and there were especially as many as eight instances of the 
Strategy pattern, when a3 had only two.  There were also several Template 
Method and Adapter pattern instances. In this case the solution was 
highly modifiable, but also quite complex. This demonstrates how very 
different solutions can be highly valued with the same evaluation criteria, 
when the criteria are conflicting: it seems impossible to achieve a solution 
that is at the same time optimally efficient, modifiable and still 
understandable.  

The worst synthesized solution was considered to be a4, with three 1’s and 
one 3. This solution used the message dispatcher but also the client-server 
style was eagerly applied. There were not very many patterns, and the 
ones that existed were quite poorly applied. Among the human-made 
solutions, there were three solutions (m5, m8, and m10) with similar scoring. 

Table 2 shows the numbers of the preferences of the experts, with “+” 
indicating that the synthesized proposal was considered better than the 
student proposal, “-“ indicating the opposite, and “0” indicating a tie. 
Only one (e1) of the four experts prefers the student solutions slightly 
more often than synthesized solution, while two experts (e2 and e4) prefer 
the synthesized solutions clearly more often than the student solutions. 
The fourth expert (e3) prefers both types of solutions equally. There were 
totally 17 pairs of solutions with better score for the synthesized solution, 
9 pairs preferring the student solution, and 14 ties.  

The presented crude analysis clearly indicates that in this simple 
experiment, the synthesized solutions were ranked at least as high as 
student-made solutions. Thus, it can be deduced that synthesized 
solutions at this stage are competitive with those produced by third year 
software engineering students.  
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Table 2. Numbers of preferences of the experts 

       +        -      0 

e1       3       4      3 

e2       4       1      5 

e3       3       3      4 

e4       7       1      2 

total      17       9    14 

 

5.3.3 Threats and limitations 

There are several threats and limitations to the presented experiment. 
Firstly, as the solutions for evaluations were selected randomly out of all 
the 38 solutions, it is theoretically possible that the solutions selected for 
the experiment do not give a true representation of the entire solution 
group. However, as all experts were able to find solutions they judged 
worth of 5 points as well as solutions only worth 1 point, and the majority 
of solutions were given 3 points (i.e., the distribution of points roughly 
followed the Gaussian normal distribution), it is unlikely that the solutions 
subjected to evaluation would be so biased it would substantially affect 
the outcome of the experiment. 

Secondly, the pairing of solutions could be questioned. The evaluation 
could have been more diverse if the experts were given the solutions in 
different pairs (e.g., for expert e1 the solution a1 would have been paired 
with m5 instead of m1). One might also ask if the outcome would be 
different with different pairing. However, as the overall points are better 
for the synthesized solutions, different pairing would most probably not 
significantly change the outcome. Also, the experts were not actually told 
to evaluate the solutions as pairs – the pairing was simply done in order to 
ease the evaluation and analysis processes. 

Thirdly, the actual evaluations made by the experts should be considered. 
Naturally, having more experts would have strengthened the results. 
However, the evaluations were quite uniform. There were very few cases 
where three experts considered the synthesized solution better or equal to 
the student solution (or the student solution better or equal to the 
synthesized one) and the fourth evaluation was completely contradicting. 
In fact, there were only three cases where such contradiction occurred 
(pairs 2, 3 and 4), and the contradicting expert was always the same (e4). 
Thus, the consensus between experts is sufficiently good, and increasing 
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the number of evaluations would not substantially alter the outcome of 
the experiment in its current form. 

Finally, the task setup was limited in the sense that architecture design 
was restricted to a given selection of patterns. Giving such a selection to 
the students may both improve the designs (as the students know that 
these patterns are potentially applicable) and worsen the designs (due to 
overuse of the patterns). Unfortunately, this limitation is due to the genetic 
synthesizer in its current stage, and could not be avoided. 

5.4 DISCUSSION 
When the general implementation for GAs was defined in Section 2.2, it 
was stated that many different variables, e.g., encoding, mutation and 
crossover operations, and fitness function, need to be carefully considered 
in order to find satisfying solutions. Naturally, all of these affect the 
outcome of the search. The effect of these different variables as well as the 
properties of the different test cases and their effect to the results are now 
discussed. Finally, the limits and potential of the approach are considered. 

 

5.4.1 Input and encoding 

The chosen encoding is operation-centric, which did not affect the 
outcome in any other way than in terms of performance. When, say, 
preconditions for certain patterns required a more class-centric perception 
of the architecture, the operation-centric supergene encoding was not the 
most efficient data structure for the algorithm. However, the operation-
centric approach enabled the architecture to be encoded in such a way that 
firstly, no operation would ever be “lost”, and secondly, mutations were 
easily targeted. Had the encoding been class-centric, a feasibility check 
would have been required after each crossover and mutation in order to 
make sure that each operation (defining the system) still belongs to some 
class, and is therefore included in the solution. Thus, a separate 
subfunction for the GA would have been required to perform this check, 
and to reassign operations to classes if needed. As for mutations, only a 
single random mutation point selection sufficed to target a pattern to an 
operation, and there is no need to first perform a class selection (to find 
the gene where mutation should be targeted) and then another selection 
for operation (as patterns concentrate on operations, a specific operation 
should also be selected). 

While the selected encoding had no effect on the quality of produced 
solutions, the actual input given for encoding naturally did. The GA 
received as input the dependencies (calls) between different operations 
and an initial class structure (null architecture). Additionally, the 
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(relational) values for frequency of use, sensitivity to variation and 
amount of data needed were roughly estimated for each operation.  

The null architecture had a major impact on the outcome, as the GA was 
not allowed to alter the class structure in any other way than by applying 
patterns. In the very beginning of this research (publication [I]), the class 
structure was not given as input, and in addition to the pattern mutations, 
the GA could perform mutations such as splitting a class (dividing one 
class and the operations within it into two different classes), and merging 
classes (merging two different classes and the operations within them into 
one class). The GA was at that point also completely in charge of interfaces, 
and a separate interface for each operation could be added (or removed). 
However, it quickly became apparent that trying to simultaneously solve 
both the CRA problem (which assigning operations to classes essentially is) 
and a higher level architecture optimization problem was too much. The 
studies by Simons et al. [2010] and Bowman et al. [2010] also clearly 
indicate that the CRA problem is very complex and difficult to solve as it 
is, even without the burden of additional design problems. Thus, the 
algorithm should either work in two stages – first solve the class 
responsibility assignment problem and then begin introducing the 
patterns, or only concentrate on the higher level architecture and patterns. 
As the main focus in this work was in synthesizing the higher level 
architecture design decisions, and as a rudimentary class structure could 
quite deterministically be derived from use case and sequence diagrams, 
giving a null architecture as input seemed the best choice, although the 
limits it sets to the synthesis are recognized.  

As stated, some properties of operations were also estimated and given as 
additional input. These estimated values were used as a part of the fitness 
function in order to have more accurate fitness values. The effect of these 
estimated values could be seen in the architectures at some level, but they 
did not affect the outcome so much that incorrect evaluation of these 
properties would severely compromise the results. 

 

5.4.2 Mutations 

The GA synthesizes the design process by introducing architectural design 
patterns and styles. Naturally, the selection of available patterns and styles 
dictate the outcome, which is, to be put plainly, the null architecture 
enhanced with patterns and styles. Thus, the outcome would be quite 
different should the pattern collection contain a different set of patterns. 
Two styles and five different patterns were used as mutations, and they 
were chosen so that as little information as possible of the implementation 
of operations is required, i.e., only invocation of methods could be known, 
as this could be deduced from the sequence diagrams. However, no object 
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composition or any other instantiation related information was available, 
and thus creational patterns were not applicable at this stage. Thus, a more 
interesting topic to discuss related to mutations is how the preconditions 
for mutations affected the outcome and did the GA favor some patterns 
over others? 

Firstly, it should be noted that having one architecture style present in the 
solution did not disable the other style, i.e., both client-server style and the 
message dispatcher style could be used side by side. This made the 
algorithm more flexible, but also the produced solutions somewhat 
unnatural, as it is unlikely in practice to have a design which heavily uses 
the message dispatcher and yet suggests that the operations of one class 
should be accessed as services, especially if there is no significant data 
storage in that class. As there is a precondition related to the amount of 
operations in a class in order to apply the client-server style, it was used 
sparingly, and never quite reached the level of a “real” client-server 
architecture. It also appeared that the GA somewhat favored the client-
server style for those classes which have no or very few calls to other 
classes. The server was also used to introduce indirect support for 
modifiability in the scenario case studies (publication [III]). These design 
choices can not be directly explained by the fitness function or mutation 
definitions, but demonstrate the power of GA: the client-server style is 
actually very natural to use for classes in the end of a call sequence 
(operations which are implemented as services do not need to call other 
services). The message dispatcher style, in turn, was more common for all 
solutions (once its use was eased by the fitness function or complementary 
crossover), as there were no preconditions regarding its application 
(except in the latest version, operations within the same null architecture 
class were forbidden to use the message dispatcher for communication). 

Secondly, Façade and Mediator were practically never used. This was due 
to the structure of used sample systems and using the null architecture for 
the basic class structure, for which the preconditions for Façade and 
Mediator could not be satisfied. This most likely slowed down the 
evolution to some extent, as each time the mutation selection landed on a 
Façade or Mediator related mutation, it had no affect on the solution, 
which subsequently carried on the next generation as it was. Thus, if these 
two patterns had looser preconditions (although, in that case, they would 
not correspond to the original definitions) or would have been substituted 
by other patterns, the evolution might have performed faster and the GA 
converged quicker. 

Thirdly, the preconditions for Template Method and Strategy had a 
noticeable effect on the outcome. In several studies, the GA seemed to 
favor one of these two patterns over the other, as the precondition was 
very similar for both patterns. As Template Method resulted in smaller 
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efficiency penalty, it was most often favored over Strategy. The Adapter 
pattern, in turn, was commonly applied in most studies, as it had a very 
easily satisfiable precondition. The preconditions also had the effect that 
solutions were very similar; when there were only a few practical places to 
apply certain patterns, the GA seemed to favor certain operations. This, of 
course, could be dues to the estimated properties, especially in the case of 
variability. 

 

5.4.3 Fitness function  

The definition of the fitness function clearly affected the outcome, as the 
architectures were only evaluated based on the attributes considered in 
the fitness function. However, as choosing the given quality attributes has 
been discussed already in Chapter 3, and as there is little point in 
discussing what the solutions would have been like had the fitness 
function evaluated, say, reliability, I will concentrate on other aspects of 
the fitness function.  

The accurate calibration of the weights for the single weighted fitness 
function had the most drastic affect on the results. In most of the studies 
(publications [I-V], [VII] and [VIII]), the fitness function enabled an 
exponential reward for positive modifiability if the message dispatcher 
was extensively used. In order to ensure that the values for all 
subfunctions were at same range, positive modifiability was given a rather 
small weight in the standard experiments. Thus, the message dispatcher 
was very rarely seen if modifiability was not valued over other quality 
attributes, as the penalty for using the dispatcher was quite big (as a result 
of negative efficiency). Only after the application of complementary 
crossover (Section 4.2) could the message dispatcher be seen in the 
architectures.  

Also, as stated before, the architectures are most efficient at null 
architecture stage. Negative efficiency penalizes connections between 
classes and using the message dispatcher and server, which are all 
minimized in the null architecture. At null architecture stage the message 
dispatcher is not present, the client-server style is not applied, and there 
are no “extra” connections on the account of having pattern related classes. 
Thus, after the evolution begins, the efficiency value will begin to decrease, 
and the modifiability value increase – if the subfunctions are well-defined 
and equally weighted. Careful assessment of the fitness function was 
needed to achieve this balance. For example, once the message dispatcher 
related reward was altered (and subsequently, the normalized weight for 
the modifiability sub-fitness was re-evaluated), the fitness curve began to 
behave oddly and was not able to reach good values at all. In order to 
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correct this, the pattern-related reward in the modifiability sub-fitness was 
introduced to the last version of the fitness function.  

Finally, a significant question related to the fitness function is whether it 
portrays the “true” quality of a given system. The fitness function appears 
to be a good indicator, but single values should not be compared. A better 
choice is to use the multi-objective approach, and consider the architecture 
from several viewpoints. However, if the single weighted fitness function 
is used, comparison can be made using ranks. The design which has the 
highest fitness values can quite reliably be considered significantly better 
than the design at the tenth place in the population sorted by fitness 
values. The Pareto front related evaluation in publication [IX] also 
supports this.  

 

5.4.4 Case systems 

Two different sample systems were used for case studies. Analysis was 
made between and within cases. As stated, there were very few 
differences between the solutions for different cases although the sample 
systems were (intuitively) quite different. It was rather obvious that the 
GA only considered the structure of the system from the viewpoint of how 
easy it was to apply different patterns and increase the fitness value. The 
GA was, however, not able to deduce tacit information of the purpose of 
systems, which was portrayed in the solutions.  

The solutions for ehome rarely contained the message dispatcher because 
the classes were quite large, and most of the dependencies between 
operations were within-class calls, and could not use the message 
dispatcher. The structure for ehome also enabled the use of several 
Strategy and Template Method patterns; some solutions had as many as 
six low-level patterns involved with one class, e.g., the CoffeeMachine. 

For robo, where the structure was different (many small classes and 
dependencies between classes), the effect was naturally the opposite. The 
message dispatcher was often found, and there were usually just one or 
two patterns per class. One remark concerning the use of client-server: in 
Subsection 5.3.2 it was stated that the GA favored this style for classes at 
the end of a call sequence, which mostly corresponds to results for ehome. 
However, for robo, the client-server style was firstly much less used than 
with ehome, and secondly, it was also commonly applied to classes in 
“mid-chain” (in addition to those at the end of call sequence). This is due 
to the fact that for robo, the classes at the end of a call sequence usually 
contained very few operations, and thus this mutation was not applicable, 
because of the preconditions.  
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The message dispatcher style is a good example of how the GA is not able 
to detect the particularities of the system under design. The message 
dispatcher would actually be quite a desired architecture solution for 
ehome, but not so much for robo. However, as the GA is only given the 
crude structure of these systems, and no information about what is 
suitable for what kind of system, in the used cases it applied the message 
dispatcher style in a completely opposite way than a human designer 
would.  

A significant point regarding the case studies is that, in practice, the 
quality requirements for the used sample systems would most likely not 
be completely equally weighted, but, as discussed in Section 1.4, for robo 
efficiency would be important, and ehome would probably be mostly 
optimized towards modifiability. Thus, the set up used in the different 
experiments was not entirely natural, as in order to achieve comparable 
results, all quality attributes were weighted equally. If the synthesis was 
performed with the aim of producing as good a real-life system as possible, 
quality attributes would be weighted more realistically, or the multi-
objective approach would be used. For example, obvious choices such as 
how to use the message dispatcher, could be relayed to the GA in the form 
of weights (e.g., for ehome, overweight modifiability, for robo, overweight 
efficiency) or by adjusting the mutation probabilities (e.g., very low 
dispatcher probability for robo). In the presented case studies, however, 
this has not been done, as the aim was to achieve unbiased results and see 
how “intelligent” the synthesizer is on its own. 

Naturally, using more cases would have significantly increased the level 
of confidence in evaluation and further confirmed the results. However, in 
order to actually get new results the cases should be carefully selected. 
Firstly, the structure should enable the use of Mediator and Façade, in 
order to study how the GA performs when such middle-level patterns are 
actually applicable. Secondly, the case system should be significantly 
larger in size than ehome or robo. The large size would most probably also 
better enable using the mid-level patterns. Finally, it would be good if the 
quality attributes would actually be balanced (unlike with ehome and 
robo), or if there would be no clear intuition as to what is the best solution, 
and thus the GA solutions could truly be taken as suggestions as they are.  

Bringing new case(s) would provide new light to this research. Mainly, is 
the GA able to sophisticatedly introduce mid-level patterns, or are they 
used simply because it is possible? A larger system would show how 
effective the evolution process actually is – does the GA require a longer 
time (more generations) in order to produce satisfying results when 
intuitively there is more work to be done?  
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However, while more cases would bring valuable information of the 
synthesis, the performed case studies are quite sufficient in showing the 
applicability of genetic algorithms for pattern-based software architecture 
synthesis. The two cases are medium-sized systems which differ in 
structure and purpose, and thus provide information on how the 
algorithm performs in two very different situations, and means to deduce 
how the GA will most likely perform for systems where the structure is 
somewhere in between those used here. 

  

5.4.5 Limits and potential 

There are, naturally, many limits to the synthesis process at this stage. The 
synthesis is dependent on the selection of patterns, and thus completely 
realistic architectures are not available, as this small selection of design 
patterns is rarely sufficient. The selection of quality attributes used for 
evaluation is also very limited, as architectures are usually evaluated from 
many different viewpoints. Most importantly, the GA does not have the 
ability to identify concepts within the systems under design: it only 
recognizes the information which is explicitly given to it.  

Thus, the results of the experimental study discussed in Section 5.2 are 
probably a result of these limitations: should the GA be provided with a 
wider selection of tools (patterns) and more information of the system, the 
results would most likely far exceed those of the third year student. While 
the students were given instructions to concentrate only on certain quality 
aspects and a limited amount of information regarding the nature of the 
system, these recommendations naturally did not inhibit the students 
from also considering the design task from other viewpoints as well and 
using intuitive knowledge not available for the GA. 

The GA does, however, have a lot of potential. It is already significantly 
faster than the average student. The GA is also unbiased – while not being 
able to use intuitive knowledge is a weakness, it is partly a strength as 
well, as the GA does not care about how things have been usually done 
before, it only cares about increasing the fitness values. The multi-
objective GA is also able to produce several competing solutions for the 
same quality requirements at once, with different emphasis on the 
requirements. No human would instantly know how to adjust the design 
if the emphasis on quality requirements would suddenly change. 

Thus, theoretically, the actual limits to how far the synthesis can be taken 
are still quite far away. The pattern collection could be significantly 
increased, if the patterns would be stored into a kind of database, and the 
mutations would not be hardcoded, as they are in the current 
implementation. Further improving the scenario-based evaluation would 
make it easier to add other quality attributes in order to produce a more 
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detailed evaluation – while transforming some quality requirements to 
metrics might be nearly impossible, transforming them into simple 
scenarios is always possible and should not even be too complex, as this is 
done all the time in real-life evaluation. As for providing the GA more 
information about the system: anything can be encoded using the current 
supergene format. For example, the supergene could be extended with a 
field “system information”, and constant variables could be defined to 
introduce different types of information. This could be introduced to the 
GA in the form of a dummy gene only containing this information (as 
with the message dispatcher). The GA could then consider this extra 
information if it affects the application of mutations.  

At its current stage the synthesizer could already be used as a way to 
produce a kind of “jump-start solution”. An appealing idea relying on this 
kind of initially synthesized solution is incremental design, where the 
human and synthesizer take turns in designing the architecture. The initial 
solution would be a synthesized one, and the human could freeze the 
design solutions (patterns and styles) which are particularly good. The 
human architect could then guide the synthesizer by adding some new 
design solutions, and freezing them as well. This improved solution could 
then be given to the synthesizer, which would further enhance the 
architecture. Repeating these steps would ultimately produce an 
architecture which satisfies all quality requirements. This kind of 
incremental design is already supported by tools such as ArchE 
[McGregor et al., 2007], which, however, uses deterministic methods for 
design. The GA, in turn, should be able to produce much more 
imaginative solutions, as it is not required to follow a direct path in the 
design, but can search for better options from a much wider spectrum. 
Interestingly, the ArchE tool uses very similar input to what is given for 
the GA synthesizer. Both use the class structure of a system as a base, and 
use encoded quality requirements as means to guide the development. 

To summarize, there are currently many factors that affect the quality of 
synthesized solutions. However, many of these factors can be dealt with, 
and bringing the synthesis to a higher level is realistic. While the lack of 
intuitive knowledge is also a great strength for the GA, it is still its main 
weakness. Thus, it is rather unlikely to expect that software architects 
would accept a synthesized solution “as it is”. Hence, the synthesizer may 
be viewed as a method for jump starting the design process, and 
significantly easing the work load of human software architects, who 
would still be required for making the final decision of what design to use. 
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6 Conclusions 

This chapter concludes the thesis. As the main results have been discussed 
at length in the previous chapter, here the focus is on the actual research 
questions presented at the beginning of this thesis. The questions are 
revisited and answered in the following. 

 
1. What information of the system (and its architecture) under design is 

required as input for the GA in order to perform the synthesis?  
 

Results show that a class structure in the form of a null architecture 
accompanied with a call sequence is quite sufficient for this kind of 
pattern-based approach. The null architecture can be deterministically 
elicited from use cases and sequence diagrams. Additional properties for 
different operations, such as frequency of use and sensitiveness to 
variation are extremely beneficial, and help improve the quality of 
solutions, but similar information could be encoded, e.g., as scenarios. As 
discussed, the class structure provided by the null architecture should be 
fixed. The GA is not able to handle both pattern selection and class 
structure optimization. Class responsibility assignment, as shown, is a 
completely different, highly complex design problem.  

If the design should be further optimized, some information of the type of 
the system under design would be beneficial to include. The case studies 
were made on an embedded system and framework system, but the GA 
was unable to deduce this type of tacit information, and thus some design 
solutions were quite contradictory to human intuition. Thus the ultimate 
answer from the viewpoint of this thesis would be: a class structure and 
call sequence between operations are satisfactory and the only things 
actually needed, however, including operation properties would be very 
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useful, and further including higher-level information of system purpose 
could be beneficial. 

 

2. How can the architecture be numerically evaluated in the fitness 
function? The GA is not a human with hidden knowledge, and it needs a 
well-defined formula to calculate the quality of a proposed solution. Are 
current software metrics sufficient for this, and what kinds of methods 
are needed to achieve accurate evaluation? 

 

In order to achieve accurate evaluation, several detailed issues need to be 
considered. Firstly, as much information as possible should be elicited 
from the system, i.e., if possible, the different properties of operations as 
discussed with Question 1 should be used. Secondly, as much information 
as possible regarding how different design solutions affect quality 
attributes should be elicited. This is apparent in the current definition of 
the fitness function, as given in Subsection 3.1.4, as there are several 
arguments regarding the message dispatcher and server use. These 
detailed design decisions are not considered by general object-oriented 
metric sets, but are crucial in accurate evaluation of synthesized solutions. 
Finally, the level of detail can be increased by adding scenario evaluations, 
as discussed in Section 4.3. Once all these things are considered, metrics 
can be tuned so that accurate evalution of the architecture is achieved, as 
demonstrated by the different case studies. 

 

3. Is a traditional and simple GA enough, or should some more complex 
operations be studied, in order to comply with the problem of software 
architecture design? 

 

A traditional GA is not enough. Firstly, the encoding mechanism itself 
differs from those used with simpler problems: the encoding uses several 
fields for each gene instead of just one, and some fields contain instances 
which in turn hold more data particles than just one. Secondly, a simple 
random crossover is not the best choice, as both asexual reproduction (in 
terms of speed) and the complementary crossover (in terms of quality) 
performed significantly better than a random crossover. Finally, the GA 
should be multi-objective, and not rely on a single weighted fitness 
function. While multi-objective approaches are becoming more common, 
there is still a big difference to the traditional, “simple” GA. 
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4. How far can the automated design be taken? What is the level of quality 
that can be achieved with automation?  

 

The most interesting question – what is the actual level of quality that can 
be achieved, and how far can the automation be taken? The simple, one-
line answer would be, the level of a third year software engineering 
student, as discovered in the experiment presented in Section 5.3. 
However, this is not the whole truth, and this question should be 
discussed at some length. 

Firstly, GA-based software architecture design at this level is itself a novel 
concept. Thus, the fact that automation would be possible to some extent 
at all, is already remarkable. It is, in fact, possible to define the fitness 
function and operations in such a way that given a class diagram as a 
starting point, the GA will produce sensible solutions.  

Secondly, the GA showed quite surprising problem solving capabilities in 
particularly when used with the scenario fitness extension. When the GA 
was aware that some operations were especially crucial for the design, it 
attempted to “help” these operations in any possible way – even indirectly. 

Thirdly, while some may consider it quite a troubling thought that the GA 
is only at the level of a third year engineering student, it is not actually a 
bad achievement. The GA only relies on a fixed fitness function, has no 
higher-level knowledge of the systems under design, and as a result, no 
intuition of generally accepted design choices either. The students, 
however, have a lot of tacit information not available for the GA – and as a 
reminder, several students today are employed by software companies at 
an early stage of their studies already. Compared to this, my GA is 
performing quite well considering that it is practically only a newborn in 
the field of software architecture design. 

Finally, to what extent could the design process be automated, if the GA 
was further improved? In my view, the design process can be automated 
so much that architects are only required to press the button for a 
synthesizer and make a decision on what solution of the range of options 
provided by the GA is the ultimately best one. This, of course, still 
requires much improvement. However, if with a limited set of patterns, a 
fairly minimal amount of information as input, and a crude fitness 
function the GA is able to reach the level of a nearly ready B.Sc., then I see 
no reason why it would not be able to reach the level of a software 
engineering expert. This kind of optimistic view does, of course, require 
that the collection of patterns is significantly increased, some tacit 
information of the system is made available, and that the fitness function 
is further developed to meet the requirements of the new design choices.  
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It can clearly be seen that the better results we want to achieve with pure 
synthesis, the more information we need to provide the GA with. 
However, eliciting any new information of the system under design 
requires work effort from the architect, as more detailed evaluation of the 
underlying requirements must be conducted. The more work is needed to 
use the synthesizer, the less it fills its purpose as an aid to the architect. 
Thus, either the GA should be tuned so that better results can be achieved 
without too much additional effort from the architect, or the synthesized 
solution is considered more as a jump-start to the design process, rather 
than a finalized solution. 

To conclude, in a utopistic dream it is possible to refine the synthesizer so 
that the architect need nothing more than push a button and a beautiful 
design would be produced within minutes. However, as this ideal world 
is still rather far away (although, in my view, not completely unreachable), 
at this point it may be more realistic to picture the synthesizer working 
side by side with the architect, providing means for incremental design. 
Thus, the GA-based approach should even in its current state be able to 
produce quality designs, if it is just nudged to the proper direction at 
certain intervals. With further development to the synthesizer, the need 
for these nudges should decrease, until finally the GA will be able to 
produce quality designs on its own. 
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7 Introduction to Publications 

This thesis contains an introductory part and nine publications. The 
publications are briefly summarized here, as well as the author’s 
contribution to each publication. 

[I]  O. Räihä, K. Koskimies and E. Mäkinen, Genetic Synthesis of 
Software Architecture, In: Proc. of the 7th International Conference on 
Simulated Evolution and Learning (SEAL'08), Melbourne, Australia. 
December 2008, Springer LNCS 5361, 565-574. 

 
In publication [I] the foundations for the research are defined. 
Genetic synthesis of software architecture is presented so that the 
algorithm only takes as input the call sequence of operations and 
uses message dispatcher architecture style along with two patterns 
for mutations, as well as decomposition and interface introduction. 
The author of this thesis was the main author in this publication, and 
responsible for implementation and experiments. Professors 
Koskimies and Mäkinen acted as supervisors and were involved 
with designing the experiments.  

 
[II]  O. Räihä, K. Koskimies, E. Mäkinen and T. Systä, Pattern-Based 

Model Refinements in MDA, Nordic Journal of Computing, 14 (4), 2008, 
338-355. 

 
In publication [II] domain knowledge is first used to aid the GA in 
building the architecture. The approach is now extended so that it is 
applicable for MDA, and the amount of mutations is increased with 
three new patterns and the client-server architecture style to enable 
more varied solutions. The author of this thesis was the main author 
in this publication, and responsible for implementation and 
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experiments. Professors Koskimies and Mäkinen acted as supervisors 
and were involved with designing the experiments, while Professor 
Systä acted as supervisor and the MDA expert.  

 
[III]  O. Räihä, K. Koskimies and E. Mäkinen, Scenario-Based Genetic 

Synthesis of Software Architecture, In: Proc. of the 4th International 
Conference on Software Engineering Advances (ICSEA’09), Porto, 
Portugal. September 2009, IEEE CS Press, 437-445. 

 
In publication [III] scenarios are used for a more detailed evaluation 
of architecture. A new pattern is added to the pattern collection used 
for mutations. The author of this thesis was the main author in this 
publication, and responsible for implementation and experiments. 
Professors Koskimies and Mäkinen acted as supervisors and were 
involved with designing the experiments.  

 
[IV]  O. Räihä, K. Koskimies and E. Mäkinen, Empirical Study on the 

Effect of Crossover in Genetic Software Architecture Synthesis, In: 
Proc. of the World Congress in Nature and Biologically Inspired 
Computing (NaBiC’10), Coimbatore, India. December 2009, IEEE 
Press, 619-625. 

 
In publication [IV] a new kind of reproduction method, “asexual 
reproduction” was experimented, as a random crossover seemed 
insufficient for the synthesis task. The author of this thesis was the 
main author in this publication, and responsible for implementation 
and experiments. Professors Koskimies and Mäkinen acted as 
supervisors and were involved with designing the experiments.  

 
[V]  Hadaytullah, S. Vathsavayi, O. Räihä and K. Koskimies, Tool 

Support for Software Architecture Design with Genetic Algorithms, 
In: Proc. of the 5th International Conference on Software Engineering 
Advances (ICSEA’10), Nice, France. August 2010, IEEE CS Press, 359-
366. 
 
Publication [V] presents tool support for the synthesizer. The author 
of this thesis was responsible for the underlying genetic algorithm 
which performs the synthesis and interfacing it with the tool, while 
Mr. Hadaytullah (M.Sc.) and Mr. Vathsavayi (M.Sc., tech) were 
mainly responsible for experiments and implementing the user 
interface. Professor Koskimies acted as supervisor and was involved 
with designing the experiments.  
 

[VI]  O. Räihä, A Survey on Search-Based Software Design, Computer 
Science Review, 4 (4), 2010, 203-249. 
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Publication [VI] provides a comprehensive survey of studies in 
search-based software design. The author of this thesis was the sole 
author of this publication.  
 

[VII]  O. Räihä, K. Koskimies and E. Mäkinen, Complementary Crossover 
for Genetic Software Architecture Synthesis, In: Proc. of the 
International Conference on Intelligent Systems Design and Application 
(ISDA’10), Cairo, Egypt. December 2010, IEEE Press, 260-265. 
 
Publication [VII] presents yet another kind of reproduction method, 
complementary crossover, which is implemented in two ways. The 
author of this thesis was the main author in this publication, and 
responsible for implementation and experiments. Professors 
Koskimies and Mäkinen acted as supervisors and were involved 
with designing the experiments.  

 
[VIII] O. Räihä, Hadaytullah, K. Koskimies and E. Mäkinen, Synthesizing 

Architecture from Requirements: A Genetic Approach, In: P. 
Avgeriou, J. Grundy, J. G. Hall, P. Lago and I. Mistrik (eds), Relating 
Software Requirements and Architectures, Springer, to appear. 
 
Publication [VIII] presents a comprehensive view of the genetic 
synthesis process. The process is depicted in more detail, with 
emphasis on collecting requirements to give as input for the GA. This 
publication also discusses an empirical study where synthesized 
solutions are compared to student solutions. The author of this thesis 
was the main author in this publication, and responsible for 
implementation and experiments. Mr. Hadaytullah (M.Sc.) was 
mostly responsible for matters related to requirement gathering, and 
Professors Koskimies and Mäkinen acted as supervisors and were 
involved with designing the experiments.  

 
 [IX]  O. Räihä, K. Koskimies and E. Mäkinen, Generating Software 

Architecture Spectrum with Multi-Objective Genetic Algorithms, In 
Proc. of the Third World Congress on Nature and Biologically Inspired 
Computing (NaBIC’11), Salamanca, Spain, October 2011, IEEE Press, 
to appear. 
 
 Publication [IX] presents a multi-objective approach for genetic 
software architecture synthesis. Pareto optimality is applied, and a 
palette of solutions is achieved. The Pareto fronts are also evaluated 
against scenarios to compare how the fitness values correspond to 
human evaluation. The author of this thesis was the main author in 
this publication, and responsible for implementation and 
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experiments. Professors Koskimies and Mäkinen acted as supervisors 
and were involved with designing the experiments.  
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Abstract. Design of software architecture is  intellectually one of  the most de
manding  tasks  in  software  engineering.  This  paper  proposes  an  approach  to
automatically  synthesize  software  architecture  using  genetic  algorithms.  The
technique  applies  architectural  patterns  for  mutations  and  quality  metrics  for
evaluation,  producing  a  proposal  for  a  software  architecture  on  the  basis  of
functional  requirements  given  as  a  graph  of  functional  responsibilities.  Two
quality attributes, modifiability and efficiency, are considered. The behavior of
the genetic  synthesis process  is  analyzed with  respect  to quality  improvement
speed, the effect of dynamic mutation, and the effect of quality attribute priori
tization. Our tests show that it is possible to genetically synthesize architectures
that achieve a high fitness value early on.

Keywords: architecture synthesis, genetic algorithm, searchbased software en
gineering, software design

1   Introduction

A  persistent  dream  of  software  engineering  is  to  be  able  to  automatically  produce
software systems based on their requirements. While the synthesis of executable pro
grams is in general beyond the limits of current technology, the automated derivation
of architectural designs of software systems is conceivable. This is due to the fact that
architectural  design  largely  means  the  application  of  known  standard  solutions  in a
combination that optimizes the quality properties (like modifiability and efficiency) of
the  software  system.  These  standard  solutions  are  well  documented  as  architectural
styles [1] and design patterns [2].  In addition, architectural design is guided by gen
eral principles like decomposition and usage of interfaces. Here we call all these solu
tions jointly (architectural) patterns.

In this paper we study the application of genetic algorithms [3]  to software archi
tecture  synthesis.  Architectural  patterns  provide  a  natural  interpretation  for  genetic
operations: a mutation can be realized as either the application or removal of an archi
tectural pattern, and crossover operation can be realized by merging two architectures
without  breaking  existing  pattern  instances.  Fitness  function  can  be  expressed  in
terms  of  quality  metrics  available  in  the  literature.  Evaluating  an  architecture  is  a
multicriteria problem, but in the present implementation we have decided to add the
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objective functions together using the weighted sum approach. This is done for mak
ing the implementation more efficient. Our focus is on developing the required tech
niques  for genetic architecture synthesis, and on the  investigation of  the overall be
havior of the genetic architecture synthesis process. The proposed architecture is pro
duced  as  a  UML  class  diagram  with  (possibly  stereotyped)  classes,  interfaces  and
their mutual dependencies.

The main contributions of this work are a setup for genetic patternbased software
architecture synthesis  starting  from abstract requirements, and experimental analysis
of the behavior of the genetic synthesis process, especially with regard to the devel
opment  of  fitness  values.  The  former  includes  an  approach  to  represent  functional
requirements  as  a  responsibility  graph,  techniques  for  representing  architectural  in
formation as genes,  for computing quality  based  fitness, and  for architectural cross
over and dynamic patternbased mutation, and a demonstration of the genetic synthe
sis using an exemplary set of architectural patterns. The latter includes an analysis of
the  quality  improvement  speed,  the  effect  of  dynamic  mutations,  and  the  effect  of
prioritized quality attributes.

2 Related Work

Although  our  work  differs  significantly  from  what has  been previously  done  in  the
field of searchbased software engineering, genetic algorithms have been used widely
for software clustering and refactoring.

The goal of software clustering or module clustering is to find the best grouping of
components to subsystems in an existing software system. The problem is to partition
the graph so that the clusters represent meaningful subsystems.

The genetic algorithm presented by Clarke et al. [4] for the clustering problem is
quite straightforward:  the main challenge  is to  find a suitable encoding, after which
traditional mutation and crossover operators are used.

Harman et al. [5] approach the clustering problem from a reengineering point of
view: after maintaining a system  its modularization might not be as good as  it was
when it was taken to use.

Seng et al. [6] represent the system as a graph, where the nodes are either subsys
tems or classes, and edges represent containment relations (between subsystems or a
subsystem and a class) or dependencies  (between classes).    In  this  application each
gene  represents a  subsystem, and each subsystem  is  an element of  the power set  of
classes.

Systems  refactoring  is  a  more  delicate  problem  than  module  clustering.  When
refactoring a system, there is  the risk of changing the behavior of a system by, e.g.,
moving methods from a subclass to an upper class [7]. Hence, the refactoring opera
tions should always be designed so that no illegal solutions will be generated.

O’Keeffe and Ó Cinneide [8] define the refactoring problem as a combinatorial op
timization  problem: how  to  optimize  the  weighting of  different  software  metrics  in
order to achieve refactorings that truly improve the system’s quality.   Seng et al. [7]
have a similar approach, as they attempt to improve the class structure of a system by
moving attributes and methods and creating and collapsing classes. O’Keeffe and Ó



Cinneide [9] have continued their research with the use of the representation and mu
tation and crossover operators introduced by Seng et al. [7].

Harman and Tratt [10] introduce a more usercentered method of applying refac
toring. They  offer  the user the option to choose  from several  solutions produced by
the search algorithm.

Amoui et al. [11] have applied genetic algorithms for finding the optimal sequence
of design pattern transformations to increase the reusability of a software system. Our
approach is similar to Amoui et al.’s work in that we use highlevel structural units,
patterns,  as  the  basis  of  mutations  in  a  genetic  process.  We  have  also  applied  their
supergene idea, to be discussed in Section 3, as a starting point for representing the
architecture. However, there are several differences.

First, we consider not only reusability (or modifiability) as the quality criteria, but
in principle we are  interested in the overall quality  of  the architecture.  In  this paper
we focus on two quality attributes, efficiency and modifiability.

Second, we aim at the synthesis of the architecture starting from requirementlevel
information,  rather  than at  improving an  existing architecture.  Third,  we  do not  re
strict  to  design  patterns,  but  consider  more  generally  various  kinds  of  architectural
solutions at different levels.

Our viewpoint is different from that of system clustering and refactoring. System
clustering  considers  software  architecture  only  from  the  decomposition  perspective,
and  software  refactoring  aims  at  structural  finetuning  of  software  architecture,
whereas our approach strives for automating the entire architecture design process.

3 Technique for Genetic Architecture Synthesis

3.1 Representing functional requirements

A major problem in automated software architecture synthesis is the representation of
functional requirements. We have adopted here an approach where functional require
ments are represented as a responsibility dependency graph, each node representing a
responsibility,  and  each  directed  edge  representing  a  dependency  between  the  two
responsibilities. Here a responsibility denotes an elementary task or duty that can be
identified for the system by analyzing its functional requirements (e.g. use cases). A
responsibility depends on another responsibility if the former needs the latter to fulfill
its  task. These responsibilities remain as elements of the architecture as they are as
signed to interfaces and classes, although they carry no semantics as far as the archi
tecture  synthesis  is  concerned.  The  architecture  produced  by  the  genetic  synthesis
reflects functional requirements only to the extent the responsibilities have been iden
tified.

To allow the evaluation of the quality (here efficiency and modifiability) of the ar
chitecture, the responsibilities can (but do not have to) be associated with values cha
racterizing,  e.g.,  parameter  size,  time  consumption,  and  the  variability  factor  of  the
responsibility. However, in this paper, we assume that the values can be derived from
the requirements; the quality of the results of this technique depends on the accuracy
of these values. The given values for the attributes are relative, rather than absolute.



In this work we have used an intelligent home system as a case study [12]. Such a
system provides an infrastructure and interfaces for controlling various home devices,
like  lights, drapes,  and media devices. A  fragment of  the  responsibility dependency
graph  of  this  system  is  depicted  in  Figure  1,  where  the  dependencies  between  and
names of responsibilities are shown, as well as property values for variability factor,
parameter size and time consumption (in this order). For example, the drapeState re
sponsibility is a data responsibility, marked with a thicker line. In the middle of the
graph is the responsibility CalculateOptimalDrape, which has a variability of 3, as the
optimal drape position can be computed differently in different types of homes. As it
is  a  heavy  operation,  its  parameter  size  and  time  consumption  are  also  among  the
highest values of  those shown here. Responsibilities with such high attribute values
play an important role when constructing quality architecture. The entire responsibil
ity set for this system contains 52 responsibilities and 90 dependencies between them.

Figure 1. Fragment of a responsibility dependency graph

3.2 Architectural patterns

In the context of the present paper, an architectural pattern can be any general struc
tural solution applied at the architectural level to improve some quality attribute of the
system. Each architectural pattern gives rise to two mutation operations: introducing
and removing the pattern.

In our experiments, we have used the following list of architectural patterns:
• decomposing a component
• using an interface
• Strategy design pattern [2]
• Façade design pattern [2]
• message dispatcher architectural style [1]
• communication through a dispatcher.

This collection of architectural patterns is of course very small, and intended only
for  experimentation  purposes.  We  wanted  to  cover  different  levels  of  architectural
patterns:  basic  practices,  lowlevel  design  patterns  (Strategy),  mediumlevel  design
patterns  (Façade),  and highlevel  architectural  styles  (message dispatcher).  The  last
architectural  pattern  is  introduced  for  allowing  components  to  join  a  message  dis
patcher  introduced  earlier.  We  expect  that  a  real  architecture  synthesis  tool  would
employ hundreds of architectural patterns.
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3.3 Genetic encoding of software architecture

In order for the genetic algorithm to operate on software architecture, the architecture
needs to be represented as a chromosome consisting of genes. For efficiency, in this
experiment the architecture encoding is designed to suit the chosen set of architectural
patterns.  We  have  followed  the  supergene  idea,  introduced  by  Amoui  et  al.  [11],
where each gene has several fields to store data in. Taking this idea as a starting point,
it  is  quite  straightforward  to  place  all  information  regarding  one  responsibility  into
one supergene. This also makes it easier to keep the architecture consistent, as no re
sponsibility  can  be  left  out  of  the  architecture at any  point,  and  there  is  no  risk of
breaking the dependencies between responsibilities.

There are two kinds of data regarding each responsibility r i. Firstly, there is the ba
sic information concerning ri given as input, containing the responsibilities Ri = {rk,
rk+1, … , rm}  depending on ri, its name ni, type di, frequency fi, parameter size pi, exe
cution time ti, call cost ci and variability vi. Secondly, there is the information regard
ing the responsibility ri’s place in the architecture: the class(es) Ci ={Ci1, Ci2, … , Civ} it
belongs to, the interface Ii it implements, the dispatcher Di it uses, the responsibilities
RDi ⊂  Ri that call it through the dispatcher, and the design pattern Pi it is a part of.
The  dispatcher  is  given  a  separate  field  as  opposed  to  other  patterns  for  efficiency
reasons.  Figure  2  depicts  the  structure  of  a  supergene.  The  actual  chromosome  is
formed by simply collecting all supergenes [12].

Ri ni di fi pi ti ci vi  Ci Ii  Di  RDi Pi

Figure 2. Supergene SGi for responsibility ri

Although basic operations in the architecture are relatively safe with this represen
tation method (i.e., the responsibilities and their dependencies stay intact in the archi
tecture), the design patterns produce challenges at the chromosome level, as careless
operations  can  easily  break  patterns  and make  the  architecture  incoherent.  Thus,  in
order to quickly check the legality of an operation with regard to patterns, a Pattern
field is located in every supergene. The Pattern field has as attributes the classes, re
sponsibilities and the interfaces involved with that particular pattern.

An initial population is  first produced, where only basic structures,  such as class
division and interfaces for the responsibilities are randomly chosen [12]. To ensure as
wide a traverse through the search space as possible,  four special cases are inserted:
all  responsibilities  being  in  the  same  class,  all  responsibilities  being  in  different
classes, all responsibilities having their own interface, and all responsibilities being as
much grouped to same interfaces as the class division allows.

3.4 Mutation and crossover operations

All mutations are implemented as either introducing or removing an architectural pat
tern,  i.e.,  decomposition,  interfaces,  message  dispatcher  and  design  patterns.  This
ensures  a  free  traversal  through  the  search  space,  as  moves  that  may  have  seemed
good at one time can be cancelled later on.



All mutations except for introducing a message dispatcher or a design pattern op
erate purely at supergene level by changing the value of the corresponding field. In
troducing a new dispatcher to the system, however, is achieved by adding a “dummy”
gene  with  only  the  dispatcher  field  containing  data.  Introducing  design  patterns,  on
the other hand, operate at supergene level, but affect more than one gene.

The  legality  of a mutation  is always  checked before  it  is administered  to  the se
lected gene. For this purpose, “architectural laws” have been defined. In our experi
ments, we have used three kinds of laws. Firstly, these laws ensure uniform calls be
tween two classes: a class can communicate with another class only in a single man
ner  (e.g.  through an  interface  or  through  a  message  dispatcher).  Secondly,  the  laws
state some ground rules about architecture design,  for example,  that a responsibility
can appear at most once in an interface. Thirdly, the laws regulate the order of intro
duction. For instance, a dispatcher must be introduced to the system before responsi
bilities can use it for communication.

Mutations are given a certain probability with which they are applied. The roulette
wheel method [3] is used for selecting a mutation. A “null” mutation is also possible,
giving a chromosome the chance to stay intact into the next generation. In addition, to
study the effect of favoring more fundamental solutions in early stages, dynamic mu
tation  probabilities  have  been  defined  for  a  set  of  patterns  (dispatcher,  Façade  and
Strategy). After 1/3 of  the generations have passed,  the probability  of  introducing a
dispatcher  to  a  system  is  decreased,  and  the  probability  of  introducing  a  Façade  is
increased respectively. After traversing through another 1/3 of generations, the same
is done with Façade and Strategy. The hypothesis is that favoring fundamental solu
tions  (like  architectural  styles)  in  the  earlier  stages  of  evolution  leads  to  a  stronger
core architecture that can be more easily  refined at  later  stages by  lowerlevel  solu
tions.

In  our  approach,  the  crossover  operation  is  also  seen  as  a  type  of mutation, and
thus, it is also included in the “roulette wheel”. The crossover is implemented as a tra
ditional  onepoint  crossover  with  a  corrective  function.  In  the  case  of  overlapping
patterns, the left side of the offspring is always considered to be the valid one, and the
right side of the crossover point is corrected so that the whole architecture is valid.

 The crossover probability increases linearly in regard to how high the fitness of an
individual is in the population, which causes the probabilities of mutations to decrease
in order to fit  the  larger crossover “slice”  to  the “wheel”. Also, after crossover,  the
parents are kept in the population for selection. These actions favor strong individuals
to be kept intact through generations.

The  actual  mutation  and  crossover  points  are  selected  randomly.  However,  we
have  taken advantage of  the variability property of  responsibilities with  the strategy
and dispatcher communication mutations. The chances of a gene being subjected  to
these  mutations  increase  with  respect  to  the  variability  value  of  the  corresponding
responsibility. This should favor highly variable responsibilities.

3.5 Fitness function

The fitness function is based on widely used software metrics [13], most of which are
from  the  metrics  suite  introduced  by  Chidamber  and  Kemerer  [14].  These  metrics



have been used as a starting point for the fitness function, and have been further de
veloped and grouped to achieve clear “subfitnesses” for modifiability and efficiency,
both of which are measured with a positive and negative metric. The biggest modifi
cations to the basic metrics include taking into account the effect of interfaces and the
dispatcher architecture style. A complexity metric is added to penalize having many
classes and interfaces as well as extremely large classes.

Dividing  the  fitness  function  into  subfunctions answers  the  demands  of  the  real
world, as hardly any architecture can be optimized from all quality viewpoints. Thus,
we  can  assign  a  bigger  weight  to  the  more  desired  quality  aspect.  When  wi  is  the
weight  for  the  respective  subfitness sfi,  the  fitness  function f(x)  for  chromosome  x
can be expressed as

f(x) = w1∗sf1 – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5.
Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive ef

ficiency, sf4 negative efficiency and sf5 complexity. The subfitness functions are de
fined as follows (|X| denotes the cardinality of X):

sf1 = |interface implementors| + |calls to interfaces| + (|calls through dispatcher| ∗
(variabilities of responsibilities called through dispatcher)) – |unused responsibilities
in interfaces| ∗ 10,

sf2 = |calls between responsibilities in different classes|,
sf3 =    (|dependingResponsibilities  within  same  class| ∗  parameterSize  + 

|usedResponsibilities  in same class| ∗ parameterSize +  |dependingResponsibilities  in
same class| ∗ parameterSize)),

sf4 =   ClassInstabilities + |dispatcherCalls| ∗  callCosts, and
sf5 = |classes| + |interfaces| + BigClassPenalty.

The multiplier 10 in sf1 notes that having unused responsibilities in an interface is
almost an architecture law, and should be more heavily penalized.

Selection of individuals for the next population is made with a roulette wheel se
lection, where the size of each “slice” is linearly in proportion to how high the corre
sponding individual’s fitness is in the population. No individual can be selected more
than once. Thus, the “slices” are adjusted after each selection to represent the differ
ences between fitnesses of the remaining individuals.

4 Experiments

In this section we present the results from the preliminary experiments done with our
approach,  using  the  example  system  introduced  in  Section  3.1.  The  algorithm  was
implemented in Java 1.5, and one test run with a population size of 100 and 250 gen
erations took approximately 90 seconds. All test runs were conducted with a fixed set
of mutation probabilities, found after extensive testing. The calculated fitness value is
the average of 10 best  fitnesses  in each generation.  In all experiments,  the actual y
value for the curve is achieved as the average value from five test runs. The average
value is used after first ensuring a similar fitness curve for all test runs. Examples of
the produced UML diagrams are presented by Räihä [12].

We first examined the overall development of the fitness values over a high num
ber  of generations. As can be seen  in Figure 3, depicting  the evolvement of  fitness



values over 1000 generations,  the fitness values achieve their highpoint after around
750 generations, and achieve quite high values already after 500 generations.
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Figure 4. Heavily weighted modifiability

To analyze the effect of weighing one quality evaluator over another, we have ex
tracted the separate subfitness curves for modifiability and efficiency in cases where
one  was  weighted heavily  over  the  other.  These  tests  were  made  with  a population
size 100 and 250 generations. In the first test, depicted in Figure 4, the modifiability
functions were weighted 10 times higher than the efficiency functions. This results in
the  “normal”  development  of  the  modifiability  curve,  while  the  efficiency  curve
plummets quite rapidly, and continues to worsen throughout the generations.

In the second  test efficiency  was correspondingly  weighted 10  times higher than
modifiability;  the  fitness  curves  are  shown  in  Figure  5.  In  this  case,  the  efficiency
curve achieves very high values from the very beginning and does not develop as no
ticeably  as  the  modifiability  fitness  in  the  previous  case.  The  modifiability  fitness,
however,  remains  quite  stable,  achieving  only  low  values.  The  explanation  for  the
poor development of the efficiency curve lies within the special cases inserted in the
initial population. As the efficiency fitness values big classes, it would assign a high
fitness value  for  the case where all responsibilities are  in  the same class. From this
initial case it is fairly easy to achieve individuals with very few classes and high effi
ciency fitness values from the very beginning.
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Finally, the effect of dynamic mutation probabilities was analyzed by testing them
against probabilities that remained the same throughout the generations; the curves for
these tests are shown in Figure 6. As can be seen, with 250 generations and a popula
tion of 100, the fitness curve achieves its high point quite early when the mutations
are static, but with the dynamic mutation probabilities, the fitness value continues to
develop. Thus, it appears that dynamic mutation makes the basic structure of the ar
chitecture more amenable to finetuning in the later phases.

In  this  section  we  have  shown  that  the  quality  of  an architecture  increases  quite
steadily with the selected evaluators related to modifiability, efficiency and complex
ity. If some quality attribute is heavily weighted in the process,  it may have signifi
cant negative effect on another. Using dynamic mutation probabilities seems to offer
advantages in longer generation sequences.

5 Concluding Remarks

We have presented a novel approach for genetic architecture synthesis. We have suc
ceeded in genetically constructing an architecture from highlevel responsibilities that
achieves high quality values quite early in the development. The extremely rapid de
velopment of fitness values during the first 100 generations is especially notable, as it
shows that a genetic algorithm can quickly find a “good” basic structure for software



architecture. As the quality of software system is largely based on its architecture, our
work  also  brings  a new  level  to genetic  programming.  In genetic  programming  the
emphasis has  been  to  only  produce  programs  that  perform  a  certain  task,  while  the
quality factors of the produced code have so far been overlooked. Our plans for future
work include implementing a simulated annealing algorithm for comparison and more
experiments on dynamic mutations. Moreover, we plan to implement a genuine multi
criteria approach, which would benefit in comparing the conflicting goals of modifi
ability and efficiency, discussed in Section 4.
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Abstract. We explore the application of genetic algorithms in model transformations that
can be understood as pattern-based refinements. In MDA (Model Driven Architecture),
such transformations can be exploited for deriving a PIM model from a CIM model. The
approach uses design patterns as the basis of mutations and exploits various quality metrics
for deriving a fitness function. A genetic representation ofmodels and their transforma-
tions is proposed, and the genetic transformation process is studied experimentally. The
results suggest that genetic algorithms provide a feasiblevehicle for model transforma-
tions, leading to convergent and reasonably fast transformation process. However, more
work is needed to improve the quality of the individual models produced by the technique.

ACM CCS Categories and Subject Descriptors: D.2.11 [Software Engineering]: Soft-
ware Architectures; D.2.2 [Software Engineering]: DesignTools and Techniques

Key words: model transformation, genetic algorithm, model driven architecture, software
design

1. Introduction

MDA (Model Driven Architecture) [13] reflects a long-standing trend insoftware
engineering to raise the abstraction level of software system description,together
with automated support for transforming high-level descriptions into lower-level
ones and eventually into executable code. MDA shares many motivations forde-
veloping high-level programming languages, like the ability to use the same high-
level descriptions to produce executable code for multiple platforms. In MDA, this
is realized by dividing the high-level descriptions (i.e., models) into different lay-
ers, CIM (Computation-Independent Model), PIM (Platform-Independent Model)
and PSM (Platform-Specific Model). Basically, the CIM level corresponds to a
requirements model, while the PSM level corresponds to a detailed design model.
The PIM level contains an intermediate model introducing basic platform-neutral
solution structures.

Received November 2008; accepted February 2009.



GENETIC MODEL REFINEMENTS 339

However, in spite of the high expectations and years of intensive research, MDA
is still far from its original vision. If the concepts of the application domain are
well-understood, it is possible to map these concepts into solution mechanisms in
a systematic way, and build automated transformation support based on this map-
ping (e.g., [8, 10, 20]). However, if the domain is not precisely fixed, thetrans-
formations require more creative design knowledge which is hard to incorporate in
the transformation. This is particularly problematic at the higher abstraction levels,
like in transformations from the CIM level to the PIM level.

The interpretations of the role and purpose of CIM vary significantly. It isin
some cases considered as a requirements model [9, 13], capturing the requirements
the user has on the system. MDA Guide [13] points out that CIM is sometimes
called ”a domain model” and ”a vocabulary” that is familiar to the practitioners of
the domain in question.

Here we adopt the view that a CIM model is a domain model of the system to
be built, represented in a particular way. As customary in object-oriented software
architecture design, we assume that the architectural model of the system can be
derived by refining a functional model (in this case an abstract domain model) with
quality-driven solutions (here patterns).

In this paper, we explore techniques to produce a solution-level (architectural)
model (PIM) on the basis of a requirement-level (domain) model (CIM) automat-
ically using genetic algorithms. In genetic algorithms [11], a ”good” solution is
found through simulated evolution, where individual solution generations are sub-
ject to mutation and crossover operations, competing with each other according
to their ”goodness”, as defined by the so-called fitness function. In ourcase, the
mutations are interpreted as specific design solutions (called patterns in this paper)
applied in the transformation from the CIM level to the PIM level. The quality
requirements are assumed to be encoded in the fitness function. The CIM is first
used to randomly generate an initial population of solution models, this population
is then submitted to evolution through hundreds of generations, and the result of
the transformation is obtained as the best solution model of the last generation.

Genetic algorithms have a number of important benefits in this context. First, the
level of domain-independency can be freely decided by adopting different sets of
mutation patterns. If the patterns consist of, say, design patterns [6], thetechnique
is completely domain-independent. If the patterns are intended for a particular do-
main, the technique is tuned for that domain, accordingly. Similarly, the level of
expertise is essentially determined by the selection of patterns. In this paper we
apply a small set of general-purpose design patterns as mutations. Second, the
quality requirements, which are often ignored in model transformations, arenat-
urally taken into account in this approach, since they are encoded in the fitness
function. In principle this approach allows any quality requirements that canbe
evaluated using some computation on the models. Some quality requirements may
require additional information to be associated with the models for sensible eval-
uation, though. Here we will concentrate on two general quality requirements,
efficiency and modifiability.

Third, the genetic approach is able to produce solutions that no human designer
could come up with, being free of human prejudices. Since the solution proposed
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by the genetic process is guaranteed to have high quality in terms of the fitness
function, it is realistic to expect that in some cases the genetic process couldactu-
ally outperform a human designer.

The contributions of this paper consist of a technique to apply genetic approaches
in model transformations from requirement level to solution level, and of the ex-
perimental evaluation of the technique. In particular, we are interested to study
the genetic representation of models, the behavior of the genetic process,and the
quality of the resulting solution models. The ultimate goal is an automated model
transformation tool based on this technique. Note that the user of the tool need not
understand the genetic algorithm running in the background. In the current set-
ting, the possible quality attributes (at the moment modifiability and efficiency) are
pre-defined, and only choosing their weights would be left to the user. The tool is
then expected to produce a PIM that is both optimized according to the user’squal-
ity attribute preferences (and nothing else) and ”legal” in terms of generaldesign
standards.

2. Related work

2.1 Model transformations

A wide range of model transformation approaches have been presentedin the lit-
erature. Template-based approaches, such as XSLT [21], graph grammar based
approaches like GReAT [1], VIATRA [20] and Triple Graph Grammars [17], are
typically used for model-to-text but also for model-to-model transformations. A
template usually binds certain aspects of the source and target metamodels andis
instantiated in the actual transformation, as many times as the template matches can
be found. Relational approaches, like MTF [5] and QVT [14], focus on specifying
relations between model structures. VIATRA, GReAT and MTF are examples of
declarative languages that specify what should be transformed, instead of how.

The approaches and tools proposed are often applicable only in relatively narrow
domains. The underlying reason for this is that automatic transformation solutions
with hard-wired metamodel mappings are usually aimed for. Such solutions do not
take user decisions or other learning aspects into account. Instead, theyalways pro-
vide the same solution when applied for the same source model. In our approach,
the level of domain-independence depends on the mutation patterns chosen. In this
paper a sample application of our approach for a domain-independent transforma-
tion is demonstrated. In addition, our approach does not assume any hard-wired
transformations.

A transformational pattern system that allows gradual and interactive model
transformations is presented by the World Wide Web Consortium [21]. This ap-
proach allows variation management and human made decisions during the model
transformations. The transformation specification consists of transformational pat-
terns and assembly rules. The former describe how transformation rules are im-
plemented, and the latter describe how the individual patterns relate and which
patterns are applied to which source model elements. Flexibility and reusability is
achieved through the assembly rules. This approach, as ours, aims at more flexible
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transformations and increasing the level of transformation reuse. However, while it
achieves flexibility by allowing user decisions during the semi-automatic transfor-
mations, our approach achieves flexibility with application of genetic algorithms.

While different PIM-to-PSM and PSM-to-code transformation approaches have
been proposed, much less work has been reported in the literature on CIM-to-PIM
transformations. This may be partly due to the different interpretations of the role
of CIMs. Also, practical MDD-fashion transformations seem to work the better
the lower the abstraction level is. The reason for this is obvious: the source models
themselves are already fine-grained and well-defined, allowing the use ofrather
straightforward transformations. The transformations from CIMs to PIMs, on the
other hand, are less intuitive and require more problem solving; the CIM essentially
represents the problem domain and PIM the solution domain.

Zhanget al. [22] point out that since CIM-to-PIM transformations have been less
practiced, converting CIM to PIM depends much on designers’ personal experience
or creativity. In our approach, creativeness is achieved through application of ge-
netic algorithms. Zhanget al. propose a feature-oriented approach for CIM-to-PIM
transformations. In that approach features are considered as key elements of CIM
and components as key elements of PIM. Zhanget al. [22] further propose an ap-
proach to create components by clustering responsibilities that are operationalized
from features.

Rodriguezet al. [16] consider CIM-to-PIM transformations in the domain of
business process modeling. They interpret business process models to be CIMs.
The trans-formation rules are defined using QVT, and their purpose is to generate
UML classes and use cases that will be part of the PIM of an information system.
Our approach instead is not tied to any specific domain.

2.2 Genetic algorithms

A genetic algorithm maintains a population of possible solutions. In our problem
a population is a set of possible architectures which undergoes an evolutionary
process imitating the natural biological evolution. In each generation better indi-
viduals have greater possibilities to survive and reproduce, while worseindividuals
have greater possibilities to die and to be replaced. It is believed that this process
leads to a combination of the properties of the better individuals, which constitutes
a good solution to the problem in question.

To operate with a genetic algorithm, one needs an encoding of possible solutions,
an initial population, mutation and crossover operators, a fitness function and a
selection operator for choosing the survivors for the next generation. We do not
explain these concepts in detail here, because we assume that the readeris familiar
with the basics of genetic algorithms, as given, e.g., by Michalewicz [11].

Genetic algorithms are widely used in problems related to software engineering
[4], but most of the genetic algorithms presented in the literature solve more re-
stricted problems than that of ours. Typical problems considered are the software
clustering problem [7] and systems refactoring [12, 18]. However, system cluster-
ing considers software architecture only from the decomposition perspective, and
software refactoring aims at structural fine-tuning of software architecture, whereas
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our approach strives for automating the entire architecture design process.
Architectural transformations apply bigger modifications to the system than sim-

ple refactoring operations. An example of architectural transformation is the intro-
duction of design patterns in the architecture. Amouiet al. [2] have earlier applied
genetic algorithms for finding the optimal sequence of design pattern transforma-
tions to increase the reusability of a software system.

The present work is based on our previous system [15]. Similar to Amouiet al.
[2] we use high-level structural units as the basis of mutations in a genetic process.
We have also applied the supergene idea of Amouiet al. [2], to be discussed in
Section 3, as a starting point for representing the architecture. However, there
are several differences. First, in principle, we do not consider any specific quality
criterion, but we are interested in the overall quality of the architecture. Second, we
aim at the synthesis of the architecture starting from requirement-level information,
rather than at improving an existing architecture. Third, we do not restrictto design
patterns, but also consider more high-level architectural solutions, i.e., architectural
styles [19].

We do not need any formalism (like graph grammars) to model the transforma-
tions since it is sufficient to use the supergene notations to specify the relations
between the entities of the architecture.

After adopting the supergene concept, we proceed with the genetic algorithm
mainly in the standard manner. However, we use dynamic mutation probabilities
when introducing certain architectural solutions to the individuals of the search
space. The rationale behind this policy is that favoring fundamental solutions in
the earlier stages of evolution leads to a stronger core architecture that can be more
easily refined at later stages by lower-level solutions.

3. Genetic model transformations

In this section we describe our approach to genetically handle the transformations
that are needed to achieve a PIM from a CIM in MDA. We begin with a set of
responsibilities (requirements) that can be given some relative values regarding
modifiability and efficiency. Using the information given on the dependencies be-
tween the responsibilities, this set is then formed into a responsibility dependency
graph. Furthermore, a domain-model for the system is given. The graphis encoded
as a chromosome, which is then subjected to the genetic algorithm (implemented
with Java). The algorithm transforms the CIM to a PIM through the implementa-
tion of a set of architectural patterns to the given model, and produces a UML class
diagram as the result. Fig. 1 depicts the process from CIM to PIM in our approach.

3.1 Requirements model

Our CIM model consists of two parts, a responsibility graph and a domain model
(see Fig. 1). A responsibility graph gives the functional requirements ofthe system
in terms of responsibilities. A responsibility is either a task to be carried out by the
system (or some part of it), or a data item that has to be managed by the system
(or some part of it). Each node in the graph represents a responsibility, and each
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Fig. 1: Genetic model transformation process.

directed edge represents a dependency between the two responsibilities.Here a de-
pendency means that the source responsibility relies on the target responsibility. In
order to evaluate the system after the model has been subjected to transformation,
some attributes of the responsibilities are also given, such as variability (the prob-
ability of future changes), parameter size and time consumption. The values for
these attributes may be sometimes hard to determine at the requirements analysis
stage, but the more accurately these can be estimated, the better will be the result.
The given values for the attributes are relative, rather than absolute. The scales
for the attributes are from 1 to 10 (parameter size, frequency, variability and call
variability) or from 10 to 110 (execution time and call cost).

In our work, we have used an e-home as an example system. It contains 52
responsibilities and 90 dependencies between them. A part of the responsibility
dependency graph, depicting the drape control component of the example system,
is given in Fig. 2, where some sample properties (variability, parameter size,time
consumption) are marked in the nodes. The drapeState node is marked with a
thicker circle, as it is a data manager responsibility. The calculateOptimalDrape
responsibility is a good example of how and why the certain attributes are evalu-
ated: its variability is 3, as the optimal drape position can be calculated differently
in different houses and according to different preferences. As it is a heavy opera-
tion, also its parameter size (6) and time consumption (90) are among the highest
values of those shown here. Responsibilities with such high attribute values play
an important role when constructing quality architecture as their placement has a
bigger impact on the quality value.

The domain model part of CIM is constructed on the basis of the responsibil-
ity graph by assigning the responsibilities to classes. The division to classesis
based on the data responsibilities: a responsibility is placed in the same class as
the data it handles (either directly or through another responsibility, in the case
where it does not use any data directly). The process actually follows thetradi-
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Fig. 2: A fragment of the responsibility dependency graph.

tional object-oriented method of extracting classes and their dependencieson the
basis of a functional description of the system.

This initial model thus gives the system a basic structure by separating subsys-
tems into components. Associations for the model are derived directly from the
dependency graph. However, this structure may change, as the class division may
be altered through application of architectural patterns.

The initial model is presented as a component diagram in Fig. 3. For simplicity,
we have only used classes and associations. As can be seen, the initial model is
very simplistic – the genetic algorithm is given a logical starting point with a pre-
liminary decomposition. No decisions are made regarding the architectural styles
or the finer details of the architecture.

Fig. 3: Domain model of example system.
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3.2 Genetic model representation

In a traditional chromosome representation, each chromosome consists of several
genes, each of which has one field. A supergene, however, has several fields to
store data in. Taking this idea as a starting point, it is quite straightforward to
place all information regarding one responsibility into one supergene, i.e., each
responsibility is represented as a supergene in the chromosome. This also makes
it easier to keep the model consistent, as no responsibility can be left out ofthe
model at any point, and there is no risk of breaking the dependencies between
responsibilities.

There are two kinds of data regarding each responsibilityri. Firstly, there is the
basic information given as input. This contains the responsibilitiesRi = {ri1, ri2,

. . . , rik} depending onri, its nameni, typedi, frequencyfi, parameter sizepi, execu-
tion time ti, call costci, call variabilitycvi and variabilityvi. Secondly, there is the
information regarding the responsibilityri’s place in the architecture: the class(es)
Ci = {Ci1,Ci2, . . . ,Civ} it belongs to, the interfaceIi it implements, the dispatcher
Di it uses, the responsibilitiesRDi ⊂ Ri that call it through the dispatcher, the de-
sign patternsPi = {Pi1, Pi2, . . . , Pim} it is a part of and the predetermined model
classMCi. The dispatcher is given a separate field as opposed to other patterns
for efficiency reasons. Fig. 4 depicts the structure of a supergeneS Gi. The actual
chromosome is formed by simply collecting all supergenes.

Fig. 4: Supergene.

Although the basic architecture is easy to keep coherent (i.e., the structuregiven
by the model is not disturbed as the dependencies between responsibilities stay
intact), the design patterns produce challenges at the chromosome level, ascareless
operations can easily break existing patterns and make the architecture incoherent.
Thus, in order to quickly check the legality of an operation, a Pattern field is located
in every supergene. This field contains information about the patterns with which
the responsibility is involved, and thus if a new pattern is introduced, it is fastto
check whether it contradicts the existing patterns. The initial population is made
by first creating the desired number of individuals with the basic structure given in
the CIM. A random pattern is then inserted into each individual, as a population
should not consist of clones. In addition, a special case is left in the population
where no pattern is initially inserted.

3.3 Mutation and crossover operations

As discussed, the model transformations are made by implementing patterns in
the model. As we only deal with the refinements needed to transform a CIM to
a PIM, we do not need to take into consideration the actual implementation of
the patterns. The implementation is usually platform-specific, and thus belongs to
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the PSM. The patterns we have chosen include very high-level architectural styles
[19] (dispatcher and client-server), medium-level design patterns [6] (façade and
mediator), and low-level design patterns [6] (strategy and proxy). Thisensures a
variety of ”building material” for the genetic algorithm, and the different levels
are also used with dynamic mutations at different stages of the development. The
mutations are implemented in pairs of introducing a pattern or removing a pattern.
The dispatcher architecture style makes a small exception to this rule: the actual
dispatcher must first be introduced to the system, after which the responsibilities
can communicate through it. The mutations are the following:
◦ introduce/remove message dispatcher,

◦ communicate/remove communication through dispatcher,

◦ introduce/remove server,

◦ introduce/remove façade,

◦ introduce/remove mediator,

◦ introduce/remove strategy,

◦ introduce/remove proxy.
Apart from introducing the dispatcher, all the other mutations are implemented at

supergene level by updating the information in the dispatcher connection orpattern
field, as well as the interface and class fields when needed. However, as each
pattern concerns more than one responsibility, all the supergenes involved in the
implemented pattern must be mutated accordingly. For example, the proxy pattern
is introduced by constructing a new ProxyPattern instance with data of the technical
class and interface needed by the proxy. The pattern fields of the responsibility
called through the proxy and the responsibilities calling the proxy are then updated
so that they now contain the new ProxyPattern instance.

As adding a dispatcher, however, does not consider any particular responsibility
(supergene), it cannot be implemented as a gene level mutation, but must affect
the whole system. This means that the mutation must be implemented at chromo-
some level, where a dummy gene is added to the existing chromosome. In this
gene, only the field containing information of the dispatcher has a value different
from 0 or null. When a chromosome contains such a gene which ”carries” the dis-
patcher, its supergenes can later on be subjected to the mutation where individual
responsibilities are made to communicate through the dispatcher.

The crossover operation is implemented as a traditional one-point crossover.
However, as patterns always concern more than one responsibility, it is possible
that during a mutation or crossover, an existing pattern may be broken. Because of
this, after each mutation and crossover operation, the resulting chromosome(s) are
subjected to a corrective operation, which ensures that the model stays coherent.
In the case of the crossover, it is decided that the left side of the offspring is always
legal, and the adjustments are made to the right side of the crossover point. Inad-
dition to ensuring that the patterns present in the system stay coherent and”legal”,
the corrective function also checks that the model conforms to certain architectural
laws. These laws demand uniform calls between two classes (e.g., through an in-
terface or a dispatcher), and state some basic rules regarding architectures, e.g., no
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responsibility can implement more than one interface. These laws ensure thatno
anomalies are brought to the model.

Mutation and crossover indexes are chosen randomly. An exception is made in
case of patterns which favor highly variable responsibilities (dispatcher communi-
cation and strategy) and proxy, which favors responsibilities that have arelatively
high call variability value. In these cases, the chances of each particularresponsi-
bility to be subjected to such mutations increases linearly in relation to the respec-
tive property value, e.g., if responsibilityri has a variability value 3, it is three times
more likely to be subjected to a strategy or dispatcher mutation than responsibility
r j with variability value 1.

The actual mutation probabilities are given as input. Selecting the mutation is
made with a ”roulette wheel” selection [11], where the size of each slice of the
wheel is in proportion to the given probability of the respective mutation. Null
mutation and crossover are also included in the wheel. Crossover is treatedas
a mutation in the selection, as the probability of being subjected to crossover in-
creases in relation to how high an individual’s fitness is in the population. When the
crossover is included in the same wheel as the mutations, it also leads to smaller
mutation slices, as they need to accommodate to fit in the larger crossover slice.
Thus, including crossover and mutation in the same wheel increases the chances
that highly fit individuals remain untouched throughout generations. Each individ-
ual has a chance of reproducing in each generation: if the first rouletteselection
lands on a mutation, another selection is performed after the mutation has been
administered. If the second selection lands on the crossover slice, the individual
may produce offspring. In any other case, the second selection is not taken into
account, i.e., the individual is not mutated twice.

We have also adopted the idea of dynamic mutation probabilities. The three
different levels of patterns can be further used in mutation probabilities by favor-
ing the high-level patterns in the beginning of evolution, as the basic structure of
the model is being defined. We then move on to favor the medium-level patterns,
and in the very end of evolution, the low-level patterns are favored to ensure as
high-tuned a solution as possible. In practice, the probabilities of high-level pat-
tern introductions are decreased after 1/3 of the generations have passed, and the
probabilities of medium-level pattern introductions are increased respectively. The
same procedure is done between medium-level pattern introductions and low-level
pattern introductions after another 1/3 of the generations.

3.4 Fitness function

Selecting an appropriate fitness function is probably the most demanding taskwith
any genetic algorithm application when there is no clear value to measure fromthe
solutions. In the case of software architecture, evaluation is even more difficult. In
real world, evaluation of software architecture is almost always done manually by
human designers, and metric calculations are only used as guidelines. Also,no two
architects may ever agree on a unique quality for certain architecture, as evaluation
is bound to be subjective, and different values and backgrounds will influence the
outcome of any evaluation process. However, for the genetic algorithm to be able
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to evaluate the architecture, a purely numerical fitness value must be calculated.
In a fully automated approach, no human interception is allowed, and thus the

fitness function needs to be based on metrics. The selection of metrics may be as
arguable as the evaluations of two different architects on a single software architec-
ture. The reasoning behind the selected metrics in this approach is that they have
been widely used and recognized to accurately measure some quality aspects of
software architecture. Hence, the metrics are chosen so that they measure quality
aspects that can be seen as ”most agreed upon” in the real world, and singular val-
ues can be seen as accurate as possible. However, the combination of metrics and
multiple optimization is another problem entirely, as not many quality values can
be optimized simultaneously.

The fitness function is based on software product metrics, most of which are
from the metrics suite introduced by Chidamber and Kemerer [3]. These met-
rics, especially coupling and cohesion, have been used as a starting point for the
fitness function, and have been further developed and grouped to achieve clear
”sub-fitnesses” for modifiability and efficiency, both of which are measured with a
positive and negative metric. The biggest modifications to the basic metrics include
taking into account the positive effect of interfaces and the dispatcher and client-
server architecture styles in terms of modifiability, as well as the negative effect of
the dispatcher and server in terms of efficiency. The inefficiency caused by patterns
may be ameliorated by clever compilers, but as we are interested in the software
architecture at a more high level, we do not consider the effect of compilers here.
A complexity metric is added to penalize having many classes and interfaces as
well as extremely large classes.

Dividing the fitness function into sub-functions answers the demands of thereal
world. Hardly any architecture can be optimized from all quality viewpoints, but
some viewpoints are ranked higher than others, depending on the demandsregard-
ing the architecture. By separating efficiency and modifiability, which are espe-
cially difficult to optimize simultaneously, we can assign a bigger weight to the
more desired quality aspect. Whenwi is the weight for the respective sub-fitness
sfi, the fitness functionf (x) for chromosomex can be expressed as

f (x) = w1 × sf1 − w2 × sf2 + w3 × sf3 − w4 × sf4 − w5 × sf5.

Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive
efficiency, sf4 negative efficiency and sf5 complexity. The sub-fitness functions are
defined as follows (| X | denotes the cardinality ofX):

sf1 = | interface implementors| + | calls to interfaces| +

(| calls through dispatcher| ×∑
(variabilities of responsibilities called through dispatcher))−

| unused responsibilities in interfaces| ×10,

sf2 = | calls between responsibilities in different classes that do not

happen through a pattern|,
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sf3 =
∑

(| dependingResponsibilities within same class| ×

parameterSize+∑
(| usedResponsibilities in same class| ×parameterSize+

| dependingResponsibilities in same class| ×parameterSize)),

sf4 =
∑

ClassInstabilities+ (| dispatcherCalls| + | serverCalls|) ×
∑

callCosts,

sf5 =| classes| + | interfaces| .

The multiplier 10 in sf1 means that having unused responsibilities in an interface
is almost an architecture law, and should be more heavily penalized.

3.5 Selection

A selection operation is needed as the size of the population should be the same
at the start of each generation, but through crossover the amount of individuals
grows. Selecting the individuals for each generation is made with the roulette
wheel method. Each individual is given a ”slice” on the wheel. The size ofthe
”slice” is based on how high the individual’s fitness is in the population. Thus,
the ”slices” are not proportioned according to raw numerical fitness differences,
but based on order of fitnesses. In addition to roulette wheel selection anelitist
approach is used, where 10 individuals with the best fitnesses are keptafter each
generation.

This approach takes into consideration that the quality difference between two
individuals may not be the same as would appear when examining the raw numer-
ical difference between the fitness values. By using elitism as an addition to the
roulette wheel selection, the development of fitness values is also more secured.

4. Experiments

In this section we present the results achieved through experiments with ourap-
proach. The consistency of the fitness development of each test run has been
showed in our previous research [15], and thus the fitness curves presented here
can reliably be calculated as averages. We have first calculated the average fitness
of the 10 best individuals of each generation, thus achieving the fitness develop-
ment curve of the fittest individuals in each run. The actual fitness curves are then
achieved by calculating the average development of five test runs. The mutation
probabilities used for the test runs are same in all the experiments discussedhere,
and were set after exhaustive testing.

As using a model to give a basic structure for each solution greatly affects the
amount of variation between individuals, we first experimented how the popula-
tion size affected the fitness curve. As can be seen in Fig. 5, with a population of
50 the fitness curve actually turns downwards already after some 200 generations,
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while with populations of 100 and 150 the development is more stable. Thus the
forthcoming tests were made with a population of 100, as it ensured a furtherde-
veloping fitness curve by having more variability in the population. Increasing the
population size even further to 150 did not seem necessary, as the fitness values
were not noticeably better than those achieved with a population of 100.

Fig. 5: Different population sizes.

Another common variable to all genetic algorithms in addition to population size
is the number of generations the algorithm runs through. We tested our algorithm
with 1000 generations, and the resulting fitness curve is depicted in Fig. 6. As can
be seen, the fitness curve continues to steadily achieve higher values up until around
625 generations, after which its development plunges. This would indicate that
running the algorithm with an exceptionally large number of generations wouldnot
be beneficial. The following tests are all made with either 250 or 500 generations,
when we can be sure that the fitness curve has not passed its optimum and started
to descend.

Fig. 6: 1000 generations.
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In Figures 5 and 6 the fitness curve indicates the development of the overall
fitness, i.e., modifiability, efficiency and complexity combined. As has been dis-
cussed in Section 3, balancing the different sub-fitnesses is a demanding optimiza-
tion task, and thus it is interesting to see how weighting one quality attribute over
another will affect the development of their individual fitness curves. In Fig. 7 we
have separated the fitness curves for modifiability and efficiency from the overall
fitness.

Fig. 7: Modifiability weighted.

In this test, modifiability was valued 10 times higher than efficiency, which re-
sults in the modifiability curve increasing quite rapidly, while the efficiency curve
does not develop at all, but achieves quite low values throughout the generations.
This is expected, as when modifiability is valued, solutions with high efficiency
values do not survive to next generation, and are definitely not in the topof any
generation. A similar test was also made where efficiency was valued 10 times
higher than modifiability; the fitness curves for this experiment are shown in Fig. 8.

Fig. 8: Efficiency weighted.
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The fitness curves achieved while valuing efficiency are quite different from those
achieved when weighting modifiability: in the case of efficiency, neither the effi-
ciency nor the modifiability curve develops at all. Valuing efficiency can only be
seen in the different ranges of values, as the efficiency curve achieves high posi-
tive values while the modifiability curve never goes above 0. The reason for the
stable efficiency curve can be found in the initial population: as the initial pop-
ulation only contains one pattern per model, and even a solution where there are
no patterns, these models achieve such high efficiency values that it is simply not
possible to top them as each time a pattern is added, the efficiency of the solution
decreases.

In addition to studying the effects of weighting the different quality attributes, we
have studied the effect of the dynamic mutation probabilities, discussed in Section
3, to the fitness curve. Fitness curves achieved with dynamic and static mutation
probabilities, when both quality attributes are valued equally high, are shown in
Fig. 9. The development of the overall fitness is quite similar, and the tests with
static mutations actually achieve slightly higher fitness values toward the end.

Fig. 9: Fitness curves with static and dynamic mutation probabilities.

However, when modifiability is weighted over efficiency, we can see that the
modifiability fitness clearly benefits from the dynamic mutation probabilities, as
shown in the curve in Fig. 10, where the modifiability sub-fitness curves areshown
from experiments with dynamic and static mutation probabilities.

As these experiments show, the modifiability of the solutions can quite straight-
forwardly be affected by weighting the modifiability sub-fitness functions over the
efficiency sub-fitnesses. The implemented dynamic mutation probabilities also
benefit the modifiability fitness, which makes their usage justified.

The achieved solutions illustrate the creative power of the genetic algorithm:
there is a high degree of variability between the solutions, and different patterns
are implemented fearlessly. However, although some good decisions are found in
parts of each solution, no single solution is achieved that would instantly impress
an expert as having overall top quality.
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Fig. 10: Modifiability curves with dynamic and static mutation probabilities when modifiability
weighted over efficiency.

Fig. 11 illustrates a proposed solution. In this solution, the dispatcher is cen-
tral as many components communicate through it. A large component is turned
into a server, and the user interface further uses a proxy to call the responsibil-
ities provided by the server. Strategies are also used for several highlyvariable
responsibilities (the responsibility and its class are given in parentheses).

Fig. 11: Generated PIM (abstracted from class diagram).
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5. Conclusions

We have presented a novel approach for model transformations from CIM to PIM
using a genetic algorithm that implements design patterns to the given domain
model and gives a solution model as a UML class diagram. Our work differs from
that of Amouiet al. [2] by using the model-driven approach, not having a ready-
made architecture to start from and not storing information of used patternsas a
sequence of transformations.

The results show that promising solutions can be achieved, as the quality of so-
lutions improves over generations and the actual design choices seen in theclass
diagrams are sensible in many cases. The achieved solutions prove that a conceiv-
able PIM level architecture can be achieved from very high-level requirements,
when only given a domain model as a guideline of the architecture’s structure.

The biggest limitations in our approach at the moment are the small number
of applied patterns and the inconsistency of quality in proposed solutions. The
inconsistency of quality is most likely due to the difficulty of finding a suitable
compromise between the selected quality estimators. Also, the implementation of
dynamic mutations should be studied further, as it may also have a negative impact
if such design patterns that are not possible to implement in the architecture are
favored for a long time.

6. Future work

Our plans for future work include implementing a simulated annealing algorithm
for comparison, a multi-objective fitness function to achieve a more balancedarchi-
tecture in terms of different quality values, and studying different ways of applying
the dynamic mutations.

Implementing the simulated annealing algorithm will show whether other search-
based techniques could also be used for model transformations, or whether the
genetic algorithm is the only one that is ”sophisticated enough” to handle the intri-
cate details regarding software architectures. If the simulated annealing approach
provides good results, it may be considered whether a combination of the twoal-
gorithms could be used to achieve optimal results.

Presumably, a multi-objective fitness function will better address the problemof
evaluating a software architecture. As discussed, it is difficult to optimize several
quality aspects at the same time. A multi-objective fitness function will enable
to better choose a solution that achieves the best compromise between different
quality measures. In addition, while further improving mutations and the fitness
evaluation will most probably improve the quality of results, more design patterns
are also to be added in order to gain access to a wider collection of design choices.
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Abstract— Software architecture design can be regarded as 
finding an optimal combination of known general solutions 
and architectural knowledge with respect to given 
requirements. Based on previous work on synthesizing 
software architecture using genetic algorithms, we propose a 
refined fitness function for assessing software architecture in 
genetic synthesis, taking into account the specific anticipated 
needs of the software system under design. Inspired by real life 
architecture evaluation methods, the refined fitness function 
employs scenarios, specific situations possibly occurring during 
the lifetime of the system and requiring certain modifiability 
properties of the system. Empirical studies based on two 
example systems suggest that using this kind of fitness function 
significantly improves the quality of the resulting architecture.         

Keywords- software architecture; software design; genetic 
algorithm; search-based software engineering 

I.  INTRODUCTION  
Design of software architecture is one of the most critical 

and intellectually demanding activities of software 
engineering. Often a software architect has a limited mindset 
influenced by her prior experiences in a particular domain. 
Although a vast amount of architectural knowledge exists in 
the form of documented, general “good” solutions (like 
design patterns [5]), it is difficult for a human architect to 
come up with an optimal combination of such solutions. 
Architects typically apply a limited set of solutions they 
know have worked in their previous systems. Unfortunately, 
this often leads to costly iteration of the architectural design, 
due to quality-related problems observed during 
implementation, testing, and usage.  

In our previous work [11, 12] we have taken the 
viewpoint that the design of software architecture is 
essentially a combinatorial task where the problem is to find 
an optimal conformation of known good practices and 
solutions of architectural design in the context of a particular 
application. An optimal software architecture is the one 
which supports the realization of the quality requirements of 
the system under design as well as possible. Assuming that 
both the architecture and the general solutions can be 
formally represented, and that the quality of an architecture 
can be effectively measured, the problem of architecture 
design becomes a search problem that is appropriate for a 
heuristic search algorithm. 

Although fully automated software architecture design 
seems unrealistic in practice, we argue that an architect can 

significantly benefit from an automatically synthesized, 
unbiased architecture proposal exploiting a wide knowledge 
base of architectural solutions and practices. We expect that 
such a proposal can be used as a starting point for human 
software architecture design, speeding up the design process 
and improving the quality of the resulting architecture. 

We have shown [11, 12] that genetic algorithms can be 
applied to the problem of architectural design, interpreting 
general solutions as mutations and using architectural 
metrics as a basis for the fitness function. The quality of an 
architecture was measured with respect to three quality 
attributes: modifiability, efficiency and complexity. The 
architecture objects were presented as UML class diagrams. 
The input of the genetic algorithm consisted of a 
responsibility graph, that is, a graph of tasks the application 
is supposed to be able to perform. This corresponds to the 
functional requirements of the application. In addition, a 
domain model of the application was given as an initial 
rudimentary architecture. We will explain this technique in 
more detail in Section III. 

Although this technique produced reasonably good 
architectures in terms of general metrics, the resulting 
architectures were typically unsatisfactory from the 
viewpoint of the anticipated specific needs of the particular 
target application. This concerned in particular modifiability: 
the architectures exhibited good modifiability characteristics, 
but not necessarily in a way that would support the most 
likely modifications during the lifetime of the target system. 
It seemed obvious that the fitness function must be tailored 
for a particular target system to improve the results. 

In this paper we introduce a technique to take into 
account the specific expected modifiability requirements of a 
system in the genetic synthesis of its software architecture. 
The idea is based on using scenarios, that is, concrete 
imaginary situations that are expected to take place during 
the evolution of the system. Each scenario specifies a 
particular modification need and its probability, and the 
fitness function computes the suitability of the architecture 
for the scenarios, in addition to the general metrics.  This 
technique resembles – and is inspired by – the way software 
architectures are evaluated in real life: for example, ATAM 
[7] is a popular software architecture evaluation method 
where different stakeholders invent scenarios that are 
analyzed against the architectural solutions. We show that 
this kind of refined fitness function leads to improved 
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development of the quality of the architecture during the 
genetic synthesis. 

The paper is organized as follows. In the next section we 
will briefly discuss genetic algorithms, their use in software 
engineering and different approaches to define the fitness 
function. In Section III we summarize our basic approach for 
genetic synthesis of software architecture. Section IV 
discusses the idea of scenario-based fitness evaluation in 
more detail. We have carried out a series of experiments to 
study the effect of this technique. The results of these 
experiments are discussed in Section V. Finally, concluding 
remarks and ideas on future research directions are presented 
in Section VI. 

II. RELATED WORK 
A genetic algorithm maintains a population of possible 

solutions (individuals). In our problem a population is a set 
of possible architectures which undergoes an evolutionary 
process imitating the natural biological evolution. In each 
generation better individuals have greater possibilities to 
survive and reproduce, while worse individuals have greater 
possibilities to die and to be replaced. It is believed that this 
process leads to a combination of the properties of the better 
individuals, which constitutes a good solution to the problem 
in question.  

To operate with a genetic algorithm, one needs an 
encoding of possible solutions, an initial population, 
mutation and crossover operators, a fitness function and a 
selection operator for choosing the survivors for the next 
generation. We do not explain these concepts in detail here; 
we assume that the reader is familiar with the basics of 
genetic algorithms, as given e.g. by Michalewicz [8]. 

Search-based software engineering has previously 
focused on separate subproblems, such as software clustering 
and refactoring, see, e.g., [4, 6]. For a thorough survey on 
search-based software design, see [10]. Recently, approaches 
dealing with higher level structural units, such as design 
patterns, have gained more interest. For example, Amoui et 
al. [1] apply genetic algorithms for finding the optimal 
sequence of design pattern transformations to increase the 
reusability of a software system, and Simons and Parmee 
[15, 16] take use cases as the starting point for system 
specification.  

Räihä et al. [11] start the genetic design of a software 
architecture from a responsibility dependency graph. In this 
solution, each responsibility is represented by a supergene, 
and a chromosome is a collection of supergenes. The super-
gene contains information regarding the responsibility, such 
as dependencies of other responsibilities, and attributes such 
as estimated time consumption. Mutations are implemented 
as splitting/joining class(es) or adding/removing generic 
architectural solutions which may be design patterns [5], 
architectural styles [14] or interfaces. 

In the work of Räihä et al. [11], the fitness function is a 
combination of object-oriented software metrics, which have 
been grouped to measure efficiency and modifiability. 
Furthermore, a complexity measure is introduced to evaluate 
the overall understandability of the architecture. The fitness 

function is then defined as a weighted sum of these factors. 
Räihä et al. [12] also apply genetic algorithms in model 

transformations that can be understood as pattern-based 
refinements, using design patterns as the basis of mutations. 
The fitness function was similar to the one in the previous 
study.  

However, tests have shown [13] that the fitness function 
based on traditional quality metrics does not fully satisfy the 
needs in the search process of a software architecture. To this 
end, the present paper aims at a more accurate fitness 
function, which is tailored for the design process at hand. 
While the previous fitness functions [11, 12] measure 
generally defined properties of a software architecture, we 
now try to apply measurements that take into account more 
detailed exigencies of the environment where the 
architecture must “survive”. Biologically thinking, we can 
say that the scenario-based fitness function plays the role of a 
specific environment to which the population must adapt. 

III. GENETIC ARCHITECTURE SYNTHESIS 
In this section we describe in more detail our basic 

approach to genetically synthesize software architecture 
design [11, 12]. This approach has been realized in Java and 
experimented with the same sample systems as here.  

A. Requirements  
For any system, the functionality can be described at a 

very high level by identifying the various functional 
responsibilities the system is supposed to provide, and their 
mutual dependencies. For example, consider a system con-
trolling a computerized home, e-home. This system 
obviously has responsibilities like “playing music” or 
“making coffee”. The former responsibility requires more 
fine-grained responsibilities like “start music playing” and 
“stop music playing”. Furthermore, the system needs to 
manage certain data items, like musical piece data, 
suggesting data management responsibilities. Identifying the 
responsibilities in this way and analyzing their mutual 
dependency relationships leads to a responsibility graph, 
where each node represents a responsibility, and each 
directed edge represents a dependency between the two 
responsibilities (that is, the source responsibility requires the 
target responsibility). 

In order to facilitate the evaluation of the architecture of 
the system, the responsibilities can be associated with 
qualifying attributes, such as sensitiveness to variation in 
implementation and time consumption. The values for these 
attributes of course cannot be known precisely for a system 
under design, but estimations of these (relative) values 
provide more information for the genetic algorithm, 
regarding modifiability and efficiency fitness.  

We have used two sample systems in our experiments. In 
addition to the e-home control system discussed above, we 
have applied our technique to synthesize an architecture for a 
robot war simulation application (called robowar hereafter). 
The latter system is a computer game where the players can 
give different characteristics to war robots and observe how 
they perform. We wanted to experiment with systems that 
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have fairly different characteristics, e-home being a typical 
embedded system and robowar a typical framework-based 
game system. The e-home system [9] yielded 52 
responsibilities and 90 dependencies between the 
responsibilities, while robowar has 56 responsibilities and 73 
dependencies between them. A part of the e-home 
responsibility dependency graph is given in Figure 1. The 
nodes representing data manager responsibilities are marked 
with a thick circle. 

In addition to simply giving the responsibilities and their 
relationships, we have built a domain model for both 
applications that contains the logical entities appearing in the 
responsibilities, and the relationships between these entities.  

 

 
 

Figure 1.  A fragment of the responsibility graph for e-home 

 
 

Figure 2.  A fragment of the domain model for e-home 

A fragment of the e-home domain model is given in 
Figure 2; this corresponds to the responsibility graph 
fragment of Figure 1. As can be seen, the initial model is 
very simplistic – the genetic algorithm is merely given a 
logical starting point with preliminary conceptual 
decomposition. No decisions are made regarding the actual 
architectural solutions introduced later as mutations. The 
entities (classes) in the domain model are identified by 
studying the names of the responsibilities. Each responsi-
bility is assigned to a single class, and the associations 
between the classes are derived from the dependencies 
between the responsibilities.  

The actual input for the genetic algorithm is thus a 
combination of the responsibility dependency graph and the 
domain model, resulting in a simplistic class diagram. This 
initial model gives the system a basic decomposition. 
However, this structure is not frozen, as the class division 
may be altered through application of architectural patterns. 

B. Genetic Representation 
The genetic algorithm operates with two kinds of data 

regarding each responsibility. Firstly, the basic input 
contains the other responsibilities depending on the 
responsibility, other attributes like estimated parameter size, 
execution time and variability sensitiveness, and the domain 
model class it is initially placed in. Secondly, there is the 
information regarding the responsibility’s place in the 
architecture: the class(es) it belongs to, the interface it 
implements, the dispatcher (see below) it uses, the 
responsibilities that call it through the dispatcher, and the 
design patterns and styles (apart from dispatcher) it is a part 
of. The dispatcher is given a separate field as opposed to 
other patterns for efficiency reasons. The latter data is 
produced by the genetic algorithm. All data regarding a 
responsibility is encoded as a supergene. The chromosome 
handled by the genetic algorithm is gained by collecting the 
supergenes, i.e., all data regarding all responsibilities, thus 
representing a whole view of the architecture. 

The initial population is made by first creating the 
desired number of individuals with the basic structure given 
in the responsibility dependency graph and domain model. A 
random pattern is then inserted into each individual, as an 
initial population should not consist entirely of clones.  In 
addition, a special individual is left in the population where 
no pattern is initially inserted: this ensures versatility in the 
population. 

C. Mutation and Crossover Operations 
As discussed above, the actual design is made by adding 

patterns to the system. The patterns have been chosen so that 
there are very high-level architectural styles [14] (dispatcher 
and client-server), medium-level design patterns [5] (Façade 
and Mediator), and low-level design patterns [5] (Strategy, 
Adapter and Template). The mutations are implemented in 
pairs of introducing a pattern or removing a pattern [9]. The 
dispatcher architecture style [14] makes a small exception to 
this rule: the actual dispatcher must first be introduced to the 
system, after which the responsibilities can communicate 
through it.  The mutations are the following: 

• introduce/remove message dispatcher 
• create link/remove link to dispatcher 
• introduce/remove server 
• introduce/remove façade 
• introduce/remove mediator 
• introduce/remove strategy 
• introduce/remove adapter 
• introduce/remove template. 

The crossover operation is implemented as a traditional 
one-point crossover with a corrective operation. This 
operation ensures that the architecture stays coherent, as 
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patterns may be broken by overlapping mutations. In 
addition to ensuring that the patterns present in the system 
stay coherent and “legal”, the corrective function also checks 
that the design conforms to certain architectural laws. These 
laws demand uniform calls between two classes (e.g., 
through an interface or a dispatcher), and state some basic 
rules regarding architectures, e.g., no responsibility can 
implement more than one interface.  The purpose of these 
laws is to ensure that no anomalies are brought to the design.  

The actual mutation probabilities are given as input. 
Selecting the mutation is made with a “roulette wheel” 
selection [8], where the size of each slice of the wheel is in 
proportion to the given probability of the respective 
mutation. Null mutation and crossover are also included in 
the wheel. Each individual has a chance of reproducing in 
each generation: if the first roulette selection lands on a 
mutation, another selection is performed after the mutation 
has been administered. If the second selection lands on the 
crossover slice, the individual may produce offspring. In any 
other case, the second selection is not taken into account, i.e., 
the individual is not mutated twice. 

D. Core Fitness Function and Selection 
The core fitness function is based on widely used 

software product metrics, most of which are from the metrics 
suite introduced by Chidamber and Kemerer [3]. These 
metrics, especially coupling and cohesion, have been used as 
a starting point for the core fitness function, and have been 
further developed and grouped to achieve clear “sub-
fitnesses” for modifiability and efficiency, both of which are 
measured with a positive and negative sub-function. The 
biggest modifications to the basic metrics include taking into 
account the positive effect of interfaces and the dispatcher 
and client-sever architecture styles in terms of modifiability, 
as well as the negative effect of the dispatcher and server in 
terms of efficiency. A complexity metric is added to penalize 
having many classes and interfaces as well as extremely 
large classes. 

Dividing the core fitness function into sub-functions 
answers the demands of the real world. Hardly any 
architecture can be optimized from all quality viewpoints, 
but some viewpoints are ranked higher than others, 
depending on the demands regarding the specific architecture 
at hand. By separating efficiency and modifiability, which 
are especially difficult to optimize simultaneously, we can 
assign a bigger weight to the more desired quality aspect. 
When wi is the weight for the respective sub-fitness sfi, the 
core fitness function fc(x) for chromosome x can be 
expressed as   

fc(x) = w1∗sf1  – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5. 
Here, sf1 measures positive modifiability, sf2 negative 

modifiability, sf3 positive efficiency, sf4 negative efficiency 
and sf5 complexity. The sub-fitness functions are defined as 
follows (|X| denotes the cardinality of X): 

sf1 = |interface implementors| + |calls to interfaces| + 
(|calls through dispatcher| ∗ ∑ (variabilities of 
responsibilities called through dispatcher)) – |unused       
responsibilities in interfaces| ∗ α,  

sf2 = |calls between responsibilities in different classes, 
that do not happen through a pattern|, 

sf3 = ∑ (|dependingResponsibilities within same class| ∗ 
parameterSize + ∑ |usedResponsibilities in same class| ∗ 
parameterSize + |dependingResponsibilities in same class| ∗ 
parameterSize)),  

sf4 = ∑ ClassInstabilities + (|dispatcherCalls| + 
|serverCalls|)∗ ∑ callCosts, and 

sf5 = |classes| + |interfaces|. 
The multiplier α in sf1 emphasizes that having unused 
responsibilities in an interface is almost an architecture law, 
and should be more heavily penalized.  

Selecting the individuals for each generation is made 
with the same kind of roulette wheel method as was used for 
choosing the mutations. Such a selection operation is 
needed, as the size of the population should be the same at 
the start of each generation, but through crossover the 
amount of individuals grows. 

IV. USING SCENARIOS IN FITNESS FUNCTION 

A. Defining scenarios 
Basically, a scenario describes an interaction between a 

stakeholder and the system [2]. Scenarios are typically used 
as test cases for analyzing the architecture from the 
viewpoint of some quality attribute. For example, a 
scalability scenario could describe a situation where a certain 
number of users are accessing the system at the same time in 
a certain way, stressing the scalability of the system for a 
large number of users. In scenario-based architectural 
assessment the stakeholders invent and prioritize scenarios, 
and the software architect explains how the architecture is 
supposed to handle the scenario. Scenarios which get weak 
support in the architecture are classified as risks, corre-
sponding to failures in traditional testing. 

In our approach we have used scenarios that stress the 
modifiability of the system. When studying scenarios from 
an actual architecture evaluation document, we noticed that 
scenarios relating to modifiability can be roughly divided 
into two categories: adding an alternative version for a 
component or changing a component.  In addition, we could 
divide scenarios according to whether the modification 
should be done statically or dynamically, and whether a 
change concerns only the implementation of a component or 
the entire meaning of the component.  Thus each scenario 
contains the following information: the responsibility it 
involves, whether it requires addition or change, whether it is 
static or dynamic and is the change semantic or 
implementational. In addition, we used probabilities to 
describe how likely it is that the scenario takes place. This 
can be also seen as an indicator of the general importance of 
the scenario.   

B. Examples 
For both sample systems (e-home and robowar) 15 

different modifiability scenarios were invented based on the 
assumed evolution of these kinds of systems.  

For example, scenarios for the robowar system include: 
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• the player should be able to change the 
appearance of a robot (scenario probability 
80%) 

• the developer should be able to add an 
alternative armor control (80%) 

• the developer should be able to change the 
implementation of the robot intelligence control 
(90%). 

Scenarios for the e-home system include: 
• the user should be able to change the way the 

music list is showed (90%) 
• the developer should be able to change the way 

water is connected to the coffee machine (50%) 
• the developer should be able to add another way 

of showing the coffee machine status (60%). 
These scenarios are then analyzed to fit the classification 

framework of scenarios discussed above. The first robowar 
scenario is a changing scenario that should be handled 
dynamically. It concerns implementation. The second 
robowar scenario is an adding scenario that should be 
handled statically and again handles implementation. The 
last robowar scenario is a changing scenario to be 
implemented statically. 

The first e-home scenario is a changing scenario that 
regards implementation and should be handled dynamically. 
The second e-home scenario is a changing scenario that 
should be handled statically and concerns the semantics of 
the component, i.e., the interface may need to be changed. 
The final e-home scenario is a static adding scenario 
concerning implementation.  

C. Using scenarios as a fitness function 
In order to use the verbally defined scenarios in a fitness 

function, they need to be translated so that a numerical value 
is achieved from evaluating how the proposed architecture 
handles a scenario.  

We begin by encoding each scenario according to the 
five classification criteria discussed in Subsection IV.B: 
involved responsibility, adding/changing, static/dynamic, 
semantic/implementational, probability. After the scenarios 
have been encoded, they are given to a scenario interpreter. 
This contains information of what kind of solutions generally 
work for a certain type of scenario. For example, if the 
implementation of a responsibility should be statically 
changed, it is commonly known that a Template Method 
pattern [5] might be a good solution in that situation. Note 
that no explicit rules regarding the structure of the sample 
systems are given, only common knowledge about how 
certain structural solutions (e.g. design patterns, interfaces) 
support modifications. Different solutions are given an order 
of preference with regard to the type of the scenario at hand.  

When the genetic algorithm calculates a scenario fitness 
value, it goes through the given list of encoded scenarios and 
compares the current solutions in the design at hand to the 
preference list provided by the scenario interpreter. The 
design is then rewarded by points from each scenario; the 
points are scaled so that the higher the sub-solution regarding 
the scenario is in the preference list, the more points are 

rewarded. The actual scenario fitness value is achieved by 
simply summing the points gained from each scenario. 

Note that there are several factors affecting the solutions 
eventually selected to satisfy the scenarios: the degree of 
modifiability support for a responsibility achieved, the effect 
of the solution on the core fitness (including efficiency and 
complexity, see Subsection III.D), and the probability of the 
scenario. Thus, even with the very limited set of patterns we 
have used, the variation in the proposed architectures is 
remarkable. 

Formally, the scenario sub-fitness function sfs can be 
expressed as  

sfs  = ∑scenarioProbability*100/scenarioPreference. 
Adding the scenario sub-fitness function to the core fitness 
function would result in the overall fitness, f(x) = fc(x) + 
ws*sfs. As the scenario sub-fitness function measures 
modifiability, it may also be used to replace the modifiability 
functions sf1 and sf2. 

V. EXPERIMENTS 
We used our two sample systems, the robowar and the e-

home, to see how the scenario-based fitness function affects 
the development of the fitness curve. In our experiments we 
used a population of 100 individuals and 250 generations. 
The curves are averages of 10 test runs. The y-value of the 
curve represents the average fitness of the 10 best individuals 
in each generation. All sub-fitness functions were given the 
same weight, i.e., no quality viewpoint was valued over 
another. 

We have previously used the core fitness function to 
evaluate the e-home system [11, 12]. Here we are most 
interested in two issues: firstly, how the scenario fitness 
function affects the development of the fitness curves, and 
secondly, how the system would survive scenario evaluation 
if the scenario fitness was not included in the genetic 
algorithm.     

First we measured the effect of adding the scenario 
fitness to the core fitness function. Figure 3 depicts the 
overall fitness curve for the robowar system.  

 

Effect of scenarios to fitness development
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Figure 3.  Altogether fitness curves for robowar 

As can be seen, adding the scenario fitness naturally 
elevates the fitness curve on the grid as the scenario function 
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only gives positive values. What we are interested in is the 
development trend of the curves. We observe that the fitness 
delta (that is, the difference between the starting point and 
the ending point) is 4100 when scenarios are included and 
3000 when they are not included. Moreover, we see that the 
turning points in the curve trend happen 10 to 20 generations 
later in the case where scenarios are included. 

The same curves for the e-home system are given in 
Figure 4.  Notice that the fitness curves start at different 
values, as the fitness values depend on the amount and 
quality of each particular system’s responsibilities and their 
dependencies. The curves behave similarly as in the robowar 
graph, showing fitness delta 11000 with scenarios and 8500 
without scenarios.  Also in this case the first turning point in 
the development of the fitness curves happens approximately 
20 generations later in the case where scenarios are included. 
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Figure 4.  Altogether fitness curves  for e-home 

We assume that if the scenarios would only affect the 
curve by adding the extra positive value, the development 
trends would be the same, i.e., the turning points in 
development would be at the same point for both curves. 
Thus, the experiments suggest that including scenarios in the 
fitness function gives the genetic algorithm a slightly wider 
range of improvement possibilities. Although it is hard to 
infer the reason, we conjecture that including the evaluation 
of scenarios aids the design of the system in such a way that 
it is possible to make more good design decisions in the 
critical stage where the architecture is still rough enough to 
enable larger decisions. 

The second point to investigate is how the system can 
handle the given scenarios when the scenario fitness value is 
not included in the overall fitness. This setup corresponds to 
a situation where the architecture, which is produced by 
applying the general core fitness function without scenarios, 
is subjected to scenario-based architecture evaluation. The 
curves for robowar are given in Figure 5.  

It is hardly surprising that when selection is based 
(partly) on scenarios, the resulting architecture can handle 
them better. However, the growth behavior of the fitness is 
interesting. As can be seen, when the scenario fitness value is 
not included in the actual fitness function, it first begins to 
rise as the overall modifiability of the system increases due 

to the application of different patterns. However, the curve 
quite soon stabilizes at 5000, and no development can be 
seen after that. 
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Figure 5.  Scenario fitness development for robowar 

The scenario fitness curve representing the case where 
the scenario fitness value is added to the core fitness behaves 
quite differently. The development over the first 50 
generations is noticeably faster, and even though it 
somewhat slows down and stabilizes afterwards, there is still 
development to be seen, as the system continues to improve 
in terms of handling the given scenarios. 
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Figure 6.  Scenario fitness development for e-home 

Similar curves for the e-home system are given in Figure 
6. In this case there is an even bigger difference in the 
behavior of the curves. When the scenario fitness value is not 
included in the overall fitness, the scenario curve first begins 
to rise, then quickly stabilizes, and actually starts to worsen 
after about 150 generations. When the scenarios are 
included, however, the scenario curve continues to develop 
rapidly until about 115 generations, after which the 
development slows down and the curve seems to finally 
stabilize to 7000. This shows that after a certain point the 
core fitness function would actually start to implement 
patterns in such a way that the architecture would handle the 
given scenarios very poorly. However, when the scenarios 
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are included in the calculations after this point, it does ensure 
that the architecture keeps the highest possible level it can 
for handling the scenarios. 

Although the fitness curves give an intriguing viewpoint 
to how the scenario fitness affects the improvement of 
architecture quality we are primarily interested in the actual 
resulting architecture: does the use of scenarios lead to more 
“correct” architectures in terms of human evaluation? 
Although it is hard to come up with specific metrics for this 
purpose, we can analyze the resulting architecture proposals 
from this viewpoint. 

Figure 7 shows a proposed architecture for the robowar 
system as a component diagram; this has been extracted from 
the actual class diagram to be more easily comprehensible. 
Examples of actual, whole class diagrams are given by Räihä 
[9].The used patterns are shown schematically as dotted 
boxes; an exemplary detailed UML class diagram 
corresponding to a fragment of the architecture is presented 
in Figure 9. 

In the experiment resulting in Figure 7, the scenario 
fitness function has completely replaced the modifiability 
sub-functions (sf1 and sf2) in the core fitness function; that is, 
modifiability is evaluated only in terms of the scenarios. The 
efficiency and complexity sub-functions are, however, kept 
intact. The scenario sub-function is given a significantly 
larger weight compared to the other evaluators. This guides 
the use of modifiability enhancing patterns towards the 
responsibilities that are included in the scenarios. However, 

the versatility of the genetic algorithm is clearly revealed in 
the proposal nevertheless. For example, consider the 
modifiability support for Armor. The given scenario states 
that it is highly probable that the developer would want to 
add an alternative way to control the armor. Thus, a 
Template Method or Strategy pattern would seem a natural 
way of handling the situation. However, as seen in Figure 7, 
the GA has chosen to use Adapter instead. Since an Adapter 
allows the changing of the interface as well, this solution 
provides even stronger support for modifications than 
directly required by the scenarios, with fairly small cost 
regarding the overall complexity of the system.    

Scenarios may also be supported indirectly. As can be 
seen in Figure 7, the findRobot responsibility has been 
placed behind a Strategy pattern in the Intelligence 
component. The related scenario states that the 
intelligenceControl responsibility in that component is the 
one that should be easily changed by the developer. 
Instinctively, there might be a reason to use the Template 
Method pattern for isolating the intelligenceControl 
responsibility. However, there is no method within the 
Intelligence component that uses the intelligenceControl 
responsibility, and thus the Template Method cannot be 
implemented here. Consequently, the GA uses an alternative 
way: as intelligenceControl uses two responsibilities, 
findRobot and controlShooting, changeability is achieved by 
separating findRobot behind a pattern, and thus making the 
intelligenceControl at least partially more modifiable.

 
 

Figure 7.  Example architecture for robowar system
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Figure 8.  Example architecture for e-home

There are also direct effects of scenarios to be seen in the 
proposed architecture. For example, the robotControl 
responsibility in the Robot component is placed behind a 
Strategy, as an alternative implementation should be easily 
added.  The demand to add an alternative way to control the 
Energy related responsibilities is solved in a curious way: the 
Energy component is placed behind a server. This is in a way 
a clever solution, as the responsibility that is tied to the 
scenario is in the same situation as intelligenceControl 
discussed above. In many solutions the situation was actually 
handled similarly as in the case of the Intelligence 
component: the responsibilities used by the “main” 
responsibility of a component were placed behind a Strategy 
or a Template instead of the “main” responsibility.  

Figure 8 similarly shows an example architecture for the 
e-home system. In this case the general modifiability and the 
scenario fitness functions were heavily weighted in relation 
to efficiency and complexity. This kind of weighting tends to 
introduce the message dispatcher architecture style in the 
produced solution, as demonstrated by the example. 

All major components except the Main Controller are 
involved with the message dispatcher somehow, as the 
message dispatcher handles the connections from UI, Coffee 
Machine, Music System and Drape Driver to Drape 
Regulation, User Registry, Temperature Regulation, Speaker 
Driver, Music Files and Water Control. However, the 
inclusion of scenario fitness can clearly be seen. Examples 
are the Adapter patterns controlling connections to Water 
Control and Heater Driver, where the operation to be called 
is likely to change.  The Strategy and Template patterns in 
the Music System and the Strategy pattern in the Coffee 

Machine system also conform to the given scenarios, as it is 
highly probable that the operations behind these patterns will 
need to be changed or an alternative implementation should 
be added at some point.  

 

 
 

Figure 9.  Example of  class diagram structure for e-home 
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In particular, placing the showMusicList responsibility 
behind a Strategy is responding to the scenario given in 
Section IV. 

In Figures 7 and 8 we have used a simplified notation for 
the design patterns and the architectural style to give a rough 
overall picture of the architectural solutions. As an example 
of how a design solution would look like in the standard 
class diagram form, Figure 9 shows the part of Figure 8 
where the UI calls the Message Dispatcher, which in turn 
calls the Adapter that is providing a communication link to 
the Temperature Regulation component. Here the detailed 
structures of Strategy (MeasureTemperature class and its 
interface) and Adapter patterns are shown. 

To summarize, the experiments indicate that using 
scenarios indeed improves the solutions produced by a 
genetic algorithm. This can be seen both in the general 
growth behavior of the fitness function and in analyzing 
individual architectures. Especially the architecture proposal 
for e-home is strikingly sensible, resembling actual human-
designed architectures. Still, there is relatively much 
variation in the results, and the fitness weights have great 
influence on the character of the result. Perhaps this reflects 
the nature of architecture design in reality: there is no single 
“right” architecture, and the design is strongly affected by 
the relative priorities of the quality attributes.    

VI. CONCLUSIONS 
We have presented a method for genetically synthesizing 

software architectures based on functional requirements. We 
have discussed and shown how to use scenarios as a part of 
this automatic design process, and presented the data and 
examples achieved with this approach. Based on these 
results, it seems that scenarios do indeed capture the reality 
of architecture quality evaluation better than metrics that are 
commonly used when a numerical evaluation is needed. 

Although we have here concentrated on modifiability 
scenarios, the approach is not tied to this particular quality 
attribute. As long as a scenario can be formalized and there is 
a way to measure how well the architecture supports the 
scenario, the scenario can be related to any quality attribute. 

We acknowledge that the amount of possible patterns is 
limited in this work. Thus, in our future work we intend to 
add many more design patterns and also other architecture 
styles, to make the design of architecture much more flexible 
and closer to reality. Also,, there is still work needed in order 
to improve the quality of the results. For example, the 
balancing of different weights is not an easy task if one is 
aiming for a certain type of architecture. Thus, our future 
work includes implementing a Pareto optimal fitness 
function. This provides the user the option of choosing from 
several possible optimal solutions from the Pareto front, 
instead of being presented only one solution per test run, as 
is the case at the moment. We also intend to study the 
crossover of architectures in more detail. For example, 
choosing the parents in such a way that they complement 

each other’s quality properties could speed up the 
development of the architectures considerably. 
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Abstract — In our previous work, we have presented a method 

for genetically synthesizing software architecture design. 

Synthesis begins with a responsibility dependency graph and 

domain model for a system, and results in a full architecture 

proposal through the application of design patterns and 

architectural styles. In this paper, we study the method of 

reproduction in the genetic algorithm. More specifically, we try 

to find out whether sexual or asexual method of reproduction 

should be used. We hypothesize that although sexual 

reproduction method is so favored among various species of 

animals and plants, asexual reproduction is more natural in 

the case of genetic synthesis of software architecture. We 

search for empirical confirmation to our hypothesis by 

performing tests on two sample systems. 

Keywords-software architecture; software design; genetic 

algorithm; search-based software engineering; sexual and 

asexual reproduction 

I.  INTRODUCTION  

Design of software architecture is one of the most critical 
and intellectually demanding activities of software 
engineering. In our previous work [8, 9, 10] we have taken 
the viewpoint that the design of software architecture is 
essentially a combinatorial task where the problem is to find 
an optimal conformation of known good practices and 
solutions of architectural design in the context of a particular 
application. An optimal software architecture is the one 
which supports the realization of the quality requirements of 
the system under design as well as possible. Assuming that 
both the architecture and the general solutions can be 
formally represented, and that the quality of an architecture 
can be effectively measured, the problem of architecture 
design becomes a search problem that is appropriate for a 
heuristic search algorithm. 

We have shown [8, 10] that genetic algorithms can be 
applied to the problem of architectural design, interpreting 
general solutions (such as architectural styles and design 
patterns) as mutations and using architectural metrics as a 
basis for the fitness function. The quality of an architecture 
was measured with respect to three quality attributes, 
modifiability, efficiency and understandability. The 
architecture objects were presented as UML class diagrams. 
The input of the genetic algorithm consisted of a 
responsibility graph, that is, a graph of tasks the application 
is supposed to be able to perform. This corresponds to the 

functional requirements of the application. In addition, a 
domain model of the application was given as an initial 
rudimentary architecture.  

We have further studied in particular modifiability as a 
quality criterion, and shown [9] that scenario-based fitness 
metrics can lead to improved modifiability characteristics of 
the resulting architecture. Scenarios describe concrete 
imaginary situations that are expected to take place during 
the lifetime of the system. Each scenario specifies a 
particular modification need and its probability, and the 
fitness function computes the suitability of the architecture 
for the scenarios. In a sense, using scenarios in this way 
means that we imitate assumed system evolution with the 
simulated evolution of the genetic algorithm. However, since 
our preliminary tests showed that the results concerning 
comparison of sexual and asexual reproduction methods 
were almost identical in the cases of scenario-based fitness 
metrics and the original simpler metrics, we decided to use 
here the latter metrics. 

In the present paper, we study the form of reproduction 
method used in the genetic algorithm, in particular, whether 
a sexual method of reproduction provides benefits when 
synthesizing software architectures using genetic algorithms. 
We consider a reproduction method in a genetic algorithm as 
“sexual” if it somehow combines parts of two separate 
individuals (parents) to form offspring. This is called cross-
over. All other forms to create new individuals are 
considered as “asexual”. In the context of genetic algorithms, 
they are often called mutations although in the biological 
sense there are several different methods of asexual 
reproduction [15], and the operations used might be more 
closely analogous to some other asexual method than natural 
mutation. 

A sexual reproduction method can have different degrees 
of randomness. The parents can be chosen in a fully random 
way, or some characteristics of the individuals can increase 
their probability of pairing. When two individuals pair, the 
contribution of both individuals passed over to the offspring 
can be fully random, or it can be chosen in some sense 
purposefully. The latter makes sense especially if the parents 
have been chosen in such a way that they presumably 
“complete” each other (cf. breeding of domestic animals). In 
this work we use crossover in which selecting the 
contributions of each parent is fully random. However, the 
probability of being selected as a parent increases as an 
individual is ranked higher in the population. Ranking of 
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individuals is based on ordering their fitness values. 
Similarly, the probability of being selected as a parent 
decreases if an individual is ranked as belonging to the worse 
half of the population. This corresponds best to reproduction 
in nature: “fit” individuals are likely to become parents, but 
selecting different properties is not guided. More guided 
ways of sexual reproductions also raise many issues that are 
outside the scope of this paper.     

In a conventional software development process, a 
software architecture is recommended to be designed by 
making small improvements rather than by merging two 
architecture proposals (see e.g. the software architecture 
design process model in [2]). This kind of incremental design 
process is essentially analogous to the gradual changes 
typical for asexual reproduction methods. We therefore 
hypothesize that sexual reproduction does not offer 
significant advantage in the genetic synthesis of a software 
architecture, at least when implemented in a random fashion. 
The hypothesis is tested by studying the genetic synthesis of 
an architecture for two sample systems of different character, 
the control system for an e-home and a robot war game 
application.  There seem to be only a few previous studies 
comparing different reproduction methods for a particular 
problem (see, e.g., [12, 13, 14]).  In the field of search-based 
software engineering, it is common to either settle for a 
certain type of reproduction method or use only mutations 
without defining how natural selection is handled. Thus, our 
work provides experimental background that may encourage 
diversity and more comparative studies in reproduction 
methods for genetic algorithms.  

The paper is organized as follows. In the next section we 
discuss the factors that are supposed to affect the popularity 
of sexual reproduction in various species and motivate our 
hypothesis. In Section III we describe our approach to 
genetically synthesize software architecture design. In 
Section IV we discuss our experiments and interpret their 
results. Finally, concluding remarks and ideas on future 
research directions are presented in Section V. We assume 
basic knowledge of genetic algorithms (e.g., Michalewicz 
[6]). 

II. SEXUAL VS. ASEXUAL REPRODUCTION 

Sexual reproduction is very common, especially among 

large, multicellular organisms, although sex is more 

complicated than asex. It takes more time and energy and 

requires selecting a partner. Moreover, recombination can 

both destroy and create favorable gene combinations. From a 

naive engineering point of view it would be much more 

efficient to directly move the good properties of a competent 

individual to the next generation without pushing one's luck 

with the risks of recombination. [15]  

Evolutionary biologists have tried to find out reasons for 

the success of sexual reproduction, but no obvious general 

explanation has been found; most likely there are several 

factors promoting sexual reproduction. It is also possible 

that sex is maintained by different reasons in different 

species. However, some general explanations for explaining 

the popularity of sexual reproduction among species are 

suggested [15]: 

• Recombination speeds up evolution by bringing 

together two or more beneficial mutations that 

appeared in different organisms. This is important 

especially when the environment changes quickly and 

the population must adapt to the changing 

circumstances. 

• Recombination affects host-parasite (and predator-

prey) coevolution where the direction of selection is 

changed relatively frequent. In a sexual population 

temporarily bad genotypes can retain latent and 

become common, when the selection again changes 

direction. 

In our previous experiments on genetic synthesis of 

software architecture, we have viewed architecture as a 

species that evolves exploiting both mutations and crossover 

[8, 9, 10]. But are the biological motivations favoring sexual 

recombination relevant in the context of designing software 

architecture? 

The lifetime of a software system essentially begins with 

the first requirements specifications and ends when the 

system is no more used. During this period the different 

artifacts representing the system experience changes that are 

usually referred to as the evolution of the system. Although 

the changes concern an individual (a particular system) 

rather than a species or a gene, this process bears 

resemblance to natural evolution. The environment where 

the system is developed and used changes, there are new 

competitors of the system on the market, the behavior of the 

interacting species (humans and other systems) changes etc. 

The main challenge of software architecture design is to 

somehow anticipate all (or as much as possible) such 

changes, and to find an optimal degree of flexibility without 

sacrificing other desired quality attributes (like, say, 

efficiency). However, there is no obvious analogy to a 

“population” of software architectures.  

To create such an analogy, imagine that the software 

architecture of a system is being developed by a large team 

of designers following the principle of natural evolution: 

each individual designer proposes an initial software 

architecture, some authority decides which are selected for 

further elaboration, these are again distributed to the 

designers which try to improve the architectures by making 

small, simple modifications (mutations), and some designers 

are allowed to combine their solutions (crossover). The 

process is iterated for a certain number of times 

(generations), and finally the best architecture of the final 

round is taken as the result. This is essentially the process 

that has been automated in our previous experiments.   

Creating a software architecture incrementally by making 

simple transformations is actually recommended in real 

software production [2], but anything that could be 

considered as a random crossover operation hardly ever 

takes place in the evolution of a system. Thus, in the 

fictional description above, it seems plausible that the 
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designers could give up combining their proposals without 

loss of productivity.  

The research question of this paper concerns the role of 

crossover in genetic software architecture synthesis: does it 

make sense to apply (random) crossover at all in this 

domain, and if so, what is its effect? Based on the discussion 

above, our hypothesis is that sexual reproduction does not 

provide essential benefit for the genetic synthesis of 

software architecture. 

III. GENETIC SOFTWARE ARCHITECTURE SYNTHESIS 

In this section we describe our approach to genetically 
synthesize software architecture design. We begin with a set 
of responsibilities (requirements) that can be given some 
relative values regarding modifiability and efficiency. Using 
the information given on the dependencies between the 
responsibilities, this set is then formed into a responsibility 
dependency graph. Furthermore, a domain model for the 
system is given. The graph is encoded as a chromosome, 
which is then subjected to the genetic algorithm 
(implemented with Java). The algorithm gives a detailed 
architecture design for the given system through the 
implementation of a set of architectural patterns to the given 
model, and produces a UML class diagram as the result. 

A genetic algorithm maintains a population of possible 
solutions. In our problem a population is a set of possible 
architectures which undergoes an evolutionary process 
imitating the natural biological evolution. In each generation 
better individuals have greater possibilities to survive and 
reproduce, while worse individuals have greater possibilities 
to die and to be replaced. It is believed that this process leads 
to a combination of the properties of the better individuals, 
which constitutes a good solution to the problem in question.  

To operate with a genetic algorithm, one needs an 
encoding of possible solutions, an initial population, 
mutation and crossover operators, a fitness function and a 
selection operator for choosing the survivors for the next 
generation.  

 

A. Requirements  

Any system can be described at a very high level by 
naming responsibilities for abstract tasks and the 
dependencies between them. Thus, the functional 
requirements for a system can be given as a responsibility 
dependency graph, where each node represents a 
responsibility, and each directed edge represents a 
dependency between the two responsibilities. In order to 
evaluate the system, some attributes of the responsibilities 
are also given, such as variability, parameter size and time 
consumption. The precise values for these attributes of 
course cannot be known, but should be estimated in order to 
calculate the modifiability and efficiency values for the 
system. The given values for the attributes are relative, rather 
than absolute.  

We have used here two sample systems; an e-home 
control system (called hereafter ehome), which represents a 
typical embedded system, and a robot war game application 
(robowar), which represents a desktop system. The ehome 
system requirements lead to 52 responsibilities and 90 
dependencies between the responsibilities, while robowar 
entails 56 responsibilities and 73 dependencies between 
them. A part of the ehome responsibility dependency graph 
is given in Figure 1. The nodes representing data manager 
responsibilities are marked with a thick circle. 

 
 

 
Figure 1. A fragment of the responsibility dependency graph for e-home 
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Figure 2. Fragment of domain model for ehome  

In addition to simply giving the responsibilities and their 
relationships, we have formed a domain model by assigning 
the responsibilities to classes. The assignment is based on the 
data responsibilities: a responsibility is placed in the same 
class where the data it handles (either directly or through 
another responsibility) is. Associations for the model are 
derived directly from the dependency graph. This initial 
model thus gives the system a basic structure by separating 
subsystems into components. However, this structure is not 
fixed, as the class division may be altered through 
application of architectural patterns. The ehome domain 
model contains 12 classes and the robowar domain model 
contains 22 classes. 

A fragment of the ehome domain model is given in 
Figure 2; this represents the same part of the system as 
Figure 1. For simplicity, we have used only classes and 
associations. As can be seen, the initial model is very 
simplistic – the genetic algorithm is merely given a logical 
starting point where the subsystems are separated. No 
decisions are made regarding the actual architectural 
solutions. 

B. Genetic Representation 

The genetic algorithm is given two kinds of data 
regarding each responsibility ri. Firstly, there is the basic 
information of ri itself. This contains the responsibilities Ri = 
{rk, rk+1, …, rm}  depending on ri, its name, type, frequency 
parameter size, execution time, call cost, call variability and 
variability. Secondly, there is the information regarding the 
responsibility ri’s place in the architecture: the class(es) Ci 
={Ci1, Ci2, …, Civ} it belongs to, the interface it implements, 
the message dispatcher it uses (further explained in Section 
III.C), the responsibilities RDi ⊂  Ri that call it through the 
message dispatcher, the design patterns Pi ={Pi1, Pi2, …, Pim}  it 
is a part of and the predetermined model class it is assigned 
to, as given in the domain model. The message dispatcher is 
given a separate field as opposed to other patterns for 
efficiency reasons. All data regarding a responsibility is 
encoded as a supergene [1]. The chromosome handled by the 
genetic algorithm is gained by collecting the supergenes, i.e., 
all data regarding all responsibilities, thus achieving a whole 
view of the functional requirements for the architecture. 

The initial population is made by first creating the 
desired number of individuals with the basic structure given 

in the responsibility dependency graph and domain model. A 
random pattern is then inserted into each individual, as a 
population should not consist entirely of clones.  In addition, 
a special individual is left in the population where no pattern 
is initially inserted. 

C. Mutation and Crossover Operations 

The actual architectural design means here the 
application of various standard architectural solutions called 
collectively patterns. The patterns have been chosen to 
represent solutions on different levels: high-level 
architectural styles [11] (message dispatcher and client-
server), medium-level design patterns [4] (Façade and 
Mediator), and low-level design patterns [4] (Strategy, 
Adapter and Template Method). The mutations are 
implemented in pairs of introducing a pattern or removing a 
pattern [7]. The dispatcher architecture style makes a small 
exception to this rule: the actual dispatcher must first be 
introduced to the system, after which the responsibilities can 
communicate through it. Although the number of patterns is 
very small in our experiments, we assume that this is 
sufficient for studying the basic characteristics of genetic 
architecture synthesis.  

The mutations are thus the following: 

• introduce/remove message dispatcher 

• create link/remove link to dispatcher 

• introduce/remove server 

• introduce/remove façade 

• introduce/remove mediator 

• introduce/remove strategy 

• introduce/remove adapter 

• introduce/remove template method. 
The crossover operation is implemented as a traditional 

one-point crossover with a corrective operation. The latter 
operation ensures that the architecture stays coherent, as 
patterns may be broken by overlapping mutations. In 
addition to ensuring that the patterns present in the system 
stay coherent and “legal”, the corrective function also checks 
that the design conforms to certain architectural laws. These 
laws demand uniform calls between two classes (interaction 
either through an interface or a dispatcher but not both), and 
state some basic rules regarding architectures (e.g. no 
responsibility can implement more than one interface).  The 
purpose of these laws is to ensure that no anomalies are 
brought to the design.  

The actual mutation probabilities are given as input. 
Selecting the mutation is made with a “roulette wheel” 
selection [6], where the size of each slice of the wheel is in 
proportion to the given probability of the respective 
mutation. Null mutation and crossover (if applied) are also 
included in the wheel. Each individual has a chance of 
reproducing in each generation: if the first roulette selection 
lands on a mutation, another selection is performed after the 
mutation has been administered. If the second selection lands 
on the crossover slice, the individual may produce offspring. 
In any other case, the second selection is not taken into 
account, i.e., the individual is not mutated twice. 
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D. Fitness Function  

The fitness function is based on widely used software 
product metrics, most of which are from the metrics suite 
introduced by Chidamber and Kemerer [3].These metrics, 
especially coupling and cohesion, have been used as a 
starting point for the fitness function, and have been further 
developed and grouped to achieve clear “sub-fitnesses” for 
modifiability and efficiency, both of which are measured 
with a positive and negative sub-function. The biggest 
modifications to the basic metrics include taking into account 
the positive effect of interfaces and the dispatcher and client-
sever architecture styles in terms of modifiability, as well as 
the negative effect of the dispatcher and server in terms of 
efficiency. A complexity metric is added to penalize having 
many classes and interfaces as well as extremely large 
classes. 

Dividing the fitness function into sub-functions answers 
the demands of the real world. Hardly any architecture can 
be optimized from all quality viewpoints, but some 
viewpoints are ranked higher than others, depending on the 
demands regarding the specific architecture at hand. By 
separating efficiency and modifiability, which are especially 
difficult to optimize simultaneously, we can assign a bigger 
weight to the more desired quality aspect. When wi is the 
weight for the respective sub-fitness sfi, the fitness function 
fc(x) for chromosome x can be expressed as   

fc(x) = w1∗sf1  – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5. 
Here, sf1 measures positive modifiability, sf2 negative 

modifiability, sf3 positive efficiency, sf4 negative efficiency 
and sf5 complexity. The sub-fitness functions are defined as 
follows (|X| denotes the cardinality of X): 

sf1 = |interface implementors| + |calls to interfaces| + |calls 

through dispatcher| ∗ � (variabilities of responsibilities 
called through dispatcher) – |unused       responsibilities in 

interfaces| ∗ �,  
sf2 = |calls between responsibilities in different classes, 

that do not happen through a pattern|, 

sf3 = � (|dependingResponsibilities within same class| ∗ 
parameterSize) +        �( |usedResponsibilities in same class| 

∗ parameterSize + |dependingResponsibilities in same class| 

∗ parameterSize),  
sf4 = � ClassInstabilities + (|dispatcherCalls| + 

|serverCalls|) ∗ � callCosts, and 
sf5 = |classes| + |interfaces|. 

The multiplier � in sf1 emphasizes that having unused 
responsibilities in an interface is almost an architecture law, 
and should be more heavily penalized. 

E. Selection 

In sexual reproduction selection is natural, as crossover 
adds individuals to the population while the size of the 
population should be the same in the beginning of each 
generation. Thus, a selection method is needed to discard 
the required amount of individuals. For this purpose, we 
have used the same kind of roulette wheel method as was 
used for choosing the mutations. This is combined with 
elitism to ensure that the very top of each population is kept 
for the next generation. 

For asexual reproduction, the question of implementing 
selection in the genetic algorithm is not as straightforward. 
In order to have more variety in the population and to be 
able to have an option to discard the weakest individuals, 
natural selection should be simulated. Because crossover is 
not an option as a means to increase the size of the 
population, we have chosen to clone each individual before 
it is mutated. Thus, after the selection has been made after 
each generation, the initial population for a given generation 
is copied so that we have three copies of each individual, 
and these copies are mutated. The selection operator (elitism 
combined with roulette wheel) now has a vast pool of 
material from which to choose the next generation.  

IV. EXPERIMENTS 

We used two sample systems, the robowar and the ehome 
to see how the different reproduction methods affect the 
development of the fitness curve. In our experiments we used 
a population of 100 individuals and 500 generations. The 
curves are averages of 10 test runs. The y-value of the curve 
represents the average fitness of the 10 best individuals in 
each generation. We are interested in two issues: firstly, is 
the use of (random) crossover justified, i.e., does sexual 
reproduction provide any added value in this domain, and 
secondly, what is the effect of crossover when compared to a 
purely asexual approach.  

The fitness curves for tests on the ehome system are 
depicted in Figure 3. As can be seen, in the case of asexual 
reproduction (i.e., no crossover), the fitness curves develop 
very rapidly, and then stabilize and get stuck to a value just 
above 2000. In the case of sexual reproduction (i.e., with 
crossover), the fitness values continue to develop for a 
significantly longer time before stabilizing. However, the 
actual fitness value reached is noticeably lower than the 
value reached by asexual reproduction.  

The fitness curves for tests on the robowar system are 
given in Figure 4. The results are very similar to the ehome 
system regarding the effect of crossover. Given the rather 
different character of the systems, these results suggest that 
in genetic software architecture synthesis, where patterns 
serve as mutations, random crossover does not provide 
benefits in terms of reaching high fitness values more 
efficiently. In contrast, pure mutation based evolution 
appears to lead to more rapid convergence to a stable fitness 
value, even on a higher level than in the case of crossover.  

The difference between the shapes of the curves is not as 
drastic with robowar as with ehome. This can be explained 
by the different character of the starting points: for robowar, 
the classes in the initial domain model contained 2.5 
responsibilities in the average, while in ehome this figure 
was 4.3. This implies that the initial architecture was 
essentially more fine-grained in robowar, leaving more 
possibilities for crossover to yield descendants. 

In both systems the fitness curve for the asexual case 
appears to be after it reaches a certain level. We continued to 
investigate this by computing the average deviation within 
the last population. The average deviations of the last 
populations of 10 test runs are given in Table 1. 
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Figure 3. Ehome fitness curves 
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Figure 4. Robowar fitness curves 

TABLE I. AVERAGE  DEVIATIONS IN THE LAST POPULATION 

  Ehome Robowar 

Whole population 8530.4 4130.1 

Top 200 0.0164 4.77E-12 

 
These results show that when the entire population, i.e., 

all 300 individuals (after mutation but before selection), is 
taken into account, there is still a significant amount of 
deviation as there are some noticeably bad individuals. 
However, when considering the top 200 individuals (which 
the next generation of 100 individuals will extremely likely 
consist of), there is hardly any deviation. In fact, in four test 

runs for the robowar system, the deviation for the top 200 
individuals was zero.  

These results suggest that the populations achieved with 
purely asexual reproduction end up consisting of individuals 
with identical or nearly identical fitness values. An 
explanation could be that the population consists of clones of 
some top individual, and the algorithm is not able to find any 
mutations that would further improve the found solution. By 
comparison, average deviations in the last population (after 
mutation and crossover but before selection) when using 
sexual reproduction were around 40 000 for ehome and 
20 000 for robowar, when the largest population was 110 
individuals.  
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A general observation regarding the architectures 
produced by purely asexual reproduction was that the 
selection of applied patterns tends to be reduced. In both 
systems, most of the best individuals of the last generations 
applied only Template Method and Adapter, which are low-
level patterns with specific immediate positive impact on 
modifiability and minor negative impact on efficiency and 
complexity. With crossover, the selection of applied patterns 
was significantly larger. However, the selection of the 
patterns and the effect of crossover are dependent on the 
relative weights of the quality attributes. If modifiability is 
weighted over efficiency and simplicity, high-level 
architectural style patterns (message dispatcher and client-
server) start to appear more in the best architectures, and in 
those cases crossover actually results in better fitness values, 
in contrast to the situation where several quality attributes 
are equally weighted. The high-level patterns differ from 
low-level patterns in that they are more significant for the 
fitness: they have rather strong positive effect on 
modifiability but also a clear negative effect on efficiency. 
Obviously, if modifiability is sufficiently emphasized, such 
patterns will prevail. However, the reason why crossover 
seems to provide advantage when the fitness function is 
targeted to a single quality attribute with strongly supporting 
patterns remains unclear. We can only speculate that 
crossover makes it easier to pass especially good solutions to 
a large number of descendants. 

V. CONCLUSIONS 

We have presented experimental results on the effect of 
sexual reproduction in the case of genetically synthesizing 
software architecture. We hypothesized that, considering the 
conventional design process of software architecture, 
crossover does not provide significant benefits, as there is no 
equivalent for this operation in the real design process. The 
experimental results we have presented seem to confirm this 
hypothesis, as the fitness curves for two sample systems 
achieved higher and more convergent values when using 
only asexual reproduction. The experiments revealed that 
both the individuals and the populations tend to become 
homogeneous with asexual reproduction, the former in the 
sense of used patterns and the latter in the sense that the elite 
consists of identical or almost identical individuals. 

However, it would be too hasty to conclude that asexual 
reproduction should be favored in genetic software 
architecture synthesis. First, the criteria for good software 
architecture, as represented by the fitness function based on 
general software metrics, is highly controversial. Indeed, our 
previous experiments with crossover have produced 
architectures that are closer to human-designed ones than 
those produced without crossover in this work. It seems that 
crossover produces larger diversity in the architectural 
solutions, including those that “look” good for the human 
architect. The problem is how to identify these mechanically 
in the fitness function. Also, our additional experiments in 
this work indicated that the effect of crossover depends on 
the weighting of the quality attributes in the fitness function. 

Second, we have used here only random crossover. 
While random crossover is indeed unnatural in the context of 

software architectures, purposeful crossover is not. It is not 
uncommon in practice that two persons in a design team 
come up with good solutions for different parts of the 
systems, and merge their solutions.  Thus, in our future work, 
we intend to implement a crossover operator that would 
search for and then attempt to combine quality “sub-
architectures” of the system. Building block conserving 
crossover operators has already been studied by, e.g., 
Harman et al. [5]. 
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Abstract— Automated support for software architecture design 
is discussed. The proposed approach is based on a tool 
applying genetic algorithms for producing potential 
architecture proposals. The tool requires a basic functional 
decomposition of the system and the specification of the quality 
requirements as input, relying on a repository of standard 
solutions like patterns and architectural styles. The underlying 
techniques and the design of the tool are discussed, and the 
usage of the tool is illustrated by an example. 

Keywords-software architecture; heuristic methods; genetic 
algorithms; patterns; tool support. 

I.  INTRODUCTION  
 
Software architecture design has been traditionally 

considered as highly creative work, requiring special 
experience, judgment and talent. On the other hand, there is a 
growing body of architectural knowledge [2], expressed in 
terms of architectural styles, patterns, best practices, 
reference architectures etc. In many cases, a good software 
architecture is obtained essentially by applying existing 
architectural knowledge in the context of a particular system, 
rather than creating completely new solutions. Assuming that 
software architecture can be presented and evaluated in a 
formal manner, the design of software architecture can be 
thus viewed as a search problem: find a configuration of 
existing solutions that optimizes the architecture with respect 
to certain quality requirements in the context of a particular 
system. 

This observation gives rise to our basic research 
question: could it be possible to automate software 
architecture design, at least to some extent? We argue that 
(partial) automation of software architecture design is 
beneficial not only for increasing the productivity of a 
software architect, but also for improving the quality of the 
design. The latter expectation is based on the fact that an 
automated design may have access to and consider without 
prejudice a much larger solution and knowledge base than a 
human software architect who often suffers from the Golden 
Hammer syndrome [4]: once a person has found a solution 
that works nicely in one context, he or she tends to apply it 
over and over again, even in inappropriate contexts.  

We adopt the viewpoint that software architecture is the 
composition of a set of architectural decisions [12]. In our 
context, an architectural decision is a structural solution 

imposed on the target system, so as to satisfy the quality 
requirements of the system. Such solutions are typically 
architectural styles [24] or design patterns [10]. 

Heuristic search methods have been used in various 
fields of software engineering [7], also in areas close to 
software architecture [1, 13]. In our previous work, we have 
studied the application of genetic algorithms (GA) to 
software architecture synthesis [21, 22, 23]. The results 
suggest that it is possible to produce a reasonable software 
architecture using this approach, at least for domains that are 
well understood. 

In this paper we study more pragmatic aspects of 
automated software architecture generation: what is the 
design process in this approach, and what kind of tool 
support could be useful for a software architect in this 
process? The main contributions of this paper are a proposal 
for automated software architecture design process and a 
prototype tool for automated software architecture synthesis, 
based on the GA approach developed in our earlier work. 
The empirical evaluation of the approach has been presented 
elsewhere [23] and is outside the scope of this paper. 

We proceed as follows. In Section II we discuss the 
general model of (partially) automated software architecture 
design. In Section III we briefly discuss the related work, 
using meta-heuristic search methods in software design. Our 
approach for genetic software architecture synthesis is 
summarized in Section IV. The prototype tool developed in 
this work is presented in Section V, and an example of the 
usage of the tool is discussed in Section VI, illustrating the 
concept of automated software architecture design proposed 
in this paper. The performance of the tool is briefly discussed 
in Section VII. Finally, the paper is concluded in Section 
VIII.       

II. AUTOMATED SOFTWARE ARCHITECTURE DESIGN 
The overall process for automated software architecture 

design is depicted in Fig. 1. There are two major phases in 
the process: (i) the tool-assisted generation of a draft 
architecture based on a null architecture, system 
requirements, and a solution base; and (ii) the (manual) 
completion of the draft architecture, using tacit expert 
knowledge of the software architect. We expect that it is 
unrealistic to aim at fully automated software architecture 
design, but we argue that a useful first approximation for the 
software architecture can be produced by a tool. 
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The tool producing a draft proposal can be based on 
various meta-heuristic search approaches, like simulated 
annealing [11], hill-climbing [11], or (as in our case) genetic 
algorithms (GAs) [16]. However, since there are no known 
methods to produce deterministically an optimal software 
architecture for given requirements, the tool is expected to 
produce a (small) set of candidate proposals which are 
subject to human selection. In this way the inherent random 
element typical for heuristic methods can be largely effaced: 
a good architecture that just happens to score less than 
another generated architecture will be then considered, too. 
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Figure 1. Overview of automated software architecture design process 

based on heuristic search 
 
For a given target system, the central input consists of a 

null architecture and the system requirements. The null 
architecture is needed for a starting point for architecture 
synthesis: it gives a basic initial functional decomposition of 
the system in terms of major components and their responsi-
bilities. As such, it is a rudimentary architecture that does not 
yet take any quality requirements into account. The null 
architecture is the “seed” of the tool, a structure into which 
various architectural solutions can be attached.   

 System requirements consist of functional requirements 
and quality requirements. Any architecture produced by the 
tool is assumed to satisfy the functional requirements, with 
varying degree of quality. The quality requirements must be 
given in a way that allows the algorithmic evaluation of the 
quality of an individual architecture. In Section IV we will 
discuss a possible technique to give such requirements.   

We assume the existence of a knowledge base of 
architectural solutions. Here we do not give any require-
ments for the nature or presentation of those solutions - they 
can be general pattern-like solutions or architectural styles 
[3], or more specific solutions related to a particular domain. 
Each solution also specifies in some way the preconditions 
for applying the solution. In Section IV we will discuss in 
more detail the solution base we have used in our GA based 
approach. 

In addition to a null architecture, the tool should also be 
able to take a real architecture as input. This is useful in 
many ways. Tool-assisted software architecture design can 
be made iterative: after manual improvement of the 
generated architecture, the architect can again submit the 
completed architecture to the tool, possibly freezing some 
parts of the architecture. The tool can use this as the null 
architecture, and further increase the quality by adding new 

solutions. For example, the architect could add manually a 
preferred solution for a particular problem, and freeze that so 
that it will be retained by the tool which tries to find optimal 
architectures in the presence of the frozen parts. On the other 
hand, the architect can also apply the tool only after making 
already some design decisions, which will be frozen. In this 
way the architect can apply the tool at any stage of the 
design, whenever appropriate. This is shown by the dashed 
arrow in Fig. 1. However, this kind of iterative design is not 
yet supported in our tool, discussed in Section V. In the 
following chapters we propose an approach for developing 
an architecture synthesis tool based on GA.  

III. RELATED WORK 
There have been several studies describing tools using 

meta-heuristic search algorithms for some part of software 
design/re-design process, as well as tools for software 
architecture design. The common denominator for these 
tools is that they improve the software architecture rather 
than create it based on the requirements of the system. Also, 
the improvements are mostly limited to class hierarchy and 
decomposition, while our approach takes into account more 
refined compounds (patterns and architectural styles).  

O’Keeffe and Ó Cinnéide [18] present Dearthóir, a tool 
for improving a design with respect to a conflicting set of 
goals by using simulated annealing. It restructures a class 
hierarchy and moves methods within it in order to minimize 
method rejection, eliminate code duplication and ensure 
super classes are abstract when appropriate. All refactorings 
are reversible, behavior-preserving transformations in Java 
code. A set of metrics is used for evaluating the design 
quality.  

O’Keeffe and Ó Cinnéide [19, 20] have continued their 
research by constructing CODe-Imp, a tool for refactoring 
object-oriented programs to conform more closely to a given 
design quality model. It can be configured to operate using 
various subsets of its available automated refactorings, 
various search techniques, and various evaluation functions 
based on combinations of established metrics.  

Mancoridis et al. [14] present the Bunch tool for 
automatic modularization. It uses hill climbing and GA to 
aid its clustering algorithms. A hierarchical view of the 
system organization is created based solely on the 
components and relationships that exist in the source code. 
The goal of this software modularization process is to 
automatically partition the components of a system into 
clusters (subsystems) so that the resulting organization 
concurrently minimizes inter-connectivity while maximizing 
intra-connectivity. 

Mitchell et al. [16] build on the Bunch tool in their two 
step process for reverse engineering the software architecture 
of a system directly from its source code. Bunch is used for 
the first step: clustering the modules from the source code 
into subsystems. The second step involves reverse 
engineering the subsystem-level relations using a formal 
(and visual) architectural constraint language.  Using the 
reverse engineered subsystem hierarchy as input, a second 
tool, ARIS, is presented to enable software developers to 
specify the rules and relations that govern how modules and 
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subsystems can relate to each other. ARIS then attempts to 
find the missing style relations.  

Di Penta et al. [9] build on these results and present a 
software renovation framework (SRF), a toolkit that covers 
several aspects of software renovation, such as removing 
unused objects and code clones, and refactoring existing 
libraries into smaller ones. Refactoring has been 
implemented in the SRF using a hybrid approach based on 
hierarchical clustering, GAs and hill climbing, also taking 
into account the developer’s feedback. Most of the SRF 
activities deal with analyzing dependencies among software 
artifacts. 

The tool that is closest to ours with respect to the goal is 
ArchE, developed at SEI [15, 25], which, however, do not 
use a meta-heuristic search algorithm but a deterministic 
approach together with user interaction.   

ArchE uses three different types of input: quality attribute 
requirements, the set of features (functions) that the system 
should support, and legacy design, if available. From the 
features and quality attribute requirements, ArchE constructs 
a representation of the responsibilities and the dependencies 
among them. The architect interacts with ArchE to further 
identify the dependencies among the responsibilities and to 
provide properties that are required in order to predict quality 
attribute behavior. 

ArchE then creates an initial architecture and shows it to 
the architect, as well as a series of suggestions for 
improvements.  The architect selects an option, and ArchE 
applies it to the architecture, calculates the effects of the 
revision, and shows the revised information. The 
interaction/revision continues until the architect is satisfied 
with the design [25]. 

IV. GENETIC SOFTWARE ARCHITECTURE SYNTHESIS 
In this section we describe in more detail our basic 

approach to synthesize software architecture design [21, 22, 
23] based on genetic algorithms. Genetic algorithms [16] are 
generally used to find a good solution from a very large 
search space, the goal obviously being that the found 
solution is as good as possible. Each solution is encoded as a 
chromosome, which can be further divided into genes. When 
reproducing, crossover occurs: genes are exchanged between 
the pair of parent chromosomes. The offspring is subject to 
mutation, where gene values are changed. The fitness 
represents the quality of a solution. The set of chromosomes 
at hand at a given time is called a population. 

A. Functional Requirements  
For any system, the functionality can be described with 

use cases which are refined into interactions between the 
major units of the system. In this way, basic responsibilities 
of the units can be inferred, as well as the mutual 
dependencies of the responsibilities (a responsibility may 
rely on another responsibility). In actual implementation, the 
responsibilities typically become the services of the units. In 
this work, we assume that functional requirements are given 
as a set of use cases which is then refined into a 
responsibility dependency graph (RDG), where each node 
represents a responsibility, and each directed edge represents 

a dependency between the two responsibilities (that is, the 
source responsibility requires the target responsibility).  

In order to facilitate the evaluation of the architecture of 
the system, the responsibilities can be associated with 
qualifying attributes, such as sensitiveness to variation 
during the evolution of the system and average time 
consumption. The values for these attributes of course cannot 
be known precisely for a system under design, but 
estimations of these (relative) values provide more 
information for the genetic algorithm, regarding 
modifiability and efficiency fitness.  

In our technique, the null architecture (see Fig. 1) is 
derived from the use cases as well: the major units obtained 
in the refinement of the use cases become components in the 
null architecture. The dependencies between the respon-
sibilities imply directly dependencies between the corre-
sponding components. The null architecture can be thus 
given as a class diagram in UML.  

In order for the genetic algorithm to operate with the 
architectural data, it is encoded into a chromosome form. In 
the chromosome, each responsibility is encoded into one 
gene, while each data component (qualifying attributes, 
dependencies to other responsibilities, and its structural 
“place” in the architecture) is given a separate field within 
the gene.  

The initial population is made by first creating the 
desired number of individuals with the basic structure given 
in the null architecture. A random pattern is then inserted (in 
a randomly chosen place) into each individual, as an initial 
population should not consist entirely of clones.  In addition, 
a special individual is left in the population where no pattern 
is initially inserted: this ensures versatility in the population. 

B. Mutation and Crossover Operations 
As discussed above, the actual architectural design 

consists of the applications of standard architectural 
solutions called collectively patterns here. The patterns have 
been chosen so that there are representatives of very high-
level architectural styles [24] (dispatcher and client-server), 
medium-level design patterns [10] (Façade and Mediator), 
and low-level design patterns [10] (Strategy, Adapter and 
Template Method). Also, the notion of interface is 
considered an architectural solution. The mutations are 
implemented in pairs of introducing a pattern or removing a 
pattern. The dispatcher architecture style [24] makes a small 
exception to this rule: the actual dispatcher must first be 
introduced to the system, after which the responsibilities can 
communicate through it.  The mutations are thus the 
following: 

• introduce/remove message dispatcher 
• create link/remove link to dispatcher 
• introduce/remove server 
• introduce/remove façade 
• introduce/remove mediator 
• introduce/remove strategy 
• introduce/remove adapter 
• introduce/remove template method 
• introduce/remove interface. 
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The crossover operation is implemented as a traditional 
one-point crossover with a corrective operation. This 
operation ensures that the architecture stays coherent, as 
patterns may be broken by overlapping mutations. In 
addition to ensuring that the patterns present in the system 
stay coherent and “legal”, the corrective function also checks 
that the design conforms to certain architectural laws. These 
laws demand uniform calls between two classes (e.g., 
through an interface or a dispatcher), and state some basic 
rules regarding architectures, e.g., no responsibility can 
implement more than one interface.  The purpose of these 
laws is to ensure that no anomalies are brought to the design.  

The actual mutation probabilities are given as input. 
Selecting the mutation is made with a “roulette wheel” 
selection [16]. Null mutation and crossover are also included 
in the “wheel”. Each individual has a chance of reproducing 
in each generation: if the first roulette selection lands on a 
mutation, another selection is performed after the mutation 
has been administered. If the second selection lands on the 
crossover slice, the individual may produce offspring. In any 
other case, the second selection is not taken into account, i.e., 
the individual is not mutated twice. 

C. Fitness Function and Selection 
In order for the genetic algorithm to know what kinds of 

individuals are “good”, a fitness function is needed. In our 
approach the fitness function, or the weights of its different 
parts, represent the quality requirements. In addition, more 
specific modifiability requirements may be given as so-
called scenarios, discussed below. 

The core fitness function is based on widely used 
software product metrics, most of which are from the metrics 
suite introduced by Chidamber and Kemerer [6]. These 
metrics, especially coupling and cohesion, have been used as 
a starting point for the core fitness function, and have been 
further developed and grouped to achieve clear “sub-
fitnesses” for modifiability and efficiency, both of which are 
measured with a positive and negative sub-function. The 
biggest modifications to the basic metrics include taking into 
account the positive effect of interfaces and the dispatcher 
and client-sever architecture styles in terms of modifiability, 
as well as the negative effect of the dispatcher and server in 
terms of efficiency. A complexity metric is added to penalize 
having many classes and interfaces as well as extremely 
large classes. 

Dividing the core fitness function into sub-functions 
answers the demands of the real world. Hardly any 
architecture can be optimized from all quality viewpoints, 
but some viewpoints are ranked higher than others, 
depending on the demands regarding the specific architecture 
at hand. By separating efficiency and modifiability, which 
are especially difficult to optimize simultaneously, we can 
assign a bigger weight to the more desired quality aspect. A 
detailed description of the basic fitness function can be found 
in [23]. 

In addition to these metric-based sub-fitness functions, 
we have also included modifiability related scenarios as a 
way of measuring the architecture quality [23]. Each 
scenario is also associated with a probability value, 

indicating the likelihood of the scenario and thus its relative 
weight in the evaluation. The scenarios are encoded in such a 
way that they can be taken into account in the calculation of 
the fitness value. The fitness function is extended with a term 
evaluating the appropriateness of the architecture with 
respect to the scenarios. 

Selecting the individuals for each generation is made 
with the same kind of roulette wheel method as was used for 
choosing the mutations. A selection operation is needed, as 
the size of the population should be the same at the start of 
each generation, but through crossover the amount of 
individuals grows. 

V. TOOL ARCHITECTURE 
The prototype tool named Darwin was implemented as 

an Eclipse’s plugin as shown in Fig. 2. Eclipse plugin 
architecture provides us with the facility to introduce new 
features into the existing workbench [26]. Darwin is based 
on the Genetic Algorithm (GA) Engine plugin. The GA 
Engine plugin contains the genetic algorithm from [23], 
which synthesizes the architectures. The algorithm has been 
slightly modified to work along with Darwin.  

To implement the methodology mentioned in Section II, 
it was essential to integrate Darwin with a CASE tool. The 
UML [28] diagram editors of the CASE tool were needed to 
view and modify the architectures (e.g. null architecture and 
generated architectures) and RDG. Moreover, the editors 
were also required to draw other related diagrams (e.g. use 
case diagrams). Therefore UML2Tools plugin, which is an 
Eclipse based CASE tool, was incorporated for this purpose 
[29]. 

Furthermore, to understand the origins of different 
imperfections in a generated architecture, a graph (later 
named a family tree) presenting the history of the 
architecture was desired. To draw such a graph, we have 
used the Eclipse’s visualization toolkit called Zest [27]. 
Finally, Darwin makes use of JFreeChart plugin [30] to plot 
the fitness vs. generation graphs. The above mentioned 
features will be further elaborated in the following section 
with examples. 

The main underlying architectural style is the Model 
View Controller [5], as shown in Fig. 3. The model is the 
Evolution, which is a container for all the information 
regarding the generations of architectures, including the user 
provided inputs as well as the outputs from the genetic 
algorithm. The inputs consist of the RDG, the null 
architecture, periods with their parameters (explained later), 
and scenarios. The outputs consist of the generated 
architectures and their fitness values.  

We have introduced the notion of a period to accommo-
date for the environmental changes during evolution: the 
environment does not necessarily remain the same through-
out the evolution. We have found this useful in architectural 
genetic synthesis, allowing different genetic parameters for 
different generation ranges. For example, one could change 
the available pattern mutations (or their probabilities) in such 
a way that more fundamental patterns (like architectural 
styles) are introduced in the beginning, while more detailed 
patterns become available later. This implies that detailed 
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patterns are attached to the style solutions, rather than the 
other way around. Basically, a period is a range of 
generations with the same set of genetic parameters. 

 

 
Figure 2. Darwin plugin 

 
The genetic parameters include the mutation 

probabilities, generation settings and fitness weights. The 
mutation probabilities are the probabilities of different 
mutations involved in the synthesizing algorithm. The 
settings comprise preferences for the number of generations 
in the period, population size and the fitness calculation 
method. There are two options available to calculate the 
fitness of a generation in a period. It can be calculated either 
by averaging the elite fitnesses or otherwise just considering 
the fitness of the best architecture in the generation. The 
weights are for the sub fitnesses employed in the GA Engine. 

 

 
Figure 3. Darwin MVC architecture and simplified conceptual model 

 
The view in our MVC architecture is composed of 

multiple Eclipse’s views. Their purpose will be elucidated in 

the subsequent section in detail. The controller realizes the 
entire control logic and keeps the model consistent. 
Moreover, it also communicates with the Zest, UML2Tools 
and JFreeChart plugins to perform its operations.  

 

VI. USING THE TOOL 
In this section, first the user interface of the tool is 

described and then the usage of the tool is illustrated with an 
example. Here we are using a fairly simple example to 
facilitate tool presentation; more realistic applications of the 
approach can be found in our earlier work [23]. 

A. Darwin user interface 
Darwin user interface consists of several views, as shown 

in Fig. 4. In the evolution explorer, a user can manage the 
evolutions in various ways (e.g. creating, opening, saving, 
removing evolutions etc.).  Evolution controls are used for 
starting, pausing, and resuming an evolution (see the upper 
part of Fig. 4). 

The generation view shows the individuals present in a 
generation as shown in Fig. 4. The generation to be viewed 
can be specified in this view or can be selected directly from 
the fitness graph. Moreover, the architecture and family tree 
of an individual can be viewed using this view. 

The mutations view shows the mutations and their 
probabilities for a period selected in evolution explorer view. 
Additionally, it enables the modification of mutation 
probabilities. Buttons are provided for incrementing and 
decrementing mutation probability, and for applying default 
probabilities. The settings view is used to alter the population 
size and generation size of a period. It also provides options 
to change the fitness calculation method of a period. 

 In the weights view, the weights of the different quality 
attribute in terms of the fitness function can be determined. 
In our current realization the fitness function covers 
modifiability, efficiency, complexity and possible scenarios. 
The scenarios of a period can be managed in the scenarios 
view. In this view, the user can change the parameters of a 
scenario, introduce a new scenario, delete an existing 
scenario, and specify a new set of scenarios from a file. 

 

Evolution
explorer

Use case diagram

Evolution controls Class diagram Family tree

Mutations 
view

Settings view

Weights view
Scenarios view

Generation 
view

Menu 
group

 
 Figure 4. Darwin user interface for an executed evolution 

 
The fitness graph view shows the behavior of the fitness 

function during an evolution: the y-axis gives the fitness 
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(elite average or best individual) and the x-axis the time (or 
generation number). 

The family tree view shows the family tree of the 
individuals involved in the evolution as a graph. The 
individuals and their parents are shown in this view, allowing 
the exploration of the development of a particular family 
line. The parent relationship is shown as an arc from a child 
to the parent. Moreover, the family tree can be incrementally 
extended towards the ancestors.    

Class diagram editor is used to give the null architecture 
of a system and to show the generated architectures as UML 
class diagrams. The most interesting architecture is of course 
usually the “result” of the evolution, that is, the best 
architecture of the last generation. The use case diagram 
editor is used to draw use case diagram and the RDG of a 
system.  

B. Example 
Automatic chocolate vending machine (ACVM) is used 

here as an example system. The first step is to identify the 
relevant use cases specifying the functional requirements. 
The use case diagram of the system is given in Fig. 5. Using 
the ACVM, one can buy desired chocolate using coins, and 
an administrator can collect the money and also can refill the 
finished stock.  

 

 
Figure 5. ACVM use case diagram 

 
Next, each use case has to be refined to form an RDG. 

Here, we have only presented the refinement of the second 
use case “Refill finished stock” as shown in Fig. 6. We have 
used packages in use case diagrams to indicate the units 
(subsystems or components) that own the responsibilities. 
The entire responsibility set for this system contains 29 
functional responsibilities, 8 data responsibilities and 47 
dependencies between them.  

 

 
Figure 6. Refining use case “Refill finished stock” to RDG 

 
As the RDG for the system has been produced, the next 

step is to create the null architecture. The null architecture of 
the system is created by identifying the logical entities found 
during use case refinement. As can be seen from Fig. 6, 

different units are involved in the use case refinement. Each 
unit will be a component in the null architecture. The 
resultant null architecture of the system consists of 11 classes 
(components), and is presented in Fig. 7.   

 

 
Figure 7. Null architecture for ACVM 

 
To generate candidate architectures for the system, an 

evolution is first created. Then, the null architecture and 
RDG of the system are given as input for the evolution. 
Next, the number of the periods for the evolution and the 
parameters for each period have to be specified. Here we 
used one period, with a population of 60 individuals and 90 
generations. After some experimentation, suitable mutation 
probabilities and fitness weights are given to the period. The 
calculated fitness value for a generation will be the average 
of fitnesses of 10 best individuals (i.e. elite) of the 
generation. 

Finally, evolution controls are used to apply genetic 
algorithm on the evolution. As each generation in the 
evolution is processed, its fitness is drawn on the fitness 
graph. After observing that the fitness growth is not 
satisfactory, a new period is included with population size, 
generation size and weights similar to the existing period, but 
with different mutation parameters. The resultant fitness 
graph after 180 generations is presented in Fig. 8. As can be 
seen, the path of the fitness curve changed after 10th 
generation. To examine what caused it to change the history 
of individuals in that generation is explored using the family 
tree. 

A fragment of the family tree of an individual is 
presented in Fig. 9. The “R” in the family tree corresponds to 
the rank of the individual in that generation, whereas “OG” 
implies that the individual is from another generation. As can 
be seen, the root individual is formed due to crossover 
operation, while one of its parents is from some other 
generation and a result of a mutation operation. Moreover, a 
family tree can be used to examine child and parent 
architectures.   
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Figure 8. Fitness graph for ACVM 

 

 
Figure 9.  A fragment of family tree of an individual 

 
The best architecture of the last generation can be 

regarded as the proposed architecture for the ACVM. A part 
of the proposed architecture for the system is presented in 
Fig. 10. As can be seen in the figure, certain patterns 
(adapter, strategy, and template method) have been 
introduced. The classes related to the introduced patterns are 
colored in the figure. 
 

 
Figure 10.  A fragment of proposed architecture for ACVM 

 
For some of the patterns, new classes must be generated, 

and the real names of such classes cannot be inferred. For 
example, in the case of Template Method, the name of the 
required subclass is just “TemplateClass”, with a unifying 
suffix (e.g. TemplateClass7 in Fig. 10). Another example is 
Strategy: a new class (and interface) is generated for the 

strategy method. In this case the new class is named 
according to the original host class of the method, with a 
unifying suffix (e.g. Storage(1) in Fig. 10). For Adapter, the 
adapter class is named simply “Adapter”, with a unifying 
suffix. 

VII. EFFICIENCY 
A potential drawback of using the GA approach is 

performance: the evolution of large populations of complex 
individuals might be time-consuming. Since we aim at an 
interactive tool which aids the architect in exploring different 
kinds of solutions with different parameters, the execution of 
the evolution should not be too slow. 

In our tool, the user can choose between two modes: fast 
mode with less history recording, and slow mode with full 
history recording. With fast mode, the execution time of a 
typical evolution is reasonable, taking into account that the 
architect can follow the development of the fitness curve in 
real time and stop the evolution when the fitness is no more 
improving. The time depends mainly on the size of the 
population (and naturally on the number of generations). A 
graph depicting the execution times when the tool was tested 
using an increasing set of population sizes is shown in Fig. 
11. The target system was the same ACVM. The total 
amounts of generations were fixed at 100 in the tests. The 
highest value of execution time we observed was 96 seconds 
when population size had reached 300. 

 

 
Figure 11.  Efficiency with different population sizes 

VIII. CONCLUSIONS 
Based on our earlier work on applying genetic algorithms 

for software architecture synthesis, we have devised a 
process model for developing a software architecture using 
this approach, and explored the required tool support to assist 
the process. We have developed a prototype tool called 
Darwin to test and demonstrate the tool ideas. Given that the 
ultimate goal is to automate substantial part of software 
architecture design in practice, the work in this paper 
represents only first steps.  

A necessary requirement for such a tool is tight 
integration with a conventional design environment with 
architectural modeling capabilities. Ideally, the tool should 
be also integrated with a large, constantly growing 
knowledge base of architectural solutions in a form that can 
be understood by the GA engine. In this way, the tool could 
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make use of community knowledge that is virtually 
impossible to master by a single human. We argue that in 
such a setup the tool not only automates the design process, 
but it can in many cases actually outperform a human 
architect who tends to be confined with a fairly limited set of 
solutions originating from his or her past experience.  

A major topic of our future work is the enabling of the 
use of existing architectures as input. We are also aiming to 
implement a support for preserving the given solutions (e.g., 
architectural styles) throughout an evolution. 
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This survey investigates search-based approaches to software design. The basics of the

most popular meta-heuristic algorithms are presented as background to the search-based

viewpoint. Software design is considered from a wide viewpoint, including topics that can

also be categorized as software maintenance or re-engineering. Search-based approaches

have been used in research from the high architecture design level to software clustering

and finally software refactoring. Enhancing and predicting software quality with search-
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for the underlying software engineering problems is discussed, after which search-based

approaches are presented. Summarizing remarks and tables collecting the fundamental

issues of approaches for each type of problem are given. The choices regarding critical

decisions, such as representation and fitness function, when used in meta-heuristic search

algorithms, are emphasized and discussed in detail. Ideas for future research directions are

also given.
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1. Introduction

Traditional software engineering attempts to find solutions
to problems in a variety of areas, such as testing, software
design, requirements engineering, etc. A human software
engineer must apply his acquired knowledge and resources
to solve such complex problems that have to simultaneously
meet needs but also be able to handle constraints. Often there
are conflicts regarding the wishes of different stakeholders,
i.e., compromises must be made with decisions regarding
both functional and non-functional aspects. However, as in
any other engineering discipline, software engineers still
attempt to find the optimal solution to any given problem,
regardless of its complexity. As systems get more complex,
the task of finding even a near optimal solution will
become far too laborious for a human. Automating (or semi-
automating) the process of finding, say, the optimal software
architecture or resource allocation in a software project, can

∗ Tel.: +358 50 5342813; fax: +358 3 31152913.
E-mail address: outi.raiha@tut.fi.

1574-0137/$ - see front matter c⃝ 2010 Elsevier Inc. All rights reserve
doi:10.1016/j.cosrev.2010.06.001
thus be seen as the ultimate dream in software engineering.
Results from applications of search techniques in other
engineering disciplines further support this idea, as they have
been extremely encouraging.

Search-based software engineering (SBSE) applies meta-
heuristic search techniques, such as genetic algorithms and
simulated annealing, to software engineering problems. It
stems from the realization that many tasks in software
engineering can be formulated as combinatorial search
problems. The goal is to find, from the wide range of
possibilities, a solution that is sufficiently good according to
an appropriate quality function. Ideally this would be the
optimal solution, but in reality optimality may be difficult
(if not impossible) to achieve or even define due to various
reasons, such as the size of the search space or the complexity
of the quality function. Allowing a search algorithm to find
a solution from such a wide space enables partial or full
automation of previously laborious tasks, solves problems

.
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that are hard to manage by other methods, and often leads
to solutions that a human software engineer might not have
been able to think of.

Interest in SBSE has been growing rapidly over recent
years, both in academia and industry. The combination of
increased computing power, and new, more efficient, search
algorithms has made SBSE a practical solution method for
many problems throughout the software engineering life
cycle [1]. Harman [2] has provided a brief overview to the
current state of SBSE, and problems in the field of software
engineering have been formulated as search problems by
Clarke et al. [3] and Harman and Jones [4].

Search-based approaches have been most extensively
applied in the field of software testing, and a covering
survey of this branch (focusing on test data generation) has
been made by McMinn [5]. A review on SBSE, concentrating
on testing, is also provided by Mantere and Alander [6].
Another test related survey has been made by Afzal
et al. [7,8], who concentrate on testing non-functional
properties. As there has been much research and many
previous surveys regarding the area of testing, it will be
omitted from this survey, even if the studies related to
testing could be considered as altering (and thus perhaps
improving) a software design. This happens, e.g., with
testability transformations. Harman et al. [9] define three
critical differences to traditional transformations, one of
them concerning the functionality of the program, and state
that “testability transformations need not preserve functional
equivalence”. This contradicts the idea of building a design
based on a fixed set of requirements.

This survey will cover the branch of software design.
Software design can be defined as “the process which
translates the requirements into a detailed design of a
software system” [10]. Here software design is considered
as described by Wirfs-Brock and Johnson [11]. Although
they consider only object-oriented design, the skeleton of a
process from requirements to actual design can be applied
to any form of software design. A design process starts
from requirements, and first enters an exploratory phase,
where the fundamental structure is decided. This leads to a
preliminary design, which then enters an analysis stage. After
the suggested design is analyzed and modified according
to the result, the final design is achieved. Following this
interpretation, software refactoring and clustering have also
been taken into account, as they are considered as actions of
modifying (based on a certain analysis) a preliminary model,
which in many cases is a working implementation.

The area of search-based software design has developed
greatly in very recent years, and is gaining an increasing
interest in the SBSE community. Although several surveys
have been made of the SBSE field as a whole, they deal with
the design area quite briefly. Also, the literature published
from the software design perspective either does not cover
search-based methods [10,12] or only briefly mentions the
option of having an algorithm to automate class hierarchy
design [11]. Thus, there is a need to cover this crossing of two
disciplines: search-based techniques and software design.
A new contribution is made, especially in summarizing
research in architecture level design that uses search-based
techniques, as this has been overlooked in previous studies
of search-based software engineering.

A special note should be made of the value added to
a recent comprehensive review on SBSE made by Harman
et al. [13], who give a thorough but very compact view of
the field as a whole. As they cover a very great number
of references, and the main contributions of the survey (as
stated by Harman et al. [13]) are coverage and completeness,
classification and trend analysis, it is natural that the
presentation of the papers lacks in some depth. The actual
studies are presented as they are, without criticism or
discussion of the particularities of a certain technique,
although basic information of each technique is collected in
categorical tables. In particular, the area of software design on
the architecture level is very briefly dealt with.

To this end, the present survey adds to the contribution
of the survey of Harman et al. [13] by giving a thorough
view of research in the area of search-based software design.
The area of software architecture design is given special
attention, and some additional recent references are also
included. The presented papers are discussed in detail and
critically analyzed. Summarizing remarks on the similarities
and differences between techniques are also provided.

Additionally, as Harman and Wegener [14] point out,
choosing the representation and fitness function is crucial in
all search-based approaches to software engineering. When
using genetic algorithms [15], which are especially popular in
search-based design, the choices regarding genetic operators
are just as important and very difficult to make. Thus,
this survey emphasizes the choices made regarding the
particular characteristics of search algorithms. The small but
critical decisions, such as what fitness function, encoding and
operations to use, are discussed and categorized in detail.
This helps in easily finding the distinct differences between
similar techniques, and identifying best practices. Also, any
new study in the field of search-based software engineering
would benefit from learning what kind of solutions have
proven to be particularly successful in the past.

The timeline for development of SBSE as a field is
presented in Fig. 1. It can clearly be seen that the earliest
applications were in testing, as can be deduced from the
number of existing surveys. However, more importantly, the
timeline also shows the steady increase of ideas in the
area of search based design in the past 10 years. Thus, a
survey covering this area is certainly due. All in all, the
timeline shows that SBSE has been a very active discipline
in the past 20 years, as only novel ideas are presented here.
Countless approaches and studies regarding these ideas have
been made but are not portrayed here. The explanations and
references for the data points in Fig. 1 are given in Table 1.

This survey proceeds as follows. Section 2 describes
search algorithms; and the underlying concepts for genetic
algorithms, simulated annealing and hill climbing are
discussed in detail. Different ways of performing the
exploratory phase of design are then presented as methods
for software architecture design (object-oriented and service-
oriented) in Section 3. Sections 4–6 deal with clustering,
refactoring and software quality, respectively, all of which
can be seen as components of the analysis phase, starting
from higher level re-design (clustering), going to low-
level re-design (re-factoring) and finally pure analysis.
The background for each underlying problem is first
presented, followed by recent approaches applying search-
based techniques to the problem. Summarizing remarks and
a summary table of the studies is presented after each
subsection. Finally, some ideas for future work are given in
Section 7, and conclusions are presented in Section 8.
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Fig. 1 – Timeline of SBSE development.
Table 1 – References for timeline data points.

(1) Genetic algorithm (GA) [15] (31) GA, hierarchical decompositions [42]
(2) Test data automation [110] (32) Next release problem [138]
(3) Test case automation [111] (33) GA, reverse engineering at architecture level [139]
(4) Retesting [112] (34) GA, combining quality predictive models [105]
(5) Simulated annealing (SA) [113] (35) GP, project effort estimation [140]
(6) Genetic programming (GP) [114] (36) Multiple hill climbing, clustering [72]
(7) Tabu search [115] (37) GA, code transformations [141]
(8) Revalidation [116] (38) SA, test suites [142]
(9) GAs in testing [117] (39) Architecture relations [143]; service composition [59]
(10) Ant colony optimization (ACO) [99] (40) Project resource allocation [144]
(11) GA, constraints [118] (41) Amorphous slicing [145]
(12) GA, project management [119] (42) ACO, testing [146]
(13) GA, test data [120] (43) GA, design patterns [32]
(14) GA, reliability model [121] (44) SA, quality prediction [107]
(15) Chaining approach, test data [122] (45) GA, software integration [147]
(16) GA, structural testing [123] (46) Use case -based design [29,30]; GA, repackaging [38]; Pareto optimal
(17) GA, protocol validation [124] refactoring [95]
(18) GA, response time [125] (47) Multiobjective next release problem [148]
(19) GA, GP, software agents [126] (48) ACO, model checking [149]; GP, model checking [150]; Pareto optimality,
(20) Clustering [64]; parallelization [93] test cases [151]
(21) GP, software versioning [127] (49) GA, code author identification [152]
(22) SA, flaw finding [128] (50) Class responsibility assignment [28]; Software behavior modeling [40];
(23) Project estimation [129] Architecture design [33]; model transformations by GA [34] and particle
(24) Compiler [130]; Task scheduling [131] swarm optimization [36]
(25) GP, re-engineering at code level [132] (51) Software verification [153]
(26) GP, quality determination [133] (52) Co-evolution, bug fixing [154]
(27) GA, reduced code space [134] (53) Requirements optimization [155]
(28) SA, regression testing [135] (54) Tabu search, testing [156]
(29) GA, Protocols for distributed applications [136] (55) GA, decision making in autonomic computing systems [157]
(30) Secure protocols [137]
2. Search algorithms

Meta-heuristics are commonly used for combinatorial
optimization, where the search space can become especially
large. Many practically important problems are NP-hard, and
thus, exact algorithms are not possible. Heuristic search
algorithms handle an optimization problem as a task of
finding a “good enough” solution among all possible solutions
to a given problem, while meta-heuristic algorithms are able
to solve even the general class of problems behind the certain
problem. A search would optimally end in a global optimum
in a search space, but at the very least it will give some local
optimum, i.e., a solution that is “better” than a significant
amount of alternative solutions nearby. A solution given by a
heuristic search algorithm can be taken as a starting point for
further searches or be taken as the “best” possible solution, if
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its quality is considered high enough. For example, simulated
annealing can be used to produce seed solutions for a genetic
algorithm that constructs the initial population based on the
provided seeds.

In order to use search algorithms in software engineering,
the first step is that the particular software engineering
problem should be defined as a search problem. If this cannot
be done, search algorithms are most likely not the best way to
solve the problem, and defining the different parameters and
operations needed for the search algorithm can be difficult.
After this has been done, a suitable algorithm can be selected
and the issues regarding that algorithm must be dealt
with.

There are three common issues that need to be dealt
with by any search algorithm: 1. encoding the solution, 2.
defining transformations, and 3. measuring the “goodness”
of a solution. All algorithms need the solution to be encoded
according to the algorithm’s specific needs. For example, in
order for the genetic algorithm (GA) to operate, the encoding
should be done in such a way that it can be seen as
a chromosome consisting of a set of genes. However, for
the hill climbing (HC), any encoding where a neighborhood
can be defined is sufficient. The importance and difficulty
of encoding a solution increase as the complexity of
the problem at hand increases. In this case complexity
refers to how easily a solution can be defined, rather
to the computational complexity of the problem itself.
For example, a job-shop problem may be computationally
complex, but the solution candidates are simple to encode
as an integer array. However, a solution containing,
e.g., all the information regarding a software architecture,
is demanding to encode so that: 1. all information stays
intact, 2. operations can efficiently be applied to the selected
encoding of the solution, 3. the fitness evaluations can
be performed efficiently, and 4. there is minimal need for
“outside” data, i.e., data structures containing information
about the solution that are not included in the actual
encoding.

Defining a neighborhood is crucial to all algorithms; HC,
simulated annealing (SA) and tabu search operate purely on
the basis of moving from one solution to its neighbor. A
neighbor is achieved by some operation that transforms the
solution. These operations can be seen as equivalent to the
mutations needed by the GA.

Finally, the most important and difficult task is defining
a fitness function. If defining the fitness function fails, the
search algorithm will not be guided towards the desired
solutions. All search algorithms require this quality function
to evaluate the “goodness” of a solution in order to compare
solutions and thus guide the search.

To understand the basic concepts behind the approaches
presented here, the most commonly used search algorithms
are briefly introduced. The most common approach is to
use genetic algorithms. Hill climbing and its variations,
e.g., multi-ascent hill climbing (MAHC), is also quite popular
due to its simplicity. Finally, several studies use simulated
annealing. In addition to these algorithms, tabu search is a
widely known meta-heuristic search technique, and genetic

programming (GP) [16] is commonly used in problems that

can be encoded as trees. For a detailed description on

GA, see [17] or [18], for SA, see, e.g., [19], and for HC,

see [20], who also cover a wide range of other meta-heuristics.

For a description on multi-objective optimization with

evolutionary algorithms, see [21] or [22]. A survey on model-

based search, covering several meta-heuristic algorithms is

also made by Zlochin et al. [23].

2.1. Genetic algorithms

Genetic algorithms were invented by John Holland in the

1960s. Holland’s original goal was not to design application

specific algorithms, but rather to formally study the ways

of evolution and adaptation in nature and develop ways to

import them into computer science. Holland [15] presents the

genetic algorithm as an abstraction of biological evolution

and gives the theoretical framework for adaptation under the

genetic algorithm [17].

In order to explain genetic algorithms, some biological

terminology needs to be clarified. All living organisms consist

of cells, and every cell contains a set of chromosomes, which

are strings of DNA and give the basic information of the

particular organism. A chromosome can be further divided

into genes, which in turn are functional blocks of DNA, each

gene representing some particular property of the organism.

The different possibilities for each property, e.g., different

colors of the eye, are called alleles. Each gene is located at

a particular locus of the chromosome. When reproducing,

crossover occurs: genes are exchanged between the pair of

parent chromosomes. The offspring is subject to mutation,

where single bits of DNA are changed. The fitness of an

organism is the probability that the organism will live to

reproduce and carry on to the next generation [17]. The

set of chromosomes at hand at a given time is called a

population.

Genetic algorithms are a way of using the ideas of

evolution in computer science. When thinking of the

evolution and development of species in nature, in order

for the species to survive, it needs to develop to meet the

demands of its surroundings. Such evolution is achieved with

mutations and crossovers between different chromosomes,

i.e., individuals, while the fittest survive and are able to

participate in creating the next generation.

In computer science, genetic algorithms are used to

find a good solution from a very large search space, the

goal obviously being that the found solution is as good as

possible. To operate with a genetic algorithm, one needs an

encoding of the solution, i.e., a representation of the solution

in a form that can be interpreted as a chromosome, an

initial population, mutation and crossover operators, a fitness

function and a selection operator for choosing the survivors

for the next generation. Algorithm 1 gives the pseudo code for

a genetic algorithm.
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Algorithm 1 geneticAlgorithm

Input: formalization of solution, initialSolution
chromosomes← createPopulation(initialSolution)
while NOT terminationCondition do
foreach chromosome in chromosomes

p← randomProbability
if p > mutationProbability then
mutate(chromosome)
end if

end for
foreach chromosomePair in chromosomes
cp← randomProbability
if cp > crossoverProbability then

crossover(chromosomePair)
addOffspringToPopulation()
end if

end for
foreach chromosome in chromosomes
calculatefitness(chromosome)

end for
selectNextPopulation()

end while

As discussed, correctly defining the different operations

(mutations, crossover and fitness function) is vital in order

to achieve satisfactory results. However, as seen in Algorithm

1, there are also many parameters regarding the GA that

need to be defined and greatly affect the outcome. These

parameters are the population size, number of generations

(often used as the terminating condition) and the mutation

and crossover probabilities. Having a large enough population

ensures variability within a generation, and enables a wide

selection of different solutions at every stage of evolution.

However, at a certain point the results start to converge, and

a larger population always means more fitness evaluations

and thus requires more computation time. Similarly, the

more generations the algorithm is allowed to evolve for, the

higher the chances are that it will be able to reach the global

optimum. However, again, letting an algorithm run for, say,

10 000, generations will most probably not be beneficial,

as if the operations and parameters have been chosen

correctly, a reasonably good optimum should have been

foundmuch earlier. Mutation and crossover probabilities both

affect how fast the population evolves. If the probabilities

are too high, there is the risk that the implementation

of genetic operations becomes random instead of guided.

Vice versa, if the probabilities are too low there is the

risk that the population will evolve too slowly, and no

real diversity will exist. A theory to be noted with genetic

operators is the building block hypothesis, which states

that a genetic algorithm combines a set of sub-solutions,

or building blocks, to obtain the final solution. The sub-

solutions that are kept over the generations generally have an

above-average fitness [Salomon, 1998]. The crossover operator

is especially sensitive to this hypothesis, as an optimal
crossover would thus combine two rather large building

blocks in order to produce an offspring with a one-point

crossover.

2.2. Simulated annealing

Simulated annealing is originally a concept in physics. It

is used when the cooling of metal needs to be stopped at

given points, at which the metal needs to be warmed a bit,

before resuming the cooling process. The same idea can be

used to construct a search algorithm. At a certain point of

the search, when the fitness of the solution in question is

approaching a set value, the algorithm will briefly stop the

optimizing process and revert to choosing a solution that is

not the best in the current solution’s neighborhood. This way

getting stuck to a local optimum can effectively be avoided.

Since the fitness function in simulated annealing algorithms

should always be minimized, it is usually referred to as a cost

function [19].

Simulated annealing usually begins with a point x in the

search space that has been achieved through some heuristic

method. If no heuristic can be used, the starting point will be

chosen randomly. The cost value c, given by cost function E,

of point x is then calculated. Next a neighboring value x1 is

searched and its cost value c1 calculated. If c1 < c, then the

search moves onto x1. However, even though c ≤ c1, there

is still a chance, given by probability p, that the search is

allowed to continue to a solution with a bigger cost [3]. The

probability p is a function of the change in cost function ∆E,

and a parameter T:

p = e−∆E/T.

This definition for the probability of acceptance is based

on the law of thermodynamics that controls the simu-

lated annealing process in physics. The original function

is

p = e−∆E/kT,

where T is the temperature in the point of calculation and k

is Boltzmann’s constant [19].

The parameter T that substitutes the value of temperature

and the physical constant is controlled by a cooling

function C, and it is very high in the beginning of

simulated annealing and is slowly reduced while the search

progresses [4]. The actual cooling function is application

specific.

If the probability p given by this function is above a set

limit, then the solution is accepted even though the cost

increases. The search continues by choosing neighbors and

applying the probability function (which is always 1 if the cost

decreases) until a cost value is achieved that is satisfactorily

low. Algorithm 2 gives the pseudo code for a simulated

annealing algorithm.
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Algorithm 2 simulatedAnnealing

Input: formalization of solution, initialSolution,
cooling ratio α, initial
temperature T0, frozen temperature Tf , and

temperature constant r
Output: optimized solution finalSolution

initialQuality← evaluate(initialSolution)
← initialSolution

Q1 ← initialQuality
T← T0
while T0 > Tf do

ri ← 0
while ri > r do

Si ← findNeighbor(S1)

Qi ← evaluate(Q1)

if Qi > Q1 then
S1 ← Si
Q1 ← Qi

else
δ

← Q1 − Qi′

p← randomProbability
if p < e−δ/T then

S1 ← Si
Q1 ← Qi

end if
end if’

ri ← ri + 1
end while
T← T∗α

end while
return S1

The key parameters to be adjusted for SA are the initial
temperature, the cooling ratio and the temperature constant.
The combined effect of these determines how fast the cooling
happens. If the cooling is too fast, the algorithmmay not have
sufficient time to achieve an optimum. However, if the cooling
is too slow, the initial temperature may need a significantly
high value so that the solution will be able to evolve enough
(i.e., noticeably transform from the initial solution) before
reaching the frozen temperature.

2.3. Hill climbing

Hill climbing begins with a random solution, and then begins
to search through its neighbors for a better solution. There
are several versions of how this is done; in some versions
the algorithm moves on after finding the first neighbor that is
better than the current, some do a fixed number of neighbor
evaluations and continue to the best of this group, and some
versions go through the entire neighborhood of a solution
and select the best neighbor from which the procedure is
continued. Algorithm 3 adopts the last option, i.e., the entire
neighborhood is evaluated before moving on. Hill climbing
does not include any mechanisms to avoid getting stuck with
a local optimum.

There are three critical choices regarding HC: 1. defining
a neighborhood for each solution, 2. defining an evaluation
function for a solution, and 3. defining to what extent
each neighborhood is searched. If the problem at hand is
very complex and each solution has an exponential number
of neighbors, traversing through each neighborhood maybe
extremely time consuming. However, if the subgroup of
neighbors to be examined is chosen wisely, the actual
outcome of the algorithm may still be good enough, while
much time is saved when not every solution needs to be
evaluated.

Algorithm 3 hillClimbing

Input: formalization of solution, initialSolution
currentSolution← initialSolution
currentFitness← evaluate(currentSolution)
while betterNeighborsExist do

neighborhood← findNeighbors(currentSolution)
foreach neighbor in neighborhood

neighborFitness← evaluate(neighbor)
if neighborFitness > nextFitness then
nextSolution← neighbor
nextFitness← neighborFitness
end if

end for
if nextFitness> currentFitness then

currentSolution←nextSolution
else

termination
return currentSolution

end if
end while

3. Software architecture design

The core of every software system is its architecture.
Designing software architecture is a demanding task
requiring much expertise and knowledge of different
design alternatives, as well as the ability to grasp high-
level requirements and piece them together to make
detailed architectural decisions. In short, designing software
architecture takes verbally formed functional and quality
requirements and turns them into some kind of formal model
that is used as a base for code. Automating the design of
software is obviously a complex task, as the automation
tool would need to understand intricate semantics, have
access to a wide variety of design alternatives, and be able
to balance multi-objective quality factors. From the re-design
perspective, program comprehension is one of the most
expensive activities in software maintenance. The following
sections describe meta-heuristic approaches to software
architecture design for object-oriented and service-oriented
architectures.

3.1. Object-oriented architecture design

3.1.1. Background
At its simplest, object-oriented design deals with extracting
concepts from, e.g., use cases, and deriving methods and
attributes, which are distributed into classes. A further step
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is to consider interfaces and inheritance. A final design
can be achieved through the implementation of architecture
styles [24] and design patterns [25]. When attempting
to automate the design of object-oriented architecture
from the concept level, the system requirements must be
formalized. After this, the major problem lies within quality
evaluation, as many design decisions improve some quality
attributes [26] but weaken others. Thus, a sufficient set of
quality estimators should be used, and a balance should
be found between them. Re-designing software architectures
automatically is slightly easier than building architecture
from the very beginning, as the initial model already
exists and it merely needs to be ameliorated. However,
implementing design patterns is never straightforward, and
measuring their impact on the quality of the system is
difficult. For more background on software architectures, see,
e.g., [27].

Approaches to search-based software design are presented
in Section 3.1.2 starting from low-level approaches, i.e., what
is needed when first beginning the architecture design,
to high-level approaches, ending with analyzing software
architecture. Object-oriented architecture design begins with
use cases and assigning responsibilities, i.e., methods and
attributes to classes [29,30,28]. After the basic structure,
the architecture can be further designed, either by applying
design patterns on an existing system [32] or by building
the design patterns into the system from the very beginning
[33–35]. If an idea for an optimal solution is available, model
transformations can be sought to achieve that solution [36].
There might also be many choices regarding the components
of the architecture, depending on the needs of the system. An
architecture can be made of alternative components [37] or
a subsystem can be sought after [38]. Studies have also been
made on identifying concept boundaries and thus automating
software comprehension [39], and composing behavioral
models for autonomic systems [40,41], which give a dynamic
view of software architecture. One of the most abstract
studies attempts to build hierarchical decompositions for a
software system [42], which already comes quite close to
software clustering. Summarizing remarks of the approaches
are given in Section 3.1.3, and the fundamentals of each study
are collected in Table 2.

3.1.2. Approaches
Bowman et al. [28] study the use of a multi-objective
genetic algorithm (MOGA) in solving the class responsibility
assignment problem. The objective is to optimize the class
structure of a system through the placement of methods
and attributes. The strength Pareto approach (SPEA2) is
used, which differs from a traditional GA in containing an
archive of individuals from past populations. This approach
combines several aspects that aid in finding the truly optimal
individuals and thus leaves less room for GA “to err” in terms
of undesired mutations or overly relying on metrics.

The chromosome is represented as an integer vector. Each
gene represents a method or an attribute in the system and
the integer value in a gene represents the class to which
the method or attribute in that locus belongs. Dependency
information between methods and attributes is stored in a
separatematrix. Mutations are performed by simply changing
the class value randomly; the creation of new classes is also
allowed. Crossover is the traditional one-point one. There
are also constraints: no empty classes are allowed (although
the selected encoding method also makes them impossible),
conceptually related methods are only moved in groups, and
classes must have dependencies on at least one other class.

The fitness function is formed of five different values mea-
suring cohesion and coupling: 1. method–attribute coupling,
2. method–method coupling, 3. method–generalization cou-
pling, 4. cohesive interaction and 5. ratio of cohesive inter-
action. A complementary measure for common usage is also
used. Selection is made with a binary-tournament selection,
where the fitter individual is selected 90% of the time.

In the case study an example system is used, and a
high-quality UML class diagram of this system is taken as a
basis. Three types of modifications are made and finally the
modifications are combined in a final test. The efficiency of
the MOGA is now evaluated in relation to how well it fixed
the changesmade to the optimal system. Results show that in
most cases the MOGAmanaged to fix the made modifications
and in some cases the resulting system also had a higher
fitness value than the original “optimal” system.

Bowman et al. [28] also compare MOGA to other search
algorithms, such as random search, hill climbing and a simple
genetic algorithm. Random search and hill climbing only
managed to fix a few of the modifications, and the simple GA
did not manage to fix any of the modifications. Thus, it would
seem that a more complex algorithm is needed for the class
responsibility assignment problem.

The need for highly developed algorithms is further
highlighted when noting that a ready system is being
ameliorated instead of completely automating the class
responsibility assignment. As a ready system can be assumed
to have some initial quality, and conceptually similar
methods and attributes are already largely grouped, it does
help the algorithm when re-assigning the moved methods
and attributes. This is due to the fact that by attempting
to re-locate the moved method or attribute to the “wrong”
class, the fitness value will be significantly lower than when
assigning the method or attribute to the “right” class.

Simons and Parmee [29–31] take use cases as the starting
point for system specification. Data is assigned to attributes
and actions to methods, and a set of uses is defined
between the two sets. The notion of class is used to group
methods and attributes. Each class must contain at least
one attribute and at least one method. Design solutions
are encoded directly into an object-oriented programming
language. This approach starts with pure requirements and
leaves all designing to the algorithm, making the problem of
finding an optimal class structure very much more difficult
than in cases where a ready system can be used as basis.

A single design solution is a chromosome. In a mutation,
a single individual is mutated by locating an attribute
and a method from one class to another. For crossover,
two individuals are chosen at random from the population
and their attributes and methods are swapped based on
their class position within the individuals. Cohesiveness
of methods (COM) is used to measure fitness; fitness for
class C is defined as f(C) = 1/(|Ac||Mc|) ∗

∑
(∆ij), where

Ac (respectively Mc) stands for the number of attributes
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(respectively methods) in class C, and ∆ij = 1, if method
j uses attribute i, and 0 otherwise. Selection is performed
by tournament and roulette-wheel. The choices regarding
encoding, genetic operators and fitness function are quite
traditional, although the problem to be solved is far from
traditional.

In an alternative approach, categorized by the authors as
evolutionary programming (EP)and inspired by Fogel et al. [43],
offspring are created by mutation and selection is made with
tournament selection. Two types of mutations are used, class-
level mutation and element-level mutation. At the class level,
all attributes and methods of a class in an individual are
swapped as a group with another class selected at random.
At the element level, elements (methods and attributes) in
an individual are swapped at random from one class to
another. Initialization of the population is made by allocating
a number of classes to each individual design at random,
within a range derived from the number of attributes and
methods. All attributes and methods from sets of attributes
and methods are then allocated to classes within individuals
at random. These operations appear quite simplistic, and
the actual change to the design remains minimal, since
the fitness of an individual depends on how methods and
attributes depending on one another are located. When the
elements are moved in a group, there does not seem to be
very much change in the actual design.

A case study is made with a cinema booking system
with 15 actions, 16 data and 39 uses. For GA, the average
COM fitness for the final generation for both tournament
and roulette-wheel is similar, as is the average number of
classes in the final generation. However, convergence to a
local optimum is quicker with tournament selection. Results
reveal that the average and maximum COM fitness of the
GA population with roulette-wheel selection lagged behind
tournament in terms of generation number. For EP, the
average population COM fitness in the final generation is
similar to that achieved by the GA.

The initial average fitness values of the three algorithms
are notably similar, although the variance of the values
increases from GA tournament to GA roulette-wheel to EP.
In terms of COM cohesion values, the generic operators
produced conceptual software designs of similar cohesion
to human performance. Simons and Parmee [29–31] suggest
that a multi-objective search may be better suited for support
of the design processes of the human designer. To take
into account the need for extra input, they attempted to
correct the fitness function by multiplying the COM value
by (a) the number of attributes and methods in the class
(COM.M+A); (b) the square root of the number of attributes
and methods in the class (COM.

√
(M + A); (c) the number

of uses in the class (COM.uses) and (d) the square root of
the number of uses in a class (COM.

√
uses). Using such

multipliers raises some questions, as there is no intuition for
using the square root multipliers. Multiplying by the sum of
methods and attributes or uses can intuitively be justified by
showing more appreciation to classes that are large but are
still comprehensible. However, such an appreciationmay lead
to preferring larger classes.

The authors have taken this into account by measuring
the number of classes in a design solution, and a design
solution with a higher number of classes is preferred to a
design solution with fewer classes. When cohesion metrics
that take class size into account are used, there is a
broad similarity between the average population cohesion
fitness and the manual design. Values achieved by the
COM.M+A and COM.uses and cohesion metrics are higher
than the manual design cohesion values, while COM.

√
(M +

A) and COM.
√
uses values are lower. Manually examining

the design produced by the evolutionary runs, a difference
is observed in the design solutions produced by the four
metrics that account for class size, when compared with the
metrics that do not. From the results produced for the two
case studies, it is evident that while the cohesion metrics
investigated have produced interesting cohesive class design
solutions, they are by no means a complete reflection of
the inherently multi-objective evaluations conducted by a
human designer. The evolutionary design variants produced
are thus highly dependent on the extent and choice of metrics
employed during search and exploration. These results
further emphasize the importance of properly defining a
fitness function and deciding on the appropriate metrics in
all software design related problems.

Amoui et al. [32] use the GA approach to improve
the reusability of software by applying architecture design
patterns to a UML model. The authors’ goal is to find the best
sequence of transformations, i.e., pattern implementations.
Used patterns come from the collection presented by Gamma
et al. [25], most of which improve the design quality and
reusability by decreasing the values of diverse coupling
metrics while increasing cohesion.

Chromosomes are an encoding of a sequence of
transformations and their parameters. Each individual
consists of several supergenes, each of which represents a
single transformation. A supergene is a group of neighboring
genes on a chromosome which are closely dependent and are
often functionally related. Only certain combinations of the
internal genes are valid. Invalid patterns possibly produced
through mutations or crossover are found and discarded.
The supergene concept introduced here is an insightful
approach into handling masses of complex data that needs
to be represented as a relatively simple form. Instead of
having only one piece of information per gene, this way
several pieces of related information can be grouped to such
supergenes, which then logically form a chromosome. In the
study by Bowman et al. [28] the need for additional data
storage (the matrix for data dependencies) demonstrates the
complexity of design problems. In this case the supergene
approach introduced by Amoui et al. [32] could have been
worthwhile trying to include all information regarding the
attributes and methods in the chromosome encoding.

Mutation randomly selects a supergene and mutates
a random number of genes inside the supergene. After
this, validity is checked. In the case of encountering
a transformed design which contradicts object-oriented
concepts, for example, a cyclic inheritance, a zero fitness
value is assigned to the chromosome. This is an interesting
way of dealing with anomalies; instead of implementing
a corrective operation to force validity, it is trusted that
the fitness function will suffice in discarding the unsuitable
individuals if they are given a low enough value.
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Two different versions of crossover are used. The first is
a single-point crossover applied at the supergene level, with
a randomly selected crossover point, which swaps the super-
genes beyond the crossover point, while the internal genes
of supergenes remain unchanged. This combines the promis-
ing patterns of two different transformation sequences. The
second crossover randomly selects two supergenes from
two parent chromosomes, and similarly applies single point
crossover to the genes inside the supergenes. This combines
the parameters of two successfully applied patterns. The
first crossover thus attempts to preserve high-level building
blocks, while the second version attempts to create low-level
building blocks.

The quality of the transformed design is evaluated,
as introduced by Martin [44], by its “distance from the
main sequence” (D), which combines several object-oriented
metrics by calculating the abstract classes’ ratio and coupling
between classes, and measures the overall reusability of a
system.

A case study is made with a UML design extracted from
some free, open source applications. The GA is executed in
two versions. In one version only the first crossover is applied
and in second both crossovers are used. A random search is
also used to see if the GA outperforms it. Results demonstrate
that the GA finds the optimal solution much more efficiently
and accurately. From the software design perspective, the
transformed design of the best chromosomes are evolved so
that abstract packages become more abstract and concrete
packages in turn become more concrete. The results suggest
that GA is a suitable approach for automating object-oriented
software transformations to increase reusability. As the
application of design patterns is by no means an easy task,
these initial results suggest that at least the structure and
needs of the GA do not restrict the automated design of the
software architecture.

Räihä et al. [33] take the design of software architecture
a step further than Simons and Parmee [29], by starting the
design from a responsibility dependency graph. The graph
can also be achieved from use cases, but the architecture is
developed further than the class distribution of actions and
data. A GA is used for the automation of design.

In this approach, each responsibility is represented by a
supergene, and a chromosome is a collection of supergenes.
The supergene contains information regarding the respon-
sibility, such as dependencies of other responsibilities, and
evaluated parameters such as execution time and variability.
Here the notion of supergene [32] is efficiently used in order to
store a large number of different types of data pieces within
the chromosome. Mutations are implemented as adding or
removing an architectural design pattern [25] or an interface,
or splitting or joining class(es). Implemented design patterns
are Façade and Strategy, as well as the message dispatcher
architecture style [24]. Dynamic mutation probabilities are
used to encourage the application of basic design choices
(the architectural style(s)) at the beginning and more refined
choices (such as the Strategy pattern) at the end of evolution.
Crossover is a standard one-point crossover. After the oper-
ations, the offspring and mutated chromosomes are always
checked for legality, as design patterns may easily be broken.
Selection is made with the roulette wheel method.
This approach actually combines the class responsibility
assignment problem studied by Simons and Paremee [29,30]
and the application of design patterns, as studied by Amoui
et al. [32]. Although the selection of design patterns is smaller,
the search problem of finding an optimal architecture is much
more difficult. First the GA needs to find the optimal class
responsibility distribution, and then apply design patterns. In
this case the search space grows exponentially, as in order to
optimally apply the design patterns, the class responsibility
distribution may need to be sub-optimal. This produces a
challenge when deciding on the fitness function.

The fitness function is a combination of object-oriented
software metrics, most of which are from the Chidamber and
Kemerer [45] collection, which have been grouped to mea-
sure quality concepts efficiency and modifiability. Some ad-
ditional metrics have also been developed to measure the
effect of communicating through a message dispatcher or in-
terfaces. Furthermore, a complexity measure is introduced.
The fitness function is defined as f = w1 PositiveModifiability
−w2 NegativeModifiability +w3 PositiveEfficiency −w4 Nega-
tiveEfficiency −w5 Complexity, where wis are weights to be
fixed. As discussed, defining the fitness function is the most
complex task in all SSBSE problems. In this case, when the
problem is so diverse, the fitness function is also intricate: it
requires a set of known metrics, a set of special metrics, the
grouping of these metrics and additionally weights in order to
set preferences to quality aspects.

The approach is tested on a sketch of a medium-sized
system [46]. Results show positive development in overall
fitness value, while the balancing of weights greatly affects
whether the design is more modifiable or efficient. However,
the actual designs are not compliant with the fitness values,
and would not be accepted by a human architect. This
suggests that further improvement is needed in defining the
fitness function.

Räihä et al. [34] further develop their work by implement-
ing more design patterns and an alternative approach. In
addition to the responsibility dependency graph, a domain
model may be given as input. The GA can now be utilized
in Model Driven Architecture design, as it takes care of the
transformations from Computationally Independent Model to
Platform Independent Model. The new design patterns are
Mediator and Proxy, and the service oriented architecture
style is also implemented by enabling a class to be called
through a server. The chromosome representation, mutation
and crossover operations, and selection method are kept the
same. Results show that the fitness values converge to some
optima and reasonable high-level designs are obtained.

In this case the task for the GA is made somewhat easier,
as a skeleton of a class structure is given to the algorithm
in the form of a domain model. This somewhat eliminates
the class responsibility assignment problem and the GA can
only concentrate on applying the design patterns. As the
results are significantly better, although the search space
is more complex when more patterns have been added to
the mutations, this suggests that the class responsibility
assignment problem is extremely complex on its own, and
more research on this would be highly beneficial as a
background for several search-based software design related
questions.
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Räihä et al. [35] continue to develop their approach by in-
cluding the Template pattern in the design pattern/mutation
collection and introducing scenarios as a way to enhance the
evaluation of a produced architecture. Scenarios are basically
a way to describe an interaction between the system and a
stakeholder. In their work, Räihä et al. [35] categorize and for-
malize modifiability related scenarios so that they can be en-
coded and given to the GA as an additional part of the fitness
function. Each scenario is given a list of preferences regarding
the architectural structures that are suitable for that scenario.
The preferences are then compared with the suggested archi-
tecture and a fitness value is calculated according to how well
the given architecture conforms to the preferences. This way
the fitness value is more pointed, as the most critical parts of
the architecture can be given extra attention and the eval-
uation is not completely based on general metrics. Results
from empirical studies made on two sample systems show
that when the scenarios are used, the GA retains the high-
speed phase of developing the architecture for 10–20 genera-
tions longer than in the case where scenarios are not used.
Also, when the scenario fitness is not included in the overall
fitness evaluations the GA tends to make decisions that do
not support the given scenarios.

Results from this study shows that when themodifications
are detailed in applying a design pattern (rather than
modifying the architecture “as a whole”), the fitness function
also needs to be more focused to study the places in an
architecture where such detailed solutions would be most
beneficial.

Kessentini et al. [36] also use a search-based approach
to model transformations. They start with a small set of
examples, from which transformation blocks are extracted,
and use particle swarm optimization (PSO) [47]. A model is
viewed as a triple of source model, target model and mapping
blocks between the source and target models. The source
model is formed by a set of constructs. The transformation
is only coherent if it does not conflict with the constructs.
The transformation quality of a source model (i.e., global
quality of a model) is the sum of the transformation qualities
of its constructs (i.e., local qualities). This approach is less
automated, as the transformations need to be extracted from
ready models, and are not general. However, using PSO is
especially interesting, and suggests that other algorithms
besides GA are also suitable for complex software design
problems.

To encode a transformation, an M-dimensional search
space is defined, M being the number of constructs. The
encoding is now an M-dimensional integer vector whose
elements are the mapping blocks selected for each construct.
The fitness function is a sum of constructs that can be
transformed by the associated blocks multiplied by relative
numbers of matched parameters and constructs. The fitness
value is normalized by dividing it by 2 ∗M, thus resulting in a
fitness range of [0, 1].

The method was evaluated and tried with 10 small-size
models, of which nine are used as a training set and one
as the actual model to be transformed. The precision of
model transformation (number of constructs with correct
transformations in relation to total number of constructs)
is calculated in addition to the fitness values. The best
solution was found after only 29 iterations, after which all
particles converged to that solution. The test generated 10
transformations. The average precision of these is more
than 90%, thus indicating that the transformations would
indeed give an optimal result, as the fitness value was also
high within the range. The test also showed that some
constructs were correctly transformed, although there were
no transformation examples available for these particular
constructs.

Kim and Park [37] use GAs to dynamically choose
components to form the software architecture according to
changing demands. The basic concept is to have a set of
interchangeable components (e.g., BasicUI and RichUI) which
can be selected according to user preferences. The goal is thus
to select an optimal architectural instance from all possible
instances. This is especially beneficial when the software
needs to be transferred, e.g., from a PC to a mobile device.

A softgoal interdependency graph (SIG) is used as a
basis for the problem; it represents relationships between
quality attributes. The quality attributes are formulated
by a set of quality variables. A utility function is used
to measure the user’s overall satisfaction: the user now
gives weights for the quality values to represent their
priority. Functional alternatives (i.e., the interchangeable
components) are denoted by operationalizing goals. The
operationalizing goals can have an impact on a softgoal, i.e., a
quality attribute. Alternatives with similar characteristics
are grouped by type. One alternative type corresponds
to one architectural decision variable. These represent
partial configurations of the application. A combination of
architectural decision variables comprises an architectural
instance.

In addition to the SIG, situation variables and their val-
ues are needed as input. Situation variables describe par-
tial information on environmental changes and determine
the impacts that architectural decision variables have on
the quality attributes. The impact is defined as a situ-
ation evaluation function, which is defined for each di-
rect interdependency between an operationalizing goal and
quality attribute. Although the fitness function is quite
standard, i.e., it calculates the quality through “quality val-
ues” and there are weights assigned, the actual computations
are not that straightforward. The quality attributes that the
fitness function is based on rely on decision variables and sit-
uation variables. These in turn need to be calculated by hand,
and there is no clear answer as to how the situation variables
themselves are gathered.

For the GA, the architectural instance is encoded as
a chromosome by using a string of integers representing
architectural decisions. Mutation is applied to offspring,
for which each digit is subjected to mutation (according
to mutation probability). Crossover is a standard two-point
crossover. The utility function is used as the fitness function
and tournament selection is used for selecting the next
generation.

An empirical study is made and compared to exhaustive
search. The time needed for the GA is less then 1∗10−5 of the
time needed for the exhaustive search. The GA also converges
to the best solution very quickly, after only 40 generations.
Thus, it would seem that using a search algorithm for this
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problem would produce extremely good results, at least in
terms of time and speed. However, in this case all the
components need to be known beforehand, as the task is to
choose an optimal set from alternative components. It would
be interesting to see at least how all the different variables
needed are acquired, and how the approach could be more
generalized.

Bodhuin et al. [38] present an approach based on GAs and
an environment that, based on previous usage information of
an application, re-packages it with the objective of limiting
the amount of resources transmitted for using a set of
application features. The overall idea is to cluster together
(in jars) classes that, for a set of usage scenarios, are likely
to be used together. Bodhuin et al. [38] propose to cluster
together classes according to dynamic information obtained
from executing a series of usage scenarios. The approach
aims at grouping in jars classes that are used together
during the execution of a scenario, with the purpose of
minimizing the overall jar downloading cost, in terms of
time in seconds for downloading the application. After having
collected the execution trace, the approach determines a
preliminary re-packaging considering common class usages
and then improves it by using GAs. This approach can be
seen as attempting to find optimal sub-architectures for a
system, as each jar-package needs to be able to operate on
its own. Obviously the success of finding sub-systems greatly
depends on how well the class responsibility assignment
problem is solved in the system, linking these results to that
fundamental problem.

The proposed approach has four steps. First, the
application to be analyzed is instrumented, and then it is
exercised by executing several scenarios instantiated from
use cases. Second, a preliminary solution of the problem is
found, grouping together classes used by the same set of
scenarios. Third, GAs are used to determine the (sub)-optimal
set of jars. Fourth, based on the results of the previous steps,
jars are created.

For the GA, an integer array is used as the chromosome
representation, where each gene represents a cluster of
classes. The initial population is composed randomly.
Mutation selects a cluster of classes and randomly changes
its allocation to another jar archive. The crossover is the
standard one-point crossover. The fitness function is F(x) =

1/N ∗
∑

(Costi), where N is the number of scenarios and Cost
is calculated from the call cost of making a request to the
server and from the class sizes. 10% of the best individuals
are kept alive across subsequent generations. Individuals to
be reproduced are selected using a roulette-wheel selection.
Scenarios are used in a very different way here to in the
work of Räihä et al. [35]. Here, scenarios define actions made
with the system, and thus contain information of different
components of the system that are needed, but do not
deal with quality aspects other than how many operations,
i.e., scenarios, a certain set of responsibilities is able to
perform. Räihä et al. [35], however, use scenarios to describe
not functional operations but expectations to the system in
terms of quality aspects. These different studies suggest that
there are more ways of measuring quality than metrics, and
they should be more thoroughly investigated.
Results show that GA does improve the initial packaging,
by 60%–90% compared to the actual initial packaging, by
5%–43% compared to a packaging that contains two jars,
“used” and “unused”, and by 13%–23% compared to the
preliminary best solution. When delay increases, the GA
optimization starts to be much more useful than the
preliminary optimal solution, while the “used” packaging
becomes better. However, for a network delay value lower
or slightly higher than the value used for the optimization
process, the GA optimization is always the best packaging
option. It is found that even when there is a large corpus of
classes used in all scenarios, a cost reduction is still possible,
even if in such a case the preliminary optimized solution is
already a good one. The benefits of the proposed approach
depend strongly on several factors, such as the amount
of collected dynamic information, the number of scenarios
subjected to analysis, the size of the common corpus and
the network delay. However, the presented approach and its
results can be linked to several other software design related
questions, thus raising questions on how different promising
results can be combined so that evenmore complex problems
can be solved with search-based methods.

Gold et al. [39] experiment with applying search tech-
niques to integrate the boundary overlapping concept as-
signment. Hill climbing and GA approaches are investigated.
The fixed boundary Hypothesis Based Concept Assignment
(HBCA) [48] technique is compared to the new algorithms.
As program comprehension is extremely valuable when (re-
)designing software architecture, and locating (and under-
standing) overlapping concepts is one of the most demanding
tasks in comprehension, automating this task would signifi-
cantly save resources in program maintenance.

A concept may take the form of an action or object.
For each concept found from source code, a hypothesis is
generated and stored. The list of hypotheses is ordered
according to the position of the indicators in the source
code. The input for the search problem is the hypothesis list.
The hypothesis list is given by the application of HBCA. The
problem is defined as searching for segments of hypothesis
in each hypothesis list according to predetermined fitness
criteria such that each segment has the following attributes:
each segment contains one or more neighboring hypotheses
and there are no duplicate segments.

A chromosome is made up of a set of one or more
segment representations, and its length can vary. A segment
is encoded as a pair of values (locations) representing the
start and end hypothesis of the hypothesis list. All segments
with the same winning concept that overlap are compared,
and all but the fittest segment are removed from the
solution. Tournament selection is used for crossover and
mutation. Mutation in GA randomly replaces any hypothesis
location within any segment with any other valid hypothesis
location with the aim to cause the search to become more
randomized. In HC the mutation generates new solutions by
selecting a segment and increasing or decreasing one of the
values by a single increment. Selecting different mutations
for GA and HC is noteworthy: this choice is partially justified
by the authors by the fact that mutation is only the secondary
operation for the GA, and transformations are primarily done
with the crossover. The chosen mutation operator for the
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GA seems to ensure diversity within the population. The
proposed HC takes advantage of the crossover for GA for the
restart mechanism, which recombines all segments to create
new pairs of location values, which are then added to the
current solution if their inclusion results in an improvement
to the fitness value. Crossover utilizes the location of the
segments, where only segments of overlapping locations
are recombined and the remainder are copied to the new
chromosome.

The fitness criteria’s aims are finding segments of
strongest evidence and binding as many of the hypotheses
within the hypothesis list as possible without compromising
the segment’s strength of evidence. The segmentation
strength is a combination of the inner fitness and the
potential fitness of each segment. The inner fitness fiti of
a segment is defined as signali–noisei, where signali is the
number of hypotheses within the segment that contribute to
the winner, and noisei represents the number of hypotheses
within the segment that do not contribute to the winner.
In addition, each segment is evaluated with respect to the
entire segment hypothesis list: the potential segment fitness,
fitp, is evaluated by taking account of signalp, the number of
hypotheses outside of the segment that could contribute to
the segment’s winning concept if they were included in the
segment. The potential segment fitness is thus defined as
f itp = signali − signalp. The overall segment fitness is defined
as segfit = fiti + fitp. The total segment fitness is a sum of
segment fitnesses. The fitness is normalized with respect to
the length of the hypothesis list. The chosen fitness function
seems quite simple when broken down to actual calculations.
This further confirms the findings, by e.g. [42], that simple
approaches tend to have promising results, as there is less
room to err.

An empirical study is used. Results are also compared
to sets of randomly generated solutions for each hypothesis
list, created according to the solutions structure. The results
from GA, HC and random experiment are compared based
on their fitness values. The GA fitness distribution is the
same as those of HC and random, but achieves higher values.
HC is clearly inferior. Comparing GA, HC and HBCA shows
a lack of solutions with low Signal to Noise ratios for GA
and HC when compared to HBCA. GA is identified as the
best of the proposed algorithms for concept assignment
which allow overlapping concept boundaries. Also, the HC
results are somewhat disappointing as they are found to be
significantly worse than GA and random solutions. However,
HC produces stronger results than HBCA on the signal to
size measure. The GA and HC are found to consistently
produce stronger concepts than HBCA. It might be worth
studying how the HC would have performed if it used the
samemutation operator as the GA. Although the GA primarily
used the crossover, which was used as a basis for the HC, the
GAs large population makes the application of this operator
significantly more different than with HC.

Goldsby and Chang [40] and Goldsby et al. [41] study the
digital evolution of behavioral models for autonomic systems
with Avida. It is difficult to predict the behavior of autonomic
systems before deployment, and thus automatic generation
of behavioral models greatly eases the task of software
engineers attempting the comprehend the system. In digital
evolution a population of self-replicating computer programs
(digital organisms) exists in a computational environment
and is subject to mutations and selection. In this approach
each digital organism is considered as a generator for a UML
state diagram describing the systems behavior.

Each organism is given instinctual knowledge of the
system in the form of a UML class diagram representing the
system structure, as well as optional seed state diagrams. A
genome is thus seen as a set of instructions telling the system
how to behave. The genome is also capable of replicating
itself. In fact, at the beginning of each population there exists
only one organism that only knows how to replicate itself,
thus creating the rest of the population. Mutations include
replacing an instruction, inserting an additional instruction
or removing an instruction from the genome. As genomes
are self-replicating, crossover is not used in order to create
offspring. Here the choice of UML state diagrams is clever, as it
visualizes the behavior in quite a simple manner, making the
interpretation of the result easy. Also the choice of encoding
conforms well to the chosen visualization method. However,
the actual encoding of rules into the genome is not simple,
and requires several different alphabets and lists of variables.

The fitness or quality of an organism is evaluated by a
set of tasks, defined by the developer. Each task that the
behavioral model is able to execute increases its merit. The
higher a merit an organism has, the more it will replicate
itself, eventually ending up dominating the population. This
is yet another instance where the fitness is measured by
something other than traditional metrics.

A behavioral model of an intelligent robot is used
as a case study for Avida. Through 100 runs of Avida,
seven behavioral models are generated for the example
system. Post-evolution analysis includes evaluation with the
following criteria: minimum states, minimum transitions,
fault tolerance, readability and tolerance. After the analysis,
one of the models meets all but one criterion (safety) and
three models meet three of the five criteria. One model does
not meet any of the additional criteria. Thus, the produced
behavioral models would seem to be of average quality.

Lutz [42] uses ameasure based on an information theoretic
minimum description length principle [49] to compare
hierarchical decompositions. This measure is furthermore
used as the fitness function for the GA which explores the
space of possible hierarchical decompositions of a system.
Although this is very similar to software clustering, this
approach is considered as architecture design as it does
not need an initial clustering to improve, but designs the
clustering purely based on the underlying system and its
dependencies.

In hierarchical graphs, links can represent such things
as dependency relationships between the components of
control-flow or data-flow. In order to consider the best way to
hierarchically break a system up into components, one needs
to know what makes a hierarchical modular decomposition
(HMD) of a system better than another. Lutz takes the view
that the best HMD of a system is the simplest. In practice
this seems to give rise to HMDs in which modules are highly
connected internally (high cohesion) and have relatively few
connections which cross module boundaries (low coupling),
and thus seems to achieve a principled trade-off between the
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coupling and cohesion heuristics without actually involving
either. This also suggests that high quality architectures
can effectively be identified through subjective inspection.
A human architect may quite easily say if one design
appears simpler than another, while calculation cohesion and
coupling values are more time consuming and complex.

For the GA, the genome is a HMD for the underlying
system. The chromosomes in the initial population are
created by randomly mutating some number of times a
particular “seed” individual. The initial seed individual
is constructed by modularizing the initial system. Three
different mutation operations are used that can all be thought
of as operations on the module tree for the HMD. They are:
1. moving a randomly chosen node from where it is in the
tree into another randomly chosen module of the tree, 2.
modularizing the nodes of some randomly chosen module,
i.e., creating a new module containing the basic entities
of some module, and 3. removing a module “boundary”.
The crossover operator resembles the tree-based crossover
operation used in genetic programming and is most easily
considered as a concatenating operation on the module trees
of the two HMDs involved. However, legal solutions are not
guaranteed, and illegal ones are repaired.

The tree-like structure is significantly more complex than
usual genome encodings for a GA. This is of course in line
with the demands of the problem of finding an optimal
HMD, but also reflects on the understandability of the chosen
operations. The operations are difficult (if not impossible)
to completely understand without visualization, and difficult
corrective operations are needed in order to keep the system
structure intact. The analogy between the chosen tree-
operations and actual effects to the architecture is also quite
difficult to grasp.

The fitness is given as 1/complexity. Among other systems,
a real software design is used for testing. A HMD with
significantly lower complexity than the original was found
very reliably, and the system could group the various
components of the system into a HMD exhibiting a very
logical (in terms of function) structure. These results validate
that using simplicity as a fitness function is justified.

3.1.3. Summarizing remarks
Search-based approaches to software architecture design is
clearly a diverse field, as the studies presented solve very
different issues relating to OO software architecture design
and program comprehension. Some consensus can be found
in the very basics: solving the class responsibility assignment
problem, applying design choices to create an architecture
and finding an optimal modularization (Lutz [42] creates
a modularization, Kim and Park [37] attempt to find an
optimal set of components and Bodhuin et al. [38] attempt to
find optimal sub-architectures). However, even within these
sub-areas of OO design, the approaches are quite different,
and practically no agreement can be found when studying
the chosen encodings, operations or fitness function. What
is noticeable, however, is that several approaches to quite
different problems within this area use a fitness function that
is not based on metrics. This highlights the need for better
validation when using metrics in evaluating the quality of
software, and especially software architectures. Manymetrics
need source code and very detailed information; this alone
suggests that they are not suitable for this higher level
problem.

3.2. Service-oriented architecture design

3.2.1. Background
Web services are rapidly changing the landscape of software
engineering, and service-oriented architectures (SOA) are
especially popular in business. One of the most interesting
challenges introduced by web services is represented by
Quality of Service (QoS)-aware composition and late-binding.
This allows binding, at run-time, a service-oriented system
with a set of services that, among those providing the
required features, meet some non-functional constraints,
and optimize criteria such as the overall cost or response
time. Hence, QoS-aware composition can be modeled as
an optimization problem. This problem is NP-hard, which
makes it suitable for meta-heuristic search algorithms. For
more background on SOA, see, e.g., [50]. Section 3.2.2
describes several approaches that have used a GA to deal with
optimizing service compositions. Summarizing remarks on
the different approaches are given in Section 3.2.3, and the
fundamentals of each approach are collected in Table 3.

3.2.2. Approaches
Canfora et al. [51] propose a GA to optimize service
compositions. The approach attempts to quickly determine
a set of concrete services to be bound to the abstract services
composing the workflow of a composite service. Such a set
needs both tomeet QoS constraints, established in the Service
Level Agreement (SLA), and to optimize a function of some
other QoS parameters.

A composite service S is considered as a set of n abstract
services {s1, s2, . . . , sn}, whose structure is defined through
some workflow description language. Each component sj
can be bound to one of the m concrete services, which
are functionally equivalent. Computing the QoS of a
composite service is made by combining calculations for
quality attributes time, cost, availability, reliability and customer
attraction. Calculations take into account Switch, Sequence,
Flow and Loop patterns in the workflow.

The genome is encoded as an integer array whose number
of items equals the number of distinct abstract services
composing the services. Each item, in turn, contains an index
to the array of the concrete services matching that abstract
service. The mutation operator randomly replaces an abstract
service with another one among those available, while the
crossover operator is the standard two-point crossover. This
can be seen as an attempt to preserve building blocks,
i.e., sequences of optimal service bindings. Abstract services
for which only one concrete service is available are taken out
of the GA evolution.

The fitness function needs to maximize some QoS
attributes, while minimizing others. In addition, the fitness
function must penalize individuals that do not meet the
constraints and drive the evolution towards constraint
satisfaction, the distance from which is denoted by D. The
fitness function is f = (w1Cost + w2Time)/(w3Availability +
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w4Reliability) + w5D. QoS attributes are normalized in the
interval [0, 1). Although the fitness function seems simple
in this way, the actual calculations behind the different
attributes are complex. The values are achieved by calculating
the quality value for each attribute for each pattern in the
workflow. The actual functions to define how these values
are calculated are not defined, and it would be interesting
to see how, e.g., availability is achieved, as this would show
the amount of information needed as input to calculate
the fitness value. The weights w1, . . . , w5 are positive reals.
Normalizing the fitness evaluators ensures that the weights
have the true effect to the fitness value that they are meant
to have.

A dynamic penalty is experimented with, so that w5 is
increased over the generations. An elitist GA is used, where
the best two individuals are kept alive across generations. The
roulette wheel method is used for selection.

The GA is able to find solutions that meet the constraints,
and optimizes different parameters (here cost and time).
Results show that the dynamic fitness does not outperform
the static fitness. Even different calibrations of weights do not
help. The convergence times of GA and Integer Programming
(IP) [58] are compared for the (almost) same achieved solution.
The results show that when the number of concrete services
is small, IP outperforms GA. For about 17 concrete services,
the performance is about the same. After that, GA clearly
outperforms IP. Thus, as SOA is most useful when the number
of services is large, it would seem that GA is a worthwhile
solution to optimizing the service-binding.

Canfora et al. [52] have continued their work by using a GA
in replanning the binding between a composite service and
its invoked services during execution. Replanning is triggered
once it can be predicted that the actual service QoS will differ
from initial estimates. After this, the slice, i.e., the part of
workflow still remaining to be executed, is determined and
replanned. The used GA approach is the same as earlier,
but additional algorithms are used to trigger replanning
and computing workflow slices. The GA is used to calculate
the initial QoS-values as well as optimizing the replanned
slices. Experiments were made with realistic examples, and
results concentrate on the cost quality factor. The algorithms
managed to reduce the final cost from the initial estimate,
while response time increased in all cases. The authors end
with a note that the trade-off between response time and cost
quality factors needs to be examined thoroughly in the future.

Jaeger and Mühl [53] discuss the optimization problem
when selecting services while considering different QoS
characteristics. A GA is implemented and tested on a
simulation environment in order to compare its performance
with other approaches.

An individual in the implemented GA represents an
assignment of a candidate for each task and can be
represented by a tuple. A population represents a set
of task-candidate assignments. The initial population is
generated arbitrarily from possible combinations of tasks and
candidates. Mutation changes a particular task-candidate
assignment of an individual. Crossover is made by combining
two particular task-candidate assignments to form new ones
and depends on the fitness value. The fitness value is
computed based on the QoS resulting from the encoded task-
services assignment. Jaeger and Mühl use the same fitness
function as Canfora et al. [51,52] in order to get comparable
results.

A trade-off couple between execution time and cost is
defined as follows: the percentage a, added to the optimal
execution time, is taken to calculate the percentage b, added
to the optimal cost, with a + b = 100. Thus, the shorter
the execution time is, the worse will be the cost and vice
versa. The constraint is determined to perform the constraint
selection on the execution time first. The aggregated cost for
the composition is increased by 20% and then taken as the
constraint that has to be met by the selection. This appears as
an attempt to answer the problem noted by Canfora et al. [52]
in their later study.

Several variations of the fitness function are possible.
Jaeger and Mühl [53] use a multiplication of the fitness
to make the difference between weak and strong fitnesses
larger. When the multiplying factor is 4, it achieves higher
QoS values than those with a smaller factor; however, a
factor of 8 does not achieve values as high. The scaled
algorithm performed slightly better than the one with a
factor of 2, and behaved similarly to the weighted algorithm.
The penalty factor was also investigated, and it was varied
between 0.01 and 0.99 in steps of 0.01. The results show
that a factor of 0.5 would result in few cases where the
algorithm does not find a constraint meeting solution. On
the other hand, solutions below 0.1 appear too strong, as
they represent an unnecessary restriction of the GA to evolve
further invalid solutions. These different experiments on
some very basic parameters demonstrate the difficulty of
optimizing the GA: even themore simple choices are anything
but straightforward.

The GA offers a good performance at feasible computa-
tional efforts when compared to, e.g., bottom-up heuristics.
However, this approach shows a large gap when compared to
the resulting optimization of a branch-and-bound approach
or to exhaustive search. It appears that the considered setup
of values along with the given optimization goals and con-
straints prevent a GA from efficiently identifying very near
optimal solutions.

Zhang et al. [54] implement a GA that, by running only
once, can construct the composite service plan according to
the QoS requirements frommany services compositions. This
GA includes a special relation matrix coding scheme (RMCS)
of chromosomes proposed on the basis of the characters of
web services selection.

By means of the particular definition, it can simultane-
ously represent all paths of services selection. Furthermore,
the selected coding scheme can simultaneously denote many
web service scenarios that the one dimension coding scheme
can not express at one time.

According to the characteristic of the services composi-
tion, the RMCS is adopted using a neighboring matrix. In the
matrix, n is the number of all tasks included in services com-
position. The elements along themain diagonal for thematrix
express all the abstract service nodes one by one, and are ar-
ranged from the node with the smallest code number to the
node with the largest code number. The objects of the evolu-
tion operators are all elements along the main diagonal of the
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matrix. The chromosome is made up of these elements. The
other elements in the matrix are to be used to check whether
the created new chromosomes by the crossover and muta-
tion operators are available and to calculate the QoS values
of chromosomes. This appears to mainly combine the integer
array and the table of services linked to it, used by Canfora
et al. [51], into one data structure. The tuple representation
chosen by Jaeger and Mühl [53] does not seem that differ-
ent either, as a tuple can basically contain the information
of what is represented by a column and a row in a matrix.

The policy for initial population attempts to confirm the
proportion of chromosomes for every path to the size of
the population. The method is to calculate the proportion of
compositions of every path to the sum of all compositions of
all paths. The more compositions there are of one path, the
more chromosomes for the path there are in the population.

The value of every task in every chromosome is confirmed
according to a local optimized method. The larger the value
of QoS of a concrete service is, the larger the probability to
be selected for the task is. Roulette wheel selection is used to
select concrete services for every task.

The probability of mutation is for the chromosome instead
of the locus. If mutation occurs, the object path will be
confirmed firstly as to whether it is the same as the current
path expressed by the current chromosome. If the paths are
different, the object path will be selected from all available
paths except the current one. If the object is itself, the new
chromosome will be checked to see whether it is the same as
the old chromosome. The same chromosomewill result in the
mutation operation again. If the objects are different paths
from the current path, a new chromosome will be related on
the basis of the object path.

A check operation is used after the invocations of
crossover and mutation. If the values of the crossover loci
in two crossover chromosomes are all for the selected web
services, the new chromosomes are valid. Else, the new
chromosomes need to be checked on the basis of the relation
matrix. Mutation checks are needed if changed from a
selected web service to a certain value or vice versa.

Zhang et al. [54] compared the GAwith RMCS to a standard
GAwith the same data, including workflows of different sizes.
The used fitness function is as defined by Canfora et al. [59].
The coding scheme, the initial population policy and the
mutation policy are the differences between the two GAs.
Results show that the novel GA outperforms the standard
one in terms of achieved fitness values. As the number
of tasks grows, so does the difference in fitness values
(and performance time, in favor of the standard solution)
between the two GAs. The weaknesses of this approach are
thus long running time and slow convergence. Tests on the
initial population and the mutation policies show that as
the number of tasks grows, the GA with RMCS more clearly
outperforms the standard one. Thus it would seem that
combining the information into a heavier data structure, a
matrix, increases execution time significantly. Also, as it is
noted that the improvement fitness values with the novel GA
for larger task sets is achieved by testing other improvement
than the encoding, the true achievements are the ones that
really differ from previous approaches, rather than the new
representation. Tests on the coding scheme show that the
novel matrix approach only achieves noticeably better fitness
values when the number of tasks is increased (although
the improvement is not linear): the fitness values for 10
tasks differ by less than 1%, the fitness values for 25 tasks
differ by approximately 30%, and the fitness values for 30
tasks by approximately 20%. Another interesting point is the
choice of parameters: Zhang et al. [54] use 10 000 generations
and 400 individuals for a population in their tests. However,
the standard GA seems to achieve its optimum after 1000
generations and the one with the novel encoding after 3000
generations. Thus one wonders about the need for such
unusual parameter selections.

Zhang et al. [54] report that experiments on QoS-aware
web services selection show that the GA with the presented
matrix approach can get a significantly better composite
service plan than the GA with the one dimensional coding
scheme, and that the QoS policies play an important role in
the improvement of the fitness of the GA.

Su et al. [55] continue the work of Zhang et al. [54]
by proposing improvements for the fitness function and
mutation policy. An objective fitness function 1 (OF1) is first
defined as a sum of quality factors and weights, providing the
user with a way to show favoritism between quality factors.
The sum of positive quality factors is divided by the sum of
negative quality factors. The second fitness function (OF2) is
a proportional one and takes into account the different ranges
of quality value. The third fitness function (OF3) combines
OF1 and OF2, producing a proportional fitness function that
also expresses the differences between negative and positive
quality factors. Thus Su et al. seem to have noticed the
problems with defining the fitness functions, as the fitness
function actually used by Canfora et al. [51,52] includes
similar improvements.

Four different mutation policies are also inspected.
Mutation policy 1 (MP1) operates so that the probability
of the mutation is tied to each locus of a chromosome.
Mutation policy 2 (MP2) has the mutation probability tied
to the chromosomes. Mutation policy 3 (MP3) has the same
principle as MP1, except that now the child may be identical
to the parent. Mutation policy 4 (MP4) has the probability tied
to each locus, and has an equal selection probability for each
concrete service and the “0” service.

Experiments with the different fitness functions suggest
that OF3 clearly outperforms OF1 and OF2 in terms of
the reached average maximum fitness value. This is quite
unsurprising, as OF3 is the most developed fitness function.
Experiments on the different mutation policies show that
MP1 obtains the best fitness values while MP4 performs the
worst.

Cao et al. [56,57] present a service selection model using
GA to optimize a business process composed of many
service agents (SAg). Each SAg corresponds to a collection of
available web services provided by multiple-service providers
to perform a specific function. Service selection is an
optimization process taking into account the relationships
among the services. When only measuring cost, the service
selection is equivalent to a single-objective optimization
problem. Better performance is achieved using GA compared
to using a local service selection strategy.
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An individual is generated for the initial population by
randomly selecting a web service for each SAg of the services
flow, and the newly generated individual is immediately
checked as to whether the corresponding solution satisfies
the constraints. If any of the constraints is violated, then
the generated individual is regarded as invalid and discarded.
Roulette wheel selection is used for individuals to breed.

Mutation bounds the selected SAg to a different web
service than the original one. After an offspring is mutated,
it is also immediately checked whether the corresponding
solution is valid. If any constraints are violated, then the
mutated offspring is discarded and the mutation operation
is retried.

A traditional single-point crossover operator is used to
produce two new offspring. After each crossover operation,
the offspring are immediately checked as to whether the
corresponding solutions are valid. If any of the constraints is
violated, then both offspring are discarded and the crossover
operation for the mated parents is retried. If valid offspring
still cannot be obtained after a certain number of retries, the
crossover operation for these two parents is given up to avoid
a possible infinite loop.

Cao et al. [56,57] take cost as the primary concern of
many business processes. The overall cost of each execution
path can always be represented by the summation cost of
its subset components. For GA, integer encoding is used.
The solution to service selection is encoded into a vector of
integers. The fitness function is defined as f = U −

∑
(costs

of service flows), if cost < U, and otherwise 0. The constant
U should be selected as an appropriate positive number to
ensure all good individuals get a positive fitness value in the
feasible solution space. On the other hand, U can also be
utilized to adjust the selection pressure of GA. This is a clever
approach to give the developer a simple way to adjust the
selection process and appreciation of different solutions.

In the case study the best fitness of the population has a
rapid increase at the beginning of the evolution process and
then convergences slowly. It means the overall cost of the SAg
is generally decreasing with the evolution process. For better
solutions, the whole optimization process can be repeated for
a number of times, and the best one in all final solutions
is selected as the ultimate solution to the service selection
problem.

3.2.3. Summarizing remarks
Contrary to the studies relating to OO architecture design,
the approaches to apply search algorithms in SOA design
are extremely similar. Nearly all studies use the same
fitness functions or they have made only small modifications
to it. Also the basic representation of the problem is
very similar; although different definitions are used, the
underlying problem is always linking concrete services with
abstract services. Improvements have been attempted by
creating different initial population and mutation policies;
note, that the actual mutation is still the same, but the
way the mutation is applied is changed. Additionally, there
is no consensus in the encoding of the solution, although
the problem is the same, and some tests have been made
to compare different encoding options. Thus the main
questions in this area seem to be: are there other problems
in SOA where search algorithms could be applied, and
can a truly optimal encoding be found to the currently
studied problem? Additionally, the fitness function deserves
much more attention and testing, as the developers of the
fitness function used by all the studies say themselves that
the relationships and trade-offs between different quality
attributes need to be carefully studied. Results with dynamic
fitness functions also interestingly did not increase the
fitness value. Räihä et al. [33,34] experimented with dynamic
mutations, but discarded them in their latest study [35].
This would suggest that using dynamicity with GAs is a
complex problem, demanding well-defined operations and
firm justifications for the use of such improvements before
adding them to the experiments.

3.3. Other

3.3.1. Background
In addition to purely designing software architecture, there
are some factors that should be optimized, regardless of
the particularities of an architecture. Firstly, there is the
reliability-cost tradeoff. The reliability of software is always
dependent on its architecture, and the different components
should be as reliable as possible. However, the more work
put in to ensure reliability of different components, the
more the software will cost. Wadekar and Gokhale [60]
implement a GA to optimize the reliability-cost tradeoff.
Secondly, there are some parameters, e.g., tile sizes in loop
tiling and loop unrolling, which can be optimized for all
software architectures in order to optimize the performance
of the software. Che et al. [61] apply search-based techniques
for such parameter optimization.

3.3.2. Approaches
Wadekar and Gokhale [60] present an optimization frame-
work founded on architecture-based analysis techniques, and
describe how the framework can be used to evaluate cost and
reliability tradeoffs using a GA. The methodology for the re-
liability analysis of a terminating application is based on its
architecture. The architecture is described using the one-step
transition probabilitymatrix P of a discrete timeMarkov chain
(DTMC).

Wadekar and Gokhale assume that the reliabilities of the
individual modules are known, with Ri denoting the reliability
of module i. It is also assumed that the cost of the software
consisting of n components, denoted by C, can be given by a
generic expression of the form: C = C1(R1) + C2(R2) + · · · +

Cn(Rn), where Ci is the cost of component i and depends
monotonically on the reliability Ri. Thus, the problem of
minimizing the software cost while achieving the desired
reliability is the problem of selecting module reliabilities.

A chromosome is a list of module reliabilities. Each
member in the list, a gene, corresponds to a module in the
software. The independent value in each gene is the reliability
of the module it represents, and the dependent value is the
module cost given by the module cost-reliability relation or a
table known a priori. The gene values are changed to alter the
cost and reliability of a software implementation represented
by a particular chromosome.
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Mutation and crossover operations are standard. To avoid
convergence to a local optimum as the population size
increases, the mutation operation is used more frequently.
A cumulative-probability based basic selection mechanism
is used for selection. Chromosomes are ranked by fitness
and divided into rank groups. The probability of selection of
chromosomes varies uniformly according to their rank group,
where chromosomes in the first rank group have the largest
probability. A new generation of the population is created
by selecting pimax/2 chromosomes, where pimax is maximum
population. If the cost reduction is less than or equal to ϕ% of
the current best cost τ number of times, the GA terminates.
During any generation cycle if the cost reduction is larger,
the counter τ is reset to 0. The reduction percentage factor
ϕ and the counter limit τ are parameters. This approach is
one of the few alternatives used to terminate a GA, as most
studies presented use a straightforward generation number
to terminate the execution of the algorithm.

The fitness function is f = (−K/lnR)/Cγ , where K is a
large positive constant. The fitness of solutions increases
superlinearly with their reliability. The constant γ is used to
linearize the cost variation. The maximum fitness is directly
proportional to K. An intermediate value of gamma, γ = 1.5,
allows the GA to distinguish between low-cost and high-cost
solutions, while selecting a sufficient number of high-cost
high-reliability solutions that may generate the optimal high-
reliability low-cost solution.

Wadekar and Gokhale [60] compare the GA against
exhaustive search. The results indicate that the GA
consistently and efficiently provides optimal or very close to
optimal designs, even though the percentage of such designs
in the overall feasible design space is extremely small. The
results also highlight the robustness of the GA. However, the
small number of near-optimal solutions demonstrates that
the fitness landscape is very complex, again conforming to
the need to extensively investigate the cost-reliability trade-
off. The case study results show how the GA can be effectively
used to select components such that the software cost is
minimized, for various cost structures.

Che et al. [61] present a framework for performance
optimization parameter selection, where the problem is
transformed into a combinatorial minimization problem.
Many performance optimization methods depend on the
right optimization parameters to get good performance for
an application. Che et al. search for the near optimal
optimization parameters in a manner that is adaptable
for different architectures. First, a reduction transformation
is performed to reduce the program’s runtime while
maintaining its relative performance with regard to different
parameter vectors. The near-optimal optimization parameter
vector based on the reduced program’s real execution time is
searched by GA, which converges to a near-optimal solution
quickly. The reduction transformation reduces the time to
evaluate the quality of each parameter vector.

First some transformations are applied to the application,
leaving the optimization parameter vector to be read from
a configuration file. Second, the application is compiled into
an executable with the native compiler. Then the framework
repeatedly generates the configure file with a different
parameter vector selected by search and then measures the
executable’s runtime.

The chromosome encoding for the GA is a vector of integer
values, with each integer corresponding to an optimization
parameter of a solution. No illegal solutions are allowed. The
population has a fixed size. A simple integer valuemutation is
implemented and an integer number recombination scheme
is used for crossover. The fitness value reflects the duality
of an individual in relation to other individuals. The linear
rank-based fitness assignment scheme is used to calculate
the fitness values. Selection for a new generation is made
by elitism and the roulette wheel method. Test results show
that the GA can adapt to different execution environments
automatically. For each platform, it always selects excellent
optimization parameters for 80% of programs. Results show
that the number of individuals evaluated is far smaller than
the size of the solution space for each program on each
platform. The optimization time is also small.

4. Software clustering

4.1. Background

As software systems develop and are maintained, they tend
to grow in size and complexity. A particular problem is the
growing number of dependencies between libraries, modules
and components within the modules. Software clustering
(or modularization) attempts to optimize the clustering of
components into modules in such a way that there are as
many dependencies within a module as possible and as
few dependencies between modules as possible. This will
enhance the understandability of a system, which in turn
will make it more maintainable and modifiable. Also, fewer
dependencies between modules usually results in better
efficiency.

As components or modules (depending on the level of
detail in the chosen representation) can be depicted as
vertices and dependencies between them as edges in a graph,
the software clustering problem can be traced back to a
graph partitioning problem, which is NP-complete. Genetic
algorithms have successfully been applied to a general graph
partitioning problem [62,63], and thus, the related software
clustering problem is most suitable for meta-heuristic search
techniques.

Although the basic problem is relatively simple to define
and the goodness of a modularization can be calculated
based on the goodness of the underlying graph partitioning,
the nature of software systems provides challenges when
defining the actual fitness function for the optimization
algorithm. Also, not all necessary information can be encoded
into a simple graph representation, and this presents
another question to be answered when designing a search-
based approach for modularization. Section 4.2 presents
approaches using GAs, HC and SA to find good software
modularizations, after which summarizing remarks are
presented in Section 4.3 and the fundamentals of each study
are collected in Table 4.
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4.2. Approaches

Mancoridis et al. [64] treat automatic modularization as an
optimization problem and have created the Bunch tool that
uses HC and GA to aid its clustering algorithms. A hierarchical
view of the system organization is created based solely on the
components and relationships that exist in the source code.
The first step is to represent the system modules and the
module-level relationships as a module dependency graph
(MDG). An algorithm is then used to partition the graph in
a way that derives the high-level subsystem structure from
the component-level relationships that are extracted from
the source code. The goal of this software modularization
process is to automatically partition the components of
a system into clusters (subsystems) so that the resultant
organization concurrentlyminimizes inter-connectivity while
maximizing intra-connectivity. This task is accomplished by
treating clustering as an optimization problem, where the
goal is to maximize an objective function based on a formal
characterization of the trade-off between inter- and intra-
connectivity. Intuitively, intra-connectivity could be seen as
cohesion and inter-connectivity as coupling.

The clusters, once discovered, represent higher-level
component abstractions of a system’s organization. Each
subsystem contains a collection of modules that either
cooperate to perform some high-level function in the overall
system or provide a set of related services that are used
throughout the system. Intra-connectivity Ai of cluster i
consisting of Ni components and mi intra-edge dependencies
as Ai = mi/N2

i , bound between 0 and 1. Inter-connectivity
measures the connectivity between two distinct clusters.
A high degree of inter-connectivity is an indication of
poor subsystem partitioning. Inter-connectivity Eij between
clusters i and j consisting of Ni and Nj components with
eij inter-edge dependencies is 0, if i = j, and eij/2 ∗ NiNj
otherwise, bound between 0 and 1. Modularization Quality
(MQ) demonstrates the trade-off between inter- and intra-
connectivities, and it is defined for a module dependency

graph partitioned into k clusters as 1/k ∗
∑ Ai−1

k∗ k−1
2

∗
∑

Ei,j if

k > 1, or A1, if k = 1.
The first step in automatic modularization is to parse

the source code and build a MDG. A sub-optimal clustering
algorithm works as the traditional hill climbing one by
randomly selecting a better neighbor. The GA starts with
a population of randomly generated initial partitions and
systematically improves them until all of the initial samples
converge. The GA uses the “neighboring partition” definition
to improve an individual, and thus only contains one
mutation operator, which is the same one as used with
HC. Selection is done by randomly selecting a percentage
of N partitions and improving each one by finding a better
neighboring partition. A new population is generated by
making N selections, with replacements for the existing
population of N partitions. Selections are random and
biased in favor of partitions with larger MQs. The algorithm
continues until no improvement is seen for t generations, or
until all of the partitions in the population have converged
to their maximum MQ, or until the maximum number of
generations has been reached. The partition with the largest
MQ in the last population is the sub-optimal solution.
Experimentation with this clustering technique has
shown good results for many of the systems that have
been investigated. The primary method used to evaluate
the results is to present an automatically generated
modularization of a software system to the actual system
designer and ask for feedback on the quality of the results. A
case studywasmade and the results were shown to an expert,
who highly appreciated the result produced by Bunch.

The validation of the method is interesting, as the original
designer of a system should be the onewho knows the system
best, and thus should be the best one to evaluate designs of
the system. It is also encouraging that the designers were
open and admitted that the tool was able to improve the
design that they must have though of as optimal at some
point. This indicates that there truly is a place for software
design tools if the methods are well-defined enough.

Doval et al. [65] have implemented a more refined GA in
the Bunch tool, as it now contains a crossover operator and
more definedmutation and crossover rates. The effectiveness
of the technique is demonstrated by applying it to a medium-
sized software system. For encoding, each node in the graph
(MDG) has a unique numerical identifier assigned to it. These
unique identifiers define which position in the encoded string
will be used to define that node’s cluster. Mutation and
crossover operators are standard. A roulette wheel selection
is used for the GA, complemented with elitism. The fitness
function is based on the MQ metric.The crossover rate
was 80% for populations of 100 individuals or fewer and
100% for populations of a thousand individuals or more,
varying linearly between those values. The mutation rate is
0.004 log2(N). The MQ values for constant population and
generation values were smaller, but fairly close, within 10%
of the final values achieved for population and generation.

The affect of the population size to crossover rate
is interesting, especially in the sense that with smaller
populations the rate is smaller. Intuitively it would seem that
with larger populations there would be a higher chance that
the population contains some extremely poor individuals,
the parts of which are not worthwhile to pass on to future
generations.

Mancoridis et al. [66] have continued to develop the
Bunch tool for optimizing modularization. Firstly, almost
every system has a fewmodules that do not seem to belong to
any particular subsystem, but rather, to several subsystems.
These modules are called omnipresent, because they either
use or are used by a large number of modules in the system.
In the improved version users are allowed to specify two
lists of omnipresent modules, one for clients and another for
suppliers. The omnipresent clients and suppliers are assigned
to two separate subsystems.

Secondly, experienced developers tend to have good
intuition about which modules belong to which subsystems.
However, Bunch might produce results that conflict with
this intuition for several reasons. This is addressed with
a user-directed clustering feature, which enables users to
cluster some modules manually, using their knowledge of
the system design while taking advantage of the automatic
clustering capabilities of Bunch to organize the remaining
modules. Both user-directed clustering and the manual
placement of omnipresent modules into subsystems have the
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advantageous side-effect of reducing the search space of MDG
partitions. By enabling themanual placement ofmodules into
subsystems, these techniques decrease the number of nodes
in the MDG for the purposes of the optimization and, as a
result, speed up the clustering process.

Finally, once a system organization is obtained, it is
desirable to preserve as much of it as possible during
the evolution of the system. The integration of the
orphan adoption technique into Bunch enables designers to
preserve the subsystem structure when orphan modules are
introduced. An orphan module is either a new module that
is being integrated into the system, or a module that has
undergone structural changes. Bunch moves orphan modules
into existing subsystems, one at a time, and records the MQ
for each of the relocations. The subsystem that produces the
highest MQ is selected as the parent for the module. This
process, which is linear with respect to the number of clusters
in the partition, is repeated for each orphan module. Results
from a case study support the added features.

The chosen additions clearly stem from real needs when
modularizing software. However, two of the three operations
increase the power that the user has over Bunch, thus
decreasing the level of automation. Ideally the tool would be
able to locate the omnipresent modules themselves, and gain
the same level of expertise via a fitness function as experts, so
that the user would not need to cluster anything beforehand.
The last improvement, however, is truly beneficial, as hardly
any software system stays intact during maintenance, and
modules need to be added or modified. Automating the step
of finding the optimal place for a new module is a big step
towards the ideal of automating software design.

Mitchell and Mancoridis [67–69] have continued to work
with the Bunch tool and have further developed the MQ
metric. They define MQ as the sum of Clustering Factors for
each cluster of the partitioned MDG. The Clustering Factor
(CF) for a cluster is defined as a normalized ratio between the
total weight of the internal edges and half of the total weight
of external edges. The weight of the external edges is split
in half in order to apply an equal penalty to both clusters
that are connected by an external edge. If edge weights are
not provided by the MDG, it is assumed that each edge has a
weight of 1. The clustering factor is defined as

CF = intra-edges/

intra-edges+ 1/2 ∗

−
(inter-edges)


.

The measurement is adjusted, as Mitchell and Mancoridis
argue that the oldMQ tended tominimize the inter-edges that
exited the clusters, and not minimize the number of inter-
edges in general. The representation also supports weights.
This is an interesting observation, as the original definition
of the MQ metric makes no distinction to whether an edge
exits a cluster or not. Thus, one could ask whether the MQ
metric was the sole reason for the previous results, or if other
improvements besides the newly defined MQ metric also had
a significant effect on obtaining the better quality results.
The addition of weights is also noteworthy, as previously the
problem was not considered a multi-objective one, while the
addition of weights clearly indicates so.

The HC algorithm for the Bunch tool has also been
enhanced. During each iteration, several options are now
available for controlling the behavior of the hill-climbing
algorithm. First, the neighboring process may use the first
partition that it discovers with a larger MQ as the basis for
the next iteration. Second, the neighboring process examines
all neighboring partitions and selects the partition with the
largest MQ as the basis for the next iteration. Third, the
neighboring process ensures that it examines a minimum
number of neighboring partitions during each iteration. For
this, a threshold n is used to calculate the minimum number
of neighbors that must be considered during each iteration
of the process. Experience has shown that examining many
neighbors during each iteration, so that n > 75%, increases
the time the algorithm needs to converge to a solution. This
is quite intuitive, as each examination increases the run
time of the algorithm, and it is not likely that simply by
examining several neighbors the algorithm would suddenly
find a steeper climb (i.e., converge faster).

It is observed that as n increases so does the overall
runtime and the number of MQ evaluations. However,
altering n does not appear to have an observable impact
on the overall quality of the clustering results. A simulated
annealing algorithm is also made for comparison. Although
the simulated annealing implementation does not improve
the MQ, it does appear to help reduce the total runtime
needed to cluster each of the systems in this case study.

Mitchell and Mancoridis [69,70] continue their work by
proposing an evaluation technique for clustering based on
the search landscape of the graph being clustered. By gaining
insight into the search landscape, the quality of a typical
clustering result can be determined. The Bunch software
clustering system is examined. Authors model the search
landscape of each system undergoing clustering, and then
analyze how Bunch produces results within this landscape in
order to understand how Bunch consistently produces similar
results. Studying the search landscape of any problem is
very beneficial when attempting to understand why certain
changes to, e.g., the fitness function or the operators, have
the kind of effect they have on the results.

The search landscape is modeled using a series of
views and examined from two different perspectives. The
first perspective examines the structural aspects of the
search landscape, and the second perspective focuses on the
similarity aspects of the landscape. The structural search
landscape highlights similarities and differences from a
collection of clustering results by identifying trends in the
structure of graph partitions. The similarity search landscape
focuses on modeling the extent of similarity across all of the
clustering results.

The results produced by Bunch appear to have many
consistent properties. By examining views that compare the
cluster counts to the MQ values, it can be noticed that
Bunch tends to converge to one or two “basins of attraction”
for all of the systems studied. Also, for the real software
systems, these attraction areas appear to be tightly paced.
An interesting observation can be made when examining
the random system with a higher edge density: although
these systems converged to a consistent MQ, the number
of clusters varied significantly over all of the clustering
runs. The percentage of intra-edges in the clustering results
indicates that Bunch produces consistent solutions that have
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a relatively large percentage of intra-edges. Also, the intra-
edge percentage increases as theMQ values increase. It seems
that selecting a random partition with a high intra-edge
percentage is highly unlikely. Another observation is that
Bunch generally improves the MQ of real software systems
much more than that of random systems with a high edge
density. The number of clusters produced compared with the
number of clusters in the random starting point indicates
that the random starting points appear to have a uniform
distribution with respect to the number of clusters. The view
shows that Bunch always converges to a “basin of attraction”
regardless of the number of clusters in the random starting
point.

When examining the structural views collectively, the
degree of commonality between the landscapes for the
systems in the case study is quite similar. Since the results
converge to similar MQ values, Mitchell and Mancoridis
speculate that the search space contains a large number of
isomorphic configurations that produce similar MQ values.
Once Bunch encounters one of these areas, its search
algorithms cannot find a way to transform the current
partition into a new partition with higher MQ. The main
observation is that the results produced by Bunch are stable.
However, the true meaning of the result is that the Bunch
actually gets stuck to a local optimum, and cannot find
a way to escape that local optimum. This is naturally
the problem for nearly all search algorithms: a true global
optimum is not even expected to be found. Doing this kind of
fitness landscape study should, however, aid in designing the
algorithm so that it would have a better chance of escaping
the local optimum, as the fitness landscape reveals what
drives the algorithm to the particular basins of attractions
that it chooses.

In order to investigate the search landscape further,
Mitchell and Mancoridis measure the degree of similarity
of the placement of nodes into clusters across all of the
clustering runs to see if there are any differences between
random graphs and real software systems. Bunch creates a
subsystem hierarchy, where the lower levels contain detailed
clusters, and higher levels contain clusters of clusters. Results
from similarity measures indicate that the results for real
software systems have more in common than the results
for random systems. Results with similarity measures also
support the isomorphic “basin of attraction” conjecture
proposed.

Mitchell et al. [71] have developed a two step process for
reverse engineering the software architecture of a system
directly from its source code. The first step involves clustering
the modules from the source code into abstract structures
called subsystems. Bunch is used to accomplish this. The
second step involves reverse engineering the subsystem-level
relations using a formal (and visual) architectural constraint
language. Using the reverse engineered subsystem hierarchy
as input, a second tool, ARIS, is used to enable software
developers to specify the rules and relations that govern how
modules and subsystems can relate to each other. This again
gives the user the possibility to use his/her own expertise as
a basis for the fitness function, so it is not based on metrics.

ARIS takes a clustered MDG as input and attempts to
find the missing style relations. The goal is to induce a set
of style relations that will make all of the use relations
well-formed. A relation is well-formed if it does not violate
any permission rule described by the style; this is called
the edge repair problem. The relative quality of a proposed
solution is evaluated by an objective function. The objective
function that is designed into the ARIS system measures the
well-formedness of a configuration in terms of the number
of well-formed and ill-formed relations it contains. The
quality measurement Q(C) for configuration C gives a high
quality score to configurations with a large number of well-
formed use relations and a low quality score to configurations
with a large number of ill-formed style relations or large
visibility. Here, as in many other cases where some external
expertise is added, the actual fitness function seems simple
(only calculating sums and divisions), but much work is
first needed by the user to define the input variables, here
rules, for the fitness function. Again, it raises the question:
what kind of automation is expected from a tool based on
search algorithms? Is it good enough that the algorithm only
performs a small task and expects a lot of input, or should the
algorithm be better defined so that it actually diminishes the
work load of the software designer instead of increasing it?

Two search algorithms have been implemented to maxi-
mize the objective function: HC and edge removal. The HC
algorithm starts by generating a random configuration. Incre-
mental improvement is achieved by evaluating the quality of
neighboring configurations. A neighboring configuration Cn is
one that can be obtained by a small modification to the cur-
rent configuration C. The search process iterates as long as a
new Cn can be found such that Q(Cn) > Q(C).

The edge removal algorithm is based on the assumption
that as long as there exists at least one solution to the
edge repair problem for a system with respect to a style
specification, the configuration that contains every possible
reparable relation will be one of the solutions. Using this
assumption, the edge removal algorithm starts by generating
the fully reparable configuration for a given style definition
and system structure graph. It then removes relations,
one at a time, until no more relations can be removed
without making the configuration ill-formed. A case study is
performed, where the results seem promising as they give
intuition to the nature of the system. This may be beneficial
for novice designers, who do not have very much knowledge
of the system, but it should be assumed that the developers
who have to define the rules that the tool is based on already
have a mature idea of the system in order to be able to define
those rules.

Mahdavi et al. [72,73] show that results from a set of
multiple hill climbs can be combined to locate good “building
blocks” for subsequent searches. Building blocks are formed
by identifying the common features in a selection of best
hill climbs. This process reduces the search space, while
simultaneously ‘hard wiring’ parts of the solution. Mahdavi
et al. also investigate the relationship between the improved
results and the system size.

An initial set of hill climbs is performed, and from these
a set of best hill climbs is identified according to some
“cut off” threshold. Using these selected best hill climbs,
the common features of each solution are identified. These
common features form building blocks for a subsequent hill
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climb. A building block contains one or more modules fixed to
be in a particular cluster, if and only if all the selected initial
hill climbs agree that thesemodules were to be located within
the same cluster. Since all the selected hill climbs agree on
these choices, it is likely that good solutions will also contain
these choices.

The implementation uses parallel computing techniques
to simultaneously execute an initial set of hill climbs. From
these climbs the authors experiment with various cut off
points ranging from selecting the best 10% of hill climbs to the
best 100% in steps of 10%. The building blocks are fixed and a
new set of hill climbs are performed using the reduced search
space. The principal research question is whether or not
the identification of building blocks improves the subsequent
search.

A variety of experimental subjects are used. Two types of
MDGs are used: the first type contains non-weighted edges,
the second type has weighted edges. The MQ values are
gathered after the initial and the final climbs, and compared
for difference. Statistical tests provide some evidence towards
the premise that the improvement in MQ values is less likely
to be a random occurrence due to the nature of the hill climb
algorithm. The improvement is observed for MDGs with and
without weighted edges and for all size MDGs.

Larger MDGs show more substantial improvement when
the best initial fitness is compared with the best final
fitness values. One reason for observing a more substantial
improvement in larger MDGs may be attributed to the nature
of the MQ fitness measure. To overcome the limitation that
MQ is not normalized, the percentage MQ improvement
of the final runs over the initial runs is measured. These
statistical tests show no significant correlation between size
and improvement in fitness for both weighted and non-
weighted MDGs.

The increase in fitness, regardless of the number of nodes
or edges, tends to be more apparent as the building blocks
are created from a smaller selection of individuals. This may
signify some degree of importance for the selection process.

Results indicate that the subsequent search is narrowed
to focus on better solutions, that better clustering is obtained
and that the results tend to improve when the selection cutoff
is higher. These initial results suggest that the multiple hill
climbing technique is potentially a good way of identifying
building blocks. The authors also found that although there
was some correlation between system size and various
measures of the improvement achieved with multiple hill
climbing, none of these correlations is statistically significant.
These results would provide an interesting starting point to a
study where the building blocks achieved with multiple hill
climbs could be used to initialize the first population given to
a genetic algorithm.

Harman et al. [74] experiment with fitness functions de-
rived from measures of module granularity, cohesion and
coupling for software modularization. They present a new en-
coding and crossover operator and report initial results based
on simple component topology. The new representation al-
lows only one representation per modularization and the new
crossover operator attempts to preserve building blocks [79].

Harman et al. [74] present the problem of finding
a representation for modularization so that “non-unique
representations of modularizations artificially increase the
search space size, inhibiting search-based approaches to the
problem”. In their approach, modules are numbered, and
elements allocated to module numbers using a simple look-
up table. Component number one is always allocated to
module number one. All components in the same module
as component number one are also allocated to module
number one. Next, the lowest numbered component, n, not
in module one, is allocated to module number two. All
components into the same module as component number n
are allocated tomodule number two. This process is repeated,
choosing each lowest number unallocated component as the
defining element for the module. This representation must
be renormalized when components move as the result of
mutation and crossover. The chosen method clearly saves
resources and clarifies the search space, as there are no
alternative representations for the same solution.

Harman et al.’s crossover operator attempts to preserve
partial module allocations from parents to children in
an attempt to promote good building blocks. Rather than
selecting an arbitrary point of crossover within the two
parents, a random parent is selected and one of its arbitrarily
chosen modules is copied to the child. The allocated
components are removed from both parents. This removal
prevents duplication of components in the child when further
modules are copied from one or the other parent to the
child. The process of selecting a module from a parent and
copying to the child is repeated and the copied components
are removed from both parents until the child contains a
complete allocation. This approach ensures that at least one
module from the parents is preserved (in entirety) in the child
and that parts of other modules will also be preserved. As
it is not clarified how the modules are represented in the
chromosome, it is not, however, exactly clear how risky it
would be to perform traditional crossovers with the selected
encoding. In fact, it seems perfectly possible to make such
an encoding that supports building blocks even with the
traditional operators.

The fitness function maximizes cohesion and minimizes
coupling. In order to capture the additional requirement
that the produced modularization has a granularity (number
of modules) similar enough to the initial granularity, a
polynomial punishment factor is introduced into the fitness
function to reward solutions as they approach the target
value for granularity of the modularization. The granularity
is normalized to a percentage. The three fitness components
are given equal weights.

A standard one-point crossover is also implemented for
comparison. The GA with the novel crossover outperforms
the one with the traditional one, although it quickly becomes
trapped in local optima. This would suggest that the attempt
to reserve building blocks might actually be “too strong”,
as the GA does not have any method to escape the local
optimum. Results also show that the novel GA is more
sensitive to inappropriate choices of target granularity than
any other approach.

Harman et al. [75] present empirical results which
compare the robustness of two fitness functions used for
software module clustering: MQ is used exclusively for
module clustering and EVM [80] has previously been applied
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to time series and gene expression data. The clustering
algorithm is based upon the Bunch algorithm [66] and
redefined. Three types of MDGs were studied: real program
MDGs, random MDGs and perfect MDGs.

The primary findings are that searches guided by both
fitness functions degrade smoothly as noise increases, but
EVM would appear to be the more robust fitness function
for real systems. Searches guided by MQ behave poorly for
perfect and near-perfect module dependency graphs (MDGs).
The results of perfect graphs (MDGs) show however, that
EVM produces clusterings which are perfect and that the
clusterings produced stay very close to the perfect results as
more noise is introduced. This is true both for the comparison
against the perfect clustering and the initial clustering. By
comparison, the MQ fitness function performs much worse
with perfect MDGs. Comparing results for random and real
MDGs, both fitness functions are fairly robust. Further results
show that searches guided by MQ do not produce the perfect
clustering for a perfect MDG but a clustering with higher MQ
values. This very strongly suggests that fitnessmetrics indeed
do not actually match what is truly desired of the solution.

These results highlight a possible weakness in MQ as a
guiding fitness function for modularization searches: it may
be possible to improve upon it by addressing that issue. The
results show that EVM performs consistently better than MQ
in the presence of noise for both perfect and real MDGs
but worse for random MDGs. The results for both fitness
functions are better for perfect or real graphs than random
graphs, as expected. As the real programs increase in size,
there appears to be a decrease in the difference between the
performance of searches guided by EVM and those guided by
MQ. The results show that both metrics are relatively robust
in the presence of noise, with EVM being the more robust of
the two.

This study is a significant indicator that fitness metrics
should never be blindly trusted. The problem here is
particularly curious, as the developers of the MQ metric
showed the results (achieved with the aid of this metric)
to actual software designers, who were reported to give
positive feedback. Thus, it could be assumed that the MQ
metric was based on real feedback from human designers.
However, it still failed in comparison to another metric, and
could not produce optimal results. These results suggest
that the quality requirements for software design problems
are extremely difficult to define, which in turn makes the
definition of a proper fitness function a demanding task.

Antoniol et al. [76] present an approach to re-factoring
libraries with the aim of reducing the memory requirements
of executables. The approach is organized in two steps:
the first step defines an initial solution based on clustering
methods, while the second step refines the initial solution
with a GA. Antoniol et al. [76] propose a GA approach
that considers the initial clusters as the starting population,
adopts a knowledge-based mutation function and has a
multi-objective fitness function. Tests on medium and large
open source software systems have effectively produced
smaller, loosely coupled libraries, and reduced the memory
requirement for each application.

Given a system composed by applications and libraries,
the idea is to re-factor the biggest libraries, splitting them
into two or more smaller clusters, so that each cluster
contains symbols used by a common subset of applications
(i.e., Antoniol et al. made the assumption that symbols often
used together should be contained in the same library). Given
that, for each library to be re-factored, a Boolean matrix MD is
composed.

Antoniol et al. [76] have chosen to apply the Silhouette
statistic [81] to compute the optimal number of clusters for
each MD matrix. Once the number of clusters is known
for each “old library”, agglomerative-nesting clustering was
performed on each MD matrix. This allows the identification
of a certain number of clusters. These clusters are the new
candidate libraries. When given a set of all objects contained
in the candidate libraries, a dependency graph is built, and
the removal of inter-library dependencies can therefore be
brought back to a graph partitioning problem.

The encoding is the achieved bit-matrix, where for each
matrix point [x, y] has value 1 if the object y is used by the
application or library defined by x, and 0 otherwise. The GA
is initialized with the encoding of the set of libraries obtained
in the previous step. This encoding method is well-chosen,
as there is no need to make any unnecessary transformation
between two encodings, and the genetic operations can be
easily defined for a matrix.

The mutation operator works in two modes: normally, a
random column is taken and two random rows are swapped.
When cloning an object, a random position in the matrix is
taken; if it is zero and the library is dependent on it, then the
mutation operator clones the object into the current library.
Of course the cloning of an object increases both linking
and size factors, therefore it should be minimized. This GA
activates the cloning only for the final part of the evolution
(after 66%) of generations in their case studies. This strategy
favors dependency minimization by moving objects between
libraries; then, at the end, remaining dependencies are
attempted to be removed by cloning objects. The crossover is
a one-point crossover: given two matrices, both are cut at the
same random column, and the two portions are exchanged.
Population size and number of generations were chosen by
an iterative procedure.

The fitness function attempts to balance three factors: the
number of inter-library dependencies at a given generation,
the total number of objects linked to each application
that should be as small as possible, and the size of the
new libraries. A unitary weight is set to the first factor,
and two weights are selected using an iterative trial-and-
error procedure, adjusting them each time until the factors
obtained at the final step are satisfactory. The partitioning
ratio is also calculated. Case study results show that the GA
manages to considerably reduce the number of dependencies,
while the partition ratio stays nearly the same or slightly
reduced. The proposed re-factoring process allows one to
obtain the smallest, loosely coupled libraries from the original
biggest ones.

The selected fitness function would benefit from more
enhanced techniques to deal with multi-objectivity. Also, in
multi-objective problems there usually are cases when one
goal may need to be emphasized at the cost of another goal.
In this case there are no such tests, as the weights are simply
optimized for a general case. It would be interesting to see
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what kinds of results are achieved, if, e.g., the size of libraries
is shown significantly more appreciation than the number
of inter-library dependencies. If these cases would produce
interesting modularizations, then a Pareto optimal fitness
function would be good to experiment with.

Di Penta et al. [77] build on these results and present
a software renovation framework (SRF), a toolkit that
covers several aspects of software renovation, such as
removing unused objects and code clones, and refactoring
existing libraries into smaller ones. Refactoring has been
implemented in the SRF using a hybrid approach based on
hierarchical clustering, GAs and hill climbing, also taking into
account the developer’s feedback. Most of the SRF activities
deal with analyzing dependencies among software artifacts,
which can be represented with a dependency graph.

Software systems are represented by a system graph SG,
which contains the sets of all object modules, all software
system libraries, all software system applications and the
set of oriented edges representing dependencies between
objects. The refactoring framework consists of several steps:
1. software systems applications, libraries and dependencies
among them are identified, 2. unused functions and objects
are identified, removed or factored out, 3. duplicated or
cloned objects are identified and possibly factored out, 4.
circular dependencies among libraries are removed, or at
least reduced, 5. large libraries are refactored into smaller
ones and, if possible, transformed into dynamic libraries,
and 6. objects which are used by multiple applications, but
which are not yet organized into libraries, are grouped into
new libraries. Step five, splitting existing, large libraries into
smaller clusters of objects, is now studied more closely.

The refactoring of libraries is done in the SRF in the
following steps: 1. determine the optimal number of clusters
and an initial solution, 2. determine the new candidate
libraries using a GA, 3. ask developers’ feedback. The
effectiveness of the refactoring process is evaluated by
a quality measure of the new library organization, the
Partitioning Ratio, which should be minimized.

The genome representation and mutations are as
previously presented by Antoniol et al. [76]. Now, however, the
developers may also give a Lock Matrix when they strongly
believe that an object should belong to a certain cluster. The
mutation operator does not perform any action that would
bring a genome in an inconsistent state with respect to the
Lock Matrix. The crossover is the one point crossover, which
exchanges the content of two genome matrices around a
random column.

The fitness function F should balance four factors: the
number of inter-library dependencies, the total number of
objects linked to each application, the size of new libraries
and the feedback by developers. Thus, developer feedback is
brought to the fitness function as an additional element to
those already presented by Antoniol et al. [76]. The fitness
function F is defined to consist of the Dependency factor DF,
the Partitioning ratio PR, the Standard deviation factor SD
and the Feedback factor FF. The FF is stored in a bit-matrix
FM, which has the same structure of the genome matrix
and which incorporates those changes to the libraries that
developers suggested. Each factor of the fitness function is
given a separate real, positive weight. DF is given weight 1, as
it has maximum influence.

Di Penta et al. [77] report that the presented GA suffers
from slow convergence. To improve its performance, it has
been hybridized with HC techniques. In their experiment,
applying HC only to the last generation significantly improves
neither the performance nor the results, but applying HC
to the best individuals of each generation makes the GA
converge significantly faster. In the case study, the GA reduces
dependencies of one library to about 5% of the original
amount while keeping the PR almost constant. For two other
libraries, a significant reduction of inter-library dependencies
is obtained while slightly reducing PR in one and increasing
the PR in the other. The addition of HC into GA does
not improve the fitness values, since GA also converges to
similar results, when it is executed on an increased number
of generations and increased population size. Noticeably,
performing HC on the best individuals of each generation
produces a drastic reduction in convergence times. These
results show that hybrid algorithms are a strong candidate
when attempting to improve the results of search-based
approaches.

Huynh and Cai [78] present an automated approach to
check the conformance of source code modularity to the
designed modularity. Design structure matrices (DSMs) are
used as a uniform representation and they are automatically
clustered and checked for conformance by a GA. A design
DSM and source code DSM work at different levels of
abstraction. A design DSM usually needs a higher level of
abstraction to obtain the full picture of the system, while
a source code DSM usually uses classes or other program
constructs as variables labeling the rows and columns of the
matrix. Given two DSMs, one at the design level and the
other at the source code level, the GA takes one DSM as
the optimal goal and searches for a best clustering method
in the other DSM that maximizes the level of isomorphism
between the two DSMs. One of the two DSMs is defined as the
sample graph, and the other one as a model graph, and finally
a conformance criterion is defined. This approach appears
beneficial especially in the area of program comprehension
and validity checking (as well as purely increasing program
quality). Performing conformance checks on a large test set
of programs could even produce general ideas on where the
programs generally differ from the initial design.

To determine the conformance of the source code
modularity to the high level design modularity the variables
of the sample graph are clustered and thus a new graph is
formed, which is called the conformance graph. Each vertex
of the conformance graph is associated with a cluster of
variables from the sample graph. The more conforming the
source code modularity is to the design modularity, the closer
to isomorphic the conformance graph and the model graph
will be. In computing the level of isomorphism between two
graphs, the graph edit distance is computed between the
graphs.

With the given representation of the problem, a GA is
formulated with which the goal is to find the clustering of
sample graph vertices such that the conformance graph of
these clustered nodes is isomorphic, or almost isomorphic,
to the model graph. This is a projection. The algorithm
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first creates an initial population of random projections. The
fitness function is defined as f = −D − P − λ − ϕ, where D is
the graph edit distance, P is a penalty, and λ and ϕ provide
finer differentiation between mappings with the same graph
edit distance. The last two functions allow the configuring
of a sample graph so that it can be clustered in different
ways, each corresponding to how the design targeted DSM
is clustered. The dissimilarity function λ is used to calculate
how separated components from each directory grouping are.
If a sample graph node attribute matches a name pattern
specified by the user but is not correctly mapped to the model
graph vertex then the fitness of the projection is reduced
through ϕ. Interestingly, the fitness function only measures
negative aspects, quite differently to other fitness functions in
modularization, which usually attempt to maximize at least
some quality value.

The GA is run on two DSM models of an example
software. The experiments consistently converge to produce
the desired result, although the tool sometimes produces a
result that is not the desired view of the source code, even
though the graphs are isomorphic, i.e., the result conforms
with themodel. The experiment shows the feasibility of using
a GA to automatically cluster DSM variables and correctly
identify links between source code components and high
level design components. The results support the hypothesis
that it is possible to check the conformance between source
code structure and design structure automatically, and this
approach has the potential to be scaled for use in large
software systems.

4.3. Summarizing remarks

The majority of the studies relating to search-based software
clustering have been done with the Bunch tool, which
has seen many improvements. This is very promising for
other approaches to search-based design as well, as the
tool has been accepted for use in the software engineering
community. However, there are still many open questions
in the area of software modularization. What is a proper
encoding to represent a modularization problem? This
question is especially highlighted by the study made by
Harman et al. [74], as they point out the massive amount
of redundant information in many encodings. What is
a proper fitness metric for modularizations? Again, the
study comparing the very popular MQ metric with another
modularization metric (EVM), showed that while the metric
is robust (as already validated by its developers), it can be
outperformed. How can metrics be relied on then? Di Penta
et al. [77] have attempted to enhance the performance of
their tool by giving the developers a chance to formalize their
knowledge on quality. However, defining quality as a matrix
form cannot be very user-friendly.

As stated, the research on software clustering revolves
quite strongly around Bunch or the MQ metric. The main
exceptions to this are the studies made by Antoniol et al., [76]
and Di Penta et al. [77] who use a matrix to encode the
modularization and use matrix-related or metrics instead
of the MQ, and Hyunh and Cai [78], who use a matrix and
then turn it into a graph, and use graph related metrics to
evaluate the quality of a proposed solution. Especially the
approach by Hyunh and Cai [78] is significantly different
to Bunch, as two modularizations are ultimately compared,
while Bunch attempts to ameliorate a poor modularization
without a certain goal that it is aiming towards. Thus,
there is much room in search-based software clustering
for alternative methods, as competition always makes each
different approach strive towards even better solutions.

5. Software refactoring

5.1. Background

Software evolution often results in “corruption” in software
design, as quality is overlooked while new features are
added, or the old software should be modified in order
to ensure the highest possible quality. At the same time
resources are limited. Refactoring and in particular the
miniaturization of libraries and applications are therefore
necessary. Program transformation is useful in a number
of applications including program comprehension, reverse
engineering and compiler optimization. A transformation
algorithm defines a sequence of transformation steps to apply
to a given program and it is described as changing one
program into another. It involves altering the program syntax
while leaving its semantics unchanged. In object-oriented
design, one of the biggest challenges when optimizing class
structures using random refactorings is to ensure behavior
preservation. One has to take special care of the pre- and
post-conditions of the refactorings.

There are three problems with treating software refactor-
ing as a search-based problem. First, how to determine which
are the useful metrics for a given system. Second, finding how
best to combine multiple metrics. Third, is that while each
run of the search generates a single sequence of refactorings,
the user is given no guidance as to which sequence may be
best for their given system, beyond their relative fitness val-
ues.

In practice, refactoring (object-oriented software) can
begin with simple restructurings of the class structure and
being very close to software clustering, and then move on
to a more detailed level of moving elements from one class
to another. The lowest level of refactoring already deals
with code, as procedures are sliced to eliminate redundancy
or transformed in order to simplify the program or make
it more efficient. Section 5.2 presents approaches where
search-based techniques have been used to automatically
achieve refactorings, as well as a study on a new method for
evaluating the fitness of a refactored software. Summarizing
remarks are then presented in Section 5.3, and the
fundamentals of each study are collected in Table 5.

5.2. Approaches

Seng et al. [82] describe a methodology that computes a
subsystem decomposition that can be used as a basis for
maintenance tasks by optimizing metrics and heuristics
of good subsystem design. GA is used for automatic
decomposition. If a desired architecture is given, e.g., a
layered architecture, and there are several violations, this
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approach attempts to determine another decomposition that
complies with the given architecture by moving classes
around. Instead of working directly on the source code, it is
first transformed into an abstract representation, which is
suitable for a common object-oriented language.

In the GA, several potential solutions, i.e., subsystem
decompositions, form a population. The initial population
can be created using different initialization strategies. Before
the algorithm starts, the user can customize the fitness
function by selecting several metrics or heuristics as well
as by changing thresholds. The model is a directed graph.
The nodes of the graph can either represent subsystems
or classes. Edges between subsystems or subsystems
and classes denote containment relations, whereas edges
between classes represent dependencies between classes.
The approach is based on the Grouping GA [96], which
is particularly well suited for finding groups in data. For
chromosome encoding, subsystem candidates are associated
with genes and the power set of classes is used as the
alphabet for genes. Consequently, a gene is associated with
a set of classes, i.e., an element of the power set. This
representation allows a one-to-one mapping of geno- and
phenotype to avoid redundant coding.

An adapted crossover operator and three kinds of
mutation are used. The operators are adapted so that they
are non-destructive and preserve a complete subsystem
candidate as far as possible. The split&join mutation either
divides one subsystem into two, or vice versa. The operator
splits a subsystem candidate in such a way that the
separation into two subsystem candidates occurs at a
loosely associated point in the dependency graph. Elimination
mutation deletes a subsystem candidate and distributes its
classes to other subsystem candidates, based on association
weights. Adoption mutation tries to find a new subsystem
candidate for an orphan, i.e., a subsystem candidate
containing only a single class. This operator moves the
orphan to the subsystem candidate that has the highest
connectivity to the orphan. The chosen mutations support
reversibility, i.e., a GA can always backtrack its steps. The
split&join mutation is obvious in this case, but also the
adoption mutation can be seen as a reverse operation for the
elimination, if a new subsystem can be created dynamically.

Initial population supports the building block theorem.
Randomly selected connected components of the depen-
dency graph are taken for half the population and highly fit
ones for the rest. The crossover operator forms two children
from two parents. After choosing the parents, the operator
selects a sequence of subsystem candidates in both parents,
and mutually integrates them as new subsystem candidates
in the other parent, and vice versa, thus forming two new
children consisting of both old and new subsystem candi-
dates. Old subsystem candidates which now contain dupli-
cated classes are deleted, and their non-duplicated classes
are collected and distributed over the remaining subsystem
candidates. The fitness function is defined as f = w1∗ cohe-
sion +w2∗ coupling +w3 ∗ complexity+w4 ∗ cycles+w5∗ bot-
tlenecks. Again the fitness function is based on the two most
used metrics, cohesion and coupling, but introduces some
new interesting concepts from OO design, such as cycles and
bottlenecks, which are more defined than the usual general
metrics.

For evaluation, a tool prototype has been implemented.
Evaluation on the clustering of different software systems
has revealed that results on roulette wheel selection are
only slightly better than those of tournament selection. The
adapted operators allow using a relatively small population
size and few generations. Results from a Java case study
show that the approach works well. Tests on optimizing
subsets of the fitness function show that only if all criteria
are optimized, are the authors able to achieve a suitable
compromise with very good complexity, bottleneck and
cyclomatic values and good values for coupling and cohesion.
Again, as the work here is very similar to optimal software
clustering, it can be questioned whether the metrics used
in those studies, that mainly calculate modified values for
coupling and cohesion, are actually sufficient.

Seng et al. [83] have continued their work by developing
a search-based approach that suggests a list of refactorings.
The approach uses an evolutionary algorithm and simulated
refactorings that do not change the system’s externally visible
behavior. The source code is transformed into a suitable
model — the phenotype. The genotype consists of the already
executed refactorings. Model elements are differentiated
according to the role they play in the system’s design
before trying to improve the structure. Not all elements can
be treated equally, because the design patterns sometimes
deliberately violate existing design heuristics. The approach
is restricted to those elements that respect general design
guidelines. Elements that deliberately do not respect them are
left untouched in order to preserve the developers conscious
design decisions. The notion of applying something that
is known to somehow worsen the quality of a system is
peculiar. In a way this is natural, as there are always trade-offs
when trying to optimize conflicting quality values, but each
decision should have a positive affect from some perspective.
Hence, it is odd that no quality evaluator has been found
that would prevent the elimination of these “deliberately
violating” patterns.

The initial population is created by copying the model
extracted from the source code a selected number of times.
Selection for a new generation is made with tournament
selection strategy. The optimization stops after a predefined
number of evolution steps. The source codemodel is designed
to accommodate several object-oriented languages. The basic
model elements are classes, methods, attributes, parameters
and local variables. In addition, special elements called access
chains are needed. An access chain models the accesses
inside a method body, because it is needed to adapt these
references during the optimization. If a method is moved,
the call sites need to be changed. An access chain therefore
consists of a list of accesses. Access chains are hierarchical,
because each method argument at a call site is modeled as
a separate access chain that could possibly contain further
access chains.

The model allows one to simulate most of the important
refactorings for changing the class structure of a system,
which are extract class, inline class, move attribute, push
down attribute, pull up attribute, push down method, pull
up method, extract superclass and collapse class hierarchy.
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The genotype consists of an ordered list of executed model
refactorings including necessary parameters. The phenotype
is created by applying these model refactorings in the order
that is given by the genotype to the initial source code model.
Therefore the order of the model refactorings is important,
since one model refactoring might create the necessary
preconditions for some of the following ones.

Mutation extends the current genome by an additional
model refactoring; the length of the genome is unlimited.
Crossover combines two genomes by selecting the first
random n model refactorings from parent one and adding
the model refactorings of parent two to the genome. The
refactorings from parent one are definitely safe, but not
all model refactorings of parent two might be applicable.
Therefore, the model refactorings are applied to the initial
source code model. If a refactoring that cannot be executed
is encountered due to unsatisfied preconditions, it is dropped.
Seng et al. argue that the advantage of this crossover operator
is that it guarantees that the externally visible behavior is
not changed, while the drawback is that it takes some time
to perform the crossover since the refactorings need to be
simulated again. This approach is quite similar to that of
Amoui et al. [32], discussed in Section 3, who approach the
problem from a slightly higher level by using architectural
design patterns as refactoring, but similarly search for the
optimal transformation sequence.

Fitness is a weighted sum of several metric values and
is designed to be maximized. The properties that should
be captured are coupling, cohesion, complexity and stabil-
ity. For coupling and cohesion, the metrics from Briand’s [97]
catalogue are used. For complexity, weighted methods per
class (WMC) and number of methods (NOM) are used.
The formula for stability is adapted from the recondi-
tioning of subsystem structures. Fitness =

∑
(weightm ∗

(M(S))–Minit(S))/Mmax(S)–Minit(S). Before optimizing the struc-
ture the model elements are classified according to the roles
they play in the systems design, e.g., whether they are a part
of a design pattern.

Tests show that after approximately 2000 generations in
a case study the fitness value does not significantly change
anymore. The approach is able to find refactorings that
improve the fitness value. Actually, this is to be expected,
as it would be rather surprising if it did not improve the
fitness value, as then there would be something significantly
wrong with the GA. Thus, more importantly, in order to judge
whether the refactorings make sense, they are manually
inspected by the authors, and from their perspective, all
proposed refactorings can be justified. As a second goal, the
authors modify the original system by selecting 10 random
methods and misplacing them. The approach successfully
moves back each method at least once.

O’Keeffe and Ó Cinnéide [84] have developed a prototype
software engineering tool capable of improving a design with
respect to a conflicting set of goals. A set of metrics is used for
evaluating the design quality. As the prioritization of different
goals is determined by weights associated with each metric,
a method is also described of assigning coherent weights to a
set of metrics based on object-oriented design heuristics.

The presented tool, Dearthóir, is a prototype for design
improvement, as it restructures a class hierarchy and moves
methods within it in order to minimize method rejection,
eliminate code duplication and ensure superclasses are
abstract when appropriate. The refactorings are behavior-
preserving transformations in Java code. The refactorings
employed are limited to those that have an effect on the
positioning of methods within an inheritance hierarchy.
Contrary to most other approaches, this tool uses simulated
annealing to find close-to-optimum solutions to this
combinatorial optimization problem. In order for the SA
search to move freely through the search space every change
to the design must be reversible. To ensure this, pairs of
refactorings have been chosen that complement each other.
The refactoring pairs are: 1. move a method up or down in
the class hierarchy, 2. extract (from abstract class) or collapse
a subclass, 3. make a class abstract or concrete, and 4. change
the superclass link of a class.

The following method is intended to filter out heuristics
that cannot easily be transformed into valid metrics
because they are vague, unsuitable for the programming
language in use, or dependent on semantics. Firstly, for
each heuristic: define the property to be maximized or
minimized in the heuristic, determine whether the property
can be accurately measured, and note whether the metrics
should be maximized or minimized. Secondly, identify
the dependencies between the metrics. Thirdly, establish
precedence between dependent metrics and a threshold
where necessary: prioritize heuristics. Fourthly, check that
the graph of precedence between metrics is acyclic. Finally,
weights should be assigned to each of the metrics according
to the precedences and threshold.

The selected metrics are: 1. minimize rejected methods
(RM) (number of inherited but unused methods), 2. minimize
unused methods (UM), 3. minimize featureless classes (FC),
4. minimize duplicate methods (DM) (number of methods
duplicated within an inheritance hierarchy), 5. maximize
abstract superclasses (AS). Metrics should be appreciated so
that DM > RM > FC > AS, and UM > FC. Note that the
used metrics are much more specific to the needs of object-
oriented design than the general structural metrics that are
commonly used. Also, the heuristic of defining the weights
(and the metrics) would be very beneficial for many studies,
as assigning balanced weights can be a very complex task,
and the dependencies between different metrics and their
affect on the weights is rarely taken into account (at least so
that it would be mentioned in the studies).

Most of the dependencies in the graph do not require
thresholds. However, a duplicatemethod is avoided by pulling
the method up into its superclass, which could result in the
method being rejected by any number of classes. Therefore a
threshold value is established for this dependency. O’Keeffe
and Ó Cinnéide argue that it is more important to avoid code
duplication than any amount of method rejection; therefore
the threshold can be an arbitrarily high number.

A case study is conducted with a small inheritance
hierarchy. The case study shows that the metric values for
input and output either become better or stay the same. In
the input design several classes contain clumps of methods,
where as in the output design methods are spread quite
evenly between the various classes. This indicates that
responsibilities are being distributed more evenly among the
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classes, which means that components of the design are
more modular and therefore more likely to be reusable. This
in turn suggests that adherence to low-level heuristics can
lead to gains in terms of higher-level goals. Results indicate
that a balance between metrics has been achieved, as several
potentially conflicting design goals are accommodated.

O’Keeffe and Ó Cinnéide [85,86] have continued their
research by constructing a tool capable of refactoring object-
oriented programs to conform more closely to a given design
quality model, by formulating the task as a search problem
in the space of alternative designs. This tool, CODe-Imp,
can be configured to operate using various subsets of its
available automated refactorings, various search techniques,
and various evaluation functions based on combinations of
established metrics.

CODe-Imp uses a two-level representation; the actual
program to be refactored is given as source code and
represented as its Abstract Syntax Tree (AST), but a more
abstract model called the Java Program Model (JPM) is also
maintained, from which metric values are determined and
refactoring preconditions are checked. The change operator
is a transformation of the solution representation that
corresponds to a refactoring that can be carried out on the
source code.

The CODe-Imp calculates quality values according to the
fitness function and effects change in the current solution by
applying refactorings to the AST as required by a given search
technique. Output consists of the refactored input code as
well as a design improvement report including quality change
and metric information.

The refactoring configuration of the tool is constant
throughout the case studies and consists of the fol-
lowing fourteen refactorings. Push down/pull up field,
push down/pull up method, extract/collapse hierarchy, in-
crease/decrease field security, replace inheritance with dele-
gation/replace delegation with inheritance, increase/decrease
method security, made superclass abstract/concrete. During
the search process alternative designs are repeatedly gener-
ated by the application of a refactoring to the existing design,
evaluated for quality, and either accepted as the new current
design or rejected. As the current design changes, the num-
ber of points at which each refactoring can be applied will
also change. In order to see whether refactorings can bemade
without changing program behavior, a system of conservative
precondition checking is employed.

The used search techniques include first-ascent HC (HC1),
steepest-ascent HC (HC2), multiple-restart HC (MHC) and low-
temperature SA. For the SA, CODe-Imp employs the standard
geometric cooling schedule.

The evaluation functions are flexibility, reusability and
understandability of the QMOOD hierarchical design quality
model [87]. Each evaluation function in the model is based on
a weighted sum of quotients on the 11 metrics forming the
QMOOD (design size in class, number or hierarchies, average
number of ancestors, number of polymorphic methods, class
interface size, number of methods, data access metric, direct
class coupling, cohesion among methods of class, measure
of aggregation and measure of functional abstraction). Each
metric value for the refactored design is divided by the
corresponding value for the original design to give the
metric change quotient. A positive weight corresponds to
a metric that should be increased while a negative weight
corresponds to a metric that should be decreased. It should
be noted that while the complexity of the problem grew,
as the program representation became more intricate, the
number of refactorings (mutations) was more than doubled,
this reflected on the need for a significantlymore complicated
fitness function. The fitness function used in the previous
study only contained 5 metrics, while the current one
contains 11 metrics which are grouped into 3 different fitness
functions.

All techniques demonstrate strengths. HC1 consistently
produces quality improvements at a relatively low cost, HC2
produces the greatest mean quality improvements in two
of the six cases, MHC produces individual solutions of the
highest quality in two cases and SA produced the greatest
mean quality improvement in one case. Based on this it would
seem that the SA is actually inferior to the different hill
climbing approaches, as it only outperformed them in one
measure in one test case out of the six. Combining the results
of these different search algorithms would be interesting: is
it possible to produce such a hybrid that would preserve the
strengths from all algorithms?

Inspection of output code and analysis of solution
metrics provide some evidence in favor of the use of the
flexibility metric and even stronger evidence for using the
understandability function. The reusability in the present
form is not found suitable for maintenance because it
resulted in solutions including a large number of featureless
classes. As these kinds of classes are not generally accepted
in OO design (apart from having “technical classes”), one
might wonder whether some corrective function could be
used in order to prevent featureless classes from appearing
in the design. Simple pre-and post-conditions for mutations
might very well help dealing with the problem. The authors
conclude that both local search and simulated annealing are
effective in the context of search-based software refactoring.

O’Keeffe and Ó Cinnéide [88,98] have further continued
their work by implementing also a GA and a multiple
ascent HC (MAHC) to the CODe-Imp refactoring tool and
further testing the existing search techniques. The encoding,
crossover and mutation for the GA are similar to those
presented by Seng et al. [83], and the power of the tool has
been increased by adding a number of different refactorings
available for use in searching for a superior design.

The fitness function is an implementation of the
understandability function from Bansiya and Davis’s [87]
QMOOD hierarchical design quality model consisting of a
weighted sum of metric quotients between two designs. This
choice was clearly inspired by the earlier study, where two
other quality functions, flexibility and reusability, did not
perform as well in terms of actual quality enhancement. This
design quality evaluation function was previously found by
the authors to result in tangible improvements to object-
oriented program design in the context of search-based
refactoring.

Results for the SA support the recommendation of low
values for the cooling factor, since more computationally
expensive parameters do not yield greater quality function
gains.
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In summary, SA has several disadvantages: it is hard
to recommend a cooling schedule that will generally be
effective, results vary considerably across input programs
and the search is quite slow. No significant advantage in
terms of quality gain was observed that would make up
for these shortcomings. The GA has the advantage that
it is easy to establish a set of parameters that work well
in the general case, but the disadvantages are that it is
costly to run and varies greatly for different input programs.
Again, no significant advantage in terms of quality gain
was observed that would make up for these shortcomings.
Multiple-ascent HC stood out as the most efficient search
technique in this study: it produced high-quality results
across all the input programs, is relatively easy to recommend
parameters for and runs more quickly than any of the
other techniques examined. Steepest ascent HC produced
surprisingly high quality solutions, suggesting that the search
space is less complex than might be expected, but is slow
when considering its known inability to escape local optima.
Results show MAHC to outperform both SA and GA over a
set of four input programs. As the genetic algorithm is the
most commonly used search technique, these results should
stimulate more comparisons between different algorithms.
The search space for this problem was, after all, quite large,
when taking into account the high number of refactorings
that could be applied to a design. Thus, maybe the more
refined hill climbing techniques could be compared to the GA.

Quaum and Heckel [89] apply the Ant Colony Optimiza-
tion (ACO) [99] for software refactoring. The software is repre-
sented as a class diagram with methods and attributes, and
the refactoring task is considered as a graph transformation
problem, which makes it suitable for ACO. In order to per-
form ACO, five things need to be defined: 1. a set of compo-
nents C and the edges between them, 2. a set of states as
a sequence of components belonging to C, 3. a set of candi-
date solutions S, with a subset of feasible candidate solutions
according to given constraints, 4. a non-empty subset (of S)
of optimal solutions, and 5. an evaluation associated to each
candidate solution. Based on this, Quaum and Heckel define
a graph by associating the set of graph vertices to the set of
proposed transformations. Edges are associated with depen-
dencies. The pheromone and heuristic values are associated
with the graph edges and are determined by partial evalua-
tions associated with incomplete candidate solutions.

The goal is to find an optimal set of transformations. These
transformations are pre-determined based on the given
program (graph) and consider, e.g., moving methods and
alternating the class hierarchy. An ant begins with an empty
solution from the start vertex in the graph and then gradually
checks the available refactoring steps in order to construct
a candidate solution. Initially, any random component from
C is chosen and then the partial evaluation function will
guide the selection of the corresponding edge through the
pheromone values. The fitness value is calculated for each
feasible sequence of transformations after applying it on
the source graph model, the basis for the fitness being the
cost of the transformation and the quality of the result. The
approach is tested on a small example system.

This approach demonstrates the use of yet another
search technique, ACO, which is especially suitable for
graph problems. Other choices, however, raise questions
particularly on the generality of this approach. It is only
tested on a small system, and all the transformations are
pre-defined, and dependent on the particular system. How
can this approach be generalized to be applied to any
system without extensive work required to define all possible
transformations of that system, which is incredibly laborious,
if the system is large? Also, the details regarding fitness
calculations are not very clear.

Jiang et al. [90] apply a set of search algorithms to program
slicing in order to locate dependence structures. They attempt
to find the subsets from all possible sets of program slices
that reveal interesting dependence structures. A program is
divided into slices according to program points, which are
the nodes of a System Dependency Graph (SDG) [100]. In
order to formulate the problem as a search problem, it is
instantiated as a set cover problem. With increasing program
sizes a search-based approach is extremely suitable for this
type of problem.

A program is represented as a bit matrix, where rows
indicate program slices and columns indicate program points.
The value in point i, j, is 1 if the slice based on criterion i
contains the program point j, and 0 if not. A solution should
contain as many program points as possible but should have
minimum overlap, i.e., slices that contain the same program
points.

The fitness function is seen as a parameter to the overall
approach of search-based slicing, as choosing the fitness
function depends on the properties of the slice set and
what the user considers as “interesting” when searching
for dependencies. The fitness function is based on metrics
that calculate the Coverage and Overlap of the program.
Coverage measures how many program points out of all
possible points the program contains. Overlap measures
the number of program points within the intersection of a
slicing set. It can be divided in many ways, but Jiang et al.
only consider Average, which evaluates the percentage of
overlapping program points based on pair-wise calculations,
and Maximum, which evaluates the maximum number of
overlapping points based on pair-wise calculations. Both
Coverage and Overlap are given weights and then combined
for the overall fitness function. Although it is said that the
user can define the fitness function based on his/her own
desires of what is “interesting”, it is left unclear whether the
definitions must rely on the presented metrics or whether the
user can build any kind of fitness function. Also, it is not clear
how the properties of the slice set affect the choice of fitness
function.

Jiang et al. [90] implement HC, GA, a Greedy Algo-
rithm [101] and a Random Search algorithm. The GA uses a
multi-point crossover and a standard bit change as a muta-
tion. Elitism and rank selection are used as selection meth-
ods. For HC, a multiple restart HC is implemented in order
to give it the same amount of computation time as the other
algorithms. A Greedy Algorithm consists of two sets: a solu-
tion set and a candidate set, and three functions: selection,
value-computing and solution function. A solution is created
out of the solution set, and a candidate set represents all pos-
sible elements that might be contained in a solution. Selec-
tion chooses the most promising candidate to be added to
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the solution, value-computing function gives a value for the
solution and solution function checks whether the final so-
lution has been reached. Here the initial solution set is a bi-
nary string with each bit set to 0, and the candidate solution
set is made of all the slices. The value-computing function
calculates the program points in a solution and the selection
function chooses the one with the best coverage and smallest
overlap.

An empirical study is made with six open source
programs, and possible slices are collected with a separate
program from each program’s SDG. The program sizes vary
from 37 to 1008 program points. Every other algorithm except
the Greedy Algorithm was executed 100 times; the Greedy
algorithm gives the same result every time and thus does
not need several test runs. For the fitness function using
Average Overlap, the Greedy Algorithm performs the best
for all but one test case, where HC and GA perform the
best. Furthermore, it is seen that for smaller programs HC
outperforms GA and Random search. As the program size
increases, GA starts to perform better, and wins over HC. For
the second fitness function where the Maximum Overlap was
used, the results are similar to with the first fitness function.
However, in this case GA performs the best of the other
algorithms, and HC only beats Random search on the smallest
test case. The Greedy Algorithm also outperforms all others
in terms of execution time. It is no surprise that the Random
Search is outperformed every time. However, it is naturally a
bit disappointing that the Greedy Algorithm was superior in
every aspect, when compared to other search methods.

Jiang et al. [90] make another study by only using
the Greedy Algorithm for six different large programs.
As the previous study showed that the Greedy Algorithm
outperformed all other studied search algorithms, now it is
tested how efficient it is in decomposing a program into a set
of slices. Results suggest that less than 20% of a program can
be used to decompose the whole program or function.

Jiang et al. [91] continue by applying a Greedy Algorithm
to procedure splitting. They attempt to split a procedure into
two or more sub-procedures in order to improve cohesion.
The Greedy Algorithm is used to find close to optimal splitting
points.

A slice is represented as a bit matrix. A matrix value
is depends on whether a program point (i.e., a node in
the system’s SDG) belongs to a certain slice. The splitting
algorithm proceeds in four steps: 1. slice with respect to all
nodes in SDG to find all static backward slices, 2. find sets of
slices with minimum overlap, 3. recover slice statements by
combining nodes that belong to a single statement, 4. make
sub-procedures obtained executable.

Results indicate thatmore than 20% of procedures in all six
programs contain independent sub-programs. Also, it would
seem that most procedures are not splittable, and the ones
that are, can usually be split into only 2 or 3 sub-programs.
Splittability appears to correlate with the size of the program.

Fatiregun et al. [92] use meta-heuristic search algorithms
to automate, or partially automate the problem of finding
good program transformation sequences. With the proposed
method one can dynamically generate transformation
sequences for a variety of programs also using a variety of
objective functions. The goal is to reduce program size, but
the approach is argued to be sufficiently general that it can
be used to optimize any source-code level metric. Random
search (RS), hill climbing and GA are used.

An overall transformation of a program p to an improved
version p′ typically consists of many smaller transformation
tactics. Each tactic consists of the application of a set of rules.
A transformation rule is an atomic transformation capable
of performing the simple alterations. To achieve an effective
overall program transformation tactic, many rules may need
to be applied and each would have to be applied in the correct
order to achieve the desired results.

In HC, an initial sequence is generated randomly to serve
as the starting point. The algorithm is restarted several times
using a random sequence as the starting individual each time.
The aim is to divert the algorithm from any local optimum.

Each transformation sequence is encoded as an individual
that has a fixed sequence length of 20 possible transforma-
tions. An example individual is a vector of the transforma-
tion numbers. In HC, the neighbor is defined as the mutation
of a single gene from the original sequence. Crossover is the
standard one-point crossover. In addition to transformations,
cursor moves are also used. The tournament selection is used
for selecting mating parents and creating a single offspring,
which replaces the worse of the parents. The authors con-
sider optimizing the program with respect to the size of the
source-code, i.e., LOC, where the aim is to minimize the num-
ber of lines of code as much as possible. This metric is quite
simple, and the effects are hardly arguable, if the length of a
line of code is somehow restricted.

The fitness is measured as the nominal difference in
the lines of code between the source program and the new
transformed program created by that particular sequence.
This is evaluated by a process of five steps: 1. compute
length of the input program, 2. generate the transformation
sequence, 3. apply the transformation sequence, 4. compute
the current length of the program, 5. compute the fitness,
which is the difference between steps 1 and 4.

Results show that GA outperforms both RS and HC. In
cases where RS outperformed GA and HC, it was noticed
that GA and HC are not “moving” towards areas where
potential optimizations could be. Analyzing the GA, the
authors believe that the GA potentially kills off good
subsequences of transformations during crossover. These
results are interesting as this would indicate that the selected
(standard) crossover would not support the preservation of
building blocks. As discussed in Section 4, it may be that also
the encoding could be improved to preserve building blocks.
All in all, examining the fitness landscape and rethinking the
encoding and crossover operators may be able to improve the
results achieved with the GA.

Williams [93] implements several search algorithms in
his REVOLVER system that make program transformations in
order to parallelize the program and thus lessen the execution
time. The idea is to transform loops in different ways, and
as loops are the core of the approach, they are numbered.
HC, SA and GA are used, and most interestingly, two different
encodings are experimented with.

In the first encoding, Gene-Transformation (GT), each gene
represents a transformation that is applied to the system.
The gene contains information as to what transformation
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is applied, and the number of the loop it is applied to.
Three different mutations can be used: changing the
transformation, changing the loop number or changing
both (i.e., the entire gene). Both one-point and two-point
crossovers are implemented. However, in the one-point
crossover, the crossover points for the parent chromosomes
are chosen individually for each parent, as they might be of
unequal length. This approach is applied to HC, SA and GA.

In the second encoding, Gene-Statement (GS), each gene
represents a statement in the program, e.g., an if- or a do-
statement, and the chromosome thus represents the program
as a sequence of statements. The mutations that are applied
are the chosen operations on loops, and applying them to
the program. This is actually quite odd, as only loop related
transformations are used, but there are only loops in some
of the genes. Note, that a mutation will alter the program,
as, say, combining two loops will remove the statement
representing one of them, and thus shortens the chromosome
by one gene. No crossover is used in this representation, and
the used algorithms are HC and evolutionary strategy (ES),
which is basically a GA, i.e., it has a population and selection,
but without the crossover.

The fitness function for both approaches is the actual
execution time of the transformed program, and tournament
selection is used. In the tests the population size was only
5 for the algorithms with populations, and the number of
generations only 50. These parameters seem incredibly low,
as there is very little room for versatility in the population,
and there is very little time for development also. Thus, one
wonders whether the benefits of the GA are truly used in this
approach.

Test results on five programs show that the ES and HC
with the GS encoding outperformed all other algorithms.
The traditional GA appeared the worst. These results further
suggest that the population parameter chosen for the
traditional GA should be revised, as the GA cannot use its
full potential. Interestingly, ES, which also had a population,
performed the best. The strength of the GS encoding is also
very interesting, considering there is much information in the
genes that cannot be mutated. However, ES did not have a
crossover, and thus choosing parents is not an issue for this
algorithm. All in all, the algorithms were able to improve the
execution times significantly.

Ryan and Ivan [94] have taken a rather different approach
to program parallelization, as they encode the program in tree
form and use genetic programming as the search algorithm.
They use GP in an unusual way, as it does not actually
“program”, but searches for the optimal transformations for
the program, thus making this study a design problem.

The program is considered as a sequence of instructions.
The actual tree given by the GP then comes from examining
the atoms representing the instructions, and deciding on
transformations based on the type of the instruction. The
GP works in two modes: atom mode and loop mode. Each
step begins in atom mode, and if the found instruction is a
loop, the mode is switched. In atom mode, there are three
classes of transformations. The transformations in the first
class split the sequence of instructions according to a given
percent, thus forking the execution of a program. The ones in
the second class also split the sequence of instructions, but
with less effect, as the split point is always either after the
first of before the last instruction. The last class delays the
execution of the program. Each atom mode transformation is
an internal node in a tree, and takes as input the program
segment before passing it onto the next transformation.
The program segment ultimately diminishes to one atom
as transformations are applied. In loop mode the idea is to
parallelize each loop by executing each iteration on a different
processor, unfortunately, though, this raises issues with data
dependencies. A significant operator in loop mode is loop
fusion, which combines consecutive loops.

The fitness function is a combination of fitness calcula-
tions from the atom mode and the loop mode. For the atom
mode the fitness is the execution time and the correctness
of the program. For loop mode the fitness is the number of
successes for applied loop operators. The initial results are
promising; the approach is able to parallelize programs and
thus ameliorate them in terms of execution time.

The approach of Ryan and Ivan [94] appears quite similar
to that of Williams [93] in terms of the choosing loops as
a key ingredient in the mutations. However, Ryan and Ivan
have taken atom transformations into account as traditional
mutations, while Williams has chosen to deal with non-loop
structures only at the encoding stage. The fitness function for
both approaches is basically the same, as execution time is
the most important factor. It would be interesting to study
the problem of program parallelization also in terms of other
quality factors and as a larger problem in the context of,
e.g., distributed systems.

Harman and Tratt [95] show how Pareto optimality can
improve search based refactoring, making the combination
of metrics easier and aiding the presentation of multiple
sequences of optimal refactorings to users. Intuitively, each
value on a Pareto front maximizes the multiple metrics
used to determine the refactorings. Through results obtained
from three case studies on large real-world systems, it is
shown how Pareto optimality allows users to pick from
different optimal sequences of refactorings, according to
their preferences. Moreover, Pareto optimality applies equally
to sub-sequences of refactorings, allowing users to pick
refactoring sequences based on the resources available to
implement those refactorings. Pareto optimality can also be
used to compare different fitness functions, and to combine
results from different fitness functions.

Harman and Tratt [95] use the move method refactoring
presented by Seng et al. [83]. Three systems are used in
the case study, all non-trivial real-world systems. The search
algorithm itself is a non-deterministic non-exhaustive hill
climbing approach. A random move method refactoring is
chosen and applied to the system. The fitness value of the
updated system is then calculated. If the new fitness value is
worse than the previous value, the refactoring is discarded
and another one is tried. If the new fitness value is better
than the previous, the refactoring is added to the current
sequence of refactorings, and applied to the current system to
form the base for the next iteration. A cut-off point is set for
checking neighbors before concluding that a local maximum
is reached. The end result of the search is a sequence of
refactorings and a list of the before and after values of the
various metrics involved in the search.
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Two metrics are used to measure the quality: coupling and
standard deviation of methods per class (SDMPC). Coupling
(CBO) is from Briand’s [97] catalogue. The second metric,
SDMPC, is used to act as a ‘counter metric’ for coupling.
An arbitrary combination of the metrics is used, the fitness
function being SDMPC ∗ CBO. The new fitness function
improves the CBO value of the refactored system while also
improving the SDMPC of the system. All the points on a Pareto
front are, in isolation, considered equivalently good. In such
cases, it might be that the user may prefer some of the Pareto
optimal points over others.

The concept of a Pareto front is argued to make as
much sense with subsets of data as it does for complete
sets. Harman and Tratt [95] also stress the importance of
knowing how many runs a search-based refactoring system
will need to achieve a reasonable Pareto front approximation.
Furthermore, developers are free to execute extra runs of
the system if they feel they have not yet achieved points
of sufficient quality on the front approximation. Pareto
optimality allows determining whether one fitness function
is subsumed by another: broadly speaking, if fitness function
f produces data which, when merged with the data produced
from function f ′, contributes no points to the Pareto front
then we know that f is subsumed by f ′. Although it may not
be immediately apparent, Pareto optimally confers a benefit
potentially more useful than simply determining whether
one fitness function is subsumed by another. If two fitness
functions generate different Pareto optimal points, then they
can naturally be combined to a single front. Pareto optimality
is shown to have many benefits for search-based refactoring,
as it lessens the need for “perfect” fitness functions. This
would make Pareto optimality an approach that should be
considered for any optimization problem with conflicting
goals.

5.3. Summarizing remarks

The approaches to search-based refactorings can be divided
into the following groups: refactoring the program at class
level, refactoring the program at procedure level, and
refactoring pieces of code. The most studies have been
performed on refactoring at class level, and they are all quite
similar, and actually end up using the same operations for
the search algorithm. For the other aspects only one or two
studies have been made, and this suggests that there is much
room for competing approaches. The most advanced results
have been achieved with refactorings at class level, while
studies in program transformations have achieved both good
and not so good results.

When examining the refactoring problems, one notable
characteristic is that Seng et al. [83] attempt to preserve
building blocks from the very beginning, and several other
studies have later built on the operators introduced by them.
The mutation selection by Seng et al. [83] also appears
popular. The complexity of the refactoring problem at class
level was most pointedly demonstrated by O’Keeffe and
Ó Cinnéide [85,86], who had a list of 14 mutations and
11metrics, and Quaum and Heckle [89], who had to pre-define
mutations according to the specific system. Considering that
there can be even more general refactorings in addition
to those presented by O’Keeffe and Ó Cinnéide, and that
they could be combined with system specific mutations, the
search space for an optimal refactoring sequence will soon
become incredibly large.

The approaches to search based refactoring also seem
advanced in the aspect that there have already been several
studies that compare different search algorithms and fitness
functions. As for the search algorithms, different hill climbing
applications are clearly very efficient and able to produce
high quality results. Interestingly, simulated annealing has
been outperformed by other algorithms, although one might
argue that it is more “sophisticated” than at least the basic
hill climbing. All in all, there are very few approaches that
use simulated annealing, and no breaking results have been
achieved with it. The studies in fitness functions further
support the notion of complexity in this problem area.
O’Keeffe and Ó Cinnéide [84] have considered the problem
of finding an appropriate fitness function so important
that they have developed a heuristic for balancing different
weights, and Harman et al. [95] have introduced the Pareto
optimality concept to this field, as software design is indeed
an area where trade-offs and compromises need to be
made. As for the other studies, the variety of metric quality
evaluators shows that a refined method for deciding on an
appropriate fitness function is truly needed. The only area
where consensus can be found is program transformations,
where quality can quite simply be measured in terms of run
time and correctness or size of the program.

6. Software quality

6.1. Background

Software quality assessment has become an increasingly
important field. The complexity caused by object-oriented
methods makes the task more important and more difficult.
An ideal quality predictive model can be seen as the mixture
of two types of knowledge: common knowledge of the domain
and context specific knowledge. In existing models, one of
the two types is often missing. During its operating time, a
software system undergoes various changes triggered by error
detection, evolution in the requirements or environment
changes. As a result, the behavior of the software gradually
deteriorates as modifications increase. This quality slump
may go as far as the entire software becoming unpredictable.

Software quality is a special concern when automatically
designing software systems, as the quality needs to be
measured with metrics and in pure numerical values. The
use of metrics may even be argued, as they cannot possibly
contain all the knowledge that an experienced human
designer has. Sahraoui et al. [102] have investigated whether
some object-oriented metrics can be used as an indicator
for automatically detecting situations where a particular
transformation can be applied to improve the quality of a
system. The detection process is based on analyzing the
impact of various transformations on these object-oriented
metrics using quality estimation models.

Sahraoui et al. [102] have constructed a tool which,
based on estimations on a given design, suggests particular
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transformations that can be automatically applied in order
to improve the quality as estimated by the metrics. Roughly
speaking, building a quality estimation model consists of
establishing a relation of cause and effect between two
types of software characteristics. Firstly, internal attributes
which are directly measurable, such as size, inheritance
and coupling, and secondly, quality characteristics which are
measurable after a certain time of use such asmaintainability,
reliability and reusability. To study the impact of the global
transformations on the metrics, first the impact of each
elementary transformation is studied and then the global
impact is derived. A case study is used for the particular
case of the diagnosis of bad maintainability by using the
values of metrics for coupling and inheritance as symptoms.
Based on the results of this study, Sahraoui et al. [102]
argue that using metrics is a step toward the automation of
quality improvement, but that experiments also show that a
prescription cannot be executed without the validation of a
designer/programmer.

The use of evolution metrics for fitness functions has
especially been studied [103,104]. If one looks at the whole
process of detecting flaws and correcting them, metrics can
help automating a large part of it. However, the results of
the experiments show that a prescription cannot be executed
without the validation of a designer or programmer. This
approach cannot capture all the context of an application to
allow full automation.

Some approaches regarding software quality have also
been made with search-based techniques and are detailed
in Section 6.2. Bouktif et al. [105,106] aim at predicting
software quality of object-oriented systems with GAs, and
Vivanco and Jin [108] have implemented a GA to identify
possible problematic software components. Bouktif et al. [107]
have also implemented a SA to combine different quality
prediction models. Summarizing remarks are presented in
Section 6.3, and the fundamentals of each approach are
collected in Table 6.

6.2. Approaches

Bouktif et al. [105,106] study the prediction of stability
at object-oriented class level and propose two GA based
approaches to solve the problem of quality predictive models:
the first approach combines two rule sets and the second one
adapts an existing rule set. The predictive model will take the
form of a function that receives as input a set of structural
metrics and an estimation of stress, and produces as output a
binary estimation of the stability. Here, stress represents the
estimated percentage of added methods in a class between
two consecutive versions.

The model encoding for the GA that combines rule sets
is based on a decision tree. The decision tree is a complete
binary tree where each inner node represents a yes-or-no
question, each edge is labeled by one of the answers, and
terminal nodes contain one of the classification labels from
a predetermined set. The decision making process starts at
the root of the tree. When the questions at the inner nodes
are of form “Is x > a?”, the decision regions of the tree can be
represented as a set of isothetic boxes in an n-dimensional
space (n = number of metrics). For the GA representation,
these boxes are enumerated in a vector. Each gene is a (box,
label) pair, and a vector of these pairs is the chromosome. The
complexity of quality as a concept is directly shown in the
complexity of the encoding. No simple integer vector can be
used to represent quality estimations. An interesting research
question is to determine what is the minimal information
needed in order to evaluate or predict quality.

Mutation is a random change in the genes that happens
with a small probability. In this problem, the mutation
operator randomly changes the label of a box. To obtain
an offspring, a random subset of boxes from one parent is
selected and added to the set of boxes of the second parent.
The size of the random subset is v times the number of boxes
of the parent, where v is a parameter of the algorithm. By
keeping all the boxes of one of the parents, completeness
of the offspring is automatically ensured. To guarantee
consistency, the added boxes are made predominant (the
added boxes are “laid over” the original boxes). A level of
predominance is added as an extra element to the genes. Each
gene is now a three-tuple (box, label, level). The boxes of the
initial population have level 1. Each time a predominant box is
added to a chromosome, its level is set to 1 plus themaximum
level in the hosting chromosome. To find the label of an input
vector x (a software element), first all the boxes containing x
are found, and x is assigned the label of the box that have the
highest level of predominance.

To measure the fitness a correctness function is used; the
function calculates the number of cases that the rule correctly
classifies divided by the total number of cases that the rule
classifies. The correctness function is defined as C = 1 —
training error. By using the training error for measuring the
fitness, it is found that the GA tended to “neglect” unstable
classes. To give more weight to data points with minority
labels, Youden’s [109] J-index is used. Intuitively, the J-index
is the average correctness per label. If one has the same
number of points for each label, then J = C. As seen, the
actual fitness evaluations for quality seem simple, which
is surprising when compared to the complicated metric
combinations used to evaluate quality in all the various GA
implementations already presented. However, here the most
work is needed for defining the rules that need to be satisfied
and questions that need to be answered.

With a GA for adapting a rule set, an existing rule set
is used as the initial population of chromosomes, each rule
of the rule set being a chromosome and each condition in
the rule as well as the classification label being a gene. Each
chromosome is attributed a fitness value, which is C∗ t, where
t is the fraction of cases that the rule classifies in the training
set. The weight t allows rules to be given that cover a large set
of training cases a higher chance of being selected.

Parents for crossover are selected with the roulette wheel
method. A random cut point is generated for each parent,
i.e., the cut-points are different for each parent. Otherwise,
the operation is a traditional one-point crossover. By allowing
chromosomes within a pair to be cut at different places,
a wider variety is allowed with respect to the length of
the chromosomes. The chromosomes are then mutated. The
mutation of a gene consists of changing the value to which
the attribute encoded in the gene is compared to a value
chosen randomly from a predefined set of values for the
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attribute (or class label, in case the last gene is mutated).
The new chromosomes are scanned and trimmed to get rid
of redundancy in the conditions that form the rules that they
encode. Inconsistent rules are attributed a fitness value of 0
and will eventually die. A fixed population size is maintained.
Elitism is performed when the population size is odd. This
consists of copying one or more of the best chromosomes
from one generation to the next. Before passing from one
generation to another, the performance of combined rules to
one rule set is evaluated.

In the experimental setting, to build experts (that simulate
existingmodels), stress and 18metrics (belonging to coupling,
cohesion, complexity and inheritance) are used. Eleven
object-oriented systems are used to “create” 40 experts.
For the combining GA, the elitist strategy is used, where
the entire population apart from a small number of fittest
chromosomes is replaced. The test results show that
the approach of combining experts can yield significantly
better results than using individual models. The adaptation
approach does not perform as well as the combination,
although it gave a slight improvement over the initial model
in one case. The authors believe that using more numerous
and real experts on cleaner and less ambiguous data, the
improvement will be more significant. It is quite inspiring
that the approach of combining experts produced the more
promising results. If it can be assumed that experts in both
initial populations have the same amount of knowledge,
it would seem that merely adapting an expert would be
a smaller task to perform than successfully combining the
knowledge from two different experts. Thus the results are
very positive when considering what the GA is capable of.

Bouktif et al. [107] have continued their research by
applying simulated annealing to combine experts. Their
approach attempts to reuse and adapt quality predictive
models, each of which is viewed as a set of expertise parts.
The search then aims to find the best subset of expertise
parts, which forms a model with an optimal predictive
accuracy. The SA algorithm and a GA made for comparison
were defined for Bayesian classifiers (BCs), i.e., probabilistic
predictive models.

An optimal model is built of a set of experts, each of which
is given a weight. Each individual, i.e., chunk, of expertise
is presented by a tuple consisting of an interval and a set
of conditional probabilities. Transitions in the neighborhood
are made by changing probabilities or interval boundaries. A
transition may also be made by adding or deleting a chunk of
expertise. The fitness function is the correctness function.

For evaluation, the SA needs two elements as inputs:
a set of existing experts and a representative sample of
context data. Results show a considerable improvement in
the predictive accuracy, and the results produced by the
SA are stable. The values for GA and SA are so similar
that the authors do not see a need to value one approach
over the other. Results also show that the accuracy of the
best produced expert increases as the number of reused
models increases, and that good chunks of expertise can be
hidden in inaccurate models. Again, the results achieved with
SA encourage further usage of different search algorithms
apart from GA, or even combining and making more hybrid
approaches in order to increase quality in search based
approaches to software design.

Vivanco and Jin [108] present initial results of using a
parallel GA as a feature selection method to enhance a
predictive model’s ability to identify cognitively complex
components in a Java application. Linear discriminant
analysis (LDA) can be used as a multivariate predictive model.

It is theorized that the structural properties of modules
have an impact on the cognitive complexity of the system,
and further on, that modules that exhibit high cognitive
complexity result in poor quality components. Again, this
is in line with the assumption already made by Lutz [42],
that the simpler a design, the better. A preliminary study
is carried out with a biomedical application developed in
Java. Experienced program developers are asked to evaluate
the system. Classes labeled as low are considered easy
to understand and use, while a high ranking implied the
class is difficult to fully comprehend and would likely take
considerably much more effort to maintain. Source code
measurements, 63 metrics for each Java class, are computed
using a commercial source code inspection application. To
establish a baseline, all the availablemetrics are usedwith the
predictive model. The Chidamber and Kemerer [45] metrics
suite is used to determine if themodel would improve. Finally,
the GA is used to find alternate metrics subsets. Using the
available metrics with LDA, less than half of the Java classes
are properly classified as difficult to understand. The CK
metrics suite performs slightly better. Using GA, the LDA
predictive model has the highest performance using a subset
of 32 metrics. The GA metrics correctly classify close to 100%
of the low, nearly half of the medium and two thirds of the
high complexity classes.

Vivanco and Jin [108] are most interested in finding
the potentially problematic classes with high cognitive
complexity. A two-stage approach is evaluated. First, the low
complexity classes are classified against the medium/high
complexity classes. The GA driven LDA highly accurately
identifies the low and medium/high complexity classes with
a subset of 24 metrics. When only the medium complexity
classes are compared to high complexity, a GA subset of 28
metrics results in extremely high accuracy for the medium
complexity classes and in identifying the problematic classes.
In all GA subsets, metrics that cover Halstead complexity,
coupling, cohesion, and size are used, as well as program
readability metrics such as comment to code ratios and the
average length of method names.

This study is extremely interesting as it ties known
software metrics to human expertise and compares how
metrics perform when trying to correctly classify objects.
It is noteworthy that from 63 different metrics the optimal
outcome was achieved with 24–32 metrics, which is less
than half of all metrics available. Although there is naturally
overlap between different metrics, it is interesting to see
that many of them do not seem to correctly evaluate
the program. The found metrics cohesion, coupling and
complexity support the current fitness function choices
to a certain points. However, many fitness functions only
calculate 2–5 different metrics, while the optimum was
reached with over 20. In addition, several metrics need the
source code, and thus make them unsuitable for more high-
level problems.
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6.3. Summarizing remarks

The presented studies on software quality estimation show
that correctly evaluating software is anything but easy.
However, although the number of studies is small, they are
all very recent, and thus shows promise that search-based
approaches can also be used in this sub-area of software
design. Finding a search algorithm for quality estimation can
also be seen as a developed way of tackling the problem of
finding an optimal fitness function. In other words, in the
future it might be possible to use a fitness function (i.e., a
search algorithms) to find an optimal fitness function for each
individual software design problem. Using search algorithms
for quality estimations, the current fitness function, is the
first step in this direction.

7. Future work

From the search-based approaches presented here, software
clustering and software refactoring (i.e., re-design) appear to
be at the most advanced stage. Thus, most work is needed
with actual architecture design, starting from requirements
and not a ready-made system. Also, search-based application
of, e.g., design patterns, should be investigatedmore. Another
branch of research should be focused on quality metrics.
So far the quality of a software design has mostly been
measured with cohesion and coupling, whichmostly conform
to the quality factors of efficiency and modifiability. However,
there are many more quality factors, and if an overall stable
software system is desired, more factors should be taken
into account in evaluation, such as reliability and stability.
Also, as demonstrated with the MQ metric in Section 4,
metrics that have seemed good in the beginning may prove
to be inadequate when investigated further. Fortunately, it
seems that most of the work presented here is the result
of developing research that is still continuing. The following
research questions should and could very well be answered
in the foreseeable future:

– What kind of architectural decisions are feasible to do
with search-based techniques?

Research with search-based software architecture design
is at an early stage, and not all possible architecture styles
and design patterns have been tested. Some architectural
decisions are more challenging to implement automatically
than others, and in some cases it may not be possible at all.
The possibilities should be mapped to effectively research the
extent of search-based designs capabilities.

– What is a sufficient starting point for software
architecture design with search-based techniques?

So far requirements with a limited set of parameters have
been used to build software architecture, or a ready system
has been improved. Some design choices need very detailed
information regarding the system in order to effectively
evaluate the change in quality after implementing a certain
design pattern or architecture style. The question of what
information is needed for correct quality evaluation is by no
means easily answered.

– What would be optimal representation, crossover and
mutation operators regarding the software modularization
problem?
Much work has been done with software modularization,
and the chromosome encoding, crossover and mutation
operators vary greatly. Optimal solutions would be interesting
to find. As discussed throughout the survey, the chosen
encoding significantly affects the result of mutation and
crossover operations and also has a big impact on run time
for the algorithm. There are also several options for crossover,
where some maintain building blocks better than others.

– What would be optimal representation, crossover
and mutation operators regarding the software refactoring
problem?

Much research has been done with software refactoring,
and the chromosome encoding, crossover and mutation
operators vary greatly. Especially the set of mutations is
interesting, as they define how greatly the software can be
refactored. An optimal encoding might enable a larger set of
mutations, thus giving the search-based algorithm a larger
space to search for optimal solutions.

– What metrics could be seen as a “standard” for
evaluating software quality?

The evaluation of quality, i.e., the fitness function,
is a crucial part of evolutionary approaches to software
engineering. Some metrics, e.g., coupling and cohesion,
have been widely used to measure quality improvements
at different levels of design. However, these metrics only
evaluate a small portion of quality factors, and there are
several versions of even some very “standard” metrics.
Metrics by, e.g., Briand [83] and Chidamber and Kemerer [45]
can be considered as some kind of standards. However, all
software metrics are constantly subjected to criticism, as
their correctness is challenged. Thus, in the author’s view, as
there are several versions of even the most common metrics
and there is no agreement that metrics even measure the
right things at the moment, no metric set can currently be
seen as standard. Thus, a well-validated metric set would be
extremely beneficial, if it is possible to conduct such a set.
It very well may be that the present metrics simply don’t
suffice, and in that case other directions must be taken to
evaluate quality, as has already been demonstrated in some
of the work covered in this survey.

– How can metrics be grouped to achieve more
comprehendible quality measures?

Metrics achieve clear values, but if a human designer
attempts to use a tool in the design process, notions such
as “efficiency” and “modifiability” are more comprehendible
than “coupling” and “cohesion”. Thus, being able to group
sets of metrics to correspond to certain real-world quality
values would be beneficial when making design tools
available for common use.

8. Conclusions

This survey has presented on-going research in the sub-
fields of search-based software design. There has been much
progress in the sub-fields of software modularization and
refactoring, and very promising results have been achieved.
A more complex problem is automatically designing software
architecture from requirements, but some initial steps have
already been taken in this direction as well. Fig. 2 shows
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Fig. 2 – Timeline for studies in search-based design.
the timeline of the presented studies, and it very effectively
demonstrates the increasing interest in the area during very
recent years. There has been immense increase in the area of
OO design and refactoring, while clustering, the first applica-
tion in the area, has not sparked new research interest.

The surveyed research shows that metrics, such as
cohesion and coupling can accurately evaluate some quality
factors, as the achieved, automatically improved designs,
have been accepted by human designers. However, many
authors also report problems: the quality of results is not
as high as wished or expected, and many times the blame
is placed on less than optimal encoding and crossover
operators. Extensive testing of different encoding options is
practically infeasible, and thus inspiration could be found
in those solutions that have produced the most promising
results. As a whole, software (re-)design seems to be an
appropriate field for the application of meta-heuristic search
algorithms, and there is much room for further research.
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Abstract— Techniques exist to synthesize software architecture 

using genetic algorithms that employ transformations based on 

mutations and crossover. In this paper, we demonstrate that 

complementary crossover can significantly improve this 

technique. We study two versions of complementary crossover, 

one in which parents are selected so that they complement each 

other but the genes are inherited randomly from the parents, 

and another in which the genes are inherited in a more 

purposeful way. Empirical studies on two sample systems 

suggest that the complementary crossover outperforms the 

traditional crossover in genetic software architecture synthesis 

especially in the presence of mutations that provide delayed 

reward. 

Keywords: complementary crossover, search-based software 

engineering, software design, software architecture  

I. INTRODUCTION 

Design of software architecture is one of the most critical 
and intellectually demanding activities of software 
engineering. In our previous work [11, 12] we have taken the 
viewpoint that software architecture essentially consists of 
applications of known good practices and solutions of 
architectural design in the context of a particular application. 
Assuming that both the architecture and the general solutions 
can be formally represented, and that the quality of an 
architecture can be effectively measured, the problem of 
architecture design becomes a search problem that can be 
solved by a heuristic search algorithm. 

We have shown [11, 12] that genetic algorithms (GAs) 
[9] can be applied to the problem of architectural design, 
interpreting general solutions (such as architectural styles 
[14] and design patterns [6]) as mutations and using various 
architectural metrics as a basis for the fitness function. In 
addition to mutation, changes were induced by crossover, 
where two parent architectures convey part of their structure 
to the offspring. The probability of becoming a parent was 
higher for “good” architectures, but otherwise the crossover 
was realized in a random manner. 

However, following the so-called genetic compatibility 
hypothesis in biology [18], the idea of purposeful parent 
selection has been proposed for GAs (e.g., by Fernandes and 
Rosa [5]).  Basically, the idea is to select parents in such a 
way that they complement each other, thus producing more 
likely desirable qualities in offspring. We will use the term 
complementary crossover to refer to such techniques.  

Complementary crossover requires some method to 
assess the matching of parents. For software architecture 
synthesis, this idea is particularly amenable, because 
software architectures are evaluated in terms of few quality 
attributes that can be measured separately. For example, it 
seems attractive to select one parent with good modifiability 
characteristics and the other with good efficiency 
characteristics, in the hope that the offspring could inherit, at 
least to some extent, both desirable quality attributes. 
Intuitively, this could speed up the evolution and produce 
more balanced solutions when compared to random 
crossover with randomly chosen parents, as modifiability 
and efficiency are exceptionally difficult to optimize 
simultaneously. 

In this paper we explore the potential of complementary 
crossover in the genetic synthesis of software architecture. 
We will study first the case where the parents are 
complementary but the inherited parts of the parents are 
selected randomly, and then the case where the inherited 
parts are selected purposefully so that the intended 
characteristics are more likely transferred to the offspring. 
We experiment with our new crossover operators using two 
sample systems of different character. 

II. RELATED WORK

Recently, approaches dealing with high level structures, 
such as design patterns [1] and architectures [15] have 
gained more interest in search-based software engineering [8, 
10]. We will here limit the discussion to applications of GAs 
where the crossover is given a special role. 

Harman et al. [7] study a new crossover operator in the 
area of clustering. The crossover attempts to conserve 
building blocks by ensuring that at least one complete cluster 
from one of the parents is kept intact in the crossover 
process. This is done by directly copying a complete cluster 
from one parent in the beginning of the crossover parent.  

Fernandes and Rosa [5] propose a reproduction method, 
where the roulette wheel selection is used to choose one 
parent and some subgroup of the population. The other 
parent is then the one in the selected subgroup that differs 
most from the parent chosen first. Hamming distance is used 
to calculate the difference, and the method is argued to retain 
building blocks. 

 Dolin et al. [4] base the choosing of parents on ”fitness 
cases”. One of the parents is chosen in a standard fashion, 
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while the other one is chosen so that it performs well in the 
fitness cases where the other one doesn’t. It is hoped that the 
two parents thus complete each other and maximize the 
fitness for the “ultimate” offspring.  

Wildman and Parks [17] compare different breeding 
strategies for multi-objective GAs. They study crossovers 
based on genotypic, phenotypic and ranking dissimilarities 
and pairing restrictions. They conclude that pairing strategies 
that combine dissimilar parents produce better results.  

Räihä et al. [13] study the effect of crossover in genetic 
architecture synthesis. Results showed that asexual 
reproduction performed better than the traditional random 
crossover. However, asexual mutation resulted in very 
homogenous populations and seemed to land on a local 
optimum very early. To this end, the present paper aims at a 
more sophisticated crossover, finding solutions with higher 
quality than the asexual method. 

III. GENETIC SYNTHESIS OF SOFTWARE ARCHITECTURE

In this section we describe our approach to automate 
software architecture design by using GAs, to synthesize 
software architectures. We assume that the reader is familiar 
with the basics of GAs, as given, e.g., by Michalewicz [9]. In 
what follows, we give an encoding of possible solutions, an 
initial population, mutation and crossover operators, a fitness 
function and a selection operator for choosing the survivors 
for the next generation. 

A. Requirements 

For expressing functional requirements we identify and 
express the primary use cases of the system, and refine them 
into sequence diagrams depicting the interaction between 
major components required to accomplish the use cases. This 
is a manual task, as the major components have to be 
decided, typically based on domain analysis. 

In our approach, a so-called null architecture represents a 
basic functional decomposition of the system, given as a 
UML class diagram. The null architecture can be 
mechanically derived from the use case sequence diagrams: 
the (classes of the) participants in the sequence diagram 
become the classes, the operations of a class are the 
incoming call messages of the participants of that class, and 
the dependency relationships between the classes are inferred 
from the call relationships of the participants. Additionally, if 
a component has a significant state or it manages a 
significant data entity (e.g., a data base), it will become an 
attribute in the class.  

We have used here two sample systems: an e-home 
control system (called hereafter ehome), which represents a 
typical embedded system, and a robot war game application 
(robowar), which represents a desktop system. Ehome 
controls various devices, providing an interface to allow the 
user to manage the home.  The ehome system requirements 
lead to 56 operations and 90 dependencies between the 
operations. Robowar is a computer game where robots with 
different characteristics fight against each other. Robowar 
requirements lead to 57 operations and 73 dependencies 
between them. The null architecture for ehome contains 12 

classes and the null architecture for robowar contains 22 
classes. 

:UserInterface :CoffeeManager :WaterControl

Make coffee

coffeeState waterState

chooseCoffeeQuality

chooseCoffeeAmount

startCoffeeMachine

calculateCoffeeAnd

WaterAmount

addWater

stopCoffeeMachine

ok
show coffee ok

Figure 1. Make coffee use case refined  

Use cases for the ehome are assumed to consist of 
logging in, changing the room temperature or its unit, 
making coffee, moving drapes, and playing music. In Fig. 1, 
the coffee making use case has been refined into a sequence 
diagram.  A fragment of the null architecture for ehome is 
given in Figure 2, representing the same part of the system as 
Figure 1. 

Figure 2. A fragment of the null architecture for ehome 

B. Genetic Representation 

When the architectural data is encoded into a 
chromosome form, two kinds of data are given regarding 
each operation. Firstly, the basic information contains the 
operations depending on it, its name, type, frequency of use, 
parameter size, and sensitiveness to variation. Secondly, 
there is the information regarding the operation’s place in the 
architecture: the class(es) it belongs to, the interface it 
implements, the message dispatcher it uses (further explained 
in Section III.C), the operations that call it through the 
message dispatcher, the design patterns  it is a part of and the 
class it is assigned to in the null architecture. The message 
dispatcher is given a separate field as opposed to other 
patterns for efficiency reasons. All data regarding an 
operation is encoded as a supergene [1].  

Figure 3. Supergene for responsibility ri

sg1 sg2 …. sgn-1 sgn

Figure 4. Chromosome for a system with n responsibilities 

A supergene is depicted in Figure 3. The chromosome 
handled by the genetic algorithm is gained by collecting the 
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supergenes, i.e., all data regarding all responsibilities, thus 
achieving a whole view of the functional requirements for 
the architecture. Figure 4 illustrates the chromosome 
structure. 

 The initial population is made by first creating the 
desired number of individuals with the null architecture. A 
random pattern is then inserted into each individual, as a 
population should not consist entirely of clones.  In addition, 
a special individual with no initial patterns is left in the 
population. 

C. Mutation Operations 

The actual architectural design means here the 
application of various standard architectural solutions called 
collectively patterns: the result of genetic architecture 
synthesis is the null architecture augmented with patterns. 
The patterns have been chosen to represent solutions on 
different levels: high-level architectural styles [14] (message 
dispatcher and client-server), medium-level design patterns 
[6] (Façade and Mediator), and low-level design patterns [6] 
(Strategy, Adapter and Template Method). The mutations are 
implemented in pairs of introducing a specific pattern or 
removing it. The dispatcher architecture style makes a small 
exception to this rule: the actual dispatcher must first be 
introduced to the system, after which the operations can 
communicate through it.  

The actual mutation probabilities are given as input. 
Selecting the mutation is made with a roulette wheel 
selection [9]. Null mutation and crossover are also included 
in the wheel. The standard crossover is implemented as a 
traditional one-point crossover where the crossover point is 
selected randomly. Each individual has a chance of 
reproducing in each generation: if the first roulette selection 
lands on a mutation, another selection is performed after the 
mutation has been administered. If the second selection lands 
on the crossover slice, the individual may produce offspring. 
In any other case, the second selection is not taken into 
account. 

Additionally, a corrective operation is performed to 
ensure that the architecture stays coherent. The operation 
ensures that the patterns present in the system stay coherent 
and “legal”, and checks that no anomalies are brought to the 
design, such as interfaces without any users or tasks 
implementing more than one interface. 

D. Fitness Function and Selection 

The fitness function is based on widely used software 
metrics [2]. The biggest modifications to the basic metrics 
include taking into account the positive effect of interfaces 
and the dispatcher and client-sever architecture styles in 
terms of modifiability, as well as the negative effect of the 
dispatcher and server in terms of efficiency. A complexity 
metric is added to penalize having many classes and 
interfaces. 

Dividing the fitness function into sub-functions answers 
the demands of the real world. By separating efficiency and 
modifiability, which are especially difficult to optimize 
simultaneously, we can assign a bigger weight to the more 
desired quality aspect. When wi is the weight for the 

respective sub-fitness sfi, the fitness function fc(x) for 
chromosome x can be expressed as   

fc(x) = w1∗sf1 – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5.
Here, sf1 measures positive modifiability, which takes 

into account how well interfaces are used. In addition, calls 
between operations that are handled via message dispatcher 
are rewarded, and the sensitiveness to variation of the 
operations is used to enhance the reward. The message 
dispatcher is considered to have exceptional potential in 
increasing the independency of different component, and is 
thus given a very high reward, which has the drawback of 
potentially dominating the fitness value. Negative 
modifiability is calculated in sf2 by penalizing direct calls 
between classes.  

As for efficiency, sf3 measures positive efficiency by 
rewarding structures which lead to minimal amount of calls 
between different classes as well as calls between operations 
within the same class. The operation’s required amount of 
data is also considered and used to increase the reward. 
Negative efficiency (sf4) in turn counts the relation of calls 
between classes and within classes, and the amount of calls 
to the message dispatcher and through servers, which are 
especially penalized by taking into account the frequency of 
calls to the operations involved. 

Finally, complexity is penalized in sf5 by calculating the 
amount of classes and interfaces. 

Selecting the individuals for each generation is also made 
with the roulette wheel method. Here the size of each slice is 
based on the rank of an individual. This is combined with 
elitism to ensure that the very top of each population is kept 
for the next generation.

IV. COMPLEMENTARY CROSSOVER

In this paper, we compare the standard crossover to 
complementary crossover and complementary gene-selective 
crossover. The complementary crossover attempts to 
combine parents so that they represent different fitness 
aspects. In the beginning of a generation cycle, all 
individuals are sorted in ascending order based on their 
modifiability and efficiency fitness values. An individual’s 
ranks in the lists are referred to as its modifiability and 
efficiency rank, respectively. If an individual’s modifiability 
rank is higher than its efficiency rank, then the individual is 
placed in the mother pool. Otherwise, it is placed in the 
father pool. Thus, the mothers represent modifiable 
individuals, while the fathers represent efficient individuals. 

The individuals picked for reproduction are chosen in the 
standard roulette wheel selection. Once the parents are 
selected, they are coupled based on the pool division. Only 
mother-father pairs are allowed in crossover; if there are 
more of one or the other, they are simply left as they are in 
the population. In this case, the crossover point is still chosen 
randomly, and two offspring are produced, as with the 
standard crossover. 

The complementary gene-selective crossover uses the 
same parent selection process as the simple complementary 
crossover, but further attempts to take advantage of the 
different properties of the parents by searching for an 
optimal crossover point. This is done by searching for the 
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optimal blocks in the parents: the most modifiable piece of 
architecture in the mother, and the most efficient section of 
the father. 

The blocks are located by using the maximum contiguous 
subsequence sum algorithm [16]. Each supergene is assigned 
its individual fitness value for modifiability and efficiency. 
This value can be calculated by the change it causes in the 
fitness values. Two integer vectors, one for modifiability and 
one for efficiency, are achieved, where the integer value in 
index i is the respective quality value for supergene i. The 
maximum contiguous subsequence sum is then calculated for 
both vectors, and the first and last indexes for the 
subsequence are recorded.  

In order to keep intact both the modifiability block 
provided by the mother and the efficiency block provided by 
the father, the crossover point cp needs to be selected so that 
it lands between the blocks. Thus, if the modifiability block 
begins at index l and ends at index k, and the efficiency 
block begins at index m and ends at index p, where k < m and 
p < n, n being the number of operations, cp is selected 
randomly so that k < cp < m. The complementary, gene-
selective crossover is illustrated in Figure 5, where two 
parents are combined to create an offspring with the best 
blocks from each. Note that for the complementary gene-
selective crossover only one offspring is produced, as there is 
no sense to create one optimal offspring and one “leftover” 
offspring.   

Also, if the blocks of the initial mother-father pair 
overlap, another father is selected from those selected for 
crossover until either a suitable pair for the current mother 
has been found or there are no more fathers selected for 
crossover, in which case the mother is left as it was in the 
population and does not participate in crossover. 

l k

m p

cpkl m p

mother

father

child

Figure 5. Complementary gene-selective crossover 

V. EXPERIMENTS

We used two sample systems, the robowar and the ehome 
to see how the different approaches to crossover affect the 
development of the fitness curve. In our experiments we 
used a population of 100 individuals and 250 and 750 
generations. The curves are averages of 20 test runs. The y-
value of the curve represents the average fitness of the 10 
best individuals in each generation.  For all tests, the 
probability for crossover was set to 4%. The weights for all 
sub-fitnesses were set to 1.  

In Figures 6-9 the fitness values obtained in our tests are 
depicted in logarithmic scale. This is due to the high fitness 
values caused by the heavy use of message dispatcher, as 

mentioned in Section III. The logarithmic scale requires that 
the fitness values must be non-negative. However, this is not 
always the case if the function is defined as explained in 
Section III. To that end, we have added a constant (1243, to 
be exact) to all our fitness values before drawing the curves 
in Figures 6-9.  

Figure 6 depicts the fitness curves for the different 
crossovers for ehome. As can be seen, the standard crossover 
curve remains very stable as the growth is so small it does 
not show on logarithmic scale (change in actual fitness 
values is about 250 “fitness units”). The complementary 
crossovers behave very differently, as they first begin 
descending, but once they start to actually ascend, they 
achieve much higher values than the standard crossover. At 
this point, merely selecting parents would appear to achieve 
better value than if also the crossover point is selected. 
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Figure 6. Fitness curves for different crossovers and 250 generations for 

ehome 

The rather odd slump in the development of the 
complementary crossover curves is interesting, as weaker 
individuals seem to appear and even more curiously survive 
in the population. This can be explained by the relation of the 
different quality attributes, and we will discuss it further in 
Section VI.  
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Figure 7. Fitness curves for different crossovers and 250 generations for 

robowar 

Figure 7 shows the respective fitness curves for the 
robowar system. In this case the difference between the 
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standard and complementary crossovers is drastic: the fitness 
curve for the standard crossover develops minimally, while 
the complementary crossover curves express exponential 
growth. Here the most refined crossover, where also the 
crossover point is selected, already dominates after 250 
generations.  

Especially because of the curves for ehome, where there 
was minimal development compared to the robowar curves,  
we also wanted to see what kind of results could be achieved 
with longer runs, and ran the same tests, only now increasing 
the number of generations to 750. Figure 8 shows the fitness 
curves for ehome with 750 generations.  The most advanced 
crossover, complementing parents with gene selection, has 
now risen to the top, and the complementary crossovers 
develop steadily, while the fitness curve for the standard 
crossover shows very little development. 
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Figure 8. Fitness curves for different crossovers and 750 generations for 
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Figure 9. Fitness curves for different crossovers and 750 generations for 

robowar 

Figure 9 shows the fitness curves for robowar with 750 

generations.  The trend here is the same as with 250 

generations: the highest fitness values are achieved when 

both parents and the crossover point are selected, i.e., with 

the complementary gene-selective crossover. Here the 

exponential shape of the curve that could already be seen 

within 250 generations is even clearer. This can be explained 

partially by the structure of the robowar system. Compared 

to ehome, it contains smaller classes and more connections 

between classes. Thus, there are more possibilities to add 

modifiability increasing patterns between classes and 

dispatcher connections between responsibilities. This, in 

turn. results in more building blocks, and especially the 

modifiability block can grow extremely large. The standard 

crossover fitness curve does develop too, but the change is so 

minimal that it does not show on the logarithmic scale. 

VI. DISCUSSION

In addition to fitness curves, the actual architecture 
proposals should be evaluated in order to determine the 
complete effect of the presented crossover operations. The 
most visible effect is the appearance of the message 
dispatcher architecture style. With the standard crossover 
(250 generations), there were no solutions for the ehome 
system where the message dispatcher was present.  When the 
parents were selected, the message dispatcher was present in 
18 of 20 cases, and when also the crossover point was 
selected, the message dispatcher appeared in all of the 
solutions. For the robowar system, the message dispatcher 
was present in none of the solutions achieved with the 
standard crossover, while with both versions of 
complementary crossover it was present in all of the 
solutions (after 250 generations). With the longer runs (750 
generations), the dispatcher is present in all cases for both 
systems when the either complementary crossover is used, 
but in none of the cases for the standard crossover.  

Thus, it seems that the new crossovers enable more 
controversary mutations to appear and survive throughout 
the generations. Even solutions that temporarily weaken the 
result are accepted. Initially, there are no or very few patterns 
in the architecture, and thus it is as efficient as possible, 
considering the null architecture (optimal efficiency would 
be achieved by placing all responsibilities in the same class). 
Thus, applying mutations increases modifiability and 
decreases efficiency. The complementary crossover enables 
more drastic changes, where initially the negative effect in 
efficiency and complexity is larger than the positive effect on 
modifiability. Thus the overall result is that the total fitness 
decreases. 

The message dispatcher is a perfect example where with 
only a few connections, the penalty in terms of efficiency is 
much bigger than the reward in terms of modifiability. 
However, when the parents are chosen from different pools, 
the mothers are most likely individuals where the dispatcher 
is present, as it has the biggest single effect on the 
modifiability fitness. Furthermore, the “modifiability block” 
found in gene-selective crossover is also most likely to be a 
series of operations that communicate through the message 
dispatcher.  

Figure 10 depicts an example solution architecture for 
ehome, achieved using the complementary gene-selective 
crossover.  For clarity, the patterns have been drawn using a 
shorthand notation, with dashed boxes. This example shows 
how communication between classes is centered to message 
dispatcher, and very few classes communicate directly. This 
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is especially beneficial, when classes operate as individual 
units, and direct communication is undesired.  

Several Template Method, Strategy and Adapter patterns 
can also be seen in the proposed solution.  For example, the 
Template Method related to the Coffee Machine (extracting 
the showCoffeeMachineStatus operation) seems like a 
particularly wise solution, as the operation has a high 
variability level, and the implementation is very likely to be 
changed if the system is updated. 

Figure 10. Example solution for ehome 

VII. CONCLUSIONS

We have presented experimental results achieved with 
complementary (gene-selective) crossover, applied to 
software architecture design. We hypothesized that it would 
be beneficial to take into account the strengths of different 
individuals in crossover, and to try to combine the strengths 
of the parents. Our experiments suggest that the comple-
mentary crossover and its more refined, gene-selective 
version both provide more versatility in the produced 
architectures and enable more complex solutions, leading to 
significantly better fitness averages.  

Thus, it seems that the complementary crossover should 
be preferred for genetically synthesizing software 
architectures, as many design choices do not provide instant 
reward, and allowing a momentary weakening in fitness 
value will result in better results over a longer period of time. 
However, the complementary crossover has its weaknesses: 
it favored “critical” mutations (message dispatcher), which 
are desirable in certain types of systems but less desirable in 
others. This suggests that more tests are required on different 
kinds of example systems and the crossover and its interplay 
with the fitness function should be further studied. 

Finally, it should be emphasized that since the 
architecture proposals produced by a GA always carry a 
random element, it is advisable to produce a (small) set of 
candidate proposals which are subject to human selection. 
We are currently studying the construction of a Pareto front 
[3] of such proposals with respect to the fitness metrics used.  
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Chapter 18

Synthesizing Architecture from Requirements:

A Genetic Approach

Outi R€aih€a, Hadaytullah Kundi, Kai Koskimies, and Erkki M€akinen

Abstract The generation of software architecture using genetic algorithms is

studied with architectural styles and patterns as mutations. The main input for the

genetic algorithm is a rudimentary architecture representing the functional decom-

position of the system, obtained as a refinement of use cases. Using a fitness

function tuned for desired weights of simplicity, efficiency and modifiability, the

technique produces a proposal for the software architecture of the target system,

with applications of architectural styles and patterns. The quality of the produced

architectures is studied empirically by comparing these architectures with the ones

produced by undergraduate students.

18.1 Introduction

A fundamental question of computing is: “What can be automated?” [1]. Is soft-

ware architecture design inherently a human activity, sensitive to all human

weaknesses, or could it be automated to a certain degree? Given functional and

quality requirements for a particular system, could it be possible to generate a

reasonable software architecture design for the system automatically, thus avoiding

human pitfalls (like the Golden Hammer syndrome [2])? Besides being interesting

from the viewpoint of understanding the limits of computing and the character of

software architecture, we see answers to these questions relevant from a pragmatic

viewpoint as well. In particular, if it turns out that systems can successfully design

systems, various kinds of software generators can optimize the architecture according

to the application requirements, self-sustaining systems [3] can dynamically improve

their own architecture in changing environments, and architects can be supported by

automated design tools.

A possible approach to automate software architecture design is to mechanize the

human process of architecture design into a tool that selects or proposes architectural

solutions using similar rules as a human would. A good example of this approach is

ArchE, a semi-automated assistant for architecture design [4]: the design knowledge
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is codified as a reasoning framework that is applied to direct the design process.

In this approach, the usefulness of the resulting architecture largely depends on the

intelligence and codified knowledge of the tool. This is a potential weakness as far

as automation is concerned: it is hard to capture sufficient design knowledge in

a reasoning framework, which decreases the automation level.

An alternative approach is not to mechanize the process and rules of architecture

design, but simply give certain criteria for the “goodness” of an architecture, and let

the tool try to come up with an architecture proposal that is as good as possible,

using whatever technique. This approach requires no understanding of the design

process, but on the other hand it requires a characterization of a “good” architecture.

If suitable metrics can be developed for different quality attributes of software

architectures, this approach is more light-weight than the former. In particular, this

approach is more amenable for an automated design process, as it can be presented

essentially as a search problem. We will briefly review some existing work related

to this approach in Sect. 18.3.

In this chapter, we will follow the latter approach. More precisely, we will make

the following assumptions to simplify the research setup. First, we assume that

the architecture synthesizer can rely on a “null architecture” that gives the basic

decomposition of the functionalities into components, but pays no attention to the

quality requirements. We will later show how the null architecture is derived from

use cases. Second, we assume that the architecture is obtained by augmenting the

null architecture with applications of general architectural solutions. Such solutions

are typically architectural styles and design patterns [5]. Third, we assume that

the goodness of an architecture can be inferred by evaluating a representation of the

architecture mechanically against the quality requirements of the system. Each

application of a general solution enhances certain quality attributes of the system,

at the expense of others.

With these assumptions, software architecture design becomes essentially a search

problem: find a combination of applications of the general solutions that satisfies the

quality requirements in an optimal way. However, given multiple quality attributes

and a large number of general solutions, the search space becomes huge for a system

with realistic size. This leads us to the more refined research problem discussed in this

chapter: to what extent could we use meta-heuristic search methods, like genetic

algorithms (GA) [6, 7], to produce a reasonable software architecture automatically

for certain functional and quality requirements?

The third assumption above is perhaps the most controversial. Since there is

no exact definition of a good software architecture, and different persons would

probably in many cases disagree on what is a good architecture, this assumption

means that we can only approximate the evaluation of the goodness. Obviously,

the success of a search method depends on how well we can capture the intuitive

architecture quality in a formula that can be mechanically evaluated.

In this paper, we consider three quality attributes, modifiability, efficiency, and

simplicity; these correspond roughly to the ISO9126 quality factors changeability,

time behavior and understandability [8], respectively. We base our evaluation of all

these factors on existing software metrics [9], but extend them for modifiability and
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efficiency by exploiting knowledge about the effect of the solutions on these

two quality factors. Optional information given by the designer about certain

functionalities is also taken into account. In addition, the designer can give more

precise modifiability requirements as change scenarios [10], taken into account in

the evaluation of modifiability as well.

Although a number of heuristic search methods could be used here [11], we are

particularly interested in GA for two main reasons. First, the structural solutions

visible in the living species in nature provide an indisputable evidence of the power

of evolution in finding competitive system architectures. Second, crossover can be

naturally interpreted for software architecture, as long as certain consistency rules

are followed. Crossover can be viewed as a situation where two architects provide

alternate designs for a system, and decide to merge their solutions, (hopefully)

taking the best parts of both designs.

This chapter proceeds as follows. Background information on genetic algorithms

and the proposed evolutionary software architecture generation process are discussed

in Sect. 18.2. Existing work related to search-based approaches to software architec-

ture design is briefly reviewed in Sect. 18.3. The GA realization in our approach

is discussed in Sect. 18.4, concretized with an example system. An application of

the technique for the example system is presented in Sect. 18.5, and an empirical

experiment evaluating the quality of the genetically produced software architecture

is discussed in Sect. 18.6. Finally, we conclude with some remarks about the

implications of the results and future directions of our work.

18.2 Background

18.2.1 Genetic Algorithms

Meta-heuristics [12] are commonly used for combinatorial optimization, where the

search space can become especially large. Many practically important problems are

NP-hard, making exact algorithms not feasible. Heuristic search algorithms handle

an optimization problem as a task of finding a “good enough” solution among all

possible solutions to a given problem, while meta-heuristic algorithms are able to

solve even the general class of problems behind the certain problem. A search will

optimally end in a global optimum in a search space, but at the very least it will

give some local optimum, i.e., a solution that is “better” than alternative solutions

nearby. A solution given by a heuristic search algorithm can be taken as a starting

point for further searches or be taken as the final solution, if its quality is considered

high enough.

We have used genetic algorithms, which were invented by John Holland in the

1960s. Holland’s original goal was not to design application specific algorithms, but

rather to formally study the ways of evolution and adaptation in nature and develop

ways to import them into computer science. Holland [6] presents the genetic
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algorithm as an abstraction of biological evolution and gives the theoretical frame-

work for adaptation under the genetic algorithm.

In order to explain genetic algorithms, some biological terminology needs to be

clarified. All living organisms consist of cells, and every cell contains a set of

chromosomes, which are strings of DNA and give the basic information of the

particular organism. A chromosome can be further divided into genes, which in turn
are functional blocks of DNA, each gene representing some particular property of

the organism. Each gene is located at a particular locus of the chromosome. When

reproducing, crossover occurs and genes are exchanged between the pair of parent

chromosomes. The offspring is subject to mutation where single bits of DNA are

changed. The fitness of an organism implies the probability that the organism will

live to reproduce and carry on to the next generation [7]. The set of chromosomes at

hand at a given time is called a population.
During the evolution, the population needs to change to fit better the

requirements of the environment. The changing is enabled by mutations and

crossover between different chromosomes (i.e., individuals), and, due to natural

selection, the fittest survive and are able to participate in creating the next

generation.

Genetic algorithms are a way of using the ideas of evolution in computer science

to find a good solution from a very large search space, the goal obviously being that

the found solution is as good as possible. To operate with a genetic algorithm,

one needs an encoding of the solution, i.e., a representation of the solution in a form

that can be interpreted as a chromosome, an initial population, mutation and

crossover operators, a fitness function (to determine the “goodness” of a solution)

and a selection operator for choosing the survivors for the next generation.

In addition, there are also many parameters regarding the GA that need to be

defined and greatly affect the outcome. These parameters are the population size,

number of generations (often used as the terminating condition) and the mutation

and crossover probabilities. Having a large enough population ensures variability

within a generation, and enables a wide selection of different solutions at

every stage of evolution. However, a larger population always means more

fitness evaluations and thus requires more computation time. Similarly, the

more generations the algorithm is allowed to run, the higher the chances are

that it will be able to reach the global optimum. However, again, letting an

algorithm run for, say, 10,000, generations will most probably not be beneficial:

if the operations and parameters have been chosen correctly, a reasonably good

solution should have been found much earlier.

Mutation and crossover probabilities both affect the speed of evolution. If the

probabilities are too high, there is the risk that the application of genetic operations

becomes random instead of guided. Vice versa, if the probabilities are too low there

is the risk that the population will evolve too slowly, and no real diversity will exist.

A theory to be noted with genetic operators is the building block hypothesis, which

states that a genetic algorithm combines a set of sub-solutions, or building blocks,

to obtain the final solution. The sub-solutions that are kept over the generations

usually have an above-average fitness [13]. The crossover operator is especially
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sensitive to this hypothesis, as an optimal crossover would thus combine two rather

large building blocks in order to produce an offspring.

18.2.2 Overview of Evolutionary Software Architecture
Generation

Software architecture can be understood in different ways. The definitions of

software architecture usually cover the high-level structure of the system, but in

addition to that, often also more process-related aspects like design principles and

rationale of design decisions are included [14, 15]. To facilitate our research, we

adopt a narrow view of software architecture, considering only the static structural

aspect, expressible as a UML (stereotyped) class diagram. In terms of the 4 þ 1

views of software systems [16], this corresponds to a (partial) logical view. While a

similar approach could be applied to generate other views of software architectures

as well, there are some fundamental limitations in using heuristic methods. For

example, it is very difficult to produce the rationale for the design decisions

proposed by a heuristic method.

A central issue in our approach is the representation of the functional and quality

requirements of the system, to be given as input for the genetic synthesis of the

architecture. For expressing functional requirements we need to identify and

express the primary use cases of the system, and refine them into sequence diagrams

depicting the interaction between major components required to accomplish the use

cases. This is a manual task, as the major components have to be decided, typically

based on domain analysis.

In our approach, a so-called null architecture represents a basic functional

decomposition of the system, given as a UML class diagram. No quality

requirements are yet taken into account in the null architecture, although it does

fulfill the functional requirements. The null architecture can be systematically

derived from the use case sequence diagrams: the (classes of the) participants in

the sequence diagram become the classes, the operations of a class are the incoming

call messages of the participants of that class, and the dependency relationships

between the classes are inferred from the call relationships of the participants. This

kind of generation of a class diagram can be automated [17], but in the experiments

discussed here we have done this manually.

Depending on the quality attributes considered, various kinds of information

may need to be associated with the operations of the null architecture. In our study

we consider three quality attributes: simplicity, modifiability, and efficiency. Sim-

plicity is an operation-neutral property in the sense that the characteristics of the

operations have no effect on the evaluation of simplicity. In contrast, modifiability

and efficiency are partially operation-sensitive. For evaluating the modifiability of a

system, it is useful to know which operations are more likely to be affected by

changes than others. Similarly, for evaluating efficiency it is often useful to know
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something about the frequency and resource consumption of the operations. For

example, if an operation that is frequently needed is activated via a message

dispatcher, there is a performance cost because of the increased message traffic.

To allow the evaluation of modifiability and efficiency, the operations can be

annotated with this kind of optional information. If this information is insufficient,

the method may produce less satisfactory results than with the additional informa-

tion. However, no actual “hints” on how the GA should proceed in the design

process are given. The null architecture gives a skeleton for the system and does not

give any finer details regarding the architectures. The information regarding the

operation merely helps in evaluating the solutions but influences in no direct way

the choices of the GA.

The specific quality requirements of a system are represented in two ways. First,

the fitness function used in the GA is basically a weighted sum of the values of

individual quality attributes. By changing the weights the user can emphasize or

downplay some quality attributes, or remove completely certain quality attributes

as requirements. Second, the user can optionally provide more specific quality

requirements using so-called scenarios. The scenario concept is inspired by the

ATAM architecture evaluation method [10], where scenarios are imaginary

situations or sequences of events serving as test cases for the fulfilling of a certain

quality requirement. In principle, scenarios could be used for any quality attribute,

but their formalization is a major research issue outside the scope of this work. Here

we have used only modifiability scenarios, which are fairly easy to formalize. For

example, in our case a scenario could be: “With 50% probability operation T needs

to be realized in different versions that can be changed dynamically.” This is

expressed for the GA tool using a simple formal convention covering most usual

types of change scenario contents.

Figure 18.1 depicts the overall synthesis process. The functional requirements

are expressed as use cases, which are refined into sequence diagrams. This is done

manually by exploiting knowledge of the major logical domain entities having

functional responsibilities. The null architecture, a class diagram, is derived mechani-

cally from the sequence diagrams. The quality requirements are encoded for the GA

as a fitness function, which is used to evaluate the produced architectures. Weights

can be given as parameters to emphasize certain quality attributes, and scenarios can

be used for more specific quality (modifiability) requirements. When the evolution

begins, the null architecture is used by the GA to first create an initial population of

architectures and then, after generations of evolution, the final architecture proposal is

presented as the best individual of the last generation. New generations are produced

by applying a fixed library of standard architectural solutions (styles, patterns, etc.) as

mutations, and crossover operations to combine architectures. The probabilities of

mutations and crossover can be given as parameters as well. The GA part is discussed

in more detail in Sect. 18.4.

The influence of human input is present in defining the use cases which lead to

the null architecture and giving the parameters for the GA. The use cases must be

defined manually, as they depict the functional requirements of a system: automati-

cally deciding what a system is needed for is not sensible. Giving the parameters for
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the GA, in turn, is necessary for the algorithm to operate. It is possible to leave

everything for the algorithm, and give each mutation the same probability and each

part of the fitness function the same weight. In this case, the GA will not favor any

design choice or quality aspect over another. If, however, the human architect has

a vision that certain design solutions would be more beneficial for a certain system

or feels that one quality aspect is more important than some other, it is possible to

take these into account when defining the parameters.

Thus, the human restricts the GA in terms of defining the system functionality

and guides the GA in terms of defining parameters. Additionally, the GA is

restricted by the solution base. The human can influence the solution base by

“removing solutions,” that is, by giving them probability 0, and thus making it

impossible for the GA to use them. But in any case the GA cannot move beyond the

solution base: if a pattern is not defined in the solution base, it cannot be used, and

thus the design choices are limited to those that can be achieved as a combination

of the specified solutions. Currently the patterns must be added to the solution base

by manual coding.

18.3 Related Work

Search-based software engineering applies meta-heuristic search techniques to

software engineering issues that can be modeled as optimization problems.

A comprehensive survey of applications in search-based software engineering has

been made by Harman et al. [18]. Recently, there has been increasing interest in
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software design in the field of search-based software engineering. A survey on this

subfield has been conducted by R€aih€a [19]. In the following, we briefly discuss the

most prominent studies in the field of search-based software design.

Bowman et al. [20] study the use of a multi-objective genetic algorithm

(MOGA) in solving the class responsibility assignment problem. The objective is

to optimize the class structure of a system through the placement of methods and

attributes within given constraints. So far they do not demonstrate assigning

methods and attributes “from scratch” (based on, e.g., use cases), but try to find

out whether the presented MOGA can fix the structure if it has been modified.

Simons and Parmee [21, 22] take use cases as the starting point for system

specification. Data is assigned to attributes and actions to methods, and a set of uses

is defined between the two sets. The notion of class is used to group methods and

attributes. This approach starts with pure requirements and leaves all designing to

the genetic algorithm. The genetic algorithm works by changing the allocation of

attributes and methods.

Our work differs from those of Bowman et al. [20] and Simons and Parmee

[21, 22] by operating on a higher level. The aforementioned studies concentrate

only on class-level structure, and single methods and attributes. Bowman et al. [20]

also do not present a method for straightforward design, but are only at the level

where the algorithm can correct a set of errors introduced for testing purposes.

Simons and Parmee [21, 22] do start from roughly the same level as we do

(requirements derived from use cases), but they consider only the assignment of

methods and attributes to classes.

Amoui et al. [23] use the GA approach to improve the reusability of software by

applying architecture design patterns to a UML model. The authors’ goal is to find

the best sequence of transformations, i.e., pattern implementations. Used patterns

come from the collection presented by Gamma et al. [24]. From the software design

perspective, the transformed design of the best chromosomes are evolved so that

abstract packages become more abstract and concrete packages in turn become

more concrete. When compared to our work, this approach only uses one quality

factor (reusability) instead of several contradicting quality attributes. Further, the

starting point in this approach is an existing architecture that is more elaborated

than our null architecture.

Seng et al. [25] describe a methodology that computes a subsystem decomposi-

tion that can be used as a basis for maintenance tasks by optimizing metrics and

heuristics of good subsystem design. GA is used for automatic decomposition. If

a desired architecture is given, and there are several violations, this approach

attempts to determine another decomposition that complies with the given archi-

tecture by moving classes around. Seng et al. [26] have continued their work by

searching for a list of refactorings, which deal with the placement of methods and

attributes and inheritance hierarchy.

O’Keeffe and Ó Cinnéide [27] have developed a tool for improving a design

with respect to a conflicting set of goals. The tool restructures a class hierarchy and

moves methods within it in order to minimize method rejection, eliminate code

duplication and ensure superclasses are abstract when appropriate. Contrary to most
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other approaches, this tool uses simulated annealing. O’Keeffe and Ó Cinnéide

[28, 29] have continued their research by constructing a tool for refactoring object-

oriented programs to conform more closely to a given design quality model. This

tool can be configured to operate using various subsets of its available automated

refactorings, various search techniques, and various evaluation functions based on

combinations of established metrics.

Seng et al. [25, 26] and O’Keeffe and Ó Cinnéide [27–29] make more substantial

design modifications than, e.g., Simons and Parmee [21, 22], and are thus closer to

our level of abstraction, but they work clearly from the re-engineering point of view,

as a well designed architecture is needed as a starting point. Also, modifications to

class hierarchies and structures are still at a lower abstraction level than the design

patterns and styles we use, as we need to consider larger parts of the system (or even

the whole system). The metrics used by Seng et al. [25, 26] and O’Keeffe and

Ó Cinnéide are also simpler, as they directly calculate, e.g., the number of methods

per class or the levels of abstraction.

Mancoridis et al. [30] have created the Bunch tool for automatic modularization.

Bunch uses hill climbing and GA to aid its clustering algorithms. A hierarchical

view of the system organization is created based on the components and relation-

ships that exist in the source code. The system modules and the module-level

relationships are represented as a module dependency graph (MDG). The goal of

the software modularization process is to automatically partition the components of

a system into clusters (subsystems) so that the resultant organization concurrently

minimizes inter-connectivity while maximizing intra-connectivity.

Di Penta et al. [31] build on these results and present a software renovation

framework (SRF) which covers several aspects of software renovation, such as

removing unused objects and code clones, and refactoring existing libraries into

smaller ones. Refactoring has been implemented in the SRF using a hybrid

approach based on hierarchical clustering, GAs and hill climbing, and it also

takes into account the developer’s feedback. Most of the SRF activities deal with

analyzing dependencies among software artifacts, which can be represented with a

dependency graph.

The studies byMancoridis et al. [30] and Di Penta et al. [31] again differ from ours

on the direction of design, as they concentrate on re-engineering, and do not aim to

produce an architecture from requirements. Also they operate on different design

levels: clustering in the case of Mancoridis et al. [30] is on a higher abstraction level,

while, e.g., removing code clones in the case of Di Penta et al.’s [31] study is on

a much more detailed level than our work.

In the self-adaptation approach presented by Menascé et al. [32], an existing

SOA based system is adapted to a changing environment by inserting fault-tolerance

and load balancing patterns into the architecture at run time. The new adapted

architecture is found by a hill climbing algorithm. This work is close to ours in the

use of architecture-level patterns and heuristic search, but this approach – as other

self-adaptation approaches – use specific run-time information as the basis of archi-

tectural transformations, whereas we aim at synthesizing the architecture based on

requirements.
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To summarize, most of the approaches discussed above are different from ours

in terms of the level of detail and overall aim: we are especially interested to shape

the overall architecture genetically, while the works discussed above consider the

problem of improving an existing architecture in terms of fairly fine-grained

mechanisms.

18.4 Realizing Genetic Algorithms for Software

Architecture Generation

18.4.1 Representing Architecture

The genetic algorithm makes use of two kinds of information regarding each

operation appearing in the null architecture. First, the basic input contains the call

relationships of the operations taken from the sequence diagrams, as well as other

attributes like estimated parameter size, frequency and variability sensitiveness,

and the null architecture class it is initially placed in. Second, the information gives

the position of the operation with respect to other structures: the interface it

implements and the design patterns [24] and styles [33] it is a part of. The latter

data is produced by the genetic algorithm.

We will discuss the patterns used in this work in Sect. 18.4.2. The message

dispatcher architecture style is encoded by recording the message dispatcher the

operation uses and the responsibilities it communicates with through the dispatcher.

Other patterns are encoded as instances that contain all relevant information regard-

ing the pattern: operations involved, classes and interfaces involved, and whether

additional classes are needed for the pattern (as in the case of Façade, Mediator

and Adapter). All this data regarding an operation is encoded as a supergene.

An example of a supergene representing one operation is given in Fig. 18.2.

The chromosome handled by the genetic algorithm is gained by collecting the

supergenes, i.e., all data regarding all operations, thus representing a whole view

of the architecture. The null architecture is automatically encoded into the chromo-

some format on the basis of the sequence diagrams. An example of a chromosome

is presented in Fig. 18.3. A more detailed specification of the architecture represen-

tation is given by R€aih€a et al. [34, 35].

calls name type frequency
parameter

size
variation class interface dispatcher

dispatcher
communications

component
class pattern
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Fig. 18.2 A supergene for operation

sg1 sg2 …. sgn-1 sgn

Fig. 18.3 Chromosome for a system with n operations (and n supergenes)
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The initial population is generated by first encoding the null architecture into

the chromosome form and creating the desired number of individuals. A random

pattern is then inserted into each individual (in a randomly selected place). In

addition, a special individual is left in the population where no pattern is initially

inserted; this ensures versatility in the population.

18.4.2 Mutations and Crossover

As discussed above, the actual design is made by adding patterns to the architecture.

The patterns have been chosen so that there are very high-level architectural styles

(message dispatcher and client-server), medium-level design patterns (Façade and

Mediator), and low-level design patterns (Strategy, Adapter and Template Method).

The particular patterns were chosen also because they mostly deal with structure

and need very little or no information of the semantics of the operations involved.

The mutations are implemented in pairs of introducing a specific pattern or remov-

ing it. The dispatcher architecture style makes a small exception to this rule: the

actual dispatcher must first be introduced to the system, after which the components

can communicate through it.

Preconditions are used to check that a pattern is applicable. If, for example, the

“add Strategy” –mutation is chosen for operation oi, it is checked that oi is called by
some other operation in the same class c and that it is not a part of another pattern

already (pattern field is empty). Then, a Strategy pattern instance spi is created.

It contains information of the new class(es) sci where the different version(s) of the
operation are placed, and the common interface sii they implement. It also contains

information of all the classes and operations that are dependent on oi, and thus use

the Strategy interface. Then, the value in the class field in the supergene sgi
(representing oi) would be changed from c to sci, the interface field would be

given value sii and the pattern field the value spi. Adding other patterns is done

similarly. Removing a pattern is done in reverse: the operation placed in a “pattern

class” would be returned to its original null architecture class, and the pattern

found in the supergene’s pattern field would be deleted, as well as any classes

and interfaces related to it.

The crossover is implemented as a traditional one-point crossover. That is, given

chromosomes ch1 and ch2 that are selected for breeding, a crossover point p is first

chosen at random, so that 0 < p< n, if the system has n operations. The supergenes
sg1. . .sgp from chromosome ch1 and supergenes sgp+1. . . sgn from ch2will form one

child, and supergenes sg1. . .sgp from chromosome ch2 and supergenes sgp+1. . . sgn
from ch1 another child.

A corrective function is added to ensure that the architectures stay coherent,

as patterns may be broken by overlapping mutations. In addition to ensuring that

the patterns present in the system stay coherent and “legal,” the corrective function

also checks that no anomalies are brought to the design, such as interfaces without

any users.
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The mutation (and crossover) points are selected randomly. However, we have

taken advantage of the variability property of operations with the Strategy, Adapter

and dispatcher communication mutations. The chances of a gene being subjected to

these mutations increase with respect to the variability value of the corresponding

operation. This should favor highly variable operations.

The actual mutation probabilities are given as input. Selecting the mutation is

made with a “roulette wheel” selection [36], where the size of each slice of the

wheel is in proportion to the given probability of the respective mutation. Null

mutation and crossover are also included in the wheel. The crossover probability

increases linearly in relation to the fitness rank of an individual, which causes the

probabilities of mutations to decrease in order to fit the larger crossover slice to the

wheel. Also, after crossover, the parents are kept in the population for selection.

These actions favor strong individuals to be kept intact through generations. Each

individual has a chance of reproducing in each generation: if the first roulette

selection lands on a mutation, another selection is performed after the mutation

has been administered. If the second selection lands on the crossover slice, the

individual may produce offspring. In any other case, the second selection is not

taken into account, i.e., the individual is not mutated twice.

18.4.3 Fitness Function

The fitness function needs to produce a numerical value, and is thus composed of

software metrics [37, 38]. The metrics introduced by Chidamber and Kemerer [9]

have especially been used as a starting point for the fitness function, and have been

further developed and grouped to achieve clear “sub-functions” for modifiability

and efficiency, both of which are measured with a set of positive and negative

metrics. The biggest modifications to the basic metrics include taking into account

the positive effect of interfaces and the dispatcher and client-server architecture

styles in terms of modifiability, as well as the negative effect of the dispatcher and

server in terms of efficiency. A simplicity metric is added to penalize having many

classes and interfaces.

Dividing the fitness function into sub-functions gives the possibility to empha-

size certain quality attributes and downplay others by assigning different weights

for different sub-functions. These weights are set by the human user in order to

guide the GA in case one quality aspect is considered more favorable than some

other. Denoting the weight for the respective sub-function sfi with wi, the core

fitness function fc(x) for architecture x can be expressed as

fc xð Þ ¼ w1
�sf1 � w2

�sf2 þ w3
�sf3 � w4

�sf4 � w5
�sf5

Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive
efficiency, sf4 negative efficiency and sf5 complexity. The sub-fitness functions are

defined as follows (|X| denotes the cardinality of X):
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sf1 ¼ |interface implementers| þ |calls to interfaces| þ |calls to server| þ |calls

through dispatcher| * ∏ (variabilities of operations called through dispatcher)

– |unused operations in interfaces| * a,
sf2 ¼ |direct calls between operations in different classes|,

sf3 ¼ ∑ (|operations dependent of each other within same class| * parameterSize)

þ ∑ (|usedOperations in same class| * parameterSize þ |dependingOperations

in same class| * parameterSize),

sf4 ¼ ∑ ClassInstabilities [23] þ (|dispatcherCalls| þ |serverCalls|) *∑ frequencies,

sf5 ¼ |classes| þ |interfaces|.

The multiplier a in sf1 emphasizes that having unused responsibilities in an

interface should be more heavily penalized. In sf3, “usedOperations in same class”

means the set of operations oi. . .ol in class C, which are all used by the same

operation om from class D. Similarly, “dependingOperations in same class” means

the set of operations ob. . .oh in classK, which all use the same operation oa in class L.
It should be emphasized that all these sub-functions calculate a numerical fitness

value for the entire system, and do not reward or penalize any specific patterns

(apart from dispatcher connections). This fitness value is the basis of the evaluation,

and weights are simply used to guide the algorithm, if needed. Each weight can be

set to 1, in which case all sub-fitnesses are considered equally important, and

the fitness value is the raw numerical value produced by the fitness calculations.

All sub-fitnesses are normalized so that their values are in the same range.

Additionally, scenarios can be used for more detailed fitness calculations.

Basically, a scenario describes an interaction between a stakeholder and the system

[39]. In our approach we have concentrated only on change scenarios. We have

categorized each scenario in three ways: is the system changed or is something

added; if changed, does the change concern semantics or implementation of the

operation, and whether the modification should be done dynamically or statically.

This categorization is the basis for encoding the scenarios. In addition, each

encoding of a scenario contains information of the operation it affects, and the

probability of the scenario occurrence. R€aih€a et al. [40] explain the scenario

encoding in more detail.

Each scenario type is given a list of preferences according to the general

guidelines of what is a preferable way to deal with that particular type of modifica-

tion. These preferences are general, and do not in any way consider the specific

needs or properties of the given system.

When scenarios are encoded, the algorithm processes the list of given scenarios,

and compares the solution for each scenario to the list of preferences. Each solution

is then awarded points according to how well it supports the scenarios, i.e., how

high the partial solutions regarding individual operations are on the preference list.

Formally, the scenario sub-fitness function sfs can be expressed as

sfs ¼
X

scenarioProbability � 100 scenarioPreference= :

Adding the scenario sub-fitness function to the core fitness function results in the

overall fitness, f xð Þ ¼ fc xð Þ þ ws � sfs
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18.5 Application

18.5.1 Creating Input

As an example system, we will use the control system for a computerized home,

called ehome. Use cases for this system are assumed to consist of logging in,

changing the room temperature, changing the unit of temperature, making coffee,

moving drapes, and playing music. In Fig. 18.4, the coffee making use case has

been refined into a sequence diagram.

Since we are here focusing on the architecture of the actual control system, we

ignore user interface issues and follow a simple convention that the user interface is

represented by a single (subsystem) participant that can receive use case requests.

Accordingly, in the null architecture the user interface is in this example repre-

sented by a single component that has the use cases as operations.

To refine this use case, we observe that we need further components. The main

unit for controlling the coffee machine is introduced as CoffeeManager; addition-

ally, there is a separate component for managing water, WaterManager. If a

component has a significant state or it manages a significant data entity (like, say,

a data base), this is added to the participant box. In this case, CoffeeManager and

WaterManager are assumed to have significant state information.

The null architecture in Fig. 18.5 (made by hand in this study) for the ehome

system can be mechanically derived from the use case sequence diagrams. The

null architecture only contains use relationships, as no more detail is given for the

algorithm at this point. The null architecture represents the basic functional decom-

position of the system.
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Fig. 18.4 Make coffee use case refined
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Fig. 18.5 Null architecture for ehome
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After the operations are derived from the use cases, some properties of the

operations can be estimated to support the genetic synthesis, regarding the amount

of data an operation needs, frequency of calls, and sensitiveness for variation.

For example, it is likely that the coffee machine status can be shown in several

different ways, and thus it is more sensitive to variation than ringing the buzzer

when the coffee is done. Measuring the position of drapes requires more infor-

mation than running the drape motor, and playing music quite likely has a higher

frequency than changing the password for the system. Relative values for the

chosen properties can similarly be estimated for all operations. This optional

information, together with operation call dependencies, is included in the infor-

mation subjected to encoding.

Finally, different stakeholders’ viewpoints are considered regarding how the

system might evolve in the future, and modifiability scenarios are formulated

accordingly. For example, change scenarios for the ehome system include:

• The user should be able to change the way the music list is showed (90%)

• The developer should be able to change the way water is connected to the coffee

machine (50%)

• The developer should be able to add another way of showing the coffee machine

status (60%).

A total of 15 scenarios were given for the ehome system.

18.5.2 Experiment

In our experiment, we used a population of 100 and 250 generations. The fitness

curve presented is an average of 10 test runs, where the actual y-value is the average

of 10 best individuals in a given population. The weights and probabilities for the

tests were chosen based on previous experiments [34, 35, 40].

We first set all the weights to 1, i.e., did not favor any quality factor over another.

The architecture achieved this way was quite simple. There were fairly well-placed

instances of all low-level patterns (Adapter, Template Method and Strategy), and the

client-server architecture style was also applied. Strikingly, however, the message

dispatcher was not used as the general style, which we would have expected for this

type of system. Consequently, we calibrated the weights by emphasizing positive

modifiability over other quality attributes. Simultaneously negative efficiency was

given a smaller than usual weight, to indicate that possible performance penalty of

solutions increasing modifiability is not crucial. The fitness curve for this experiment

is given in Fig. 18.6. As can be seen, the fitness curve develops steadily, and most

improvement takes place between 1 and 100 generations, which is expected, as the

architecture is still simple enough that applying the different mutations is easy.

An example solution with increased modifiability weight is depicted in Fig. 18.7.

Now, the dispatcher architecture style is present, and there are also more Strategy

patterns than in the solution where all quality factors were equally weighted. This is

a natural consequence of the weighting: the dispatcher has a significant positive
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effect on modifiability, and since it is not punished too much for inefficiency, it

is fairly heavily used as a communication pattern. The same applies to Strategy,

although in smaller scale.

18.6 Empirical Study on the Quality of Synthesized

Architectures

As shown in the previous section, genetic software architecture synthesis appears

to be able to produce reasonable architecture proposals, although obviously they

still need some human polishing. However, since the method is not deterministic,

it is essential to understand what is the goodness distribution of the proposals, that

is, to what extent the architect can rely on the quality of the generated architecture.

To study this, we carried out an experiment where we wanted to relate the quality of

the generated architectures to the quality of the architectures produced by students.

The setup and results of this experiment are discussed in the sequel.

18.6.1 Setup

18.6.1.1 Producing Architectures

First, a group of 38 students from an undergraduate software engineering class was

asked to produce an architecture design for the ehome system. Most of the students
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were third year Software Systems majors from Tampere University of Technology,

having participated in a course on software architectures.

The students were given essentially the same information that is used as input for

the GA, that is, the null architecture, the scenarios, and information about the expected

frequencies of operations. In addition, students were given a brief explanation of

the purpose and functionality of the system. They were asked to design the architec-

ture for the system, using only the same architecture styles (message dispatcher and
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Fig. 18.7 Example architecture for ehome when modifiability is weighted over other quality

factors
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client-server) and design patterns (Façade, Mediator, Strategy, Adapter, Template

Method) that were available for GA. The students were instructed to consider effi-

ciency, modifiability and simplicity in their designs, with an emphasis on modifia-

bility. It took 90 min in the average for the students to produce a design.

In this experiment we wanted to evaluate genetically synthesized solutions

against the student solutions in pairs. The synthesized solutions were achieved in

38 runs, out of which ten runs were randomly selected, resulting in ten architecture

proposals. Each run took approximately 1 min (i.e., it took 1 min for the synthesizer

to produce one solution). The setup for the synthesized architectures was the same

as in the example given in Sect. 18.5.

18.6.1.2 Evaluating Architectures

After the students had returned their designs, the assistant teacher for the course

(impartial to the GA research) was asked to grade the designs as test answers on a

scale of 1–5, five being the highest. The solutions were then categorized according

to the points they achieved. From the categories of 1, 3 and 5, one solution for each

category was randomly selected. These architectures were presented as grading

examples to four software engineering experts. The experts were researchers and

teachers at the Department of Software Systems at Tampere University of Technol-

ogy. They all had a M.Sc. or a Ph.D. degree in Software Systems or in a closely

related discipline and several years of expertise from software architectures, gained

by research or teaching.

In the actual experiment, the experts were given ten pairs of architectures. One

solution in each pair was a student solution, selected randomly from the set of

student solutions, and one was a synthesized solution. The solutions were edited in

such a way that it was not possible for the experts to know which solution was

synthesized. The experts were then asked to give each solution 1, 3 or 5 points.

They were given the same information as the students regarding the requirements.

The experts were not told how the solutions were achieved, i.e., that they were

a combination of student and synthesized solutions. They were merely asked to help

in evaluating how good solutions a synthesizer could make.

18.6.2 Results

The scores given by the experts (e1 � e4) to all the automatically synthesized

architectures (a1 � a10) and architectures produced manually by the students

(m1 � m10) are shown in Table 18.1. The points in Table 18.1 are organized so

that the points given to the synthesized and human-made solutions of the same pair

(ai, mi) are put next to each others so the pairwise points are easily seen. The result

of each comparison is one of the following
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• The synthesized solution is considered better (ai > mi, denoted later by +)

• The human-made solution is considered better (mi > ai , denoted later by �), or

• The solutions are considered equal (ai ¼ mi, denoted latter by 0).

By doing so, we lose some information because one of the solutions is consid-

ered simply “better” even in the situation when it receives 5 points while the other

receives 1 point. As can be seen in Table 18.1, this happens totally six times. In five

of these six cases the synthesized solution is considered clearly better than the

human-made solution, and only once vice versa. As our goal is to show that the

synthesized solutions are at least as good as the human-made solutions, this lost of

information does not bias the results.

The best synthesized solutions appear to be a3 and a10, with two 3’s and two 5’s.

In solution a3 the message dispatcher was used, and there were quite few patterns,

so the design seemed easily understandable while still being modifiable. However,

a10 was quite the opposite: the message dispatcher was not used, and there were

especially as many as eight instances of the Strategy pattern, when a3 had only two.

There were also several Template Method and Adapter pattern instances. In this

case the solution was highly modifiable, but not nearly as good in terms of

simplicity. This demonstrates how very different solutions can be highly valued

with the same evaluation criteria, when the criteria are conflicting: it is impossible

to achieve a solution that is at the same time optimally efficient, modifiable and still

understandable.

The worst synthesized solution was considered to be a4, with three 1’s and one 3.

This solution used the message dispatcher but also the client-server style was

eagerly applied. There were not very many patterns, and the ones that existed

were quite poorly applied. Among the human-made solutions, there were three

equally scored solutions (m5, m8, and m10).

Table 18.2 shows the numbers of the preferences of the experts, with “+” indicating

that the synthesized proposal was considered better than the student proposal, “�”

indicating the opposite, and “0” indicating a tie. Only one (e1) of the four experts

preferred the human-made solutions slightly more often than synthesized solution,

while two experts (e2 and e4) preferred the synthesized solutions clearly more often

than the human-made solutions. The fourth expert (e3) preferred both types of solu-

tions equally. There were totally 17 pairs of solutions with better score for the

synthesized solution, nine pairs preferring the human-made solution, and 14 ties.

The above crude analysis clearly indicates that in our simple experiment, the

synthesized solutions were ranked at least as high as student-made solutions. In

order to get more exact information about the preferences and finding confirmation

Table 18.1 Points for synthesized solutions and solutions produced by the students

a1 m1 a2 m2 a3 m3 a4 m4 a5 m5 a6 m6 a7 m7 a8 m8 a9 m9 a10 m10

e1 3 3 1 3 5 3 1 5 3 1 1 3 3 3 5 3 3 5 3 3

e2 5 1 3 3 5 1 1 1 3 3 3 5 1 1 3 1 1 1 5 1

e3 3 3 3 5 3 3 1 3 3 1 3 1 1 3 1 1 3 3 3 1

e4 3 1 5 3 3 5 3 1 5 1 5 3 3 3 3 1 3 3 5 1
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even for the hypothesis that the synthesized solutions are significantly better

than student-made solutions, it would be possible to use an appropriate statistical

test (e.g., counting the Kendall coefficient of agreement). However, we omit such

studies due to the small number of both experts and architecture proposals consid-

ered. At this stage, it is enough to notice that the synthesized solutions are

competitive with those produced by third year software engineering students.

18.6.3 Threats and Limitations

We acknowledge that there are several threats and limitations in the presented

experiment. Firstly, as the solutions for evaluations were selected randomly out of

all the 38 student (and synthesized) solutions, it is theoretically possible that the

solutions selected for the experiment do not give a true representation of the entire

solution group. However, we argue that as all experts were able to find solutions they

judged worth of 5 points as well as solutions only worth 1 point, and the majority of

solutions were given 3 points, it is unlikely that the solutions subjected to evaluation

would be so biased it would substantially affect the outcome of the experiment.

Secondly, the pairing of solutions could be questioned. A more diverse evalua-

tion could have been if the experts were given the solutions in different pairs (e.g.,

for expert e1 the solution a1 would have been paired with m5 instead of m1). One

might also ask if the outcome would be different with different pairing. We argue

that as the overall points are better for the synthesized solutions, different pairing

would not significantly change the outcome. Also, the experts were not actually told

to evaluate the solutions as pairs – the pairing was simply done in order to ease the

evaluation and analysis processes.

Thirdly, the actual evaluations made by the experts should be considered.

Naturally, having more experts would have strengthened the results. However,

the evaluations were quite uniform. There were very few cases where three experts

considered the synthesized solution better or equal to the student solution (or the

student solution better or equal to the synthesized one) and the fourth evaluation

was completely contradicting. In fact, there were only three cases where such

contradiction occurred (pairs 2, 3 and 4), and the contradicting expert was always

the same (e4). Thus we argue that the consensus between experts is sufficiently

good, and increasing the number of evaluations would not substantially alter the

outcome of the experiment in its current form.

Table 18.2 Numbers of

preferences of the experts
+ � 0

e1 3 4 3

e2 4 1 5

e3 3 3 4

e4 7 1 2

Total 17 9 14
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Finally, the task setup was limited in the sense that architecture design was

restricted to a given selection of patterns. Giving such a selection to the students

may both improve the designs (as the students know that these patterns are

potentially applicable) and worsen the designs (due to overuse of the patterns).

Unfortunately, this limitation is due to the genetic synthesizer in its current stage,

and could not be avoided.

18.7 Conclusions

We have presented a method for using genetic algorithms for producing software

architectures, given a certain representation of functional and quality requirements.

We have focused on three quality attributes: modifiability, efficiency and simpli-

city. The approach is evaluated with an empirical study, where the produced

architectures were given for evaluation to experts alongside with student solutions

for the same design problem.

The empirical study suggests that, with the assumptions given in Sect. 18.1, it is

possible to synthesize software architectures that are roughly at the level of an

undergraduate student. In addition to the automation aspect, major strengths of

the presented approach are the versatility and options for expansion. Theoretically,

an unlimited amount of patterns can be used in the solution library, while a human

designer typically considers only a fairly limited set of standard solutions. The

genetic synthesis is also not tied to prejudices, and is able to produce fresh, unbiased

solutions that a human architect might not even think of. On the other hand, the

current research setup and experiments are still quite limited. Obviously, the

relatively simple architecture design task given in the experiment is still far from

real-life software architecture design, with all its complications.

The main challenge in this approach is the specification of the fitness function.

As it turned out in the experiment, even experts can disagree on what is a good

architecture. Obviously, the fitness function can only approximate the idea of archi-

tectural quality. Also, tuning the parameters (fitness weights and mutation proba-

bilities) is nontrivial and may require calibration for a particular type of a system. To

alleviate the problem of tuning the weights of different quality attributes, we are

currently exploring the use of Pareto optimality [41] to producemultiple architecture

proposals with different emphasis of the quality attributes, instead of a single one.

In the future we will focus on potential applications of genetic software archi-

tecture synthesis. A particularly attractive application field of this technology is

self-adapting systems (e.g., Cheng et al. [42]), where systems are really expected

to “redesign” themselves without human interaction. Self-adaptation is required

particularly in systems that are hard to maintain in a traditional way, like constantly

running embedded systems or highly distributed web systems. We see the genetic

technique proposed in this paper as a promising approach to give systems the ability

to reconsider their architectural solutions based on some changes in their require-

ments or environment.

O. R€aih€a et al.
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Abstract—A possible approach to partly automated software 
architecture design is the application of heuristic search 
methods like genetic algorithms. However, traditional genetic 
algorithms use a single fitness function with weighted terms for 
different quality attributes. This is inadequate for software 
architecture design that has to satisfy multiple incomparable 
quality requirements simultaneously. To overcome this 
problem, the use of Pareto optimality is proposed. This 
technique is studied in the presence of two central quality 
attributes of software architectures, modifiability and 
efficiency. The technique produces a spectrum of architecture 
proposals, ranging from highly modifiable (and less efficient) 
to highly efficient (and less modifiable). The technique has 
been implemented and evaluated using an example system. The 
results demonstrate that Pareto optimality has potential for 
producing a sensible set of architectures in the efficiency-
modifiability space. 

Keywords— Pareto optimality; multi-objective genetic 
algorithm; software design; search-based software engineering; 
software architecture 

I.  INTRODUCTION 
Software architecture design has been traditionally 

regarded as an art rather than as a systematic process: the 
software architect applies his or her past experiences of 
working solutions and general architectural knowledge to 
satisfy the requirements of the target system, but very little is 
known about the actual thought process that ends up with a 
particular architecture. Despite recent efforts to systematize 
software architecture design [9, 13], the process of software 
architecture design is still insufficiently understood. In 
particular, it would be important to explore the possibilities 
and limits of automated software architecture synthesis.  

To simplify the research setup, we adopt here the 
viewpoint that software architecture design can be divided 
into two successive phases: the functional decomposition of 
the system into major components, and the application of 
standard solutions (like architectural styles [19] and design 
patterns [5, 10]) to satisfy the various quality requirements of 
the system. The former phase is assumed to be carried out 
based on domain knowledge and functional analysis (e.g., 
CRC [3]), resulting in what we call the null architecture. The 
null architecture satisfies the functional requirements of the 

system, but so far pays no attention to the quality 
requirements. Our main focus here is on the second phase: to 
what extent could it be possible to automate the insertion of 
various pattern-like solutions to the null architecture, so as to 
satisfy the quality requirements of the system as completely 
as possible? 

Stating the research problem in this way, an attractive 
approach to tackle this question is to apply meta-heuristic 
search methods [11] to find a combination of standard 
solutions that satisfies the quality requirements in a near-
optimal way. Räihä et al. [16, 17] have previously studied 
applying genetic algorithms (GA) with a simple weighted 
fitness function for this purpose. Their initial tests [18] 
suggest that it is possible to achieve roughly the level of a 
third year software engineering student in terms of the 
overall quality of the genetically synthesized architecture. 

However, software architecture has to satisfy conflicting 
and competing quality requirements imposed on the system. 
For example, a software system should often be efficient and 
easy to modify at the same time. Unfortunately, increasing 
modifiability usually degrades efficiency and vice versa. In 
the context of genetic algorithms, this problem is reflected in 
the formulation of the fitness function.  

Rather than producing a single architecture proposal 
using a weighted fitness function, a more appealing approach 
is to produce a spectrum of proposals ranging from very 
modifiable but inefficient architecture to very efficient but 
inflexible architecture. Then the architect can browse the 
proposals, compare architectures with different emphasis of 
modifiability and efficiency, and select a candidate at an 
appropriate point in the solution spectrum as a jump start of 
architecture design. 

This kind of multi-objective optimization can be 
achieved using Pareto optimality [8]: instead of using a 
single fitness value the solutions are ranked multi-
dimensionally. Roughly speaking, a solution (here 
architecture) is Pareto optimal if there is no other solution 
that is “properly better”, i.e., properly better in one property 
and at least equally good with respect to all other properties. 
Typically there is not a single Pareto optimal solution but a 
set of such solutions, the so-called Pareto front. This front 
will be the spectrum of architecture proposals we are looking 
for. In this paper we extend our previous studies in genetic 



synthesis of software architecture by employing Pareto 
optimality. Although Pareto optimality can be applied for an 
arbitrary number of dimensions, we will focus here on two 
central architectural quality dimensions, modifiability and 
efficiency. 

Validating the results of this kind of research is 
challenging. Even though the Pareto approach does produce 
a spectrum of best solutions in the present population in the 
modifiability-efficiency scale in terms of the fitness function, 
does it produce such a spectrum in terms of “real” 
architectural quality? 

In software industry, the quality of a software 
architecture is typically evaluated using scenario-based 
methods, most notably ATAM (Architecture Trade-off 
Analysis Method [7]). The basic idea of ATAM is to ask the 
stakeholders to come up with concrete situations (so-called 
scenarios) which test a given quality attribute. The 
architecture is then analyzed against the scenarios. Roughly, 
the better the architecture supports the scenarios given for a 
particular quality attribute, the better quality the architecture 
has with respect to this quality attribute. 

To evaluate the results of our work, we have genetically 
synthesized a spectrum of architecture proposals for a 
representative example system using the Pareto approach. 
Then we have imitated an ATAM evaluation for the resulting 
Pareto front architectures. If this kind of evaluation yields a 
similar distribution in the modifiability-efficiency space as 
the original fitness-based distribution, we can conclude that 
the synthesized Pareto front actually matches with human 
understanding of the quality of those architectures.  

II. RELATED WORK 
Recently, approaches dealing with high level structures, 

such as design patterns and architectures have gained interest 
in search-based software engineering [11, 15]. We will here 
concentrate on the ones that are the most related to upstream 
design, rather than the copious studies closely related to 
software refactoring and maintenance. 

Bowman et al. [4] study the use of a multi-objective 
genetic algorithm (MOGA) in solving the class responsibility 
assignment problem. The objective is to optimize the class 
structure of a system through the placement of methods and 
attributes within given constraints. So far, they do not 
demonstrate an upstream solution to the problem, but try to 
find out whether the presented MOGA can fix the structure if 
it has been modified.  

Simons and Parmee [20] take use cases as the starting 
point for system specification. Data is assigned to attributes 
and actions to methods, and a set of uses is defined between 
the two sets. The notion of class is used to group methods 
and attributes. Design solutions are encoded directly into an 
object-oriented programming language.  

Amoui et al. [2] use the GA approach to improve the 
reusability of software by applying architecture design 
patterns to a UML model. The authors’ goal is to find the 
best sequence of transformations, i.e., pattern 
implementations. When compared to our work, this approach 
only uses one quality factor (reusability), and the starting 

point in this approach is an existing architecture that is more 
elaborated than our null architecture. 

Räihä et al. [16, 17, 18] have taken a pattern-oriented 
approach that aims at complete software architecture 
synthesis based on refined use cases, applying GA for 
finding an optimal combination of patterns. Patterns are used 
as mutations, and various quality metrics are used for 
deriving a fitness function. 

An even higher level approach is studied by Aleti et al. 
[1] using AADL (Architecture Analysis and Description 
Language) models as a basis, and attempting to optimize the 
architecture with respect to data transfer reliability and 
communication overhead. They use GA with Pareto 
optimality in their ArcheOptrix tool, but they concentrate on 
the optimal deployment of software components to a given 
hardware platform rather than on the actual software 
architecture.  

Pareto optimality has been applied surprisingly seldom in 
search-based software engineering taking into account the 
fact that most problems in software engineering contain 
conflicting goals. Harman et al.’s survey [11] mentions less 
than a dozen references that use Pareto optimality. Moreover, 
most of them are on areas of software engineering which 
seem remote from the topics of the present paper. A study 
worth mentioning and using Pareto optimality is that by 
Harman and Tratt [12] on refactoring, applying a variant of 
the hill-climbing algorithm to create the Pareto front. 

III. GENETIC SYNTHESIS OF SOFTWARE ARCHITECTURE 
In this section we describe our approach to synthesize 

software architecture using genetic algorithms. We assume 
that the reader is familiar with the basics of genetic 
algorithms, as given, e.g., by Michalewicz [14]. In what 
follows, we explain the construction of the initial functional 
decomposition (null architecture), an encoding of archi-
tectures, an initial population, and mutation and crossover 
operators. The overall synthesis process is depicted in Figure 
1. Functional requirements are expressed as use cases which 
are automatically transformed into a null architecture, and 
quality requirements are encoded into various parameters 
affecting the fitness function. Mutation patterns are provided 
by a subsolution repository.  

 

 
Figure 1. Synthesis process 

The fitness function and the selection operator for each 
new generation will be discussed in the next section in the 
context of Pareto optimality. 



A. Requirements 
For expressing functional requirements we identify and 

express the primary use cases of the system, and refine them 
into sequence diagrams depicting the interaction between 
major components required to accomplish the use cases. This 
is a manual task, as the major components have to be 
decided, typically based on domain analysis. 

In our approach, a so-called null architecture represents a 
basic functional decomposition of the system, given as a 
UML class diagram. The null architecture can be 
mechanically derived from the use case sequence diagrams: 
the (classes of the) participants in the sequence diagram 
become the classes, the operations of a class are the 
incoming call messages of the participants of that class, and 
the dependency relationships between the classes are inferred 
from the call relationships of the participants. Additionally, if 
a component has a significant state or it manages a 
significant data entity (e.g., a data base), this data entity will 
become an attribute of the class.  

 

 
Figure. 2. Make coffee use case refined 

 
Figure 3. A fragment of the null architecture for ehome 

Our example system, the control system of an electronic 
home (called hereafter ehome), is a typical embedded 
system. The ehome system controls various devices, 
providing an interface to allow the user to manage the home. 
Five distinct subsystems can be identified: user registry, 
coffee machine, temperature control, drape control and 
music system. The functional requirements for ehome lead to 
56 operations and 90 dependencies between the operations. 
The resulting null architecture for ehome contains 12 classes. 
Use cases for ehome can be, for example, logging in, 
adjusting the room temperature, making coffee, moving 
drapes, and playing music. In Figure 2, the coffee making 
use case has been refined into a sequence diagram. A 
fragment of the null architecture for ehome is given in Figure 
3, representing the same part of the system as Figure 2. 

In order to evaluate the system, some attributes of the 
operations are also given, such as sensitiveness to variation, 
parameter size and frequency of use. The precise values for 
these attributes of course cannot be known, but should be 
estimated in order to calculate the modifiability and 
efficiency values for the system. The given values for the 
attributes are relative, rather than absolute. Such relative 
values can straightforwardly be approximated by comparing 
different operations, e.g., playing music is most likely used 
much more frequently than changing password. 

B. Genetic Representation 
When the architectural data is encoded into a 

chromosome form, two kinds of data are given regarding 
each operation. Firstly, the basic information contains the 
operations depending on it, its name, type, frequency of use, 
parameter size, and sensitiveness to variation. Secondly, 
there is the information regarding the operation’s place in the 
architecture: the class(es) it belongs to, the interface it 
implements, the message dispatcher it uses (see Subsection 
III.C), the operations that call it through the message 
dispatcher, the design patterns it is a part of, and the class it 
is assigned to in the null architecture. The message 
dispatcher is given a separate field as opposed to other 
patterns for efficiency reasons. All data regarding an 
operation is encoded as a supergene with a separate field for 
each data particle [2].  

The chromosome handled by the genetic algorithm is 
gained by collecting the supergenes, i.e., all data regarding 
all operations. The initial population is made by first creating 
the desired number of individuals with the null architecture. 
A random pattern is then inserted into each individual, as a 
population should not consist entirely of clones. In addition, 
a special individual with no initial patterns is left in the 
population. The encoding of requirements to supergenes and 
chromosomes is discussed in more detail by Räihä et al. [18]. 

C. Mutation and Crossover Operations 
The actual architectural design means here the 

application of various standard architectural solutions called 
collectively patterns: the result of genetic architecture 
synthesis is the null architecture augmented with patterns. 
The patterns have been chosen here to represent solutions on 
different levels: high-level architectural styles [19] (message 
dispatcher and client-server), medium-level design patterns 
[10] (Façade and Mediator), and low-level design patterns 
[10] (Strategy, Adapter and Template Method). The 
mutations are implemented in pairs of introducing a specific 
pattern or removing it. The message dispatcher architecture 
style makes a small exception to this rule: the actual 
dispatcher must first be introduced to the system, after which 
the operations can communicate through it. Preconditions are 
applied when introducing mutations in order to avoid 
conflict with existing architecture. 

The crossover operation is implemented as a traditional 
one-point crossover with a corrective function. This function 
ensures that the architecture stays coherent, as patterns might 
otherwise be broken by overlapping mutations.  



In addition to ensuring that the patterns present in the 
system stay coherent and “legal”, the corrective function also 
checks that the design conforms to certain architectural laws 
that we have defined. These laws demand uniform calls 
between two classes (e.g., through an interface or a 
dispatcher), and state some basic rules regarding 
architectures (e.g., an operation can be accessed through at 
most one interface). The purpose of these laws is to ensure 
that no anomalies are brought to the design. We have chosen 
to use preconditions and a corrective function as opposed to 
handling malformed solutions in the fitness function to 
ensure that all solutions are always valid. Since the patterns 
affect only the quality attributes of the system but not its 
functional properties, individual architectures are also always 
valid with respect to functional requirements.  

The actual mutation probabilities can be tuned as desired. 
Selecting the mutation is made with a “roulette wheel” 
selection [14], where the size of each slice of the wheel is in 
proportion to the given probability of the respective 
mutation. Null mutation and crossover are also included in 
the wheel. Each individual has a chance of reproducing in 
each generation: if the first roulette selection lands on a 
mutation, another selection is performed after the mutation 
has been administered. If the second selection lands on the 
crossover slice, the individual may produce offspring. In any 
other case, the second selection is not taken into account, i.e., 
the individual is not mutated twice. 

IV. PARETO OPTIMAL FITNESS AND SELECTION 

A. Pareto Optimality 
Suppose that in a given design task the solutions are 

measured according to p properties and that F is the set of 
feasible solutions. For notational convenience, we suppose 
that all properties are maximized, i.e., the bigger the value, 
the better is the solution. A solution x can then be described 
by a vector x = [f1(x), f2(x), …, fp(x)], where fi(x) is the value 
of ith property in x. In a design task with conflicting goals it 
is unlikely to find a solution in F which would be optimal 
with respect to all the properties measured. In such a 
situation, Pareto optimality gives us a way to compare the 
solutions [8]. 

We say that a solution x* ∈ F is Pareto optimal if for 
each x ∈ F, we have either fi(x) = fi(x*), for all i = 1, …, p, 
or there is at least one property i such that fi(x) < fi(x*). That 
is, x* is Pareto optimal if there exists no feasible solution x 
that increases some criterion without causing a simultaneous 
decrease in at least one other criterion. Typically, there is not 
a single solution that is Pareto optimal, but a set of Pareto 
optimal solutions. 

Given a set of feasible solutions, its Pareto optimal 
solutions are said to form a Pareto front. The Pareto front is 
particularly useful in any design task: by restricting attention 
to the set of solutions that are Pareto optimal, a designer can 
make trade-offs within this set, rather than considering the 
full range of every parameter. (Further material concerning 
Pareto optimality and Pareto fronts can be found, e.g., from 
[8].) 

In our context, the Pareto front consists of the 
architectures that are Pareto optimal in the populations 
created by GA. The algorithm iteratively makes use of the 
Pareto fronts found in the generations created by the 
previous step of the algorithm. The final result consists of the 
Pareto front in the last generation created. Hence, the final 
result is a set of architectures, a spectrum of architecture 
proposals the designer can browse and choose the desired 
emphasis of the different properties (or quality attributes). 

B. Fitness Function and Selection 
The fitness function used here is based on widely used 

software metrics [6]. The biggest modifications to the basic 
metrics include taking into account the positive effect of 
interfaces and the dispatcher and client-server architecture 
styles in terms of modifiability, as well as the negative effect 
of the dispatcher and server in terms of efficiency. The 
fitness function f(x) for chromosome x can be expressed as a 
vector of sub-functions  

f(x) = [sf1(x), sf2(x), sf3(x), sf4(x)]. 
Here, sf1 measures positive modifiability, which rewards 

calls between operations that are handled via interfaces, 
message dispatcher or server. The sensitiveness to variation 
of the operations is used to enhance the reward. Negative 
modifiability is calculated in sf2 by penalizing direct calls 
between operations, and is given a coefficient -1 to indicate 
its negative effect. The sensitiveness to variation is also used 
here to enhance punishment for bad design choices regarding 
exceptionally variable operations. The total modifiability 
value is the sum of positive modifiability and negative 
modifiability and should be maximized. 

As for efficiency, sf3 measures positive efficiency by 
rewarding structures which lead to minimal amount of calls 
between different classes and maximum amount of calls 
between operations within the same class. The operation’s 
required amount of data is also considered and used to 
increase the reward. Negative efficiency (sf4), in turn, counts 
the relation of calls between classes and within classes, and 
the amount of calls to the message dispatcher and through 
servers, which are especially penalized by taking into 
account the frequency of calls to the operations involved. 
Negative efficiency, like negative modifiability, is given a 
coefficient -1 to indicate its negative effect. The total 
efficiency value is the sum of positive efficiency and 
negative efficiency, and should be maximized. 

Both qualities are also given a normalizing weight so that 
the value ranges are the same. This also enables comparing 
the multi-objective results with a single-objective approach, 
where the fitness function is acquired by simply summing 
the different sub-functions.  

Selecting the individuals for each generation is made as 
follows: the actual Pareto front pf1 of the population in i:th 
generation, pi, is first collected, and stored for the population 
in the next generation pi+1. However, as the front usually 
contains less than ten individuals and the population size 
typically more than 100, just one front is not enough to make 
a sufficient population. Thus, the Pareto front of the 
remaining individuals in pi, i.e., the Pareto front pf2 of the set 
pi \ pf1 is selected and moved to pi+1. This process is repeated 



until pi+1 has at least the required minimum of individuals. 
This method is similar to the selection methods typically 
used in the context of Pareto optimality (see. e.g., [8]). 

V. EXPERIMENTS 
We used the ehome sample system (presented in Section 

III) to test our approach. In our experiments we used a 
population size of 100, 250 generations and did 20 test runs. 
As stated in Section IV, the weights for the different fitness 
aspects (modifiability and efficiency) were set so that the 
final values were of the same scale. We will first present the 
data (Pareto fronts), and then discuss the actual architectures. 

The collected Pareto fronts of all 20 runs after 50 
generations are presented in Figure 4, and the respective 
fronts after all 250 generations are given in Figure 5. The 
figures portray scatter plots, where the total values 
(explained in Subsection IV.B) for modifiability and 
efficiency are used, and each series (front) has a distinctive 
marker.  

 

 
Figure 4. Pareto fronts of 20 runs after 50 generations 

 
Figure 5. Pareto fronts of 20 runs after 250 generations 

In the beginning of evolution (Figure 4), the fronts are 
quite uniformly located on the upper left-hand side, where 
the solutions are highly efficient but poor in terms of 
modifiability. This is expected, as the architecture is most 
efficient at null architecture stage (generation 0), as the 
patterns tend to decrease efficiency. When the evolution has 
ended (Figure 5), the fronts have moved significantly in 
relation to the x-axis (modifiability). However, efficient 
solutions are still clustered, which is natural (as discussed 
above: most efficient solutions are those with minimal 
amount of mutations applied). 

On the right-hand side of Figure 5, where the more 
modifiable solutions lie, fronts are much more sparse. This is 
also natural, as modifiability, in turn, can be reached in 
different ways; every pattern and dispatcher or server 
connection increases modifiability in its own way, and 
reduces efficiency accordingly. The amount of different 
combinations of patterns and dispatcher connections is 
immensely large, and thus it would be unnatural to have such 
a clustered Pareto front on the “modifiability side” as can be 
seen on the “efficiency side”. However, despite the scattering 
of solutions on the right-hand side, a clear trend can still be 
seen. 

To further examine what kind of Pareto optimal solutions 
are actually produced, we randomly chose one example run 
for closer observation. Figure 6 shows the final Pareto front 
of one example run of the 20 runs used in this experiment. In 
this example, Pareto optimal solutions are lying more on the 
efficiency side (five out of six solutions have a negative 
modifiability value), but the most modifiable solution still 
succeeds in achieving a modifiability value that is just as 
high as the highest efficiency value for the most efficient 
solution. In this run the Pareto front contained six solutions, 
while in the 20 test runs, the front could have anything 
between five and 13 solutions. 

 
Figure 6. Pareto front of example run (after 250 generations) 

To give an idea of the actual architectures in the Pareto 
front, let us study the architectures in the opposite sides of 
the Pareto front in the example run. In general, a central 
question in ehome architecture concerns the communication 
between the components. The mutual dependencies of 
components can be reduced by using message-based 
communication, increasing the modifiability of the system 
but decreasing efficiency. Other architectural solutions, in 
particular design patterns, affect in the same direction (that 
is, increase modifiability at the expense of efficiency), but 
they are clearly less dominating.  

The most modifiable architecture of the example run is 
visualized in Figure 8. The sample architectures are depicted 
in a manually produced format which emphasizes the used 
solutions, not in the original UML class diagram format 
produced by the GA implementation, which would be too 
space-consuming and difficult to interpret. We give the 
architectures as component level presentations, where the 
pattern instances have been marked with short-hand notation. 

The most interesting observation in the architecture of 
Figure 7 is the relatively extensive use of the message-based 
communication channel (Message dispatcher); in particular, 



most of the communication between UI and device-specific 
components is proposed to be message-based. Note that the 
information concerning the expected frequency of certain 
service calls has affected the proposal. The architecture 
introduces also several basic modifiability patterns 
(Template Method and Strategy) for change-sensitive 
operations, and Adapters for change-sensitive interfaces. 

 

 
Figure 7. Modifiable solution 

 
Figure 8. Efficient solution  

At the other extreme, the most efficient proposal (that is, 
the architecture presented by the marker in the upper left 
corner in Figure 6) is shown in Figure 8 for comparison. In 
this case there is no usage of the message dispatcher and 
significantly less of the low-level patterns than in the 

previous proposal. Most of the used patterns are Template 
Method instances, which do not introduce notable efficiency 
cost. 

Finally, one might also be interested in the “middle” 
solutions, i.e., ones that have neither an extremely high 
efficiency value, nor an extremely high modifiability value, 
but have a balanced fitness of both. In these solutions the 
message dispatcher is often present, but with only a few 
connections. The client-server architecture style is also used 
in some cases. A fairly moderate level of the usage of basic 
modifiability design patterns is usually proposed. 

In practice, the designer is presented with a Pareto front 
scatter plot, such as in Figure 6. The designer can then select 
any point of the front from the plot, and the corresponding 
architecture is displayed. Thus, the designer is aware of what 
kind of fitness values each architecture has reached with the 
GA. 

VI. EVALUATION 
In this chapter we compare the results of our approach to 

the efficiency and modifiability assessment obtained from an 
imitated ATAM [7] evaluation. In ATAM, the stakeholders 
formulate scenarios which serve as test cases of certain 
quality goals. The target architecture is evaluated by 
analyzing to what extent the architecture supports the 
scenarios. Here we are in particular interested to see whether 
the quality distribution of the architectures in the Pareto front 
corresponds to the quality distribution of the architectures 
with respect to the imitated ATAM evaluation.  

To carry out ATAM-like evaluation, we need to produce 
efficiency and modifiability scenarios. Efficiency scenarios 
can be produced in a relatively straightforward way. In 
ATAM, efficiency scenarios are typically use cases which 
involve those parts of the system that are particularly critical 
or otherwise interesting from efficiency viewpoint. Since the 
ehome system has five subsystems (user registry, coffee 
machine, music system, temperature control and drape 
control), we formulated five use cases which employ those 
subsystems, representing typical usages of the system. These 
use cases were then refined into sequences of operation calls. 

Since we are here interested in the relative quality of the 
architectures rather than their absolute quality, it is sufficient 
to evaluate the efficiency of each architecture by computing 
relative time consumption for each efficiency scenario. We 
computed the total efficiency penalty of an architecture 
simply as the sum of the relative time consumptions of all 
the efficiency scenarios. In our evaluation, we used the 
following formula for the efficiency penalty ep of 
architecture x:  

ep(x) =  – ∑calls between different classes  
      – d*∑calls via dispatcher   
      – s*∑calls to server, 

where d and s are cost factors of message-based and 
client-server communications, respectively (relative to 
straight calls). In our experiments we set both d and s to 2. 
The exact values of these factors greatly depend on the way 
message dispatcher and server are implemented, which is 
beyond the scope of this paper. However, our tests indicate 
that using large coefficients would not essentially influence 



the results of the evaluation; larger coefficients simply make 
differences between individuals larger, leading to more 
scattered fronts but retaining the relative order of the 
individuals. 

Achieving modifiability scenarios is not straightforward, 
as building such scenarios requires intuitive understanding of 
the expected evolution of the system. To this end, we asked 
three software engineering experts (researchers with MSc or 
PhD not involved in our team) to construct four or five 
change scenarios each for the system as well as rough 
estimates of the likelihoods of the scenarios. They were 
given the functional requirements of the system as a basis. 
The experts produced in total 12 different scenarios that 
could be used for evaluation. This roughly corresponds to a 
real ATAM evaluation where typically 3-4 stakeholders 
produce 10-15 scenarios to be analyzed. An architecture was 
evaluated against a scenario by awarding 0, 1, or 2 points in 
the following fashion: 

0 points: existing code would have to be changed  
(no support), 

1 point: existing code need not be changed,  
but the architecture supports development time 
variation rather than run-time variation  
(partial support) 

2 points: existing code need not be changed  
(full support). 

The points were then multiplied with the probability of 
the scenario to achieve the total modifiability reward value 
for an architecture. In this experiment, the experts were not 
asked to evaluate the actual architectures. Results from 
architecture evaluations are given by Räihä et al. [18]. 

We used the final Pareto fronts of five different, 
randomly chosen, runs (including the example run given in 
Figure 6) from our experiment for the validation, each front 
having six, seven or eight different individuals. We evaluated 
how each individual in the Pareto fronts performed in the 
efficiency and modifiability scenarios, and gave penalty and 
reward points accordingly. The points of both quality 
attributes were then compared against how “high” in the 
Pareto front an individual was regarding that attribute. In 
other words, the most modifiable individual in the Pareto 
front should receive the highest points from modifiability 
scenarios when concerning individuals in the same front, and 
similarly the best in terms of efficiency (i.e., the one with 
worst modifiability) should receive the lowest penalty. 
Figure 9 shows the scatter plot for efficiency. Each Pareto 
front has a distinct marker in the plot. The y-value is the 
efficiency rank, i.e., number 0 is the first, and thus the most 
efficient, individual of the front (considering fitness values). 
Thus, the lower a marker, the closer to zero (small penalty) it 
should be on the x-axis.  

Figure 10 gives a similar scatter plot for the modifiability 
scenarios. The markers here are the same as in Figure 9, i.e., 
the front represented by triangles in Figure 9 is represented 
by triangles in Figure 10 as well. Again, the individual with 
rank 0 is the most modifiable one of a given front, so the 
lower a mark, the higher its x-value (modifiability reward) 
should be. 

 
Figure 9. Efficiency scenarios 

 
Figure 10. Modifiability scenarios 

Performing statistical analysis on the scenario data 
produces correlation coefficient r values r = 0.79 for 
efficiency and r = -0.62 for modifiability. This indicates a 
high linear correlation between efficiency scenario points 
and the Pareto front rank, and a moderate correlation 
between the modifiability scenario points and the Pareto 
front rank. The corresponding coefficients of determination 
R2 values are R2 = 0.62 for efficiency and R2 = 0.52 for 
modifiability, meaning that 62% of the variation in 
efficiency scenario penalty points can be explained by the 
Pareto rank, and similarly, 52% of variance within 
modifiability scenario reward points can be explained by the 
Pareto rank. Finally, the Student’s t-tests for both data sets 
show that the impact of the rank in scenario points is 
significant with a 95% confidence (i.e., there is a significant 
correlation between rank and scenario points with p < 0.05), 
and thus the scenario points depend on the Pareto rank (i.e., 
the higher the rank, the better it performs in the scenarios).  

Although the primary purpose of this work was to 
validate Pareto optimality in the context of genetic 
architecture synthesis rather than to evaluate the absolute 
"goodness" of the resulting architectures, it is interesting to 
observe that the best architectures got 7 modifiability points 
out of the maximum of 24 (without probabilities). Since the 
purpose of scenarios is to challenge the architecture, it is 
expected that a genetic process that is unaware of these 
scenarios will fail to produce specific solutions for many of 
them. In real life architectural evaluations we have been 
carrying out in industry, typical success rate for scenarios is 
50-90%. Our results in this work are in line with those of 
Räihä et al. [18], suggesting that genetically synthesized 
architectures reach roughly the level of a third-year student. 



We recognize that there are some threats involved in the 
validation. Firstly, the scenarios might represent too limited a 
view of real modifiability requirements – this is actually a 
potential weakness of ATAM itself. Secondly, we only use a 
limited amount of example runs for which the scenarios were 
evaluated. Thirdly, the example system might be biased 
towards our approach. 

We argue that while the amount of used scenarios is 
limited, they do still give a sufficient enough picture of the 
demands for the whole system. For both quality attributes, 
there were one or more scenarios concerning each of the 
subsystems. In the case of efficiency, the use cases were also 
selected so that they were the most common, and thus the 
most critical ones. In the case of modifiability, already with 
this limited amount, the experts produced some duplicate 
scenarios (same scenario from several experts), which gives 
some confidence that the most crucial scenarios have been 
collected, and thus the impact of missing scenarios is not 
significant.  

Similarly, the limited amount of test runs is not a 
problem, since the Pareto fronts of all the 20 runs clearly 
followed a similar structure, and the five runs used for 
validation were chosen randomly. Therefore, it is unlikely 
that the results would significantly change by adding or 
changing the runs used for scenario evaluation. 

Finally, the example system is a fairly typical embedded 
system, consisting of UI, various controlling components, 
device drivers etc. As long as sensible architectures can be 
built using the available standard solutions, there is no 
obvious reason why the results would be essentially different 
for another system. Still, more experiments are clearly 
needed to confirm this. 

VII. CONCLUSIONS AND FUTURE WORK 
Even though fully automated architecture design is 

beyond our approach, we see genetic synthesis as a 
promising research direction to develop an architect’s tool 
that provides intelligent assistance by proposing possible 
designs that the architect can further elaborate. Such a tool 
can propose fresh solutions that a human designer, limited 
with her previous experience, could not even think of. This 
work suggests that the basic problem of conflicting goals in 
software architecture design, critical in genetic approaches, 
can be solved satisfactorily using Pareto optimality. We 
showed that the quality distribution of the architectures in the 
Pareto front is similar to the distribution obtained using 
imitated ATAM evaluation.  

In our future work we plan on extending the collection of 
applicable patterns by implementing a way to introduce new 
patterns for GA without coding. We are also investigating 
applications of genetic architecture synthesis in the context 
of self-adapting systems, exploiting runtime information of 
the system’s behavior. For such systems, the ability to 
automatically optimize the architecture according to dynamic 
information is a vital requirement. 
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