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Abstract

The aim of this doctoral thesis was to explore (asymptotical) characteristics
of invariant coordinate system functionals and to introduce new approaches
for independent component analysis.

Equivariance and invariance issues arise in multivariate statistical analy-
sis. Sometimes statistical procedures have to be modified to obtain an affine
equivariant or invariant version. This can be done by preprocessing the data,
e.g., by standardizing the multivariate data or by transforming the data to
an invariant coordinate system.

Two of the original articles deal with invariant coordinate selection and
invariant coordinate system (ICS) functionals. Standardization of multivari-
ate distributions, and characteristics of ICS functionals and statistics are ex-
amined. Also invariances up to some groups of transformations are discussed.
Constructions of ICS functionals are addressed and asymptotical properties
are explored. Also functionals and estimates of multivariate skewness and
kurtosis are addressed. Application areas of ICS transformations are dis-
cussed. One important example of such application areas is independent
component analysis.

Independent component analysis is a very timely research area with a
wide field of applications. In the independent component model the ele-
ments of a p-variate random vector are assumed to be linear combinations of
the elements of an unobservable p-variate vector with mutually independent
components. In the independent component analysis the aim is to recover
the independent components by estimating an unmixing matrix that trans-
forms the observed p-variate vector to the independent components. New
approaches for independent component analysis are provided in three of the
original articles.

Deflation-based FastICA, where independent components are extracted
one-by-one, is among the most popular methods for estimating an unmixing
matrix in the independent component model. In the literature, it is often
seen rather as an algorithm than an estimator related to a certain objective
function, and only recently its statistical properties have been derived. One
of the recent findings is that the order, in which the independent compo-
nents are extracted in practice, has a strong effect on the performance of
the estimator. A new reloaded procedure, to ensure that the independent
components are extracted in an optimal order, is proposed in one of the
articles.
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In one of the original articles, new optimal (in Le Cam sense) inference
procedures are developed under symmetry assumption of the independent
components. The inference procedures are based on signed ranks. Hypothe-
sis tests, estimators and confidence regions are provided, and asymptotical
properties are examined.

The independent component model can be formulated in several ways:
If the elements of a vector of independent components are permuted or
multiplied by nonzero scalars, the vector still has independent components.
The comparison of the performances of different unmixing matrix estimates
is then difficult as the estimates are for different population quantities. A new
natural performance index is suggested in one of the articles. The index is
proven to possess several nice properties compared to previously presented
indices, and it is easy and fast to compute. Also limiting behavior of the
index, as the sample size approaches infinity, is explored.

To demonstrate the use of the new methods in practise, a data example
is provided in the last chapter of this thesis.

Key words: multivariate analysis; invariant coordinate selection; invariant
coordinate system functionals; independent component analysis; asymptotic
normality; multivariate kurtosis; multivariate skewness; scatter and location
functionals; semiparametric methods; sign and rank based methods; perfor-
mance indices
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i.i.d. independent and identically distributed
∼ is distributed as
⊗ Kronecker product
⊙ Hadamard (entrywise) product
ei ith vector of the canonical basis of Rp

I, Ip identity matrix
1p p variate vector of ones
P permutation matrix
J sign change matrix
D scaling matrix
C = PJD a matrix with exactly one non-zero element in each row and column
O orthogonal matrix
vecA vector formed of the column vectors of a matrix A
vecd◦A vector obtained by removing the diagonal entries of A from vecA
AT transpose of a vector or a matrix A
||A|| l2 norm (Frobenius norm) of a vector or a matrix A
Cov(·) covariance matrix of (·)
E(·) expected value of (·)
inf(·) infimum of (·)
g′ derivative of a function g
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1 Introduction

Various types of data sets are collected and stored into different databases
these days. But how are all these data sets processed? We have loads of
information. How can we extract and use all that information? What can
we learn from it? There are endless different forms of data; signals, time
series, images, functional data, etc. Sometimes a data set consists of very
complicated elements. Often the tools to analyze new types of data sets are
missing. If we are not able to analyze the data we have, we can not learn
anything from it. The classical multivariate methods rely on the assumption
of multivariate normality and i.i.d. observations. If these assumptions are
not met, as often is the case, then traditional methods are misleading and
inefficient.

Wider models, than multivariate normal model, are considered in this
work, and new tools for analyzing multivariate data are developed.

Traditional location and scatter functionals and new competitors for
them are discussed in Chapter 2. Different multivariate location-scatter mod-
els are considered in Chapter 3. In Chapter 4, invariant coordinate selection
and invariant coordinate system functionals are explored. Independent com-
ponent analysis is considered in Chapter 5. A data example is presented in
Chapter 6.
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2 Location and Scatter
Functionals

Classical multivariate statistical inference methods (multivariate analysis of
variance, principal component analysis, factor analysis, multivariate multi-
ple regression, canonical correlation analysis, discriminant analysis, cluster
analysis, etc) are typically based on the regular sample mean vector and
covariance matrix. However, there exists a large number of competitors for
those classical measures of location and scatter.

Various multivariate location and scatter functionals are discussed in this
section.

2.1 Definitions

Let x denote a p-variate random vector with a cumulative distribution func-
tion Fx and let X = [x1....xn], where x1, ..., xn is a random sample from the
distribution Fx.

Definition 1. A p×1 vector-valued functional T (Fx), which is affine equiv-
ariant in the sense that

T (FAx+b) = AT (Fx) + b

for all nonsingular p×p matrices A and for all p-vectors b, is called a location
functional.

Definition 2. A p × p matrix-valued functional S(Fx) which is positive
definite and affine equivariant in the sense that

S(FAx+b) = AS(Fx)AT

for all nonsingular p×p matrices A and for all p-vectors b, is called a scatter
functional.

The corresponding sample statistics are obtained if the functionals are
applied to the empirical cumulative distribution Fn based on a sample
x1, x2, . . . , xn. Notation T (Fn) and S(Fn) or T (X) and S(X) is used for
the sample statistics. The location and scatter sample statistics then also
satisfy

T (AX + b1T
n ) = AT (X) + b
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and
S(AX + b1T

n ) = AS(X)AT

for all nonsingular p× p matrices A and for all p-vectors b.
Scatter matrix functionals are usually standardized such that in the case

of standard multivariate normal distribution S(Fx) = I.

Definition 3. If a positive definite p × p matrix-valued functional S(Fx)
satisfies that S(FAx+b) is proportional to AS(Fx)AT for all nonsingular p×p
matrices A and for all p-vectors b, then S(Fx) is called a shape functional.

Note that clearly every scatter matrix functional is also a shape func-
tional.

2.2 Examples

The first examples of location and scatter functionals are the mean vector
and the regular covariance matrix:

T1(Fx) = E(x) and S1(Fx) = Cov(Fx) = E
(

(x− E(x))(x − E(x))T
)

.

Location and scatter functionals can be based on the third and fourth
moments as well. A location functional based on third moments is

T2(Fx) =
1

p
E
(

(x− E(x))TCov(Fx)−1(x− E(x))x
)

and a scatter matrix functional based on fourth moments is

S2(Fx) =
1

p+ 2
E
(

(x− E(x))(x − E(x))TCov(Fx)−1(x− E(x))(x − E(x))T
)

.

These functionals, T2(Fx) and S2(Fx), together with T1(Fx) and S1(Fx), can
be used to construct measures of multivariate skewness and kurtosis, respec-
tively. In the case of standard multivariate normal distribution T2(Fx) = 0p

and S2(Fx) = Ip.
There are several other location and scatter functionals, even families of

them, having different desirable properties (robustness, efficiency, limiting
multivariate normality, fast computations, etc). See for example Lopuhaä
(1989); Maronna, Mardin and Yohai (2006); Davies (1987); Kent and Tyler
(1996).

M-functionals of location and scatter are commonly used. They are de-
fined as solutions of the two equations

T (Fx) = E(w1(r))−1E(w1(r)x)

and
S(Fx) = E(w2(r)(x − T (Fx))(x − T (Fx))T ),

where w1(r) and w2(r) are nonnegative continuous functions of the Maha-
lanobis distance r = ||S(Fx)−1/2(x − T (Fx))||. (The || · || here denotes the
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l2 norm of ·.) M-functionals were introduced by Maronna (1976). The mean
vector and the regular covariance matrix are M-functionals with w1(r) =
w2(r) = 1, and as an other example, the Hettmansperger-Randles function-
als (Hettmansperger and Randles, 2002) have weight functions

w1(r) =
1

r
and w2(r) =

p

r2
.

Several other weight functions have been proposed in the literature, see for
example Huber (1964); Kent and Tyler (1991).

Another important family of location and scatter functionals is the family
of one step M-functionals. Given a pair of location and scatter functionals
(T1, S1), the one step M-functionals are defined to be

T2(Fx) = E(w1(r1))−1E(w1(r1)x)

and
S2(Fx) = E(w2(r1)(x− T1(Fx))(x− T1(Fx))T ),

where w1(r) and w2(r) are again nonnegative continuous weight functions
and r1 = ||S1(Fx)−1/2(x−T1(Fx))||. The location functional based on third
moments and the scatter functional based on fourth moments are obtained
with choices T1(Fx) = E(x), S1(Fx) = E

(

(x− E(x))(x − E(x))T
)

, w1(r) =
r2/p and w2(r) = r2/(p + 2). Tyler’s shape matrix functional is obtained
with w2(r) = p/r2 and it is calculated with respect to some given location
functional (Hettmansperger and Randles, 2002). The symmetrized version
(see Section 2.3) of Tyler’s shape matrix is called Dümbgen’s shape matrix
(Dümbgen, 1998).

The Hallin-Paindaveine shape matrix functional SHP (Fx) is defined as

SHP (Fx) = SHR(Fx)1/2E(ψ−1
p (F||z||(||z||))

zzT

||z|| )SHR(Fx)1/2,

where ψp denotes the cdf of a chi-square distribution with p degrees of free-
dom, z = SHR(Fx)−1/2(x − THR(x)), SHR(Fx) and THR(Fx) denote the
Hettmansperger-Randles functionals and SHR(Fx)1/2 is the symmetric square
root of SHR(Fx) (Hallin and Paindaveine, 2006).

Later, in a data example in Chapter 6, we use the regular covariance
matrix, the matrix based on fourth moments, Dümbgen’s shape matrix and
the Hallin-Paindaveine shape matrix.

2.3 Independence Property

Let S(Fx) denote any shape or scatter functional.

Definition 4. If S(Fx) is a diagonal matrix for all x having independent
components, it is said to posses the independence property.

The regular covariance matrix is a scatter matrix with the independence
property. Another example of a scatter matrix with the independence prop-
erty is the matrix based on fourth moments.
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Most scatter functionals do posses the independence property only if
all the components (or all the components except for one) are symmetric.
However, every scatter/shape matrix functional S(Fx) can be symmetrized
by setting

Ssym(Fx) = S(Fx1−x2
),

where x1 and x2 are independent random vectors having the same cumula-
tive distribution function Fx. The resulting symmetrized scatter matrix does
always have the independence property (Sirkiä, Taskinen and Oja, 2007;
Oja, Sirkiä and Eriksson, 2006). For a similar approach in the context of
so called S-estimators, see Roelandt, Van Aelst and Croux (2009).
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3 Semiparametric Model

The classical multivariate methods rely on the assumption of multivariate
normality. There exist several more general models.

3.1 Multivariate Location Scatter Model

Different multivariate location-scatter models are obtained if one assumes
that a p-variate random vector x can be written as

x = Ωz + µ

where z is a “standardized” p-variate latent vector, µ is a location vector and
Ω is a full-rank p×p matrix, termed mixing matrix or transformation matrix.
The inverse of Ω, Γ = Ω−1, is called an unmixing matrix or retransformation
matrix, and Σ = ΩΩT is the scatter matrix. Posing various assumptions on
the distribution of z yields different parametric or semiparametric multivari-
ate models with parameters µ and Σ, or µ and Ω. An excellent overview of
different parametric and semiparametric location-scatter models is given in
Nordhausen, Oja and Ollila (2011b).

3.2 Multivariate Normal Model

The classical multivariate methods rely on the assumption of multivariate
normality, that is, z ∼ Np(0, Ip). The location parameter µ is the mean vec-
tor and the scatter parameter Σ is the covariance matrix. As Oz ∼ Np(0, Ip)
for all orthogonal matrices O, the mixing matrix Ω or the unmixing matrix
Γ are defined only up to an orthogonal transformation in the multivariate
normal model. The mean vector and the sample covariance matrix are suf-
ficient statistics for µ and Σ under the normality assumption, but they are
extremely sensitive to outlying observations and have poor efficiency in mod-
els with heavy tailed distributions. One possibility to avoid these problems
is to weaken the assumptions and to develop valid and efficient procedures
in wider models than the multivariate normal model.

3.3 Multivariate Elliptical Model

In the multivariate elliptical model it is assumed that z ∼ Oz for all or-
thogonal matrices O. To fix Σ it is often assumed that E(‖z‖2) = p or that
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Med(‖z‖2) = χ2
p,1/2. (The first configuration naturally requires that finite

second moments exist, but the second allows to avoid any moment assump-
tions.) As in the multivariate normal model, Ω and Γ are again defined only
up to an orthogonal transformation. Elliptical distributions are thus sym-
metric in the sense that z ∼ Oz for all O, but they may vary in their kurtosis
properties. The model permits for heavier (or lighter) tails than the multi-
variate normal model, and therefore elliptical models are commonly seen as
a more realistic alternative to the multivariate normal model. Robust testing
and estimation procedures considered in the literature, for example, often
assume ellipticity.

3.4 Independent Component Model

In the independent component (IC) model it is assumed that z is a p-variate
vector with mutually independent components. The IC model can be for-
mulated in several ways: If the independent components are permuted or
multiplied by nonzero scalars they still remain independent.

A semiparametric independent component (IC) model is obtained by ei-
ther standardizing the marginal distributions of z (see Section 3.5) or by
normalizing the mixing matrix Ω (Chapter 5, Section 5.1).

A parametric independent component (IC) model is obtained if the vector
z is assumed to have independent and standardized components and the den-
sity function f(z) =

∏p
j=1 fj(zj) with some known standardized marginal

densities f1, ..., fp.
Unlike the multivariate normal or the multivariate elliptical model, the

independent component model allows also asymmetric distribution.

3.5 Semiparametric Model

A general semiparametric location-scatter-skewness-kurtosis model, shortly
semiparametric model, is standardized using two location functionals T1 and
T2 and two scatter functionals S1 and S2. In the semiparametric model it
is assumed that T1(Fz) =0, S1(Fz) = Ip, T2(Fz) = δ and S2(Fz) = Λ,
where δ is a p-vector with all components δi ≥ 0, i = 1, ..., p, and Λ is a
diagonal matrix with diagonal elements λ1 ≥ ... ≥ λp > 0. The parameters
of the semiparametric model are the mean vector µ, the scatter matrix Σ =
ΩΩT , the skewness vector δ, and the kurtosis matrix Λ. The mixing and
unmixing matrices, Ω and Γ = Ω−1, are uniquely defined if δi > 0, i =
1, ..., p, and λ1 > ... > λp > 0. When the model parameters are fixed in this
way, the unmixing matrix can be used to transform the random vector to
an invariant coordinate system (ICS) (Tyler, Critchley, Dümbgen and Oja,
2009). See Chapter 4, Section 4.4. If the used scatter functionals do posses
the independence property and if the components of z are independent, then
the model is called semiparametric independent component (IC) model and
the unmixing matrix Γ is a solution in the independent component analysis
(ICA). See Chapter 5, Section 5.3.

21



4 Invariant Coordinate
Selection

Equivariance and invariance issues often arise in multivariate statistical anal-
ysis. Multivariate data are often standardized someway or transformed to an
invariant coordinate system in order to obtain affine equivariant or invariant
versions of statistical procedures. Invariance or equivariance of a statistical
procedure is essential for ensuring that the obtained results are not affected
by the used coordinate system. Standardization of multivariate data and in-
variance and equivariance issues were discussed in Ilmonen, Oja and Serfling
(2011b).

4.1 Invariance and Equivariance

It is required that multivariate location and scatter statistics are affine equiv-
ariant. Multivariate testing and estimation procedures in general are hoped
to be affine invariant and affine equivariant, respectively.

Let x denote a p-variate random vector with a cumulative distribution
function Fx and let X = [x1....xn], where x1, ..., xn is a random sample from
the distribution Fx. Let M denote the set of all full-rank p × p matrices.
Affine invariance and maximal (affine) invariance are defined as follows.

Definition 5. A statistic Q(X) is affine invariant if

Q(AX + b1T
n ) = Q(X)

for all A ∈ M and b ∈ R
p, and a statistic Q(X) is maximal invariant under

the group of affine transformations if it is affine invariant and if

Q(Y ) = Q(X) ⇒ Y = AX + b1T
n , for some A ∈M and b ∈ R

p.

4.2 Standardization of data

Location and scatter functionals are often used to center and standardize
distributions. Let Σ denote a positive definite p × p matrix. For the stan-
dardization we need the following definition of a matrix Σ−1/2.

Definition 6. A matrix Σ−1/2 denotes any matrix G, which satisfies

GΣGT = I.
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For a scatter functional S(Fx), let S−1/2(Fx) denote any functional
G(Fx) which satisfies

G(Fx)S(Fx)G(Fx)T = I.

Note that Σ−1/2 is defined only up to an orthogonal transformation: if
GΣGT = I, then also (V G)Σ(V G)T = I, for any orthogonal matrix V . One
can always define Σ as Σ = UΛUT , where U is a unique orthogonal matrix
and Λ is a unique diagonal matrix. (Here Λ is a diagonal matrix having the
eigenvalues of Σ as its diagonal elements and the column vectors of U are
the corresponding eigenvectors.) Now one can choose Σ−1/2 in a unique way
by requiring, for example, that

1. Σ−1/2 is unique lower diagonal (the inverse of the lower diagonal matrix
in the Cholesky decomposition of Σ),

2. Σ−1/2 is unique upper diagonal (formed by permuting the rows of the
inverse of the lower diagonal matrix in the Cholesky decomposition of
Σ),

3. Σ−1/2 = UΛ−1/2UT , where Λ−1/2 = diag(1/λ1, · · · , 1/λp) (symmetric
version), or

4. Σ−1/2 = Λ−1/2UT (rows are rescaled eigenvectors).

In general, Σ−1/2 is any choice in the set of matrices

{V Λ−1/2UT | V orthogonal and Σ = UΛUT}.
For a scatter functional S(Fx), the corresponding eigenvector and eigen-

value functionals are defined implicitly by

S(Fx) = U(Fx)Λ(Fx)U(Fx)T .

Now
S−1/2(Fx) = V (Fx)Λ(Fx)−1/2U(Fx)T ,

where V (Fx) is an orthogonal matrix functional.

To fix functional S−1/2(Fx) uniquely, one thus has to fix the functional
V (Fx). Possible choices for V (Fx) are for example U(Fx) or I or a matrix
V (Fx) that makes S−1/2(Fx) unique upper or lower triangular. However,
none of the choices above guarantees the invariance of S−1/2(Fx)x. In fact,
if S(Fx) is a scatter functional then S−1/2(FAx+b) = US−1/2(Fx)A−1 for
some orthogonalU = U(Fx, A). Thus S−1/2(Fx)x is not necessarily invariant
under group of transformations

{h | h(x) = Ax,A ∈M},
and

S−1/2(Fx)(x− T (Fx))

is not necessarily invariant under group of transformations

{g | g(x) = Ax+ b, A ∈ M, b ∈ R
p}.

Note that the functional S−1/2(Fx) can be made affine equivariant with
suitable choice of V (Fx). That will be discussed in Section 4.4.
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4.3 Invariant coordinate system (ICS)

A definition of an invariant coordinate system functional is given next.

Definition 7. An invariant coordinate system (ICS) functional is a nonsin-
gular p× p matrix-valued functional G(Fx) satisfying

G(FAx+b) = G(Fx)A−1,

for all A ∈M and b ∈ R
p, and an invariant coordinate system (ICS) statistic

is a p× p matrix-valued sample statistic G(X) satisfying

G(AX + b1T
n ) = G(X)A−1,

for all A ∈ M and b ∈ R
p

For the following result for the ICS statistic G(X), see Ilmonen et al.
(2011b).

Theorem 1. (i) If G(X) satisfies G(AX) = G(X)A−1 for all nonsingular
p× p matrices A, then G(X)X is maximal invariant under the transforma-
tions in {h | h(x) = Ax,A ∈ M}.
(ii) If G(X) satisfies G(AX + b1T

n ) = G(X)A−1 for all nonsingular p × p
matrices A and for all p-vectors b and if T (X) is a location statistic, then
G(X)(X − T (X)1T

n ) is maximal invariant under the transformations in
{g | g(x) = Ax+ b, A ∈ M, b ∈ R

p}.

In practical problems full invariance is not always needed. Weaker con-
cepts of invariance are obtained if one only requires invariance up to some
groups of transformations. LetMs denote some particular subgroup of non-
singular p× p matrices.

Definition 8. A p×p matrix-valued functional G(Fx) is an invariant coor-
dinate system (ICS) functional up to a group of transformations Ms if, for
any A ∈M and b ∈ R

p,

G(FAx+b) = MG(Fx)A−1,

for some M ∈ Ms, and a p × p matrix-valued sample statistic G(X) is an
invariant coordinate system statistic up to a group of transformations Ms

if, for any A ∈M and b ∈ R
p,

G(AX + b1T
n ) = MG(X)A−1

for some M ∈ Ms.

The next result then follows (Ilmonen et al., 2011b).

Theorem 2. Let Q(X) be invariant under transformations in Ms, that is,
Q(MX) = Q(X), for all M ∈ Ms. If G(X) is an ICS statistic up to Ms,
then Q(G(X)X) is affine invariant, that is, Q(G(AX)AX) = Q(G(X)X)
for any A ∈M.
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In the literature of multivariate nonparametric statistics one often has
invariance under the following groups of transformations.

1. D0 = {dI | d > 0} (homogeneous rescaling),

2. D = {diag(d1, ..., dp) | di > 0, i = 1, ..., p} (heterogeneous rescaling),

3. J = {diag(c1, ..., cp) | ci = ±1, i = 1, ..., p} (heterogeneous sign
changes),

4. P = {P | P is a permutation matrix } (permuting the components),

5. U = {U | U is orthogonal} (rotation and reflection), and

6. C = {PJD | P ∈ P , D ∈ D, and J ∈ J } (permuting, rescaling and
sign changes).

Using these definitions we can now also say that, if S(Fx) is a scatter
matrix functional, then S(Fx)−1/2 is an ICS functional up to U .

ICS functionals could be used to preprocess the data to obtain affine
invariant or equivariant statistical procedures. Theorem 2 then shows what
is needed for full invariance. For tests based on spatial signs and ranks, for
example, we need ICS functionals only up to transformations in U , see Oja
(2010). For tests based on marginal signs and ranks it is sufficient to have
ICS functionals up to a group of transformations C, see Puri and Sen (1971);
Nordhausen, Oja and Tyler (2006).

4.4 Construction of ICS functionals

The first example of ICS functional in the literature was introduced by
Chaudhuri and Sengupta (1993) in the context of a location model F (x−µ)
for testing H0 : µ = 0 versus H1 : µ 6= 0. Since Aµ = 0 for all A ∈M if and
only if µ = 0, Chaudhuri and Sengupta (1993) suggest using a test function
Q satisfying Q(AX) = Q(X) for all A ∈ M.

Here the focus is on an approach based on the use of two scatter matrix
functionals. Construction of ICS functionals based on the use of two scatter
matrix functionals was presented by Tyler et al. (2009). Let S1(Fx) and
S2(Fx) denote two different scatter matrix functionals, and consider the set
of distributions

F = {Fx | S−1
1 (Fx)S2(Fx) has distinct eigenvalues}

In this model of distributions one can define ICS functionals in the following
ways.
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1. Find a transformation matrix functional G(Fx) and a diagonal matrix
valued functional L(Fx) as a solution of the eigenvector and eigenvalue
problem

S−1
1 (Fx)S2(Fx)G(Fx)T = G(Fx)TL(Fx).

As the lengths, signs, and order of the eigenvectors are not fixed, G is
an ICS functional in F up to C. See Tyler et al. (2009).

2. Find a transformation matrix functional G(Fx) and diagonal matrix
valued functional L(Fx) which solve the above eigenvector and eigen-
value problem and satisfy

G(Fx)S1(Fx)G(Fx)T = I and G(Fx)S2(Fx)G(Fx)T = L(Fx)

where the eigenvalues in L(Fx) are in decreasing order. Note that
G(Fx) is now chosen to be a certain version of S−1/2(Fx). With these
restrictions, G(Fx) is an ICS functional up to J .

3. Let T1(Fx) and T2(Fx) denote two different location functionals. Find
a transformation matrix functional G(Fx) and diagonal matrix valued
functional L(Fx) which solve the above eigenvector and eigenvalue
problem and satisfy

G(Fx)S1(Fx)G(Fx)T = I, G(Fx)S2(Fx)G(Fx)T = L(Fx)

and
d(Fx) = G(Fx)(T1(Fx)− T2(Fx)) ≥ 0,

where the eigenvalues in L(Fx) are in a decreasing order. If

F = {Fx | L(Fx)11 > · · · > L(Fx)pp > 0, G(Fx)(T1(Fx)− T2(Fx)) > 0},
then the functional G(Fx) is an ICS functional in F and functionals
d(Fx) and L(Fx) can be seen as multivariate measures of skewness and
kurtosis. See Ilmonen, Nevalainen and Oja (2010a); Nordhausen et al.
(2011b).

If x = Az + b for some A ∈M and b ∈ R
p, where JPz ∼ z for all J ∈ J

and P ∈ P , then S1(Fx) and S2(Fx) are proportional and Fx /∈ F . Thus
the ICS functional based on two scatter matrices is not uniquely defined for
example for the distributions in the elliptic model, or for the distributions
where the components of z are i.i.d. However, if X is a random sample from
a continuous p-variate distribution, then Fn ∈ F with probability one and
G(X) = G(Fn) is an ICS statistic.

Sample statistics G(X) and L(X) as defined in point 3 above are affine
equivariant and invariant in the sense that

G(AX + b1T
n ) = G(X)A−1 and L(AX + b1T

n ) = L(X)

for all A ∈ M and b ∈ R
p. For the asymptotics, it is therefore not a re-

striction to assume that X is a random sample from a distribution Fx

with S(Fx) = I and S2(Fx) = Λ, where the diagonal elements of Λ are
λ1 ≥ ... ≥ λp > 0. For the following result, see Ilmonen et al. (2010a).
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Theorem 3. Assume that

√
n(S1(X)− I) = Op(1) and

√
n(S2(X)− Λ) = Op(1),

with λ1 > ... > λp > 0, and assume that the diagonal elements of G(X) are
set to be positive. Then

√
n(G(X)ii − 1) = −1

2

√
n(S1(X)ii − 1) + op(1),

(λi − λj)
√
nG(X)ij =

√
nS2(X)ij − λi

√
nS1(X)ij + op(1), i 6= j, and√

n(L(X)ii − λi) =
√
n(S2(X)ii − λi)− λi

√
n(S1(X)ii − 1) + op(1).

It is interesting to note that the asymptotic behavior of the diagonal
elements of G(X) does not depend on S2(X) at all.

The three equations in Theorem 3 above are in fact true if λi is distinct
from all the other eigenvalues λj , j 6= i. The limiting joint distributions of
the sample eigenvectors and sample eigenvalues for a subset with distinct
population eigenvalues can then be derived from the limiting distributions
of S1(X) and S2(X). (Ilmonen et al., 2011b)

4.5 Applications of ICS

There are several applications for ICS functionals based on the use of two
scatter matrix functionals and two location functionals. For example, find-
ing an unmixing matrix in the independent component analysis, see Chap-
ter 5, Section 5.3; and deriving multivariate skewness and kurtosis mea-
sures, see Kankainen, Taskinen and Oja (2007); Nordhausen et al. (2011b);
Ilmonen et al. (2010a). Also sliced inverse regression (Li, 1991) can be seen as
an ICS functional application based on two scatter matrices, see
Liski, Nordhausen and Oja (2011).

For other ICS-functionals and their applications, see
Critchley, Pires and Amado (2006); Chakraborty and Chaudhuri (1998, 1996);
Caussinus and Ruiz-Gazen (1993)
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5 Independent Component
Analysis

Independent component analysis (ICA) is an important and timely research
area. The field of applications of ICA is wide and constantly expanding, vary-
ing from biomedical image data applications to signal processing,
(Hyvärinen, Karhunen and Oja, 2001). ICA is also an interesting example
of the use of the ICS functionals.

5.1 Independent Component (IC) Model

In the independent component (IC) model it is assumed that the p-variate
vector

(5.1) x = Ωz,

where Ω is a full-rank p× p mixing matrix and z is a p-variate vector with
mutually independent components.

In the independent component analysis (ICA) the aim is to find an esti-
mate for an unmixing matrix Γ such that Γx has independent components.
Naturally Γ = Ω−1 is one possible unmixing matrix. The IC model can be
formulated in several ways: If the independent components are permuted or
multiplied by nonzero scalars they still remain independent. Then the ICA
problem reduces to estimating an unmixing matrix Ω−1 only up to the order,
signs and scales of the row vectors.

Under the assumption that z has at most one Gaussian marginal, per-
mutations (P ), sign changes (J) and scale transformations (D) of the inde-
pendent components are the only sources of unidentifiability for Ω, see, e.g.,
Theis (2004). Solving this identifiability problem requires either standard-
izing the marginal distributions of z (Ilmonen et al., 2010a) or normalizing
the mixing matrix Ω (Ilmonen and Paindaveine, 2011). The marginal distri-
butions of z can be standardized using two different location functionals T1

and T2 and two different scatter functionals S1 and S2 by setting

T1(Fz) = 0, S1(Fz) = Ip,

T2(Fz) = δ and S2(Fz) = D,

where δ is a p-vector with all components δi ≥ 0, i = 1, ..., p, and D is a
diagonal matrix with diagonal elements d1 ≥ ... ≥ dp > 0. If now δi > 0,
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i = 1, ..., p, and if the diagonal elements of D are distinct, then the mixing
matrix Ω is uniquely defined. See also Chapter 3, Section 3.5.

The IC model 5.1 can also be standardized by standardizing the mixing
matrix using a mapping

Ω 7→ L = ΩD+
1 PD2,

where D+
1 is the positive definite diagonal matrix that makes each column

of ΩD+
1 have Euclidean norm one, P is the permutation matrix for which

the matrix B = (bij) = ΩD+
1 P satisfies |bii| > |bij | for all i < j, and D2 is

the diagonal matrix that makes all the diagonal entries of L = ΩD+
1 PD2

to be equal to one. Ties may be taken care of e.g., by basing the ordering
on subsequent rows of B above, but they may prevent the mapping to be
continuous. Thus it is often convenient to restrict to the collection of mixing
matrices Ω for which no ties occur in the permutation step.

Both standardization methods presented above enable to fix Model 5.1
uniquely.

There is a large number of estimates and algorithms for the ICA problem
in the literature, and most popular algorithms proceed as follows.

1. In model (5.1) fix z such that Cov(z) = Ip. Then, for a prewhitened
version of x, it holds that

y = Cov(x)−1/2(x− E(x)) = U(z − E(z))

for some orthogonal matrix U .

2. Using y, find an orthogonal matrix V = (v1, ..., vp) with the columns
vi, i = 1, ..., p, chosen to maximize (or minimize) a criterion func-
tion, say |E[G(vT

i y)]|. The optimization may be conducted one by one
or simultaneously. Measures of marginal nongaussianity (negentropy,
kurtosis measures) or likelihood functions with parametric marginal
distributions are often used.

3. The final IC estimate is V TCov(x)−1/2. (Note that V T = PJU .)

The fastICA estimate (Hyvärinen and Oja, 1997) uses an algorithm of
such type where the columns of V are found by maximizing a negentropy
criterion. In deflation based fastICA, the columns of V are found one by
one and in symmetric fastICA algorithm, the optimizations are conducted
simultaneously. For more details about fastICA and several similar estimates
and algorithms, see Cichocki and Amari (2006); Hyvärinen et al. (2001). For
other type of estimates, see Chen and Bickel (2005, 2006).

5.2 IC Functionals

The following formal mathematical definition of an IC functional was given
in Ilmonen, Nordhausen, Oja and Ollila (2010b).
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Let M denote the set of all full-rank p × p matrices. (Then naturally
all unmixing matrices Γ ∈ M.) Let P denote a permutation matrix, J a
sign-change matrix, and D a scaling matrix. Let

C = {C ∈M | C = PJD for some P , J , and D} .

Now two matrices Γ1 and Γ2 are said to be equivalent if Γ1 = CΓ2 for some
C ∈ C. We then write Γ1 ∼ Γ2.

Definition 9. A functional Γ(Fx) ∈M is an IC functional in the IC model
(5.1) if

Γ(Fx)Ω ∼ Ip,

and if it is affine equivariant in the sense that

Γ(FAx) = Γ(Fx)A−1

for all A ∈ M.

If z has independent components, then so has Cz for all C ∈ C. Then,
for any C ∈ C, the IC model can be reformulated as

x = (ΩC−1)(Cz) = Ω∗z∗

where Ω∗ is a new mixing matrix and z∗ is a new (transformed) vector of
independent components. (Matrix C is used in the transformation.) Note
that

Γ(Fx)Ω ∼ Γ(Fx)Ω∗.

The functional C(Fx) = Γ(Fx)Ω, with values in C, depends on the dis-
tribution of z but not on the value of Ω. If the model is fixed by choosing
z∗ = C(Fx)z, and x = Ω∗z∗, then Ω∗ = Γ(Fx)−1. This formulation of the
model is then most natural (canonical) for functional Γ(Fx).

5.3 IC Functionals Based on the Use of Two

Scatter Matrices

Let S1(Fx) and S2(Fx) denote two different scatter functionals with the
independence property. The IC functional Γ(Fx) based on the scatter matrix
functionals S1(Fx) and S2(Fx) is defined as a solution of the equations

ΓS1(Fx)ΓT = Ip and ΓS2(Fx)ΓT = Λ,

where λ = Λ(Fx) is a diagonal matrix with diagonal elements λ1 ≥ ... ≥
λp > 0. (See also Chapter 4 Section 4.4.) One of the first solutions for
the ICA problem, the fourth order blind identification (FOBI) functional
(Cardoso, 1989) is obtained if the scatter functionals S1(Fx) and S2(Fx)
are the scatter matrices based on the second and fourth moments, respec-
tively. The use of two scatter matrices in the ICA has been studied in
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Nordhausen, Oja and Ollila (2008); Oja et al. (2006) (real data) and
in Ollila, Oja and Koivunen (2008) (complex data).

For the asymptotical behavior of the corresponding estimates Γ(Fn) =
Γ(X) and Λ(Fn) = Λ(X), see Theorem 3 in Chapter 4. Note however that
in Theorem 3, the scatter functionals do not necessarily posses the inde-
pendence property, but in the context of independent component analysis,
the independence property is crucial. In the ICA one may also use shape
functionals, instead of scatter functionals, but asymptotical analysis is then
not as straightforward as when using scatter functionals. Note also that
Ilmonen et al. (2010a) considered the limiting distribution of the FOBI es-
timate (with limiting covariance matrix) in more details.

Similar approaches like JADE (Cardoso and Souloumiac, 1993) or the
matrix-pencil approach (Yeredor, 2009) (approximately) diagonalize jointly
two or more data matrices (not necessarily scatter matrices). The estimates
are typically not affine equivariant and their asymptotic behavior is still
unknown.

5.4 Deflation Based FastICA

Another important family of IC functionals is given by the deflation-based
fastICA algorithm. FastICA is one of the most popular and widespread ICA
algorithms. Detailed examination of fastICA functionals are provided for
example in Hyvärinen and Oja (1997) and Ollila (2010).

Assume that x = Ωz as in model (5.1) with finite first and second mo-
ments E(x) = µ and Cov(x) = Σ. In deflation based fastICA, a criterion
function |E(G(γT (x−µ))| is first maximized under the constraint γT Σγ = 1.
Then, after finding γ1, ..., γk−1, the kth source maximizes |E(G(γT (x− µ))|
under the constraint

γT
k Σγk = 1 and γT

j Σγk = 0, j = 1, ..., k − 1.

If G satisfies the condition

|E(G(α1z1 + α2z2)| ≤ max(|E(G(z1)|, |E(G(z2)|)

for all independent z1 and z2 such that E(z1) = E(z2) = 0 and E(z2
1) =

E(z2
2) = 1 and for all α1 and α2 such that α2

1 +α2
2 = 1, then the independent

components are found using the above strategy. It is easy to check that the
condition is true for G(z) = z4 − 3, for example. See Bugrien (2005).

Let T (Fx) denote the mean vector (functional) and S(Fx) the covariance
matrix (functional). Then the kth fastICA functional γk(Fx) optimizes the
Lagrangian function

|E[G(γT
k (x − T (Fx)))]| − λkk

2
(γT

k S(Fx)γk − 1)−
k−1
∑

j=1

λjkγ
T
j S(Fx)γk,
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where λ1k, ..., λkk are the Lagrangian multipliers. If g = G′, then, under
general assumptions, the functional Γ(Fx) = Γ = (γ1, ..., γp)T satisfies the p
estimating equations

E[g(γT
k (x−T (Fx))(x−T (Fx))] = S(Fx)

k
∑

j=1

γjγ
T
j E[g(γT

k (x−T (Fx))(x−T (Fx))],

k = 1, ..., p. If z = Γx has independent components then Γ solves the above
estimating equations. Note that the estimating equations do not fix the
order of sources γ1, ..., γp anymore. See Ilmonen, Nordhausen, Oja and Ollila
(2011a)

Popular choices of g for practical calculations are pow3: g(z) = z3, tanh:

g(z) = tanh(z), and gaus: g(z) = ze−z2/2.
The limiting behavior of the deflation based fastICA estimate was exam-

ined in Ilmonen et al. (2011a) including proving asymptotic normality under
some general conditions. The covariance structure of the row vectors of de-
flation based fastICA estimate was given (in closed form) in Ollila (2010),
but the asymptotic normality remained unproven there.

If E(x) = 0 then the fastICA algorithm for γk uses the iteration steps

1. γk ← Σ−1E[g(γT
k x)x] − E[g′(γT

k x)]γk

2. γk ← γk −
∑k

j=1(γT
k Σγj)γj

3. γk ← γk/
√

γT
k Σγk

The sample version is naturally obtained if the expected values are re-
placed by the averages in the above formula. It is important to note that it is
not known in which order the components are found in the above algorithm.
The order depends strongly on the initial value in the iteration.

The limiting behavior of the sample statistic Γ̂, based on a random sam-
ple x1, ..., xn, was examined in Ilmonen et al. (2011a). Assume that E(xi) =
0 and Cov(xi) = Ip and that the true value Γ = Ip = (e1, ..., ep)T . Let T (Fn)
denote the sample mean vector and S(Fn) the sample covariance matrix. If
the fourth moments exist, then

√
nvec(T (Fn), S(Fn)− Ip) has a joint limit-

ing multivariate normal distribution (CLT). Write Γ̂ = (γ̂1, ..., γ̂p)T for the
fastICA estimate of Γ. Write also

µk = E[g(eT
k xi)], λk = E[g(eT

k xi)e
T
k xi]

and
τk = E[g′(eT

k xi)e
T
k xi], δk = E[g′(eT

k xi)],

k = 1, ..., p. The assumption that λk 6= δk, k = 1, ..., p− 1 is needed later. (If
g(z) = z3, for example, this assumption rules that only the component that
is found last, may be normally distributed.) For the sample statistics

Tk =
1

n

n
∑

i=1

(g(eT
k xi)−µk)xi and T̂k =

1

n

n
∑

i=1

g(γ̂T
k (xi−T (Fn)))(xi−T (Fn))
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it is needed that

(5.2)
√
n(T̂k − λkek) =

√
nTk − τkeke

T
k

√
nT (Fn) + ∆k

√
n(γ̂k − ek) + oP (1)

where ∆k = E[g′(eT
k xi)xix

T
i ], k = 1, ..., p. Again, if g(z) = z3 and the

sixth moments exist, then (5.2) is true and
√
n(T̂k − λkek) has a limiting

multinormal distribution. The estimating equations for the fastICA solution
Γ̂ = (γ̂1, ..., γ̂p)′ are then given by

(5.3) T̂k = S(Fn)[γ̂1γ̂
T
1 + ...+ γ̂kγ̂

T
k ]T̂k, k = 1, ..., p.

If (5.2) is true and Uk =
∑k

j=1 eje
T
j then

(Ip − Uk)
√
n(T̂k − λkek) = λk[

√
n(S(Fn)− Ip)ek +

k
∑

j=1

eje
T
k

√
n(γ̂j − ej)

+
√
n(γ̂k − ek)] + oP (1)

and the next result follows (Ilmonen et al., 2011a).

Theorem 4. Let x1, ..., xn be a random sample from the model (5.1) with
Ω = Ip, E(xi) = 0, and Cov(xi) = Ip. Let Γ̂ = (γ̂1, ..., γ̂p) be the solution
for estimating equations in (5.3), and let the algorithm be chosen such that
Γ̂→P Ip. Then, under the general assumptions,

√
nγ̂kl =

1

λk − δk

[

eT
l

√
nTk − λk

√
nS(Fn)kl

]

+ oP (1), for l > k

√
n(γ̂kk − 1) = −1

2

√
n(S(Fn)kk − 1) + oP (1), and

√
nγ̂kl =

√
nγ̂lk −

√
nS(Fn)kl + oP (1) for l < k

Theorem 4 implies that, if
√
n(Tk−λkek), k = 1, ..., p, and

√
nvec(S(Fn)−

Ip) have a joint limiting multivariate distribution, then also the limiting dis-

tribution of
√
nvec(Γ̂− Ip) is multivariate normal. Interestingly enough, the

limiting distribution of the estimated sources γ̂1, ..., γ̂p depends on the order
in which they are found. The limiting behavior of the diagonal elements of
Γ̂ does not depend on the choice of the function g(z). The initial value for
Γ̂ in the fastICA algorithm fixes the asymptotic order of the sources.

Remark 1. Let κk = (E[x4
ik ]− 1)/4, σ2

k = V ar[g(eT
k xi)] and let

αk =
σ2

k − λ2
k

(λk − δk)2
.

Now it follows from Theorem 4 that

ASV (γ̂k) =

k−1
∑

j=1

(αj + 1)eje
T
j + κkeke

T
k + αk

p
∑

l=k+1

ele
T
l .
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5.4.1 Deflation Based FastICA reloaded

Surprisingly, the order in which the independent components are found
has an effect on the performance of the fastICA algorithm.
Nordhausen, Ilmonen, Mandal, Oja and Ollila (2011a) presented an improved
algorithm to ensure that the components are found in an optimal order.
The minimum distance index, see Chapter 5, Section 5.6, suggests that for
Γ = Ip, the optimal performance is achieved when the sum of the variances
of the off-diagonal elements of the estimator are minimized. It follows from
Remark 1 that

∑

i6=j

ASV (γ̂ij) = 2

p
∑

j=1

(p− i)(αi)eje
T
j +

p(p− 1)

2
,

and it is minimized when the αi :s are in increasing order.
Nordhausen et al. (2011a) suggest using first any equivariant and con-

sistent estimate Γ̂0 such that S(Γ̂0X) = Ip. After that the estimates ẑi =

(Γ̂0(xi − x̄)) are used to calculate the estimates α̂k (expected values are
replaced by averages). Then a permutation matrix P̂ is found such that
for the permuted estimated sources, the α̂k are in increasing order. Matrix
P̂ Γ̂0S(Fn)−1/2 is used as a new initial value of the algorithm. The perfor-
mance of this new reloaded fastICA algorithm is better than the performance
of the original fastICA algorithm and the new improved algorithm works
well also in preventing algorithm failures. For details, see Nordhausen et al.
(2011a).

5.5 Inference Based on Signed Ranks in Sym-
metric IC model

The idea of using rank-based test statistics for point estimators and confi-
dence regions in the context of one sample and two sample location models
was presented by Hodges and Lehmann (1963). Since that, ranks and signs
and signed ranks have been used in several sophisticated multivariate test
and estimation statistics. Signs and ranks are known to be very robust, and
many popular robust methods are based on using them. For an excellent
overview, see Oja (2010).

In symmetric IC model it is assumed that the p-variate vector

(5.4) x = Ωz + µ

where Ω is a full-rank p× p mixing matrix, µ is a location vector and z is a
p-variate vector with mutually independent and symmetrically distributed
components. Nordhausen, Oja and Paindaveine (2009) presented tests for
one sample location problem, H0 : µ = 0 versus H1 : µ 6= 0, in symmet-
ric IC model. Assuming that x = (xT

1 , x
T
2 )T , Oja, Paindaveine and Taskinen

(2011) considered the problem of testing whether the multivariate subvec-
tors x1 and x2 are independent. Ilmonen and Paindaveine (2011) consid-
ered tests and estimates for a mixing matrix Ω. The tests presented in
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Nordhausen et al. (2009); Oja et al. (2011); Ilmonen and Paindaveine (2011)
are based on signed ranks of the estimated independent components. All the
three papers rely heavily on the uniform local asymptotic normality (ULAN)
property of symmetric IC models and the tests and estimation procedures
are locally and asymptotically optimal in the Le Cam sense (Le Cam, 1986)
at given densities.

5.5.1 ULAN

A sequence of statistical models P
(n)
f = {P(n)

ϑ,f | ϑ ∈ θ ∈ Θ ⊆ R
k, f ∈ F}

is uniformly locally asymptotically normal (ULAN) if for any ϑn = ϑ +
O(n−1/2) and any bounded sequence (τn), there exists a symmetric positive

definite matrix Gϑ,f such that, under P
(n)
ϑ,f as n→∞,

log(dP
(n)

ϑn+n−1/2τn,f
/dP

(n)
ϑn,f) = τT

n ∆
(n)
ϑn,f −

1

2
τT

n Gϑ,fτn + oP(1),

and that, still under P
(n)
ϑ,f , ∆

(n)
ϑn,f is asymptotically normal with mean zero

and covariance matrix Gϑ,f .
Such ULAN property allows to derive parametric efficiency bounds at f

and to construct the corresponding parametrically optimal inference pro-
cedures for ϑ, see Le Cam (1986). When testing H0 : ϑ = ϑ0 against
Ha : ϑ 6= ϑ0, parametrically optimal tests reject the null at asymptotic
level α whenever

∆
(n)T
ϑ0,f G

−1
ϑ0,f ∆

(n)
ϑ0,f > χ2

k,1−α,

where χ2
k,1−α denotes the α-upper quantile of the χ2

k distribution. Under se-

quences of alternatives of the form P
(n)

ϑ0+n−1/2τ,f
, these tests have the asymp-

totic power Ψk(χ2
k,1−α; τTGϑ0,fτ), where Ψk( · ; δ) stands for the cumulative

distribution function of the non-central χ2
k distribution with non-centrality

parameter δ. This settles the parametrically optimal (at f) performance for

hypothesis testing. As for point estimation, an estimator ϑ̂ is parametrically
efficient at f iff √

n (ϑ̂− ϑ)
d→ Nr

(

0, G−1
ϑ,f

)

.

The underlying density f is often unspecified in practice, which leads to

considering the semiparametric model P(n) = ∪h∪ϑ∈Θ{P(n)
ϑ,h}. In P(n), semi-

parametrically optimal (still at f) inference procedures are based on the effi-

cient central sequence ∆
∗(n)
ϑ,f resulting from the original central

sequence ∆
(n)
ϑ,f by performing adequate tangent space projections; see

Bickel, Klaassen, Ritov and Wellner (1993). Under P
(n)
ϑ,f , the efficient cen-

tral sequence ∆
∗(n)
ϑ,f typically is still asymptotically normal with mean zero,

but now with covariance matrix G∗
ϑ,f (the efficient information matrix at f).

Semiparametrically optimal tests (at f) reject the null at asymptotic level
α whenever

∆
∗(n)T
ϑ0,f (G∗

ϑ0,f)−1∆
∗(n)
ϑ0,f > χ2

k,1−α.
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They have asymptotic powers Ψk(χ2
k,1−α; τT (G∗

ϑ0,f )τ) under the sequences

of alternatives considered above. An estimator ϑ̂ is semiparametrically effi-
cient at f if and only if

√
n (ϑ̂− ϑ)

d→ Nr

(

0, (G∗
ϑ,f )−1

)

.

5.5.2 ULAN for symmetric IC models

Let Mt denote the set of mixing matrices Ω for which no ties occur in
the permutation step of the mapping Ω 7→ L = ΩD+

1 PD2 described in
Section 5.1 and let M1 denote the corresponding set of matrices L. The
parametrization based on standardizing the mixing matrix now leads to
considering the model associated with

(5.5) x = Lz + µ,

where µ ∈ R
p, L ∈ M1, and z has independent and symmetrically dis-

tributed marginals (among which at most one is normally distributed) with
common median zero. The resulting collection of densities (of the form
h(z) =

∏p
r=1 hr(zr), where hr is the symmetric density of zr) will be denoted

as F .
The hypothesis under which n mutually independent observations xi,

i = 1, . . . , n are obtained from (5.5), where z has density h, will be denoted

as P
(n)
ϑ,h, with ϑ = (µT , (vecd◦L)T )T ∈ Θ = R

p×vecd◦(M1), or alternatively,

as P
(n)
µ,L,h. This leads to the semiparametric model

P(n) = ∪h P(n)
h = ∪h ∪ϑ∈Θ {P(n)

ϑ,h}.

As usual, ULAN at some specific h = f requires further technical as-
sumptions: it is needed that f belongs to the collection Fulan of densities in
F for which each fr, r = 1, . . . , p, is absolutely continuous, with a derivative
f ′

r that satisfies (below we let ϕfr = −f ′
r/fr)

σ2
fr

=

∞
∫

−∞

y2fr(y) dy <∞, Ifr =

∞
∫

−∞

ϕ2
fr

(y)fr(y) dy <∞,

and

Jfr =

∞
∫

−∞

y2ϕ2
fr

(y)fr(y) dy <∞.

For any f ∈ Fulan, let γrs(f) = Ifrσ
2
fs

, define the optimal p-variate

location score function ϕf : Rp → R
p through z = (z1, . . . , zp)T 7→ ϕf (z) =

(ϕf1
(z1), . . . , ϕfp (zp))T , and denote by If the diagonal matrix with diagonal

entries Ifr , r = 1, . . . , p. Further, define

C =

p
∑

r=1

p−1
∑

s=1

(ere
T
r ⊗ use

T
s+δs≥r

),
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where er and ur stand for the rth vectors of the canonical basis of Rp and
R

p−1, respectively, and δs≥r is equal to one if s ≥ r and to zero otherwise.

Then the parametric model P(n)
f is ULAN for any fixed f ∈ Fulan

(Oja et al., 2011; Ilmonen and Paindaveine, 2011), with central sequence

∆
(n)
ϑ,f =

(

∆
(n)
ϑ,f ;1

∆
(n)
ϑ,f ;2

)

=

(

n−1/2(L−1)T
∑n

i=1 ϕf (zi)

n−1/2C(Ip ⊗ L−1)T
∑n

i=1 vec(ϕf (zi)z
T
i − Ip)

)

,

where zi = zi(ϑ) = L−1(xi − µ), and full-rank information matrix

GL,f =

(

GL,f ;1 0

0 GL,f ;2

)

,

where GL,f ;1 = (L−1)T IfL
−1 and

GL,f ;2 = C(Ip ⊗ L−1)T

[

p
∑

r=1

(Jfr − 1)(ere
T
r ⊗ ere

T
r )

+

p
∑

r,s=1,r 6=s

(

γsr(f)(ere
T
r ⊗ ese

T
s ) + (ere

T
s ⊗ ese

T
r )
)

]

(Ip ⊗ L−1)CT .

5.5.3 Optimal signed-rank inference in symmetric IC
models

Ilmonen and Paindaveine (2011) considered the problem of testing H0 : L =
L0 against Ha : L 6= L0, where L0 ∈ M1 is fixed. As already mentioned,
semiparametrically optimal procedures are based on the efficient central
sequence ∆∗

ϑ,f . Classically, ∆∗
ϑ,f is obtained by performing tangent space

computations. When, however, the semiparametric model at hand enjoys
a strong invariance structure, the efficient central sequence ∆∗

ϑ,f can al-
ternatively be obtained by conditioning the original central sequence ∆ϑ,f

with respect to the corresponding maximal invariant; see Hallin and Werker
(2003).

In the context of symmetric IC models, this maximal invariant is given
by

(S1(ϑ), . . . , Sn(ϑ), R+
1 (ϑ), . . . , R+

n (ϑ)),

with Si(ϑ) = (Si1(ϑ), . . . , Sip(ϑ))T and R+
i (ϑ) = (R+

i1(ϑ), . . . , R+
ip(ϑ))T ,

where Sir(ϑ) is the sign of zir(ϑ) = (L−1(xi − µ))r and R+
ir(ϑ) is the rank

of |zir(ϑ)| among |z1r(ϑ)|, . . . , |znr(ϑ)|. This is what leads to considering
signed-rank procedures when performing inference on L in the present con-
text.

Let ϑ̂0# = (µ̂T
#, (vecd◦L0)T )T denote a root-n consistent (under the

null) and locally asymptotically discrete sequence of estimators µ̂# for µ.

(An estimate (ϑ̌n
#) is said to be locally asymptotically discrete if the num-

ber of possible values of ϑ̌n
# in balls with O(n−1/2) radius centered at ϑ is

bounded as n → ∞. For examples of such estimates in this present setup,
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see Ilmonen and Paindaveine (2011).) The nonparametric counterpart of the
parametrically optimal (at f) test statistic is given by (Ilmonen and Paindaveine,
2011)

Q
f

= (∆∗
ϑ̂0#,f ;2)T (G∗

L0,f ;2)−1∆∗
ϑ̂0#,f ;2,

where

∆∗
ϑ,f ;2 = C(Ip ⊗ L−1)T vec

[

odiag

(

1√
n

n
∑

i=1

(

Si(ϑ)⊙ ϕf

(

F−1
+

(R+
i (ϑ)

n+ 1

)))

×
(

Si(ϑ)⊙ F−1
+

(R+
i (ϑ)

n+ 1

))T
)

]

(here odiag is the operator that replaces diagonal entries with zeroes) and

G∗
L,f ;2 = C(Ip ⊗ L−1)T

[

p
∑

r,s=1,r 6=s

(

γsr(f)(ere
T
r ⊗ ese

T
s )

+ (ere
T
s ⊗ ese

T
r )
)

]

(Ip ⊗ L−1)CT .

The resulting signed-rank tests, that reject H0 : L = L0 at asymptotic
level α whenever Q

f
> χ2

p(p−1),1−α, are semiparametrically optimal (most

stringent, see Le Cam (1986)) at f . Since they are signed-rank tests, they,
however, remain valid in the sense that they meet asymptotically the level
constraint, under a very broad class of densities h.

Ilmonen and Paindaveine (2011) also provided a one step point estima-
tor L̂. Let ϑ̃# = (µ̃T

#, (vecd◦L̃#)T )T denote a root-n consistent and locally
asymptotically discrete preliminary estimator. (Several such practical esti-
mators exist, see Ilmonen and Paindaveine (2011).) Let

G∗
L,f,h;2 = C(Ip ⊗ L−1)T

[

p
∑

r,s=1,r 6=s

(

γsr(f, h)(ere
T
r ⊗ ese

T
s )

+ ρrs(f, h)(ere
T
s ⊗ ese

T
r )
)

]

(Ip ⊗ L−1)CT ,

where

γrs(f, h) =

1
∫

0

ϕfr (F−1
r (u))ϕhr (H−1

r (u)) du×
1
∫

0

F−1
s (u)H−1

s (u) du

and

ρrs(f, h) =

1
∫

0

F−1
r (u)ϕhr (H−1

r (u)) du×
1
∫

0

ϕfs (F−1
s (u))H−1

s (u) du

38



and let Ĝ∗
L̃#,f ;2

denote an estimate of G∗
L,f,h;2 formed by plugging in pre-

liminary a estimator ϑ̃# and estimators γ̂rs#(f) and ρ̂rs#(f) that (i) are
locally asymptotically discrete and (ii) satisfy γ̂rs#(f) = γrs(f, h) + oP(1)

and ρ̂rs#(f) = ρrs(f, h) + oP(1) as n→∞, under ∪ϑ∈Θ ∪h∈Fulan
{P(n)

ϑ,h}.
Let

vecd◦L̂f# = (vecd◦L̃#) + n−1/2(Ĝ∗
L̃#,f ;2

)−1∆∗
ϑ̃#,f ;2,

where Ĝ∗
L̃#,f ;2

is the consistent estimate of G∗
L,f,h;2 just defined.

Ilmonen and Paindaveine (2011) showed that

√
n vecd◦(L̂f# − L)

L→ Np(p−1)

(

0, (Γ∗
L,f ;2)−1

)

as n→∞, under ∪µ∈Rp{P(n)
µ,L,f}.

5.6 Performance Indices

Due to the vast amount of different ICA estimates and algorithms, asymp-
totic as well as finite sample criteria are needed for their comparisons. While
asymptotic results (convergence, asymptotic normality, etc.) are often miss-
ing, several finite-sample performance indices have been proposed in the lit-
erature to compare different estimates in simulation studies. First, one can
compare the true sources z (which are of course known in the simulations)
and the estimated sources ẑ = Γ̂x. Second, one can measure the closeness of
the true unmixing matrix Ω−1 (used in the simulations) and the estimated
unmixing matrix Γ̂. In both cases the problem is that the order, signs and
scales of the rows of the estimated unmixing matrix may not match as Γ̂
is typically not an estimate of Ω−1. For a good estimate, the gain matrix
Ĝ = Γ̂Ω is close to a matrix PJD, where P is a permutation matrix, J is a
sign-change matrix, and D is a scaling matrix.

Normalized versions of Ĝ are used in the performance index construc-
tions. One of the most popular indices, the Amari index
(Amari, Cichocki and Yang, 1996) for example uses

1

p





p
∑

i=1

∑p
j=1 |Ĝij |

maxj |Ĝij |
+

p
∑

j=1

∑p
i=1 |Ĝij |

maxi |Ĝij |



− 2.

The smaller is the value of the index, the better is the estimate, and value
0 corresponds to perfect separation. Also the intersymbol interference (ISI)
(Moreau and Macchi, 1994) is based on both row-wise and column-wise stan-
dardizations. The inference-to-signal ratio (ISR) (Ollila, 2010) and inter-
channel inference (ICI) (Douglas, 2007) use only row-wise standardization
and

p
∑

i=1





p
∑

j=1

∑p
j=1 Ĝ

2
ij

maxj Ĝ2
ij

− 1



 .
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Theis, Lang and Puntonet (2004) proposed an index called the generalized
crosstalking error which is the shortest distance between the mixing matrix Ω
and the set of estimates equivalent to Γ̂−1. Chen and Bickel (2006) compute
the norm ||Γ̂Ω− Ip|| after suitable rescaling and permutation of Γ̂ and Ω.

Ilmonen et al. (2010b) introduced a new performance index based on the
use of Ĝ = Γ̂Ω. The index finds the shortest distance (using Frobenius norm)
between the identity matrix and the set of matrices equivalent to the gain
matrix Γ̂Ω.

Let A denote a p× p matrix. The shortest squared distance (divided by
p− 1) between the set {CA | C ∈ C} of equivalent matrices (to A) and Ip is
given by

D2(A) =
1

p− 1
inf

C∈C
‖CA− Ip‖2

where ‖ · ‖ is the matrix (Frobenius) norm. For the following result, see
Ilmonen et al. (2011a).

Theorem 5. Let A be any p×p matrix having at least one nonzero element
in each row. The shortest squared distance D2(A) fulfils the following four
conditions:

1. 1 ≥ D2(A) ≥ 0,

2. D2(A) = 0 if and only if A ∼ Ip,

3. D2(A) = 1 if and only if A ∼ 1pa
T for some p-vector a, and

4. the function c→ D2(Ip + c odiag(A)) is increasing in c ∈ [0, 1] for all
matrices A such that A2

ij ≤ 1, i 6= j.

Let X = [x1....xn], where x1, ..., xn is a random sample from a distribu-
tion Fx, where x obeys the IC model (5.1) with a mixing matrix Ω. Let Γ(F )
be an IC functional. Then clearly D2(Γ(Fx)Ω) = 0. If Fn is the empirical
cumulative distribution function based on X then

Γ̂ = Γ̂(X) = Γ(Fn)

is the unmixing matrix estimate based on the functional Γ(Fx).
The shortest distance between the identity matrix and the set of matrices

{CΓ̂Ω : C ∈ C} equivalent to the gain matrix Ĝ = Γ̂Ω is as given in the
following definition.

Definition 10. The minimum distance index for Γ̂ is

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C
‖CΓ̂Ω− Ip‖.

It follows directly from Theorem 5, that 1 ≥ D̂ ≥ 0, and D̂ = 0 if and
only if Γ̂ ∼ Ω−1. The worst case with D̂ = 1 is obtained if all the row vectors
of Γ̂Ω point to the same direction. Thus the value of the minimum distance
index is easy to interpret. Note that D(Γ̂Ω) = D(CΓ̂Ω) for all C ∈ C. Also,
if

xi = Ωzi and x∗
i = (AΩ)zi = Ω∗zi,
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and Γ̂∗ is calculated from X∗ = [x∗
1, ..., x

∗
n], then D(Γ̂∗Ω∗) = D(Γ̂Ω). Thus

the minimum distance index provides a fair comparison for different IC func-
tionals. Note also the nice and natural behavior described in Theorem 5,
condition 4.

Note that the generalized crosstalking error in Theis et al. (2004) is de-
fined as

E(Ω, Γ̂) = inf
C∈C
‖Ω− Γ̂−1C‖

where ‖ · ‖ denotes any matrix norm. Clearly, E(Ω, Γ̂) = E(Ω, CΓ̂) for all
C ∈ C, but E(Ω∗, Γ̂∗) = E(Ω, Γ̂) is not necessarily true. If the Frobenius
norm is used, the new index may be seen as a standardized version of the
generalized crosstalking error as

D̂ = inf
C∈C
‖C−1Γ̂

(

Ω− Γ̂−1C
)

‖.

Note that, unlike the minimum distance index, the values of the Amari
index for Γ̂Ω and DΓ̂Ω (with a diagonal matrix D) may differ.

The limiting behavior of the value of the minimum distance index de-
pends on the limiting behavior of the used estimate. The following theorem
was given in Ilmonen et al. (2011a).

Theorem 6. Assume that the model is fixed such that Γ(Fx) = Ω = Ip and

that
√
n vec(Γ̂− Ip)→d Np2 (0,Σ). Then

nD̂2 =
n

p− 1
‖odiag(Γ̂)‖2 + oP(1)

and the limiting distribution of nD̂2 is that of (p − 1)−1
∑k

i=1 δiχ
2
i where

χ2
1, ...., χ

2
k are independent chi squared variables with one degree of freedom,

and δ1, ..., δk are the k nonzero eigenvalues (including all algebraic multi-
plicities) of

ASCOV (
√
n vec(odiag(Γ̂))) = (Ip2 −Dp,p)Σ(Ip2 −Dp,p),

with Dp,p =
∑p

i=1(eie
T
i )⊗ (eie

T
i ).

It is also important to note that similar simple asymptotical results for
the Amari index cannot be found since it is based on the use of l1 norms.
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6 Data Example

To demonstrate the use of ICS transformation in practise, we performed an
ICS transformation to a real data. The data set we used was part of a large
data set of height measurements that were collected retrospectively from
health centers and schools for construction of the Finnish growth charts. The
used data set comprised 525 boys and 571 girls, fullterm, healthy singletons,
followed until approximately age 19, with measurements from three to 44
occasions. The original data set is explained in detail in Pere (2000).

We used the original observations to estimate each individual growth
curve from birth to age 19 by fitting splines. We excluded the individuals
that did not have enough measurements for fitting the splines. After that we
had 829 (481 boys and 348 girls) estimated height curves. In our analysis,
we used measurements (based on estimated curves) at ages 8, 9, 10, 11, 12,
13, 14, 15, 16, 17 and 18 years. Thus we had 13 dimensional sample with
829 observations.

Before going to ICS transformations, we first used PCA for dimension
reduction. (That is often done also in ICA, see Hyvärinen et al. (2001).) The
first principal component explained 77 %, the second 17 % and the third 4
% of the variance of the data. Thus the first, second and third principal
component together already explained 98 % of the variance and we reduced
the dimension of the data to three. We calculated the mean curve and the
first three principal component curves (i.e. the three first column vectors
of the estimated mixing matrix/the inverse of the loadings matrix). Mean
curve of the estimated data points and the three first principal component
curves are presented in Figure 6.1.

After transformation to the principal components and dimension reduc-
tion, we performed FOBI-transformation i.e. ICS transformation based on
the use of the covariance matrix and the scatter matrix based on fourth
moments. As in PCA, we also calculated the three FOBI component curves.
Mean curve of the estimated data points and the three FOBI component
curves (the three first column vectors of the mixing matrix estimate) are
presented in Figure 6.2. To compare with robust ICS transformation, we
also performed ICS transformation based on the use of Dümbgen shape ma-
trix and Hallin-Paindaveine shape matrix and calculated the corresponding
curves. Mean curve of the estimated data points and the three ICS compo-
nent curves based on Dümbgen shape matrix and Hallin-Paindaveine shape
matrix are presented in Figure 6.3.

The shapes of the three first principal component curves, the three FOBI
component curves and the three robust ICS component curves represent
different growth profiles. Some of the curves put more emphasis on early
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growth and some on late growth. The first principal component curve puts
emphasis on overall growth (shape of the curve is similar to the mean curve),
the second on late growth, and the third on growth around age 14. The first
FOBI component curve puts emphasis on growth peak around age 14, the
second on overall growth, and the third on late growth. The robust ICS
component curves are similar to the FOBI component curves.

To illustrate the usage of the PCA, FOBI and robust ICS component
curves on individual level, we randomly picked one boy and one girl and pre-
sented their estimated height growth curves as sums of their principal com-
ponent curves, FOBI component curves and robust ICS component curves
(based on Dümbgen shape matrix and Hallin-Paindaveine shape matrix).
The estimated growth curve of one randomly chosen boy in terms of princi-
pal components, FOBI components and robust ICS components is presented
in Figures 6.4, 6.5 and 6.6 respectively and the estimated growth curve of
one randomly chosen girl in terms of principal components, FOBI compo-
nents and robust ICS components is presented in Figures 6.7, 6.8 and 6.9. All
these three methods seem to work very well also on individual level. In these
examples, the curves based on three FOBI components and three robust ICS
components are very close to the curves estimated using the splines, whereas
with principal components only two components are needed for being very
close to the curve based on splines.

We also examined how well PCA, FOBI and robust ICS work in sep-
arating sexes. Scatter plot after PCA is presented in Figure 6.10, scatter
plot after FOBI transformation is presented in Figure 6.11 and scatter plot
after robust ICS transformation is presented in Figure 6.12. In separat-
ing sexes, robust ICS transformation works better than non-robust FOBI-
transformation, but both of these ICS transformations separate sexes better
than PCA. This is not surprising since ICS transformations are often used
to find hidden structures of the data, even when PCA fails to discover them.
The first FOBI component (and the first robust ICS component) is a mix-
ture of two distributions with the same location, but different scales (high
kurtosis). This component measuring the ’spurt’ around the age 14 is doing
well in separating the sexes. The second component is similar for boys and
girls, and separates tall and short individuals. The third component is a
mixture of two distributions with the same scale but different location (low
kurtosis) and separates boys and girls. Boys grow later than girls!
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Figure 6.1: Mean curve of the estimated data points and the three first
principal component curves.
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Figure 6.2: Mean curve of the estimated data points and the three first FOBI
component curves.
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Figure 6.3: Mean curve of the estimated data points and the three first
robust ICS component curves.
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Figure 6.4: Estimated growth curve of one randomly chosen boy. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first principal component, the es-
timated curve based on the first and the second principal component, and
the estimated curve based on the first, the second and the third principal
component.
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Figure 6.5: Estimated growth curve of one randomly chosen boy. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first FOBI component, the esti-
mated curve based on the first and the second FOBI component, and the
estimated curve based on the first, the second and the third FOBI compo-
nent.
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Figure 6.6: Estimated growth curve of one randomly chosen boy. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first robust ICS component, the
estimated curve based on the first and the second robust ICS component,
and the estimated curve based on the first, the second and the third robust
ICS component.
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Figure 6.7: Estimated growth curve of one randomly chosen girl. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first principal component, the es-
timated curve based on the first and the second principal component, and
the estimated curve based on the first, the second and the third principal
component.

50



8 10 12 14 16 18

12
0

13
0

14
0

15
0

16
0

17
0

Age

H
ei

gh
t

spline
average
1 comp
2 comp
3 comp

Figure 6.8: Estimated growth curve of one randomly chosen girl. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first FOBI component, the esti-
mated curve based on the first and the second FOBI component, and the
estimated curve based on the first, the second and the third FOBI compo-
nent.
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Figure 6.9: Estimated growth curve of one randomly chosen boy. Black
squares are the original measurements and black solid line is the estimated
growth curve based on fitting splines. Grey curves are the average height
curve, the estimated curve based on the first robust ICS component, the
estimated curve based on the first and the second robust ICS component,
and the estimated curve based on the first, the second and the third robust
ICS component.
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Figure 6.10: Scatter plot after PCA. Dark grey squares are used for the boys
and light grey triangles for the girls.
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Figure 6.11: Scatter plot after FOBI transformation. Dark grey squares are
used for the boys and light grey triangles for the girls.
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Figure 6.12: Scatter plot after robust ICS transformation. Dark grey squares
are used for the boys and light grey triangles for the girls.
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Summaries of Original Publica-
tions

I. Equivariance and invariance issues arise in multivariate statistical anal-
ysis. Often statistical procedures have to be modified to obtain an
affine equivariant or invariant version. This is usually done by prepro-
cessing the data, e.g., by standardizing the multivariate data or by
transforming the data to an invariant coordinate system.

In the article On invariant coordinate system (ICS) functionals (P.
Ilmonen, H. Oja and R. Serfling), standardization of multivariate dis-
tributions, and characteristics of invariant coordinate system (ICS)
functionals and statistics are examined. Also, invariances up to some
groups of transformations are discussed. Constructions of different ICS
functionals are addressed. In particular, the construction based on the
use of two scatter matrix functionals presented by Tyler et al. (2009),
and constructions based on the approach presented by
Chaudhuri and Sengupta (1993) and related approaches, are exam-
ined. Several applications of ICS functionals are also discussed.

II. In the article Characteristics of multivariate distributions and the in-
variant coordinate system (P. Ilmonen, J. Nevalainen and H. Oja), a
semiparametric multivariate location-scatter model, where p-variate
vector

x = Ωz + µ,

where µ is a location vector, Ω is a full rank p × p mixing matrix,
and z is a ’standardized’ p-variate vector, is considered. The model is
fixed using simultaneously two location vectors and two scatter matri-
ces. The approach using location and scatter functionals based on the
first four moments serves as main example. The four functionals yield
in a natural way the corresponding skewness, kurtosis and unmixing
matrix functionals. Affine transformation based on the unmixing ma-
trix transforms the variable to an invariant coordinate system. The
limiting properties of the skewness, kurtosis, and unmixing matrix es-
timates are derived under general conditions. Related statistical infer-
ence problems, the role of the sample statistics in testing for normality
and ellipticity, and connections to invariant coordinate selection and
independent component analysis are discussed.

III. In the independent component (IC) model it is assumed that the p-
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variate vector

x = Ωz,

where Ω is a full rank p× p mixing matrix and z is a p-variate vector
with mutually independent components.

In the independent component analysis (ICA) the aim is to find an
estimate for an unmixing matrix Γ such that Γx has independent com-
ponents.

Deflation-based FastICA, where independent components are extracted
one-by-one, is among the most popular methods for estimating an un-
mixing matrix Γ. In the literature, it is often seen rather as an algo-
rithm than an estimator related to a certain objective function, and
only recently its statistical properties has been derived. One of the
recent findings is that the order, in which the independent compo-
nents are extracted in practice, has a strong effect on the performance
of the estimator. In the article Deflation-based fastICA reloaded (K.
Nordhausen, P. Ilmonen, A. Mandal, H. Oja and E. Ollila) these re-
cent findings are reviewed, and a new reloaded procedure, to ensure
that the independent components are extracted in an optimal order,
is proposed. The reloaded algorithm improves the separation perfor-
mance of the deflation-based FastICA estimator as amply illustrated
by simulation studies. Reloading also seems to render the algorithm
more stable.

IV. In symmetric independent component model it is assumed that the
p-variate vector

x = Ωz + µ,

where µ is a location vector, Ω is a full rank p× p mixing matrix, and
z is a p-variate vector with mutually independent and symmetrically
distributed components.

In the article Semiparametrically efficient inference based on signed
ranks in symmetric independent component models (P. Ilmonen and
D. Paindaveine), optimal (in Le Cam sense) inference procedures are
derived for a mixing matrix Ω in symmetric IC model. The inference
procedures are based on the signed ranks of the residuals. Hypothesis
tests, estimators and confidence zones are provided, and asymptoti-
cal properties are examined. In the article, optimality properties of
the proposed inference procedures crucially rely on the uniform local
asymptotic normality (ULAN) property of the model.

V. In the independent component (IC) model it is assumed that the p-
variate vector

x = Ωz,

where Ω is a full rank p× p mixing matrix and z is a p-variate vector
with mutually independent components.

58



In the independent component analysis (ICA) the aim is to find an es-
timate for an unmixing matrix Γ such that Γx has independent com-
ponents. Naturally Γ = Ω−1 is one possible unmixing matrix. The
IC model can be formulated in several ways: If the independent com-
ponents are permuted or multiplied by nonzero scalars they still re-
main independent. Thus the ICA problem reduces to estimating an
unmixing matrix Ω−1 only up to the order, signs and scales of the
row vectors. The comparison of the performances of different unmix-
ing matrix estimates Γ̂ is then difficult as the estimates are for different
population quantities Γ. In the article A new performance index for
ICA: properties, computation and asymptotic analysis (P. Ilmonen, K.
Nordhausen, H. Oja and E. Ollila), a formal (mathematical) defini-
tion of the independent component (IC) functional Γ(F ) is given. The
estimate is obtained when the functional is applied to the empirical
cumulative distribution function.

A new natural performance index is suggested in the article. It finds the
shortest distance (using Frobenius norm) between the identity matrix
and the set of matrices equivalent to the gain matrix Γ̂Ω. The index is
proven to possess several nice properties when compared to previously
used indices, and it is easy and fast to compute. Limiting distribution
of the index is provided when the limiting behavior of the estimate Γ̂
is known. The theory is illustrated in a small simulation study.
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SEMIPARAMETRICALLY EFFICIENT INFERENCE
BASED ON SIGNED RANKS IN SYMMETRIC

INDEPENDENT COMPONENT MODELS

By Pauliina Ilmonen∗,‡ and Davy Paindaveine†,§

University of Tampere‡ and Université Libre de Bruxelles§

We consider semiparametric location-scatter models for which
the p-variate observation is obtained as X = ΛZ + µ, where µ is a
p-vector, Λ is a full-rank p× p matrix, and the (unobserved) random
p-vector Z has marginals that are centered and mutually indepen-
dent but are otherwise unspecified. As in blind source separation
and independent component analysis (ICA), the parameter of inter-
est throughout the paper is Λ. On the basis of n i.i.d. copies of X, we
develop, under a symmetry assumption on Z, signed-rank one-sample
testing and estimation procedures for Λ. We exploit the uniform local
and asymptotic normality (ULAN) of the model to define signed-rank
procedures that are semiparametrically efficient under correctly spec-
ified densities. Yet, as usual in rank-based inference, the proposed
procedures remain valid (correct asymptotic size under the null, for
hypothesis testing, and root-n consistency, for point estimation) un-
der a very broad range of densities. We derive the asymptotic prop-
erties of the proposed procedures and investigate their finite-sample
behavior through simulations.

1. Introduction. In multivariate statistics, concepts of location and
scatter are usually defined through affine transformations of a noise vector.
To be more specific, assume that the observation X is obtained through

(1.1) X = ΛZ + µ,

where µ is a p-vector, Λ is a full-rank p×p matrix, and Z is some standardized
random vector. The exact nature of the resulting location parameter µ and
scatter parameter Σ = ΛΛ′—or equivalently, mixing matrix parameter Λ,
say—crucially depends on the standardization adopted.
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2 ILMONEN AND PAINDAVEINE

The most classical assumption on Z specifies that Z is standard p-normal.
Then µ and Σ simply coincide with the mean vector E[X] and variance-
covariance matrix Var[X] of X, respectively. In robust statistics, it is often
rather assumed that Z is spherically symmetric about the origin of Rp—in
the sense that the distribution of OZ does not depend on the orthogonal p×p
matrix O. The resulting model in (1.1) is then called the elliptical model.
If Z has finite second-order moments, then µ = E[X] and Σ = cVar[X] for
some c > 0, but this also defines µ and Σ in the absence of any moment
assumption.

This paper focuses on an alternative standardization of Z, for which Z
has mutually independent marginals with common median zero. The result-
ing model in (1.1)—the independent component (IC) model, say—is more
flexible than the elliptical model, even if one restricts, as we will do, to
vectors Z with symmetrically distributed marginals. The IC model indeed
allows for heterogeneous marginal distributions for X, whereas, in contrast,
marginals in the elliptical model all share—up to location and scale—the
same distribution, hence also the same tail weight. This severely affects the
relevance of elliptical models for practical applications, particularly so for
moderate to large dimensions, since it is then very unlikely that all variables
share, e.g., the same tail weight.

The IC model provides the most standard setup for independent com-
ponent analysis (ICA), in which the mixing matrix Λ is to be estimated
on the basis of n independent copies X1, . . . , Xn of X, the objective being
to recover (up to a translation) the original unobservable independent sig-
nals Z1, . . . , Zn—by premultiplying the Xi’s with the resulting Λ̂−1. It is
well-known in ICA, however, that Λ is severely unidentified : for any p × p
permutation matrix P and any full-rank diagonal matrix D, one can always
write

(1.2) X =
[
ΛPD

] [
(PD)−1Z

]
+ µ = Λ̃ Z̃ + µ,

where Z̃ still has independent marginals with median zero. Provided that Z
has at most one Gaussian marginal, two matrices Λ1 and Λ2 may lead to the
same distribution for X in (1.1) if and only if they are equivalent (we will
write Λ1 ∼ Λ2) in the sense that Λ2 = Λ1PD for some matrices P and D
as in (1.2); see, e.g., [25]. In other words, under the assumption that Z has
at most one Gaussian marginal, permutations (P ), sign changes and scale
transformations (D) of the independent components are the only sources of
unidentifiability for Λ.

This paper considers inference on the mixing matrix Λ. More precisely,
because of the identifiability issues above, we rather consider a normalized
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version L of Λ, where L is a well-defined representative of the class of mixing
matrices that are equivalent to Λ. This parameter L is actually the param-
eter of interest in ICA : an estimate of L will indeed allow to recover the
independent signals Z1, . . . , Zn equally well as an estimate of any other Λ
with Λ ∼ L. Interestingly, the situation is extremely similar when consider-
ing inference on Σ in the elliptical model. There, Σ is only identified up to
a positive scalar factor, and it is often enough to focus on inference about
the well-defined shape parameter V = Σ/(det Σ)1/p (for instance, in PCA,
principal directions, proportions of explained variance, etc. can be computed
from V ). Just as L is a normalized version of Λ in the IC model, V is a nor-
malized version of Σ in the elliptical model, and in both classes of models,
the normalized parameters actually are the natural parameters of interest in
many inference problems. The similarities further extend to the semipara-
metric nature of both models : just as the density g‖·‖ of ‖Z‖ in the elliptical
model, the pdf gr of the various independent components Zr, r = 1, . . . , p,
in the IC model, can hardly be assumed to be known in practice.

These strong similarities motivate the approach we adopt in this paper :
we plan to conduct inference on L (hypothesis testing and point estimation)
in the IC model by adopting the methodology that proved extremely success-
ful in [7, 8] for inference on V in the elliptical model. This methodology com-
bines semiparametrically efficient inference and invariance arguments. In the
IC model, the fixed-(µ,Λ) nonparametric submodels (indexed by g1, . . . , gp)
indeed enjoy a strong invariance structure that is parallel to the one of the
corresponding elliptical submodels (indexed by g‖·‖). As in [7, 8], we exploit
this invariance structure through a general result from [11] that allows to
derive invariant versions of efficient central sequences, on the basis of which
one can define semiparametrically efficient (at fixed target densities gr = fr,
r = 1, . . . , p) invariant procedures. As the maximal invariant associated with
the invariance structure considered turns out to be the vector of marginal
signed ranks of the residuals, the proposed procedures are of a signed-rank
nature, and do not require to estimate densities. While they achieve semi-
parametric efficiency under correctly specified densities, they remain valid
(correct asymptotic size under the null, for hypothesis testing, and root-n
consistency, for point estimation) under misspecified densities.

We will consider the problem of estimating L and that of testing the
null H0 : L = L0 against the alternative H1 : L 6= L0, for some fixed L0.
While point estimation is undoubtedly of primary importance for applica-
tions (e.g., in blind source separation), one might question the practical
relevance of the testing problem considered, especially when L0 is not the
p-dimensional identity matrix. Solving this generic testing problem, how-
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ever, is the main step in developing tests for any linear hypothesis on L,
and we will explicitly describe the resulting tests in the sequel. An extensive
study of these tests is beyond the scope of the present paper, though; we
refer to [20] for an extension of our tests to the particular case of testing
the (linear) hypothesis that L is block-diagonal, a problem that is obviously
important in practice (non-rejection of the null would indeed allow practi-
tioners to proceed with two separate, lower-dimensional, analyses). Testing
linear hypotheses on L includes many other testing problems of high prac-
tical relevance, such as testing that a given column of L is equal to some
fixed p-vector, and testing that a given entry of L is zero—the practical
importance of these two testing problems, in relation, e.g., with functional
magnetic resonance imaging (fMRI), is discussed in [22].

The paper is organized as follows. In Section 2, we fix the notation and de-
scribe the model (Section 2.1), state the corresponding uniformly locally and
asymptotically normal (ULAN) property that allows to determine semipara-
metric efficiency bounds (Section 2.2), and then introduce, in relation with
invariance arguments, rank-based efficient central sequences (Section 2.3).
In Sections 3 and 4, we develop the resulting rank tests and estimators for
the mixing matrix L, respectively. Our estimators actually require the del-
icate estimation of 2p(p − 1) “cross-information coefficients”, an issue we
solve in Section 4.2 by generalizing the method recently developed in [5].
In Section 5, simulations are conducted both to compare the proposed esti-
mators with some competitors and to investigate the validity of asymptotic
results—simulation results for hypothesis testing are provided in the sup-
plementary article [18]. Finally, the Appendix states some technical results
(Appendix A) and reports proofs (Appendix B).

2. The model, the ULAN property, and invariance arguments.

2.1. The model. As already explained, the IC model above suffers from
severe identifiability issues for Λ. To solve this, we map each Λ onto a unique
representative L = Π(Λ) of the collection of mixing matrices Λ̃ that sat-
isfy Λ̃ ∼ Λ (the equivalence class of Λ for ∼). We propose the mapping

Λ 7→ Π(Λ) = ΛD+
1 PD2,

where D+
1 is the positive definite diagonal matrix that makes each column

of ΛD+
1 have Euclidean norm one, P is the permutation matrix for which

the matrix B = (bij) = ΛD+
1 P satisfies |bii| > |bij | for all i < j, and D2 is

the diagonal matrix such that all diagonal entries of Π(Λ) = ΛD+
1 PD2 are

equal to one.
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If one restricts to the collection Mp of mixing matrices Λ for which no
ties occur in the permutation step above, it can easily be shown that, for
any Λ1,Λ2 ∈ Mp, we have that Λ1 ∼ Λ2 iff Π(Λ1) = Π(Λ2), so that this
mechanism succeeds in identifying a unique representative in each class of
equivalence (this is ensured with the double scaling scheme above, which
may seem a bit complicated at first). Besides, Π is then a continuously dif-
ferentiable mapping from Mp onto M1p := Π(Mp). While ties may always
be taken care of in some way (e.g., by basing the ordering on subsequent
rows of the matrix B), they may prevent the mapping Π to be continuous,
which would cause severe problems and would prevent us from using the
Delta method in the sequel. It is clear, however, that the restriction to Mp

only gets rid of a few particular mixing matrices, and will not have any
implications in practice.

The parametrization of the IC model we consider is then associated with

(2.1) X = LZ + µ,

where µ ∈ Rp, L ∈ M1p, and Z has independent marginals with common
median zero. Throughout, we further assume that Z admits a density with
respect to the Lebesgue measure on Rp, and that it has p symmetrically
distributed marginals, among which at most one is Gaussian (as explained
in the Introduction, this limitation on the number of Gaussian components is
needed for L to be identifiable). We will denote by F the resulting collection
of densities for Z. Of course, any g ∈ F naturally factorizes into g(z) =∏p
r=1 gr(zr), where gr is the symmetric density of Zr.
The hypothesis under which n mutually independent observations Xi,

i = 1, . . . , n are obtained from (2.1), where Z has density g ∈ F , will be
denoted as P(n)

ϑ,g, with ϑ = (µ′, (vecd◦L)′)′ ∈ Θ = Rp × vecd◦(M1p), or
alternatively, as P(n)

µ,L,g; for any p × p matrix A, we write vecd◦A for the
p(p − 1)-vector obtained by removing the p diagonal entries of A from its
usual vectorized form vecA (diagonal entries of L are all equal to one, hence
should not be included in the parameter).

The resulting semiparametric model is then

(2.2) P(n) := ∪g∈F P(n)
g := ∪g∈F ∪ϑ∈Θ {P

(n)
ϑ,g}.

Performing semiparametrically efficient inference on ϑ, at a fixed f ∈ F ,
typically requires that the corresponding parametric submodel P(n)

f satisfies
the uniformly locally and asymptotically normal (ULAN) property.

2.2. The ULAN property. As always, the ULAN property requires tech-
nical regularity conditions on f . In the present context, we need that each
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corresponding univariate pdf fr, r = 1, . . . , p, is absolutely continuous, with
a derivative f ′r that satisfies

σ2
fr :=

∫ ∞
−∞

y2fr(y) dy <∞, Ifr :=
∫ ∞
−∞

ϕ2
fr(y)fr(y) dy <∞,

and
Jfr :=

∫ ∞
−∞

y2ϕ2
fr(y)fr(y) dy <∞,

where we let ϕfr := −f ′r/fr. In the sequel, we denote by Fulan the collection
of pdfs f ∈ F meeting these conditions.

For any f ∈ Fulan, let γrs(f) := Ifrσ2
fs

, define the optimal p-variate
location score function ϕf : Rp → Rp through z = (z1, . . . , zp)′ 7→ ϕf (z) =
(ϕf1(z1), . . . , ϕfp(zp))

′, and denote by If the diagonal matrix with diagonal
entries Ifr , r = 1, . . . , p. Further write I` for the `-dimensional identity
matrix and define

C :=
p∑
r=1

p−1∑
s=1

(ere′r ⊗ use′s+δ[s≥r]),

where ⊗ is the usual Kronecker product, er and ur stand for the rth vectors
of the canonical basis of Rp and Rp−1, respectively, and δ[s≥r] is equal to
one if s ≥ r and to zero otherwise. The following ULAN result then easily
follows from Proposition 2.1 in [20] by using a simple chain rule argument.

Proposition 2.1. Fix f ∈ Fulan. Then the collection of probability dis-
tributions P(n)

f is ULAN, with central sequence
(2.3)

∆ϑ,f =

(
∆ϑ,f ;1

∆ϑ,f ;2

)
=

(
n−1/2(L−1)′

∑n
i=1 ϕf (Zi)

n−1/2C(Ip ⊗ L−1)′
∑n
i=1 vec(ϕf (Zi)Z ′i − Ip)

)
,

where Zi = Zi(ϑ) = L−1(Xi − µ), and full-rank information matrix

ΓL,f =

(
ΓL,f ;1 0

0 ΓL,f ;2

)
,

where ΓL,f ;1 := (L−1)′IfL−1 and

ΓL,f ;2 := C(Ip ⊗ L−1)′
[ p∑
r=1

(Jfr − 1)(ere′r ⊗ ere′r)

+
p∑

r,s=1,r 6=s

(
γsr(f)(ere′r ⊗ ese′s) + (ere′s ⊗ ese′r)

)]
(Ip ⊗ L−1)C ′.
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More precisely, for any ϑn = ϑ + O(n−1/2) (with ϑ = (µ′, (vecd◦L)′)′) and
any bounded sequence (τn) in Rp2, we have that, under P(n)

ϑn,f
as n→∞,

log(dP(n)

ϑn+n−1/2τn,f
/dP(n)

ϑn,f
) = τ ′n∆ϑn,f −

1
2
τ ′nΓL,fτn + oP(1),

and ∆ϑn,f converges in distribution to a p2-variate normal distribution with
mean zero and covariance matrix ΓL,f .

Semiparametrically efficient (at f) inference procedures on L then may be
based on the so-called efficient central sequence ∆∗ϑ,f ;2 resulting from ∆ϑ,f ;2

by performing adequate tangent space projections; see [3]. Under P(n)
ϑ,f , ∆∗ϑ,f ;2

is still asymptotically normal with mean zero, but now with covariance ma-
trix Γ∗L,f ;2 (the efficient information matrix ). This matrix Γ∗L,f ;2 settles the
semiparametric efficiency bound at f when performing inference on L. For
instance, an estimator L̂ is semiparametrically efficient at f if

(2.4)
√
n vecd◦(L̂− L) L→ Np(p−1)

(
0, (Γ∗L,f ;2)−1).

The performance of semiparametrically efficient tests on L can similarly be
characterized in terms of Γ∗L,f ;2 : a test of H0 : L = L0 is semiparametrically
efficient at f (at asymptotic level α) if its asymptotic powers under local
alternatives of the form H(n)

1 : L = L0 + n−1/2H, where H is an arbitrary
p× p matrix with zero diagonal entries, are given by

(2.5) 1−Ψp(p−1)

(
χ2
p(p−1),1−α; (vecd◦H)′Γ∗L0,f ;2(vecd◦H)

)
,

where χ2
p(p−1),1−α stands for the α-upper quantile of the χ2

p(p−1) distribution,
and Ψp(p−1)( · ; δ) denotes the cumulative distribution function of the non-
central χ2

p(p−1) distribution with non-centrality parameter δ.

2.3. Invariance arguments. Instead of the classical tangent space pro-
jection approach to compute ∆∗ϑ,f ;2 (as in [6]), we adopt an approach—
due to [11]—that rather exploits the invariance structure of the model
considered. This will provide a version of the efficient central sequence
(parallel to central sequences, efficient central sequences are defined up
to oP(1)’s only) that is based on signed ranks. Here, signed ranks are de-
fined as Si(ϑ) = (Si1(ϑ), . . . , Sip(ϑ))′ and R+

i (ϑ) = (R+
i1(ϑ), . . . , R+

ip(ϑ))′,
where Sir(ϑ) is the sign of Zir(ϑ) = (L−1(Xi − µ))r and R+

ir(ϑ) is the rank
of |Zir(ϑ)| among |Z1r(ϑ)|, . . . , |Znr(ϑ)|. This signed-rank efficient central
sequence—∆∗ϑ,f ;2, say—is given in Theorem 2.1 below (the asymptotic be-
havior of ∆∗ϑ,f ;2 will be studied in Appendix A).
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To be able to state Theorem 2.1, we need to introduce the following nota-
tion. Let z 7→ F+(z) = (F+1(z1), . . . , F+r(zp))′, with F+r(t) := P(n)

ϑ,f [|Zr(ϑ)| <
t] = 2(

∫ t
−∞ fr(s) ds) − 1, t ≥ 0. Based on this, define ∆∗ϑ,f ;2 := C(Ip ⊗

L−1)′vecT ϑ,f , with

T ϑ,f :=odiag

[
1√
n

n∑
i=1

(
Si(ϑ)�ϕf

(
F−1

+

(R+
i (ϑ)
n+ 1

)))(
Si(ϑ)�F−1

+

(R+
i (ϑ)
n+ 1

))′]
,

where � is the Hadamard (i.e., entrywise) product of two vectors and where
odiag(A) denotes the matrix obtained from A by replacing all diagonal en-
tries with zeros. Finally, let Fulan be the collection of pdfs f ∈ Fulan for
which each ϕfr , r = 1, . . . , p, is continuous and can be written as the dif-
ference of two monotone increasing functions. We then have the following
result (see Appendix B for a proof).

Theorem 2.1. Fix ϑ = (µ′, (vecd◦L)′)′ ∈ Θ and f ∈ Fulan. Then, (i)
denoting by E(n)

ϑ,f expectation under P(n)
ϑ,f ,

∆∗ϑ,f ;2 := C(Ip ⊗ L−1)′vecT ϑ,f

= E(n)
ϑ,f [∆ϑ,f ;2 |S1(ϑ), . . . , Sn(ϑ), R+

1 (ϑ), . . . , R+
n (ϑ)] + oL2(1)

as n → ∞, under P(n)
ϑ,f ; (ii) the signed-rank quantity ∆∗ϑ,f ;2 is a version

of the efficient central sequence at f (that is, ∆∗ϑ,f ;2 = ∆∗ϑ,f ;2 + oL2(1) as
n→∞, under P(n)

ϑ,f ).

Would the (nonparametric) fixed-ϑ submodels P(n)
ϑ := ∪g∈F {P(n)

ϑ,g} of the
semiparametric model ∪θ∈Θ∪g∈F {P

(n)
θ,g } in (2.2) be invariant under a group

of transformations Gϑ that generates P(n)
ϑ , then the main result of [11] would

show that the expectation of the original central sequence ∆ϑ,f ;2 conditional
upon the corresponding maximal invariant—I(n)

max(ϑ), say—is a version of the
efficient central sequence ∆∗ϑ,f ;2 at f : as n→∞, under P(n)

ϑ,f ,

(2.6) ∆∗ϑ,f ;2 = E(n)
ϑ,f [∆ϑ,f ;2 | I(n)

max(ϑ)] + oL2(1).

Such an invariance structure actually exists and the relevant group Gϑ
collects all transformations

gϑh : Rp × . . .× Rp → Rp × . . .× Rp

(x1, . . . , xn) 7→ (Lh(z1(ϑ)) + µ, . . . , Lh(zn(ϑ)) + µ),
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with zi(ϑ) := L−1(xi−µ) and h((z1, . . . , zp)′) = (h1(z1), . . . , hp(zp))′, where
each hr, r = 1, . . . , p, is continuous, odd, monotone increasing, and fixes +∞.
It is easy to check that P(n)

ϑ is invariant under (and is generated by) Gϑ,
and that the corresponding maximal invariant is the vector of signed ranks

(2.7) I(n)
max(ϑ) = (S1(ϑ), . . . , Sn(ϑ), R+

1 (ϑ), . . . , R+
n (ϑ));

Theorem 2.1(ii) then follows from (2.6) and Theorem 2.1(i).
Inference procedures based on ∆∗ϑ,f ;2, unlike those (from [6]) based on

the efficient central sequence ∆∗ϑ,f ;2 obtained through tangent space pro-
jections, are measurable with respect to signed ranks, hence enjoy all nice
properties usually associated with rank methods : robustness, ease of com-
putation, validity without density estimation (and, for hypothesis testing,
even distribution-freeness), etc.

3. Hypothesis testing. We now consider the problem of testing the
null hypothesis H0 : L = L0 against the alternative H1 : L 6= L0, with un-
specified underlying density g. Beyond their intriseque interest, the resulting
tests will play an important role in the construction of the R-estimators of
Section 4 below, and they pave the way to testing linear hypotheses on L.

The objective here is to define a test that is semiparametrically efficient
at some target density f , yet that remains valid—in the sense that it meets
asymptotically the level constraint—under a very broad class of densities g.
As we will show, this objective is achieved by the signed-rank test—φ

f
,

say—that rejects H0 at asymptotic level α ∈ (0, 1) whenever

(3.1) Q
f

:= (∆∗
ϑ̂0,f ;2

)′ (Γ∗L0,f ;2)−1∆∗
ϑ̂0,f ;2

> χ2
p(p−1),1−α,

where Γ∗L,f ;2 was introduced in Page 7 (an explicit expression is given below)
and where ϑ̂0 = (µ̂′, (vecd◦L0)′)′ is based on a sequence of estimators µ̂ that
is locally asymptotically discrete (see Appendix A for a precise definition)
and root-n consistent under the null.

Possible choices for µ̂ include (discretized versions of) the sample mean
X̄ := 1

n

∑n
i=1Xi or the transformation-retransformation componentwise me-

dian µ̂Med := L0 Med[L−1
0 X1, . . . , L

−1
0 Xn], where Med[·] returns the vector of

univariate medians. We favor the sign estimator µ̂Med, since it is very much
in line with the signed-rank tests φ

f
and enjoys good robustness properties.

However, we stress that Theorem 3.1 below, which states the asymptotic
properties of the proposed signed-rank tests, implies that the choice of µ̂
does not affect the asymptotic properties of φ

f
, at any g ∈ Fulan.
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In order to state this theorem, we need to define

Γ∗L,f,g;2 := C(Ip ⊗ L−1)′Gf,g(Ip ⊗ L−1)C ′(3.2)

:= C(Ip ⊗ L−1)′

×
[ p∑
r,s=1,r 6=s

(
γsr(f, g)(ere′r ⊗ ese′s) + ρrs(f, g)(ere′s ⊗ ese′r)

)]
(Ip ⊗ L−1)C ′,

where we let

(3.3) γrs(f, g) :=
∫ 1

0
ϕfr(F

−1
r (u))ϕgr(G

−1
r (u)) du×

∫ 1

0
F−1
s (u)G−1

s (u) du

and

(3.4) ρrs(f, g) :=
∫ 1

0
F−1
r (u)ϕgr(G

−1
r (u)) du×

∫ 1

0
ϕfs(F

−1
s (u))G−1

s (u) du.

We also let Γ∗L,f ;2 := Γ∗L,f,f ;2 and Gf := Gf,f , that involve γrs(f, f) = γrs(f)
(see Section 2.2) and ρrs(f, f) = 1. We then have the following result (see
Appendix B for a proof).

Theorem 3.1. Fix f ∈ Fulan. Then (i) under P(n)
ϑ0,g

and under P(n)

ϑ0+n−1/2τ,g
,

with ϑ0 = (µ′, (vecd◦L0)′)′, τ = (τ ′1, τ
′
2)′ ∈ Rp × Rp(p−1), and g ∈ Fulan,

Q
f

L→ χ2
p(p−1) and Q

f

L→ χ2
p(p−1)(τ

′
2(Γ∗L0,f,g;2)′(Γ∗L0,f ;2)−1Γ∗L0,f,g;2τ2),

respectively, as n→∞. (ii) The sequence of tests φ(n)
f has asymptotic level α

under ∪µ∈Rp ∪g∈Fulan
{P(n)

µ,L0,g
}. (iii) The sequence of tests φ(n)

f is semipara-
metrically efficient, still at asymptotic level α, when testing H0 : L = L0

against Hf
1 : L 6= L0 with noise density f (i.e., when testing ∪µ∈Rp ∪g∈Fulan

{P(n)
µ,L0,g

} against ∪µ∈Rp ∪L∈M1p\{L0} {P
(n)
µ,L,f}).

The test φ
f

achieves semiparametric efficiency at f (Theorem 3.1(iii)), and
also at any fσ, with fσ(z) :=

∏p
r=1 σ

−1
r fr(zr/σr), where σr > 0 for all r—

it can indeed be checked that φ
fσ

= φ
f
. Most importantly, Theorem 3.1

shows also that φ
f

remains valid under any g ∈ Fulan. By proceeding as in
Lemma 4.2 of [20], this can even be extended to any g ∈ F , which allows to
avoid any finite moment condition.

This is to be compared to the semiparametric approach of Chen and
Bickel [6]—these authors focus on point estimation, but their methodology
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also leads to tests that enjoy the same properties as their estimators. Their
procedures achieve uniform (in g) semiparametric efficiency, while our meth-
ods achieve semiparametric efficiency at the target density f only—more
precisely, at any corresponding fσ. However, it turns out that the perfor-
mances of our procedures do not depend much on the target density f , so
that our procedures are close to achieving uniform (in g) semiparametric effi-
ciency; see the simulations in the supplemental article [18]. As any uniformly
semiparametrically efficient procedures (see [1]), Chen and Bickel’s proce-
dures require estimating g, hence choosing various smoothing parameters. In
contrast, our procedures, by construction, are invariant (here, signed-rank)
ones. As such, they do not require to estimate densities, and they are robust,
easy to compute, etc.

One might still object that the choice of f is quite arbitrary. This choice
should be based on the practitioner’s prior belief on the underlying densities.
If he/she has no such prior belief, a kernel estimate f̂ of f could be used. The
resulting test φ

f̂
would then enjoy the same properties as any φ

f
in terms of

validity, since kernel density estimators typically are measurable with respect
to the order statistics of the |Zir(ϑ̂0)|’s, that, asymptotically, are stochasti-
cally independent of the signed ranks Sir(ϑ̂0), R+

ir(ϑ̂0) used in φ
f
; see [11] for

details. The test φ
f̂

would further achieve uniform semiparametric efficiency.
Further results on the proposed tests are given in the supplemental ar-

ticle [18]. More precisely, a simple explicit expression of the test statistics,
local asymptotic powers of the corresponding tests, and simulation results
can be found there.

We finish this section by describing the extension of our signed-rank tests
to the problem of testing a fixed (arbitrary) linear hypothesis on L, which
includes many instances of high practical relevance (we mentioned a few in
the Introduction). Denoting by V(Ω) the vector space that is spanned by the
columns of the p(p− 1)× ` matrix Ω (that is assumed to have full rank `),
we consider the testing problem

(3.5)

{
H0(L0,Ω) : (vecd◦L) ∈ (vecd◦L0) + V(Ω)
H1(L0,Ω) : (vecd◦L) /∈ (vecd◦L0) + V(Ω),

for some fixed L0 ∈M1p. If one forgets about the tacitly assumed constraint
that L ∈ M1p in (3.5), the null hypothesis above imposes a set of linear
constraints on L. This clearly includes all testing problems mentioned in the
Introduction : testing that a given column of L is equal to a fixed vector,
testing that a given (off-diagonal) entry of L is zero, and testing block-
diagonality of L.
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Inspired by the tests from [15] (Section 10.9), the analog of our signed-
rank test φ

f
above then rejects H0(L0,Ω) for large values of

Q
f
(L0,Ω) := (∆∗

ϑ̂,f ;2
)′PΩ ∆∗

ϑ̂,f ;2
,

with PΩ := (Γ∗
L̂,f ;2

)− − Ω
(
Ω′Γ∗

L̂,f ;2
Ω
)−Ω′, where B− denotes the Moore-

Penrose pseudoinverse of B, and where ϑ̂ = (µ̂′, (vecd◦L̂)′)′ is an estimator
of ϑ that is locally and asymptotically discrete, root-n consistent under the
null, and constrained—in the sense that L̂ satisfies the linear constraints
in H0(L0,Ω).

It can be shown that this signed-rank test achieves semiparametric op-
timality at f (the relevant optimality concept here is most stringency ; see,
e.g., [20] for a discussion) and remains valid under any g ∈ Fulan. Its null
asymptotic distribution is still chi-square, now with r := Trace[PΩΓ∗L,f ;2]
degrees of freedom (this directly follows from Theorem 9.2.1 in [24] and
Theorem A.1); at asymptotic level α, the resulting asymptotic critical value
(that actually does not depend on the true value L) therefore is χ2

r;1−α.
Just as for the tests φ

f
, it is still possible to compute asymptotic powers

under sequences of local alternatives. It is clear, however, that a thorough
study of the properties of the tests above, for a general linear hypothesis, is
beyond the scope of the present paper, hence is left for future research. In
the important particular case of testing block-diagonality of L, a complete
investigation of the signed-rank tests can be found in [20].

4. Point estimation. We turn to the problem of estimating L, which
is of primary importance for applications. Denoting by Q

f
= Q

f
(L0) the

signed-rank test statistic for H0 : L = L0 in (3.1), a natural signed-rank
estimator of L is obtained by “inverting the corresponding test” :

L̂f ;argmin = arg min
L∈M1p

Q
f
(L).

This estimator, however, is not satisfactory : as any signed-rank quantity,
the objective function L 7→ Q

f
(L) is piecewise constant, hence discontinu-

ous and non-convex, which makes it very difficult to derive the asymptotic
properties of L̂f ;argmin. It is also virtually impossible to compute L̂f ;argmin in
practice, since this lack of smoothness and convexity essentially forces com-
puting the estimator by simply running over a grid of possible values of the
p(p− 1)-dimensional parameter L—a strategy that cannot provide a reason-
able approximation of L̂f ;argmin, even for moderate values of p. Finally, there
is no way to estimate the asymptotic covariance matrix of L̂f ;argmin, which
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rules out the possibility to derive confidence zones for L, hence drastically
restricts the practical relevance of this estimator.

In order to avoid the aforementioned drawbacks, we propose adopting a
one-step approach that was first used in [7] for the problem of estimating
the shape of an elliptical distribution or in [9] in a more general context. The
resulting one-step signed-rank estimators—in the sequel, we simply speak of
one-step rank estimators or one-step R-estimators—can easily be computed
in practice, their asymptotic properties can be derived explicitly, and their
asymptotic covariance matrix can be estimated consistently.

4.1. One-step R-estimators of L. To initiate the one-step procedure, a
preliminary estimator is needed. In the present context, we will assume
that a root-n consistent and locally asymptotically discrete estimator ϑ̃ =
(µ̃′, (vecd◦L̃)′)′ is available. As we will show, the asymptotic properties of
the proposed one-step R-estimators will not be affected by the choice of ϑ̃.
Practical choices will be provided in Section 5.

Describing our one-step R-estimators requires

Assumption (A). For all r 6= s ∈ {1, . . . , p}, we dispose of sequences
of estimators γ̂rs(f) and ρ̂rs(f) that (i) are locally asymptotically discrete
and that (ii), for any g ∈ Fulan, satisfy γ̂rs(f) = γrs(f, g) + oP(1) and
ρ̂rs(f) = ρrs(f, g) + oP(1) as n→∞, under ∪ϑ∈Θ{P

(n)
ϑ,g}.

Sequences of estimators fulfilling this assumption will be provided in Sec-
tion 4.2 below. At this point, just note that plugging in (3.2) the estimators
from Assumption (A) and the preliminary estimator L̃, defines a statistic—
Γ̂∗
L̃,f ;2

, say—that consistently estimates Γ∗L,f,g;2 under ∪ϑ∈Θ{P
(n)
ϑ,g}.

For any target density f , we propose the one-step R-estimator L̂f , with
values in M1p, defined by

(4.1) vecd◦L̂f := (vecd◦L̃) + n−1/2(Γ̂∗
L̃,f ;2

)−1∆∗
ϑ̃,f ;2

.

The following result states the asymptotic properties of this estimator (see
Appendix B for a proof).

Theorem 4.1. Let Assumption (A) hold and fix f ∈ Fulan. Then (i)
under P(n)

ϑ,g, with ϑ = (µ′, (vecd◦L)′)′ ∈ Θ and g ∈ Fulan, we have that,
√
n vec(L̂f − L) = C ′(Γ∗L,f,g;2)−1∆∗ϑ,f ;2 + oP(1)(4.2)

= C ′(Γ∗L,f,g;2)−1∆∗ϑ,f,g;2 + oP(1)(4.3)

L→ Np(p−1)

(
0, C ′(Γ∗L,f,g;2)−1Γ∗L,f ;2(Γ∗L,f,g;2)−1′C

)
(4.4)
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as n → ∞, where ∆∗ϑ,f,g;2 is defined in Theorem A.1 (see Appendix A).
(ii) The estimator L̂f is semiparametrically efficient at f .

The result in (4.2) justifies calling L̂f an R-estimator since it shows that
n1/2(L̂f−L) is asymptotically equivalent to a random matrix that is measur-
able with respect to the signed ranks Si(ϑ), R+

i (ϑ) in (2.7). The asymptotic
equivalence in (4.3) gives a Bahadur-type representation result for L̂f with
summands that are independent and identically distributed, hence leads
trivially to the asymptotic normality result in (4.4). Recalling that Γ̂∗

L̃,f ;2
consistently estimates Γ∗L,f,g;2 under ∪ϑ∈Θ{P

(n)
ϑ,g}, it is clear that asymp-

totic (signed-rank) confidence zones for L may easily be obtained from this
asymptotic normality result.

For r 6= s ∈ {1, . . . , p}, define α̂rs(f) and β̂rs(f) as the statistics obtained
by plugging the estimators γ̂rs(f) and ρ̂rs(f) from Assumption (A) in

(4.5)


αrs(f, g) :=

γrs(f, g)
γrs(f, g)γsr(f, g)− ρrs(f, g)ρsr(f, g)

βrs(f, g) :=
−ρrs(f, g)

γrs(f, g)γsr(f, g)− ρrs(f, g)ρsr(f, g)
,

and let α̂rr(f) := 0 =: β̂rr(f), r = 1, . . . , p. The estimator L̂f then admits
the following explicit expression (see Appendix B for a proof).

Theorem 4.2. Let Assumption (A) hold and fix f ∈ Fulan. Let N̂f :=
(Â′f � T ϑ̃,f ) + (B̂′f � T ′

ϑ̃,f
), where we let Âf := (α̂rs(f)) and B̂f := (β̂rs(f)).

Then the estimator L̂f rewrites

(4.6) L̂f = L̃+
1√
n
L̃
[
N̂f − diag(L̃N̂f )

]
,

where diag(A) = A−odiag(A) stands for the diagonal matrix with the same
diagonal entries as A.

It is straightforward to check that the role of the term − 1√
n
L̃diag(L̃N̂f )

in the one-step correction 1√
n
L̃
[
N̂f − diag(L̃N̂f )

]
of L̃ is merely to ensure

that the diagonal entries of L̂f remain equal to one, hence that L̂f takes
values in M1p (for n large enough).

As shown above, the estimator L̂f enjoys very nice properties : its asymp-
totic behavior is completely characterized, it is semiparametrically efficient
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under correctly specified densities, yet remains root-n consistent and asymp-
totically normal under a broad range of densities g, its asymptotic covariance
matrix can easily be estimated consistently, etc.

However, L̂f requires estimates γ̂rs(f) and ρ̂rs(f) that fulfill Assump-
tion (A). We now provide such estimates.

4.2. Estimation of cross-information coefficients. Of course, it is always
possible to estimate consistently the cross-information coefficients γrs(f, g)
and ρrs(f, g) by replacing g in (3.3)-(3.4) with appropriate window or ker-
nel density estimates—this can be achieved since the residuals Zir(ϑ̃), i =
1, . . . , n typically are asymptotically i.i.d. with density gr. Rank-based meth-
ods, however, intend to eliminate—through invariance arguments—the nui-
sance g without estimating it, so that density estimation methods simply
are antinomic to the spirit of rank-based methods.

Therefore, we rather propose a solution that is based on ranks and avoids
estimating the underlying nuisance g. The method, that relies on the asymp-
totic linearity—under g—of an appropriate rank-based statistic Sϑ,f , was
first used in [7], where there is only one cross-information coefficient J(f, g)
to be estimated. There, it is crucial that J(f, g) is involved as a scalar factor
in the asymptotic covariance matrix, under g, between the rank-based effi-
cient central sequence ∆∗ϑ,f and the parametric central sequence ∆ϑ,g. In [5],
the method was extended to allow for the estimation of a cross-information
coefficient that appears as a scalar factor in the linear term of the asymp-
totic linearity, under g, of an arbitrary (possibly vector-valued) rank-based
statistic Sϑ,f .

In all cases, thus, this method was only used to estimate a single cross-
information coefficient that appears as a scalar factor in some structural—
typically, cross-information—matrix. In this respect, our problem, which
requires to estimate 2p(p−1) cross-information quantities appearing in var-
ious entries of the cross-information matrix Γ∗L,f,g;2, is much more complex.
Yet, as we now show, it allows for a solution relying on the same basic idea
of exploiting the asymptotic linearity, under g, of an appropriate f -score
rank-based statistic.

Based on the preliminary estimator ϑ̃ := (µ̃′, (vecd◦L̃)′)′ at hand, define
ϑ̃γrsλ := (µ̃′, (vecd◦L̃γrsλ )′)′, λ ≥ 0, with

L̃γrsλ := L̃+ n−1/2λ(T ϑ̃,f )rsL̃(ere′s − diag(L̃ere′s)),

and ϑ̃ρrsλ := (µ̃′, (vecd◦L̃ρrsλ )′)′, λ ≥ 0, with

L̃ρrsλ := L̃+ n−1/2λ(T ϑ̃,f )srL̃(ere′s − diag(L̃ere′s));
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note that, at λ = 0, ϑ̃γrsλ = ϑ̃ρrsλ = ϑ̃ We then have the following result,
that is crucial for the construction of the estimators γ̂rs(f) and ρ̂rs(f) (see
Appendix B for a proof).

Lemma 4.1. Fix ϑ ∈ Θ, f ∈ Fulan, g ∈ Fulan, and r 6= s ∈ {1, . . . , p}.
Then hγrs(λ) := (T ϑ̃,f )rs(T ϑ̃γrs

λ
,f )rs = (1−λγrs(f, g)) ((T ϑ̃,f )rs)2+oP(1) and

hρrs(λ) := (T ϑ̃,f )sr(T ϑ̃ρrs
λ

,f )sr = (1 − λρrs(f, g)) ((T ϑ̃,f )sr)2 + oP(1) as n →

∞, under P(n)
ϑ,g.

The mappings λ 7→ hγrs(λ) and λ 7→ hρrs(λ) assume a positive value
in λ = 0, and, as shown by Lemma 4.1, are—up to oP(1)’s as n → ∞
under P(n)

ϑ,g—monotone decreasing functions that become negative at λ =
(γrs(f, g))−1 and λ = (ρrs(f, g))−1, respectively. Restricting to a grid of
values of the form λj = j/c for some large discretization constant c (which
is needed to achieve the required discreteness), this naturally leads—via
linear interpolation—to the estimators γ̂rs(f) and ρ̂rs(f) defined through

(γ̂rs(f))−1 := λγrs := λ−γrs +
(λ+
γrs − λ

−
γrs)h

γrs(λ−γrs)
hγrs(λ−γrs)− hγrs(λ+

γrs)
(4.7)

= λ−γrs +
c−1 hγrs(λ−γrs)

hγrs(λ−γrs)− hγrs(λ+
γrs)

,

with λ−γrs := inf{j ∈ N : hγrs(λj+1) < 0} and λ+
γrs := λ−γrs + 1

c , and

(ρ̂rs(f))−1 := λρrs := λ−ρrs +
c−1 hρrs(λ−ρrs)

hρrs(λ−ρrs)− hρrs(λ+
ρrs)

,(4.8)

with λ−ρrs := inf{j ∈ N : hρrs(λj+1) < 0} and λ+
ρrs := λ−ρrs + 1

c . We have the
following result (see the supplemental article [18] for a proof).

Theorem 4.3. Fix ϑ ∈ Θ and f, g ∈ Fulan. Assume that ϑ̃ is such that,
for all ε > 0, there exist δε > 0 and an integer Nε such that

(4.9) P(n)
ϑ,g

[
(T ϑ̃,f )rs ≥ δε

]
≥ 1− ε,

for all n ≥ Nε, r 6= s ∈ {1, . . . , p}. Then, for any such r, s, γ̂rs(f) =
γrs(f, g) + oP(1) and ρ̂rs(f) = ρrs(f, g) + oP(1), as n → ∞ under P(n)

ϑ,g,
hence γ̂rs(f) and ρ̂rs(f) satisfy Assumption (A).

We point out that the assumption in (4.9) is extremely mild, as it only
requires that there is no couple (r, s), r 6= s, for which (T ϑ̃,f )rs asymptot-
ically has an atom in zero. It therefore rules out preliminary estimators L̃
defined through the (rank-based) f -likelihood equation (T ϑ,f )rs = 0.
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5. Simulations. Here we report simulation results for point estimation
only—simulation results for hypothesis testing can be found in the supple-
mental article [18]. Our aim is to both compare the proposed estimators
with some competitors and to investigate the validity of asymptotic results.

We used the following competitors : (i) FastICA from [12, 13], which
is by far the most commonly used estimate in practice; we used here its
deflation based version with the standard nonlinearity function pow3. (ii)
FOBI from [4], which is one of the earliest solutions to the ICA problem
and is often used as a benchmark estimate. (iii) The estimate based on
two scatter matrices from [19]; here the two scatter matrices used are the
regular empirical covariance matrix (COV) and the van der Waerden rank-
based estimator (HOP) from [7] (actually, HOP is not a scatter matrix but
rather a shape matrix, which is allowed in [19]). Root-n consistency of the
resulting estimates L̂FICA, L̂FOBI, and L̂COV HOP of L requires finite sixth-,
eighth-, and fourth-order moments, respectively, and follows from [16, 17]
and [21].

We focused on the bivariate case p = 2, and we generated, for three
different setups indexed by d ∈ {1, 2, 3}, M = 2, 000 independent random
samples Z(d,m)

i = (Z(d,m)
i1 , Z

(d,m)
i2 )′, i = 1, . . . , n, of size n = 4, 000. Denoting

by g(d)(z) = g
(d)
1 (z1)g(d)

2 (z2) the common pdf of Z(d,m)
i , i = 1, . . . , n, m =

1, . . . ,M , the marginal densities g(d)
1 and g

(d)
2 were chosen as follows.

(i) In Setup d = 1, g(d)
1 is the pdf of the standard normal distribution

(N ) and g
(d)
2 is the pdf of the Student distribution with 5 degrees of

freedom (t5);
(ii) In Setup d = 2, g(d)

1 is the pdf of the logistic distribution with scale
parameter one (log), and g

(d)
2 is t5;

(iii) In Setup d = 3, g(d)
1 is t8 and g

(d)
2 is t5.

We chose to use L = I2 and µ = (0, 0)′, so that the observations are given
by X(d,m)

i = LZ
(d,m)
i +µ = Z

(d,m)
i (other values of L and µ led to extremely

similar results).
For each sample, we computed the competing estimates L̂FICA, L̂FOBI,

and L̂COV HOP defined above. Each of these were also used as a preliminary
estimator L̃ in the construction of three R-estimators : L̂f (j) , j = 1, 2, 3,
with f (j) = g(j) for all j. In the resulting nine R-estimators, we used the
location estimate µ̂ = L̃Med[L̃−1X1, . . . , L̃

−1Xn], based on the preliminary
estimate L̃ used to initiate the one-step procedure.
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Figure 1 reports, for each setup d, a boxplot of the M squared errors

(5.1) ‖L̂(X(d,m)
1 , . . . , X(d,m)

n )−L‖2 =
p∑

r,s=1

r 6=s

(
L̂rs(X

(d,m)
1 , . . . , X(d,m)

n )−Lrs
)2

for each of the twelve estimators L̂ considered (the nine R-estimators and
their three competitors).

The results show that, in each setup, all R-estimators dramatically im-
prove over their competitors. The behavior of the R-estimators does not
much depend on the preliminary estimator L̃ used. Optimality of L̂f (d) in
Setup d is confirmed. Most importantly, as stated for hypothesis testing
at the end of Section 3, the performances of the R-estimators do not de-
pend much on the target density f (j) adopted, so that one should not worry
much about the choice of the target density in practice. Quite surprisingly,
R-estimators behave remarkably well even when based on preliminary esti-
mators that, due to heavy tails, fail to be root-n consistent.

In order to investigate small-sample behavior of the estimates, we reran
the exact same simulation with sample size n = 800; in ICA, where most
applications involve sample sizes that are not in hundreds, but much larger,
this sample size can indeed be considered small. Results are reported in Fig-
ure 2. They indicate that, in Setups 2 and 3, R-estimators still improve signif-
icantly over their competitors, and particularly over L̂FOBI and L̂COV HOP.
In Setup 1, there seem to be no improvement. Compared to results for n =
4, 000, the behavior of one-step R-estimators here depends more on the pre-
liminary estimator used. Performances of R-estimators again do not depend
crucially on the target density, and optimality under correctly specified den-
sities is preserved in most cases.

As a conclusion, for practical sample sizes, the proposed R-estimators
outperform the standard competitors considered, and their behavior is very
well in line with our asymptotic results.

Finally, we illustrate the proposed method for estimating cross-information
coefficients. We consider again the first 50 replications of our simulation
with n = 4, 000, and focus on Setup 1 (g = g(1)) and the target den-
sity f = f (3)(6= g(1)). The cross-information coefficients to be estimated then
are γ12(f, g) ≈ 1.478, γ21(f, g) ≈ 0.862, ρ12(f, g) ≈ 1.149, and ρ21(f, g) ≈
0.887. The upper left picture in Figure 3 shows 150 graphs of the mapping
λ 7→ hγ12(λ) (based on f = f (3)), among which the 50 pink curves are based
on L̃ = L̂FICA, the 50 green curves are based on L̃ = L̂FOBI, and the 50 blue
ones are based on L̃ = L̂COV HOP. The upper right, bottom left, and bottom
right pictures of the same figure provide the corresponding graphs for the
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Fig 1. Boxplots of the squared errors ‖L̂ − L‖2 (see (5.1)) obtained in M = 2, 000
replications from setups d = 1, 2, 3 (associated with underlying distributions g(d), d =
1, 2, 3) for the competitors L̂FICA, L̂FOBI, and L̂COV HOP, and the nine R-estimators L̂f
resulting from all combinations of a target density f (j) = g(j), j = 1, 2, 3, and one of the
three preliminary estimators L̂FICA, L̂FOBI, and L̂COV HOP; see Section 5 for details. The
sample size is n = 4, 000.

mappings λ 7→ hγ21(λ), λ 7→ hρ12(λ), and λ 7→ hρ21(λ), respectively. The
value at which each graph crosses the λ-axis is the resulting estimate of the
inverse of the associated cross-information coefficient. To be able to evaluate
the results, we plotted, in each picture, a vertical black line at the corre-
sponding theoretical value, namely at 1/γ12(f, g), 1/γ21(f, g), 1/ρ12(f, g),
and 1/ρ21(f, g). Clearly, the results are excellent, and there does not seem
to be much dependence on the preliminary estimator L̃ used.

APPENDIX A: RANK-BASED EFFICIENT CENTRAL SEQUENCES

In this first appendix, we study the asymptotic behavior of the rank-
based efficient central sequences ∆∗ϑ,f ;2. The main result is the following
(see Appendix B for a proof).

Theorem A.1. Fix ϑ = (µ′, (vecd◦L)′)′ ∈ Θ and f ∈ Fulan. Then (i)
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Fig 2. The same boxplots as in Figure 1, but based on sample size n = 800.

for any g ∈ F ,
∆∗ϑ,f ;2 = ∆∗ϑ,f,g;2 + oL2(1)

as n → ∞, under P(n)
ϑ,g, where ∆∗ϑ,f,g;2 := C(Ip ⊗ L−1)′vec

[
odiag

(
1√
n

∑n
i=1

(Si � ϕf (F−1
+ (G+(|Zi|))))(Si � F−1

+ (G+(|Zi|)))′
)]
. (ii) Under P(n)

ϑ+n−1/2τ,g
,

with τ = (τ ′1, τ
′
2)′ ∈ Rp × Rp(p−1) and g ∈ Fulan,

∆∗ϑ,f ;2
L→ Np(p−1)(Γ

∗
L,f,g;2τ2,Γ∗L,f ;2),

as n → ∞ (for τ = 0, the result only requires that g ∈ F). (iii) Still
with τ = (τ ′1, τ

′
2)′ ∈ Rp × Rp(p−1) and g ∈ Fulan, ∆∗

ϑ+n−1/2τ,f ;2
− ∆∗ϑ,f ;2 =

−Γ∗L,f,g;2τ2 + oP(1) as n→∞, under P(n)
ϑ,g.

Both for hypothesis testing and point estimation, we had to replace in
∆∗ϑ,f ;2 the parameter ϑ with some estimator (ϑ̌(n), say). The asymptotic
behavior of the resulting (so-called aligned) rank-based efficient central se-
quence ∆∗

ϑ̌(n),f ;2
is given in the following result.
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Fig 3. Top left: 150 graphs of the mapping λ 7→ hγ12(λ) based on f = f (3), associated with
the first 50 replications from Setup 1 (g = g(1)) in Figure 1 (sample size is n = 4, 000): the
50 curves in pink, green, and blue are based on the preliminary estimators L̂FICA, L̂FOBI,
and L̂COV HOP, respectively. Top right, bottom left, and bottom right: the corresponding
plots for the mappings λ 7→ hγ21(λ), λ 7→ hρ12(λ), and λ 7→ hρ21(λ), respectively.

Corollary A.1. Fix ϑ = (µ′, (vecd◦L)′)′ ∈ Θ and f ∈ Fulan, and
g ∈ Fulan. Let ϑ̌ = ϑ̌(n) = (µ̌′, (vecd◦Ľ)′)′ be a locally asymptotically discrete
sequence of random vectors satisfying n1/2(ϑ̌ − ϑ) = OP(1) as n → ∞,
under P(n)

ϑ,g. Then ∆∗
ϑ̌,f ;2

−∆∗ϑ,f ;2 = −Γ∗L,f,g;2n
1/2vecd◦(Ľ− L) + oP(1), still

as n→∞, under P(n)
ϑ,g.

Since the sequence of estimators ϑ̌(n) is assumed to be locally asymptot-
ically discrete (which means that the number of possible values of ϑ̌(n) in
balls with O(n−1/2) radius centered at ϑ is bounded as n→∞), this result
is a direct consequence of Theorem A.1(iii) and Lemma 4.4 from [14]. Local
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asymptotic discreteness is a concept that goes back to Le Cam and is quite
standard in one-step estimation; see, e.g., [2] or [14].

Of course, a sequence of estimators ϑ̌(n) can always be discretized by
replacing each component (ϑ̌(n))` with

(ϑ̌(n)
# )` := (cn1/2)−1sign((ϑ̌(n))`)dcn1/2|(ϑ̌(n))`|e, ` = 1, . . . , p2,

for some arbitrary constant c > 0. In practice, however, one can safely forget
about such discretizations : irrespective of the accuracy of the computer
used, the discretization constant c can always be chosen large enough to
make discretization be irrelevant at the fixed sample size n0 at hand—hence
also at any n > n0.

APPENDIX B: PROOFS

B.1. Proofs of Theorems 2.1 and A.1. The proofs of this section
make use of the Hájek projection theorem for linear signed-rank statistics
(see, e.g., [23], Chapter 3), which states that, if Yi = Sign(Yi)|Yi|, i = 1, . . . , n
are i.i.d. with (absolutely continuous) cdf G and if K : (0, 1) → R is a
continuous and square-integrable score function that can be written as the
difference of two monotone increasing functions, then

1√
n

n∑
i=1

Sign(Yi)K(G+(|Yi|))

=
1√
n

n∑
i=1

Sign(Yi)K
( R+

i

n+ 1

)
+ oL2(1)(B.1)

=
1√
n

n∑
i=1

Sign(Yi) E
[
K(G+(|Yi|)) |R+

i

]
+ oL2(1)(B.2)

as n→∞, where G+ stands for the common cdf of the |Yi|’s and R+
i denotes

the rank of |Yi| among |Y1|, . . . , |Yn|. The quantities in (B.1) and (B.2) are
linear signed-rank quantities that are said to be based on approximate and
exact scores, respectively.

In the rest of this section, we fix ϑ ∈ Θ, f ∈ Fulan, and g ∈ F . We write
throughout Zi, Si, and R+

i , for Zi(ϑ), Si(ϑ), and R+
i (ϑ), respectively. We

also write Eh instead of E(n)
ϑ,h, with h = f, g. We then start with the proof of

Theorem A.1(i).

Proof of Theorem A.1(i). Fix r 6= s ∈ {1, . . . , p} and two score func-
tions Ka,Kb : (0, 1) → R with the same properties as K above. Then,
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by using (i) Eg[Sir] = 0, (ii) the independence (under P(n)
ϑ,g) between the

Sir’s and the (Rir, |Zir|)’s, and (iii) the independence between the Zir’s and
the Zis’s, we obtain

Eg
[( 1√

n

n∑
i=1

SirSis
(
Ka(G+r(|Zir|))Kb(G+s(|Zis|))−Ka

( R+
ir

n+ 1

)
Kb

( R+
is

n+ 1

)))2]

=
1
n

n∑
i=1

Eg
[(
Ka(G+r(|Zir|))Kb(G+s(|Zis|))−Ka

( R+
ir

n+ 1

)
Kb

( R+
is

n+ 1

))2]

≤ 2Eg
[(
Ka(G+r(|Zir|))−Ka

( R+
ir

n+ 1

))2]
Eg
[
K2
b (G+s(|Zis|))

]
+2Eg

[
K2
a

( R+
ir

n+ 1

)]
Eg
[(
Kb(G+s(|Zis|))−Kb

( R+
is

n+ 1

))2]
.

Consequently, the square integrability of Ka, Kb, and the convergence to

zero of both Eg[(Ka(G+r(|Zir|)) − Ka(
R+
ir

n+1))2] and Eg[(Kb(G+r(|Zis|)) −

Kb(
R+
is

n+1))2] (which directly follows from (B.1)) entail

1√
n

n∑
i=1

SirSisKa(G+r(|Zir|))Kb(G+s(|Zis|))

=
1√
n

n∑
i=1

SirSisKa

( R+
ir

n+ 1

)
Kb

( R+
is

n+ 1

)
+ oL2(1)

as n → ∞, under P(n)
ϑ,g. Theorem A.1(i) follows by taking Ka = ϕfr ◦ F−1

+r

and Kb = F−1
+s .

We go on with the proof of Theorem 2.1, for which it is important to note
that, by proceeding as in the proof of Theorem A.1(i) but with (B.2) instead
of (B.1), we further obtain that

1√
n

n∑
i=1

SirSisKa(G+r(|Zir|))Kb(G+s(|Zis|))

=
1√
n

n∑
i=1

SirSisKa

( R+
ir

n+ 1

)
Kb

( R+
is

n+ 1

)
+ oL2(1)

=
1√
n

n∑
i=1

SirSisE
[
Ka(G+r(|Zir|)) |R+ir

]
(B.3)

×E
[
Kb(G+s(|Zis|)) |R+is

]
+ oL2(1),

still as n→∞ under P(n)
ϑ,g.
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Proof of Theorem 2.1. It is sufficient to prove Theorem 2.1(i) only,
since, as already mentioned at the end of Section 2.3, Theorem 2.1(ii) follows
from (2.6) and Theorem 2.1(i). That is, we have to show that, for any r, s ∈
{1, . . . , p},
(B.4)

Ef
[

1√
n

n∑
i=1

(
ϕf (Zi)Z ′i − Ip

)
rs
|S1, . . . , Sn, R

+
1 , . . . , R

+
n

]
= (T ϑ,f )rs + oL2(1)

as n→∞, under P(n)
ϑ,f . Now, the left-hand side of (B.4) rewrites

Ef
[

1√
n

n∑
i=1

(
ϕf (Zi)Z ′i − Ip

)
rs
|S1, . . . , Sn, R

+
1 , . . . , R

+
n

]

=
1√
n

n∑
i=1

Ef
[
SirSisϕf (|Zir|)|Zis| − δrs |S1, . . . , Sn, R

+
1 , . . . , R

+
n

]
=

1√
n

n∑
i=1

(
SirSisEf

[
ϕf (|Zir|)|Zis| |R+

1r, . . . , R
+
nr, R

+
1s, . . . , R

+
ns

]
− δrs

)
.(B.5)

For r 6= s, this yields

Ef
[

1√
n

n∑
i=1

(
ϕf (Zi)Z ′i − Ip

)
rs
|S1, . . . , Sn, R

+
1 , . . . , R

+
n

]

=
1√
n

n∑
i=1

SirSisEf
[
ϕf (|Zir|) |R+

1r, . . . , R
+
nr] Ef

[
|Zis| |R+

1s, . . . , R
+
ns

]
=

1√
n

n∑
i=1

SirSisϕfr

(
F−1

+r

( R+
ir

n+ 1

))
F−1

+r

( R+
is

n+ 1

)
+ oL2(1)

= (T ϑ,f )rs + oL2(1)

as n→∞, under P(n)
ϑ,f , where we have used (B.3), still with Ka = ϕfr ◦F−1

+r

and Kb = F−1
+s , but this time at g = f . This establishes (B.4) for r 6= s.

As r = s, (B.5) now entails (writing Kab(u) := ϕf (F−1
+r (u)) × F−1

+r (u) for
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all u)

Ef
[

1√
n

n∑
i=1

(
ϕf (Zi)Z ′i − Ip

)
rs
|S1, . . . , Sn, R

+
1 , . . . , R

+
n

]

=
(

1√
n

n∑
i=1

Ef
[
ϕf (|Zir|)|Zir| |R+

1r, . . . , R
+
nr

])
−
√
n

= Ef
[

1√
n

n∑
i=1

Kab(F+r(|Zir|)) |R+
1r, . . . , R

+
nr

]
−
√
n

=
1√
n

n∑
i=1

Kab

( R+
i

n+ 1

)
−
√
n+ oL2(1)(B.6)

=
1√
n

n∑
i=1

Kab

( i

n+ 1

)
−
√
n+ oL2(1)

=
√
n

∫ 1

0
Kab(u) du−

√
n+ oL2(1)(B.7)

= oL2(1),(B.8)

still as n → ∞, under P(n)
ϑ,f , where (B.6), (B.7), and (B.8) follow from the

Hájek projection theorem for linear rank (not signed-rank) statistics (see,
e.g., [23], Chapter 2), the square-integrability of Kab(·) (see the proof of
Proposition 3.2(i) in [10]), and integration by parts, respectively. This fur-
ther proves (B.4) for r = s, hence also the result.

Proof of Theorem A.1(ii)-(iii). (ii) In view of Theorem A.1(i), it is
sufficient to show that both asymptotic normality results hold for ∆∗ϑ,f,g;2.
The result under P(n)

ϑ,g then straightforwardly follows from the multivariate
CLT. As for the result under local alternatives (which, just as the result in
Part (iii), requires that g ∈ Fulan), it is obtained as usual, by establishing
the joint normality under P(n)

ϑ,g of log(dP(n)

ϑ+n−1/2τ,f
/dP(n)

ϑ,g) and ∆∗ϑ,f,g;2, then
applying Le Cam’s third Lemma; the required joint normality follows from
a routine application of the classical Cramér-Wold device. (iii) The proof,
that is long and tedious, is also a quite trivial adaptation of the proof of
Proposition A.1. in [7]. We therefore omit it.

B.2. Proof of Theorem 3.1.

Proof of Theorem 3.1. (i) Applying Corollary A.1, with ϑ̌ := ϑ̂0 =
(µ̂′, (vecd◦L0)′)′ and ϑ := ϑ0 = (µ′, (vecd◦L0)′)′, entails that ∆∗

ϑ̂0,f ;2
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= ∆∗ϑ0,f ;2 + oP(1) as n→∞ under P(n)
ϑ0,g

. Consequently, we have that

(B.9) Q
f

= (vec ∆∗ϑ0,f ;2)′(Γ∗L0,f ;2)−1(vec ∆∗ϑ0,f ;2) + oP(1),

still as n → ∞, under P(n)
ϑ0,g

—hence also under P(n)

ϑ0+n−1/2τ,g
(from contigu-

ity). The result then follows from Theorem A.1(ii). (ii) It directly follows
from (i) that, under the sequence of local alternatives P(n)

ϑ0+n−1/2τ,f
, φ(n)

f has
asymptotic power 1−Ψp(p−1)

(
χ2
p(p−1),1−α; τ ′2Γ∗L0,f ;2τ2

)
. This establishes the

result, since these local powers coincide with the semiparametrically optimal
(at f) powers in (2.5).

B.3. Proofs of Lemma 4.1, Theorem 4.1, and Theorem 4.2.

Proof of Theorem 4.1. (i) Fix ϑ ∈ Θ and g ∈ Fulan. From (4.1),
the fact that Γ̂∗

L̃,f ;2
− Γ∗L,f,g;2 = oP(1) as n → ∞ under P(n)

ϑ,g, and Theo-
rem A.1(iii), we obtain
√
n vecd◦(L̂f − L) =

√
n vecd◦(L̃− L) + (Γ̂∗

L̃,f ;2
)−1∆∗

ϑ̃,f ;2

=
√
n vecd◦(L̃− L) + (Γ∗L,f,g;2)−1∆∗

ϑ̃,f ;2
+ oP(1)

= (Γ∗L,f,g;2)−1∆∗ϑ,f ;2 + oP(1)(B.10)

as n → ∞ under P(n)
ϑ,g. Consequently, Theorem A.1(i)-(ii) entails that, still

as n→∞ under P(n)
ϑ,g,

√
n vecd◦(L̂f − L) = (Γ∗L,f,g;2)−1∆∗ϑ,f,g;2 + oP(1)(B.11)

L→ Np(p−1)

(
0, (Γ∗L,f,g;2)−1Γ∗L,f ;2(Γ∗L,f,g;2)−1′).(B.12)

Now, by using the fact that C ′(vecd◦H) = (vecH) for any p × p ma-
trix H with only zero diagonal entries, we have that

√
n vec(L̂f − L) =√

nC ′vecd◦(L̂f−L), so that (4.2), (4.3), and (4.4) follow from (B.10), (B.11),
and (B.12), respectively.

(ii) The asymptotic covariance matrix of
√
n vecd◦(L̂f − L), under P(n)

ϑ,f ,
reduces to (Γ∗L,f ;2)−1 (let g = f in (B.12)), which establishes the result.

To prove Theorem 4.2, we will need the following result.
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Lemma B.1. Fix ϑ = (µ′, (vecd◦L)′)′ ∈ Θ and f, g ∈ Fulan. Then

(Ip ⊗ L−1)C ′ (Γ∗L,f,g;2)−1C(Ip ⊗ L−1)′ =
p∑

r,s=1,r 6=s

{
αrs(f, g)

(
ere
′
r ⊗

(
L2
rsere

′
r + ese

′
s − Lrsere′s − Lrsese′r

))
+βrs(f, g)

(
ere
′
s ⊗

(
LrsLsrere

′
s − Lrsere′r − Lsrese′s + ese

′
r

))}
,

where Lrs denotes the entry (r, s) of L.

Proof of Theorem 4.2. By using again the fact that C ′(vecd◦H) =
(vecH) for any p × p matrix H with only zero diagonal entries, and then
Lemma B.1, we obtain

vec(L̂f − L̃)

= C ′vecd◦(L̂f − L̃) =
1√
n
C ′(Γ̂∗

L̃,f ;2
)−1C(Ip ⊗ L̃−1)′vecT ϑ̃,f

=
1√
n

(Ip ⊗ L̃)

×
[ p∑
r,s=1,r 6=s

{
α̂rs(f)

(
ere
′
r ⊗

(
L̃2
rsere

′
r + ese

′
s − L̃rsere′s − L̃rsese′r

))
+β̂rs(f)

(
ere
′
s ⊗

(
L̃rsL̃srere

′
s − L̃rsere′r − L̃srese′s + ese

′
r

))}]
vecT ϑ̃,f .

Since all diagonal entries of T ϑ̃,f are zeros, we have that

vec(L̂f − L̃) =
1√
n

(Ip ⊗ L̃)

[ p∑
r,s=1,r 6=s

{
α̂rs(f)

(
ere
′
r ⊗

(
ese
′
s − L̃rsere′s

))
+β̂rs(f)

(
ere
′
s ⊗

(
ese
′
r − L̃rsere′r

))}]
vecT ϑ̃,f .(B.13)

The identity (C ′ ⊗A)(vecB) = vec(ABC) then yields

vec(L̂f − L̃) =
1√
n

(Ip ⊗ L̃) vec

[ p∑
r,s=1,r 6=s

(N̂f )sr
(
ese
′
r − L̃rsere′r

)]
.
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Hence, we have

L̂f − L̃ =
1√
n
L̃

p∑
r,s=1,r 6=s

(N̂f )sr
(
ese
′
r − L̃rsere′r

)
=

1√
n
L̃

p∑
r,s=1

(N̂f )sr
(
ese
′
r − L̃rsere′r

)
=

1√
n
L̃
(
Nf −

p∑
r,s=1

L̃rs(N̂f )srere′r
)

=
1√
n
L̃
(
N̂f −

p∑
r=1

(L̃Nf )rrere′r
)

=
1√
n
L̃(N̂f − diag(L̃Nf )),

which proves the result.

Proof of Lemma 4.1. In this proof, all stochastic convergences are as
n → ∞ under P(n)

ϑ,g. First note that, if ϑ̌ := (µ̌′, (vecd◦Ľ)′)′ is an arbi-
trary locally asymptotically discrete root-n consistent estimator for ϑ =
(µ′, (vecd◦L)′)′, we then have that

(B.14) vec(T ϑ̌,f − T ϑ,f ) = −Gf,g(Ip ⊗ Ľ−1)C ′
√
n vecd◦(Ľ− L) + oP(1)

(compare with Corollary A.1). Incidentally, note that (B.14) implies that
vecT ϑ̌,f is OP(1) (by proceeding exactly as in the proof of Theorem A.1(i)-
(ii), we can indeed show that, under P(n)

ϑ,g, vecT ϑ,f is asymptotically multi-
normal, hence stochastically bounded).

Now, from (B.14), we obtain

vec(T ϑ̃γrs
λ

,f − T ϑ̃,f )

= −Gf,g(Ip ⊗ L̃−1)C ′
√
n vecd◦(L̃γrsλ − L̃) + oP(1)

= −λ(T ϑ̃,f )rsGf,g(Ip ⊗ L̃−1)C ′vecd◦(L̃ere′s − L̃diag(L̃ere′s)) + oP(1),

which, by using the fact that C ′(vecd◦H) = (vecH) for any p× p matrix H
with only zero diagonal entries, leads to

vec(T ϑ̃γrs
λ

,f − T ϑ̃,f )

= −λ(T ϑ̃,f )rsGf,g(Ip ⊗ L̃−1)vec(L̃ere′s − L̃diag(L̃ere′s)) + oP(1)

= −λ(T ϑ̃,f )rsGf,gvec(ere′s − diag(L̃ere′s)) + oP(1).

This yields

vec(T ϑ̃γrs
λ

,f − T ϑ̃,f ) = −λ(T ϑ̃,f )rsGf,gvec(ere′s) + oP(1)

= −λ(T ϑ̃,f )rs(γrs(f, g)vec(ere′s) + ρrs(f, g)vec(ese′r)) + oP(1).
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Premultiplying by (T ϑ̃,f )rs(es ⊗ er)′, we then obtain

(T ϑ̃,f )rs(T ϑ̃γrs
λ

,f )rs − ((T ϑ̃,f )rs)2 = −λ((T ϑ̃,f )rs)2γrs(f, g) + oP(1)

(recall indeed that T ϑ̃,f = OP(1)), which establishes the γ-part of the lemma.
The proof of the ρ-part follows along the exact same lines, but for the fact
that the premultiplication is by (T ϑ̃,f )sr(er ⊗ es)′.
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SUPPLEMENTARY MATERIAL

Supplement: Further results on tests and a proof of Theorem 4.3
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). This
supplement provides a simple explicit expression for the proposed test statis-
tics, derives local asymptotic powers of the corresponding tests, and presents
simulation results for hypothesis testing. It also gives a proof of Theorem 4.3.
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[19] Oja, H., Sirkiä, S., and Eriksson, J. (2006). Scatter matrices and independent
component analysis. Austrian J. Statist. 35 175–189.

[20] Oja, H., Paindaveine, D., and Taskinen, S. (2011). Parametric and nonparametric
tests for multivariate independence in IC models. Submitted.

[21] Ollila, E. (2010). The deflation-based FastICA estimator: statistical analysis revis-
ited. IEEE Trans. Signal Processing 58 1527–1541.

[22] Ollila, E., and Kim, H.-J. (2011). On testing hypotheses of mixing vectors in the ICA
model using FastICA. Proceedings of IEEE International Symposium on Biomedical
Imaging (ISBI’11), 325–328.

[23] Puri, M. L., and Sen, P. K. (1985). Nonparametric Methods in General Linear Mod-
els. J. Wiley, New York.

[24] Rao, C. R., and Mitra, S. K. (1971). Generalized Inverses of Matrices and its Ap-
plications, J. Wiley, New York.

[25] Theis, F. J. (2004). A new concept for separability problems in blind source separa-
tion. Neural Comput. 16 1827–1850.

Pauliina Ilmonen
Tampere School of Health Sciences
University of Tampere
FIN-33014 University of Tampere
Finland
E-mail: Pauliina.Ilmonen@uta.fi

Davy Paindaveine
E.C.A.R.E.S.,
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SUPPLEMENTARY MATERIAL

Further results on tests and a proof of Theorem 4.3

(doi: ???http://lib.stat.cmu.edu/aos/???/???; .pdf). This supplement pro-
vides a simple explicit expression for the proposed test statistics (Section 1),
derives local asymptotic powers of the corresponding tests (Section 2), and
presents simulation results for hypothesis testing (Section 3). It also gives a
proof of Theorem 4.3 (Section 4).

Below, (M-3.1), Page M.9, Section M.3, Lemma M-4.1, etc. refer to Ex-
pression (3.1), Page 9, Section 3, Lemma 4.1, etc. from [2]. Unless otherwise
stated, other cross-references relate to this supplement itself.

1. Explicit expressions of the proposed test statistics. The fol-
lowing result provides a simple and explicit expression of the signed-rank
test statistic Q

f
in (M-3.1).

Theorem 1.1. Fix f ∈ Fulan. Then the test statistic Q
f
rewrites

Q
f

= (vec T ϑ̂0,f
)′Mf (vecT ϑ̂0,f

)

=

p
∑

r,s=1,r 6=s

(

αrs(f)(T ϑ̂0,f
)2sr + βrs(f)(T ϑ̂0,f

)rs(T ϑ̂0,f
)sr
)

,(1.1)

where we let αrs(f) = αrs(f, f), and βrs(f) = βrs(f, f) (see (M-4.5)) and

Mf :=
∑p

r,s=1,r 6=s(αrs(f)(ere
′
r ⊗ ese

′
s) + βrs(f)(ere

′
s ⊗ ese

′
r).

Proof. Applying to Q
f
Lemma M-B.1 with g = f , we obtain

Q
f
= (vec T ϑ̂0,f

)′

×

[

p
∑

r,s=1,r 6=s

{

αrs(f)
(

ere
′
r ⊗

(

L2
0rsere

′
r + ese

′
s − L0rsere

′
s − L0rsese

′
r

))

+βrs(f)
(

ere
′
s ⊗

(

L0rsL0srere
′
s − L0rsere

′
r − L0srese

′
s + ese

′
r

))

}

]

(vec T ϑ̂0,f
),

which, as all diagonal entries of T ϑ̂0,f
are equal to zero, indeed yields Q

f
=

(vec T ϑ̂0,f
)′Mf (vecT ϑ̂0,f

). The equality (1.1) then easily follows from the

identity (C ′ ⊗A)(vecB) = vec(ABC).

http://dx.doi.org/???
http://lib.stat.cmu.edu/aos/???/???
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2. Local asymptotic powers. Theorem M.3.1 allows to compute the
asymptotic powers of φ

f
under sequences of local alternatives of the form

P
(n)

µ,L0+n−1/2H,g
, where H is an arbitrary p × p matrix with zero diagonal

entries (only such a H provides a perturbed mixing matrix L0 + n−1/2H
that belongs—for n large enough—to the parameter space M1p). The cor-
responding asymptotic powers are given by

1−Ψp(p−1)

(

χ2
p(p−1),1−α; (vecd

◦H)′(Γ∗
L0,f,g;2)

′(Γ∗
L0,f ;2)

−1Γ∗
L0,f,g;2(vecd

◦H)
)

,

where Ψp(p−1)( · ; δ) and χ2
p(p−1),1−α were defined in Page M.7. By using the

fact that C ′(vecd◦H) = (vecH) and then applying Lemma M-B.1, the non-
centrality parameter above, after painful yet straightforward computations,
simplifies to

(2.1)

p
∑

r,s=1,r 6=s

(

ξrs(f, g) ((L
−1
0 H)sr)

2 + ηrs(f, g) (L
−1
0 H)rs(L

−1
0 H)sr

)

,

with

ξrs(f, g) =
γrs(f)γ

2
sr(f, g) + ρ2rs(f, g)γsr(f)− 2ρrs(f, g)γsr(f, g)

γrs(f)γsr(f)− 1

and

ηrs(f, g) =
ρsr(f, g)(γrs(f)γsr(f, g)− ρrs(f, g))

γrs(f)γsr(f)− 1

+
γrs(f, g)(γsr(f)ρrs(f, g)− γsr(f, g))

γrs(f)γsr(f)− 1
.

At g = f , this reduces to
∑p

r,s=1,r 6=s(γsr(f) ((L
−1
0 H)sr)

2+(L−1
0 H)rs(L

−1
0 H)sr).

In the simulations of the next section, we will compare the ranking of finite-
sample rejection frequencies associated with various tests φ

f
with the cor-

responding theoretical ranking derived from (2.1).

3. Simulations for hypothesis testing. We considered the trivari-
ate case p = 3 and concentrated on the particular case for which the null
value of L is L0 = I3. For three trivariate densities of the form z 7→

g(z) = g(d)(z) =
∏3

r=1 g
(d)
r (zr), d ∈ {1, 2, 3}, we generated M = 5, 000

independent random samples Z
(d,m)
i = (Z

(d,m)
i1 , Z

(d,m)
i2 , Z

(d,m)
i3 )′, i = 1, . . . , n,

m = 1, . . . ,M, of size n = 500. The pdfs g(d) have the following marginals:
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(i) In Setup d = 1, g
(d)
1 , g

(d)
2 and g

(d)
3 are the pdfs of the standard normal

distribution (N ), the Student distribution with 6 degrees of freedom
(t6), and the beta distribution with parameters 3 and 3 (β3,3), respec-
tively;

(ii) In Setup d = 2, g
(d)
1 is t6, g

(d)
2 is β3,3, and g

(d)
3 is the pdf of the double-

exponential distribution with scale parameter one (d-exp);

(iii) In Setup d = 3, g
(d)
1 is t6, g

(d)
2 is d-exp, and g

(d)
3 is the pdf of the logistic

distribution with scale parameter one (log).

We then generated samples of n observations X1, . . . ,Xn according to

(3.1) X
(d,m)
i = (L0 + aκ(d)H)Z

(d,m)
i + µ,

with a = 0, 1, 2, 3, 4,

( κ(1)

κ(2)

κ(3)

)

=

(

.002

.007
.0025

)

, H =

(

0 1 2
1 0 3
2 2 0

)

, and µ =

(

0
0
0

)

.

Clearly, these samples correspond to the null hypothesis for a = 0 and to
increasingly severe alternatives for a = 1, 2, 3, 4. The quantities κ(d) were
chosen in such a way that the rejection frequencies obtained for a = 4
were approximately .95 for all d. All samples were subjected, at asymptotic
level α = 5%, to the signed-rank tests φ

f(j) , j = 1, 2, 3, 4, where f (j) = g(j)

for j = 1, 2, 3, and where f (4) uses a t3 pdf for each marginal density. The
first three tests therefore achieve asymptotic optimality in Setups 1 to 3,
respectively. In all tests, the location estimate µ̂ used is the componentwise
median defined in Page M-9.

Rejection frequencies are plotted against a in the first column of Figure 1.
These rejection frequencies indicate that, when based on their asymptotic
chi-square critical values, the signed-rank tests are conservative and signifi-
cantly biased at the sample size considered. In order to remedy this, we also
implemented versions of each of the signed-rank procedures based on esti-
mations of the (distribution-free) quantile of the test statistic under known
parameter values µ and L0. These estimations, just as the asymptotic chi-
square quantile, are consistent approximations of the corresponding exact
quantiles under the null, and were obtained, for each of the four tests above,

as the empirical 0.05-upper quantiles q
(n)
.95 of each signed-rank test statistic

in a collection of 106 simulated multinormal samples, yielding q
(n)
.95 = 10.34,

11.56, 10.88, and 9.74, respectively. These bias-corrected critical values are
all smaller than the asymptotic chi-square one χ2

6;.95 = 12.60, so that the
resulting tests are uniformly less conservative than the original ones. The
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resulting rejection frequencies are plotted in the second column of Figure 1,
where it is readily seen that all tests now are roughly unbiased.

At the sample size n = 500, the asymptotic properties derived in Sec-
tion M.3 do not show so clearly in the simulation results, not only be-
cause the signed-rank tests are biased, but also because the test φ

f(d) does

not seem to be the most powerful one in Setup d. To question correct-
ness of our asymptotic results, we reran the same simulation as above, but
now with n = 10, 000 and with (κ(1), κ(2), κ(3))′ divided by

√

10, 000/500.

The resulting simulated critical values are given by q
(n)
.95 = 11.59, 12.38,

11.83, and 11.46, respectively, and are all much closer to the asymptotic
one χ2

6;.95 = 12.60, so that the signed-rank tests, in their asymptotic ver-
sions, may only suffer a small bias for this large sample size. Consequently, it
is justified to restrict to these asymptotic versions. The corresponding rejec-
tion frequencies are plotted in the last column of Figure 1 and confirm, under
any g(d), d = 1, 2, 3, both the optimality of φ

f(d) and—more generally—the

whole ranking of the local asymptotic powers of φ
f(j) , j = 1, 2, 3, 4, which

can be obtained from (2.1).
Finally, we point out that, for each fixed sample size, setup, and type of

critical values considered, the various signed-rank tests exhibit very similar
performances. This implies that, just as for point estimation, one should
not worry too much about the choice of the target density f in hypothesis
testing.

4. Proof of Theorem M-4.3. The proof follows the same scheme as
that of Proposition 2.1 in [1]. We report the proof here for the sake of
completeness.

Proof. We fix ϑ ∈ Θ, f ∈ Fulan, g ∈ Fulan, and r 6= s ∈ {1, . . . , p},
and concentrate on establishing that γ̂rs(f) = γrs(f, g) + oP(1), as n → ∞

under P
(n)
ϑ,g (the proof of the ρ-result is entirely similar). In the sequel, we

stress the dependence in n of the various statistics with superscripts (n).

Let us first show that, under P
(n)
ϑ,g, λ

(n)−
γrs , hence also λ

(n)+
γrs , is OP(1)

as n → ∞. Assume therefore it is not: then, there exist ǫ > 0 and a se-

quence ni ր ∞ such that, for all ℓ ∈ R and i, P
(ni)
ϑ,g [λ

(ni)−
γrs > ℓ] > ǫ. This

implies, for arbitrarily large ℓ, that P
(ni)
ϑ,g [h(ni)γrs(ℓ) > 0] > ǫ, hence, in view

of Lemma M-4.1,

P
(ni)
ϑ,g

[

(1− ℓγrs(f, g))h
(ni)γrs(0) + ζ(ni) > 0

]

> ǫ

for all i, where ζ(n), n ∈ N is some oP(1) sequence. For ℓ > (γrs(f, g))
−1,
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Fig 1. Rejection frequencies (out of M = 5, 000 replications), under the null (a = 0) and
increasingly severe alternatives (a = 1, 2, 3, 4), of the signed-rank tests φ

f(j) , j = 1, 2, 3, 4;

see Section 3 for details. The sample size is n = 500 in both first columns and n = 10, 000
in the third one. In the first and third columns, tests are based on their asymptotic null
distribution, whereas the second column uses simulated critical values, obtained from 106

standard multinormal samples.
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this entails, for all i,

P
(ni)
ϑ,g

[

0 < h(ni)γrs(0) < (ℓγrs(f, g)− 1)−1|ζ(ni)|
]

> ǫ,

which contradicts (M-4.9). It follows that λ
(n)−
γrs is OP(1) under P

(n)
ϑ,g.

By using again (M-4.9), there exist, for all η > 0, a positive real number δη
and an integer Nη such that

P
(n)
ϑ,g

[

h(n)γrs(0) ≥ δη
]

≥ 1−
η

2

for all n ≥ Nη. Since λ
(n)−
γrs and λ

(n)+
γrs are OP(1), Lemma M-4.1 implies that,

for all η > 0 and ε > 0, there exists an integer Nε,δ ≥ Nη such that, for all

n ≥ Nε,δ (with λ
(n)±
γrs standing for either λ

(n)−
γrs or λ

(n)+
γrs ),

P
(n)
ϑ,g

[

(1− λ(n)±
γrs γrs(f, g))h

(n)γrs (0) ∈ [h(n)γrs(λ(n)±
γrs )± ε]

]

≥ 1−
η

2
.

It follows that for all η > 0, ε > 0 and n ≥ Nε,δ, letting δ = δη,

P
(n)
ϑ,g

[

A
(n)
ε,δ

]

:= P
(n)
ϑ,g

[

(1− λ(n)±
γrs γrs(f, g))h

(n)γrs (0) ∈ [h(n)γrs(λ(n)±
γrs )± ε]

and h(n)γrs(0) ≥ δ
]

≥ 1− η.

Next, denote by D̂(n), D(n), and D
(n)
± the graphs of the mappings

λ 7→ h(n)γrs(λ(n)−
γrs )− c(λ− λ(n)−

γrs )(h(n)γrs(λ(n)−
γrs )− h(n)γrs(λ(n)+

γrs ))

λ 7→ (1− λγrs(f, g))h
(n)γrs (0),

and

λ 7→ (1− λγrs(f, g))h
(n)γrs (0)± ǫ,

respectively. These graphs take the form of four random straight lines, in-

tersecting the horizontal axis at λ
(n)
γrs (our estimator of (γrs(f, g))

−1), λ0 :=

(γrs(f, g))
−1, λ

(n)+
0 and λ

(n)−
0 , respectively. Since D

(n)
± and D(n) are paral-

lel, with a negative slope, we have that λ
(n)−
0 ≤ λ0 ≤ λ

(n)+
0 . Under A

(n)
ε,δ ,

that common slope has absolute value at least δγrs(f, g), which implies

that λ
(n)+
0 − λ

(n)−
0 ≤ 2ε

δγrs(f,g)
. Still under A

(n)
ε,δ , for λ values between λ

(n)−
γrs
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and λ
(n)+
γrs , D̂(n) is lying between D

(n)
− andD

(n)
+ , which entails λ

(n)−
0 ≤ λ

(n)
γrs ≤

λ
(n)+
0 .
Summing up, for all η > 0 and ε > 0, there exist δ = δη > 0, and

N = Nεγrs(f,g)δ/2,δ such that, for any n ≥ N , with P
(n)
ϑ,g probability larger

than 1− η, |λ
(n)
γrs − λ0| ≤ λ

(n)+
0 − λ

(n)−
0 ≤ ε.
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ABSTRACT

Deflation-based FastICA, where independent components
(IC’s) are extracted one-by-one, is among the most popular
methods for estimating an unmixing matrix in the indepen-
dent component analysis (ICA) model. In the literature, it is
often seen rather as an algorithm than an estimator related to
a certain objective function, and only recently has its statis-
tical properties been derived. One of the recent findings is
that the order, in which the independent components are ex-
tracted in practice, has a strong effect on the performance of
the estimator. In this paper we review these recent findings
and propose a new “reloaded” procedure to ensure that the
independent components are extracted in an optimal order.
The reloaded algorithm improves the separation performance
of the deflation-based FastICA estimator as amply illustrated
by our simulation studies. Reloading also seems to render
the algorithm more stable.

1. INTRODUCTION

The independent component (IC) model is a semiparametric
model which has gained increasing interest in various fields
of science and engineering during the recent years [6]. The
basic IC model assumes that the observed p-variate random
vector x= (x1, . . . ,xp)

T is a linear mixture of the p mutually

independent sources (IC’s) s= (s1, . . . ,sp)
T . Then

x=As, (1)

where A is assumed to be a full rank p× p unknown mix-
ing matrix. Let X = (x1, . . . ,xn) denote a random sample
from the IC model (1). The aim of the independent com-

ponent analysis (ICA) is to find an estimate Ŵ (using the
random sample X) of some p× p unmixing matrix W ver-
ifying s = Wx up to permutation, sign and scale changes;
see [6]. Naturally W =A

−1 is one possible solution.
In the following, P denotes a permutation matrix (ob-

tained by permuting the rows or columns of Ip), J denotes
a sign-chance matrix (a p× p diagonal matrix with entries
±1), and D denotes a p× p diagonal matrix with positive
diagonal elements. Let G denote the set of all full-rank p× p
matrices. Then the set of p× p matrices, defined as

C = {C : C=PJD for some P,J and D},

is a subset of G . If a matrix W ∈ G is an unmixing matrix
in the IC model (1), then so is CW for any C ∈ C . We
then say that two unmixing matrices W1 and W2 are (ICA)
equivalent if W1 = CW2 for some C ∈ C , and we write
W1 ∼W2.

All reasonable estimates Ŵ should naturally converge
in probability to some population value W(Fx), that is, the

value of an independent component (IC) functional W at Fx,
where Fx denotes the cumulative distribution function (cdf)
of x. A formal (model independent) definition [9] of an IC
functional is given below.

Definition 1. Let Fx denote the cdf of x. The functional
W(Fx) ∈ G is an IC functional in the IC model (1) if (i)
W(Fx)A ∼ Ip and (ii) it is affine equivariant in the sense

that W(FBx) =W(Fx)B
−1 for all B ∈ G .

Note that W(FBx)Bx = W(Fx)x, and therefore
W(Fx)x is invariant under invertible linear transformations
of the observation vectors. A finite sample estimator cor-
responding to an IC functional is obtained if the functional
is applied to the empirical distribution based on X. We

then write Ŵ = W(X) for the obtained estimator. The
estimator is then also affine equivariant in the sense that

Ŵ(BX) = Ŵ(X)B−1. Let us denote by S(Fx)≡ COV(x)
the covariance matrix (functional) of a random vector x. We
note that many IC functionals proposed in the literature are
defined either implicitly or explicitly in such a way that the
covariance matrix of the obtained source vector is equal to
the identity matrix, i.e. COV(W(Fx)x) = Ip, in which case

W(Fx) = U(Fx)S
−1/2(Fx), where U(Fx) is an orthogonal

matrix.
The estimator of interest in this paper is the deflation-

based FastICA estimator [4, 5]. The paper is organized as
follows. Sections 2 recalls the deflation-based FastICA algo-
rithm and estimating equations, while statistical properties
of the estimator are discussed in Sections 3. In Section 4, a
new novel method is proposed, called the reloaded FastICA,
to optimize the extraction order of the sources in succeeding
FastICA deflation stages. A Simulation study in Section 5
illustrates the usefulness of our approach, whereas Section 6
presents our conclusions.

2. DEFLATION-BASED FASTICA

Deflation-based FastICA, hereafter FastICA for short, was
introduced in [4] and further developed in [5]. Up to date it
can be considered among one of the most popular methods
to solve the ICA problem.

2.1 FastICA algorithm

Write z = S
−1/2(Fx)(x− E(x)) for the whitened random

variable, where the square root matrix is chosen to be sym-
metric. FastICA can be seen as a projection pursuit method,
where the directions uk, maximizing a measure of non-
Gaussianity |E

(

G(uT
k z)

)

|, are found successively under the
constraint that uk is orthonormal with the previously found
directions u1, . . . ,uk−1 (for k = 1, . . . , p− 1), where G(·)
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can be any twice continuously differentiable nonlinear and
nonquadratic function with G(0) = 0. The unmixing ma-

trix is then W = US
−1/2 where U = (u1, . . . ,up)

T . Note
that the last vector up is set as a unit vector orthogonal
to u1, . . . ,up−1. Let g(·) denote the derivative of G(·),
called the nonlinearity. Commonly used nonlinearities are
pow3: g(u) = u3, tanh: g(u) = tanh(a1u), gaus: g(u) =
uexp(−a2u2/2) and skew: g(u) = u2, where a1 and a2 are
tuning parameters, usually chosen to be equal to 1.

Due to the whitening, the FastICA method is commonly

formulated as an algorithm for finding an estimator Û. The
algorithm (and its slight variations) given below for the direc-
tions ûk, k = 1, . . . , p−1, is generally accepted in the litera-
ture. In the algorithm, û j, j = 1 . . . ,k−1, are the previously
found directions and the sample mean vector and the sample

covariance matrix are denoted by x̄ and Ŝ, respectively.

Algorithm 1 deflation-based FastICA algorithm for ûk

xi ← Ŝ
−1/2(xi− x̄) {Whiten the data}

uk,0 ← uk,init {Choose an initial value}
∆ = ∞
while ε < ∆ do
uk,1 ← ave(xig(u

T
k,0xi))− ave(g′(uT

k,0xi))uk,0

uk,1 ← uk,1−∑
k−1
j=1(u

T
k,1û j)û j

uk,1 ← uk,1/‖uk,1‖
∆ = ‖uk,1−uk,0‖
uk,0 ← uk,1

end while
RETURN ûk = uk,1

The FastICA estimator of the unmixing matrix is thus

Ŵ= ÛŜ
−1/2 with Û coming from the algorithm. The order

in which the sources are found depends heavily on the initial
value Uinit = (u1,init , . . . ,up,init)

T . Write next W(U,X) for
the estimate based on the data X and the initial value Uinit =
U. If U is random, then the estimate W(U,X) may get p!
different values depending on random U, and the different
solutions may not be ICA equivalent.

Let S(X) be the covariance matrix computed from X.

It is well known that S(BX)−1/2(BX) = VBS(X)−1/2
X

where VB is an orthogonal matrix depending on B (and
X). With a fixed choice U, the estimate W(U,X) is affine

equivariant in the sense that W(U,BX) = W(U,X)B−1

if W(U,X) = W(UVB,X), that is, if W(U,X) and
W(UVB,X) find the sources in the same order. (The equal-
ities above are up to sign changes of the rows.) A natural
question then is: Is there any choice Uinit =U(X) such that
the “reloaded” fastICA estimate W(U(X),X) is fully affine
equivariant. We answer this question in Section 4.

2.2 Estimating equations

To facilitate statistical analysis, it is appropriate to formu-
late the method as an estimator verifying a set of estimating
equations. Furthemore, it is useful to formulate the estimator
without the pre-whitening stage. Let T(Fx) = E(x) denote
the mean vector (functional). The deflation-based FastICA
functional wk(Fx), k = 1, . . . , p−1, may be seen [11, 12] as
an optimizer of

|E[G(wT
k (x−T(Fx))] |

under the constraints (i) w
T
k S(Fx)wk = 1 and (ii)

w
T
j S(Fx)wk = 0 for j = 1, . . . ,k−1. (For w1, only the first

constraint is needed.) Note that, for the definition of the func-
tional wk, we need functionals T, S, and w1, . . . ,wk−1.

Using the Lagrange multiplier technique, one can easily
show [9, 12] that (under general assumptions) the unmixing
matrix functional W(Fx) = (w1(Fx), . . . ,wp(Fx))

T satisfies
the p estimating equations

E
[

g
(

w
T
k (x−T(Fx))

)

(x−T(Fx))
]

= S(Fx)
k

∑
j=1

w jw
T
j E

[

g
(

w
T
k (x−T(Fx))

)

(x−T(Fx))
]

,

k = 1, . . . , p. Note that, if s =Wx has independent compo-
nents, then W solves the estimating equations. It is also im-
portant to note that, for all permutation matrices P, also PW

then solves the estimating equations, and therefore the esti-
mating equations do not fix the order of the unmixing vectors
w1, . . . ,wp.

3. STATISTICAL PROPERTIES

Despite being such a popular tool, rigorous statistical anal-
ysis of the deflation-based FastICA estimator has not been
given until quite recently in [9, 11–13]. In this section we
discuss the limiting distribution and robustness properties of
the deflation-based FastICA estimator. Without loss of gen-
erality we assume that E(xi) = 0, COV(xi) = Ip, and the

true mixing matrix is A= Ip = (e1, . . . ,ep)
T .

3.1 Limiting distribution

If the first four moments of s exist, then by the central limit

theorem, the joint distribution of
√

nx̄ and
√

nvec(Ŝ− Ip)
is asymptotically normal. Furthermore, the existence of the
expected values µg,k = E[g(eT

k xi)],

σ2
g,k =Var[g(eT

k xi)], λg,k = E[g(eT
k xi)e

T
k xi]

and

δg,k = E[g′(eT
k xi)], τg,k = E[g′(eT

k xi)e
T
k xi]

are required. We also need to assume that δg,k 6= λg,k, k =
1, . . . , p−1, and we write

αg,k =
σ2

g,k−λ 2
g,k

(λg,k−δg,k)2
, k = 1, . . . , p. (2)

Write Tk = 1
n ∑

n
i=1(g(e

T
k xi) − µg,k)xi and T̂k =

1
n ∑

n
i=1 g(ŵT

k (xi− x̄))(xi− x̄). Then, under general assump-
tions and using Taylor’s expansion, we get

√
n(T̂k−λg,kek) =

√
nTk− τg,keke

T
k

√
nx̄

+ ∆g,k

√
n(ŵk−ek)+oP(1), (3)

where ∆g,k = E[g′(eT
k xi)xix

T
i ].

Now recall that the FastICA unmixing matrix estimator Ŵ=
(ŵ1, ...,ŵp)

T needs to verify the estimating equations

T̂k = Ŝ[ŵ1ŵ
T
1 + ...+ ŵkŵ

T
k ]T̂k, k = 1, . . . , p. (4)
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But then

(Ip−Uk)
√

n(T̂k−λg,kek) = λg,k[
√

n(Ŝ− Ip)ek

+
k

∑
j=1

e je
T
k

√
n(ŵ j−e j)+

√
n(ŵk−ek)]+oP(1),

where Uk = ∑
k
j=1 e je

T
j , and, using (3), we get the following

result.

Theorem 1. Let x1, . . . ,xn be a random sample from the IC
model (1) with A = Ip, E(xi) = 0, and COV(xi) = Ip. Let

Ŵ = (ŵ1, . . . ,ŵp)
T be the solution for the estimating equa-

tions in (4) such that Ŵ →P Ip. Then, under the general
assumptions,

√
nŵkl =

1

λg,k−δg,k

[

e
T
l

√
nTk−λg,k

√
nŜkl

]

+ oP(1) for l > k,
√

nŵkl = −
√

nŵlk−
√

nŜkl +oP(1) for l < k,

and

√
n(ŵkk−1) = −1

2

√
n(Ŝkk−1)+oP(1).

Remark 1. It follows from Theorem 1 that, for A = Ip, the
asymptotic covariance matrix (ASV) of the k-th source ŵk is

ASV (ŵk) =
k−1

∑
j=1

(αg, j +1)e je
T
j +κkeke

T
k +αg,k

p

∑
l=k+1

ele
T
l .

where κk = (E(x4
ik)−1)/4 and αg, j is defined in (2). We note

that this result is in accordance with [12, Corollary 1]. Note

that the asymptotic variances of the diagonal elements of Ŵ
do not depend on the choice of the function g(·), but only on
the kurtosis of the corresponding source.

Remark 2. Theorem 1 implies that, if
√

nTk, k = 1, ..., p,

and
√

nvec(Ŝ− Ip) have a joint limiting multivariate distri-

bution, the limiting distribution of
√

nvec(Ŵ− Ip) is also
multivariate normal. Interestingly, the limiting distributions
of the estimated directions ŵ1, ...,ŵp depend on the order in
which they are found; see [12] for details and illustrations.
The initial value Uinit in the FastICA algorithm mainly de-
termines the order of the extracted sources in practice and
hence plays a crucial role in the performance of the estima-
tor.

3.2 Robustness

Due to the different options for the nonlinearity function
g(·), FastICA is often called robust when used with ‘robust’
nonlinearity functions, for example, tanh or gaus function.
The influence function (IF) of the FastICA functional wk,
k = 1, . . . , p, in the IC model (1) is given in [12] as

IF(z;wk,F) = − pk

k−1

∑
j=1

(q j + p j)w j−
p2

k−1

2
wk

+ qk

p

∑
l=k+1

plwl ,

where pk =w
T
k (z−E(x)) and

qk =
g(pk)−µg,k−λg,k pk

λg,k−δg,k
.

Since the IF is a weighted sum of the sources w1, . . . ,wp,
where the weights are unbounded functions of pk, any large
value of p j, j = 1, . . . , p can have unbounded impact on wk

- irrelevant of the choice of the nonlinearity g(·). Thus, ac-
cording to its IF, the deflation-based FastICA will never be
robust - independently of the choice of g(·) (see [12] for de-
tails).

Note also that it is not straightforward to robustify
deflation-based FastICA by replacing mean vector and co-
variance matrix with their more robust counterparts as re-
ported in [1].

4. RELOADING FASTICA BY OPTIMIZING THE
EXTRACTION ORDER

In this section, we first discuss the properties of the perfor-
mance index MD for the ICA estimates, and show how it is
connected to the asymptotic distribution of the estimate. We
then suggest a two-step modified FastICA procedure which
optimizes the extraction order.

4.1 Minimum distance performance criterion

Many different performance measures for the IC estimates
have been suggested in the literature, see, for example, [10].
In this paper we use the so called minimum distance (MD)
measure which was recently suggested in [8,9]. The measure
is defined as

MD(Ŵ,A) =
1√

p−1
inf
C∈C

‖CŴA− Ip‖.

This index is independent of the model specification and sur-
prisingly easy to compute in practice (for details see [8, 9]).
The asymptotic behavior of the index MD is as follows. If

an equivariant estimator Ŵ satisfies
√

nvec(Ŵ− Ip) →d

Np2(0,Σ), then

nMD2(Ŵ,A) =
n

p−1
‖off(Ŵ)‖2 +oP(1),

and the limiting distribution of nMD2(Ŵ,A) is that of a
weighted sum of independent chi-square variables [9]. Also,

the expected value n(p−1)E[MD2(Ŵ,A)] converges to the
sum of the limiting variances of the off-diagonal elements of

Ŵ as n→ ∞.

4.2 Reloaded FastICA

In order to achieve optimal performance in terms of the MD
measure, we thus should minimize the sum of the variances
of the off-diagonal elements of the FastICA estimator. Using
Remark 1 it is easy to see that, for A= Ip,

∑
i6= j

ASV (ŵi j) = 2
p

∑
i=1

(p− i)αg,i +
p(p−1)

2
,

which is minimized if the αg,i’s are in the increasing order of
magnitude.

To optimize the performance of the deflation-based Fas-
tICA, we therefore suggest the following simple procedure.
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g(·) αg,E αg,C αg,L

pow3 5 15 6
tanh 3.14 32.13 2.01

Table 1: The theoretical values of αg,k for different cases.

g(·) LCE LEC CEL ECL CLE ELC
pow3 57 37 73 53 75 35
tanh 75.32 17.33 137.79 79.80 135.55 19.57

Table 2: The limiting values of n(p− 1)E[MD2(Ŵ,A)] for
the six different extraction orders.

1. Find any equivariant and consistent estimate Ŵ0 (e.g.

FOBI [2]) such that Ŝ(Ŵ0X) = Ip.

2. Find the estimated sources Ẑ= Ŵ0(X− x̄1
T
n ).

3. Find estimates α̂g,k, k = 1, . . . , p, based on Ẑ by replacing
the expected values by averages in (2).

4. Find the permutation matrix P̂ such that, for the permu-
tated sources, the α̂g,k are in an increasing order.

5. Reload FastICA algorithm 1 with a new initial value: The

estimate is W(U(X),X) where U(X) = P̂Ŵ0Ŝ
1/2.

It is easy to see that W(U(X),X) is fully affine equiv-
ariant. We conjecture that this new estimator has the same
limiting distribution as the simple FastICA estimator which
extracts the sources in the (same) optimal order.

5. SIMULATION STUDY

We performed a small simulation study to demonstrate the
effect of the extraction order of the sources. We show that
reloading FastICA with the data whitened in a new way and
with an initial value Uinit = Ip gives the optimal performance
among different deflation-based FastICA procedures. The
data used in our simulations comes from a three-variate dis-
tribution; the independent source distributions are (i) the ex-
ponential distribution, (ii) the chi-square distribution with 8
degrees of freedom, and (iii) the Laplace distribution. All
three distributions are centered and scaled to have expected
value 0 and variance 1. The mixing matrix used in our simu-
lations is A= I3. We denote the three sources as E, C, and L,
respectively, and the sequence ECL, for example, means the
extraction order exponential-chi-square-Laplace. We consid-
ered two nonlinearity functions g = pow3 and g = tanh. The
values of corresponding αg,k, given in Table 1, were obtained
from (2), where the expectations were calculated using nu-
merical integration.

The expected values of n(p− 1)E[MD2(Ŵ,A)] for dif-
ferent extraction orders are given in Table 2. The table clearly
shows that the extraction order has a large impact on the sep-
aration performance. The best extraction order naturally de-
pends on the choice of the nonlinearity function g. Here ELC
is the best order for pow3, whereas LEC is the best for tanh .

To see whether the expected behavior is observed in fi-
nite sample sizes we repeated the estimation of the unmixing
matrix 5000 times for different sample sizes using all six pos-
sible extraction orders for both nonlinearities. The extraction
order can be controlled using six different 3×3 permutation
matrices P as initial values Uinit . For the reloaded deflation-
based FastICA we chose FOBI [2] as the initial estimate. The
FOBI functional is an affine equivariant IC functional, and

the limiting distribution of the unmixing matrix estimate is
known to be multivariate normal [7]. FOBI has the advan-
tage that it is easy to compute, and, unlike FastICA, it al-
ways gives a solution. In this simulation study we included
the FastICA estimators using random initial values as well.
Then the extraction order is also random, and hence the per-
formance is expected to be a mixture of the performances of
the six possible estimators with different (fixed) extraction
orders.

We used the FastICA code [3] for Algorithm 1, and we
retained all the default settings except the initial value. One
problem worth mentioning is that, unfortunately, the algo-
rithm does not always converge. In applied data analysis
the user may be able to change some tuning parameters in
order to obtain a solution. However, this is not feasible in
a simulation study. In our simulations, we simply ignored
the cases when convergence did not occur. (Another option
would have been to set the MD values to 1 in these cases.)

n ECL LCE CEL ELC LEC CLE rand reloaded
1000 20 24 27 0 0 25 5 0
5000 0 0 0 0 0 0 0 0

10000 0 0 0 0 0 0 0 0
≥25000 0 0 0 0 0 0 0 0

Table 3: Number of algorithm failures in 5000 trials for
pow3.

n ECL LCE CEL ELC LEC CLE rand reloaded
1000 340 472 493 0 0 457 145 0
5000 12 79 71 0 0 71 11 0

10000 1 13 10 0 0 10 4 0
≥25000 0 0 0 0 0 0 0 0

Table 4: Number of algorithm failures in 5000 trials for tanh.

Table 3 and Table 4 give the number of cases when the
algorithm did not converge. These figures clearly illustrate
that for small sample sizes the algorithm often fails to con-
verge for the given initial matrix. The problem is more severe
in case of tanh nonlinearity. However, reloading FastICA
seems to help the algorithm to find a solution.

Figure 1 presents the plots of the average values of

n(p−1)MD2(Ŵ,A) over the sample size n. The black lines
in the figure give the results for the deflation-based FastICA
with fixed extraction order, and the horizontal lines repre-
sent the asymptotic expectations given in Table 2. While
for pow3 convergence is reached quickly, this is not the case
for tanh. The worse the performance, the slower the conver-
gence seems to be. The performance of the deflation-based
FastICA with random initial matrix is somewhere between
the optimal and the worst possible case, which supports our
conjecture of being a mixture of the six different cases. The
strange behavior at the large sample sizes when using pow3
may be due to the fact that the algorithm often converges to
a wrong local maxima. It is clear that the average MD of the
reloaded FastICA corresponds to the minimum value among
the six possible cases. Therefore, the reloaded FastICA be-
haves as expected and is basically equivalent with the best
extraction order for that given nonlinearity.
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Figure 1: Average performance of the reloaded FastICA and the deflation-based FastICA based on a random initial value. The
black curves give the performance of deflation based-FastICA when the extraction order is fixed. Horizontal black lines are
asymptotic expectations given in Table 2.

6. CONCLUSIONS

In this paper we reviewed some properties of the deflation-
based FastICA. One important curious property of FastICA
is that the extraction order has a huge impact on the separa-
tion performance. We used this property and suggested the
use of the reloaded FastICA to achieve the optimal extraction
order. In our approach, we first need to run some ICA pro-
cedure that provides a consistent and affine equivariant un-
mixing matrix estimate. Then the extracted sources are per-
muted based on the nonlinearity used, and finally the regu-
lar deflation-based FastICA is performed using the estimated
and permuted sources as whitened data and the identity ma-
trix as an initial value of the rotation matrix. Reloading Fas-
tICA this way yields the best extraction order and renders the
algorithm more stable at small sample sizes as validated by
our simulation studies.

Future research is needed to derive the asymptotic prop-
erties of the reloaded FastICA estimator. Above all, more
research is needed to derive the optimal choice of the nonlin-
earity function as well.

REFERENCES

[1] G. Brys, M. Hubert, and P.J. Rousseeuw, “A robusti-
fication of independent component analysis”. Chemo-
metrics, vol. 57 , pp. 364–375, 2006.

[2] J. Cardoso, “Source separation using higher moments,”
in Proc. IEEE International Conference on Acustics,
Speech and Signal Processing, Glasgow, 1989, pp.
2109–2112.

[3] http://www.cis.hut.fi/projects/ica/fastica.

[4] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm
for independent component analysis,” Neural Compu-
tation, vol. 9, pp.1483-1492, 1997.

[5] A. Hyvärinen, “Fast and robust fixed-point algorithms

for independent component analysis,” IEEE Trans.
Neural Networks, vol. 10, pp. 626–634, 1999.

[6] A. Hyvärinen, J. Karhunen, and E. Oja, Independent
Component Analysis. New York: Wiley, 2001.

[7] P. Ilmonen, J. Nevalainen, H. Oja, “Characteristics of
multivariate distributions and the invariant coordinate
system,” Statistics and Probability Letters, vol. 80, pp.
1844–1853, 2010.

[8] P. Ilmonen, K. Nordhausen, H. Oja, and E. Ollila, “A
new performance index for ICA: properties, computa-
tion and asymptotic analysis,” in Latent Variable Anal-
ysis and Signal Processing (Proceedings of 9th Inter-
national Conference on Latent Variable Analysis and
Signal Separation). 2010, pp. 229–236.

[9] P. Ilmonen, K. Nordhausen, H. Oja, and E. Ollila, “In-
dependent component (IC) functionals and a new per-
formance index”, submitted.

[10] K. Nordhausen, E. Ollila and H. Oja, “On the perfor-
mance indices of ICA and blind source separation,” in
Proc. IEEE 12th International Workshop on Signal Pro-
cessing Advances in Wireless Communications (SPAWC
2011), 2011, pp. 471–475.

[11] E. Ollila, “On the robustness of the deflation-based Fas-
tICA estimator,” in Proc. IEEE Workshop on Statistical
Signal Processing (SSP’09), Cardiff, Wales, Aug. 31–
Sep. 3. 2009, pp. 673–676.

[12] E. Ollila, “The deflation-based FastICA estimator: sta-
tistical analysis revisited,” IEEE Trans. Signal Process-
ing, vol. 58, pp. 1527–1541, 2010.

[13] E. Ollila and H.-J. Kim, “‘On testing hypotheses of
mixing vectors in the ICA model using FastICA,”
in Proc. IEEE Int. Symp. on Biomedical Imaging
(ISBI’11), Chicago, USA, Mar. 30 – Apr. 2, 2011, pp.
325-328.

1858



Author's personal copy

Statistics and Probability Letters 80 (2010) 1844–1853

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Characteristics of multivariate distributions and the invariant
coordinate system
Pauliina Ilmonen a,∗, Jaakko Nevalainen b, Hannu Oja a

a Tampere School of Public Health, FI-33014 University of Tampere, Finland
b Statistics/Department of Social Research, FI-20014 University of Turku, Finland

a r t i c l e i n f o

Article history:
Received 12 April 2010
Received in revised form 13 August 2010
Accepted 16 August 2010
Available online 21 August 2010

MSC:
62H10
62H12
62G05
62G20
62F12

Keywords:
Asymptotic normality
Independent component analysis
Invariant coordinate selection
Multivariate kurtosis
Multivariate skewness

a b s t r a c t

Weconsider a semiparametricmultivariate location–scattermodelwhere the standardized
random vector of the model is fixed using simultaneously two location vectors and two
scatter matrices. The approach using location and scatter functionals based on the first
four moments serves as our main example. The four functionals yield in a natural way the
corresponding skewness, kurtosis and unmixing matrix functionals. Affine transformation
based on the unmixing matrix transforms the variable to an invariant coordinate system.
The limiting properties of the skewness, kurtosis, and unmixing matrix estimates are
derived under general conditions. We discuss related statistical inference problems, the
role of the sample statistics in testing for normality and ellipticity, and connections to
invariant coordinate selection and independent component analysis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider the n × p data matrix X = (x1, . . . , xn)T , where x1, . . . , xn is a random sample from a p-variate distribution.
Different location–scatter models are obtained if one assumes that

xi = Ωzi + µ, i = 1, . . . , n,

where Z = (z1, . . . , zn)T is an unobservable random sample from a ‘‘standardized’’ distribution,µ is a location vector and Ω

is a full-rank p × pmatrix, termed themixing matrix in the independent component analysis (ICA) literature. The inverse of
Ω , Γ = Ω−1, is the unmixing matrix, and Σ = ΩΩT is the scatter matrix. Posing various assumptions on the distribution of
the zi yields different parametric or semiparametric multivariate models which are parametrized by µ and Σ , or by µ and
Ω (Nordhausen et al., 2010).
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The following location–scatter models arise from this general structure and are often considered and discussed in the
literature.

1. The classical multivariate methods rely on the assumption of multivariate normality, that is, zi ∼ Np(0, Ip), i = 1, . . . , n.
The location parameter µ is the mean vector and the scatter parameter Σ the covariance matrix. As Ozi ∼ Np(0, Ip)
for all orthogonal matrices O, the mixing matrix Ω or the unmixing matrix Γ are defined only up to an orthogonal
transformation in themultivariate normal model.

2. In the multivariate elliptical model it is assumed that zi ∼ Ozi for all orthogonal matrices O. (Notation x ∼ y means
that random variables x and y are similarly distributed.) To fix Σ it is often assumed that E(‖zi‖2) = p or that
Med(‖zi‖2) = χ2

p,1/2. (The first configuration naturally requires that finite second moments exist, but the second allows
us to avoid any moment assumptions.) As in the multivariate normal model, Ω and Γ are again defined only up to an
orthogonal transformation. Elliptical distributions are thus symmetric in the sense that zi ∼ Ozi for all O, but they may
vary in their kurtosis properties. The model permits for heavier (or lighter) tails than the multivariate normal model,
and therefore the elliptical models are commonly seen as a more realistic alternative to the multivariate normal model.
Robust testing and estimation procedures, for example, often assume ellipticity.

3. Another type of model family is obtained if one presumes that the observations arise from a parametric independent
component (IC) model. Here the zi are assumed to have independent and standardized components and the density
function f (zi) =

∏p
j=1 fj(zij) with some known standardized marginal densities f1, . . . , fp. Matrix Γ is unique for distinct

standardized densities f1, . . . , fp.
4. In a generalization of the parametric ICmodel, the semiparametric independent componentmodel, zi are assumed to consist

of independent and standardized components such that E(zi) = 0 and E(zizTi ) = Ip, orMed(zij) = 0 andMed(z2ij ) = χ2
1,1/2.

But thenΩ andΓ are defined only up to permutations and sign changes of the columns and rows, respectively. In ICA the
goal is to estimate Γ (up to a permutation, rescaling and sign changes of the rows). In parametric and semiparametric IC
models, skewness and kurtosis properties are characteristics of the marginal distributions.

Instead of location–scattermodelswewillwork under a general semiparametric location–scatter–skewness–kurtosismodel
(shortly, semiparametric model), which includes all (continuous as well as discrete) multivariate distributions with finite
fourth moments. Thus, many of the more conventional models listed above overlap with the semiparametric model, which
was first introduced by Nordhausen et al. (2010).

The paper is organized as follows. The semiparametric model is defined in Section 2 along with a discussion of
related unmixing matrix, skewness and kurtosis functionals, G, d and L. Section 3 gives useful asymptotic results for the
corresponding estimates Γ̂ , δ̂ and Λ̂ even outside the semiparametric model. More detailed results for the moment-based
estimates are given in Section 4. Statistical properties of the fourth-order blind identification FOBI estimate are obtained as
a side-product. Section 5 discusses the uses of sample statistics in testing and estimation problems.

2. Definitions and preliminary results

2.1. Semiparametric model

Amultivariate semiparametricmodel can be definedwith natural parameters formultivariate location, scatter, skewness
and kurtosis, respectively. The zi need to be standardized in a special way using two moment-based location functionals,
T1 and T2, and two moment-based scatter matrix functionals S1 and S2. Next we establish the model, the moment-based
location and scatter functionals, and their connection to the model parameters.
Semiparametric model. Assume that X = (x1, . . . , xn)T is random sample from a p-variate distribution such that

xi = Ωzi + µ, i = 1, . . . , n,

where the zi are standardized so that

E(zi) = 0,
E(zizTi ) = Ip,

E(zizTi zi) = p · δ and

E(zizTi ziz
T
i ) = (p + 2) · Λ

where δ is a p-vector with all components δi ≥ 0, i = 1, . . . , p, and Λ is a diagonal matrix with diagonal elements λ1 ≥ · · · ≥

λp > 0.
The semiparametric model was first introduced in Nordhausen et al. (2010). The parameters in the model are the mean

vector µ, the covariance matrix Σ = ΩΩT , the skewness vector δ based on third moments, and the kurtosis matrix Λ. We
will return to these concepts shortly. The model is general in the sense that it includes all p-variate distributions with finite
fourth moments, but of course rules out heavy-tailed distributions. The mixing and unmixing matrices, Ω and Γ = Ω−1,
are uniquely defined if δi > 0, i = 1, . . . , p, and λ1 > · · · > λp > 0. When the model parameters are fixed in this way,
the unmixing matrix can be used to transform the random vector to an invariant coordinate system (Tyler et al., 2009, ICS).
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If the components of zi are independent, the unmixing matrix Γ is the fourth-order blind identification (FOBI) functional
by Cardoso (1989), a solution in ICA. Alternative models and multivariate skewness and kurtosis measures are obtained if
the moment-based location and scatter measures are replaced by some other, e.g. robust, multivariate location measures
and scatter measures.

The model obviously includes the multivariate normal model with δ = 0 and Λ = Ip. For elliptical distribution δ = 0
andΛ = λIp, where λ is a kurtosis parameter, whichmay not be finite. In the elliptical modelΩ is thus defined only up to an
orthogonal transformation. However, Σ = ΩΩT is uniquely defined. IC models are included when the marginal densities
possess finite fourth-order moments. Recall that the target parameter of ICA is Γ .

2.2. Location and scatter functionals

In robust and nonparametric communities the characteristics of a distribution are often described by functionals. Let Fx
be the cumulative distribution function (cdf) of a p-variate random variable x. A location functional T (Fx) is a vector-valued
(p × 1) functional, which is affine equivariant in the sense that

T (FAx+b) = AT (Fx) + b

for all nonsingular p×pmatrices A and for all p-vectors b. A scatter functional S(Fx) is a p×p-matrix-valued functional which
is positive definite and affine equivariant in the sense that

S(FAx+b) = AS(Fx)AT

for all nonsingular p× pmatrices A and for all p-vectors b. A scatter functional S is said to possess the independence property
if S(Fx) is a diagonal matrix for all x with independent components—a property which not all scatter matrices enjoy, but
which is essential in independent component analysis. The first examples of location and scatter functionals are the mean
vector and covariance matrix:

T1(Fx) = E(x) and S1(Fx) = E((x − E(x))(x − E(x))T ).

The covariance matrix S1 has the independence property. In the semiparametric model T1(Fx) = µ and S1(Fx) = Σ .
Location and scatter functionals can be based on the third and fourth moments as well. A location functional based on

third moments is

T2(Fx) =
1
p
E((x − E(x))T S1(Fx)−1(x − E(x))x).

Finally, a scatter matrix based on fourth moments is

S2(Fx) =
1

p + 2
E((x − E(x))(x − E(x))T S1(Fx)−1(x − E(x))(x − E(x))T ),

which has the independence property (Oja et al., 2006). Note now that these functionals can be used to standardize the
random vectors in the semiparametric model as clearly

T1(Fzi) = 0, T2(Fzi) = δ, S1(Fzi) = Ip, and S2(Fzi) = Λ.

2.3. Skewness, kurtosis, and unmixing matrix functionals

Without fixing any particular location and scatter functionals, like the moment-based functionals in the above, the
unmixing matrix functional G (p × p), skewness functional d (p × 1) and kurtosis functional L (p × p), based on two pairs
of some location and scatter functionals, (T1, S1) and (T2, S2), can be defined as follows.

Definition 2.1. Let a matrix-valued functional G, a vector-valued functional d, and a diagonal matrix-valued functional L be
defined so that, if z = G(Fx)(x − T1(Fx)), then

T1(Fz) = 0, S1(Fz) = Ip, T2(Fz) = d, and S2(Fz) = L,

where d ≥ 0 and the diagonal elements of L are in a decreasing order.

Note that G and L are solutions of the eigenvector and eigenvalue problem

S−1
1 S2GT

= GT L.

A solution G is then unique up to a permutation, rescaling and sign changes of the rows. Among these, Definition 2.1 then
picks up the solution G for which S1(Fz) = Ip, T2(Fz) ≥ 0 and S2(Fz) is a diagonal matrix with decreasing diagonal elements.
The first condition fixes the scales, the second one the signs, and the third one the order of the rows of G. The solution G then
also satisfies

GS1GT
= Ip and GS2GT

= L,
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where, as before, L is a diagonal matrix consisting of the eigenvalues of S−1
1 S2. The solution is unique if d > 0 and L has

distinct diagonal elements.
For functionals G, d, and Lwe then have the following lemma:

Lemma 2.1. Assume the semiparametric model x = Ωz +µ, where for some location functionals T1 and T2 and for some scatter
functionals S1 and S2, T1(Fz) = 0, S1(Fz) = Ip, T2(Fz) = δ > 0 and S2(Fz) = Λ is a diagonal matrix with diagonal elements
λ1 > · · · > λp > 0. If G is based on (T1, S1) and (T2, S2), then

G(Fx) = Γ , d(Fx) = δ, and L(Fx) = Λ.

The functionals are affine equivariant and invariant in the sense that

G(FAx+b) = G(Fx)A−1, d(FAx+b) = d(Fx), and L(FAx+b) = L(Fx)

for all nonsingular p × p matrices A and all p-vectors b.

The values of the functionals at the empirical distribution Fn yield natural Fisher consistent estimates of the corresponding
population quantities. For an estimate of T (Fx) we then write T (Fn) or T (X) where X is an n × p data matrix. To simplify
notation, we write

T1 = T1(Fx), S1 = S1(Fx), T2 = T2(Fx), and S2 = S2(Fx),

and

T̂1 = T1(Fn), Ŝ1 = S1(Fn), T̂2 = T2(Fn), and Ŝ2 = S2(Fn).

Most of the time, the interest lies in the population parameters

Γ = G(Fx), δ = d(Fx), and Λ = L(Fx)

and their Fisher consistent estimates

Γ̂ = G(Fn), δ̂ = d(Fn), and Λ̂ = L(Fn),

respectively. Of course, the estimates δ̂, Γ̂ and Λ̂ adopt the sameequivariance and invariance properties as the corresponding
functionals meaning that

G(XAT
+ 1nbT ) = G(X)A−1,

d(XAT
+ 1nbT ) = d(X) and

L(XAT
+ 1nbT ) = L(X).

2.4. Connections to ICA, ICS and classical skewness and kurtosis measures

If T1, T2, S1 and S2 are the moment-based functionals we can say more, and find similarities in the literature. First, if
the observations come from a continuous distribution, the estimates exist and are unique with probability one. Second, the
estimate Γ̂ is the well-known FOBI estimate in the IC model. Third, in the univariate case (p = 1), ‖δ̂‖2 and Λ̂ reduce to the
classical univariate skewness and kurtosis measures

[E(x − E(x))3]2

[E(x − E(x))2]3
and

E(x − E(x))4

3[E(x − E(x))2]2
.

In the multivariate case, Mardia (1970) defined different moment-based measures of skewness and kurtosis for a sample
X = (x1, . . . , xn)′ as

b1 =
1
n2

n−
i=1

n−
j=1

((xi − T̂1)T Ŝ−1
1 (xj − T̂1))3

and

b2 =
1
n

n−
i=1

((xi − T1)T Ŝ−1
1 (xi − T1))2

which use the moments of elements of a maximal invariant statistic, the n × nmatrix

(X − 1nT̂ T
1 )Ŝ−1

1 (X − 1nT̂ T
1 )T .

Our skewness and kurtosis statistics are based on the third and fourth moments of another maximal invariant statistic,
namely, the n × pmatrix

Ẑ = (X − 1nT̂ T
1 )Γ̂ T .
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Matrix Ẑ gives the observations in an invariant coordinate system (Tyler et al., 2009). Still another invariant coordinate
system (maximal invariant statistic) based on p+1 observations was proposed by Chakraborty and Chaudhuri (1999). Their
approach is known as the transformation–retransformation approach. See also Serfling (2010) for a general discussion on
standardization, weak covariance, transformation–retransformation, and strong invariant coordinate system functionals.
Bera and John (1983) use the third and fourth moments of the ‘‘scaled residuals’’ in (X − 1nT̂ T

1 )Ŝ−1/2
1 (with a symmetric

square rootmatrix). UnlikeMardia’s statistics andour skewness andkurtosis statistics, their statistics are not affine invariant,
however.

3. Asymptotical properties

We are interested in the limiting behavior of the estimates δ̂, Γ̂ and Λ̂. As the estimates are affine equivariant and
invariant, it is not a restriction to assume that

T1 = 0, S1 = Ip, T2 = δ and S2 = Λ, and therefore Γ = Ip.

For uniqueness, we assume that δi > 0, i = 1, . . . , p, and the diagonal elements of Λ are strictly ordered so that
λ1 > · · · > λp > 0.

We assume that the location and scatter estimates, not necessarily moment-based yet, are root-n consistent, that is,
√
nT̂1 = Op(1) and

√
n(Ŝ1 − Ip) = Op(1)

as well as
√
n(T̂2 − δ) = Op(1) and

√
n(Ŝ2 − Λ) = Op(1).

Then we have the following result.

Theorem 3.1. If T̂1, Ŝ1, T̂2 and Ŝ2 are root-n consistent, then so are δ̂, Γ̂ and Λ̂ and
√
n(δ̂ − δ) =

√
n(T̂2 − δ) −

√
nT̂1 +

√
n(Γ̂ − Ip)δ + op(1)

and
√
n(Γ̂ii − 1) = −

1
2

√
n((Ŝ1)ii − 1) + op(1),

(λi − λj)
√
nΓ̂ij =

√
n(Ŝ2)ij − λi

√
n(Ŝ1)ij + op(1), i ≠ j, and

√
n(Λ̂ii − λi) =

√
n((Ŝ2)ii − λi) − λi

√
n((Ŝ1)ii − 1) + op(1).

Proof. First note that since the transformation (T1, S1, T2, S2) → (d,G, L) is continuous in a neighborhood of (0, Ip, δ, Λ),
and (T̂1, Ŝ1, T̂2, Ŝ2) →P(0, Ip, δ, Λ), also (δ̂, Γ̂ , Λ̂) →P(δ, Ip, Λ). As

δ̂ = T2((X − 1nT̂ T
1 )Γ̂ T ),

it follows by affine equivariance that
√
n(T2((X − 1nT̂ T

1 )Γ̂ T ) − δ) =
√
nΓ̂ (T̂2 − T̂1 − δ) +

√
n(Γ̂ − Ip)δ.

Then by Slutsky’s theorem
√
nΓ̂ (T̂2− T̂1−δ)−

√
n(T̂2−δ)+

√
nT̂1 converges to 0 in distribution and therefore in probability

as well. Thus
√
nΓ̂ (T̂2 − T̂1 − δ) =

√
n(T̂2 − δ) −

√
nT̂1 + op(1),

and the first part of the theorem follows. For Γ̂ and Λ̂ we utilize the estimating equations

Γ̂ Ŝ1Γ̂ T
= Ip and Γ̂ Ŝ2Γ̂ T

= Λ̂.

Then

(Γ̂ − Ip)Ŝ1Γ̂ T
+ (Ŝ1 − Ip)Γ̂ T

+ (Γ̂ − Ip)T = 0 and

(Γ̂ − Ip)Ŝ2Γ̂ T
+ (Ŝ2 − Λ)Γ̂ T

+ Λ(Γ̂ − Ip)T = Λ̂ − Λ

and Slutsky’s theorem gives
√
n(Ŝ1 − Ip) = −

√
n(Γ̂ − Ip) −

√
n(Γ̂ − Ip)T + op(1) and

√
n(Ŝ2 − Λ) = −

√
n(Γ̂ − Ip)Λ −

√
nΛ(Γ̂ − Ip)T +

√
n(Λ̂ − Λ) + op(1).

These equations yield the desired results for Γ̂ and Λ̂. �
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In the matrix form, we can write
√
n diag(Γ̂ − Ip) = −

1
2

√
n diag(S1 − Ip) + op(1),

√
n (Γ̂ − diag(Γ̂ )) =

√
n H ⊙ ((Ŝ2 − Λ) − (Ŝ1 − Ip)Λ) + op(1), and

√
n (Λ̂ − Λ) =

√
n diag((Ŝ2 − Λ) − (Ŝ1 − Ip)Λ) + op(1),

where H is a p × p matrix with elements

Hij = 0, if i = j, and Hij = (λi − λj)
−1, if i ≠ j,

diag(Γ ) for example is a diagonal matrix with the same diagonal elements as Γ , and ⊙ means the Hadamard (entrywise)
product.

Note that the principal component analysis is a special case here: if one takes S1 = Ip (constant) and S2 = S, the theorem
gives the limiting behavior of the eigenvectors and eigenvalues of S.

4. Limiting distributions of the moment-based estimates

We next establish the limiting distributions of the estimates δ̂, Γ̂ and Λ̂ obtained by using the moment-based location
and scatter statistics

T̂1 =
1
n

n−
i=1

xi, and Ŝ1 =
1
n

n−
i=1

(xi − T̂1)(xi − T̂1)T

and

T̂2 =
1
np

n−
i=1

(xi − T̂1)T Ŝ−1
1 (xi − T̂1)xi

and

Ŝ2 =
1

n(p + 2)

n−
i=1

(xi − T̂1)(xi − T̂1)T Ŝ−1
1 (xi − T̂1)(xi − T̂1)T .

Again, as the estimates are affine equivariant and invariant, we may assume that the population values are

T1 = 0, S1 = Ip, T2 = δ and S2 = Λ, and therefore Γ = Ip.

Thus xi = zi, i = 1, . . . , n, and we write

T̃1 =
1
n

n−
i=1

zi, and S̃1 =
1
n

n−
i=1

zizTi

and

T̃2 =
1
np

n−
i=1

zizTi zi and S̃2 =
1

n(p + 2)

n−
i=1

zizTi ziz
T
i .

If the first eight moments of zi exist, the joint distribution of

√
n


T̃1

vec(S̃1 − Ip)
T̃2 − δ

vec(S̃2 − Λ)


is, by the central limit theorem, a 2(p + p2) variate (singular) normal distribution with mean zero and covariance matrix
given by

D = E




zi

vec(zizTi − Ip)
1
p
zizTi zi − δ

vec


1
p + 2

zizTi ziz
T
i − Λ





zi

vec(zizTi − Ip)
1
p
zizTi zi − δ

vec


1
p + 2

zizTi ziz
T
i − Λ




T .
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One can show that

√
n


T̂1

vec(Ŝ1 − Ip)
T̂2 − δ

vec(Ŝ2 − Λ)

 = C
√
n


T̃1

vec(S̃1 − Ip)
T̃2 − δ

vec(S̃2 − Λ)

+ op(1),

where

C =

 Ip 0 0 0
0 Ip2 0 0
C31 C32 Ip 0
C41 C42 0 Ip2


with

C31 = −
2
p
Ip and C32 = −

1
p
E(zTi ⊗ (zizTi ))

and

C41 = −
1

p + 2
[E((zTi zi)(Ip ⊗ zi)) + E((zTi zi)(zi ⊗ Ip)) + 2 · E(zi ⊗ (zizTi ))]

and

C42 = −
1

p + 2
E((zizTi ) ⊗ (zizTi )).

The asymptotic normality of

√
n


T̂1

vec(Ŝ1 − Ip)
T̂2 − δ

vec(Ŝ2 − Λ)


then follows.

Finally, if δi > 0, i = 1, . . . , p, and the diagonal elements of Λ are strictly ordered, we get

√
n

 δ̂ − δ

vec(Λ̂ − Λ)

vec(Γ̂ − Γ )

 = B
√
n


T̂1

vec(Ŝ1 − Ip)
T̂2 − δ

vec(Ŝ2 − Λ)

 ,

where

B =

B11 B12 B13 B14
0 B22 0 B24
0 B32 0 B34


with

B11 = −Ip, and B12 = [δT
⊗ Ip]

[
−

1
2
diag(vec(Ip)) − diag(vec(H))(Λ ⊗ Ip)

]
and

B13 = Ip and B14 = [δT
⊗ Ip]diag(vec(H))

and

B22 = −diag(vec(Ip))(Λ ⊗ Ip) and B24 = diag(vec(Ip))

and

B32 = −
1
2
diag(vec(Ip)) − diag(vec(H))(Λ ⊗ Ip) and B34 = diag(vec(H)).

(The matrix H is given in Section 3.)
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We have thus proved the following theorem.

Theorem 4.1. Assume that X is a random sample from the semiparametric model with Ω = Ip, µ = 0, δi > 0, i = 1, . . . , p,
and λ1 > · · · > λp > 0. Assume also that the first eight moments of zi are finite. Then

√
n

 δ̂ − δ

vec(Λ̂ − Λ)

vec(Γ̂ − Ip)


has the limiting (singular) p + 2p2-variate normal distribution with mean value zero and covariance matrix BCDCTBT .

By affine equivariance and invariance properties of the estimates this generalizes to

Corollary 4.1. Assume that X is a random sample from the semiparametric model with δi > 0, i = 1, . . . , p, and λ1 > · · · >
λp > 0. Assume also that the first eight moments of zi are finite. Then

√
n

 δ̂ − δ

vec(Λ̂ − Λ)

vec(Γ̂ − Γ )


has the limiting (singular) p + 2p2-variate normal distribution with mean value zero and covariance matrix ABCDCTBTAT where

A =

Ip 0 0
0 Ip2 0
0 0 Γ T

⊗ Ip

 .

Remark 4.1. Under the assumption of central symmetry (i.e. zi ∼ −zi) the value of δ = 0, but even then the unmixing
matrix functional satisfying Γ̂ Ŝ1Γ̂ T

= Ip is affine equivariant up to the signs of its row vectors. In order to fix the signs of
the unmixing matrix functional and the estimate of it, we can require for example that Γ 1p > 0 (and set Γ̂ 1p > 0). Now,
even under the assumption of central symmetry, the limiting joint distribution of Γ̂ and Λ̂ is the one given in Theorem 4.1
and Corollary 4.1. In the elliptic case δ = 0 and Λ = λIp and the limiting behavior of δ̂, Λ̂, and Γ̂ is unknown. However, the
limiting properties of ‖δ̂‖2 and the mean and variance of the elements of Λ̂ are known, see Section 5.2.

Remark 4.2. In this section we derived the asymptotic joint distribution of the skewness, kurtosis and unmixing matrix
estimators for moment-based functionals. Since Theorem 3.1 is not restricted to moment-based functionals, the same
methodology canbeusedwhenother location and scatter functionals are considered, as long as the joint limiting distribution
of the corresponding location and scatter estimates is known.

5. Applications and concluding remarks

5.1. Statistical inference

The results in Section 4 can be used to find estimates of the limiting covariance matrices of the estimates Γ̂ , δ̂ and Λ̂.
These could then in turn be used in the construction of confidence ellipsoids for the parameters. The results can also be
employed in the development and the conduct of interesting testing procedures, which we are currently working on.

To estimate the limiting distribution in practice, one can proceed as follows.

1. Calculate T̂1, T̂2, Ŝ1 and Ŝ2.
2. Find estimates Γ̂ , δ̂ and Λ̂.
3. Transform observations to the invariant coordinate system:

Ẑ = (X − 1nT̂ T
1 )Γ̂ T .

4. Find estimates D̂, Ĉ , B̂ and Â: in the formulas for D and C replace the expectations by averages and the (unknown) zi by
ẑi, i = 1, . . . , n.

5. Then, approximately, δ̂ − δ

vec(Λ̂ − Λ)

vec(Γ̂ − Γ )

 ∼ Np+2p2


0,

1
n
ÂB̂Ĉ D̂ĈT B̂T ÂT


.

A bootstrap technique can also be used to estimate the distributions of the sample statistics: Let U be a random n × n
matrix such that the rows are independent and the row vectors have Multin(1; (1/n, . . . , 1/n)) distribution. Then U is
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called a bootstrap matrix and UX is a bootstrap sample. The bootstrap estimates of the covariance matrices of Γ̂ , δ̂ and Λ̂,
for example, can be found as follows.

1. Calculate T̂1, T̂2, Ŝ1 and Ŝ2.
2. Find estimates Γ̂ , δ̂ and Λ̂.
3. ChooseM independent bootstrap matrices U1, . . . ,UM .
4. CalculateM bootstrap samples X∗

i = UiX , i = 1, . . . ,M .
5. CalculateM bootstrap estimates

δ̂∗

i = d(X∗

i ), Γ̂ ∗

i = G(X∗

i ) and Λ̂∗

i = L(X∗

i ), i = 1, . . . ,M.

6. Calculate the sample covariance matrix of δ̂∗

i − δ̂

vec(Λ̂∗

i − Λ̂)

vec(Γ̂ ∗

i − Γ̂ )

 , i = 1, . . . ,M.

5.2. Tests for normality and ellipticity

Skewness and kurtosis statistics can be used to test for normality and/or ellipticity. In the elliptic case δ = 0 andΛ = λIp.
In themultivariate normal case λ = 1. Our assumptions for δ andΛ stated in Theorem 3.1 are thus not true, and the limiting
behavior of δ̂, Λ̂, and Γ̂ is unknown. However, the limiting properties of ‖δ̂‖2 and the mean and variance of the elements of
Λ̂ are known, and may be used in the following way.

As skewness and kurtosis are affine invariant, it is not a restriction to assume that the distribution is spherical. Then

T1 = T2 = 0, S1 = Ip and S2 = λIp,

for some λ > 0. It is well known that in the spherical case the location statistics often satisfy

√
nT̂i =

1
√
n

n−
j=1

γi(rj)uj + op(1), i = 1, 2,

and the scatter statistics satisfy

√
n(Ŝi − Si) =

1
√
n

n−
j=1

(αi(rj)ujuT
j − βi(rj)Si) + op(1), i = 1, 2,

where ri = ‖xi‖ and ui = ‖xi‖−1xi, i = 1, . . . , n. Functions γi, αi and βi then give the influence functions for Ti and Si,
respectively.

Kankainen et al. (2007) proposed the use of the skewness and kurtosis statistics

U = (T̂2 − T̂1)T Ŝ−1
1 (T̂2 − T̂1) and W = ‖Ŝ−1

1 Ŝ2 − Ip‖2

for testing multivariate normality. It is then straightforward to see that

U = ‖δ̂‖2 and W = ‖Λ̂ − Ip‖2
= tr((Λ̂ − Ip)2).

Kankainen et al. (2007) proved that

Theorem 5.1. In the multivariate normal model,

(i) the limiting distribution of nU is that of η1U1, where U1 ∼ χ2
p and η1 = (1/p)E[(γ1(r) − γ2(r))2] with r2 ∼ χ2

k ;
(ii) the limiting distribution of nW is that of

η2 W1 + η3 W2,

where W1 ∼ χ2
p(p+1)/2−1 and W2 ∼ χ2

1 are independent,

η2 =
2

p(p + 2)
E[(α2(r) − α1(r))2]

and

η3 =
1
p
E[(α2(r) − α1(r))2] − 2E[(α2(r) − α1(r))(β2(r) − β1(r))] + pE[(β2(r) − β1(r))2].

The expected values are calculated for r2 ∼ χ2
p .
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The statistics U and W1 can be used to test for ellipticity as well (but with different limiting distributions). Mardia
(1970) advocated using his skewness and kurtosis statistics to test for multivariate normality. Under the null hypothesis
of multivariate normality

nb1
6

and
n(b2 − p(p + 1))2

8p(p + 2)

have limiting chi-square distributions with p(p + 1)(p + 2)/6 and 1 degrees of freedom, correspondingly. Kankainen et al.
(2007) obtained the limiting Pitman efficiencies of U and W with respect to Mardia’s statistics for contiguous sequences of
contaminated normal distributions.

Nordhausen et al. (2010) discuss the general idea of using of δ̂ and Λ̂ in the selection of an appropriate model for the
data. Our results now provide the basic elements to convert their ideas into formal inference tools.

5.3. Invariant coordinate selection

Tyler et al. (2009) introduced a general method for exploring multivariate data called the invariant coordinate selection.
In their approach, they used two shape (not scatter) matrices to find invariant coordinate system; the resulting coordinate
system is invariant up to coordinatewise location, sign, and scale. Here, by associating two scatter statistics togetherwith two
location statistics, we also fix the location, sign, and the scale, and obtain a fully invariant coordinate system. The invariant
coordinate system is useful in many ways. Plotting the observations in the new coordinate system

Ẑ = (X − 1nT̂ T
1 )Γ̂ T ,

helps in finding outlying observations and clusters in the data. In the case of mixtures of elliptical distributions, a subset of
invariant coordinates corresponds to Fisher’s linear discriminant subspace (Tyler et al., 2009). Invariant coordinate selection
may thus be seen as a tool for dimension reduction as well. Note that Ẑ is a maximal invariant statistic under the group of
affine transformations.

5.4. Independent component model

In the semiparametric independent component model, matrix Γ̂ is a solution to the ICA problem. If T1, S1, T2 and S2
are the moment-based estimates, then Γ̂ is the well-known FOBI estimate. Our approach thus gives a whole family of
unmixing matrix estimates for the ICA problem. Furthermore, the limiting properties of the estimates can be considered
and compared in our approach. Nordhausen et al. (2009) and Oja et al. (2010) found optimal signed-rank tests for location
and independence in the independent component model.
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