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Abstract  

Text entry methods enable entry of written languages to computing 
systems. Chinese has unique characteristics as a logosyllabic language, 
which bring new challenges to the design and evaluation of Chinese text 
entry methods in computing systems. Chinese text entry on mobile 
devices is becoming an important and urgent research topic with the 
widespread and frequent usage of mobile devices in this large user group.  

The overall objective of this thesis is to improve user experience of 
Chinese text entry on mobile devices, and the focus is on the process of 
interaction between users and text entry methods. I designed new 
interaction solutions with the user-centered design (UCD) approach and 
explored the patterns of user behavior with various approaches, including 
comparative user studies and performance modeling. This thesis covers 
four means of Chinese text entry on mobile devices: Chinese handwriting 
recognition, Chinese indirect text entry with a rotator, Mandarin dictation, 
and Chinese pinyin input methods with a 12-key keypad.  

In this thesis, I present new design solutions for Chinese handwriting 
recognition and text entry methods utilizing a rotator. Follow-up 
evaluations showed the new designs to be well accepted by users. The 
design processes are presented as well, to show how users can be involved 
in such UCD approaches. Then I present a Mandarin short message 
dictation application for mobile phones, with two associated studies. The 
first study involves two-round evaluation of the isolated Mandarin 
dictation application, and the second is a Wizard of Oz study aimed at 
understanding effects of speaking styles in combination with two other 
factors. Two studies were also carried out on Chinese pinyin input 
methods that are based on the 12-key keypad. The comparative study of 
five phrasal pinyin input methods reflected design guidelines for the 
advanced feature of phrasal input. The other study description presents a 
predictive model addressing users’ error-free speeds, which proved to be 
effective in three evaluation studies.  

This thesis presents rich background knowledge and new findings on the 
process of interaction with various Chinese text entry methods on mobile 
devices. It is hoped that this work will assist researchers and practitioners 
to understand more about Chinese text entry on mobile devices and serve 
as a starting point for further work on the subject.   
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1 Introduction 

1.1 OBJECTIVE 
The overall objective of this thesis is to provide knowledge that can help to 
improve user experience of Chinese text entry with mobile devices. To 
reach this objective, I designed new interaction solutions and explored 
patterns of user behavior in the Chinese text entry process with various 
approaches. The studies covered in this thesis focus on Chinese text entry 
methods for simplified Chinese, mainly used in mainland China. 

Text entry methods in computing systems enable users to enter written 
languages to those systems. Such a transcription from analog written 
languages to machine-readable digital text makes the storage, 
transmission, search, and analysis of text more efficient. Since each 
language has its unique characteristics and must be coded specifically in 
the computing systems, text entry methods are generally language-specific.  

Chinese text entry on mobile devices is an important and urgent area of 
research (Wang, 2003). First, there is a remarkable amount of mobile 
phone users in China now, and the number is still growing rapidly. By 
August of 2009, the number of users of mobile phones in China had 
exceeded 710 million, much more than that of Internet users, 338 million 
(CNNIC, 2010). Second, the Short Message Service (SMS), which involves 
intensive text entry tasks, has seen phenomenal growth in China since its 
launch in 2000 (MIIT, 2009; Ma et al., 2007). In May 2009, Chinese people 
sent about 63 billion short messages, with more than three text messages 
per user per day (MIIT, 2009). Third, the increasing computing capabilities 
of mobile devices allow for the development of new applications, such as 
e-mail and instant messaging, in which text entry is the core task (Griffiths, 
2006). Optimized text entry methods are compelling for such new 
applications of mobile devices.  



…
…

…
…

 

 2 

At the same time, the design of Chinese text entry in mobile computing 
systems faces great challenges. First, Chinese is unique as a logosyllabic 
language. The current computing systems were invented in Western 
cultures where alphabetic languages dominate. How to apply existing 
knowledge and creatively design mobile text entry methods for Chinese is 
a great challenge. Second, the widespread use of mobile devices in China 
implies great variety among the users in many respects, such as 
technology literacy, needs, and aspirations. How to design mobile text 
entry for such a dynamic and varied user group is a crucial challenge. In 
addition, the published explorations of patterns of user behavior in 
Chinese text entry tasks remain limited, despite the tremendous number 
of Chinese-speakers worldwide (Sacher, 1998; Sacher, Tng, & Loudon, 
2001; Marcus, 2003; Wang, 2003).  

Motivated by the urgent need for exploration of the interaction process 
when users enter Chinese text with mobile devices, this thesis has as its 
aim to address the following main research questions: 

 What are the design opportunities and drivers for new Chinese text 
entry methods in mobile devices? What are the most fruitful ways 
to design these new methods? How can we involve users in such 
design processes?  

 How can Chinese text entry methods for mobile devices be 
evaluated? What are the key metrics for use in such evaluations? 
How do the text entry methods perform according to these 
measurements? 

 What are the core processes involved in Chinese text entry tasks? 
How are such processes best modeled, and with what theories?   

1.2 CONTEXT AND METHOD 
The primary works referred to and described in the thesis are in the field 
of human–computer interaction (HCI). Human–computer interaction is “a 
discipline concerned with the design, evaluation and implementation of 
interactive computing systems for human use and with the study of major 
phenomena surrounding them” (Hewett et al., 1992). In this thesis, end users 
and mobile computing systems are studied alongside the core task of 
entering Chinese text, where “mobile computing systems” is used mainly 
to refer to mobile phones and personal digital assistants (PDAs).  

The sub-areas of HCI that are relevant for the purposes of the thesis 
include studies of mobile text entry methods for alphabetic languages, the 
user-centered design (UCD) process, and user performance modeling.  
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When I planned and conducted the studies presented in this thesis, I 
referred to the approaches, practices, and measures of relevant studies of 
text entry methods for alphabetic languages. Although Chinese is 
different from alphabetic languages, the experiences shared from those 
studies still proved of great reference value. In Chapter 2 of this thesis, I 
review relevant design and evaluation principles from text entry studies 
for alphabetic languages (mainly English).  

User-centered design is the main approach applied in the design work 
done for this thesis. This is a design philosophy and an approach wherein 
user needs, limitations, and characteristics are at the focus of the design of 
interactive systems (Nielsen, 1993; Jokela et al., 2003; ISO, 1999). Guidance 
on the process of UCD as set forth in the ISO 13407 standard defines its 
core activities; see Figure 1.1. The figure shows design solutions produced 
in the UCD process being evaluated against predefined usability or user 
experience criteria. Hence, UCD cannot be explained clearly without 
mention of the definitions of usability and user experience.  

 

Figure 1.1. The UCD process according to ISO 13407. 

A widely cited definition of usability is provided by the International 
Organization for Standardization (ISO) in ISO 9241-11, where usability is 
defined as “the extent to which a product can be used by specified users to 
achieve specified goals with effectiveness, efficiency and satisfaction in a specified 
context of use” (ISO, 1998). In recent years, the concept of user experience 
has become more commonly employed than that of usability, because 
researchers realized that there are other factors involved in HCI than 
human cognition and motor performance. A draft definition of user 
experience from ISO (2008) is “A person’s perceptions and responses that 
result from the use or anticipated use of a product, system or service.” The 
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definition was proven to be promising by a survey on the definition of 
user experience (Law et al., 2009). 

User modeling, another sub-field of HCI, is also applied in this thesis, to 
understand the pattern of user behaviors in the interaction process with 
mobile Chinese text entry. A model is a simplified description or 
prediction of reality (MacKenzie, 2003; Carroll, 2003). User models are 
built to describe or predict user behaviors in human–computer 
interactions. User models are useful in that they can be utilized to 
evaluate user performance (e.g., speed and error rates) and identify 
design opportunities without the need for tedious user studies (Card, 
Moran, & Newell, 1980, 1983; Soukoreff & MacKenzie, 1995; Dunlop & 
Crossan, 2000; Silfverberg, MacKenzie, & Korhonen, 2000; Zhai, Smith, & 
Hunter, 2002; Zhai, Sue, & Accot, 2002; Isokoski, 2004; Myung, 2004; 
Pavlovych & Stuerzlinger, 2004; Cockburn, Gutwin, & Greenberg, 2007; 
Dunlop & Masters, 2008; Cockburn & Gutwin, 2009).  

Another relevant discipline is linguistics. Linguistic studies of Chinese 
describe and explain the nature of the Chinese language, which is one of 
the bases for understanding user behaviors in text entry tasks. Chapter 2 
of this thesis summarizes the latest findings from Chinese linguistic 
studies, as well as other characteristics of the Chinese language.  

1.3 CONTRIBUTIONS 
This thesis presents the following work: 

 design of a Chinese handwriting recognition (HWR) method based 
on a touchpad for mobile phones, together with a series of user 
studies for different purposes;  

 design of a rotator-based Chinese text entry method for mobile 
phones, along with user evaluation results and discussions;  

 evaluations of an isolated Mandarin message dictation application 
on mobile phones and a Wizard of Oz (WOZ) study to understand 
effects of speaking style on user performance and satisfaction; and 

 a benchmark user study of five Chinese pinyin 1  phrasal input 
methods for mobile phones, together with discussion of their 
usability and design guidelines and trends, and a validated 

                                                 
1 Pinyin (also named as Han Yu Pin Yin) is the standard coding system of Chinese 
characters based on the Mandarin pronunciations in the form of Latin letters. Pinyin was 
approved as the standard Romanization system of Chinese characters by China and ISO 
in respectively 1958 and 1982. For more information about how pinyin text entry systems 
work in computing systems, please refer to Section 2.3.1 in this thesis. 
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predictive model that estimates average text entry speeds for users’ 
error-free Chinese pinyin input with the 12-key keypad on mobile 
phones.  

The design and study practices presented in this thesis enrich knowledge 
of how UCD can be applied in the specific field considered. For both 
design cases, the customized UCD processes are explained in detail. They 
can serve as examples to show how design opportunities were identified 
and developed and how users were involved in the design processes. 
Moreover, results of the user studies can guide further design of Chinese 
text entry methods. Prototypes were built in most user studies, and this 
work may help readers to understand how they were built and when they 
are needed in the UCD process.  

In this thesis, I also review works on the following topics: general 
characteristics of Chinese, characteristics of Chinese short messages, 
Chinese text entry methods for mobile devices, design and user study 
principles for mobile text entry, selection-based text entry methods and 
devices, and theories applied for modeling user performance in text entry 
tasks. These reviews should provide readers with the background 
necessary to understand the contributions of this thesis. 

Some of the results presented in this thesis were published at conferences. 
However, here they are either reformulated or presented with additional 
work and content. I am the first author for most of the relevant 
publications. A summary of these results and the relevant publications is 
presented below:  

In Chapter 3, I present the user-centered design process for a Chinese 
HWR method based on a touchpad on mobile phones. Three user studies 
are also presented, to explain how users were involved in the UCD 
process. The second user study was aimed at understanding the effects of 
user type and user interface (UI) designs on user performance. Some of the 
results from this study were published in the following poster paper: 

Liu, Y., Ding, K., & Liu, N. (2009). Immediate user performances 
with touch Chinese text entry solutions on handheld devices. In 
Proceedings of International Conference on Human-Computer Interaction 
with Mobile Devices and Services (Mobile HCI ‘09), ACM Press, 56–57. 

In Chapter 4, I present the user-centered design process for Chinese pinyin 
input methods with a rotator. Two new design solutions – and user 
evaluations to compare them with the initial design – are presented. Most 
text and the results presented in this chapter originate from the following 
publication: 
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Liu, Y., & Räihä, K.-J. (2008). RotaTxt: Chinese pinyin input with a 
rotator. In Proceedings of International Conference on Human-Computer 
Interaction with Mobile Devices and Services (Mobile HCI ‘08), ACM 
Press, 225–233.   

Chapter 5 presents studies on, and for, a Mandarin short message 
dictation application. In the first section of the chapter, I present two-
round user evaluations of an isolated Mandarin dictation application on 
Symbian Series 60 mobile phones. The second user study was mentioned 
in the following publication: 

Alhonen, J., Cao, Y., Ding, G., Liu, Y., Olsen, J., Wang, X., & Yang, X. 
(2007). Mandarin short message dictation on Symbian Series 60 
mobile phones. In Proceedings of Mobility 2007, ACM Press, 431–438. 

In the second part of Chapter 5, I present a Wizard of Oz study to explore 
the possible effects of speaking style on user performance and satisfaction. 
The content was reproduced for this thesis from a presentation of the 
study in the following paper:  

Liu, Y., Jiang, L., & Yang, X. (2009). Will input style affect Mandarin 
short messages in mobile device?: a Wizard of Oz study. In 
Proceedings of Speech in Mobile and Pervasive Environments Workshop 
(SiMPE Workshop 2009) in conjunction with Mobile HCI 2009, 41–44.  

In Chapter 6, I present two studies on Chinese pinyin input methods for 
the 12-key keypad. The first section of the chapter presents a benchmark 
evaluation of five phrasal pinyin input methods, which is based on 
material in the following publication: 

Liu, Y., & Wang, Q. (2007). Chinese pinyin phrasal input on mobile 
phone: usability and developing trends. In Proceedings of Mobility 
2007, ACM Press, 548–554. 

In the second section of Chapter 6, a predictive model is presented to 
estimate users’ error-free text entry speeds with pinyin character input 
methods. Five experiments are presented in this chapter, with the first two 
for eliciting parameters for the model and the last three for evaluations of 
the model. The model with the first two experiments for parameters and 
the third experiment for evaluation was published in the following paper: 

Liu, Y., & Räihä, K.-J. (2010). Predicting Chinese text entry speeds 
on mobile phones. In Proceedings of 28th International Conference on 
Human Factors on Computing Systems (CHI ‘10), ACM Press, 2183–
2192.  
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2 Background 

2.1 GENERAL CHARACTERISTICS OF CHINESE 
Chinese is a logosyllabic language in nature. It is different from alphabetic 
languages like English. For example, the visual form of an English word 
often indicates its pronuciation. However, the visual form of a Chinese 
character does not give a clear hint of its pronunciation due to the 
extensive homophony in Chinese. Instead, the visual form of a Chinese 
character is often closely associated with its meanings.  

 

Figure 2.1. An example of the complex relationship among the orthographic, phonological, and 
meaning system of Chinese. One phonological unit corresponds to many orthographic units and 
even more meaning nodes due to the extensive homophony in Chinese. For example, the 
phonological unit of “shi” is shared by nine Chinese characters with the same tone and all 
meanings associated with those characters (Tan et al., 2005). 

Figure 2.1 shows the relationships among the orthographic system, 
phonological system, and meaning system of Chinese characters. An 
orthographic system specifies a standardized way of using a specific script 
to write the characters. It includes both the visual form of the specific 
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script and also how the script should be written. A phonological system 
refers to the sound systems to encode meaning in human spoken 
languages. In Chinese, one phonological unit corresponds to many 
orthographic units and even more meaning nodes. As Figure 2.1 shows, 
the phonological unit of “shi” is shared by nine Chinese characters with 
the same tone and all meanings associated with those characters. 

There are numerous characters in Chinese: the latest Kangxi Dictionary 
includes 57,557 Chinese characters, though many of them are not 
frequently used (Zhang et al., 2008). It has been reported that about 2,000 
to 4,000 Chinese characters are necessary for basic reading, according to a 
range of studies (Ann, 1982; Qiao, Qiao, & Qiao, 1990; Gao, Zhong, & Ceng, 
1995; Sacher, 1998; Sacher, Tng, & Loudon, 2001). A Chinese character is 
generally comparable to an English word. For example, the Chinese 
character of “山” means mountain while Chinese words like “高山” (high 
mountain) and ”百家姓” (family names) correspond to English phrases. 
Table 2.1 lists the national standards on character sets that may be 
supported by computing systems.  

Table 2.1: National standards for Chinese character sets for computing systems 

Standard Number of characters Description 

GB2312 
(1980) 

Level 1: 3,755 

Level 2: 3,008 
Total: 6,763 Simplified Chinese 

GB13000 
(1993) 

20,902 
Simplified and traditional 

Chinese 

GB18030 
(2005) 

27,533 
Incl. characters used by 
minority nationalities 

 

Chinese text can be presented both vertically (top to bottom first, then 
right to left) and horizontally (left to right first, top downward) (see Figure 
2.2), with the former mainly used in ancient times and the latter used 
nowadays. There are also two written forms for Chinese characters, for 
historical reasons: the traditional form, used in Hong Kong and Taiwan, 
and the simplified form, used in mainland China. The simplified Chinese 
was published in 1956 in mainland China. The latest update for simplified 
Chinese in 1988 covers 2235 Chinese characters that were simplified based 
on their traditional written forms. The coding and text entry methods for 
simplified and traditional Chinese are also different in computing systems. 
Zhuyin (Bopomofo) and Cangjie are two typical examples of text entry 
methods for traditional Chinese. This thesis concentrates on text entry for 
simplified Chinese. It may be hard to apply the results of this thesis to 
traditional Chinese text entry methods directly. Further explorations are 
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needed to understand how the results can be applied in traditional 
Chinese. 

                    

Figure 2.2. Content from Lantingji Xu presented in two ways: vertically in traditional Chinese 
without punctuation, in handwritten form by ancient calligrapher Wang Xizhi (at left), and 
horizontally in simplified Chinese, in print form (right). Source: http://www.hrdmv.com/thread-
3229-1-1.html. 

Chinese characters are complex in structure. There are generally two 
levels of components forming a Chinese character: radicals and strokes 
(see Figure 2.3). Strokes are the minimal writing units that can be drawn 
with a single pen action of lowering and raising the writing instrument 
(Qiao, Qiao, & Qiao, 1990; Lin & Sears, 2005, 2007). Radicals are the 
relatively independent components of a Chinese character and usually 
include multiple strokes (Contemporary Chinese Dictionary, 1996; Liu, 
Jaeger, & Nakagawa, 2004; Dai, Liu, & Xiao, 2007).  

 

Figure 2.3. An example of a Chinese character with its components at radical and stroke levels 
(the basic strokes listed here, from left to right, are the horizontal line, vertical line or vertical 
line with a hook to the left, left curve, dot or right curve, and hook covering all strokes with 
bends). 

There are 10 major and more than 40 minor groups of dialects of spoken 
Chinese (see Table 2.2), which differ greatly in their expressions, 
pronunciations, grammars, etc. (Wang, 1999; Li, 2005). In China, people 
sometimes cannot understand each other with only oral communications 
if they speak in native dialects that are different. In 1958, Mandarin, based 
on the local dialect of the Beijing area, became the standard pronunciation 
system for Chinese (Wang, 1999; Sacher, Tng, & Loudon, 2001), and more 

颖 

匕 禾 页 

丿 乛 丶 ᅳ 丨 

Character level 

Radical level 

Stroke level  

1 

2 

1 
2 
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people have learned to speak it since then. However, people’s native 
dialect still affects how they speak in Mandarin, which has further 
influence on their use of the pinyin system that is based on the Mandarin 
pronunciations of Chinese characters (Liu, Jaeger, & Nakagawa, 2004; Dai, 
Liu, & Xiao, 2007).  

Table 2.2: The 10 main groups of dialects of Chinese and their number of speakers (Wang, 1999) 

Dialect Number of 
speakers (in 

millions) 

Dialect Number of 
speakers (in 

millions) 

北方 Mandarin 662.23 客家 Hakka 35.00 

吴 Wu 69.75 湘 Xiang 30.85 

闽 Min 55.07 赣 Gan 31.27 

晋 Jin 45.70 徽 Hui 3.12 

粤 Yue 
(Cantonese) 

40.21 平话 Pinghua 2.00 

 

Chinese is also a tonal language. For example, the most popular flavor of 
Mandarin Chinese includes five tones: flat (), rising (), up-down-up (), 
falling (\), and neutral (). Cantonese has nine tones. The number of 
syllables in Mandarin Chinese expands from about 4002 to 1,300 when the 
tones are taken into account. Tones in Chinese are semantically 
meaningful (Li, 2005; Alhonen et al., 2007). First, they decrease the number 
of homonyms (words that share the same spelling and the same 
pronunciation but have different meanings). Second, they specify the exact 
character in spoken language, in combination with language contexts. The 
characteristics of homophones and the tonal nature of Chinese bring with 
them greater challenges for speech recognition technology and speech 
user interface design (Sacher, 1998; Li, 2005; Sacher, Tng, & Loudon, 2001; 
Chang et al., 2000; Alhonen et al., 2007). 

The logosyllabic character of Chinese also affects how language skills, 
including listening, speaking, reading, and writing, are acquired and 
associated with each other. Abilities to read Chinese are linked more 
closely with people’s writing than with listening skills (Tan et al., 2005). By 
contrast, for alphabetic languages, reading skills are more closely 
associated with listening skills (Ziegler & Goswami, 2005). Another study, 
on neural bases of language skills, found that reading Chinese involves a 

                                                 
2 Besides the 400 often used syllables, there are also 18 other rarely used syllables in 
Mandarin. Thus the counts of syllables could vary between 400 to 418 depending on the 
corpus used (Zhang et al., 2008).   
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link between Broca’s area and the supplementary motor area while 
reading of alphabetic scripts involves a link between Broca’s area and 
Wernicke’s area (Siok et al., 2004).  

2.2 CHARACTERISTICS OF CHINESE TEXT MESSAGES 
When a language is used in a different context and with a different device, 
how people make use of it to express themselves can be different. Since 
the theme of this thesis is Chinese text entry on mobile devices, it is highly 
necessary to understand how Chinese text is used in mobile settings. One 
of the key services with which users create text intensively from mobile 
phones is the SMS. Therefore, we built a corpus of Chinese text messages 
that consisted of two parts: one part was collected by us with pen and 
paper (Ma et al., 2007), and the other part was licensed from a third party. 
Based on the corpus, we explored how Chinese users use SMS content to 
communicate, analyzed linguistic characteristics of Chinese short 
messages, and built and utilized language models in studies conducted for 
this thesis (Ma et al., 2007; Alhonen et al., 2007; Liu & Räihä, 2008; Liu & 
Räihä, 2010). The following paragraphs highlight some of the analysis 
results.  

Table 2.3: SMS category, gender and user group by age all affected length of SMS (Ma et al., 
2007) 

Factors 
Length of SMS with 

SD (average characters 
per message ) 

F p 

SMS category 

Instrumental 
SMS 

14.0 (0.37) 
33.79 < .001 

Expressive SMS 16.9 (0.34) 

Gender 
Male 16.1 (0.46) 

6.22 < .001 
Female 14.8 (0.20) 

User groups by 
age 

Students 14.3 (0.17) 

5.27 < .01 Working people 15.2 (0.16) 

Retired people 17.0 (1.08) 

 

The Short Message Service was launched in 2000 in China, and since then 
it has experienced a phenomenal boom among Chinese users. To 
understand how SMS users make use of the service, we collected 10,843 
text messages with pen and paper, from 114 users, and performed some 
content analysis (Ma et al., 2007). The results indicated that Chinese users 
send both instrumental and expressive messages (Ling, 2005). The 
instrumental ones include those used to coordinate things, exchange 
information, send requests and soft inquiries, and give responses. 
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Expressive messages, by contrast, are those used to update personal 
information or indicate status and express personal emotions. Chinese 
users sent slightly more instrumental (57.7%) than expressive messages 
(42.3%). Factors of message category (instrumental or expressive), gender, 
and user group (retired, worker, or student) all affected the length of SMS 
messages (see Table 2.3). Expressive messages feature more Chinese 
characters than do instrumental ones. Female users wrote with more 
characters than male users in China did. Messages sent by retired people 
have the most Chinese characters, followed by those of working people, 
with students using the fewest. 

Further, we built a larger corpus of Chinese text messages by combining 
the SMS collected by us with another part of SMS data that was licensed 
from a third party. In total, the corpus includes 630,000 text messages and 
a total of 9,200,000 Chinese characters (Ma et al., 2007). Analysis showed 
that this corpus contains 4,912 distinct Chinese characters, corresponding 
to 404 syllables or pinyin marks (these statistics exclude punctuation 
marks). I also analyzed the frequencies of each distinct character in the 
corpus. The analysis results indicated that the top 385 and 1,461 most 
frequently used Chinese characters, respectively, accounted for around 
85% and 98% of all characters in the corpus. By comparison, GB2312, a 
standard Chinese character set for simplified Chinese supported by most 
Chinese text entry systems, includes 6,763 individual Chinese characters 
with 404 different syllables, covering about 99.75% of all Chinese 
characters. Since our corpus is a collection of text messages entered with 
Chinese text entry methods on mobile phones, its characters are a subset 
of GB2312. However, our corpus is more representative of the current 
mobile text entry context than is GB2312, which was defined in 1980 for 
general purposes. 

I also examined the phrases in the corpus. In this thesis, a phrase refers to 
a Chinese word with more than one character that is also the minimal 
meaning unit in Chinese (Tanaka-Ishii, Zhou, & Kim, 2007). The results of 
this analysis indicated that the top 388 and 2,088 most frequently used 
phrases account for 73% and 89%, respectively, of all phrases in the corpus. 
Figure 2.4 shows the proportions of the phrases with various numbers of 
Chinese characters in this corpus. Single characters make up the largest 
proportion of the corpus, followed by two-character and three-character 
phrases. Based on this analysis result, I also calculated the percentage of 
the characters that could be entered via predictive input to be 30.3% for 
the corpus. Predictive input works so that after a character is entered, the 
most likely characters that could form a phrase in combination with it are 
presented for users to select. This analysis result is applied in Section 6.2 of 
this thesis where I build predictive models for Chinese pinyin text entry 
methods.  
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Figure 2.4: The proportion of phrases having different numbers of characters. 

For this thesis, we also built and utilized language models from the corpus 
(Alhonenet al., 2007; Liu & Räihä, 2008; Liu & Räihä, 2010). For Chapter 5, 
language models were elicited from this Chinese text message corpus and 
utilized by the speech dictation engine for listing recognition results and 
predicting the next Chinese characters. For Chapter 6, I transcribed all 
Chinese characters in the corpus to their pinyin marks and built a 
language model to estimate the frequencies of any pair of letters in those 
pinyin marks. I also analyzed characteristics of the pinyin marks from the 
corpus. This work found that the average number of letters per Chinese 
character was 3.24 with the pinyin coding system; if the Chinese characters 
are weighted by their frequency in the corpus, the number drops to 2.88. 
This is quite different from what Wang, Zhai, and Su (2001) reported, 
which was probably based on a general corpus of Chinese text: “On 
average, each Chinese character’s pinyin has 4.2 Roman characters.” Moreover, 
a pinyin mark corresponds to about 12 Chinese characters, on average, in 
this corpus, with a minimum of one to a maximum of 74 characters.  

2.3 CHINESE TEXT ENTRY METHODS FOR MOBILE DEVICES 
I review the commercial Chinese text entry methods and Chinese speech 
recognition solutions on mobile devices in this section. The term 
“commercial solutions” refers to systems that have already been released 
in commercial products that users can approach and adopt. I cannot cover 
all the inventions in the domain of Chinese text entry, since there are 
always new methods emerging – even though they can hardly flourish. 
The following elements are covered for each type of method: the concept 
and input process, results of existing research on the interaction process, 
and advantages and disadvantages.  
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2.3.1 Keyboard Pinyin Solutions 

Pinyin is the standard coding system for Mandarin pronunciation in the 
form of Latin letters (Zhou, 1953, 2007; Sheng, 1985; Sacher, 1998; Sacher, 
Tng, & Loudon, 2001; Wang, 2003; Lin & Sears, 2005, 2007; Liu & Wang, 
2007; Liu & Räihä, 2008; Liu & Räihä, 2010). A pinyin mark, whose length 
varies between one and six alphabetic characters, usually consists of a 
consonant and a vowel, with the exception of a few marks that consist of 
vowels alone (Zhou, 1953, 2007; Sheng, 1985). Table 2.4 shows the 23 
consonants and the 33 vowels. 

Table 2.4: The consonants and vowels for pinyin 

23 consonants 
(initials) 

b p m f d t n l g k h j q x zh ch sh r z c s y w 

33 vowels 
(finals) 

a e i o u v(ü) ai an ao ei en er ia ie in iu ou ua ue ui 
un uo ang eng ian iao ing ong uai uan iang iong 
uang 

 

Pinyin is the primary coding system applied with nearly all types of 
keyboards, including physical and soft keyboards, and for both the 
QWERTY keyboard for computers and the 12-key keypad for mobile 
phones (see Figure 2.9). Figure 2.5 (sections a and b) shows the input 
processes of pinyin text entry methods with a QWERTY keyboard and a 
12-key keypad, respectively. Entering Chinese characters with a QWERTY 
keyboard requires two steps. First, users type in the pinyin mark. Second, 
the system provides a list of matching Chinese characters sharing the same 
pinyin mark and users choose the target character. Entering Chinese 
characters with T9 pinyin input via the 12-key keypad requires three steps. 
First, the user presses the corresponding keys to enter a pinyin mark. 
Second, one must select the target pinyin mark from a few options. The 
key mapping of the 12-key keypad is ambiguous in that one series of key 
presses may result in multiple options for pinyin marks. If the pinyin 
mark highlighted happens to be the target one, the user can press the 
“OK” key to choose it. Otherwise, the user must move the highlighting to 
the target pinyin mark and choose it. Third, since most Chinese characters 
are homophonic with several others, the user needs to select the target 
character from a list of options sharing the same pinyin mark.  

Many pinyin text entry methods enable users to complete a pinyin mark 
by entering its consonant and vowel. An example is the Shuang Pin 
(Double Spelling) method designed for QWERTY keyboards (Lin & Sears, 
2005; Liu & Räihä, 2008). In Shuang Pin, all consonants and vowels 
including more than one letter (such as “zh,” “ch,” and “ong”) are 
mapped to a certain key on the keyboard. For example, “zh” (a consonant) 
and “ong” (a vowel) are mapped specifically to the keys “a” and “y” on 
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the keyboard (Shuang Pin, 2008). Users just need to type “a” and “y” to 
complete “zhong.” The method requires fewer keystrokes; however, users 
must memorize the key mappings. The Double Spelling soft keyboard in, 
for example, Windows CE systems includes a consonant keyboard and a 
vowel keyboard (Shuang Pin CE, 2008). Consonants and vowels are 
presented to end users separately, and users complete a pinyin mark by 
typing the required consonant and vowel on the two keyboards. With this 
method, users do not need to remember any key mapping, but getting 
familiar with the two-keyboard layouts demands practice. The Double 
Spelling method is implemented in many pinyin text entry methods as a 
complement to the normal pinyin method. 

 
Phrasal input is a key feature for pinyin text entry. Phrasal input enables 
users to enter a phrase including more than one character at a time by 
typing the pinyin marks of associated characters. Phrasal input is already 
widely supported in pinyin text entry methods designed for the QWERTY 
keyboard. It significantly decreases the ambiguity level by reducing 
matching options since characters in a phrase are usually unique. 
However, ambiguity still exists with the phrasal input methods based on 
the 12-key keypad. The design and evaluation of those phrasal input 
methods based on the 12-key keypad are addressed in detail in Section 6.2 
of this thesis.  

Type in pinyin 

The system provides 
candidates (Chinese 

character only) 
matching the pinyin 

The user selects the 
target Chinese character 

Type in pinyin 

The system provides 
candidates (both pinyin 
and Chinese character) 

The user selects the 
target Chinese character 

If the default pinyin is 
the target one 

The user selects the 
target pinyin first  

b) Pinyin input process with the 
12-key keypad and T9: the user 
might need to select pinyin first 

a) Pinyin input process with 
QWERTY keyboard  

Figure 2.5. The input process with pinyin keyboard solutions. 
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There are two drawbacks to the pinyin coding system that significantly 
affect user performance. First, there are too many homonyms. With pinyin 
methods, users are required to select a target character from a list of 
possible options, which affects user performance. Wang, Zhai, and Su 
(2001) conducted an anatomical study of a QWERTY-based pinyin method 
and found that the selection process takes 52% of the total time for the 
input process. Our analysis of the pinyin character input process in 
Chapter 6 indicates that the selection processes cost more than 65% of the 
total time in the input process. Second, completing a pinyin mark requires 
a number of keystrokes. On average, a pinyin mark includes 2.88 letters 
according to the analysis of a Chinese SMS corpus in Section 2.2.  

There are some published examinations of the Chinese pinyin input 
process. Lin and Sears (2005, 2007) reported a text entry speed of 4.04 
words per minute (WPM) when participants in their study were instructed 
to enter text with a natural balance of input speed and error rate. Based on 
how the authors calculated the result, I estimate that their reported text 
entry rate corresponds to 5.46 CCPM. In Chapter 6 of this thesis, I analyze 
users’ error-free speeds with two types of Chinese pinyin character input. 
The results indicate that the average error-free speeds were around 19.1 
and 21.9 Chinese characters per minute (CCPM) when the predictive 
feature was, respectively, off and on. There may be a few factors in the 
great difference between the results from the two studies. First, in the 
study of Lin and Sears, participants were instructed to enter text at their 
own speed, with a natural balance between speed and errors, while in my 
study, participants were asked to enter as quickly and accurately as they 
could. Moreover, in my analysis of the empirical data, errors and their 
corrections were removed from the task completion time, so that the 
empirical results were comparable with the predictive model. Second, 
people have become more and more familiar with the 12-key keypad and 
the pinyin input methods in the past few years, which may in another way 
cause the increase in user speeds.  

Shortly after pinyin became the standard coding system for Chinese 
characters in the Latin alphabet in 1958, the primary schools of mainland 
China started to teach the pinyin coding system before Chinese characters 
(Chen & Yuen, 1991). Hence, the pinyin coding system is familiar to many 
Chinese users. However, it still cannot accommodate all potential users of 
mobile devices. Many older people have never learned to describe Chinese 
characters in the form of Latin letters, and this renders pinyin input 
unfamiliar. Moreover, if people’s native dialect is not Mandarin, their 
dialect will affect how they speak in Mandarin. Mandarin with a heavy 
accent often results in errors when people produce a pinyin mark (Chen & 
Yuen, 1991; Li, 2005; Liu, Jaeger, & Nakagawa, 2004; Dai, Liu, & Xiao, 
2007). For this group of users, replacement methods may be needed.  
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2.3.2 Keyboard Stroke Solutions 

The stroke methods define the basic strokes composing Chinese characters 
and map them to several (5–9) keys of the 12-key keypad (Lin & Sears, 
2007; Tanaka-Ishii, Zhou, & Kim, 2007). Extra labels on keys for the basic 
strokes are necessary to assist users in the input process. Users can enter a 
Chinese character by clicking the corresponding keys for the strokes in a 
standard order. There are multiple ways to define the basic strokes and 
their mappings on the 12-key keypad. Figure 2.6 shows five-stroke, eight-
stroke, and nine-stroke solutions. Although the three solutions share a few 
common basic strokes (horizontal line “ᅳ,” vertical line “|,” left curve “/,” 
dot or right curve “ᆞ,” and hooked “ᆨ”), they are quite different from 
each other in terms of definitions of the basic strokes and key mappings.  

 

a) The five-stroke method 

 

b) The eight-stroke method 

 

c) The nine-stroke method 

Figure 2.6. The different definitions of the basic strokes and key mappings. 

Figure 2.7 shows the input process with stroke methods. Users click 
corresponding keys to enter strokes of a character, and the system will 
provide a list of options in real time, from which users select the target 
character. When entering a complex character, users usually need not 
input all of its strokes. After entry of a certain number of strokes, the 
target character will appear in the option list. But for simpler characters, 
such as “三” (“three” in Chinese), all of the strokes need to be entered, 
because there are many characters whose first three strokes are identical.  

 

Figure 2.7. The input process with a typical stroke method. 

Users type in strokes by 
clicking the 

corresponding keys 

The system provides 
candidate characters 
matching the strokes 

entered  

Users select the target 
Chinese character 
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Lin and Sears (2005, 2007) found that labels of strokes on the keys 
significantly affected user performance with the nine-stroke method. 
Therefore, they proposed three new label solutions to decrease errors. A 
follow-up user study showed that user performance with respect to 
speeds and error rates increased with the addition of more specific stroke 
labels or examples on the keys. Lin and Sears (2005) also conducted a 
longitudinal study of the nine-stroke method and found that users can 
reach a text entry rate of 7.8 WPM after five days of practice. Stroke 
methods have begun to support phrasal input as well. Users can enter a 
predefined number of strokes for each character in a phrase, and the 
system will provide options based on those strokes and language models. 

The stroke methods require users to enter Chinese characters in a standard 
order. Although in most cases that order is coherent with the principle 
applied normally for writing Chinese characters, which is from left to right 
first and then from top to bottom, there are still many exceptions. In 
reality, people actually develop different orders for writing Chinese 
characters, which do not match this principle. Thus users have to adapt to 
truly using the standard order, which involves extra learning efforts. 

2.3.3 Chinese Handwriting Recognition  

Handwriting recognition (HWR) enables people to convert handwritten 
characters to machine-readable text. HWR technologies can be divided 
into two categories: on-line and off-line recognition. The term “HWR” is 
used in this thesis to refer to on-line HWR, which captures and utilizes the 
trajectory information in the writing processes. As mentioned above, 
Chinese characters are complex in structure and usually comprise several 
strokes. This characteristic of Chinese characters is useful for the HWR 
technology, since complex characters provide more information to the 
recognition system for differentiation from each other (Dai, Liu, & Xiao, 
2007).  

Research into Chinese HWR technology began in the late 1970s in China 
(Ding, 2002; Liu, Jaeger, & Nakagawa, 2004; Dai, Liu, & Xiao, 2007). The 
technology is mature enough. Recognition rates for freely written and 
non-cursive Chinese characters, respectively, reach about 98% and 99.8% 
(Ding, 2002; Wang, 2003; Liu, Jaeger, & Nakagawa, 2004; Dai, Liu, & Xiao, 
2007). Moreover, Chinese HWR has been adopted by many commercial 
products, including computers, mobile devices, and public service systems. 
There were already about 300 million users of Chinese HWR technique in 
2003 (Wang, 2003).  

Recent studies of Chinese HWR technology have focused on continuous 
handwriting recognition, to propose new segmentation methods or 
possibilities of combining HWR with other input modalities (Wang et al., 
2006; Ao et al., 2007; Guo & Jin, 2007; Zou, Yu, & Wang, 2008). Because of 
the low computing capacities and small displays of mobile devices, 
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discrete Chinese HWR that enables text entry character by character is still 
the main stream. With discrete Chinese HWR, users first write a character; 
then the system recognizes the character after it has been completely 
written. After that, several options for the recognition results are 
presented, and users can select the target one.  

 

a) Two-box design b) One-box design c) Full-screen design 

Figure 2.8. Examples of the full-screen and the box UI designs for Chinese HWR on mobile 
devices with touchscreens. 

There are two types of user interface design for discrete Chinese HWR on 
mobile devices: full-screen and box designs (see Figure 2.8). With 
full-screen designs, users may write characters anywhere on the screen. 
The box designs usually define one or more specific areas (usually two or 
three), which are squares with frames – hence my term “box designs” – in 
which one is to write characters. 

There are also two ways to signal the completion of a Chinese character to 
the recognition system and initiate a recognition: via a timeout and by 
writing in a different box. A timeout is a duration preset in Chinese HWR 
systems for segmenting Chinese characters. Once the timeout is reached in 
the writing process, the systems will initiate recognition of the strokes 
written before it as a Chinese character. The timeout is usually set to 
between 200 ms and 1 s and can be customized by the end user. Cui and 
Lantz (2005) conducted an empirical study to consider the most 
appropriate value for the timeout for Chinese HWR. They collected a large 
number of data points on the periods between strokes when users were 
instructed to write Chinese characters on a PDA with a touchscreen. On 
the basis of the results, they suggested that the optimal timeout values for 
slow, ordinary, and fast writers should be 750 ms, 500 ms, and 350 ms, 
respectively. Box designs with more than one box allow users to write 
Chinese characters in alternate boxes. Once a user starts to write strokes in 
a different box, the systems start to recognize the strokes written in the 
previous box as a character. Such a design requires no timeouts and 
therefore saves some time.  

There are also many other design details to consider with Chinese HWR 
user interfaces. For example, some user interfaces provide soft buttons or a 
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soft keyboard so that users can enter other types of characters – for 
example, symbols and Roman letters – in the system. Editing functions are 
also provided in different ways. In Chapter 3, I explore the advantages 
and disadvantages of the detailed design options in empirical studies.  

Wu, Zhang, and Hu (2003) analyzed the discrete Chinese HWR input 
process on personal computers (PCs) and built models to explain the 
effects of recognition rate, timeout length, and error corrections on user 
performance. However, in presentation of the results concerning user 
performance, task completion time instead of text entry rate was applied.  

Chinese HWR is a natural way of entering Chinese text. However, it also 
has apparent drawbacks. First, both hands are required for use of Chinese 
HWR on mobile devices. However, mobile devices are usually used in 
dynamic contexts, where at least one hand is not available. Second, since 
touchscreens are expensive, mobile products with touchscreens are 
designed to target those in China who have a relatively high social and 
economic status.  

2.3.4 Chinese Speech Dictation 

Speech dictation solutions enable people to enter text by speaking to 
mobile phones. For mobile speech recognition solutions, the speech 
recognition engine can be incorporated either into a server or into the 
client mobile devices directly (Price & Sears, 2005; Alhonen et al., 2007). 
Speech recognition on mobile devices has been judged to be useful in 
contexts where there are no hands available and for people who have 
some physical disability (Silfverberg, 2007). Moreover, the technology of 
speech recognition has been considered a good opportunity to overcome 
the obstacles of entering Chinese characters in computing systems. 
However, commercially successful applications or systems based on 
speech recognition technology are still limited, as a result of many factors, 
including that recognition accuracy in real usage contexts is still 
vulnerable to many constraints (Karat et al., 1999; Karat et al., 2000; 
Shneiderman, 2000; Silfverberg, 2007).  

Speech recognition technology faces two general challenges: issues of 
speaker-independence and continuous speaking (Entwistle, 2003). But 
there are greater challenges for Chinese in particular (Li, 2005; Jeng, 2005; 
Alhonen et al., 2007). First, most Chinese characters are homophonic with 
some others, which implies that there is no one-to-one relationship 
between a syllable and a character. Therefore, even if a syllable is correctly 
recognized, extra user interactions are required for choosing the target 
character from among many options. Second, there are 10 main dialects of 
Chinese, which are different in their pronunciation, expression, grammar, 
etc. Clearly, no single speech recognition engine can meet the 
requirements of all users. Third, there are multiple tones in almost all 
dialects. They are usually meaningful and used to specify a character in 
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oral communication in combination with language contexts. Many studies 
of Mandarin speech recognition have explored how tones might be 
detected and used in speech recognition systems (Chen et al., 1997; Wang 
et al., 1997; Chang et al., 2000).  

Numerous Mandarin speech recognition systems on personal computers 
have been built since the early 1990s, and high accuracy levels have been 
reported for many of them (Gao, Zhong, & Ceng, 1995; Fu et al., 1996; 
Chen et al., 1997; Wang et al., 1997; Huang et al., 2000). However, in 
mobile devices, speech recognition technology has seen only limited 
applications and functions – for example, name-based dialing, menu 
navigation, or information retrieval (Viikki, Kiss, & Tian, 2001; Chang et 
al., 2002).  

Speech dictation is easy for users to understand because oral 
communication is one of the most natural means of interpersonal 
communication (Furui, 2007; Cox et al., 2008). However, explorations of 
the human–computer interaction processes with Mandarin speech 
recognition systems are rare. By comparison, many HCI studies have been 
done to understand effects of recognition rates on user acceptance of 
English speech recognition and HWR systems (Wolf, Glasser, & Fujisaki, 
1991; LaLomia, 1994; Frankish, Hull, & Morgan, 1995; Karat et al., 1999; 
Karat et al., 2000; Ai, Harris, & Rose, 2006; Munteanu et al., 2006; Zhou et 
al., 2006; Cox et al., 2008).  

Chapter 5 of this thesis presents two user studies on and for an isolated 
Mandarin short message dictation application running on Symbian Series 
60 mobile phones. The first study involved two rounds of user evaluation 
of the application. The second study used a Wizard of Oz experiment to 
explore effects of speaking style on user performance and satisfaction 
alongside other factors, including recognition rate and message length.  

2.4 DESIGN AND EVALUATION OF MOBILE TEXT ENTRY METHODS 
Mobile devices such as mobile phones cannot gracefully accommodate a 
QWERTY keyboard and large displays. The 12-key keypad, also called the 
ITU-T keypad, is the standard keypad incorporated by many phone 
products (Pavlovych & Stuerzlinger, 2004). With such a keypad, three or 
four letters are mapped to each key. Hence, when entering different letters 
on a key, users have to press the key a differing number of times – for 
example, pressing the “2” key once to get the letter “a,” twice in rapid 
succession for “b,” and three times rapidly to get “c.” The “multi-tap” 
method significantly decreases user performance, because, on average, 
entering a character requires multiple key presses. To improve user 
performance with the 12-key keypad, many new text entry methods have 
been proposed and studied with different approaches. A review of the 
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design drivers and approaches will aid researchers and practitioners in 
their future work.  

 

Figure 2.9. The standard 12-key keypad, also called the ITU-T keypad. 

In addition, no design of new mobile text entry methods can advance 
without involving users (MacKenzie & Soukoreff, 2002; Soukoreff, 2002). 
Well-planned user studies, via collection of data on user performance and 
preferences, may assist designers to compare different solutions and make 
clever decisions. However, practices in conducting user studies are quite 
different from one case to the next, and a review of the relevant guidelines 
would be a beneficial guide for user studies on mobile text entry methods. 

In the next two sections of this chapter, I review first the design drivers 
and approaches for new text entry methods and then useful guidelines for 
conducting user studies of such methods. I do not intend to be exhaustive 
and cover all existing design and study practices. Instead, I will review 
those that are relevant for this thesis.  

2.4.1 Design Drivers and Approaches 

There are a few common goals for designing new mobile text entry 
methods: high user performance (low error rate and high speed), ease of 
learning, universality of the solution in both user coverage and contexts, 
and also being fun to use (Zhai, Kristensson, & Smith, 2005; Zhai & 
Kristensson, 2007). However, it is hard to meet all goals in one design and 
reaching one of them often requires the sacrifice of another. Hence, 
designing a new mobile text entry method often results in a true tradeoff 
among many factors. For example, a new method with optimal user 
performance sometimes requires more practice or applies specifically to a 
certain group of users in particular contexts. For mobile text entry 
methods specifically, an apparent tradeoff exists between the number of 
buttons in a keypad (or keypad size) and ambiguity level (MacKenzie & 
Soukoreff, 2002; Soukoreff, 2002). Fewer keys would probably increase the 
ambiguity level. Moreover, text entry tasks involve sub-processes at 
different levels: motor movements, human perception, and other cognitive 
processes (Zhai & Kristensson, 2007). Optimization of one sub-process 
often requires devoting more user effort to other sub-processes.  
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Achieving optimal user performance is crucial motivation for designing 
new mobile text entry methods. MacKenzie and Soukoreff (2002) 
summarized two approaches for optimizing user performance with 
mobile text entry methods: by language prediction and through 
minimizing motor movement. Stocky, Faaborg, and Lieberman (2004) also 
reviewed design practices with the same categorization system.  

 

Figure 2.10. Approaches and examples for designing mobile text entry methods with optimal 
user performance. 

In this thesis, I extend the classification to three approaches, to cover more 
solutions. These approaches are disambiguating, optimizing motor 
movements, and providing a cognitively familiar solution (see Figure 2.10). 
The disambiguation approaches are aimed at decreasing the average 
number of keystrokes per letter, so that the level of ambiguity caused by 
the key mapping of the 12-key keypad can be decreased. There are three 
major ways to decrease ambiguity: language prediction, concurrent 
disambiguation, and new keypad designs with more keys. In contrast with 
the multi-tap method, the T9 method integrates dictionaries to predict the 
potential words for a series of key clicks. This allows users to enter a 
character with a single keystroke, improving user performance. Other 
predictive solutions taking advantage of language models, such as the 
“LetterWise” approach, were proposed later to make further 
improvements (MacKenzie et al., 2001).  

Concurrent disambiguation approaches enable users to click more than 
one key at a time or take some other actions while clicking a key so as to 
enter a specific letter (Wigdor & Balakrishnan, 2004). ChordTap (Wigdor 
& Balakrishnan, 2004), Two-Thumb chording (Patel, Clawson, & Starner, 
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2009), and Twiddler (Lyons et al., 2004; Lyons, Plaisted, & Starner, 2004; 
Starner, 2004) are typical examples of the former approach and “TilText” 
(Wigdor & Balakrishnan, 2003) a typical example of the latter. Moreover, 
some new designs of small keypads that incorporate more keys were also 
proposed to decrease ambiguity. For example, the Fastap keyboard 
includes keys for the numbers 0 to 9 and the 26 letters in alphabetical 
order (Levy, 2002; Cockburn & Siresena, 2003). 

Another category of approaches is aimed at optimizing user performance 
by decreasing the distance of motor movements in text entry tasks. Many 
approaches for minimizing motor movement have been explored with soft 
keyboards3, because layouts of soft keyboards are flexible and cheap to 
change. Leventhal, McKeeby, and Mynatt (1991) explored effects of shape 
and character layout on user performance. Isokoski (2004) proposed a pie 
menu popping up around a pressed key for quicker clicking of the next 
character. The vowels, “backspace,” and the “space” key were included in 
the pie menu. MacKenzie, Zhang, and Soukoreff (1999) proposed two new 
layouts, called OPTI I and OPTI II, minimizing the overall motor 
movement distance according to Fitts’ law and the relative frequency of 
bigrams (pairs of letters) for English (Soukoreff & MacKenzie, 1995); I will 
discuss Fitts’ law in detail in Chapter 6. The Metropolis algorithm was 
applied to minimize the motor movement time for entering English 
(Hunter, Zhai, & Smith, 2000; Zhai, Hunter, & Smith, 2000; Zhai, Smith, & 
Hunter, 2002). Zhai, Smith, and Hunter (2002) also presented other 
approaches to optimize the layout of soft keyboards. 

The last approach for optimizing performance is to provide a familiar 
layout or key mappings for users so that they can reach optimal 
performance in a shorter time. In recent years, many new keypads have 
been proposed that are based on the familiar QWERTY layout. Green et al. 
(2004) proposed a reduced QWERTY keyboard including only two lines of 
keys. Hwang and Lee (2005) and Ryu and Cruz (2005) also proposed 
solutions for mapping the 26 letters on the 12-key keypad by mimicking 
the QWERTY layout. Although new reduced QWERTY solutions 
sometimes don’t decrease ambiguity, users find it easier to start with them 
because the layouts are familiar. Moreover, many mini-QWERTY 
keyboards are incorporated into mobile products and explored by 
researchers (Clarkson et al., 2005).  

Many new mobile text entry methods have been produced that utilize 
more than one approach. For example, Dasher (Ward, Blackwell, & 
MacKay, 2000, 2002) made use of both language prediction and 
minimizing of motor movements. Another example is shape writing: a 

                                                 
3 A soft keyboard is a keyboard implemented on a touch-sensitive display. To enter a 
word, users can type its characters one by one with a stylus or their fingers.  
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concept based on a soft keyboard with which users can enter an English 
word by traversing through its soft keys without lifting a pen. After 
becoming familiar with the gesture patterns of a word, users can write 
shorthand gestures to enter the word without really reaching the 
corresponding soft keys (Kristensson & Zhai, 2004; Zhai & Kristensson, 
2003, 2007). And the key design approaches utilized by shape writing 
include minimization of the motor movement distances via shorthand 
gestures and later the disambiguation process by optimizing the layout of 
a soft keyboard for English. Another example, MessagEase, made use of 
both language prediction and minimization of the motor movements and 
proposed a new keypad for mobile devices (Nesbat, 2003). 

Universal mobile text entry methods covering more user groups and 
usage contexts were also subject to great expectations. When compared 
with other computing systems, mobile devices are more widely used by 
end users worldwide. Users of mobile devices are diverse in many 
respects – for example, literacy level, gender, age, and disabilities. 
Shneiderman (2003) pointed out that “designing for experienced frequent 
users is difficult enough, but designing for a broad audience of unskilled users is a 
far greater challenge.” Many techniques have been developed to enable 
people with disabilities to enter text on mobile devices. Wobbrock and 
Myers (2006) designed a trackball text entry solution for people with 
motor impairments. Majaranta and Räihä (2007) worked on methods of 
text entry by eye gaze so that people with severe motor disabilities can still 
enter text to computing systems. Lagoá et al. (2007) designed a mobile text 
entry solution for visually impaired people.  

Mobile devices are also frequently used in diverse contexts, which 
sometimes impose restrictions on the availability of human modalities 
(Ronkainen et al., 2010). How to make use of the available modalities in 
such difficult contexts has become an important research topic. Studies 
have been conducted to understand the effects of different aspects of 
context, such as moving, on user performance. Multimodal solutions have 
been proposed to enable the usage of mobile devices in such moving 
contexts (Brewster et al., 2003; Lumsden & Brewster, 2003; Kernchen, 
Mossner, & Tafazolli, 2005; Serrano et al., 2006; Ronkainen et al., 2010).  

New technologies also play an important role in the design of new mobile 
text entry methods. For example, the capacitive touch-sensitive display, 
which supports multiple touch points, has begun to be incorporated into 
many mobile devices (Benko, Wilson, & Baudisch, 2006; Shin et al., 2009). 
A recent study reported a new text entry method for Korean that is based 
on the multitouch technique (Shin et al., 2009). Some new technologies 
enable more options for feedback in text entry tasks. For example, existing 
results indicate that the tactile feedback can increase user performance 
with soft buttons (Poupyrev & Maruyama, 2003; Hoggan, Brewster, & 
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Johnston, 2008; Dunlop & Taylor, 2009; Hoffmann, Spelmezan, & Borchers, 
2009).  

2.4.2 User Studies of Mobile Text Entry Methods 

User studies are necessary in the interaction design process of new mobile 
text entry methods. On one hand, user studies are effective ways of 
involving users in design processes. For example, comparative user 
studies of design options can aid in smart decisions. On the other hand, 
diagnostic user studies can help to improve a design by collecting data on 
user behaviors and feedback. To ensure both internal and external validity 
of user studies, many guidelines have been proposed and discussed. 
Internal validity refers to the degree of match between what is tested and 
what was intended to be tested in a study (Eisenhardt, 1989; Grimes & 
Schulz, 2002; MacKenzie, 2007). External validity refers to how much the 
results from a piece of research can be utilized and extended to other 
contexts (Eisenhardt, 1989; Grimes & Schulz, 2002; MacKenzie, 2007). In 
this section, I summarize relevant guidelines and measures for user 
studies of text entry methods.   

First, comparative studies are recommended if conditions permit 
(MacKenzie & Soukoreff, 2002; Curran, Woods, & Riordan, 2006; 
MacKenzie, 2007); in these studies, more than one design solution is 
studied with users. Comparative studies have two key advantages: first, 
comparative studies are more efficient in that more than one solution can 
be studied at once; second, comparative studies can assist designers in 
their decision-making by reflecting each other’s pros and cons with users.  

Second, a text copying task with memorable short sentences is preferred 
over a text creation task in user studies of text entry methods. A text 
copying task requires participants to enter the text as presented, with the 
text entry methods given, while a text creation task is what people usually 
perform normally: thinking of the contents, organizing the text to be 
entered, and entering it. Text creation tasks are more like what people 
normally do with text entry systems; however, there are too many factors 
and processes entangled in such tasks that will negatively affect how the 
data can be explained and compared with those from other studies. 
Comparatively, text copying tasks are much easier to control: people just 
need to follow the text presented and enter it. Moreover, to decrease the 
conversion involved between entering and following up on the text 
presented, researchers suggest that the text given be brief and easy to 
remember at a glance (MacKenzie & Soukoreff, 2002; MacKenzie, 2007). 
This way, less of various distracting factors is involved in the copying tasks.  

Speed and error rate are the two primary objective metrics applied in user 
studies of text entry methods. In measurement of text entry speeds for 
English, researchers usually adopt the measure of words per minute 
(WPM) to present speed results: WPM is calculated by multiplying 
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characters (letters) per second (CPS) by 60 and dividing by 5, which is the 
number of characters per word set for English. In this thesis, I utilize the 
measure of Chinese Characters per Minute (CCPM) instead of WPM to 
present results on text entry rate. A word in Chinese often includes more 
than one Chinese character and thus corresponds to a phrase in English. 
Instead, a Chinese character is comparable to a word in English. 

There are also many proposals addressing how to define and present 
results for error rates. A typical categorization defines three types of error 
rates: corrected error rate, uncorrected error rate, and total error rate 
(Soukoreff & MacKenzie, 2003; Wobbrock, 2007). The corrected error rate 
is the number of characters that were wrongly entered but corrected later, 
divided by the number of all characters, including the transcribed 
characters and the corrected characters. The uncorrected error rate is the 
number of wrong characters in the transcribed text divided by the number 
of all characters. The total error rate is all errors, including the number of 
corrected and not corrected characters, divided by the number of all 
characters. For more explanation of the speed and error rate measures, see 
the review by Wobbrock (2007).  

Keystrokes per character (KSPC) is a measure proposed by MacKenzie 
(2002a) specifically for mobile text entry methods. It refers to the average 
number of keystrokes or clicks required for entering a character of a 
specified language with a specified text entry technique (MacKenzie, 
2002b, 2007). The KSPC value varies with the text entry technique, the 
keyboards utilized, and language. For example, for entering English with 
a QWERTY keyboard, the KSPC figure equals 1. But for smaller keyboards 
with fewer keys, the KSPC value is usually greater than 1 for English. 
With a specified text entry technique and language model, KSPC can be 
calculated with the following equations at character and word level, 
respectively: 








)(
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cc

cc

FC

FK
KSPC   (2-1) 

In the above equation, Kc refers to the number of keystrokes required for 
entering a character c and Fc represents the frequency of the character in 
the language. Cc represents the size of the character (typically, 1).  
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In Equation 2-2, Kw represents the number of keystrokes required for 
entering a word w and Fw is the frequency of the word in the language. Cw 

is the number of characters in the word. Empirically, the KSPC value is 
also affected by many other factors, including errors and individual 
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differences. When empirical KSPC results are reported, how the number is 
calculated should be presented precisely, to avoid confusion. 

KSPC is an important and simple characteristic index for mobile text entry 
solutions. It is quite easy to understand and allows people to compare text 
entry methods. However, the disadvantages of KSPC should also be noted. 
With KSPC, two key factors, the key clicks and language model, are taken 
into account; however, the differences in motor movement times among 
the pairs of key clicks are overlooked. Therefore, to avoid bias, KSPC is 
best applied in combination with other measures.  

I have conducted both qualitative and quantitative user studies, to seek 
answers for different research questions in this thesis. Since both 
independent and dependent variables need to be clearly defined in 
quantitative studies, such studies are more focused on solving specific 
design or research questions (MacKenzie & Soukoreff, 2002; MacKenzie, 
2007). Results of quantitative studies were analyzed statistically to show 
the effects of the independent variables on the dependent variables. 
Qualitative user studies are applied more for seeking user feedback on 
broader topics (MacKenzie & Soukoreff, 2002; MacKenzie, 2007) – user 
acceptance or preference of a specific interaction design, comments on 
design details, etc. Quantitative studies can assist designers to choose 
better interaction design solutions, while qualitative user study results can 
be applied for diagnostic purposes and refinement of design details. 
Readers are directed to comprehensive reviews of user evaluation of 
mobile text entry solutions in relevant papers and books (MacKenzie & 
Soukoreff, 2002; MacKenzie & Tanaka-Ishii, 2007). 
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3 A Touchpad Chinese HWR 
Solution 

3.1 INTRODUCTION 
The Chinese text entry solutions based on the 12-key keypad, including 
the pinyin and stroke solutions, can hardly accommodate all potential 
users in China, because of the inherent disadvantages of the pinyin and 
stroke coding systems. First, a non-native speaker of Mandarin often 
makes errors with the pinyin coding system due to the influence of his or 
her native dialect (Dai, Liu, & Xiao, 2007; Tang & van Heuven, 2009). 
Moreover, the pinyin coding system is still young and was made a 
standard only in 1958, so most senior users are unfamiliar with it. Second, 
the stroke coding system typically requires users to enter characters 
exclusively in a standard order. But people actually develop different 
writing orders for Chinese characters in real life, which do not match the 
standard order. In those cases, extra training is always needed.  

“Immediate usability” is seen as important for new text entry solutions 
designed for mobile devices (MacKenzie & Soukoreff, 2002). A mobile text 
entry method with good immediate usability enables users to achieve 
satisfactory performance within a short time. Immediate usability can be 
measured by studying user performance and preferences while the time of 
users’ exposure to an interactive system is controlled (MacKenzie & 
Soukoreff, 2002; Zhai & Kristensson, 2007). Chinese handwriting 
recognition has potential for good immediate usability (Liu, Ding, & Liu, 
2009). First, most potential users are already able to write Chinese 
characters anyway, so a writing-based system is highly likely to 
accommodate more users. Moreover, since writing Chinese characters is 
familiar to the prospective users, less training probably is required. Also, 
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since writing practice can improve Chinese children’s reading ability, 
according to recent studies (Tan et al., 2005; Siok et al., 2004), Chinese 
HWR in mobile computing systems would be more beneficial, since it is 
not only a text entry tool but also a training tool for children (Tian et al., 
2010).  

Chinese HWR has already received much attention from both 
practitioners and researchers. Sacher, Tng, and Loudon (2001) viewed the 
design of keyboard-based Chinese text entry as a deficient approach and 
proposed a “keyboard-less” solution for personal computers integrating 
Chinese HWR and speech recognition technologies. Dai, Liu, and Xiao 
(2007) pointed out that the complex structure of Chinese characters makes 
HWR technology feasible. Ding (2002) summarized the technological 
developments for Chinese HWR and pointed out that the technology was 
already mature. When summarizing the research and practice of HCI in 
China, Wang (2003) also commented that Chinese HWR is a successful 
area in terms of both the technology itself and its applications.  

However, acceptance of Chinese HWR by users also faces challenges. First, 
touchscreens are expensive. Mobile products supporting Chinese HWR 
usually incorporate touchscreens, which are more expensive than normal 
screens. A few years ago, such touchscreen-based mobile products were 
usually designed for those people in China who had higher economic and 
social status. Second, Chinese HWR requires more computing capacity than 
does keyboard-based text entry, which in another way increases costs. 
Third, mismatches exist between product offers and user needs in the 
market. For example, users who are expecting Chinese HWR may not 
desire a product supporting touch interactions only, because touch 
interactions often are associated with little tactile feedback in comparison 
with physical keys and complex operations such as double clicks.  

In this chapter, an affordable Chinese HWR method based on a touchpad is 
proposed and designed for mobile phones. First, I explore the design space, 
identify the design opportunities, and propose the new method. Second, I 
present the user-centered interaction design process and summarize the 
user studies. Third, I present in detail three representative studies in the 
UCD process. Finally, I discuss the results and draw conclusions. 

3.2 DESIGN SPACE ANALYSIS 
Before one designs a new Chinese text entry solution, it would be helpful 
to explore the design space: identifying the key categorization dimensions, 
organizing the existing solutions in the space, and indicating design 
possibilities (Wigdor & Balakrishnan, 2004). As mentioned earlier, Chinese 
users of mobile phones vary greatly in their profiles: from the very highly 
educated to semi-literate users and from the wealthy to the poor. For 
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covering the various users of mobile phones in China, immediate usability 
and affordability of the technology are two critical factors. Thus I define 
these as the two design dimensions and categorize the existing text entry 
methods on that basis. Figure 3.1 shows the map of the existing Chinese 
text entry methods in the space, from our analysis and estimations.  

 

Figure 3.1. Approaches and examples for designing mobile text entry solutions with optimal user 
performance. 

According to the figure, there is a lack of affordable Chinese text entry 
methods that are good in immediate usability. On the basis of analysis of 
the design space, we have proposed a Chinese HWR solution based on a 
touchpad for mobile phones (Liu & Liu, 2008; Liu, Ding & Liu, 2009). A 
touchpad is a touch-sensitive pad that is often integrated in laptop 
computers as an input device. In the concept, a touchpad would be 
mounted in the mobile phone underneath the 12-key keypad (while the 
keypad can be open) so keypad-based text entry solutions and touchpad-
based Chinese HWR are both supported in the product concept. I applied 
the UCD approach to ensure usability of the interaction designs. 

In the next few sections, I first explain the process for development of the 
idea into specific interaction designs. Then I present three representative 
user studies completed during the interaction design process for the 
touchpad Chinese HWR. Not only do the studies show how the UCD 
paradigm was applied, but also the study results are of value for detailed 
design of the Chinese HWR technique for mobile devices. 
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3.3 THE APPLIED USER-CENTERED DESIGN PARADIGM  
To ensure immediate usability of the design results, the UCD approach 
was applied. Figure 3.2 shows the customized UCD paradigm in the 
interaction design process. It includes three modules for user study and 
one module for design and prototyping. In the first module for user study 
(E1 in Figure 3.2), benchmark studies were conducted with users to 
understand the existing design possibilities and user preferences. In the E2 
user study module, the design questions were broken down into smaller 
ones and explored separately in depth. In the E3 user study module, the 
initial interaction designs were evaluated with a working prototype. 
Before the prototype evaluation, there was also a design and prototyping 
module in which a few interaction designs were designed and a working 
prototype was built.  

 

Figure 3.2. The user-centered design paradigm used in the study. 

Table 3.1 lists the eight studies that were conducted in the three user study 
modules. In these studies, both qualitative and quantitative methods were 
applied to collect user data to answer different design or research 
questions. In the E1 user study module, I conducted two benchmark 
studies, on, respectively, the UI layouts and stylus ergonomics for Chinese 
HWR (S1 and S2 in Table 3.1). In the E2 user study module, I conducted 
studies of user performance and preferences with different detailed 
designs (S3 to S7 in Table 3.1). Then in the E3 user study module, I 
evaluated the concept and designs with end users and a working 
prototype (S8 in Table 3.1).  

Three user studies, two qualitative and one quantitative, are presented in 
detail in the next three sections of this chapter. They are chosen from the 
three user study modules, in order, because they were representative in 
terms of the methodology applied and the problems solved and their 
results also shaped our design maximally. The first study is the 
benchmark evaluation of the user interface layouts for Chinese HWR with 
small devices with integrated touchscreens. The second study was a 
quantitative one exploring and analyzing user performance with different 
UI styles: a full-screen design and a design with three input boxes. The 
third study was a prototype-based evaluation of the initial interaction 
designs.  
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Table 3.1: List of user studies conducted in the interaction design process 

Module Objectives Studies in the module 

E1: Build a benchmark 
by studying related 
designs 

 
To create a benchmark understanding of 
the design possibilities and user 
preferences  

S1: Benchmark study of the 
UI layout for Chinese HWR 
S2: Benchmark study of 
stylus ergonomics for 
Chinese HWR 

E2: Narrow down and 
conduct studies to 
check user preference 
and performance with 
different interaction 
options 
 

To collect user preference and 
performance with different interaction 
options 
S3: To check whether pen traces for 
handwriting are needed and whether pen 
traces displayed on the phone display 
instead of on the touchpad where people 
write characters (pen traces displayed at 
a distance) are acceptable 
S4: To determine the preferred audio 
feedback for handwriting 
S5: To understand the effect of the 
orientation of the listing of Chinese 
characters on user performance and 
preference 
S6: To understand effects of user type 
and UI designs on user performance  
S7: To check the proper sizing of an input 
box for writing Chinese characters 

S3: Pen trace study for 
touchpad Chinese HWR  
S4: Proper audio feedback 
for writing Chinese 
characters 
S5: Effect of the orientation 
of the list of Chinese 
characters on selection 
performance  
S6: User performance study 
of different UI designs with 
both novice and expert users 
of Chinese HWR 
S7: Sizes of the input area for 
writing Chinese characters 

E3: Evaluate the 
concept and designs 
with working 
prototypes and users 

To validate the concept and the 
interaction designs with a working 
prototype 

S8: Prototype study 
 

3.4 A BENCHMARK STUDY OF CHINESE HWR UI IN MOBILE DEVICES 

3.4.1 Objectives 

The benchmark study of existing user interface layouts for Chinese HWR 
set out to achieve two goals: first, to understand the design possibilities for 
our concept and, second, to understand user preferences with the existing 
designs. This study was part of the E1 module in the UCD paradigm in 
Figure 3.2. 

Understanding the landscape is critical before creation of a specific 
interaction design. The closest design to our concept is the UI for Chinese 
HWR in mobile products with integrated touchscreens, because the ways 
and contexts of using them would be very similar to how our concept will 
be used. However, a quick analysis of such user interfaces shows that 
different designs coexist. Moreover, no user studies were found to discuss 
their advantages and disadvantages. The following is a summary of the 
options for designing Chinese HWR for mobile devices: 
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 Full-screen design vs. box design: Box designs require users to write 
Chinese characters in one or a few predefined boxes, while with 
full-screen designs, users can write characters almost anywhere on 
a display.  

 Discrete character input vs. continuous input: Users can enter text only 
character by character with the discrete character input. Between 
any two characters, users need to wait a set amount of time to 
initiate the recognition. I refer to this period of time as a timeout. 
Once a character is entered, the user can write the next one. With 
the continuous input style, users can write characters alternately in 
different input boxes without waiting for timeouts.  

 Presentation of the recognition results: Some list the recognized 
characters horizontally and some others in grids.  

 Different system settings: For example, timeout settings are very 
different in different designs.  

 Different editing functions: For example, entry of other characters, 
including Latin letters, numbers, and punctuation, is supported in 
different ways; common editing functions, including “Enter” and 
“Backspace,” are also supported in different ways.  

Therefore, it is necessary to understand user preferences with such 
different UI designs, and the results can guide our designs.  

3.4.2 Method 

The UI and Apparatus Evaluated 

Four Chinese HWR UI solutions were evaluated by participants. Table 3.2 
and Figure 3.3, respectively, show the characteristics of each solution and 
UI layout.  

Table 3.2: Characteristics of the UI layouts evaluated for Chinese HWR 

 
Devices UI styles 

Input style 
supported 

Number of 
writing areas 

Solution 1 IBM WorkPad 
Full screen  

Discrete 
character input 

1 

Solution 2 IBM WorkPad 
Full screen  

Continuous 
input 

1 or 2 

Solution 3 MBA 998 
Input box 

(Width: 2.2 cm, 
Height: 2.9 cm) 

Continuous 
input 

2 

Solution 4 Motorola 6288 
Input box 

(Width: 1.65 cm, 
Height: 1.65 cm) 

Discrete 
character input 

1 

 



…
…

…
…

 

  35 

 

   
a) UI 1: A full-screen design – users can write a 
character anywhere in the display area and 
seven recognition results are shown in the area 
below. 

   
b) UI 2: A full-screen design – besides a writing 
area and a result list, this option provides 
extra soft buttons for editing and different 
input modes. Users can write more than one 
character in the writing area. 

   
c) UI 3: A two-box design – use of two input 
boxes enables continuous writing, and virtual 
buttons are provided for editing, input modes, 
numbers, and frequently used punctuation.  

   
d) UI 4: A one-box design – this option offers 
character input only, with soft buttons 
provided for editing, input modes, and 
punctuation. 

Figure 3.3. Layouts of the Chinese HWR interfaces under evaluation. 

Participants 

Sixteen participants, half male and half female, were recruited to take part 
in the study. Of these, 12 were students and the other four already 
working. The ages ranged from 16 to 30 years, with an average age of 22.3 
(SD = 4.61). Half of the participants had experience of using Chinese HWR 
on mobile devices, and the others were first-time users of it. Fourteen 
participants were right-handed, and the other two were left-handed.  

Design, Tasks, and Procedure 

The study was a within-subject design. All participants were instructed to 
complete three text entry or editing tasks with all designs. Testing orders 
were counterbalanced with the Latin-square technique. Table 3.3 shows 
the three tasks. 

The study was conducted in a lab environment, with a coordinator and a 
participant present in one room and observers in another room. Observers 
in the other room monitored user behavior via a TV set connected to a 
video camera in the test room. The participant was first briefed about the 
objectives of the study and shown around the two rooms for obtaining of 
consent. Then the profile of the participant was collected. After that, the 
think-aloud protocol was introduced and rehearsed by the participant 
with a simple task. After this, the participant was instructed to complete 
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the predefined tasks with the think-aloud protocol. The whole test session 
was recorded with a video camera for further analysis. After a task was 
completed, the participants were asked to evaluate its difficulty level. 
Finally, the participant was presented with a gift.  

Table 3.3: The three tasks 

Task 1  
任务 1：请在商务通的记事本里面输入下面的文字： 

据说，VeRi 公司有 69 名员工。 

Translation of Task 1 Task 1: Please enter the following text in Notebook on the MBA 998: 
It is said that the VeRi company has 69 employees. 

Task 2 
任务 2：请在商务通的记事本里面输入下面的文字： 

到火车站接货 到水利局检查 

Translation of Task 2 
Task 2: Please enter the following text in Notebook on the MBA 998: 

I will go to the railway station to receive the goods and then go to the 
Water Conservancy Bureau to check their work status. 

Task 3 

任务：您的记事本中已经有如下内容： 
西湖博览会上看家具 

 
请继续添加如下内容： 

新 WsCh 家具：全套¥90 万 
 

请删除“全套¥”这几个字。 
 

Translation of Task 3 

Task 3: Please edit the following notes with the MBA 998: 
There is already a message in your notebook on the MBA 998:  
Go to the West Lake Expo to see the designs of furniture 

Please add the following content: 
New furniture from WsCh: ¥900 thousand for a whole package 

Please delete “¥ for a whole package” from the content. 
 

3.4.3 Results and Discussion 

The box designs were preferred over the full-screen designs. Of the 16 
participants, 12, including five experienced and seven novice participants, 
preferred the box designs over the full-screen designs. A few interaction 
problems were observed with the full-screen designs: First, novice users 
didn’t know how to delete text in the full-screen design without any 
virtual buttons. Second, the pen traces, which provide the visual feedback 
while the participants write a character, sometimes overlapped with the 
text entered in the editor, which was annoying to some participants. Third, 
another problem noticeable with the full-screen designs was that some 
pen click actions were often mixed up with character writing actions, 
which resulted in errors. Short strokes such as a dot are quite common in 
Chinese characters. However, they are not easily differentiated from pen 
click actions. 

Continuous input was preferred. With both full-screen and box designs, 
14 out of the 16 participants preferred the designs supporting continuous 
input (designs 2 and 3). All participants believed that these were more 
efficient than the discrete character input. However, some problems were 
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identified with the continuous input. First, the continuous handwriting 
recognition was not exactly the same as what people usually do with pen 
and paper. The designs support continuous input by providing more than 
one writing area. Users can write characters continuously, via alternate 
areas, and writing the next character in the other area will automatically 
initiate the recognition of the previous character. In design solution 3, two 
input boxes were provided to end users. In design solution 2, the whole 
display was divided into two areas though they were not indicated with 
clear frames. Second, it was observed that error corrections with the 
continuous input cost more than error corrections with the discrete input. 
When users write characters continuously, they usually detect the 
recognition errors after writing a few more characters. If they want to 
correct the errors, they have to move cursors back and write the characters 
again. This process requires both extra cognitive processing and additional 
motor actions.  

Participants expected soft buttons for different types of characters. Table 
3.4 shows the input modes supported by each design solution and how to 
switch input modes. Twelve participants preferred to switch input modes 
with soft buttons. According to participants, all input modes, including 
those for Chinese characters, Roman letters, numbers, and punctuation, 
should be presented with soft buttons with the active mode highlighted. 
Thirteen participants believed that at least some other characters, 
especially numbers and punctuation, should be entered with soft 
keyboards. With design 3, the participants had to switch to a soft 
keyboard to enter English characters and most participants considered it 
acceptable. It was also observed that some participants were likely to 
make errors while entering simple punctuation with HWR, which implies 
that some other ways of entering punctuation should be supported. 

Table 3.4: The modes and mode switch methods supported by each solution 

 Chinese Latin alphabet 
types 

Numbers Punctuation Switch 
method 

Solution 1 Handwriting Handwriting Handwriting Handwriting Only HWR 
supported 

Solution 2 Handwriting Handwriting Handwriting Handwriting 
Virtual keys 
for character 

modes 
Solution 3 Handwriting Virtual 

keyboards 
Virtual keys Virtual keys 

Virtual keys 
for modes 

Solution 4 Handwriting Handwriting Handwriting 
Virtual keys 

Virtual keys 
for modes 

 

Some extra editing functions were also evaluated in the study. Table 3.5 
shows the function details for each solution. Fourteen participants preferred 
the I-bar cursor over the highlighted characters. Moreover, the 
participants were expecting real-time pen traces for written strokes, so 
delays were not acceptable. Twelve preferred soft buttons for the deletion 
function; this was a particularly strong preference with novice users. Some 
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experienced users were efficient with the Graffiti gesture of deleting: a 
stroke drawn from right to left. Ten participants preferred the timeout 
setting in solution 4, which ranges from 0.4 to 1.0 seconds and enables 
personalized settings. Cui and Lantz (2005) suggested that the timeout 
should be set to 350 ms, 500 ms, and 700 ms for slow, medium, and faster 
writers, respectively. Fourteen participants preferred a horizontal list, 
which was consistent with results from a previous study (Heloisa & 
Ravindra, 1998). 

Table 3.5: The editing functions supported by each solution 

 
Shape of 

cursor Pen traces  Delete function 
Timeout for 
recognition 

Solution 1 I-bar Some delay 
Graffiti gesture 

of “←” 
Not known 

Solution 2 I-bar Some delay 
Graffiti gesture 
of “←” and a 

soft key 
0.4 seconds 

Solution 3 
Highlighted 

character 
Some delay Soft key 1.0 second 

Solution 4 I-bar Real-time Soft key 
Between 0.4 

and 1.0 
seconds 

 

The key finding of the study was that the box solution with virtual buttons 
for different modes and editing functions was preferable to the full-screen 
designs without any virtual buttons. 

3.5 EFFECTS OF USER TYPE AND UI STYLE ON USER PERFORMANCE 

3.5.1 Objectives 

Since handwriting recognition was viewed as the method of choice for 
those having difficulty with other methods, it was important that the 
solution provided be able to achieve a sufficient level of efficiency and 
ease of use. In the previous study, it was found that the participants 
preferred box designs and continuous Chinese HWR over full-screen 
designs and the discrete character input. The objective in this study was to 
understand the effects of user type and UI style (full-screen vs. three-box 
designs) on user performance and user behaviors in the interaction 
processes. This study was part of the E2 module in the UCD paradigm 
shown in Figure 3.2. 

3.5.2 Method 

Design 

The experiment was a 22 mixed factorial design. The two factors were 
user group, with novice and experienced users of Chinese HWR, and UI 
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style, with a full-screen design and a three-box design. The user group and 
UI style are the between-subjects and within-subject factor, respectively.  

Participants 

Twenty participants, half male and half female, were recruited for the 
study. They were all local student interns or members of staff working at 
the Nokia Research Center in Beijing. Their ages ranged from 22 to 34 
years, with a mean of 27.8 years (SD = 3.12). All participants were 
right-handed. Eleven of the participants were novice users, and the others 
were experienced users of Chinese HWR. Novice users were defined as 
those with no prior experience of using Chinese HWR. Trained users were 
defined and recruited as those who were daily users of Chinese HWR on 
mobile devices for the month before this study (four of the experienced 
users worked in the field of Chinese HWR as developers or UI designers 
and used Chinese HWR every day). For the 20 users, testing orders with 
the two UI designs were counterbalanced.  

Tasks and Materials 

The experimental task for participants to complete was to copy a Chinese 
text message having 32 characters with both a full-screen and a three-box 
design (see Table 3.6). The 32 characters included five punctuation marks 
(two commas, two periods, and one question mark) and 27 Chinese 
characters. The punctuation marks also served as segmentation in the text 
message so that participants could remember the message easily.  

Table 3.6: The editing functions supported by each solution 

Text message to be 
entered by participants 

最近好吗？天冷要加衣服了。最近比较忙，没时间去

看你，照顾好自己。 

Meaning 
How are you recently? It becomes cold so be sure to 
wear enough clothes. I was too busy recently to take 
care of you, so take good care of yourself.  

 

UI Solutions and Apparatus 

The Dopod P800 was the device used in the experiment. Figure 3.4 
(sections a and b) shows the full-screen and the three-box design for 
Chinese HWR, respectively. The full-screen design just allows discrete 
character input, although participants can write characters anywhere on 
the display. Once a character was written, users had to wait for a timeout 
(500 ms) until recognition was initiated and then write the next character. 
In the full-screen design, the top six matching characters would be listed at 
the bottom of the screen, for users to choose the target. The three-box 
design enabled continuous writing in that users could write characters in 
alternate boxes without waiting for a timeout. Although continuous 
Chinese HWR is supported in the three-box design, the participants were 
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instructed to enter characters naturally in their own way without an 
obligation to use continuous input all the time. I believed that in this way, 
I could observe user behaviors and effects of the UI styles on user 
performance that are similar to those in real contexts. Other function keys 
were almost equally provided in both designs, except that the frames 
listing results were in different places and the number of characters listed 
differed (six for the full-screen design and nine for the three-box design). 

  

a) The three-box design b) The full-screen design 

Figure 3.4. The full-screen design and the three-box design for discrete Chinese HWR. 

Procedure 

The experiment was conducted in a lab environment with a coordinator 
and a participant present. The participant was first briefed about the 
objective of the study, which was to compare different interaction designs 
rather than to evaluate the capability of the participants. Then a practice 
session followed, in which the participants could rehearse the test tasks. 
Then all necessary features and operations were explained, to make sure 
that everyone started with the same level of understanding. All 
participants were instructed to enter the text presented, as quickly and 
accurately as they could during the data collection session. However, users 
were not obliged to write continuously with the three-box design but 
asked to write in their own way. During the practice and test sessions, all 
participants wrote characters with their dominant hand and held the 
device in the other hand. The experiment sessions were recorded with a 
video camera for further analysis. Small gifts were presented to all 
participants afterward. 

3.5.3 Results and Discussion 

I counted all deletion actions during the text entry process and divided the 
resulting figure by the number of characters to calculate error rates. Here 
the deletion actions usually took place when the participants found that 
they had entered a Chinese character wrongly. The participants had to 
click the Delete key to cancel the writing of a Chinese character. For 
Chinese HWR, users cannot revise a handwritten character on the stroke 
level or radical level. Figure 3.5 shows the results for error rates. A single 

List of 
recognition 

results 
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punctuation mark was counted as one character because these were 
entered with HWR as well. ANOVA tests showed that none of the effects 
were significant (user type: F1,18 = 2.000, ns; UI style: F1,18 = 0.097, ns; 
interaction between user type and UI style: F1,18 = 2.224, ns). 
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Figure 3.5. Average error rate results. 

The five punctuation marks were the key sources of errors. The errors that 
occurred with punctuation with the full-screen and three-box UI 
accounted for 24.97% and 27.44% of the total number of errors, 
respectively. However, the five punctuation marks represented only 
15.63% of all characters.  

Figure 3.6 shows the results for text entry rate in CCPM. The average text 
entry rates of expert users were 19.33 CCPM with the full-screen UI and 
18.26 CCPM with the three-box UI. For novice users, the average text entry 
rates were, correspondingly, 14.84 CCPM with the full-screen UI and 14.07 
CCPM with the three-box UI. ANOVA analysis indicated that the main 
effect of user type is significant (F1,18 = 10.532, p < .05). Expert users were 
faster than novice users with both UIs for Chinese HWR. None of the 
other effects are significant (UI style: F1,18 = 1.105, ns; user type  UI style: 
F 1, 18 = 0.029, ns). 
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Figure 3.6. Average text entry rates.  

I assumed that users could achieve better text entry rates with the 
three-box solution since it avoided the timeouts; however, this was not the 
case for either novice or expert users. To understand the reasons behind 
this, I analyzed users’ behavior while they entered text with the three-box 
UI. I defined any two sequential characters that were written continuously 
without seeing of the recognition result for the previous one as a case of 
continuous writing. Then I counted all continuous writing cases for each 
participant when he or she completed the task with the three-box design 
and calculated the continuous writing rate by dividing the continuous 
writing count by 31 (the number of characters entered minus one). Figure 
3.7 shows the average usage rate of continuous writing with the three-box 
design for both experienced and novice users. 
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Figure 3.7. The average rate of continuous input. 
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The results indicated that no matter which group the users belonged to, 
they did not fully make use of the continuous writing supported by the 
three-box design, which resulted in the non-significance of the difference 
in user performance between the full-screen and the three-box design. 

Further non-parametric analysis (Mann-Whitney test) of the data indi-
cated that experienced users are more inclined to use continuous writing 
than novice users are (U = 71.5, p = .049). Observation also showed that 
there were two types of user strategies when the participants entered 
Chinese characters with the three-box UI design: one type of user seldom 
utilized continuous writing and always entered the second character after 
the previous one was correctly recognized; the other type of user em-
ployed continuous writing frequently but often stopped to correct errors 
noticed for previous recognitions. The former strategy is more common 
with novice users, and the latter is more common among experienced 
users. It was also observed that recognition errors noticed by users were 
the key factor stopping continuous writing with the three-box UI design.  

I also observed that, despite the fact that I offered three input boxes, the 
third box, an input box placed at the far right, was seldom used, 
throughout the test. This may have had something to do with the 
ergonomic setup of the handheld devices. When participants used the 
device, they often placed the bottom of their writing hand on a surface of 
the device. This contact point between the device and the hand became an 
axis as they wrote the characters. While it stabilized the writing hand 
against the device, it also restricted the angle at which the wrist could 
move comfortably as they wrote. The further they went towards the right, 
the more uncomfortable it was to continue writing. Moreover, participants 
unanimously complained that each input box was too small to write in. 
Considering all the results and conditions, I concluded that it is more 
important to provide a sufficiently large input box than to squeeze in 
multiple small input boxes for continuous writing.  

3.6 EVALUATION OF THE TOUCHPAD-BASED CHINESE HWR UI 

3.6.1 The Initial Designs 

I designed the initial user interface layout for the touchpad-based Chinese 
HWR on the basis of the previous two rounds of studies. The user inter-
face has two parts: UI layouts for the phone display and the touchpad. 
Figure 3.8 (pane a) shows the UI design. The phone display is divided into 
three parts: the top area for user-entered text, the middle area with a frame 
for displaying the seven most probable recognition results, and the box 
area at the bottom of the phone display for displaying pen traces.  

Figure 3.8 (bottom area in a, b, c, and d) also shows four UI layouts for the 
touchpad. All layouts include one or two input boxes, four-way 
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navigation keys, a key to clear the display, and an “OK” key. The “OK” 
key and the Clear key were labeled with proper Chinese phrases (OK: 
确认, Clear: 清除). Here, the users must write Chinese characters in input 
boxes. When users write a character, the stroke traces are displayed on the 
phone display and audio feedback, a short tick sound, is given for writing 
of each stroke. After the recognition results are displayed, the user can 
press the navigation keys to highlight the target and click the “OK” key to 
select it. The left and right keys were to move the “highlighting” in the 
horizontal list and the up and down keys were to move to the next page of 
recognition results. Users can also delete incorrect characters by clicking 
the Clear key. The differences among the four UI layouts are in the 
numbers of input boxes (either one or two) and the relative positions of 
the input boxes and the other function keys. Solutions 1 and 2 have two 
input boxes each, and solutions 3 and 4 have only one input box. In 
solutions 1 and 3, the input boxes are above the other function keys. In 
solutions 2 and 4, they are below the other function keys. 

 

a) UI for the phone display (the upper half) and UI design 1 for the touchpad (the bottom half): two 
smaller boxes and function keys below 

b) UI design 2 for the touchpad: 
two smaller boxes and function 

keys above 

c) UI design 3 for the touchpad: 
one bigger box and function 

keys underneath 

d) UI design 4 for the touchpad: 
one bigger box and function 

keys above 

Figure 3.8. The initial UI designs for touchpad Chinese HWR on mobile phones. 

Phone display 

Touchpad  

List of recognition 
results 

Box to show the 
pen traces for 
handwriting 

Input boxes 
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All input boxes are in the form of a square. For the two-box UI, the width 
and height of the boxes is 1.25 cm, because the active size of the touchpad 
is only 2.55  2.55 cm, while for the one-box UI, the height and width are 
1.5 cm.  

3.6.2 Objectives of the Study 

Via the series of previous studies, I had collected a great deal of useful 
information on interaction designs for Chinese HWR. However, since the 
in-depth studies reported on in the previous sections were comparatively 
independent, focusing on different topics, a further study was still needed 
to check whether they can work well together in the user’s mind. The 
objective of the prototype-based evaluation was to see whether the concept 
and the designs were satisfactory for users and acceptable. Moreover, the 
results would also provide more feedback for the design in the next round. 
This study was part of the E3 module in the UCD paradigm shown in 
Figure 3.2. 

3.6.3 Method 

Participants 

Eight participants, four of them male and the other four female, took part 
in the study. Their ages ranged from 24 to 29 years, with an average of 
27.0 years (SD = 1.85). All were right-handed. Two of them were 
experienced users of Chinese HWR on small touchscreen devices.  

    

a) The terminal with a touchpad          

  

b) The laptop running the software 

Figure 3.9. The prototype used in this study: the phone prototype shown in the left figure 
was the input and output device and users held it to complete the experimental tasks; the 
laptop computer was connected with the phone prototype and the Chinese HWR engine was 
running on it. 

Apparatus 

A prototype was built for the study. The prototype consisted of a phone 
terminal made from a Nokia 3310 (see Figure 3.9a) and a laptop computer 
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(see Figure 3.9b). The iPAQ stylus was used in this study (Figure 3.9a). 
The phone terminal served as an input and output device that was held by 
participants to complete the assigned tasks in this experiment. A touchpad 
directly replaced the keypad of the phone terminal. The physical size of 
the touchpad was 3.5  3.5 cm, and the active area was smaller, with a size 
of 2.55  2.55 cm. The phone terminal was connected with the laptop 
computer (shown in Figure 3.9b), on which the Chinese HWR engine was 
running. The UI on the phone display was also synchronized with a UI for 
the laptop computer. During the study, paper covers were used to change 
the UI layouts of the touchpad on the phone terminal. 

Tasks 

The participants needed to complete two tasks in the study. One was a 
text copying task in which the participants were asked to enter messages 
presented to them literally in printed form. The task helped us to focus on 
the interaction process and specify potential problems in it. The other was 
a message composition task. The participants were presented with a 
scenario and asked to compose a message and enter it. The task was more 
similar to a real usage scenario, which could help us identify potential 
problems in a relatively real context. While entering text with the 
prototype, the participants were asked to hold the device in one hand and 
write with the other hand, which was regarded as a common way of using 
it. After the participants completed the tasks, they were asked to give 
subjective scores to the different UI options, with a five-point Likert scale. 
The higher the score for a UI option, the more people felt satisfied with it. 

Design and Procedure 

The study was a within-subject design. All participants needed to 
complete the two text entry tasks with all four UI layouts. Testing orders 
for the UI layouts were counterbalanced with the Latin-square technique.  

The study was conducted in a lab environment, where a participant and a 
coordinator together completed the whole process. The participant’s 
profile was collected, and the research goals were outlined before each 
evaluation. Participants could ask questions if they had any. After that, the 
think-aloud protocol was introduced and rehearsed by the participant. 
Then the participants were instructed to practice with the four UI 
solutions to such an extent that they thought they could start with the 
evaluation tasks. After the practice, they started to complete the tasks. The 
testing processes were recorded in full with a video camera for analysis 
later. After the participants completed the tasks, they were instructed to 
give subjective scores, with a five-point Likert scale, to the UI options for 
the touchpad-based Chinese HWR. The subjective scores can help to show 
people’s relative preference for the various UI options – for example, 
between one-box and two-box designs and between the layouts where 
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keys were placed above or below the writing box(es). Finally, a small gift 
was presented to all participants after the study.  

3.6.4 Results and Discussion 

All participants accepted the concept very well. Although six of them 
misunderstood the prototype as a touchscreen product and intended to 
write characters in the box for showing pen traces on the display, all 
participants explicitly expressed that they liked the concept and thought 
that it was innovative. All participants successfully completed the text 
entry tasks with the prototype.  

The visual and audio feedback and the timeout of 0.5 s were well accepted 
by the participants. Although the pen traces were not in exactly the same 
size as the written characters, no participants complained about this. I 
observed that the participants referred to the pen traces and adjusted their 
writing behavior to achieve better accuracy. The pen traces needed to be 
accurately displayed in real time. Inaccurate and delayed pen traces were 
misleading for participants. For example, it was observed that when there 
was a missing stroke for a pen trace, participants set out to add an extra 
stroke, which caused more errors.  

Different types of characters (letters, numbers, and punctuation) should 
also be supported. Easy switching between the different character modes 
should also be enabled. In this study, I observed that some punctuation 
can seldom be recognized correctly; accordingly, participants wanted to 
switch to soft keyboards to enter these, but, unfortunately, the prototype 
did not support that function. This observation implies that our touch UI 
should probably support users entering punctuation with virtual 
keyboards. The left and right navigation keys were used often, while the 
up and down navigation keys were seldom used: participants seemed to 
prefer to write characters over again rather than go to the next page of 
recognition options for the target character. This was easy to understand, 
since user expectations of the chances of finding the target character on the 
other pages when it was not on the first page were fairly low. Even if 
merely the first recognition result was not the target character, the 
participants were still inclined to rewrite the character rather than select it 
from the list of recognition results. In this context, presenting more 
recognition options would not help users to access the target character 
better. Therefore, presentation of one page of recognition options – in our 
case, seven characters – seems to be enough for users. 

The two boxes were not that useful when the editing functions were not 
optimized for error correction. The two boxes enabled the participants to 
write characters continuously. However, when an error was found with 
previous recognitions, extra actions were always needed for the error 
correction, including moving the cursor to the problem character, clearing 
it, and rewriting. Moreover, these actions were not easy with a 
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touchpad-based UI, because the users could not operate directly on the 
text entered as they can with a touchscreen. Figure 3.10 shows the 
participants’ subjective scores for the one-box and two-box designs, 
respectively. The results slightly favored the one-box UI: five participants 
gave a score of 4 to the one-box UI, while four participants gave a 4 or 
higher to the two-box UI; two participants would not accept the two-box 
UI, while only one would not accept the one-box UI. But Kolmogorov-
Smirnov tests indicated that there was no significant difference in user 
preference for the two solutions (p = .67).  

Figure 3.11 shows the subjective scores for the two UI layouts in which the 
navigation keys were either above or below the writing box(es). More 
participants preferred having the navigation keys under the input box. But 
the Kolmogorov-Smirnov test showed there to be no significant difference 
in the subjective scores between the two options (p = 1). This was probably 
because participants wanted to write in the area of the touchpad above so 
that their writing hand could get more support from the device.  
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Figure 3.10. The subjective scores for the one-box and two-box designs. 
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Figure 3.11. The subjective scores concerning the positions of the navigation keys. 

Though user performance was not the focus of the study, I analyzed the 
text entry rates of the participants. The results for text entry rates varied, 
depending on the participants, with a range of about 6 CCPM to 12 CCPM. 
Further statistical analysis or comparisons were not conducted, because 
users were not instructed to enter text as quickly and accurately as they 
could in this study. Furthermore, using think-aloud in this study slowed 
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down performance. Another study we carried out, based on the final 
design of the touchpad Chinese HWR, showed that the average user speed 
was about 11.2 CCPM (Liu & Liu, 2008). 

Participants expected some advanced features in the touchpad-based 
Chinese HWR. For example, they expected word-based predictions: once a 
character was entered, the system should present predictions for the next 
character. In this study, only one participant complained that the stylus 
was too slim to hold. Some participants complained about the fatigue 
caused by the lack of support to the writing hand, which probably could 
be improved a little bit with a keypad flip added and kept open.  

3.7 OTHER RESULTS AND DISCUSSION 

3.7.1 Results from the Other User Studies 

In this section, the conclusions from our other (unpublished) user studies 
are briefly summarized in Table 3.7 to provide design guidelines for 
future development of interaction in Chinese HWR UI solutions for 
mobile devices.  

Table 3.7: Main conclusions from other studies 

Topic Main conclusions 

Stylus design 1. The length of a stylus for Chinese HWR is best between 9 cm and 
11 cm, with 10 cm preferred. (Takahashi et al., 2005) 

2. There are two grip points when users hold a stylus. The first grip 
point, where the pen is held by users with the thumb and index 
finger together, ranges from 12 mm to 41 mm from the stylus tip. 
Good stylus design assists users in holding the stylus comfortably 
at the grip point by, for example, providing cuts in this area. The 
second grip point is located from 60 mm to 91 mm from the stylus 
tip. Obstacles (such as protrusions) in this area should be avoided.  

Visual feedback 3. Pen traces, even displayed at a distance from where a character is 
written and in a different size, are preferred over no visual feedback 
for Chinese HWR.  

Audio feedback 4. Users prefer a short “tick” sound of audio feedback. 

Size of an input 
box 

5. The size of an input box for Chinese HWR should not be less than 
1.5 cm  1.5 cm. 

Display of 
recognition results 

6. Users are faster in selecting a target from a list of Chinese 
characters that is presented horizontally as opposed to vertically.  

3.7.2 Discussion of the Design Process 

Besides optimized user performance, some issues such as affordability 
should be taken into account in the design of new UI solutions for 
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consumers in an emerging market. Moreover, discovering and describing 
the problems are critical for creation of concepts. Many times, if a problem 
is clearly defined, the definition itself already implies the design solutions. 

The design process presented also shows a solid example of how the UCD 
process can be applied when a concept idea is developed into concrete 
interaction designs. It has been mentioned by numerous studies that 
involving users early is critical for development of successful user 
interfaces (Grudin, 1991; Vredenburg, Isensee, & Righi, 2002; Kujala, 2003). 
In our design process, I involved users in three modules of empirical 
studies: benchmark studies of competitive user interfaces; comparative 
studies of different UI solutions for details; and, finally, prototype-based 
studies. The first two modules of empirical studies were conducted before 
or alongside the interaction design. These studies can aid designers in 
making correct decisions in the interaction design process. On the basis of 
our design process, I summarize five functions of empirical studies in 
interaction design processes as follows:  

 to build a benchmark for the new interaction designs (S1 and S2),  

 to check user acceptance of the sensitive points for a new concept (S3),  

 to differentiate UI options with users (S4, S5, and S6),  

 to define the necessary parameters (S7), and 

 to check the overall acceptance of a specific concept and design (S8). 

Empirical studies covering these five basic topics would assist designers to 
make correct decisions and improve user experience with new concepts 
and designs.  

But at the same time, I noticed that the empirical study results sometimes 
cannot be fully utilized in the design phases, especially when the people 
conducting the empirical studies and the interaction designers are 
different. Communicating the empirical study results to interaction 
designers along with the implications for design may help with the issue 
of communication between researchers and interaction designers. 
Moreover, our design process also showed the necessity of design 
iteration based on the prototype-based interaction design.  

3.8 SUMMARY 
In this chapter, an affordable Chinese HWR solution based on a touchpad 
and its interaction design process were presented. Via an analysis of the 
design space defined by immediate usability and affordability, I found 
that there was a lack of affordable Chinese text entry solutions that 
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accommodate more users. We therefore proposed a touchpad-based 
Chinese HWR solution that is potentially good in its immediate usability. 
Three modules of user studies were conducted to develop the concept to 
the stage of UI designs. I chose three representative studies from each 
module and presented their details. The three studies serve as examples of 
how different design and research questions were addressed through 
involvement of users. The final prototype-based evaluation showed that 
both the concept and the interaction designs were well accepted by users. 
Results from other studies were also presented, to assist in future 
interaction design related to Chinese HWR for mobile devices. All efforts 
presented in this chapter led to the launch of the Nokia 6108 in China. 
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4 A Rotator Pinyin Input Solution 

4.1 INTRODUCTION 
In this chapter, I present the design and evaluation of Chinese pinyin text 
entry using as the input device a rotator, also called a wheel in some other 
studies (Proschowsky, Schultz, & Jacobsen, 2006). A rotator is a ring or 
round device that can be rotated in both clockwise and counterclockwise 
direction. The rotation is mapped to operations on displayed objects. The 
rotator enables two operations: rotating and clicking. The corresponding 
operations on displayed objects are scrolling and selection. The rotator has 
been implemented as a key input and navigation device in some mobile 
products, including the Nokia 7280 and Dopod P800W. Figure 4.1 shows 
the rotator on the Nokia 7280 as the main input device. 

     

Figure 4.1. The rotator of the Nokia 7280. 

To enter text in languages that use the Roman alphabet, users can first 
scroll in a list of characters displayed on the screen by rotating the device 
and then select the target character by clicking it. Clicking can be 
implemented with the rotator itself (for example, the center of the rotator 
in Figure 4.1 or the edge of it can be pressed) or by means of a separate 
dedicated key. 
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Several past studies have examined selection-based text entry solutions 
that use screen real estate to display the selectable objects. Various devices 
have been utilized in those studies. MacKenzie (2002b) proposed a three-
key (left and right arrow keys and a Select key) date stamp method (see 
description below) and found its input speed to be about 9–10 words per 
minute with novice users. MacKenzie (2009) explored design and user 
performance with a one-key text entry method. It was found that text 
entry rates reached 5.11 WPM with a 99% accuracy rate or 7.03 WPM for 
error-free text. Tarasewich (2003) suggested a similar method but used the 
thumbwheel at the top of the left-hand side of the Sony CLIÉ PEG-S320. 
Wobbrock, Myers, and Aung (2004) studied the use of a joystick with the 
EdgeWrite method and compared its user performance with two 
selection-based methods. Proschowsky et al. (2006) designed a text entry 
method called TUP with touch-sensitive wheels and compared its user 
performance with that for a date stamp method with a rotator. They found 
that the input speed with TUP was about 6–7 WPM, which was about 30% 
higher than that for the date stamp method with a wheel. On the other 
hand, the subjective evaluation results indicated that the date stamp 
method was easier to understand and learn. In the selection-based text 
entry solutions described above, a common layout for characters was the 
so-called date stamp method, where all characters from “a” to “z” are 
listed either in alphabetical order or in a changing optimal character 
layout (Bellman & MacKenzie, 1998; MacKenzie, 2002). In our initial 
design for Chinese pinyin input with a rotator, I also used the date stamp 
layout.  

A rotator is not a device enabling direct input as a keyboard is; therefore, 
performance of the rotator partly relies on objects on the display. However, 
the feasibility and potential for it as a good device for text entry and 
navigation was worth exploring. In particular, because the rotator seems 
good for navigation tasks and the selection of target pinyin marks and 
selection of Chinese characters from options provided by the system are 
necessary steps in the pinyin text entry solutions, it might work better in 
connection with Chinese pinyin input than with Roman languages. Wang, 
Zhai, and Su (2001) conducted an anatomical study of the Chinese pinyin 
text entry process with the QWERTY keyboard for the PC and found that 
the character selection task takes about 52% of the time in the full process. 
My study on pinyin character input based on the 12-key keypad (see 
Chapter 6) indicated that the selection process on mobile phones requires 
more than 65% of the time for the whole input process. Therefore, in this 
chapter, I explore the design possibilities with a rotator for entering 
Chinese text.  

The rest of the chapter is organized as follows: I first describe the initial 
design of the pinyin input method with a rotator (called “rotator pinyin 
input” below, for short). I also present the findings of a quick user 
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evaluation. Second, I describe two variations of the initial design, expected 
to yield improved usability, and their design principles. Third, I present 
an empirical study to compare the three designs in terms of performance 
and subjective preference. Finally, I discuss the findings, present the 
conclusions, and outline avenues for future work. 

4.2 THE INITIAL DESIGN AND QUICK USER EVALUATION 
The initial design was a combination of a rotator and the alphabetical 
layout of characters in the date stamp method. Figure 4.2 shows the user 
interface for rotator pinyin input. The rotator can be turned in either 
direction and is also clickable. To start text entry with the rotator, users 
need to click the rotator (or the pen key on Symbian S60 phones – for 
example, the Nokia 3650) to activate the input frames on the phone 
display. There are three input frames on the display: 

 The letter frame, where the 26 Roman letters, some punctuation 
marks (comma, period, question mark, and exclamation mark), a 
space for focus change, and input modes (pinyin, stroke, English, 
number, and symbol) are listed. 

 The pinyin frame, where the Roman letters entered to form a 
pinyin mark are listed. 

 The Chinese character frame, where all matching Chinese 
characters are presented as options. 

Figure 4.2. The user interface for rotator pinyin input. 

In the initial design, users scroll in the letter frame with the rotator and 
select the target letter by clicking it. The selected letters are displayed in 
the pinyin frame in real time. After a pinyin mark is complete, users can 
select the space key in the letter frame to move the display focus from the 
letter frame to the Chinese character frame so that they can scroll in the 

Pinyin frame 

Letter frame 

Chinese 
character 

frame 

Rotator 

Display 
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latter to select the target character. To switch the focus back and make 
corrections to the pinyin marks entered (if necessary), users can click the 
Clear key. To input text in other than Chinese characters, such as 
characters in the Latin alphabet, punctuation marks, Arabic numerals, or 
similar symbols, users just need to scroll in the letter frame and select the 
correct input mode.  

The initial design also integrates predictive input on both the pinyin level 
and the character level to make input faster. After users enter a letter of a 
pinyin mark, the input engine will predict and list possible subsequent 
letters in the letter frame automatically. On character level, once users 
enter a Chinese character, the input engine predicts the next possible 
character on the basis of the phrase corpus embedded in it. All predicted 
Chinese characters are presented in the Chinese character frame, and users 
can select the target one right away. The initial design for rotator pinyin 
input copied the user interface for rotator English input in many respects.  

I conducted a quick user evaluation of the initial design to check whether 
the user interface was easy to learn. I found that almost no users could 
ascertain how to switch the focus between the letter frame and the 
character frame. Although some users could discover this, the means for 
the focus change dramatically hindered the input process and made it less 
smooth. Improving the method for focus change can enhance the usability 
of the rotator pinyin method. 

I also observed that users did not realize that the rotator was clickable, but 
once they knew it, they accepted it well. Another common problem 
observed was that a click of the rotator sometimes did not result in 
selection of the item in focus; instead, focus had moved to the following 
item at the time of clicking. This mix of clicking and rotation brought to 
the fore the question of whether the rotator is an appropriate device for a 
selection task. It might be safer to map the selection function to another 
key. These considerations led us to the new designs described in the next 
section. 

4.3 THE NEW DESIGNS 
The key motivation for the new design ideas was that the focus change 
was too difficult in the initial design in terms of both discoverability and 
input efficiency. Would it be possible to change focus automatically 
between the letter frame and the Chinese character frame? As described in 
Section 2.3 of this thesis, most pinyin marks consist of two parts: a 
consonant and a vowel. Moreover, pinyin marks always end with a vowel. 
Hence, another natural solution is to present consonants and vowels in 
two lists and let the users complete a pinyin mark by simply combining 
the two selections. What is more, focus can automatically change from the 
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letter frame to the Chinese character frame once a vowel is entered. I will 
call such a design the consonant-plus-vowel solution.  

The new design may also bring extra benefits by improving input 
performance. Wang, Zhai, and Su (2001) mentioned that on average, each 
Chinese character’s pinyin has 4.2 Roman characters. The result means 
that, on average, with the initial design users need to rotate and select in 
the letter frame more than four times to complete a pinyin mark. However, 
the result might not be applicable to Chinese text messages. As discussed 
in Section 2.2 of this thesis, the average number of Roman characters per 
pinyin mark is considerably smaller for Chinese text messages: only 3.24. 
Moreover, if one takes into account the frequencies of the Chinese 
characters, the figure drops to 2.88. Nevertheless, with the new designs 
users just need to rotate and select twice to complete a pinyin mark: once 
for its consonant and the other for its vowel. The decrease in navigation 
and selection time could help to improve user performance. On the other 
hand, the consonant-and-vowel solution has a longer vowel list, about 
twice as long (in screen size) as the normal Roman alphabet. All 
consonants and vowels of pinyin were shown in two different orders (see 
Figures 4.4 and 4.5). An empirical study is needed to verify the potential 
improvement brought by the new design. 

In the new designs, the rotator is still clickable for selection. There are still 
only two frames (letter frame and Chinese character frame) on the display, 
but the content of the letter frame alternates between phonetic consonants 
and vowels, depending on the phase in creation of the pinyin mark.  

I provided two ways to switch focus between the letter frame and the 
Chinese character frame. One is the automatic focus switch. Once users 
input a vowel to complete a pinyin mark, the focus is automatically 
moved from the letter frame to the Chinese character frame. Similarly, 
once users select the desired Chinese character, the focus is automatically 
switched from the Chinese character frame to the letter frame for entry of 
the next character. Another way is to select the functional items in the 
frames. To change focus from the letter frame to the Chinese character 
frame, users can select the “confirm” (“确认”) item in the letter frame. To 
switch the focus from the Chinese character frame to the letter frame, 
users can select the “go back” (“返回”) item at the very start of the Chinese 
character frame.  

For those pinyin marks consisting of a single vowel, I added a function 
item as “vowel” (“韵”) in the letter frame, and users can directly go to 
vowels by selecting it. The frequently used punctuation marks (comma, 
period, question mark, and exclamation mark) and the input modes 
(pinyin, stroke, English, number, and special characters) are also listed 
together with the consonants in the letter frame.  

Figure 4.3 illustrates the input process step by step. In the first stage, 
shown on the left, the user begins entering the pinyin mark. The letter 
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frame shows the phonetic consonants in phonetic order. The user scrolls to 
the right and eventually selects the letter “t.” Then the letter frame 
automatically changes to display the phonetic vowels, in order of 
increasing length. In the next stage, the user has scrolled in the vowel list 
far enough to be able to select the ending (“ong”) of the pinyin mark 
(“tong”). After selection (on the right), focus switches to the Chinese 
character frame, where the user can again scroll to select the desired 
character. 

 

1) home view showing 
the consonants in the 
phonetic order 

2) after the consonant 
of “t” is selected, all 
vowels are shown 
according to their 
length 

3) users can rotate in 
the list of vowels to 
the target “ong” 

4) users select “ong” 
and the highlight 
automatically moves 
to the first matching 
Chinese character 

Figure 4.3. Text entry, step by step. 

Predictive input on both pinyin mark and Chinese character level is 
applicable in the new design. In many pinyin marks, some vowels can 
never come after some consonants. Also, predictive input at the pinyin 
mark level can increase the input speed of the new design because the 
vowel list would not be that long. However, for implementation reasons, 
predictive input on the pinyin mark level was not included in the versions 
that were tested empirically. Predictive input on character level works 
such that after a character is entered, the most likely characters that could 
form a phrase in combination with it would be presented for users to 
select. In that way, users would not need to input pinyin marks for the 
later characters but just select them. However, the predictive input at 
character level brings an obstacle to fully automatic focus-switching. For 
example, if users could not find a target in the predicted character list, 
they would have to switch the focus manually from the Chinese character 
frame to the letter frame to enter it. Therefore, two methods for a focus 
switch are provided for the new design. 

There are, in essence, two ways to present the consonants in a list: 
alphabetical order and phonetic order. Alphabetical order lists consonants 
according to the order of their first letter in the Roman alphabet. Figure 4.4 
(a) shows the pinyin consonants in alphabetical order. The phonetic order 
is the one Chinese primary-school students are taught when they start to 
learn pinyin and Chinese characters. Figure 4.5 (a) shows the pinyin 
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consonants in their phonetic order. There are also two ways to list vowels: 
alphabetical order and length order. With listing in alphabetical order, all 
vowels are listed according to the order of their first letter in the Roman 
alphabet. Figure 4.4 (b) shows the vowels in alphabetical order. Listing in 
length order means the vowels are listed according to their length. For 
vowels of the same length, the order is decided by the alphabetical order 
of their first letter. Figure 4.5 (b) shows the length order. For user 
evaluation, I built the following two prototypes.  

4.3.1 Alpha: New Design 1 

In this design, both consonants and vowels are listed in their alphabetical 
order, as shown in Figure 4.4. The alphabetical order was assumed to be 
familiar to many users, and the consistency between the consonant list and 
the vowel list should help users to understand the design.  

 
Figure 4.4. Consonants and vowels in alphabetical order. 

4.3.2 Beta: New Design 2 

In the Beta solution, the consonants are listed in phonetic order and the 
vowels are listed according to their length (Figure 4.5). I implemented this 
design for two reasons: 1) I assumed the phonetic order could remind 
users about the consonants and vowels of pinyin marks so as to help them 
understand the design, and 2) I assumed the length order of vowels could 
provide a good visual cue on where to find the needed vowel. 

 
Figure 4.5. Consonants in phonetic order and vowels ordered by length. 

b c ch d f g h j k l m n p q r s sh t w x y z zh 

a) Consonants in alphabetical order. 

a ai an ang ao e ei en eng er i ia ian iang iao ie 
in ing iong iu o ong ou u ua uai uan uang ue ui 
un uo v 

b) Vowels in alphabetical order. 

b p m f d t n l g k h j q x zh ch sh r z c s y w 

a) Consonants in phonetic order 

a e i o u v ai an ao ei en er ia ie in iu ou ua ui 
un uo ang eng ian iao ing ong uai uan iang iong 
uang 

b) Vowels ordered by length 



…
…

…
…

 

 60 

4.4 USER EVALUATION 

4.4.1 Objectives 

Both the Alpha and the Beta solution had some performance advantages 
over the initial design for the following reasons: 

 On average, users need to scroll and select approximately four 
(2.88 Roman characters plus a confirmation) times to complete a 
pinyin mark with the initial design, but with the new designs, the 
number is 2 for a consonant and then a vowel.  

 Focus switches are automatic, which also decreases the number of 
scrolling and selection actions. 

However, there are also factors that might offset the advantages brought 
by the two factors mentioned above. First, predictive input on pinyin level 
was missing for both Alpha and Beta while predictive input was fully 
implemented in the initial design. Second, the vowel list had to be longer 
(in screen size) than the list in the initial design, because of the absence of 
predictive input on pinyin level. On the other hand, the dimensions of a 
character on the screen are not really important – the length of the list that 
needs to be scrolled is, because the number of items directly corresponds 
to the motor movement of the rotator. I will discuss the effect of missing 
prediction capability after presenting the test results. 

To verify the assumptions with facts, I designed an empirical study whose 
objectives were:  

 to check whether the automatic switching of focus helps; 

 to collect further usability problems of the initial design, Alpha, 
and Beta as Chinese rotator pinyin input solutions;  

 to compare user performance with the three designs; and  

 to collect information on user preference and comments on the 
three design solutions.  

4.4.2 Method 

Participants 

Twelve volunteers, seven of them males and five females, ranging in age 
from 21 to 35, participated in the user evaluation. Five participants were 
familiar with the Symbian S60 user interface. All were right-handed and 
daily users of the keypad pinyin input method (T9) on their mobile phone. 
All were first-time users of the rotator.  

Apparatus 

Figure 4.6 shows the prototype built on the Nokia 3650 and the testing 
environment. Participants just needed to hold the phone prototype to 
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complete the evaluation sessions. The phone prototype was connected to a 
laptop computer via a sharp box. All inputs via the rotator from the phone 
were transferred to the computer via the box. The computer, with the 
input engine, fed back the proper output to both the computer display and 
the phone prototype.  

I recorded the test sessions with two video recorders. One camera was 
attached to the phone prototype to record the phone display and the user 
interactions. The other video camera was used to record the user. 

 

Figure 4.6. The phone prototype and the test environment. 

Tasks and Materials 

The participants completed two text entry tasks with all three designs. The 
first task was for diagnostic purposes, and the second one was to collect 
user performance data. In the second task, the participants were asked to 
enter the messages exactly as they were presented on paper, which meant 
that they needed to correct any errors they made in the input process. I 
also instructed the participants to enter the text in the second task as 
accurately and quickly as they could. The messages used in both tasks 
were really short messages that I had collected from end users in past 
studies (see Table 4.1). All characters in the messages belonged to the 500 
most frequently used Chinese characters. For task 2, the average pinyin 
lengths for the two sentences are, respectively, 3.1 and 2.9 letters. The 
single-letter correlation (MacKenzie & Soukoreff, 2003) of the two 
messages in task 2 with the short message corpus presented in Section 2.2 
was 0.917. 

Experiment Design, Procedure, and Measures 

Every participant needed to complete both tasks with all three design 
solutions. The order of the input methods was counterbalanced. Before the 
evaluation started, I introduced the objectives of the evaluation, 
emphasizing that the evaluation was of our design solutions, not the 
participants themselves. Then participants were instructed to fill in a 
pre-evaluation questionnaire for profile collection. After that, the test 
session started, in which the participants entered the messages with the 



…
…

…
…

 

 62 

three methods. After completing the tasks with each method, the 
participant gave a subjective evaluation with a five-point Likert-scale 
questionnaire. Finally, participants were asked to choose the one design 
that they would like to have in their own mobile phone.  

When analyzing the results, I counted the number of “Clear” operations 
(the number of times the “C” key on the mobile phone was pressed) by 
each participant in the second task and computed their input speed in 
Chinese characters per minute. I also collected subjective scores for 
understandability and perceived performance of the design solutions. 
Understandability scores indicate the walk-up usability of the design 
solutions, and the perceived performance scores indicate the subjective 
perceptions and “feel” of system performance, which is relevant in terms 
of feasibility of take-up of the method in the long term. 

Table 4.1: Tasks and materials 

Task 1 

Message 
Please input the following message:  

我乘坐 MAS 613 航班 9：48 到达。 

Pinyin wo cheng zuo MAS 613 hang ban 9:48 dao da 
(average pinyin length: 3.1) 

Meaning I will arrive at 9:48 on flight MAS 613. 

Task 2 

Messages 

Please input the following messages:  

1.明天下午两点同学聚会，你能否和我一同参加？ 

2.今晚不回家吃饭了，十点左右到家。 

Pinyin 

1. ming tian xia wu liang dian tong xue jv hui, ni neng fou he wo yi 
tong can jia? (average pinyin length: 3.1) 

2. jin wan bu hui jia chi fan le, shi dian zuo you dao jia. 
(average pinyin length: 2.9) 

Meaning 

1. There is a party for classmates at 2pm tomorrow. Could you go to it 
with me? 

2. I cannot have dinner at home today, and I will arrive home at about 
10pm.  

 

4.4.3 Results 

Observation Results 

In general, the participants had no problem in understanding the initial 
design. All of them also quickly got the idea of “consonant plus vowel” 
with Alpha. But since in Beta the vowels visible on the first screen (see the 
second step in Figure 4.3) are the ones with only one letter, it took a while 
for all four participants who started the evaluation with it to get the idea 
of the consonant-plus-vowel approach. 
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Eight participants discovered that the rotator was clickable. All 
participants mastered it quickly after they knew this. No participant 
discovered that pressing the pen key can also activate the frames on the 
display. I informed the participants of this option, but they forgot it again 
during the input process.  

All participants readily accepted that pressing the rotator can select an 
item in the frames and mastered this action. No participants had problems 
in changing input mode with the rotator. Some participants noticed that 
the list in the letter frame was a looping one, and they rotated both 
clockwise and counterclockwise, to enter text more rapidly.  

Automatic focus switch was implemented in all designs. Some individual 
letters – for example, “g” – can also indicate the ending of a pinyin mark, 
and I applied this principle, too, in the initial design. All participants used 
both automatic and manual focus switching. However, I observed clear 
hesitation before participants rotated to the function items for focus switch 
and selected them: the participants seemed more attentive in such cases. 
Moreover, since sometimes automatic focus switch was on and sometimes 
it was off, depending on the input conditions, participants were observed 
to be slightly confused with the inconsistency. 

Performance Results 

I analyzed performance results based on the second user task. Table 4.2 
shows the number of Clear operations in the second task from all 
participants for error correction.  

Table 4.2: The number of Clear operations performed by each participant 

User 
no. Initial Alpha Beta 

User 
no. Initial Alpha Beta 

1 2 0 4 7 0 0 0 

2 3 4 0 8 2 0 2 

3 2 3 2 9 0 4 0 

4 0 2 0 10 2 4 2 

5 0 2 2 11 2 1 0 

6 0 2 0 12 5 2 0 

 

Participants seldom made serious errors with rotator input: on the average, 
there were two clear operations per user for Alpha, were one and a half 
for the initial design, and was only one for Beta. I observed that 
participants sometimes passed targets and had to rotate back, but that 
could be corrected by navigation and did not introduce any errors or Clear 
operations. The ANOVA test indicated that the main effect of design 
solution on error frequency was not significant (F2,35 = 1.36, ns).  
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Table 4.3 and Figure 4.7 show results concerning input speed with all 
design solutions. As Figure 4.7 shows, there was no uniform pattern for all 
participants. Some participants (3, 7, 9, and 12) were faster with the initial 
design, while others achieved higher input speed with Alpha (1, 2, 4, 8, 
and 10) and the rest were faster with Beta (5, 6, and 11). On average, 
participants achieved the highest input speed with Alpha, followed by the 
initial design and Beta. ANOVA indicated that the difference was not 
significant (F2,35 = 0.37, ns). 

  
Table 4.3: Input speed and ANOVA test results 

Variable 
Design solutions 

F p 
Initial Alpha Beta 

Input 
speed 
(CCPM) 

Mean 6.46 6.56 6.17 
0.37 .70 

SD 1.05 1.28 1.11 
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Figure 4.7. Entry speed of each user. 

Results of Subjective Evaluations 

Table 4.4 and figures 4.8, 4.9, and 4.10 show the results from the subjective 
evaluations. Participants thought the initial design was the easiest to 
understand, followed by Alpha and Beta. ANOVA indicated that the main 
effect of design solution was significant (F2,35 = 17.64, p < .011). A further 
t-test showed that the difference between any two design solutions was 
significant.  
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Table 4.4: Subjective evaluation results for understandability and perceived performance 

 

As Table 4.4 shows, participants thought they could achieve the best 
performance with Alpha, followed by Beta and the initial design. ANOVA 
indicated that the main effect of design solution was significant (F2,35 = 4.63, 
p < .05), and a further t-test indicated that the scores for Alpha were 
significantly higher than those for the other two designs.  
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Figure 4.8. Subjective evaluation results for the understandability of all design solutions. 
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Figure 4.9. Subjective evaluation results for perceived performance. 

Figure 4.10 shows which design the participants would choose for their 
own mobile phone. Two of the 12 participants liked both the initial design 
and Alpha, but not Beta. The other 10 participants chose just one as the 

Variable 

Design solutions 

F p 
Initial Alpha Beta 

Understand-
ability 

Mean 4.83 4.17 3.00 

17.64 .00 

SD 0.39 0.84 0.95 

Perceived 
performance 

Mean 2.83 3.92 3.08 
4.63 .02 

SD 1.03 0.79 0.90 
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most highly preferred solution. Seven of them preferred Alpha, one chose 
the initial design, and two chose Beta.  
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Figure 4.10. User preferences regarding the design solutions. 

4.5 DISCUSSION 
Although a rotator is not a direct input device as a keyboard is, it has 
some advantages. First and foremost, it is very good for navigation, and it 
supports selection as well. This means that the rotator is sufficient in itself 
for some simple interaction tasks. In particular, it is a tempting choice for 
text entry in languages that have a larger character set than the keyboard 
can accommodate, and for which the production of each character 
therefore inherently requires navigation and selection. Moreover, that 
users do not need to move their fingers among different components of 
the input device is a potential source of improvements in operation 
efficiency. Finally, the rotator can be used on devices that are so small that 
they cannot accommodate even a normal ITU-T keypad.  

Proceeding from the initial design of Chinese pinyin input with a rotator, I 
provided two new design solutions, based on the idea of “consonant plus 
vowel.” The empirical research results showed that there is no significant 
difference among the three designs in user performance. An interesting 
question is how much the prediction aided in the initial design. The time 
per character entered consists of two parts: length of the list to be scrolled, 
and number of selections. Prediction does not affect the latter. Table 4.5 
shows the number of each type of operations in each of the cases. 
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Table 4.5: Number of operations for entry of the test sentences 

 Scrolling distance Selections 

Initial, without prediction 1097 119 

Initial, with prediction 652 119 

Alpha 979 78 

Alpha, with prediction 694 78 

Beta 970 78 

Beta, with prediction 695 78 

 

Thus one can see that prediction shortens the navigation by about 30% in 
the initial design, and in the predictive version most of the navigation time 
is taken by entry of the first Roman letter of the pinyin mark. In Alpha and 
Beta, on the other hand, the number of selection operators is only about 
65% of that in the initial design. This explains well why the differences 
balance out, and no significant time difference was found in the test. 

Table 4.5 also shows that if prediction had been implemented for Alpha 
and Beta, their motor performance should have been almost equal. 
Moreover, they do not lose much to the date stamp method in scrolling 
distance, and, therefore, the number of selection operations becomes the 
decisive factor. Here the difference is the same as without prediction – i.e., 
clearly favoring Alpha and Beta over the date stamp method. 

The speeds published for Chinese pinyin input with the 12-key keypad 
vary greatly. Lin and Sears (2007) reported that the input speed of a pinyin 
method with the 12-key keypad is about 5.5 WPM when the participants 
were instructed to balance input speed and error rate as they would. Liu 
and Wang (2007) reported that Chinese pinyin phrasal input with the 12-
key keypad can enable users to reach an average input speed of up to 34 
CCPM although some other phrasal pinyin input methods can just reach 
an average speed of 14 CCPM. This increase in input speed may have 
appeared because the experiment settings were different, Chinese users 
are getting more and more familiar with the mobile devices and more 
advanced features and technologies are being developed. Therefore, I 
believe 6–7 CCPM for rotator-based Chinese input is already a good start 
for a method that does not use character-level prediction.  

The two designs aim to promote usability of the rotator Chinese input by 
enabling automatic switching of focus. However, this did not help as 
much as I expected. Both automatic focus change and manual change were 
used with all three design solutions. In some conditions, users had to 
select the function items in frames manually to switch the focus. For 
example, if users could not find the target character in the predicted 
Chinese character list, they had to move the focus from the Chinese 
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character frame to the letter frame manually. On the other hand, 
sometimes they did not enter the full pinyin mark when they noticed that 
the character needed had already appeared in the Chinese character frame. 
Then they would stop creating the pinyin mark and move the focus to the 
Chinese character frame to select the character. 

New designs for focus change are still needed. Automatic switching of 
focus worked in some cases but not always. The inconsistency confused 
some users and requires more attention. I observed that the focus change 
possibilities provided made the input process less smooth with Alpha and 
Beta. Two techniques might help with this. One is to introduce dedicated 
keys for changing focus; using them might become automatic after a 
period of practice. Another possibility (only for Alpha and Beta, which use 
phonetic characters) is to remove the inconsistency by abandoning 
predictive input and ask users to input characters one by one. In such a 
case, the focus could always be switched automatically between the letter 
frame and the Chinese character frame. 

Subjective evaluations are usually more sensitive than performance results, 
as indicated in many past studies (Darroch et al., 2005; Hornbaek, 2006). In 
our study, user performance results did not show improvements for 
Alpha and Beta in comparison to the initial design, but the subjective 
results showed that users believed they could perform better with Alpha 
than with Beta and the initial design. Many participants commented that 
they thought the consonant-plus-vowel approach would decrease the 
number of scrolling and selection actions. When comparing Alpha with 
Beta, many users commented that (contrary to our expectations) they were 
not familiar with the phonetic order of consonants in Beta, which then led 
to worse performance.  

As the subjective results showed, the initial design was the easiest to 
understand for novice users. Alpha also got an average score above 4, 
which indicated that it, too, was easy to understand. However, Beta 
received a neutral score. This result was congruent with what I observed 
in the evaluations. In addition to the problems caused by unfamiliarity 
with the phonetic order of consonants, the start of the vowel list consists of 
only single-letter vowels, and users did not realize that the list continued 
beyond what was visible on the first screen.  

When choosing the design they preferred overall, nine out of 12 users 
voted for Alpha. Users seem to value perceived performance of a design 
solution over immediate understandability. 

4.6 SUMMARY 
I designed two new solutions, Alpha and Beta, for Chinese pinyin input 
with a rotator and conducted an empirical study to compare them in use 
by novice users. The results indicated that, although there was no 
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significant difference among the three design solutions where user 
performance is concerned, users believed that they could achieve better 
performance with Alpha, and they chose it as their preferred input 
technique. 

This is a promising result, because the test setup favored the traditional 
design. No predictive input was implemented for the new designs. Also, 
all test participants were novices in using the rotator as an input device; it 
is reasonable to expect that in a longitudinal study the advantages of the 
new techniques, which require a smaller number of selections, would 
become more pronounced.  
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5 A Mandarin Dictation Solution 

5.1 INTRODUCTION 
The text entry methods discussed above are very useful in contexts with at 
least one hand free. However, mobile devices are expected to be used in 
many different contexts, including those with no free hands – for example, 
when users are riding a bicycle or wearing thick gloves. Speech input 
provides an additional modality and solution for those contexts (Entwistle, 
2003; Price & Sears, 2005; Howell, Love, & Turner, 2005; Alhonen et al., 
2007). Speech recognition of natural languages is very complex and faces 
two general challenges: recognition of continuous speech and speaker 
independence (Entwistle, 2003). Although some dictation systems have 
been available on desktop computers for a few years (Sacher, 1998), the 
technologies were mostly applied for very limited functions in mobile 
devices, including name dialing, information retrieval, and menu 
navigation (Chang et al., 2002; Karpov et al., 2006; Alhonen et al., 2007). So 
far, only isolated speech recognition technology has been implemented for 
dictation of short messages on mobile devices, with which users need to 
enunciate word by word to the system with clear pauses between any two 
consecutive words (Karpov et al., 2006; Alhonen et al., 2007).  

Speech recognition technologies and relevant user interfaces encounter 
greater challenges with Chinese (Sacher, Tng, & Loudon, 2001; Alhonen et 
al., 2007; Liu, Ding, & Liu, 2009). First, most Chinese characters are 
homophonic with many others. For example, there are only about 400 
syllables in Mandarin Chinese, together corresponding to tens of 
thousands of Chinese characters. Therefore, even if a phonetic syllable is 
correctly recognized, further user interactions are still required for 
choosing the target Chinese character. Second, although Mandarin is the 
dialect with the most speakers in China, spoken Chinese falls into 10 main 
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dialect groups. It is hard to cover potential users with a single, universal 
solution. Even worse, since how people speak Mandarin is affected by 
their native dialect, the effects of different dialects should be taken into 
account in Mandarin speech recognition technologies. Third, there are 
multiple tones for Chinese spoken languages, and most times they are 
semantically meaningful. For example, Mandarin has five tones. Speech 
recognition technology has to consider how to recognize tones for spoken 
Chinese and utilize them in the recognition results.  

Numerous Mandarin speech recognition or dictation systems on personal 
computers have been built since the early 1990s, and high recognition 
accuracies have been reported for many of them (Gao, Zhong, & Ceng, 
1995; Fu et al., 1996; Chen et al., 1997; Wang et al., 1997; Huang et al., 2000). 
However, studies examining human–computer interaction with Mandarin 
speech recognition systems are rare. Moreover, since mobile devices are 
used in diverse contexts, not just in offices and homes, it is worth 
exploring the application of speech recognition technology as a text entry 
solution for mobile devices. 

In this chapter, human factor studies of Mandarin message dictation 
applications on mobile phones are presented. In the next section, I present 
two user studies for evaluating utility and usability of the Mandarin 
message dictation application with working prototypes. After that, I 
present a Wizard of Oz study to explore the effects of speaking style on 
user performance and satisfaction. Finally, the conclusions from the 
studies are summarized.  

5.2 EVALUATING THE ISOLATED MANDARIN MESSAGE DICTATION 

APPLICATION 

5.2.1 Objective 

I conducted two rounds of user evaluations of the isolated Mandarin 
message dictation application, with a similar approach (see Figure 5.1). 
The main objective was to understand the utility and usability of the 
isolated Mandarin speech dictation application by collecting user 
performance data for recognition rate and text entry rate.  

In both rounds of studies, I measured recognition rates with end users. 
Moreover, I also explored the effect of adaptation to users’ voices on user 
performance. After the first user study, we optimized the recognition 
engine and made small changes in the interaction process (Alhonen et al., 
2007). The second study was conducted to check whether the performance 
optimization of the speech recognition engine worked. In this section, the 
two studies are presented together, since their approaches and results are 
comparable.  
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Figure 5.1. The two rounds of user studies. 

5.2.2 The Isolated Mandarin Message Dictation Application 

The Mandarin message dictation application works independently on 
mobile phones, where the recognition engine works without involving 
any computing ability from any other sources. The Mandarin message 
dictation application supports isolated dictation of Chinese characters 
only: users are required to leave a short pause between syllables (one 
syllable corresponds to one Chinese character). In the application, pressing 
the “OK” key can initiate a dictation process. Different indicators were 
designed to show stages in the dictation process. A rotating bar indicates 
when users can speak and the system record, whereas a rotating hourglass 
is shown when a syllable is under processing. The top four recognition 
results are given in the form of pinyin marks in a vertical frame, as Figure 
5.2b shows. Also, Chinese characters that correspond to the highlighted 
pinyin mark are displayed horizontally at the top of the application. They 
are ordered from higher to lower probability on the basis of previous 
characters in line with a language model. The pinyin and character options 
would be shown to users for about a second. Users can move up/down in 
the selection of syllables (pinyin marks) and left/right in the selection of 
characters by pressing the five-way navigation key of the mobile phone. 
Users can also type the numeric tag in front of each character option for 
fast selection.  

       

 

Figure 5.2. The screenshots for the isolated Mandarin message dictation application on a 
Symbian S60 phone. 

Predictive input is also supported by the prototype. The application 
constantly predicts the most probable next character for users on the basis 
of the previously entered character and the language model (see the final 

Optimization of 
the recognition 
engine on the 

basis of the first 
study’s results 

The second user 
study, to check 

whether the 
optimization 

worked 

The first user study, 
to evaluate the 

isolated Mandarin 
dictation application 

with users 

a) UI for user 
enrollment 

b) UI for showing 
recognition results 

c) Ability to select errors 
from the retained results  

 

d) Predictive input 



…
…

…
…

 

 74 

image in Figure 5.2). This provides an option for users to bypass dictation 
of the next character, which often follows the previous character. 

The application supports three means of error correction. The recognition 
options are retained in order to allow corrections later. Users can move the 
cursor to the incorrect character and revise it by re-selecting the target 
pinyin and corresponding Chinese character. Users can also delete the 
wrong character by pressing the “clear” key and say the syllable again. 
Moreover, users can switch off the dictation and correct errors with 
keypad input methods. The correction mechanisms may slow down the 
input process, but they have several advantages. First, users have full 
control over the recognition process: incorrect characters can be cleared 
immediately or afterwards, in different ways. Furthermore, the speech 
recognition of the next character can be predicted with the language 
model to select the most probable followers. Outside-vocabulary words 
can be handled in a convenient way: if a user cannot dictate some syllables 
even after several trials he or she can stop the dictation, type the character, 
and resume dictation, whereas in some conventional systems unknown 
words may corrupt the resulting sentence. 

The isolated Mandarin message dictation also supports user enrollment 
that can adapt the system to users’ voices. The enrollment can be invoked 
from the option menu. During enrollment, the prototype guides users 
through 35 phonetically rich sentences that have to be read character by 
character. Figure 5.2 (a) shows the screenshot for user enrollment. The 
green frame highlights one character at a time for users to utter. Once a 
syllable is detected as having been spoken, the green highlighting switches 
temporarily to yellow and then jumps to the next character. If a character 
is mispronounced, users can press the Clear key to delete the record and 
read it again. After all characters are uttered, the dictation application 
needs to be restarted, for bringing the data into use. Although the main 
purpose of user enrollment is to adapt the acoustic models to the speaker’s 
voice, a side benefit is that it also assists users to learn the isolated 
character speaking style that is required by the application.  

5.2.3 Method 

Participants 

Sixteen participants took part in the two rounds of user studies, with eight 
participants in each. However, since there were several months between 
the two studies, the participants in the experiments were different. Both 
experiments are within-subject designs. All participants were required to 
enter the same text messages twice, once before and once after the 
adaptation.  

In both experiments, the native dialect of all participants was Mandarin, to 
ensure that the results were comparable.  
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Tasks and Materials 

In both experiments, the participants needed to copy five text messages 
twice with the Mandarin SMS dictation application. The five text messages, 
selected from a Chinese SMS corpus, include 87 Chinese characters and 11 
punctuation marks (see Table 5.1). All messages were constantly shown to 
the participants during the experiment. Errors in the recognition results 
were instructed to be corrected with the 12-key keypad-based pinyin 
character input method provided in Nokia E50 (see Figure 5.6). The input 
processes were recorded in their entirety with a video camera for data 
analysis.  

Table 5.1: The five messages to be entered in both evaluation studies by each participant 

No. Entered messages 

1 

Message 国外的饭实在是太难吃了，因此很少出去吃，多数自己

做。 

Meaning  
It is too hard to get used to the food overseas, so I 
seldom go to restaurants but normally cook myself. 

2 

Message 王强什么时候回家呢？ 

Meaning When will Wang Qiang (a person’s name) come back? 

3 

Message 爸妈不想去，谁有时间有兴趣就去吧。注意安全。 

Meaning 
My parents woud not like to go for the program. If 
anyone else is insterested in it, please feel free to go and 
take care.  

4 

Message 完全不知道怎么表达我的谢意。 

Meaning I don’t know how to express my appreciation. 

5 

Message  
人总是这样，得到的东西不好好珍惜，失去了才觉得可

贵。 

Meaning 
People do not cherish things they already have but when 
they lose these things, they start to feel their value. 

 

Apparatus 

The device used in both experiments was the Nokia E50 (see Figure 5.6). 
There is little difference between the applications that were used in the 
two studies. In the first user study, when users selected a target Chinese 
character from the options presented, by clicking the navigation keys, the 
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clicking sound often activated the speech recognition engine. The 
unnecessary recognitions interfered with the input process and decreased 
user performance. In the second study, I set a 500 ms timeout after each 
recognition so that the speech recognition would not be wrongly activated. 

Procedure 

Each participant took part in the studies in a quiet lab with a researcher. 
First, the researcher briefed the participant on the objectives. Then the 
participants were instructed to use the application to enter text messages 
and give comments on their first impression of the application. Before the 
data collection, the researcher explained to the participant how to use the 
dictation application, so that each participant had the same understanding 
of the input process. This was followed by a trial session wherein the 
participant could practice until ready to start the data collection sessions. 
The data collection phase included two sessions: one before the enrollment 
and the other after the enrollment. Finally, the participant was asked to fill 
in a five-point Likert-scale questionnaire to evaluate the dictation 
application’s acceptability, utility, and so on. After the experiments, each 
participant received a gift. 

5.2.4 Results 

Recognition Rates 

Figure 5.3 and Table 5.2 present the results for the 4-best recognition rate. 
The 4-best recognition rate refers to the rate that the target syllable is 
included in the top 4 recognition results. In the first study, both average 4-
best recognition rates before and after enrollment were around 70%. But in 
the second study, both 4-best average recognition rates were above 95%. 
Recognition rates increased after enrollment, in both studies, but the 
increases were negligible.  
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Figure 5.3. A comparison of recognition rates. 
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A two-way mixed-design ANOVA analysis indicated that the recognition 
rates in the second study were significantly higher than those in the first 
study (F1,15 = 35.28, p < .001). The main effect of enrollment is not 
significant (F1,15 = 0.20, ns). The interaction is not significant either 
(F1,15 = 0.009, ns).  

Table 5.2: Recognition rates and standard deviations 

Recognition 
rates (4- best) 

Speaker-independent Speaker-dependent 

Mean SD Mean SD 

1st study 67.8% 17.5% 69.6% 1.2% 

2nd study 95.5% 14.1% 96.6% 2.4% 

 

Text Entry Rates 

Figure 5.4 and Table 5.3 show the results concerning text entry rates when 
error corrections were also taken into account in the analysis. The average 
text entry rates ranged from eight to 10 CCPM. Although the 4-best 
recognition rates in the second study were significantly higher than those 
in the first study, text entry rates in the second study do not show a great 
increase in comparison with the first study.  

A two-way mixed-design ANOVA analysis was conducted, and the 
results indicated that there were no significant differences between the 
two studies for text entry rate (F1,15 = 0.0001, ns). However, the main effect 
of enrollment was significant (F1,15 = 8.60, p < .05), and the interaction was 
significant (F1,15 = 7.88, p < .05). Further paired t tests were conducted to 
analyze the interaction effect. The results indicated that the enrollment 
significantly increased text entry speeds in the first study (t = 0.036, p < .05) 
but not in the second study (t = 0.36, ns).  
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Figure 5.4. A comparison of text entry rates. 
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Table 5.3: Text entry rates and standard deviations 

Text entry 
rates (CCPM) 

Speaker-independent Speaker-dependent 

Mean SD Mean SD 

1st study 8.27 1.47 9.95 1.71 

2nd study 8.78 1.32 8.85 1.67 

Observed Results and Subjective Scores 

Figure 5.5 shows the subjective scores for three aspects of the application: 
easy of use, perceived performance, and usefulness. The scores in the 
second study were slightly better than the scores in the first study. The 
results indicated that participants believed that speech dictation is a useful 
tool for them; however, they are neutral as to its usability and perceived 
performance.  
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Figure 5.5. The results for text entry rate. 

During the study, many participants complained about the isolated 
speaking style and believed that it greatly affected the input performance. 
Most of them expected that the application would support continuous 
dictation, enabling them to enter text in a more natural way without 
selecting the target pinyin and characters. 

5.2.5 Discussion 

The results indicated that the 4-best recognition rates in the second study 
were significantly higher than those in the first. This is largely because of 
the optimization of the speech recognition engine between the two rounds 
of user studies. Three major updates of the engine had been done: first, the 
acoustic model was optimized with more training samples, covering more 
accents and samples from mobile phones; second, an adaptation algorithm 
was added for recording channels, and the adaptation helps to fine tune 
the recordings of people’s voices from different pieces of hardware; and, 
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third, the language model was updated with a larger corpus. However, 
the participants were not significantly faster in their text entry in the 
second study. The main reason might be the timeouts (500 ms) that I 
added after each recognition with the second prototype. The timeout was 
added to avoid mis-activation of the speech recognition engine; however, 
adding a timeout after each click clearly decreased the text entry rates.  

Although enrollment did not help to increase recognition rates in the 
studies, participants in the first study achieved higher speeds after the 
enrollment. It is believed that the difference in text entry rates in the first 
study did not result from the enrollment, since enrollment did not help to 
increase recognition rates. Instead, since the recognition rates in the first 
study (around 70%) were much lower than those in the second study 
(around 95%), the participants needed to spend more time on error 
correction in the first study. Thus, it is assumed that the increase in text 
entry rates in the first study was mainly a result of the practice effect on 
the error correction tasks. Since the recognition rates were very high in the 
second study, error correction would not require much time or effort. 
Thus, little practice effect was involved to cause the increase in text entry 
rates.  

The average 4-best recognition rate in the second study reached around 
96%. However, it did not result in a comparable increase of subjective 
scores on usability and perceived performance compared with the results 
in the first study. This is partly because people don’t like the isolated 
speaking style. Participants in both studies complained about the speaking 
style and thought it was not so natural to use. Moreover, it was also 
noticed that when users entered text with the SMS dictation application, 
they needed to switch between the oral modality and manual modality for 
different tasks. This was not driven by users but the application. For 
example, when starting with the recording of voice, users need to press a 
key to initiate the recording process. Moreover, candidate selection and 
error corrections were fully done through manual operations of the keys. 
In the two rounds of evaluation studies, I did not take a close look at the 
effects of modality switch in the dictation process, and it could be covered 
in my future work.  

5.3 EFFECTS OF SPEAKING STYLE ON DICTATION OF MANDARIN TEXT 

MESSAGES 

5.3.1 Objectives 

In the isolated Mandarin message dictation application, users need to 
enter messages by speaking to the phone character by character with clear 
pauses between characters. The discontinuous input style impaired 
usability of the application. Users expected to speak continuously to the 
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application as they usually do in daily life or at least to avoid the selection 
of pinyin marks.  

There is still more than one way to implement a continuous or 
quasi-continuous Mandarin message dictation application. This is because 
there is a middle level between sentence and character in Chinese: the 
phrases. Hence we have two options for our future work: we can develop 
either a phrase- or a sentence-based Mandarin message dictation system 
on mobile phones (Alhonen et al., 2007). The input process with a phrasal 
dictation system can be as follows: first, users articulate a phrase to the 
application; second, the system recognizes it and provides a few 
recognition options for users to select. Since most phrases in Chinese (see 
Figure 2.4) consist of two to three characters, the advantage of a phrase-
based dictation system would be that it has comparatively low 
requirements for the performance of the mobile device, including its 
processors and memory. Moreover, it should not require users to select the 
syllables recognized. Instead, users should be able to select the target 
phrases directly. However, when compared with sentence input, phrase-
based dictation still requires clear pauses between phrases. In that sense, 
phrase-based dictation is still an isolated recognition solution.  

To gain better understanding of users’ preferences in relation to speaking 
styles, I conducted this study exploring effects of speaking styles (phrase-
based or continuous speaking styles) on user performance and preference. 
However, I cannot study the effects of speaking styles without taking 
some other significant factors into account. Text length and recognition 
rate, which have already been shown to be able to affect user performance 
with speech recognition systems (Price & Sears, 2005), were explored 
together in this study. The effect of recognition rate on user performance 
and satisfaction with speech input is so apparent that it seems not 
necessary to cover it in this study anymore. However, it is still included in 
this study as a key independent variable since I want to understand if 
interaction effects exist among the three variables on user performance 
and satisfaction. It is believed that the study’s results, especially if there 
are interactions among the three independent variables, can assist 
researchers in decisions on how to develop a more useful dictation 
application for mobile phones.  

Because of the lack of working prototypes, I applied the Wizard of Oz 
method in this study. Wizard of Oz experiments have proven to be an 
effective method to collect data on interactions between a user and 
complex systems (Dahlbäck, Jönsson, & Ahrenberg, 1993; Bernsen & 
Dybkjær, 1998; Fiedler, Gabsdil, & Horacek, 2004). The method has been 
applied in the design of speech- or pen-based systems (Klemmer et al., 
2000; Sinha, Shilman, & Shah, 2001; Lyons, Skeels, & Starner, 2005), 
context awareness solutions (Davis et al., 2007), augmented reality (Dow 
et al., 2005), and medical systems (Molin, 2004). Wizard of Oz is usually 
applied in early stages of system design to gain understanding of the 
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user’s mental model and to compare interaction design options, especially 
when there is no working prototype available. The technique helps to save 
costs and enables user involvement at an early stage of system design. The 
technique fits well with our study objectives for the following two reasons. 

The study is conducted in an early stage of design of the next version of 
the Mandarin message dictation application for mobile phones. There is 
no working prototype available for a true user study. However, 
understanding user behavior and preferences concerning speaking styles 
is critical for showing the appropriate direction for development of the 
system. Hence, we created a software program specifically for this study 
to simulate the interaction processes with different speaking styles (Liu, 
Jiang, & Yang, 2009). All short messages that users were to enter were 
predefined beforehand. Hence, when users interact with the system, all of 
the necessary interaction elements were there and they could hardly 
realize that the recognition engine was missing.  

In this study, I wanted to address the following questions: 

1) What are the effects of speaking style on user performance and 
preference in combination with recognition rate and text length?  

2) What is the interaction effect of the three factors on user performance 
and preference? Will users have different preferences on speaking style 
under different circumstances, e.g., with different recognition rates or 
when entering messages of different length? 

3) Will the effects of recognition rate and text length be comparable to past 
results? 

4) What design implications can we find from the study’s results 
concerning Mandarin message dictation systems? 

5.3.2 Method 

Design 

The experiment was a 3×3×2 within-subject design with three 
independent variables: interaction style, recognition rate, and length of 
messages. The three interaction styles are phrase-based input with four 
candidates, phrase-based input with seven candidates, and the sentence 
input. Three levels of recognition rates were taken into account: 50%, 70%, 
and 90%. Users needed to enter messages of two different lengths: 10 
characters and 20 characters. Thus, at least 18 short messages need to be 
entered to cover all conditions. 

The time for entering each short message was recorded, and the 
participants were also asked to give a score to each input case with a 
questionnaire using a five-point Likert scale. 
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Participants 

Twelve users, half of them male and half female, took part in the study. 
All were users of SMS and the Chinese pinyin input method. All were 
familiar with the user interfaces of the Symbian S60 UI and the application. 
All were right-handed.  

    

a) User interface for 
phrasal input style with 

four candidates 

b) User interface for 
phrasal input style with 

seven candidates 

c) Sentence input: after 
users speak to the 
phone, the whole 
sentence appears 

d) The Nokia 
E50 

Figure 5.6. The interfaces for different speaking styles and the phone used in the experiment: 
a) phrasal input with four options, b) phrasal input with seven options, c) sentence input, and d) 
the Nokia E50. 

Tasks 

The task that participants needed to complete in the experiment was to 
copy 18 presented messages by speaking to the mobile phone in 
predefined ways. The outcome messages for each dictation were also 
predefined to indicate the recognition rate as if there was a functioning 
speech recognition engine as the back end. For example, if a message with 
10 Chinese characters is pre-defined to be 50% correctly recognized, two 
phrases and one character might be shown to be wrongly recognized. 
Where the errors appeared in the message would be randomly decided by 
the program. And the mistaken phrases or characters would be chosen 
from phrases or characters with similar pronuciations that were prepared 
beforehand by me. The participants were also instructed to correct all 
errors with the Chinese pinyin input method provided by the Symbian 
S60 platform in Nokia E50. It was up to participants whether they would 
correct an error immediately after it appeared or after a whole message 
was entered in the phrasal speaking mode. Time spent on error corrections 
was taken into account in data analysis.  

During the task completion process, all messages were shown to the 
participants with clear indications of the input style to be used for each 
message. Table 5.4 shows how I presented messages to users. Messages to 
be entered with phrasal speaking style were shown with an underline 
between any two consecutive phrases, and messages to be entered with 
continuous speaking were shown just as they are to participants.   
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Materials 

Eighteen short messages were selected from a real short message corpus 
for this study. For each message, the incorrectly recognized characters 
were randomly arranged. Table 5.4 shows examples of the short messages 
and their form of presentation, indicating different input styles. 

Table 5.4: Examples of the presentation of messages 

Speaking 
style 

Message with 20 characters Message with 10 
characters 

Phrase  每天__高兴__时候__感觉__不错__

但是__郁闷__时候__非常__难受 

我们__现在__正在__教室__

上课 

Sentence or 
continuous 
speaking 

天气温度过高 注意孩子防暑降温 

多给孩子喝水 
衷心希望大家每天快乐 

Apparatus 

A Nokia E50, with a software program designed specifically for the 
experiment, was used in the study. Results for task completion time were 
automatically logged by the program for data analysis.  

Procedure 

Each participant took part in the experiment individually with a 
researcher in a quiet lab. First, the researcher briefed the participant on the 
objectives of the study. Then the researcher explained to the participant 
how to use the dictation application to enter messages. There was also a 
trial session in which the participant could practice until ready to start the 
data collection sessions. The data collection phase included two sessions: 
the 10-character message session and the 20-character message session. To 
balance out any effects of testing order, half of the participants started 
with the 10-character message session and half started with the other one. 
The Latin-square experiment technique was applied to offset any possible 
effects caused by testing orders of speaking style and recognition rate.  

When entering a message, a participant needed to speak to the mobile 
phone in the predefined way and make sure that the message was entered 
exactly like the one presented. After entering a message, participants gave 
a score to the task difficulty, with a five-point Likert-scale questionnaire. 
The process was repeated until the participant had entered all 18 messages. 
Each participant received a gift after the experiment. 

5.3.3 Results 

Results for Task Completion Time 

Results related to task completion times are shown in Table 5.5 and Figure 
5.7. A three-factor repeated ANOVA test was applied to analyze the data. 
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Main effects of all three factors are significant (recognition rate: F2,22 = 
46.88, p < .001; interaction style: F2,22 = 22.73, p < .001; SMS length: F1,11 = 
27.61, p < .001). None of the interactions were significant. Further analysis 
of the effect of recognition rate indicated that there were significant 
differences between any two of the three recognition rates. The higher the 
recognition rate, the less time was needed to enter a message. Further 
analysis of speaking styles found that completion times with sentence 
input were significantly shorter than with either of the phrasal input styles. 
No difference was found between the two phrasal input styles. It was also 
found that participants needed to spend significantly longer to enter the 
20-character messages than the 10-character messages. 

Table 5.5: Task completion times, with standard deviations 

Task completion 
time (s) 

Speech recognition rates (%) 
50% 70% 90% 

Message lengths (in characters) 

10 20 10 20 10 20 
Four-phrase 

input 
Mean 74.33 117.24 69.99 98.05 42.66 63.83 

SD 18.152 17.637 32.248 36.596 10.475 12.486 
Seven-phrase 

input 
Mean 94.25 117.78 61.62 103.88 42.52 67.64 

SD 22.945 20.053 21.719 43.302 14.189 11.084 
Sentence 

input 
Mean 65.34 100.76 58.383 73.78 29.70 42.85 

SD 16.773 34.463 28.972 17.355 15.132 10.816 
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Figure 5.7. Comparison of task completion times. 

Results for Text Entry Rate 

I converted the task completion time into text entry rate in CCPM and 
explored the effects of recognition rate, speaking style, and message length 
on it. How I calculated CCPM from the task completion time is shown in 
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Equation 5-1, where N is the number of characters that people entered 
(with punctuation) and T is the task completion time in seconds.  

CCPM = N/T×60 (5-1) 

Table 5.6 shows the results for text entry rates. Recognition rate, 
interaction style, and message length all affected text entry rates as shown 
in the table. Text entry rates increased as the recognition rate increased. 
The text entry rates with sentence input were all higher than those with 
phrasal inputs. On the other hand, text entry rates with the two phrasal 
inputs were similar, and there was no clear pattern in their differences. 
Text entry rates in dictation of long messages were higher than those for 
dictation of short messages.  

Table 5.6: Means and standard deviations for input speed 

Input speed 
(characters per 

minute) 

Speech recognition rates (%) 
50% 70% 90% 

Message lengths (in characters) 

10 20 10 20 10 20 

Four-phrase 
input 

Mean 8.75 10.44 9.73 13.41 14.83 19.39 
SD 3.254 1.542 2.964 3.510 3.514 3.350 

Seven-phrase 
input 

Mean 6.67 10.48 10.61 13.18 15.29 18.17 
SD 1.408 1.886 2.806 4.490 4.069 2.896 

Sentence 
input 

Mean 9.79 12.91 11.84 17.28 25.69 29.94 
SD 2.729 3.342 3.851 4.880 14.239 8.843 

 

Table 5.7: Effect of recognition rate, input style, and SMS length on input speed 

Source F p 

Recognition rate 87.884 < .001 

Speaking style 27.088 < .001 

Message length 27.053 < .001 

Recognition rate × speaking style 7.494 < .001 

Recognition rate × message length 0.249 .780 

Speaking style × message length 0.281 .755 
Recognition rate × speaking style × message 

length 
0.342 .850 

 

Table 5.7 shows the three-factor repeated ANOVA test results for text 
entry rate. Main effects of recognition rate (F2,22 = 87.884, p < .001), input 
style (F2,22 = 27.088, p < .001), and message length (F1,11 = 27.053, p < .001) 
are all significant. Moreover, the interaction effect between recognition 
rate and speaking style was significant (F4,44 = 7.494, p < .001). Further 
analysis indicated that text entry rates with different speaking styles were 
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significant at the 0.05 level when recognition rates were 50% and 70% (50%: 
F2,22 = 5.517, p = .005; 70%: F2,22 = 3.525, p = .035). Text entry rates with the 
three speaking styles were significantly different when the recognition 
rate is 90% (F2,22 = 16.782, p < .001). No other significant interactions were 
found.  

Results for Subjective Scores 

Results regarding subjective scores are shown in Table 5.8. 

Table 5.8: Descriptive results concerning subjective evaluations 

Subjective scores  
(1 = very dissatisfied, 
3 = neutral, 5 = very 

satisfied) 

Speech recognition rates (%) 
50% 70% 90% 

Message lengths (in characters) 

10 20 10 20 10 20 
Four-phrase 

input 
Mean 1.83 2.67 2.33 3.25 4 4.33 

SD 0.835 0.778 0.888 0.754 0.603 0.492 
Seven-phrase 

input 
Mean 1.75 2.75 2.42 3.83 4 4 

SD 0.866 0.754 0.996 0.835 0.739 0.426 
Sentence 

input 
Mean 1.33 2.75 2.67 3.67 4.33 4.42 

SD 0.492 0.866 0.888 0.778 0.651 0.515 
 

 

Table 5.9: Effect of recognition rate, input style, and SMS length on subjective scores 

Source F p 

Recognition rate 135.644 < .001 

Speaking style 0.933 .408 

Message length 38.047 < .001 

Recognition rate × speaking style 3.196 .022 

Recognition rate × message length 9.683 .001 

Speaking style × message length 0.376 .691 
Recognition rate × speaking style × message 

length 
1.883 .130 

 

Table 5.9 shows the ANOVA test results, which indicate that the main 
effects of recognition rate (F2,22 = 135.644, p < .001) and SMS length (F2,22 = 
38.047, p < .001) were significant. Recognition rate had significant 
interactions with SMS length (F2,22 = 9.683, p < 0.001) and speaking style 
(F4,44 = 3.196, p < .05). No other significant effect was found. When the 
recognition rates were 50% and 70%, participants gave similar scores to 
the three speaking styles. When the recognition rates increased to 90%, 
they gave higher scores to sentence input but the difference is not 
statistically significant (F2,22 = 2.546, ns). When the recognition rates were 
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70% and 50%, users gave significantly higher scores to tasks of entering 20 
characters (50%: F1,11 = 35.609, p < .001; 70%: F1,11 = 30.075, p < .001). When 
the recognition rate reached 90%, users were inclined to give similar 
scores to both types of tasks (F1,11 = 1, ns). 

5.3.3 Discussion 

The results of this experiment showed that text entry rates for Mandarin 
dictation range from 6.67 CCPM to 29.94 CCPM, depending on 
recognition rate, input style, and the length of the message entered. 
However, it is worth noting that the results were obtained from a Wizard 
of Oz experiment wherein time required for system processing, such as 
the computing process of the recognition engine, was not addressed. The 
results also indicated that the main effects of recognition rate, input style, 
and message length on text entry rates were significant, which verified 
existing results from relevant studies (Sinha, Shilman, & Shah, 2001; Price 
& Sears, 2005; Ranjan et al., 2006). Moreover, the interaction effect of 
recognition rate and speaking style on text entry rate was significant, 
indicating higher recognition rate with the sentence speaking style would 
significantly increase text entry speeds.  

I analyzed the dictation tasks to explain the effects. The phrasal dictation 
task can be divided into three sub-processes: speaking process, candidate 
selection from phrase options, and error correction. Past linguistic studies 
discovered interesting results concerning the Mandarin speaking process. 
Pellegrino, Farinas, and Rouas (2004) reported that the average speaking 
rate for Mandarin is three syllables (characters) per second when people 
speak at a normal speed. Jeng (2005) found that the size or length of 
speaking units significantly affects the duration of each syllable. The 
duration of uttering a syllable in the monosyllable condition is greater 
than that in the sentence speaking condition, which means that the speed 
for speaking a sentence could be higher than that for a phrase or a 
character. I recorded and calculated participants’ speaking time when they 
uttered a whole sentence. The average speaking times for the 20-character 
messages and the 10-character messages are 6.2 seconds (SD = 0.38) and 
4.2 seconds (SD = 0.18), respectively, and the corresponding speaking 
speeds are 3.2 and 2.4 syllables per second.  

I assumed that the speaking time in the sentence dictation and phrase 
dictation were the same. Moreover, the time used to correct errors in 
messages of the same length could also be assumed to be the same when 
the recognition rate is the same. Hence, the only difference between the 
phrasal and the sentence dictation is that the latter doesn’t include the 
candidate selection process. I subtract the time for sentence dictation from 
the time for phrasal dictation; the results would be the time needed for the 
candidate selection process. What is more, if I subtract the speaking time 
and the candidate selection time from the total time for phrasal dictation, I 
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can obtain the time needed for error correction. Table 5.10 and Table 5.11 
present the time required for each sub-process in absolute terms and as a 
percentage of the dictation process, respectively. According to the tables, 
error corrections take the greatest percentage of the task completion time, 
followed by candidate selection. Speaking takes the smallest proportion of 
the time.  

Table 5.10: Average time required by the sub-processes 

 Recognition rates 
50% 70% 90% 

Message lengths 
10 20 10 20 10 20 

Average error 
correction time 

(seconds) 
61.17 94.56 54.213 67.58 25.53 36.65 

Speaking time 
(seconds) 

4.17 6.2 4.17 6.2 4.17 6.2 

Candidate 
selection 

time 
(seconds) 

Phrasal-4 8.99 16.48 11.607 24.27 12.96 20.98 

Phrasal-7 28.91 17.02 3.237 30.1 12.82 24.79 

 

All effects can be explained from the task analysis results. First, since the 
sentence dictation does not require the sub-process of candidate selection, 
sentence dictation is faster than phrasal dictation. Second, the higher 
recognition rate reduces the time used for error correction, which resulted 
in increased text entry rates. The results also indicated that recognition 
rate and interaction style interactively affected text entry rate. When the 
recognition rate reached 90%, the text entry rate for sentence input was 
much better than that of phrasal input, whereas it was just marginally 
better than phrasal input when recognition rates were 50% and 70%. This 
is because, when the recognition rate is low, error correction took the most 
user effort and it offset the advantages of sentence input for candidate 
selection. However, when the recognition rate increased to 90%, user 
effort and time in error correction decreased and the advantages of 
sentence input in terms of candidate selection and speaking speed were 
comparatively increased. 

The results also indicated that the text entry rate for entering 20-character 
messages was greater than that for entering 10-character messages. The 
result supported theoretical models provided by Price and Sears (2005). 
The models were to predict effects of error correction rate, recognition 
accuracy, and latency on text entry rate in text dictation tasks. One of the 
key assumptions was that text entry rate would increase as messages 
became longer. 
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Table 5.11: The sub-processes as a proportion of the total task completion time, average 

Percentage of the task 
completion time 

Recognition rates 
50% 70% 90% 

Message lengths 
10 20 10 20 10 20 

Error 
correction 

Phrasal-4 
82.30% 80.66% 77.46% 68.92% 59.85% 57.42% 

Phrasal-7 64.90% 80.29% 87.98% 65.06% 60.04% 54.18% 
Sentence 

input 
93.62% 93.85% 92.86% 91.60% 85.96% 85.53% 

Speaking 
time 

Phrasal-4 
5.61% 5.29% 5.96% 6.32% 9.77% 9.71% 

Phrasal-7 4.42% 5.26% 6.77% 5.97% 9.81% 9.17% 
Sentence 

input 
1.43% 0.93% 1.59% 1.24% 2.89% 2.00% 

Candidate 
selection  

Phrasal-4 
percentage 12.09% 14.06% 16.58% 24.75% 30.38% 32.87% 

Phrasal-7 
percentage 

30.67% 14.45% 5.25% 28.98% 30.15% 36.65% 

 

The main effects of recognition rate and message length are significant in 
subjective scores, which indicated that these two factors were the main 
ones considered by the participants when they gave scores. Input style 
also interactively affected the subjective scores in combination with 
recognition rate. When the recognition rate is 90%, participants preferred 
the sentence input over the phrasal input options. When the recognition 
rates were 50% and 70%, the participants gave similar scores to all three 
input styles. This was probably because when the recognition rate was 
low, people still paid more attention to the error correction process and 
didn’t have high requirements for the input styles. However, when the 
recognition rate was high enough, people started to think about having a 
better input style.  

The research findings implied certain design guidelines for a Mandarin 
dictation system. Recognition rate is the key factor affecting user 
performance and satisfaction with a Mandarin dictation system on mobile 
phones. This is because recognition rate determines the effort required for 
error correction. Error correction with keypad-based methods takes the 
most effort in a Mandarin message dictation task, which implies that 
efficient methods for error correction are critical for improving usability of 
speech dictation systems. When the recognition rate of a system is high, 
users expect to be able to speak in a more natural way. When the 
recognition rate of a system is not high enough, providing an optimal 
error correction method would be critical to improve its usability.  
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5.4 SUMMARY 
Speech dictation is a useful text entry method especially for mobile 
devices that are used in diverse contexts. In this chapter, human factor 
studies of Mandarin message dictation solutions were presented. First, 
two evaluation studies of an isolated Mandarin dictation solution were 
presented, to explore its utility and usability. The results indicated that the 
top four recognition rates with the isolated Mandarin message dictation 
application can reach around 95%. However, the user enrollment system 
does not work well with native Mandarin speakers: recognition rates did 
not increase in either study after user enrollment. Moreover, average text 
entry rates with the application are in the range 8–10 CCPM. Although the 
recognition rate increased from around 70% to about 95% in the second 
study, the text entry speeds in the second study were not significantly 
greater than those in the first. It is believed that the results were caused by 
the extra 500 ms added after each recognition in the second prototype to 
avoid unintentional activation of the recognition engine. 

The isolated Mandarin dictation was not preferred by participants; they 
found it not natural enough. In the second part of the chapter, I presented 
a Wizard of Oz study to explore effects of speaking style on user 
performance and satisfaction, along with two other variables: recognition 
rate and message length. The experiment’s results indicated that all three 
factors affected user performance, including task completion time and text 
entry rate. Further task analysis results showed that error corrections took 
the most time in the dictation process, followed by the selection of target 
phrases and the speaking phase. The results can be applied to guide 
interaction designs for Mandarin dictation systems on mobile devices. The 
results related to text entry rates should be verified with a full working 
implementation.  
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6 Keypad Pinyin Solutions 

6.1 INTRODUCTION 
Pinyin text entry methods are the primary methods used by Chinese users 
on both personal computers and mobile devices (Sheng, 1985; Sacher, 1998; 
Sacher, Tng, & Loudon, 2001; Lin & Sears, 2005, 2007; Liu & Wang, 2007; 
Liu & Räihä, 2008; Liu & Räihä, 2010). Although many novel devices are 
designed for mobile devices, the 12-key keypad is still the dominant input 
device because of its familiarity, and also because its compact size is 
suitable for being held and used with one hand. Chinese pinyin text entry 
methods based on the 12-key keypad can be classed into two groups: 
methods supporting phrasal input and methods supporting predictive 
character input only. Pinyin methods supporting phrasal input enable 
users to enter a phrase that includes more than one character by typing 
pinyin marks of the corresponding characters. Moreover, the phrasal 
pinyin input methods also allow users to enter text character by character 
with the predictive feature. Hence, the phrasal pinyin input methods are 
not exclusive. Instead, they also support character input with the 
predictive feature. Pinyin methods supporting only character input allow 
users to enter only one character at one time, but they usually allow 
predictive input.  

In this chapter, I present two studies, of the phrasal pinyin input methods 
and character pinyin input methods, respectively. The first study was 
aimed at providing interaction design guidelines for phrasal pinyin input 
methods. In this study, we compared the usability of five phrasal pinyin 
input methods by analyzing both objective and subjective measurements. 
The second study was designed for building a user model to estimate 
average users’ error-free speeds with the two types of pinyin character 
input methods when the predictive input was turned on and off.  
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The rest of the chapter is organized as follows. First, I present the 
evaluation of five pinyin phrasal input methods and provide relevant 
design guidelines. Second, I present the predictive user model for users’ 
error-free speeds with the character input along with four experiments: 
first, two for definition of parameters, then two for evaluation of the 
model. Finally, I summarize the key conclusions from both studies.  

6.2 EVALUATING PINYIN PHRASAL INPUT ON MOBILE PHONES 

6.2.1 Objectives 

The 12-key keypad brings ambiguity to the Chinese pinyin phrasal input. 
A sequence of key presses may still result in more than one pinyin option 
for different phrases. For example, if users type the “64426” key sequence, 
there are still multiple pinyin options, including “nihao,” “migao,” and 
“nigan” (see Figure 6.1). Two types of pinyin phrasal input methods were 
designed to cope with this challenge. One type requires users to select first 
the target pinyin mark and then the target phrase (see Figure 6.1). The 
other type allows users to skip the process of selecting the target pinyin 
mark, by utilizing integrated language models, and directly get the target 
phrases (see Figure 6.2). Figures 6.1 and 6.2 show the input processes with 
examples representing the two types of pinyin phrasal input methods.  

      

1) Enter the pinyin 
mark for a phrase 

2) Choose the target 
pinyin 

3) Choose the target 
phrase 

4) Enter the phrase 

Figure 6.1. A phrasal input pinyin method requiring selection of the target pinyin. 

Phrasal input is a new feature for mobile text entry methods. There are 
neither published studies of the interaction process nor guidelines 
provided to aid practitioners with interaction design. This study aimed to 
provide guidelines for the pinyin phrasal input feature by comparing five 
interaction designs, with user research. The five interaction designs 
represent the two types of pinyin phrasal input: Guobi and Cstar 
solutions, requiring no selection of the target pinyin marks, and solutions 
of Nokia, T9, and Zi, requiring selection of the target pinyin (the five 
solutions are called Guobi, Cstar, Nokia, T9, and Zi, respectively, later in 
the chapter for short). To understand the effects of method category 
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(requiring pinyin selection vs. no pinyin selection) and interaction design 
on user performance and preference, this study covered more than one 
interaction design from each category of pinyin phrasal input. For 
example, Guobi and Cstar differ in key mappings of functions and 
feedback in the input process. When users enter the pinyin mark of 
“nihao” with Cstar, only the entered pinyin mark is shown to users. But 
with Guobi, both the numbers associated with the pinyin mark (i.e., 
“64426”) and the pinyin mark itself (i.e., “nihao”) will be shown to users.  

     

1) Enter pinyin marks 
for two phrases 

2) Choose the target 
phrase for the first 

phrase 

3) Choose the target 
for the second phrase 

4) Enter the phrases 

Figure 6.2. A pinyin phrasal input solution requiring no selection of the target pinyin. 

In the following sections, I first explain the method that was utilized in the 
study. Then I present the results. Finally I discuss the results and 
summarize design guidelines for the pinyin phrasal input feature.  

6.2.2 Method 

Participants 

Eighteen volunteers, half male and half female, took part in the study. 
Their ages ranged from 20 to 32, with an average of 23.8 years (SD = 3.35). 
All were users of the pinyin input methods while composing SMS 
messages. They send about 15 (SD = 7.4) text messages per day, on 
average.   

Six of the 18 participants (3 male and 3 female) were trained users of the 
phrasal input solutions. They began to use the five devices two months 
before the experiment, using each of the five phrasal pinyin inputs as their 
daily input method for approximately 10 days. The other 12 were novice 
users. Training orders for the five methods were balanced among all 
participants with an incomplete Latin square technique.  

Apparatus 

Five pinyin phrasal input methods were studied on four mobile phones, 
because the phrasal input is a new feature and there is no uniform 
platform properly supporting all methods. I used the Nokia 6630 with 
Cstar and Guobi, Nokia 6131 with Nokia, Nokia E70 with Zi, and 
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Samsung E728 with T9. A mini-camera, attached to the mobile phones, 
was used to record the phone display and user operations on the keypad. 
This information was later analyzed manually. 

Tasks and Materials 

The task was to enter six short messages that include 162 Chinese 
characters and 16 punctuation marks (6 full stops, 6 commas, 2 question 
marks and 2 exclamation points). Table 6.1 shows three examples of the 
six messages. All of the messages were selected from our short message 
corpus described in Section 2.2. I calculated the average number of letters 
per pinyin mark for the six short messages to be 2.88, which was identical 
to the result that was calculated from our short message corpus. The 
single-letter correlation (MacKenzie & Soukoreff, 2003) of the six messages 
with the short message corpus presented in Section 2.2 was 0.921. 

Table 6.1: The message examples used in the experiment 

No. Messages 

1 

Message 今天在实验室手机没电，现在才看到短信。多谢张老师通

知！ 

Pinyin Jin tian zai shi yan shi shou ji mei dian, xian zai cai kan 
cao duan xin. Duo xie zhang lao shi tong zhi! 

Meaning  I just saw your message right now since my mobile 
phone ran out of battery when I was in the lab. Thank 
you for notifying me of this! 

2 

Message 我用心感知上帝的存在。你并不能证明上帝不存在，是

吧？ 

Pinyin Wo yong xin gan zhi shang di de cun zai. Ni bing bu 
neng zheng ming shang di bu cun zai, shi ba? 

Meaning  I sense God with my heart. You cannot prove that God 
does not exist, can you? 

3 

Message 实验软硬件的相关信息我已经收到了，十分全面。非常感

谢! 

Pinyin Shi yan ruan ying jian de xiang guan xin xi wo yi jing 
shou dao le, shi fen quan mian. Fei chang gan xie! 

Meaning  The software and hardware for the experiment were 
received. Thank you very much! 

 

Design and Procedure 

The experiment was a 5 (the five phrasal pinyin input methods) × 2 (two 
user experience levels) two-factor mixed design. Each participant was 
instructed to complete the tasks with all five phrasal pinyin input methods. 



…
…

…
…

 

  95 

The order of the methods evaluated and of the messages were 
counterbalanced across users with the Latin-square technique. 

The experiment was conducted in a lab environment with a participant 
and a coordinator together completing the experiment process. First, the 
profile of each participant was collected and the research goals were 
explained by the coordinator. The participant could ask questions at will. 
A tutorial session then followed, in which use of the five phrasal input 
methods was explained to the participant. Then the participant was 
instructed to practice with the five designs until he or she was ready to 
start with the tasks for data collection. Participants were instructed to 
complete the tasks as quickly and accurately as possible with the phrasal 
input solutions. After the experimental task with a phrasal pinyin input 
method, the participant was asked to evaluate it with a five-point Likert-
scale questionnaire addressing its usability. The whole experiment was 
recorded with a video camera for analysis later, with the agreement of the 
participants. A small gift was presented to the participant at the end of the 
experiment.  

Measures 

Three metrics were utilized in the data analysis phase: keystrokes per 
character to characterize different input solutions, Chinese characters per 
minute for text entry rate, and error rate.  

I revised and applied KSPC in the study (MacKenzie, 2002a): 

21 NN

FICC
KSPC




  (6-1) 

Here C refers to the correct keystrokes, IC represents the incorrect 
keystrokes, F indicates keystrokes to fix errors, and N1 is the total number 
of Chinese characters while N2 is the total number of punctuation marks. 
Here characters in KSPC mean the Chinese characters instead of the 
Roman letters in this study.  

The following equation shows how I calculated CCPM: 

T

NN
CCPM

21
  (6-2) 

where T indicates the total amount of time (in minutes) for accomplishing 
the task and the meanings of N1 and N2 are the same as they are in the 
equation for KSPC. In the calculation of CCPM, I treated a punctuation 
mark equally with a Chinese character since punctuation marks normally 
require more than one key press with the 12-key keypad. Moreover, 
punctuation marks are only small part of the 6 messages to be entered in 
the task so they would not affect the CCPM results much. There are in 
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total 16 punctuation marks and 162 Chinese characters in the 6 messages 
and thus punctuation marks are only about 8.99% of the total text. 

The following equation shows how I calculated error rate:  

21 NN

E
ER


  (6-3) 

E indicates the total number of errors in the input process, and the 
meanings of N1 and N2 remain the same as in the equations for KSPC and 
CCPM. Five categories of errors were taken into account in the calculation 
of the error rate: 1) misspelled pinyin, where participants entered wrong 
letters for a pinyin mark; 2) missed target selection, where participants 
failed to select the target character or phrase; 3) over-selection, where 
participants passed the target by pressing the navigation key too many 
times or entered the wrong number tag for a target; 4) other action errors, 
including pressing of the “complete SMS” key and accidentally exiting the 
editor, or pressing the Clear key and deleting characters accidentally, or 
pressing the wrong keys when switching language mode; and 5) numbers 
of differences between the messages presented and messages entered by 
the participants. Whether corrected in the procedure or not, they were 
included in the analysis for error rate. 

6.2.3 Results 

Qualitative Results 

In the experiment, participants often failed to identify phrases that a 
phrasal pinyin input method supports: after participants entered the 
pinyin mark for a phrase, corresponding phrase options did not appear, 
because the target phrase was not covered. The five methods evaluated 
have different ways of handling the problem. Guobi and Cstar enable on-
line creation of new phrases to enlarge their bank of supported phrases. 
For example, if entering a pinyin mark for a phrase including two 
characters and finding that the system does not support it, users can move 
the cursor from the end of the pinyin mark for the phrase to each end of 
the pinyin for the two characters (in this phrase) and choose the target 
characters to complete the phrase. The Guobi and Cstar methods would 
then automatically memorize the phrase such that when users enter them 
again, they can get them by entering the pinyin mark for the phrase. By 
contrast, with the other three methods, the Nokia, T9, and Zi, participants 
have to delete the entered pinyin mark for the second character and enter 
this phrase character by character.  

The design of hardware also affected user performance. The E70 used in 
the test was a new phone, and its five-way navigation key was difficult to 
operate. I observed that the confirmation click was often detected as a 
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scroll-down click and vice versa. Also, the keys of the Nokia 6131 (a 
folding phone) were a bit too flat to click for some users. 

Quantitative Results 

As mentioned in Section 6.2.2, I collected and calculated user data for both 
objective measurements (including KSPC, text entry rate in CCPM, and 
total error rate) and subjective measurements (of the overall usability of 
the five phrasal input methods with a five-point Likert scale). I then 
conducted a two-factor mixed-design ANOVA test to explore the effects of 
method and experience level on the four dependent measures: KSPC, text 
entry rate, error rate, and subjective score for usability. Table 6.2 shows the 
test results. According to it, the main effects of method on the four 
dependent variables are all significant (KSPC: F4,64 = 16.8, p < .01; CCPM: 
F4,64 = 17.1, p < .01; error rate: F4,64 = 7.1, p < .01; subjective score: F4,64 = 17.8, 
p < .01) and the interactions between method and the experience level of 
participants were all insignificant (KSPC: F4,64 = 1.6, ns; CCPM: F4,64 = 1.7, 
ns; error rate: F4,64 = 2.5, ns; subjective score: F4,64 = 1.6, ns). The main 
effects of experience level were significant for KSPC (F1,16 = 5.2, p < .05) 
and text entry rate (F1,16 = 17.3, p < .01) results but not significant for error 
rates (F1,16 = 3.56, ns) or the subjective scores (F1,16 = 1.5, ns). Since for error 
rates and subjective scores, only the main effect of methods was significant, 
I merged the data from novice and trained users and present them 
together.  

Table 6.2: The two-factor mixed-design ANOVA test results 

 
KSPC Text entry 

rate (CCPM) 
Error rate Subjective 

score 

F p F p F p F p 

Phrasal 
input 

method 
16.8 .000** 17.1 .000** 7.1 .005** 17.8 .000** 

Experience 
level 5.2 .036* 17.3 .001** 3.56 .08 1.5 .244 

Method × 
experience 

level 
1.6 .21 1.7 .19 2.5 .11 1.6 .22 

* p < .05; ** p < .01. 

Figure 6.3 shows the average KSPC results for both novice and trained 
participants. The results showed that Zi cost the most keystrokes per 
character and Cstar the fewest keystrokes per character for both user 
groups. Trained participants clearly pressed fewer keys on average for 
entering a Chinese character than the novice participants did. A further 
t-test on the KSPC results indicated that Cstar required significantly fewer 
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KSPC than all other methods (t = 2.0 (Nokia), 2.7 (Guobi), 3.8 (T9), 7.2 (Zi), 
p < .05 for all) and Zi required significantly more KSPC than all other 
methods (t = 7.2 (Cstar), 6.0 (Nokia), 5.9 (T9), 5.3 (Guobi), p < .05 for all). 
Nokia was significantly better than T9 (t = 2.5, p <.05), but both Nokia and 
T9 showed no significant difference from Guobi (Nokia vs. Guobi: t = 1.6, 
ns; T9 vs. Guobi: t = 0.4, ns).  

 
Figure 6.3. Average KSPC results for the phrasal input methods. 

 

Figure 6.4 shows the average CCPM results for both novice and trained 
participants. Both groups of participants achieved the highest CCPM 
figure with Cstar and the lowest with Zi. Trained users were clearly faster 
than novice users. I conducted a t-test to understand the main effect of 
method. The results showed that the text entry rate with Cstar was 
significantly higher than that with the other designs (t = 2.0 (Nokia), 2.8 
(Guobi), 3.1 (T9), 6.7 (Zi), p < .05 for all). The text entry rate with Zi was 
significantly lower than those with the other designs (t = 6.7 (Cstar), 5.9 
(Nokia), 6.0 (Guobi), 5.5 (T9), p < .05 for all). The text entry rate with Nokia 
was significantly higher than that with T9 (t = 2.3, p < .05), but neither 
Nokia nor T9 showed a significant difference with Guobi for text entry 
rates (Nokia vs. Guobi: t = 0.7, ns; T9 vs. Guobi: t = 1.4, ns).  
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Figure 6.4. Average text entry rates for the phrasal input methods. 
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Figure 6.5. Average error rates for the phrasal input methods. 

Since error rates were not significantly affected by users’ experience level, 
the error rate data from novice and trained users were merged and 
analyzed together. Figure 6.5 shows the average error rate results for all 
participants. According to it, the participants made the fewest errors with 
Nokia, followed by T9 and Cstar. The participants made the greatest 
number of errors with Guobi, then Zi. A further t-test showed that the five 
designs can be classified into three groups: Nokia with the lowest error 
rate, Cstar and T9 next, and then Guobi and Zi with the highest error rate. 
Differences in error rate within each group were not significant, while 
differences between any two methods belonging to different groups were 
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significant (Nokia vs. Cstar: t = 2.5, Nokia vs. T9: t = 2.7, Cstar vs. Guobi: 
t = 2.7, Cstar vs. Zi: t = 6.7, T9 vs. Guobi: t = 2.4, T9 vs. Zi: t = 5.4, with 
p < .05 for all). 

Since the subjective scores were not significantly affected by participants’ 
experience level, the results for subjective scores by novice and trained 
participants were also merged and analyzed together. Figure 6.6 shows 
the average subjective scores from all participants for the five phrasal 
input methods. A further t-test showed that the five methods could be 
classed into two groups: participants were more satisfied with Cstar, 
Guobi, and Nokia than with T9 and Zi. For methods in the same group, 
their subjective scores had no significant difference, but for any two 
methods that belonged to different groups, their subjective scores were 
significantly different (Cstar vs. T9: t = 5.0, Cstar vs. Zi: t = 9.2, Nokia vs. 
T9: t = 4.1, Nokia vs. Zi: t = 3.4, Guobi vs. T9: t = 5.8, Guobi vs. Zi: t = 7.3, 
with p < .05 for all). 
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Figure 6.6. The average results for the phrasal input methods, according to subjective scores 

(where 5 = best and 1 = worst). 

 

I summarize all quantitative results from this study in Table 6.3. Any 
changes on the gray scale indicate statistical significance. However, since 
Guobi had no significant differences with either Nokia or T9 for KSPC and 
for text entry rate, the cell for Guobi is divided into two parts, one like the 
gray for Nokia and the other half like the gray for T9. According to Table 
6.3, the results for KSPC and text entry rate were quite consistent with 
each other.  
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Table 6.3: The ranking of the five phrasal pinyin input methods as indicated by the summary of 
the quantitative results and figures (1 = the highest rank, best … 5 = fifth rank, worst) 

 Cstar Nokia Guobi T9 Zi 

KSPC 1st 2nd    3rd 5th  

Text entry 
rate 

(CCPM) 

1st 2nd    4th  5th 

Error rate 3rd  1st  5th  2nd 4th 

Subjective 
score 

1st  3rd 1st  4th  5th  

 

6.2.4 Discussion 

According to the analysis of the Chinese SMS corpus in Section 2.2, a 
pinyin mark on average includes 2.88 letters when frequencies of Chinese 
characters in the SMS corpus are taken into account. Moreover, according 
to Figure 2.5b, when users enter a Chinese character with the 12-key 
keypad-based pinyin method, they need to press at least two extra keys to 
respectively confirm the target pinyin and character. In this sense, the 
minimal KSPC for pinyin methods that are based on the 12-key keypad 
and enable character input only is 4.88 when errors are not taken into 
account. In this experiment, the messages entered by participants are also 
characteristic of an average 2.88 letters per pinyin mark. But according to 
the KSPC results of this study (see Figure 6.3), the average empirical KSPC 
for Chinese phrasal pinyin input methods like Cstar, Nokia, T9 and Guobi 
were below 4 when error rates were also covered in the calculations, 
which is much lower than 4.88. In this sense the phrasal input methods 
reduce KSPC compared with pinyin methods that support character input 
only. Phrasal input treats a phrase with more than one character as an 
entry unit. Hence selection of a target phrase will cover more than one 
character, which saves some keystrokes. Moreover, phrasal input methods 
like Cstar and Guobi require no selection of target pinyin marks but only 
for phrases, which can probably save some extra strokes.  

By comparing the performance of the trained and novice user groups, I 
found that experience level affected the results for KSPC and text entry 
rates but not the error rate or subjective scores. Trained users entered 
Chinese characters with significantly fewer KSPC and at a higher speed. 
The higher text entry rates of trained users may have mainly resulted from 
the significant decrease in KSPC, since there was no significant difference 
between trained and novice users in error rates. This is perhaps another 
key difference between phrasal pinyin input methods and character 

4th 

3rd 
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pinyin input methods. With pinyin input methods supporting character 
input only, the average KSPC would be supposed to be rather stable with 
a fixed interaction design for both novice and trained users. But with 
pinyin input methods supporting phrasal input, the ways how trained 
users and novice users use it could vary a lot because of many reasons. For 
example, trained users could have a better estimation on the phrase sets 
that a phrasal input can support. Moreover, interaction designs for phrasal 
pinyin input methods would be more complex than methods supporting 
character input only. Hence, effects of training on user performance with 
phrasal pinyin input methods would be more apparent than with pinyin 
input methods supporting character input only.  

Both performance and subjective evaluation results showed that Cstar and 
Nokia performed well. They were either no. 1 or no. 2 for three out of the 
four measurements. The participants made fewer errors with Nokia than 
Cstar, but they achieved a better text entry rate and KSPC value with Cstar 
than Nokia. Cstar does not require selection of pinyin marks, which may 
effectively decrease the average KSPC figure and then result in higher text 
entry rates. Subjectively, Cstar was also slightly preferred over Nokia. 
During the experiment, it was observed that the participants’ hands fit 
Cstar and Nokia easily and the input processes were relatively smooth. 
Moreover, both methods were carefully designed and functions were 
mapped to keys with consistency. Cstar also supports on-line phrase 
creation, as mentioned in the discussion of the qualitative results, which 
increased its adaptiveness. Nokia provided a solution for off-line phrase 
creation, but it was hidden from users. Although the Nokia pinyin phrasal 
input method supported all kinds of phrases well (two-character phrases, 
three-character phrases, idioms, special names, and so on), it probably 
could still not compensate for the lack of on-line phrase creation.  

Guobi was subjectively preferred by the participants. However, it did not 
perform so well by the other three metrics: it came fourth for KSPC, third 
in terms of the text entry rate, and fifth in relation to error rate. These 
results may show us that the participants in fact preferred phrasal input 
methods of a type that does not involve the pinyin selection process. 
Guobi was a method with both strong advantages and serious 
disadvantages. The participants made more errors with Guobi, which 
might be because there were too many shortcuts or, in other words, expert 
features in the interaction process. The overloading of functions on phone 
keys resulted in confusion and a lot of errors for first-time users, although 
trained users achieved better performance.  

The T9 phrasal input came out in the middle among all methods in terms 
of performance results. In the experiment, users made frequent errors in 
switching mode. When users wanted to change the language mode from 
pinyin to English with T9, they needed to make a long press of the key 
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three times and short-click it once. This resulted in user failure in the 
mode switching task.   

As the results showed, Zi did not perform well. This result might be partly 
because the keys, especially the five-way navigation key of the E70, were 
not easy to operate. I observed that the confirmation click was easily 
detected as a scroll-down click and vice versa. The system of the E70 also 
reacted slowly, which resulted in frequent passing beyond the target 
candidate, negatively influencing user performance.  

Based on the results I obtained in the study, I suggest the following design 
guidelines for the Chinese pinyin phrasal input methods for the 12-key 
keypad: 

 Maintain consistency in UI design and find a balance between 
radical new designs and well-accepted ones. To make the user 
interface of a pinyin phrasal input method easy to learn and use, 
designers should make the best use of users’ existing knowledge of 
phone interaction and keep their designs consistent with the most 
well-accepted key mappings. Some radical new designs are needed 
for expert features, but designers need to be careful to balance the 
radical elements and the commonplace ones such that they can 
coexist harmoniously, not interfering with each other.  

 Optimize the corpus constantly. Users – especially novice users –
find it difficult to guess what phrases are supported by a phrasal 
input method. An optimized corpus would increase both user 
performance and satisfaction. Additionally, with the rapid 
development of Chinese society, the language itself and how 
people use it also change constantly. To be adaptive to the changes, 
regular updating and optimizing of the corpus are important. 

 Provide easy-to-use on-line phrase creation. Enabling on-line 
addition of new phrases to the corpus is necessary for phrasal input 
methods on mobile phones, and it is critical for avoiding failure in 
entry of phrases. The Cstar method provides a good interaction 
solution for this function. When users enter a phrase that is not 
supported by the method, Cstar allows moving the cursors in the 
pinyin marks entered and choosing characters one by one for the 
phrase. The interaction process would trigger the system’s 
memorization of the phrase; then, when users enter it again, they 
could get it automatically.  

 Omitting the pinyin selection process may be useful for phrasal 
pinyin input methods. The results showed that once a phrasal input 
method is carefully designed, it can result in good user 
performance and user satisfaction no matter the category of the 
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method, but the participants seem to prefer the type of method 
requiring no selection of pinyin marks (here Cstar and Guobi) 
rather than the type requiring selection of the correct pinyin marks 
(here Nokia, T9, and Zi). The former class of method does require 
greater computing capabilities, less of a bottleneck for mobile 
devices as time passes. It is believed that omitting the pinyin 
selection process will be a trend for phrasal input methods based 
on the 12-key keypad.  

6.3 PREDICTING PINYIN INPUT SPEEDS FOR MOBILE PHONES 

6.3.1 Objective 

In this section, I present a predictive model that estimates the average text 
entry speeds of users’ error-free Chinese pinyin input on mobile phones. 
Two facts motivated me to build the model. First, relative to the large 
number of Chinese-speakers around the world, published studies of the 
user performance of mobile Chinese pinyin input were relatively few in 
number, and the results of this limited number of studies often 
contradicted each other. Lin and Sears (2005) reported a text entry speed 
of 5.46 CCPM when the participants naturally balanced between input 
speed and error rate. Liu and Wang reported user speeds of Chinese 
pinyin input supporting phrases between 15 and 34 CCPM (Liu and Wang, 
2007). Second, there was no predictive model built to estimate user 
performance or understand the mechanisms involved in Chinese text 
entry tasks on mobile phones. A predictive model can assist researchers 
and practitioners in comparing text entry solutions without the need for 
tedious empirical studies and in identifying the areas for improvement 
and design opportunities (Card, Moran, & Newell, 1980, 1983; Soukoreff & 
MacKenzie, 1995; Silfverberg, MacKenzie, & Kohornen, 2000; Cockburn, 
Gutwin, & Greenberg, 2007; Cockburn & Gutwin, 2009; Dunlop & Crossan, 
2000; Dunlop & Masters, 2008; James & Reischel, 2001; MacKenzie & 
Soukoreff, 2002; Zhai, Smith, & Hunter, 2002; Zhai, Sue, & Accot, 2002; 
Myung, 2004; Isokoski, 2004).  

The rest of this section is organized as follows: first, I explain the input 
process for pinyin input on mobile phones; second, I explain the model 
and its core elements; third, I present three experiments to set parameters 
for the model and compare its predictions with empirical user speeds; and 
fourth, I present and discuss the results. Finally, I draw conclusions. 

6.3.2 Models for Sub-tasks of Chinese Text Entry 

According to the task analysis in the previous section, there are two 
sub-tasks involved in Chinese pinyin input on mobile phones: the retrieval 
and typing of a pinyin mark and the disambiguation task for selecting the 
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target pinyin mark and Chinese character. Accordingly, I built the 
predictive model as expressed below:   

T = Tm + Td (6-4) 

Here, T represents the average time required to enter a Chinese character 
and equals the sum of Tm and Td; Tm is the average time required for 
retrieving and typing a pinyin mark, which is represented by the average 
motor movement time required to type a pinyin mark (I assume that the 
cognitive retrieval of a pinyin mark would take little time for expert users); 
and Td is the average time spent selecting the target pinyin mark and 
Chinese character.  

There are two strategies that users can apply in the disambiguation 
process. Users can visually identify the target in the list of options first and 
then move the highlighting to it by pressing navigation keys, or they can 
go through the items one by one, both visually checking whether an item 
is the target and moving the cursor to it as well. No matter which strategy 
the users will apply, the two processes can be analyzed separately, since 
they consist of the same elements, only in different order. Moreover, users 
can be expected to start with the first items, since these are more likely to 
be the intended ones than the last ones are. Often it is not necessary to 
search the entire list before the desired mark or character is found. So I 
split the disambiguation process into two sub-processes: visual search and 
navigation. Consequently, Td includes times for visual search (Tv) and 
navigation (Tn): 

Td = Tv + Tn (6-5) 

For Chinese characters entered with only the predictive feature, the 
average time for entering a character consists of Td alone.  

On the basis of this model, I applied several theories to predict the times 
for the sub-tasks. These theories are presented in the next three 
subsections. First, I present the corpus used for building the language 
model. Second, I present the movement model by combining Fitts’ law 
and the language model (Tm). Then, I describe the keystroke-level model 
(KLM) developed to predict the average navigation time (Tn). Finally, I 
present the linear model to estimate the average visual search time (Tv). 
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The Corpus and Language Model 

In Section 2.2, I mentioned that we have collected a corpus of Chinese text 
messages for language models (Ma et al., 2007; Alhonen et al., 2007; Liu & 
Räihä, 2008, 2010). Based on the corpus, I built the language model 
required for building the predictive model for user speeds. First, I 
translated the Chinese characters to pinyin marks and analyzed the 
frequencies of all pinyin marks. From the frequencies of pinyin marks, I 
elicited the digraph probabilities for each legal pair of letters in pinyin. 
The language model resulted in a 2626 matrix of letter pair frequencies 
(see Table 6.4). The 26 characters were the Roman letters A to Z. Each 
letter pair, i–j, has a probability Pij. The sum of the probabilities of all letter 
pairs is 1.  

To predict the average time for typing a pinyin mark, one still needs to 
know the average number of letters per Chinese character. According to 
Section 2.2, if the frequencies of the Chinese characters are taken into 
account, the average number of letter per Chinese character is 2.88.  

Most Chinese characters are homophonic with other characters (Liu & 
Räihä, 2008; Liu & Wang, 2007; Sacher, Tng, & Loudon, 2001); thus, a 
pinyin mark usually corresponds to multiple Chinese characters. In most 
pinyin input systems, the character options are listed according to their 
usage frequencies: characters with higher frequencies are listed before 
characters with lower frequencies. Accordingly, I calculated the average 
position of all characters with the same pronunciations. The result was 
1.77. The 12-key keypad can also produce ambiguous results. A series of 
key presses sometimes results in multiple pinyin marks, which are listed 
according to their usage frequencies. I also calculated the average position 
for all pinyin marks. The result was 1.24. 

According to Section 2.2, characters that could be entered via the prediction 
feature accounted for about 30.3% of all characters in the corpus. Since the 
predicted characters are also listed according to their usage frequency, the 
average position calculated for all predicted characters was 2.60. 

The Movement Model 

The movement model was built on the basis of a combination of Fitts’ law 
and the language model. Inspired by information theory, Fitts’ law was 
applied by psychologists to predict the movement time of the human 
motor system (Seow, 2005; Soukoreff & MacKenzie, 2004). According to 
Fitts’ law, the time for people to move from one object to another is a 
logarithmic function of the distance between the two objects divided by 
the size of the target object. Fitts’ law is usually expressed as follows: 

MT = a + b log2 (A/W+1) (6-6) 
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In the above equation, A represents the amplitude of motor movement 
and W is the size of the target object, which is usually indicated by its 
width (Seow, 2005; Soukoreff & MacKenzie, 2004) or for two-dimensional 
objects, height or width, whichever is smaller (MacKenzie & Buxton, 1992; 
Silfverberg, MacKenzie, & Korhonen, 2000). Constants a and b are defined 
by empirical experiments. The log term of Equation 6-6 is also called the 
index of difficulty (ID).  

Fitts’ law has been widely applied in prediction of expert user 
performance with different types of input devices including physical 
(Myung, 2004; Silfverberg, MacKenzie, & Korhonen, 2000) and soft 
keyboards (MacKenzie & Soukoreff, 2002; Zhai, Smith, & Hunter, 2002; 
Zhai, Sue, & Accot, 2002; Isokoski, 2004; Soukoreff & MacKenzie, 2004), 
pointing devices (Soukoreff & MacKenzie, 2004; Zhai, 2004) and tasks 
including text entry (Isokoski, 2004; Isokoski & MacKenzie, 2003; James & 
Reischel, 2001; MacKenzie & Soukoreff, 2002; Myung, 2004; Pavlovych & 
Stuerzlinger, 2004; Silfverberg, MacKenzie, & Korhonen, 2000; Soukoreff & 
MacKenzie, 2004) and menu selection (Cockburn, Gutwin, & Greenberg, 
2007; Cockburn & Gutwin, 2009). In application of Fitts’ law to predict 
user performance with different tasks, a basic assumption is that the users 
are experts in the tasks, for whom motor movements cost the majority of 
the effort and time while cognitive processes cost little.  

I combined Fitts’ law and the language model to estimate the average 
movement time for a pinyin mark as follows:    

Tm = 2.88   (Pij  MTij) (6-7) 

where 2.88 is the average number of letters that a pinyin mark includes; Pij 
is the probability of the letter pair, i–j, being entered together; and MTij is 
the average time needed to move the thumb from “i” to the “j” key and 
press it.  

KLM for Navigation Time in the Disambiguation Process 

I applied KLM, the simplest GOMS model (Card, Moran, & Newell, 1980, 
1983), to predict navigation time Tn in the disambiguation process. 
Originally, KLM defined six operators: K for key presses, P for pointing to 
an object on the display with a mouse, H for moving the hands to the 
home position on the keyboard or mouse, D to draw a line, M for mentally 
preparing for an action or closing associated primitive actions, and R as 
the system response time for which users must wait. By splitting a specific 
task into such operators and defining times for relevant operators, 
analysts can estimate the time a skilled user needs to complete the task 
without error.  

Dunlop and Crossan applied KLM to compare user performance in the 
multi-press method with that in the predictive methods (Dunlop & 
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Crossan, 2000; Dunlop & Masters, 2008). In their KLM, they chose three 
operators and defined fixed times for them: K for a button press (280 ms), 
H to move the hand to the home button (400 ms), and M for mental 
preparation time for executing physical actions (1350 ms).  

When I predicted the navigation time in the disambiguation process, I 
simply chose operator K. Moreover, instead of using a fixed time for 
operator K, I applied Fitts’ law to estimate times for different key presses.  

If we assume Pmn is the overall probability of Chinese characters in the 
corpus whose target pinyin marks and character symbols are located at 
positions m and n, respectively, Tn can be accurately calculated as follows: 

Tn =  (Pmn  Tn_mn) (6-8) 

Here, Tn_mn is the specific navigation time based on KLM for cases where 
the target pinyin marks and Chinese characters are located at positions m 
and n, respectively However, such a calculation of Tn is rather complex 
and hard to apply. First, according to the corpus, there are, in total, 263 
combinations of m and n. Second, for each combination of m and n, the 
calculation of Tn_mn is different from the others. For example, when m = 1 
and n = 1, Tn_mn should be calculated as: 

Tn_mn = Kio + Krr (6-9) 

And when m = 2 and n = 2, Tn_mn should be calculated as: 

Tn_mn = Kir + 2Kro + Kor (6-10) 

In the above equations, Kio and Kir are, respectively, the average time to 
move the thumb from the last letter of the pinyin marks to the “OK” or the 
right navigation key and press. Similarly, Krr is the time required for 
repeated key presses (the value of Krr equals a in Fitts’ law when ID equals 
0), Kor is the time to move the thumb from the “OK” key to the right 
navigation key and press it, and Kro is the time to move the thumb from 
the right navigation key to the “OK” key and press it. Moreover, Kio and 
Kir can be calculated as shown in Equation 6-11, where Pio/r is the overall 
probability of the “i” key being the last letter of the pinyin marks and 
MTio/r is the time for moving the thumb from the “i” key to the “OK” or 
right navigation key. 

Kio/r =  (Pio/r  MTio/r) (6-11) 

To make the calculation of Tn simpler and easier to apply, I approximated 
Tn with Tn_1,2 (i.e., by setting m and n to 1 and 2, respectively, because, 
according to the corpus analysis, the average positions for pinyin marks 
and characters are 1.24 and 1.77, respectively – close to 1 and 2. Figure 6.7 
shows the navigation process with a target pinyin mark in the first 



…
…

…
…

 

 110 

position and a Chinese character in the second position. With this 
simplification, Tn can be expressed as: 

Tn = Kio + Kor + Kro (6-12) 

As I mentioned earlier, some characters can be entered by choosing them 
from lists of predictions. For those characters, Tn_pre can be similarly 
expressed as: 

Tn_pre = Kor + (2.6-2)  Krr + Kro (6-13) 

Since the average position for the predicted characters is 2.6, the time for 
pressing the right navigation key repeatedly is calculated as (2.6 – 2)  Krr. 

 

Figure 6.7. The disambiguation process when m = 1 and n = 2. 

The Visual Search Model 

Visual search is the process of finding a target item from among distractor 
items (Wolfe, 1998). Selections of a target pinyin mark and a target 
Chinese character in the pinyin input process include such visual search 
processes.  

Psychologists regard visual search as a basic process of human cognition, 
and many studies have been done to understand its mechanisms (Wolfe, 
1998). A basic experiment paradigm applied in such studies is to change 
the set size – i.e., the total number of stimuli – and collect reaction times 
when participants are instructed to identify a target item and respond. In 
half of the trials, the target item is present and in the other half, the target 

Press the “OK” key 

    Press the Right key 

Press the “OK” key 

 Press “i” – i.e., “4” 
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is not included. Psychologists divide visual searches into parallel searches 
and serial searches according to the slope of reaction times plotted against 
set size. If the slope is close to 0 ms per item, the case is usually regarded 
as one of parallel search. However, if the slope is steep, it is considered to 
involve serial search.  

In the field of human–computer interaction, the Hick-Hyman law has been 
applied to estimate visual search time (Cockburn, Gutwin, & Greenberg, 
2007; Cockburn & Gutwin, 2009; Soukoreff & MacKenzie, 1995). Similarly 
to Fitts’ law, the Hick-Hyman law was inspired by information theory. It 
has been applied to estimate the reaction time for making a choice from a 
number of possibilities. However, in comparison to Fitts’ law, it has not 
been as widely applied in HCI (Seow, 2005). It is usually expressed as 
follows: 

RT = c + d log2 (n + 1) (6-14) 

Here, RT is the decision-making time for choosing a response from a 
number of possibilities in accordance with a presented stimulus; it is a 
logarithmic function of the number of possibilities. In Equation 11, n is the 
number of possibilities, and c and d are constants defined by empirical 
studies.  

Soukoreff and MacKenzie (1995) applied the Hick-Hyman law to estimate 
visual search time with soft keyboards. However, Sears et al. (2001) 
argued that the Hick-Hyman law was not suitable for predicting time for 
visual search that is “scan-and-match.” They also argued that more factors, 
such as familiarity, should be taken into account for prediction of user 
performance of visual search. Cockburn, Gutwin, and Greenberg (2007) 
argued that when people can anticipate the location of items, the Hick-
Hyman law is appropriate for predicting the time for acquiring the target 
but a linear model should be applied when anticipation is not possible.  

I applied the linear model instead of the Hick-Hyman law to estimate 
visual search times in the pinyin input process. There were two reasons 
behind this decision. First, people are not able to anticipate locations for 
both pinyin marks and Chinese characters, so the linear model may be 
more appropriate. Second, both pinyin marks and Chinese characters are 
complex units of information, and visual search of them may be 
characteristic of a serial search. A linear model is appropriate for a serial 
search. Thus Tv can be expressed as follows: 

Tv = {Pm[epy+fpy(m-1)]}+{Pn[gcc+hcc(n-1)]} (6-15) 

In the above equation, epy, fpy, gcc, and hcc are constants defined by 
Experiment 2; m and n are, respectively, the positions for the target pinyin 
marks and Chinese characters; Pm is the overall probability of the target 
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pinyin mark being at position m; and Pn is the overall probability of the 
target Chinese character being at position n. Equation 12 can be simplified 
as follows: 

Tv = epy+fpy[ (Pmm)-1)]+gcc+hcc[(Pnn) -1)] (6-16) 

In the above equation, the terms (Pm  m) and (Pn  n) provide our 
formulae for calculating the average positions for pinyin marks and 
Chinese characters, which equal 1.24 and 1.77, respectively.  

For Chinese characters that can be entered by choosing them from 
predicted options, visual search time included only the part for Chinese 
characters in Equation 13.  

6.3.3 Experiment 1: Setting of the Parameters for Fitts’ Law 

The first experiment was done to define parameters for Fitts’ law.  

Participants 

Twelve volunteers (seven male, five female) took part in the experiment. 
Their ages ranged from 22 to 34 years, with an average of 27.3 years 
(SD = 3.78). All participants were either student interns or researchers at 
Nokia Research Center in Beijing. All were right-handed and held the 
phone in the dominant hand in the experiment. All were regular 
phone-users.  

 

Apparatus 

A Nokia N95 (see Figure 6.8) was the device used in the experiment. For 
the experiment, I built a program that could automatically log the time for 
each key press. The look and feel of the program was the same as in the 
device’s short message application. I chose the Nokia N95 because it has a 
high-speed processor and can ensure the accuracy of the time logs.           

The “OK” key 
The right 
navigation key 

Figure 6.8. The Nokia N95 used in the experiment.
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Test Tasks 

There were two types of tasks that users needed to complete with the 
thumb of their dominant hand:  

i) Repeated key presses: participants were to press a key twice, as quickly 
as they could. In the experiment, participants were asked to press the right 
navigation key repeatedly and complete the tasks four times, so I collected 
48 data points.  

ii) Paired key presses: the participants were instructed to press two 
specified keys consecutively, as quickly as they could. The task included 
12 pairs of keys, with distances ranging from 5.76 mm (“6”−“9”) to 
28.98 mm (“9”−“1”). The heights of the keys that serve as W in Fitts’ law 
for calculation of the IDs range from 5.45 mm to 6.28 mm. Every 
participant needed to press a pair of keys four times, so, in total, I 
collected 48 data points for each pair of keys.  

For both types of tasks, participants were to press the “OK” key before 
and after each pair of key presses, to indicate the start and end of a trial. 
Thus for each trial, four times were logged and the time for motor 
movement and the key press equaled the difference between the third 
logged time and the second logged time.  

Procedure 

The experiment was conducted in a lab with a coordinator and a 
participant present. Before data collection, the coordinator explained the 
objectives and tasks to the participant. Then the participant practiced 
freely until he or she was ready to start the data collection phase. Half of 
the participants started with the repeated key press tasks, and the other 
half started with the paired key press tasks. For the paired key press tasks, 
testing orders were counterbalanced among the 12 participants with the 
Latin-square technique.  

In the data collection phase, participants were instructed to complete all 
tasks. The time for each key press was automatically logged. After the 
experiment, participants were presented with a small gift. 

Results 

Table 6.5 and Figure 6.9 show the results of Experiment 1. In Figure 6.9, 
the diamond marks indicate the average reaction times for different IDs 
and the line is the linear regression that I performed for the average 
reaction time by ID. The average reaction times increased when the ID 
rose. An ANOVA test indicated a significant effect of ID on reaction times 
(F12,155 = 33.63, p < .001).  
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Table 6.5: Parameters defined (“a” and “b”) for Fitts’ law 

Intercept, a (ms) Slope, b (ms/bit) Correlation 

195 101 0.992 

Table 6.5 shows the constants for Fitts’ law; the correlation of the linear 
regression was very high, showing that Fitts’ law is a very good predictor 
of motor movement time.  
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Figure 6.9. Result of Experiment 1: regression of reaction time by ID (R2 = 0.985). 

From the results, I calculated Tm according to Equation 6-7, Kio from 
Equation 6-11, and Kor and Kro, which, in that order, equaled 1059 ms, 
456 ms, 321 ms, and 285 ms. On the basis of Equation 6-12, I calculated the 
average navigation time for entering a predicted character, which equaled 
723 ms. 

6.3.5 Experiment 2: Setting of Parameters for the Linear Model of Visual Search 

Experiment 2 was designed to determine parameters for the linear visual 
search models (epy, fpy, gcc, and hcc in Equation 6-15) for pinyin marks and 
Chinese characters.  

Participants 

Twenty-four volunteers (16 male and eight female) took part in the 
experiment. Their ages ranged from 22 to 32 years, with an average of 26.2 
years (SD = 3.63). All were either student interns or Nokia Research 
Center staff members in Beijing. Two were left-handed, and the others 
were right-handed. In the experiment, the participants held the phone 
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with both hands, with the left thumb on the “1” key and the right thumb 
on the “3” key. 

Apparatus 

A Nokia N95 was the device used in the study. A program was designed 
for logging key press times and to lead the participants through the 
experiment (see Figure 6.10). 

 

Figure 6.10. Screenshots for Experiment 2: a) at the beginning of a trial, a red cross was 
displayed for a second to gain the user’s attention; b) a target item was displayed in the same 
location, and participants were to remember it and press “3” to proceed to the next step; c) a 
list of options appeared for users’ indication of whether the target had appeared or not (target 
present: press “1,” target absent: press “3”); and d) after participants responded, the system 
gave feedback. 

Tasks and Materials 

I applied the experiment paradigm used by psychologists to study the 
visual search process (Wolfe, 1998). At the beginning of a trial, a red cross 
was displayed for a second to gain the attention of the user. Then a target 
item (either a pinyin mark or a Chinese character) appeared at the same 
location. Once participants had recognized and remembered the target, 
they were to press the “3” key. After the key press, a list of options (2–4 for 
pinyin marks and 6 for Chinese characters) was presented either 
horizontally or vertically and participants were required to decide 
whether the target was among them or not and respond by pressing a 
corresponding key as accurately and quickly as they could. To avoid 
cheating, half of the trials included the target and half did not. If 
participants decided that a target was in the list, they needed to press the 
“1” key; otherwise, they needed to press the “3” key. User reaction times 
were automatically logged by the software.  

There were three types of trials in the experiment, with pinyin marks 
listed either vertically or horizontally and Chinese characters listed 

a) b) 

1 s 

Press 
“3” 

Press 
“1” 

c) d) 
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horizontally. In the experiment, pinyin marks were listed both 
horizontally and vertically because both solutions exist in pinyin input 
solutions and there is no existing study exploring the differences in user 
performance. By contrast, Chinese characters were listed just horizontally 
since studies have already proven that people are more efficient at 
searching for Chinese characters in horizontal lists than in vertical lists 
(Heloisa & Ravindra, 1998) and, moreover, Chinese characters are listed 
horizontally in many products’ pinyin input solutions.  

The pinyin marks and Chinese characters used in the experiment were 
selected carefully. The 133 groups of pinyin marks in which between two 
and four pinyin marks shared the same series of key presses were all 
covered in both horizontal pinyin trials and vertical pinyin trials. Thus 
there were 266 trials for pinyin marks in the experiment, half with targets 
presented and half without. I chose 96 Chinese characters from among the 
500 most frequently used ones as the target items. For each target item, I 
specified five (for target-present trials) or six (for non-present target trials) 
other Chinese characters with the same pronunciation as options. There 
were, in total, 96 trials for Chinese characters, so the experiment included 
362 trials. For all trials, all variables, including whether a target was absent 
or presented, the target item itself, its location in the option list if 
presented, and the order of trials, were randomly arranged without 
replacements. 

Procedure 

The procedure in this experiment was the same as that for Experiment 1 
except that the training session of Experiment 2 included 30 trials. 

Results 

Participants made few errors in the experiment, with an average error rate 
of 1.4% (SD = 0.92%). In my analysis of the data, all error trials were 
excluded. Table 6.6 and Figure 6.11 show the results of Experiment 2, 
which indicate that linear models are appropriate for modeling the visual 
search task in Experiment 2 (Soukoreff & MacKenzie, 2004). Moreover, the 
visual search in pinyin marks and Chinese characters is characteristic of 
both serial and self-terminating searches.  

An ANOVA analysis was conducted to explore the effects of trial type 
(pinyin marks listed both horizontally and vertically and Chinese 
characters) and target location (first four positions) on the average visual 
search time of the 24 participants. The results indicated significant effects 
of target position (F3,287 = 71.8, p < .001) and type of trial (F2,287 = 7.9, 
p < .001) on response times, as well as their interaction (F6,287 = 3.9, 
p < .001). Further t-tests indicated that searching among pinyin marks, no 
matter whether they were listed horizontally (t = 2.5, p < .05) or vertically 
(t = 2.8, p < .05), required longer response times than searching among 
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Chinese characters. There was no significant difference between the two 
listing types for pinyin marks on response times (t = 0.446, ns). 

Table 6.6: The linear models from Experiment 2 

 Intercept 
(ms) 

Slope 
(ms/item) 

Correlation 

Horizontal pinyin 644 153 0.999 

Vertical pinyin 645 160 0.976 

Chinese characters 704 62 0.968 
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Figure 6.11. The empirical results and the linear models for visual search. 

When I estimated visual search times, I did not directly apply the results 
of Experiment 2. This was because the task of the experiment included a 
sub-process of choice reaction from two reaction options (or 
decision-making) besides visual search. Therefore, I decided to subtract a 
fixed time for the choice reaction from the linear models. According to 
Sears et al. (2001), the choice reaction time should be calculated on the 
basis of the number of possible reactions instead of the number of stimuli. 
I applied the results of Hick’s experiment concerning choice reaction and 
subtracted a fixed time of 247 ms (n = 2) from the linear models (Hick, 
1952; Seow, 2005). I applied Hick’s results because the task in his 
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experiment was closer. Finally, the constants epy, fpy, gcc, and hcc were 
calculated. These are presented in Table 6.7. 

Table 6.7: The parameters for visual search 

epy (ms) fpy (ms/item) gcc (ms) hcc (ms/item) 

397 153 457 62 

 

Table 6.8: The average time required to enter a Chinese character 

 Tm Tn Tv T 

Average time per character, predictive 
feature off (ms) 1059 1062 938 3059 

Average time per character entered 
with predictive feature only (ms) 

 723 556 1279 

 

Table 6.8 summarizes the average time for entering a Chinese character 
with the predictive feature off (3059 ms) and with the predictive feature 
only (1279 ms). These are represented, respectively, as T and Tpre in 
equations 6-17 and 6-18. Equations 6-17 (Spre_off) and 6-18 (Spre_on) show how I 
calculate the predicted speeds when the predictive feature is off and on, 
respectively. Ppre in Equation 6-18 is the overall percentage of characters 
entered via prediction only. Table 6.9 presents the predicted speeds. 

Spre_off = 60/ (T/1000) (6-17) 

Spre_on = 60/ {[T(1- Ppre) + TprePpre] /1000} (6-18) 

6.2.6 Experiment 3: Evaluation of the Model with Empirical User Speeds 

Experiment 3 was carried out to collect empirical data on users’ error-free 
speeds, for evaluation of the predicted text entry speeds.  

Participants 

Twelve volunteers (eight male, four female) took part in the experiment. 
Their ages ranged from 24 to 32, with an average of 27.9 (SD = 3.06). All 
were either student interns or staff members at the Nokia Research Center 
in Beijing. One was left-handed, and the others were right-handed. All 
were users of pinyin text entry solutions on mobile phones, and they had 
used mobile phones for, on average, 5.3 years (SD = 1.21).  

Apparatus 

The Nokia N95 was the device used in the study. I used the program 
designed for Experiment 1 to collect data.  
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Test Tasks 

Participants were instructed to enter two short messages twice, once 
character by character and the other time applying the phrase-based 
predictive input feature. Task orders were balanced among the 12 
participants. There were, in total, 31 characters to be entered by 
participants and about seven characters (about 23%) that could be entered 
with the prediction feature. The single-letter correlation (MacKenzie & 
Soukoreff, 2003) with the corpus for the two text messages was 0.932. The 
average number of letters for the 31 characters was 2.94, and the average 
positions for pinyin marks and Chinese characters, respectively, were 1.10 
and 1.84.  

Procedure 

The procedure in this experiment was the same with that in experiments 1 
and 2 except that in the training session for this experiment, the 
participants were instructed to enter three short messages, consisting of 39 
characters each. 

Results 

The time of all extra key presses – for example, for making and clearing 
errors – was fully removed from the task completion time, to make sure 
the text entry rates calculated are comparable with the predicted ones.   

Table 6.9: Average text entry speeds in CCPM 

 
Average user 

speeds, with SD 
Predicted 

speeds 

Predictive feature off 19.1 (2.32) 19.6 

Predictive feature on, 
with the percentages 
of characters entered 
with it 

23.0% 21.9 (2.28) 22.6 

30.3% ---- 23.8 

 

Table 6.9 and Figure 6.12 show the results of Experiment 3 and the 
predicted speeds. According to Table 6.9, the average user speed was 
19.1 CCPM (SD = 2.32) when the predictive feature was off. When the 
predictive feature was on, the average user speed was 21.9 CCPM 
(SD = 2.28). The empirical data match the predictions well. The percentage 
differences in the predicted speeds were both within 4% of the empirical 
data, at 2.6% and 3.2%, while the predictive feature was, respectively, off 
and on. A paired t-test indicated that user speeds were significantly higher 
when the predictive feature was on (t = 2.95, p < .05). The percentage 
increases of speeds were correspondingly 14.7% from empirical data and 
15.3% from the predictive model. 
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Figure 6.12. Text entry speeds without errors.  

6.2.7 Experiment 4: Evaluation of the Model with Empirical Movement and Key 
Press Time 

In the study described above, the predictive model was evaluated via 
comparison of its predictions with the empirical results for users’ error-
free text entry rates. However, further validation of the model may still be 
needed at sub-process or even stroke level. Experiment 4, along with the 
next experiment described, was conducted to validate the model again on 
the stroke level.  

The objective of this experiment was to check the validation of the 
movement model estimated via Fitts’ law. I designed another approach to 
collect the times required for some single key clicks in the disambiguation 
process and compared these with the results predicted by Fitts’ law.  

Participants 

Twelve volunteers (half male, half female) took part in the experiment. 
They ranged from 24 to 32 years of age, with an average age of 26.7 years 
(SD = 2.89). All were either student interns or staff members at the Nokia 
Research Center in Beijing. All participants were right-handed. They were 
instructed to hold the phone in their dominant hand and operate it with 
the thumb. 

Apparatus 

The device used in this experiment was still a Nokia N95. A program was 
designed specifically for this experiment, to lead the participants to 
complete the tasks. The program also logged the key press times.  
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Test Tasks 

The task involved scrolling and target selection by pressing relevant keys. 
Figure 6.13 shows the process and associated screenshots. With the 
software, participants can press any key to activate a frame where seven 
numbers (from 0 to 6) are shown with a target item in red. First, 
participants needed to press the “OK” key to highlight the first item, as 
shown by Figure 6.13 (c). Second, participants moved the highlighting to 
the target item by pressing the right navigation key. Third, participants 
were to select the target item by pressing the “OK” key. Each participant 
needed to complete 105 trials in the experiment, with the target locations 
randomly arranged. For each location, 180 data points in total were 
collected. If a participant made an error, the trial would present the item 
again, later in the experiment, until the participant was correct in all trials.   

 

Figure 6.13. The software used in this experiment: a) an option menu is used to choose either 
training or data collection sessions; b) the frame shows the numbers from “0” to “6,” with the 
target number in red; c) clicking the “OK” key will highlight “0” in the list, and users need to 
move the cursor to the “4” in red and select it by pressing the “OK” key; and d) the software will 
show results, including the response time and whether the response is correct. 

The task is designed to mimic the disambiguation process, but it is much 
simpler, since numbers replaced Chinese characters or pinyin marks and 
the target item was shown in a different color. Moreover, the target item 
actually indicated the number of times to press the right navigation key 
for highlighting the target. For example, if the target item was 4, 
participants needed to press the right navigation key four times to acquire 
the target. Thus the task required little use of cognitive resources for either 
visual search or navigation coordination and is appropriate for use to 
collect key press times in the disambiguation process. 

(a) (b) 

(c) (d) 
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Procedure 

The procedure in this experiment was the same as those of experiments 1, 
2, and 3 except that the training session in this experiment included 50 
trials.  

Results 

The average error rate of the 12 participants was 1.3%. Table 6.10 shows 
the average movement times obtained from this experiment and predicted 
by Fitts’ law. The predicted results were all within 7% of the empirical 
results, which again validates the prediction by Fitts’ law.   

Table 6.10: Results of this experiment and the results predicted by Fitts’ law 

 Time required 
for repeated 
key presses 

Time for movement 
from “OK” key to 

right navigation key 
and for pressing it 

Time for movement 
from the right 

navigation key to the 
“OK” key and for 

pressing it 

Average time, 
with SD 199 (20.8) 333 (54.0) 305 (43.3) 

Results predicted 
by Fitts’ law 195 321 285 

 

6.2.8 Experiment 5: Evaluation of the Model with Empirical Disambiguation 
Time 

Experiment 5 was carried out to evaluate the predictive model by 
comparing the empirical and predicted time for the disambiguation 
process. The empirical results for time required by the disambiguation 
process also show what the selection process looks like.  

Participants 

Sixteen volunteers from the Nokia Research Center Beijing office took part 
in the experiment. Their ages ranged from 22 years to 34 years, with an 
average of 26.7 years (SD = 3.38). All of them were users of SMS and daily 
users of the pinyin input method.  

Apparatus 

The device used in this experiment too was the Nokia N95. The software 
used in Experiment 1 was applied to collect data concerning key presses.  

Test Tasks 

The tasks for participants to complete in the experiments were to copy the 
Chinese text presented, with a Nokia N95. The text given was carefully 
designed such that characters in the text appeared in all positions, from 
the first to the sixth, after their pinyin marks were selected, so that enough 
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data points for Td could be collected for all positions in the disambiguation 
process.  

Participants needed to enter, in total, 347 Chinese characters with the 
Nokia N95. The pieces of text presented were divided across four sessions, 
and participants were required to take a 15-minute break between any two 
sessions.  

Procedure 

The procedure was the same as in experiments 1, 2, 3, and 4, except that in 
the training session for this experiment, the participants were instructed to 
enter eight short messages, each consisting of 40 characters. 

Results 

Table 6.11 and Figure 6.14 show the results of this experiment and their 
comparison with the predictions as to the time required by the 
disambiguation process with pinyin character input methods.  

Table 6.11: Results from this experiment as regards empirical time required by the 
disambiguation process and its comparison with the results predicted by the model 

Time required for 
disambiguation 

process (ms) 

Target positions 

1st 2nd 3rd 4th 5th 6th 

Empirical results, 
with SD 

465 
(291) 

979 
(511) 

1391 
(763) 

1631 
(704) 

1784 
(725) 

1942 
(714) 

Predicted results 652 1125 1382 1639 1896 2152 

 

I also conducted an analysis of correlation between the predicted and 
empirical results. The correlation coefficient between the two data sets is 
0.986. The high correlation supports the validity of the predictive model. 

On the other hand, although the trends between the predicted and 
empirical results are consistent, the differences between the two sets of 
data for first, second, fifth, and sixth positions were still between 100 ms 
and 210 ms. The results can be explained by the serial position effect, in 
which recall accuracy varies as a function of an item's position in a list. 
Both the first few items (primacy effect) and the last few (recentness effect) 
were recalled more accurately than items listed in the middle (Deese & 
Kaufman, 1957). In the disambiguation in the pinyin input process, the 
characters at the start or end of the option list were subject to more 
cognitive processing in the visual search process, so selection of them 
saved some time. 
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Figure 6.14. The results from this experiment on the empirical time required for the 
disambiguation process and its comparison with the results predicted by the model. 

6.2.9 Discussion 

The predictive model proved to be valid, as shown by the close match 
between the average user speeds and our predictions. On the other hand, 
the empirical results also indicated large individual differences among the 
participants in terms of text entry speeds. It is worth noting that these two 
facts are not in contradiction with each other. Since the constants in our 
models were calculated on the basis of average user performance with 
sub-tasks, the predicted speeds were already averages of user 
performance. Further evaluations of the model on the stroke level also 
indicated good matches of the predicted results and empirical results.  

It was expected that the model, taking into consideration the 
characteristics of the corpus, would be applied in evaluations of Chinese 
text entry solutions for mobile phones; now I have completed the process 
with only one phone, and other phones would yield different values for 
the parameters. It is also possible to apply the corpus characteristics and 
the parameters separately.  

According to our model, the disambiguation process required 69.2% 
(predictive feature on) or 65.4% (predictive feature off) of the total time 
with the pinyin input methods on mobile phones, indicating a greater 
percentage of the time than the disambiguation process of a pinyin input 
method based on a QWERTY keyboard takes (about 52%) (Wang, Zhai, & 
Su, 2001). Innovative solutions are needed to optimize the disambiguation 
process in Chinese text entry solutions for mobile devices.  
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When I calculated the predicted speed while the predictive feature is on as 
Equation 6-18 shows, I directly used for T the average time (3059 ms) 
calculated on the basis of all characters in the corpus. However, the 
characters that were entered via the predictive feature should have been 
removed from this number. I assume that this was one reason I found a 
slightly higher predicted speed for cases with the predictive feature. This 
is also one of the points for improvement that I need to address in future 
work.  

In comparison with state-of-the-art predictive models for text entry and 
menu selection tasks (Cockburn, Gutwin, & Greenberg, 2007; Isokoski & 
MacKenzie, 2003; Pavlovych & Stuerzlinger, 2004), our model does not 
cover some variables, such as the learning process, or new features such as 
phrasal input. However, I view the present work as a good start and 
anticipate that such issues will be explored in the future. 

6.4 SUMMARY 
Chinese pinyin text entry solutions based on the 12-key keypad of mobile 
phones are critical since they are the primary methods adopted by local 
users. I presented two studies, focusing on pinyin phrasal input methods 
and pinyin character input methods, respectively.  

I compared five Chinese pinyin phrasal input methods for mobile phones 
(Cstar, Guobi, Nokia, T9, and Zi), representing two types of interaction 
designs: methods requiring and not requiring selection of pinyin marks. 
The participants achieved better performance with the Cstar and Nokia 
methods. However, they also preferred Guobi subjectively, although it 
was not good by performance metrics. It is believed that the results 
indicate that omitting the selection process for pinyin marks is a trend for 
phrasal pinyin input methods that are based on the 12-key keypad. Some 
further design guidelines were proposed for the interaction design of 
pinyin phrasal input methods.  

I presented a model that integrates a language model with Fitts’ law for 
key presses, KLM for navigation, and a linear model for visual search to 
predict user performance with two Chinese pinyin input methods. I 
evaluated the model by comparing its predictions with the empirical user 
speeds. The predictions were proven effective: when the prediction feature 
was on and off, the predicted speeds were, respectively, 3.2% and 2.6% 
higher than the empirical user speeds. I view the model as a useful start. 
First, there is a lack of predictive models or insights to explore the patterns 
of user behavior in relation to the Chinese text entry systems of mobile 
phones. I hope that, as the first published model, our work can draw forth 
further work on this subject. Second, practitioners and researchers in this 
field can benefit from the model by applying it in evaluation of Chinese 
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pinyin text entry solutions on mobile phones and identification of design 
opportunities.  
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7 Summary and Conclusions 

Chinese text entry is a critical and urgent research field, in view of the 
widespread and frequent use of mobile devices by Chinese users. 
However, there have been few studies either to explore the design of new 
Chinese text entry methods for mobile devices or to understand user 
behavior in the interaction processes. This thesis has addressed both topics 
by presenting two design cases and several experimental studies focusing 
on user behavior in the interaction process.  

Chinese is nearly unique in some of its characteristics: it is logosyllabic in 
nature; its characters are complex in structure and homophonic, with 
multiple tones. These characteristics significantly affect how Chinese text 
is entered in computing systems. First, Chinese characters cannot be 
directly entered with keyboards designed for alphabetic languages. 
Therefore, two coding systems were created to map the tens of thousands 
of Chinese characters to the 12-key keypad: the pinyin coding system, 
based on the Mandarin pronunciation of Chinese characters in the form of 
Latin letters, and the stroke coding system, based on the standard 
sequences for writing Chinese characters. Second, since the complex 
structure of Chinese characters carries rich information to differentiate 
them from each other, the Chinese handwriting recognition technique has 
attained a satisfactory accuracy level and been incorporated by many 
mobile products.  

A few key goals motivate creation of new text entry solutions for mobile 
devices: optimal user performance (low error rates with high speeds), 
universal solutions covering more user groups and work contexts, ease of 
learning, and positive user experience. Many approaches have been 
explored and applied to reach these goals, although the resulting designs 
often end up with a tradeoff among the goals. Optimizing user 
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performance with mobile text entry solutions primarily involves three 
types of approaches: the disambiguation approach (mainly for keypad-
based text entry solutions), decreasing the motor movement distances 
(mainly for soft keyboards), and providing a cognitively familiar UI layout 
or key mappings.  

User studies are an essential part of the design process for new mobile text 
entry solutions. To ensure the internal and external validity of user studies 
in the thesis, a few relevant guidelines and measures were reviewed. First, 
comparative user studies are preferred. Second, text copying tasks with 
short and easily remembered sentences had best be adopted in user 
studies of text entry solutions. The primary measurements that need to be 
covered are text entry rate in WPM or CCPM, error rates, and keystrokes 
per character for showing the ambiguity level.  

Chapter 3’s analysis of existing Chinese text entry solutions implied that 
an affordable Chinese HWR solution is required if mobile devices are to 
accommodate more potential users. First, Chinese text entry solutions 
based on the 12-key keypad, including the pinyin and stroke methods, can 
hardly accommodate all potential users. People’s native dialect, when it is 
not Mandarin, often negatively affects the use of the pinyin coding system 
and causes systematic errors in the production of pinyin marks. Also, 
people develop different writing orders for Chinese characters, while the 
stroke coding system requires a standard stroke order. These 
disadvantages of the pinyin and stroke coding systems bring either extra 
learning or obstacles for people. Second, Chinese HWR has potential to 
offer good immediate usability. However, it is supported by only those 
mobile products with touchscreens, which makes it expensive and does 
not match user expectations: Chinese HWR is expected even when touch 
interactions for all functions are not. Therefore, I proposed for mobile 
phones a Chinese HWR solution based on a touchpad: a cheaper solution 
that also enables combination of a touchpad with the 12-key keypad.  

Chapter 3 also presented a customized user-centered design approach to 
develop the concept into interaction designs. Three modules of empirical 
studies to involve users in the design process were planned, for different 
purposes: to build user experience benchmarks for our concept via 
competitor analysis; to compare interaction options for the concept, 
including feedback and UI styles; and to evaluate the interaction design as 
well as the concept. In total, eight studies were conducted. I chose and 
presented three of them because these were representative for each 
module. The benchmark study of UI layout for Chinese HWR indicated 
that users preferred the box designs, supporting continuous input and 
virtual buttons. A quantitative study to explore the effects of user group 
(novice vs. expert) and UI design (full-screen vs. three-box design) on user 
performance indicated that only the main effect of user group is 
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significant. Though the three-box design supports continuous input, users 
are not faster with it, since the errors they notice interrupt continuous 
writing. Finally, the evaluation based on a working prototype indicated 
that the concept and UI designs were well accepted by end users.  

Chapter 4 explored the design issues of Chinese pinyin input with a 
rotator. A rotator, a ring or round device that can be rotated either 
clockwise or counterclockwise, is very good for navigation and also 
enables selections. It is not a direct input device as the keyboard is; it 
requires users to scroll in a list of items and select the target items to 
complete the text entry process. Since target selection from a list of options 
is an essential sub-process in Chinese pinyin solutions, it is worth 
exploring the potential of a selection-based Chinese text entry solution 
based on the pinyin coding system and a rotator.  

I proposed two new designs based on the idea of “consonant plus vowel” 
and compared them to the traditional date stamp design. Although there 
were no significant differences among the three design solutions in user 
performance, the efficiency perceived by users was greater for one of the 
new designs, and it was their technique of choice for their own phone. 
Moreover, it is worth noting that the results were obtained in a setup that 
favored the initial design since no predictive input was implemented in 
the new designs. The interaction efficiency with the rotator was primarily 
affected by two factors: number of items in the scrolling list and number of 
selection actions. Thus, the prediction feature is quite important for text 
entry solutions based on a rotator, because it can significantly decrease the 
number of items in the scrolling list. I argued that it was because 
prediction was not implemented in the new designs that they did not 
outperform the traditional design.  

In Chapter 5, I presented two studies of Mandarin dictation solutions for 
mobile phones. In the first section, I presented two rounds of evaluations 
of isolated Mandarin message dictation solutions with working prototypes. 
In both evaluations, both objective and subjective data were collected for 
understanding user behaviors and attitudes toward the isolated message 
dictation applications. It was found that the recognition rate increased 
after an optimization of the recognition engine. However, enrollment (the 
adaptation of the system to the user’s voice) does not help to increase 
recognition rates. Average text entry rates with the isolated dictation 
solutions on mobile phones were in the range 8–10 CCPM. Participants 
expected continuous dictation solutions, for they believed that continuous 
speaking is more natural and can bring better performance. The second 
study explored effects of speaking styles (phrasal input vs. sentence input) 
along with recognition rate and message length on user performance and 
satisfaction, with a Wizard of Oz method. The results indicated that all 
factors, including speaking style, recognition rate, and message length, 
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affected user performance and satisfaction. Further task analysis indicated 
that error corrections took the greatest proportion of the time in the 
dictation process, followed by selection from among the recognition 
options and speaking time. 

Chapter 6 presented two studies of the 12-key-keypad-based Chinese 
pinyin text entry solutions. The first study compared five phrasal text 
entry solutions, belonging to two categories: with and without the need 
for processes for selection of target pinyin marks. The results indicated 
that at least one interaction solution from each category enables 
satisfactory user performance. However, subjectively users preferred the 
category of solutions requiring no selection of target pinyin marks. 
Therefore, the future trend for the design of interaction for pinyin phrasal 
input would be that user selection of target pinyin marks is not required. 
Also, three additional design guidelines were proposed and discussed for 
the pinyin phrasal input feature.  

The second study aimed to build for Chinese pinyin character input 
solutions a user model to estimate users’ error-free input speeds. I divided 
the input process with a Chinese pinyin character input method into two 
parts: the production and typing of a pinyin mark and the disambiguation 
process for selecting the target pinyin marks and Chinese characters. I 
combined Fitts’ law and a language model to estimate the average time 
required for production and typing of a pinyin mark. Then I divided the 
disambiguation process itself into two sub-processes: the visual search 
process and the navigation process. I utilized a keystroke-level model and 
a linear model to estimate, respectively, the navigation time and visual 
search time required in the disambiguation process. Then I conducted five 
experiments, the first two to set the parameters for Fitts’ law and the linear 
law and the other three experiments to evaluate the model against 
empirical results. The evaluation indicated that the prediction of our 
model is effective, suggesting that the model can be used to evaluate user 
performance of Chinese pinyin text entry solutions on mobile phones. 

In Table 7.1, I summarize user performance (text entry rates and error 
rates) with four types of Chinese text entry methods on mobile devices 
according to the results in this thesis. The four types of methods are 
Chinese handwriting recognition methods, rotator based pinyin input 
methods, isolated character dictation methods and pinyin input methods 
based on the 12-key keypad. According to the table, the keypad-based 
pinyin input methods supporting phrasal input enable the fastest text 
entry rates. Text entry rates with Chinese HWR methods are slightly lower 
than with keypad-based pinyin input methods. However, error rates with 
Chinese HWR methods are comparatively higher indicating it is still 
possible to improve them. With a Chinese SMS dictation application that 
supports isolated character speech input and the average 4-best 
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recognition rate of around 96%, users can enter text with rates from 8 to 10 
CCPM. Though users considered dictation a useful text input method, 
they were neutral on its usability. Rotator-based Chinese pinyin input 
yields much lower user speeds. However, a rotator has several good 
elements: it performs fine in navigation tasks, its small size enables it to be 
easily integrated into mobile devices, it is fun to use, and it can be used to 
enter written languages that have more characters. Further exploration of 
it is necessary, and our study provides guidelines for interaction designs 
employing a rotator.  

Several additional research topics and questions were identified in this 
thesis for the future. First, there are high expectations that further work 
will improve the target selection process that is necessary in mobile 
Chinese text entry solutions. Second, studies of the interaction process 
with keypad-based stroke methods are necessary. Third, interaction 
designs for, and studies of, continuous Chinese HWR and Chinese specific 
soft keyboards are also clearly required.  
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Table 7.1: Empirical results for user performance with different Chinese text entry methods 

according to the studies in this thesis 

Chinese text entry methods 
explored in this thesis 

Average empirical results (SD) 

Error rate (deletion 
actions per 

Chinese character) 

Text entry rate 
(CCPM) 

HWR (with 
pen and 
mobile 

touchscreen 
device) 

Novice 0.26 (0.191) 14.5 (3.09) 

Expert 0.18 (0.139) 18.8 (3.95) 

Rotator 
(novice) 

Date stamp 0.04 (0.042) 6.5 (1.05) 

Con. + vowel 
(Alpha) 

0.05 (0.042) 6.6 (1.28) 

Speech 
dictation 

Isolated character 
dictation 

0.05–0.32 8–10 

Keypad 
pinyin 

Character input 
with prediction 

(expert) 
0.11 (0.102) 

21.9 (2.28) (speeds 
without errors) 

Phrasal 
input  

Novice 
user 

Nokia: 0.084 (0.026) 

Nokia: 25.5 (8.0) 

Trained 
user 

Nokia: 34.2 (10.2) 
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