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Abstract

Inflammation is a defence mechanism by which the body reacts against foreign
invaders and cell injuries. Activated inflammatory cells produce signalling
molecules that regulate the inflammatory response and the progress of
inflammation. Inflammation is usually beneficial, but if it is inadequately controlled
or inappropriately directed e.g. against the body’s own tissues or harmless
molecules, it may cause injury or disease. This is the case in some of the most
common and disabling human diseases such as rheumatoid arthritis and asthma.

Protein kinase C (PKC) is a family of ten isoenzymes that are crucial in cellular
signal transduction. Aberrant PKC activation has been demonstrated in several
pathological states including cancer and metabolic disorders. Less is known about
the specific effects of PKC isoenzymes on the regulation of inflammatory genes.

Inducible nitric oxide synthase (iINOS) is one of the genes activated in
inflammation. The enzyme for which it codes, iINOS, catalyses the production of
nitric oxide (NO) from L-arginine and molecular oxygen in inflammatory cells such
as macrophages. NO produced by iNOS has beneficial effects in innate immunity,
where it functions as atoxic agent towards infectious organisms. However, aberrant
INOS induction seems to be involved in the pathophysiology of human diseases
such as asthma, arthritis, and colitis.

Tristetraprolin (TTP) is a factor that can bind to AU-rich elements within the
MRNASs of its target genes causing destabilization of the mRNA of severa
transiently expressed inflammatory genes such as TNFa, GM-CSF, and various
interleukins. Studies with TTP knockout mice have shown that TTP deficiency
evokes a profound inflammatory syndrome, which has been reported to be mainly
due to excessive production of TNF-a. TTP can be thought primarily as an anti-
inflammatory or arthritis suppressor gene.

The overall aim of the present study was to investigate the role of PKC
isoenzymes in the regulation of protein and mMRNA expression of inflammatory
genes iNOS and TTP. One aim was to identify which classical PKC isoenzymes are
involved and whether the novel isoenzyme PKCd would take part in the regulation
of INOS or TTP under inflammatory conditions. Another major aim was to
characterise the mechanisms involved in the regulation of INOS and TTP expression
by PKC isoenzymes.

Classical PKC isoenzymes were shown to participate in the regulation of the
expression of iINOS and TTP. Inhibition of PKCb reduced the production of NO and



decreased iINOS expression in activated macrophages. This effect seemed to be
mediated mainly at the level of transcription, i.e. by affecting the activity of the
transcription factor STAT1. PKCbll seemed to be able to aso regulate the
expression of TTP through the activation of transcription factor activator protein 2
(AP-2).

The novel isoenzyme PKCd was observed to take part in the regulation of iINOS
protein and mMRNA expression. Downregulation of PKCd by PKCd targeted SRNA
or inhibition of PKCd by rottlerin reduced iNOS expression, most likely through the
downregulation of transcription factor interferon response factor 1 (IRF1). PKCd is
believed to be a significant inflammatory pathway also in vivo, because inhibition of
PKCd by rottlerin showed anti-inflammatory effects in carrageenan-induced
inflammation, as did treatment with an iINOS inhibitor L-NIL. PKCd seemed to be
able to regulate also the expression of TTP by affecting TTP mRNA decay.

Inflammation leads to the activation of PKC signalling pathways and the
production of many inflammatory factors, e.g. iNOS, which further enhance the
inflammatory process. During inflammation, iNOS produces large amounts of NO,
which in addition to its antimicrobial effects, possesses regulatory and
proinflammatory/destructive effects. Compounds that inhibit iINOS expression or
activity have been claimed to have anti-inflammatory properties in various forms of
experimentally—induced inflammation. Here, inhibition of iINOS expression was
found after inhibition of PKCb and PKCd, suggesting that those two PKC
isoenzymes can enhance the inflammatory reaction by upregulating INOS
expression. In the normal inflammatory reaction, also the factors that limit the
inflammatory process become activated. One of these factorsis TTP, the expression
of which was also found to be regulated by PKC in a pathophysiologically relevant
manner.

In the present study, the role of different PKC isoenzymes in the regulation of
inflammatory genes iINOS and TTP were identified. Novel mechanisms of
regulation by PKC isoenzymes were discovered. These findings add to our
understanding of the inflammatory process and this information may be useful in the
development of novel anti-inflammatory drugs.
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Tiivistelma

Tulehdus on elimiston puolustusmekanismi taudinaiheuttgjia ja kudosvauriota
vastaan. Tulehdusalueelle kertyneet immuunijérjestelmén solut tuottavat
valittgjdaineita, jotka sddtelevdt tulehdusreaktion voimakkuutta ja etenemista
Yleensd tulehdus on hyodyllinen reaktio, mutta jos tulehdusreaktion s&étely
hairiintyy tai reaktio kohdentuu véérin, seurauksena voi olla tulehdustauti, kuten
nivelreumata astma.

Proteiinikinaasi C (PKC) isoentsyymit ovat seriini/treoniinikinaaseja ja sédtelevét
kohdeproteiiniensa toimintaa fosforylaation avulla. PKC isoentsyymiperhe koostuu
kymmenestd erilaisesta isoentsyymistg, joilla kaikilla on merkittava rooli
solunsisdisessa signaalinvalityksessd. PKC aktivaation tiedetddn liittyvan moniin
sairauksiin, kuten sy0padan ja diabetekseen, mutta PKC isoentsyymien vaikutuksista
tulehdusgeenien séételyssa tiedetdan toistaiseksi vahan.

Indusoituva typpioksidisyntaasi (iINOS) on yksi tulehdusreaktiossa aktivoituvista
tulehdustekijoista. Se katalysoi typpioksidin (NO) muodostumista L-arginiinista ja
molekulaarisesta hapesta. Néin syntyvéla NO:lla on térked rooli luontaisessa
immuunipuolustuksessa taudinaiheuttgjien tuhoamisessa. NO:n tiedetdan kuitenkin
my6s voimistavan tulehdusreaktiota ja aiheuttavan kudostuhoa. Tiedetéan myos,
etta lisdantynyt iNOS-vélitteinen NO-tuotto liittyy mm. astman, nivelrikon seka
koliitin patofysiologiaan.

Tristetraproliini (TTP) on lahetti-RNA:n stabiiliutta sédteleva tekija. Se sitoutuu
kohdegeeniensa 18hetti-RNA:n 3 UTR—-alueeseen ja sdételee tdlla tavoin useiden
tulehdusgeenien, mm. tuumorinekroositekij&a:n (TNFa) ja granulosyytti-
makrofagikasvutekijan (GM-CSF), ilmentymista. TTP poistogeenisilla elaimilla on
havaittu merkittdvd tulehduksellinen oireyhtymd, jonka gjatellaan johtuvan
padasiassa liséantyneesta TNFa:n ja GM-CSF.n tuotosta. TTP:ta voidaankin pitéa
anti-inflammatorisena tekijana.

Véitoskirjatyon tarkoituksena oli tutkia PKC isoentsyymien roolia kahden
tulehdusgeenin, iINOS:n ja TTP:n, ilmentymisen sdédtelyssd. Tarkoituksena oli
identifioida, mitka klassisen alaryhman PKC isoentsyymit osallistuvat iNOS:n ja
TTP.n s&itelyyn tulehduksessa ja osdlistuuko uudentyyppisten isoentsyymien
alaryhméén kuuluva PKCd myos séatelyyn. Lisaksi tarkoituksena oli selvittéa,
mitka ovat sdételyn takana olevat molekulaariset mekanismit.

Klassiset PKC isoentsyymit osallistuivat sekd iNOS:n ettd TTP:n ilmentymisen
sédtelyyn. PKCb isoentsyymin esto vahensi NO:n tuottoa ja iINOS:n ilmentymista
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todenndkdisesti vahentamalla transkriptiotekija STATL1:n aktiivisuutta. PKCblI
puolestaan osallistui TTP:n ilmentymisen sadtelyyn, mahdollisesti transkriptiotekija
AP-2:n aktivaation kautta

Vaitoskirjatydssa osoitettiin myds PKCd:n osallistuvan sekéa iNOS:n etta TTP:n
ilmentymisen sddtelyyn. PKCd:n ilmentymisen vaimentaminen SIRNA-
menetelmédlla ja PKCd:n esto rottlerinilla vahensivdt iNOS:n ilmentymista
todenndkdisesti vahentamalla transkriptiotekijd IRF1:n ilmentymisd PKCd on
merkittava signalointireitti tulehduk sessa todenndkGisesti myos in vivo, silla PKCd:n
esto rottlerinilla, sek& iINOS inhibiittori L-NIL, vaimensivat tulehdusreaktiota myos
karrageenilla aiheutetussa hiiren tassun tulehdusmallissa. TTP:n ilmentymisen
séételyyn PKCd osallistui vaikuttamalla TTP:n l8hetti-RNA:n stabiiliuteen.

Tulehdus aktivoi PKC signalointireitteja ja tulehdustekijoiden, kuten iNOS:n,
tuottoa. Tulehduksessa INOS:n kautta muodostuva NO osallistuu luontaiseen
immuunipuolustukseen tuhoamalla taudinaiheuttgjia. Lisaks ndin muodostuvalla
NO:lla on myds tulehdusta voimistavia ja siddtelevia ominaisuuksia iINOS:n
ilmentymista tai aktiivisuutta estévilla yhdisteilla on todettu olevan tulehdusta
vaimentavia valkutuksia monissa tulehdustautien kokeellisissa malleissa. Tassa
tutkimuksessa PKCb:n ja PKCd:n eston havaittiin vahentéavan iNOS:n ilmentymista,
antaen viitteita gitg, ettd kyseessi olevat PKC isoentsyymit saattavat voimistaa
tulehdusreaktiota lisddmalla INOS:n ilmentymigd Normaalisti etenevéssa
tulehdusreaktiossa myos tulehdusprosessia rajoittavat tekijé, kuten TTP,
aktivoituvat. PKC isoentsyymien havaittiin osallistuvan myds TTP:n ilmentymisen
séételyyn.

Tassa vaitoskirjatyossa tutkittiin eri PKC isoentsyymien osuutta kahden
tulehdusgeenin, INOS:n ja TTP:n, ilmentymisen sddtelyssa. Tutkimuksessa
havaittiin  uusia mekanismeja, joilla PKC isoentsyymit voivat vaikuttaa
tulehdusreaktioon. Tutkimuksessa saatua tietoa voidaan kéayttéd hyvaksi
kehitettdessa uusia anti-inflammatorisia laékeaineita.
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| ntroduction

Inflammation is the body’'s protective response againgt foreign invaders, such as
microbes and toxins, which may cause cell injury. Inflammation is also designed to
remove the consequences of such cell injury e.g. necrotic cells and tissues. Classical
signs of inflammation are redness, swelling, heat, pain, and loss of function.

Inflammation can be either acute or chronic depending on the nature of the
stimulus and the intensity of the initial reaction in eliminating the stimulus or the
damaged tissues. Acute inflammation is the initial response to tissue injury. It is
typically rapid in onset and of short duration. Its principal characteristics are the
exudation of fluid and plasma proteins and emigration of leucocytes, mainly
granulocytes and monocyte/macrophages. If the acute inflammation naturally
eliminates the foreign invaders, then the inflammatory reaction successfully
subsides. However, if the acute response fails, then the inflammation may progress
to a chronic phase. Chronic inflammation is of longer duraion and is associated
with the presence of macrophages and lymphocytes, tissue destruction, the
proliferation of blood vessels, and fibrosis. Although inflammation is beneficial and
required for survival, it can be harmful in some situations. If inflammation is
inadequately controlled or inappropriately directed against harmless proteins or host
tissues, it may cause injury or disease. Thisisthe case in some of the most common
human diseases such as asthma, allergy, rheumatoid arthritis, and inflammatory
bowel disease.

The immune response can be divided into innate immunity and adaptive
immunity and one major role for macrophages is to function as a link between these
two systems. Innate immunity (also called natural immunity) is an inborn defence
mechanism evolved to specifically recognise pathogens and protect against
infections. This is the first line in defence and it does not require previous contact
with the pathogen. Adaptive immunity (also called acquired immunity) develops
later, after contact with pathogens, with CD4+ helper T cells playing amajor role. T
helper cells can be divided into three subsets Thl, Th2, and the recently discovered
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Th17, which all play distinct roles. Adaptive immunity is more specific and its
mechanisms are capable of recognising specific microbial and nonmicrobial
substances called antigens. Autoimmune diseases arise when the immune system
recognises substances and tissues normally present in the body as being foreign, and
thus the system attacks the body’ s own cells. (Kumar et a. 2010)

The outcome of inflammatory reaction is very similar, despite its initial cause.
Several inflammatory mediators regulate the inflammatory response and the
signalling network of immune cells forms a complex phenomena. Inflammatory
mediators include nitric oxide (NO) and tristetraproline (TTP). NO is a gaseous
signalling molecule involved in physiological and pathophysiological functions in
the body. In inflammatory processes, NO is produced primarily by inducible nitric
oxide synthase (iNOS) in inflammatory cells such as macrophages. NO is involved
in innate immunity as a toxic agent towards infectious organisms. It can also induce
or regulate the function and death of antigen-specific immune cells, thereby
participating in adaptive immunity. NO may represent aso a proinflammatory agent
since it can induce toxic reactions against the host tissues. High levels of NO are
associated with the generation of certain inflammatory diseases, such as asthma and
arthritis. (Tripathi et a. 2007, Kumar et a. 2010)

Tristetraprolin (TTP) is a factor that binds to the mRNASs of some transiently
expressed inflammatory genes and regulates the stability of the mRNA. TTP has
been shown to destabilize the mRNAs of different factors e.g. tumour necrosis
factor a (TNFa) and granulocyte-macrophage colony-stimulating factor (GM-CSF)
(Blackshear 2002). A role for TTP in inflammation was revealed when TTP
knockout mice were demonstrated to develop a severe inflammatory syndrome,
including arthritis and autoimmunity, as a consequence of excessive production of
TNFa (Taylor et a. 19964). Thus, TTP can be considered primarily as an anti-
inflammatory factor.

Protein kinase C (PKC) is a family of ten isoenzymes that play a crucial rolein
cellular signal transduction. Studies with PKC knockout animals have revealed that
many of the isoenzymes are involved in cell growth, proliferation, and
differentiation. However, less is known about the role of PKC in the regulation of
the expression of inflammatory genes (Tan and Parker 2003, Lee et al. 2008). The
present study investigated the role of protein kinase C isoenzymes in the regulation

of inflammatory genes, with iINOS and TTP being used as example genes.

14



Review of literature

1. Protenkinase C

Protein kinases are enzymes that mediate their effects by phosphorylating their
target proteins. There are 518 protein kinases encoded in the human genome
(Manning et al. 2002). Serine/threonine kinase protein kinase C (PKC) was
discovered in 1977, and it was one of the first protein kinases to be identified. It was
first defined as a histone kinase activity from rat brain which was activated by
limited proteolysis (Inoue et al. 1977, Taka et al. 1977). Subsequently, it was
discovered that this new kinase was also activated by phosphatidylserine and
diacylglycerol (DAG) in a Ca**-dependent manner as reviewed by Gould and
Newton (2008) and Steinberg (2008). The first PKCs identified and cloned were the
a, b, and g isoenzymes, which were initially isolated from rat brain cDNA libraries
(Coussens et al. 1986, Parker et al. 1986). Further analysis led to the discovery of
three additional isoenzymes, d, e, and z also from rat brain cDNA libraries (Ono et
al. 1987). PKC isoenzymes h (Osada et al. 1990), q (Osada et al. 1992), and i (I is
the mouse homologue) (Selbie et al. 1993) were found in screens of other tissue
cDNA libraries. Today, the mammalian PKC superfamily consists of ten different
iSoenzymes.

The mammalian isoenzymes have been grouped into three subfamilies on the
basis of their domain structure (Figure 1). The best understood and most widely
studied of these groups are conventional or classical isoenzymes, cPKCs, which
consist of the a, bl, bll, and g isoenzymes. In the presence of phosphatidylserine,
these isoenzymes respond to DAG in a Ca’*-dependent manner. cPKCs are also
targets of the tumour promoting phorbol esters. The novel PKCs (nPKCs) consist of
d, e, h, and q isoenzymes. These isoenzymes are Ca”*-independent, but respond to

DAG or phorbol esters in the presence of phosphatidylserine. The atypical PKC
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isoenzymes (aPKCs) z and i/l are Ca®*-independent and do not respond to DAG or
phorbol esters. (Gould and Newton 2008, Steinberg 2008)

REGULATORY CATALYTIC COFACTORS
dosubstrat .

pseudosubstrate activation turn hydrophobic PS DAG ca’
. C1A C1B c2 loop motif motif

Classical

o, BL BIL y N o)) G  * * *

hinge
Novel novel C2 C1A C1B
5.em 0 N T o) @&Sc +

PB1 atypical C1

Aypical D) G(E) © +

Figure 1. The structure and cofactor requirements of PKC isoenzymes. Phosphorylation sites for
PKChIl, PKCeg and PKCz are shown as representatives of their own subfamily.
PS=phosphatidyl serine, DAG=diacylglycerol. (Modified from Newton 2010).

All PKC isoenzymes (~80 kDa) share a conserved domain structure composed of
a carboxyl-terminal kinase core linked by a flexible hinge segment to an amino-
terminal region which contains the regulatory modules. These modules confer
sensitivity to second messengers with some variation between subgroups. The
regulatory moiety, which consists of C1 and C2 domains in cPKCs, maintains the
enzyme in an inactive form in the absence of the appropriate second messengers and
also targets the enzyme to specific cellular locations and mediates protein-protein
interactions. The autoinhibitory pseudosubstrate sequence is located N-terminal to
the C1 domain. When PKC is inactive, this peptide sequence occupies the substrate
binding cavity. Upon activation of PKC, the pseudosubstrate is released, allowing
the binding and phosphorylation of downstream substrates. More detailed structures
of isoenzyme subgroups will be described in the following sections. (Steinberg
2008, Newton 2010)

1.1 Overview of protein kinase C signalling pathways

The hallmark of PKC activation is the translocation of the enzyme from the cell
cytosol to the membrane compartments (Steinberg 2008). Extracellular signals
cause receptor-mediated activation of phospholipase C resulting in the cleavage of
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phosphatidylinositol bisphosphate (PIP,), forming DAG and inositol trisphosphate
(IPs), which releases Ca?* from intracellular storage sites (Hughes and Putney
1988). The second messengers i.e. DAG and Ca”, initiate the membrane
translocation and activation of PKC. In the case of classical isoenzymes, which are
the Ca?* dependent isoenzymes, Ca?* binds to the C2 domain and pretargets PKC to
the membrane. This allows the C1 domain to bind its membrane embedded ligand
DAG, an interaction enhanced by stereospecific binding to phosphatidylserine. The
coordinated engagement of both C1 and C2 domains on the membrane provides the
energy to release the autoinhibitory pseudosubstrate and then PKC can bind its
substrates and initiate downstream signalling (Figure 2). (Steinberg 2008, Newton
2010)

However, before PKC isoenzymes can effectively transduce extracellular signals
to downstream targets, they must be properly processed and positioned. PKC
isoenzymes are matured in a series of ordered, tightly coupled, and constitutive
phosphorylations, that are essential for the stability and catalytic competence of the
enzyme (Keranen et al. 1995, Newton 2010). The maturation processes differ to
some extent between isoenzymes, but the main stages are similar. The first step is
the phosphorylation of the activation loop by the upstream kinase PDK1
(phosphoinositide-dependent kinase 1). Newly synthesized immature PKC is loosely
tethered at the membrane in a position that allows PDK1 to bind and phosphorylate
the activation loop (e.g. Thr*® in PKCblII) (Chou et a. 1998, Dutil et al. 1998, Le
Good et a. 1998). This functions as a primer for the subsequent C-terminal
autophosphorylations at the turn motif and the hydrophobic motif, which serve to
stabilize mature PKC. Rapid autophosphorylation at the turn motif site (e.g. Thr®*
in PKCbII) isrequired to maintain catalytic competence of the enzymes (Keranen et
al. 1995, Edwards et al. 1999). The final step is autophosphorylation at the C-
terminal hydrophobic motif (e.g. Ser®® in PKCbl1), which influences the subcellular
localization and stability of PKC (Keranen et al. 1995, Behn-Krappa and Newton
1999). Once PKC has been processed by phosphorylation, it is released to the

cytosol and maintained in a mature inactive conformation (Keranen et al. 1995).
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Figure 2. Schematic presentation of the activation of PKC. Newy synthesised immature PKC is
loosely tethered at the membrane in an open conformation. Phosphoinositide-dependent kinase 1
(PDK1) phosphorylates the activation loop and PKC can be autophosphorylated. PKC is released
into the cytosol and maintained in a mature inactive conformation. Second messengers
diacylglycerol (DAG) and Ca®" evoke the translocation of mature PKC from the cytosol to the
membrane. Binding of DAG to the C1 domain and Ca?* to the C2 domain provides the energy for the
release of the pseudosubstrate from the active ste to alow downstream signalling.
PL C=phospholipase C, PIP,=phosphatidylinositol bisphosphate, |P;=inositol trisphosphate

Phorbol esters, which are analogues of DAG, can also cause translocation and
activation of PKC. Phorbol esters are natural products isolated from plant
Euphorbiaceae and Thymeleaceae families. Phorbol esters are tumour promoters,
i.e. compounds which are not carcinogenic by themselves, but increase the
probability of cells becoming malignant after the initiation event has been triggered
by carcinogenic agents. The most potent phorbol ester is phorbol 12-myristate 13-
acetate (PMA, aso known as TPA from the name 12-o-tetradecanoylphorbol-13-
acetate) (Blumberg et al. 1983). Phorbol esters are well known activators of cPKCs
and nPKCs. As compared to the transient response of PKC to DAG (which is
metabolized rapidly), phorbol ester induced translocation of PKC is prolonged,
leaving PKC susceptible to the activity of proteases. Indeed, prolonged treatment
with phorbol esters leads to a degradation of PKC, i.e. downregulation of PKC
(Huang et a. 1989, Chen 1993). For two decades, PKC was considered the major
phorbol ester receptor within cells, and phorbol esters were widely used

pharmacological tools in studying PKC activation. However, several non-kinase
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targets of phorbol esters, such as chimaerins, Ras guanyl nucleotide-releasing
proteins (RasGRPs), and mammalian homologue of uncoordinated-13 protein
(Munc-13), have also been described (Kazanietz et al. 2000).

PKC signals in all regions of the cell: plasma membrane, nucleus, Golgi
apparatus, mitochondria, and cytosol, and this requires accurate targeting
mechanisms. Receptors for activated C kinase (RACKS) have been suggested to
function as molecular scaffolds to help to localize the individual PKCs to distinct
membranes in close proximity with their activators and intracellular substrates. It
has been proposed that cells express a unique RACK for each PKC isoenzyme and
that PKC-RACK interactions are essential for isoenzyme specific cellular responses
(Mochly-Rosen et al. 1991). To date, proteins with the characteristics of RACKs
have been identified for PKCb and PKCe (Csukai et a. 1997, Ron et al. 1999).

Similar to the trandocation of PKC to the membrane initiates its activation,
translocation from the membrane initiates the termination of PKC activity. This
process is also tightly regulated. One way to inactivate PKC isto deplete the levels
of DAG in the cell through promoting DAG metabolism by diacylglycerol kinases
(DGKs) (Crotty et al. 2006). PKC has also been shown to catalyze an activating
phosphorylation of DGKg, leading to a negative feed-back mechanism (Y amaguchi
et a. 2006). Activation of PKC allosterically alters the conformation of PKC by
removing the pseudosubstrate out of the substrate binding cavity. This leaves PKC
susceptible to cleavage by proteases and dephosphorylation by phosphatases.
Dephosphorylation of the three processing sites (i.e. activation loop, turn motif,
hydrophobic motif) of PKC is known to inactivate the kinase (Lee et al. 1996a,
Hansra et al. 1999). Inactivation of PKC through dephosphorylations at the three
processing sites has been suggested to precede the degradation of PKC by
proteasome (Leeet a. 1996b, Leeet a. 1997, Hansra et al. 1999).

Activation of PKC leads to phosphorylation of its target substrates in an
isoenzyme specific manner. PKCs are able to target other protein kinases e.g.
protein kinase A (PKA) and mitogen activated protein kinases (MAPKSs) as well as
G proteins, proto-oncogene products, and nuclear proteins (Liu 1996). Diverse
regulatory mechanisms controlling PKC activation and subcellular localization
define PKC's isoenzyme-, cell-, and tissue-selective functions. Aberrant PKC
activation has been shown to be involved in several pathological states including

cancer, metabolic disorders such as diabetes, cardiovascular and pulmonary
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disorders, neuronal degeneration such as Alzheimer’s disease, pain, central nervous
system dysfunction, and inflammatory diseases (Gould and Newton 2008,
Yonezawa et al. 2009). In the following sections, the three PKC subfamilies will be
discussed in more detail, with the emphasis on their role in inflammation and
immunity (Table 1).

Table 1. Immunological phenotypes of PKC isoenzyme knockout mice

Predominant
| soenzyme ) . PK C knockout phenotype References
tissue expression

cPKC isoenzymes

PKCa Ubiquitous, Deficienciesin T cell Pfeifhofer et al.
highinT cdls activation and T lymphocyte 2006
immunity
PKChb Ubiquitous, BCR signaling and survival Leitges et a. 1996,
highin B cdlls defects Saijoet a. 2002
nPK C isoenzymes
PKCd Ubiquitous Hyperproliferative B cdlls, Leitgeset a.
self-reactive B cdll 2001a, Miaymoto
et al. 2002
PKCe Ubiquitous Macrophage activation defect  Cadtrilloet a.
2001
PKCq T lymphocytes, TCR signalling defect Sun et a. 2000,
skeletal muscle, Pfeifhofer et al.
platelets 2003
aPK C isoenzymes
Leitgeset a.
PKCz Ubiquitous BCR signalling defect 2001b, Martin et
al. 2002

BCR=B cdll receptor, TCR=T cell receptor

1.2 Classical PKC isoenzymes

cPKCs, a, bl, bll, and g, are the only calcium-dependent isoenzymes. They are
activated by DAG in the presence of phosphatidylserine. The regulatory domain of
cPKCs contains tandem C1 domains (C1A and C1B) that bind DAG and phorbol
esters, and a C2 domain that binds anionic lipids in a Ca?*-dependent manner.
(Steinberg 2008)

PKCa is ubiquitously expressed in all tissues. Its expression is activated by a
variety of stimuli, including physical stress like hypoxia and mechanical strain.
PKCa plays an important role in the regulation of major cellular functions such as

proliferation, apoptosis, differentiation, and cell migration and adhesion. However,
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the biological responses are cell type specific. In other words, the output after PKCa
activation depends on where and when it is activated, and the substrates on which it
acts (Nakashima 2002). A good example is the role of PKCa in cancer. PKCa has
been linked to several types of cancer, but whether its role is detrimental or
protective seems to depend on the type of the tumour (Martiny-Baron and Fabbro
2007). PKCa is aso closely linked to differentiation in several cell types, and it
controls e.g. the development of macrophages (Pierce et al. 1998). Despite the
ubiquitous expression of PKCa, PKCa knockout mice are fertile, appear healthy
and anatomically normal, and enjoy a normal life span (Leitges et al. 2002,
Pfeifhofer et al. 2006). However, studies with PKCa knockout animals have
revealed arole for PKCa ininsulin signalling (Leitges et a. 2002).

PKCb is also ubiquitously expressed, although preferentially in pancreatic islets,
monocytes, and the brain. PKCbl and PKCblI are generated by alternative splicing
of the C-terminal exons from a single gene (Coussens et al. 1987, Kubo et al. 1987).
Similar to PKCa, PKCb has been claimed to have a role in proliferation,
differentiation, metabolism, and other cell-type specific functions (Kawakami et al.
2002). A role for PKCb in tumour formation has been demondrated in several
cancer types (Martiny-Baron and Fabbro 2007). More importantly, PKCb has been
implicated in diabetic pathologies. Hyperglycemia has been shown to lead to
activation of PKCb which contributes to diabetic microvascular complications.
Inhibition of PKCb can delay or even reverse diabetic retinopathy, nephropathy, and
neuropathy (Suzuma et a. 2002, Martiny-Baron and Fabbro 2007).

In contrast to PKCa and PKCb, PKCg is expressed solely in the brain and spinal
cord, and its localization is restricted to neurons. Within the brain, PKCg is most
abundant in the cerebellum, hippocampus, and cerebral cortex (Saito and Shiral
2002). PKCg knockout mice are not visibly abnormal, but experiments testing for
fine physiological and behavioural responses have revealed modest impairments of
learning and memory as well as reduced neuropathic pain (Abeliovich et al. 19933,
Abeliovich et al. 1993b, Malmberg et al. 1997). There is not much information
regarding the role of PKCg in tumour formation, but the data published so far
indicate that PKCg does not play a significant role in tumour formation (Martiny-
Baron and Fabbro 2007).
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1.2.1 Classical PKC isoenzymes in inflammation and immunity

PKCa is one of the mgjor PKC isoenzymes expressed in thymocytes and it has been
suggested to have a role in their development (Tan and Parker 2003). In PKCa
knockout mice, the development of B and T lymphocytes was shown to be
unaffected. Relative and total numbers of CD4+ and CD8+ T cells in the lymph
nodes and spleen were comparable to wild-type animals. Altogether, loss of PKCa
had no apparent effect on T cell development and selection in the thymus. Instead,
PKCa seems to be part of a signalling pathway that is necessary for full antigen
receptor—mediated T cell activation and T lymphocyte immunity (Pfeifhofer et al.
2006). In addition, PKCa has been linked to the regulation of NO production and/or
INOS expression in rat vascular smooth muscle cells (Li et al. 1998), murine
macrophages (Chen et al. 1998b, St-Denis et al. 1998), and murine microglia (Kang
et al. 2001), aswell as in the regulation of cyclooxygenase-2 (COX-2) expression in
murine macrophages (Giroux and Descoteaux 2000).

PKCb knockout mice are immunodeficient due to the impairment of humoral
immune responses and the suppression of B cell responses. Experiments with PKCb
knockout mice have shown that PKCb is critically important in B cell development
and activation. PKCb knockout mice display a reduced number of splenic B cells,
significantly lower number of B-1 lymphocytes, and reduced levels of serum IgM
and 1gG3. Mutant mice also exhibit defective IgM-induced B cell proliferation.
However, T cel proliferation and activation in response to T cell receptor
stimulation were normal (Leitges et al. 1996). Studies with PKCb knockout mice
also showed that PKCb was involved in the B cell receptor mediated nuclear factor
kB (NF-kB) activation, since PKCb deficient B cells displayed defective activation
of NF-kB and poor induction of NF-kB-induced cell survival genes (Saijo et al.
2002). The study by Shinji et al. (1994) indicated that PKCb might play a role also
in lipopolysaccharide (LPS) signalling and LPS-induced macrophage function.
Together with PKCa, PKCb has been shown to regulate the production of LPS
induced tumour necrosis factor a (TNFa) in murine macrophages (Foey and
Brennan 2004).

Contrary to the PKCa and PKCb isoenzymes, very little is known about the role

of PKCgin the immune system or inflammation.
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1.3 Novel PKC isoenzymes

The novel PKC isoenzymes d, e, h, and q structurally resemble cPKC isoenzymes.
However, the activation of nPKCs is calcium-independent, since their C2 domains
lack the critical calcium-coordinating residues. These isoenzymes are thus regulated
only by DAG, and their affinity for this second messenger is two orders of
magnitude higher than that of the cPKCs. (Steinberg 2008, Newton 2010)

PKCd has been the most widely studied isoenzyme of the novel group and it is
known to be ubiquitously expressed in various cells and tissues (Steinberg 2004).
Although studies with PKCd knockout mice indicated that this PKC isoenzyme was
not required for cell proliferation during normal development (Leitges et al. 20014),
it has been shown to participate in the regulation of cell proliferation in some
transformed cells and cancer cells (Jackson and Foster 2004). A role for PKCd has
been suggested also in the regulation of cell differentiation, as well as in the
induction and execution of apoptosis (Brodie and Blumberg 2003).

PKCe is expressed in many tissues and cells, but most abundantly in neuronal,
hormonal, and immune cells. Along with PKCd, PKCe has been the most widely
studied novel isoenzyme. Essential roles for PKCe have been found in many
signalling systems including cell proliferation, differentiation, muscle contraction,
and metabolism, as well as in the functions of nervous, inflammatory, and immune
systems (Akita 2002, Roffey et al. 2009). Studies with PKCe knockout mice have
revealed its role in the attenuation of pain via nociceptor function in sensory neurons
(Khasar et al. 1999), in super-sensitivity of GABAa receptors and in modified
responses to ethanol (Hodge et a. 1999), as well as in the loss of ischemia
preconditioning response in the heart (Saurin et al. 2002). Overexpression of PKCe
has been detected in tumours from various organ sites (Gorin and Pan 2009).

PKCh is expressed in epithelia tissues, especially in squamous epithelia or
epithelia where sguamous cell carcinomas arise (skin, tongue, oesophagus,
forestomach, trachea, and bronchus) (Osada et al. 1990, Kashiwagi et al. 2002).
Disruption of the PKCh gene in mice was associated with defects in wound healing
and enhanced tumourigenesis in skin tumour promotion (Chida et al. 2003).

PKCq is expressed primarily in lymphocytes, skeleta muscle, and platelets. This

isoenzyme plays an important role in the regulation of the activation of mature T
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cells, and overwhelming majority of studies on PKCq have focused onitsrolein T
cells (Boschelli 2009). However, some studies have indicated that PKCq may
participate in the regulation of insulin signalling in skeletal muscle and adipocytes,
aswell asin insulin resistance (Kim et al. 2004, Sampson and Cooper 2006).

1.3.1 Novel PKC isoenzymesin inflammation and immunity

PKCd knockout mice were generated independently by two groups (Leitges et al.
2001a, Miyamoto et al. 2002). These mice developed and reproduced normally, but
displayed defects that revealed critical roles for PKCd in immune function. The
increased number of B cells in the spleen and other peripheral organs led to
significant splenomegaly and lymphadenopathy. These mice appeared to have
normal B and T cell development in the bone marrow, but they died prematurely
due to a severe autoimmune disease, which was characterized by the detection of
autoreactive antibodies. Consistently, deficiency in PKCd was shown to result in the
maturation and differentiation of self-reactive B cells, suggesting that PKCd may
play a role in the production of immunological tolerance (Mecklenbréuker et al.
2002).

PKCe seems to possess a unique role in macrophage biology. PKCe knockout
mice, developed by Castrillo et al. (2001) appeared normal and were generally
healthy. No obvious defects were observed in T cell proliferation or B cell function.
However, the ability of the mice to recover from bacterial infections was impaired
and the mice displayed dramatically reduced capacities of their peritoneal
macrophages to produce NO, TNFa, or interleukin-1b (IL-1b) in response to LPS.
In addition, the expressions of INOS mRNA and protein were severely attenuated.
In contrast, the differentiation of monocytes and macrophages from bone marrow
precursors was not affected, pointing to a defect in signal transduction. Indeed,
macrophages from PKCe knockout mice demonstrated a failure to activate NF-kB
and p38 MAPK pathway in response to inflammatory stimuli. Subsequently, PKCe
was suggested to be a critical component of the major LPS signalling pathway, toll-
like receptor 4 (TLR4) pathway (McGettrick et al. 2006). A role for PKCe as a
regulator of INOS expression has been indicated also in RAW 264.7 macrophages
(Diaz-Guerra et al. 1996, Paul et al. 1997) and murine microglia (Kang et al. 2001).
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In addition to its predominant expression in squamous epithelia, PKCh is also
expressed in pro-B cells and early-stage thymocytes. Indeed, PKCh has been shown
to be a key regulator of cell division and cell death in early B cell development
(Morrow et a. 1999). PKCh seems to play a role also in LPS-induced NO
production and iNOS expression in rat primary astrocytes (Chen et al. 1998a).
Perhaps more importantly, PKCh was shown to be essential for LPS-mediated NO
production and iNOS expression in human monocytes (Pham et al. 2003a). Pham
and coworkers demonstrated that murine macrophage cell lines that express iINOS
and produce NO as a response to LPS treatment, express PKCh. However, human
monocyte cell lines which do not produce NO in response to LPS treatment, do not
express PKCh. When human monocytes were transfected with PKCh, they were
found to produce NO in response to LPS treatment. In addition, co-expression of
PKCh with iINOS has been linked to severe inflammatory arthritis (Pham et al.
2003b) and severe rheumatoid arthritis (RA) (Heale et a. 2007). On the other hand,
lower expression of PKCh has also been associated with pathophysiologic
mechanisms of RA (Teixeiraet al. 2008).

PKCqg was first identified as a key enzyme in T cell activation and survival
(Osada et al. 1992). It has a unique cellular localization in T cells, and it is the only
PKC isoenzyme that is translocated to the immunological synapse. This results in
the activation of several transcription factors required for T cell activation (Hayashi
and Altman 2007, Boschelli 2009). Generation and characterization of PKCq
knockout mice confirmed the essential role of PKCq in the activation of mature T
cells and in T cell survival (Sun et al. 2000, Pfeifhofer et al. 2003). Thymic
development was not affected, but the peripheral T cells failed to proliferate
normally in response to antiCD3/CD28 stimulation. Interleukin-2 (IL-2) production
was markedly diminished, and PKCqg knockout mice displayed impaired receptor-
induced activation of transcription factors AP-1, NF-kB, and NFAT (nuclear factor
of activated T cells). In addition, PKCq knockout mice displayed reduced
expression of several cytokines (IL-2, IL-4, interferon-g, and TNFa) after an in vivo
intraperitoneal challenge with an antiCD3 antibody. These results suggest that
PKCqg has an important role in the development of T-cell mediated inflammatory
diseases (Anderson et al. 2006).
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1.4 Atypical PKC isoenzymes

PKCz and PKCi/l comprise the third PKC subfamily, the atypical isoenzymes.
These isoenzymes lack the calcium-sensitive C2 domain but contain an atypical C1
domain that binds phosphatidylinositol trisphosphate and ceramide, but not DAG or
phorbol esters, and they possess a protein-protein interaction domain PB1. Protein-
protein interactions and phosphorylation by PDK1 seem to represent the major
driving force for controlling the functions of these isoenzymes within cells. (Gould
and Newton 2008, Steinberg 2008)

PKCz and PKCi/l exhibit 72% sequence homology at the amino acid level. This,
together with the lack of isoenzyme-specific antibodies, has made it difficult to
biochemically distinguish between PKCz and PKCi/l (Fields and Regala 2007).
While PKCi/l is known to be ubiquitously expressed, the expression of PKCz
seems to be somewhat more restricted (Kovac et al. 2007). PKCz knockout mice
develop essentially normally, exhibiting only subtle immunological deficiencies
(Martin et al. 2002), whereas knockout of PKCi/l is lethal during embryonic period
(Fields and Regala 2007). Liver, pancreatic b cell, and muscle specific knockouts of
PKCi/l have indicated that this isoenzyme takes part in the regulation of insulin
secretion and actions (Matsumoto et a. 2003, Hashimoto et a. 2005, Farese et al.
2007). PKCi/l has also been shown to promote transformed growth, invasion,
chemoresistance, and tumour cell survival, whereas PKCz has been shown to inhibit

the aspects of transformed phenotype (Fields and Regala 2007).

141 Atypical PKC isoenzymesin inflammation and immunity

Targeted disruption of the PKCz gene in mice indicated that the role of this PKC
isoenzyme is also specific to B cell function. The relative number and phenotype of
splenic B cell subsets in PKCz knockout mice is similar to that of the wild-type
mice, but PKCz deficient B cells exhibit increased spontaneous apoptosis and
impaired B cell receptor dependent proliferation. The defective survival of PKCz
knockout B cells correlated with defects in the activation of the extracellular signal
regulated kinase (ERK) pathway and transcription of NF-kB dependent genes
(Leitges et al. 2001b, Martin et al. 2002). PKCz has been also shown to take part in
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the regulation of LPS-induced IL-10 production in murine macrophages (Foey and
Brennan 2004). Recently, it has been suggested that PKCi/l is necessary for Th2
cytokine production and optimal T cell proliferation (Yang et al. 2009).

15 PKCasatarget for drug devel opment

A role for PKC has been indicated in several cellular functions and diseases as
reviewed in the previous chapters, making the PKC isoenzymes family a very
promising target for drug development. Several PKC selective or PKC isoenzyme
selective compounds have been developed, and some have progressed to clinical
trials (Table 2) (Lee et a. 2008). However, the selectivity of the compounds is
limited and only a few have demonstrated good selectivity for PKC over other
kinases or show selectivity for individual isoenzymes. PKC drugs have been
targeted mainly against the two regions of the kinase: the catalytic domain and the
regulatory domain. In particular, the catalytic domain is conserved with other
protein kinases e.g. PKA, which complicate the development of truly PKC selective
compounds. In addition, the structural homology between PKC isoenzymes makes
the development of PKC isoenzyme selective compounds a challenging task (Gould
and Newton 2008).

The general problem with drugs targeted against protein kinases is how to avoid
the disturbance of the general homeostasis throughout the whole body. This applies
also to compounds targeted against PKC. It seems that PKCs are involved in a
complex interplay in which some isoenzymes accelerate disease progression while
others are protective. In addition, several PKC isoenzymes may be expressed in the
same cells and tissues. Thus, the development of isoenzyme specific compounds is
of great importance to prevent unwanted side effects. This might be yield by
compounds that target isoenzyme specific activating pathways, membrane
interactions or signalling pathways downstream of PKC. In addition, compounds
that target certain cell types or PKC isoenzymes whose expression or activity is
upregulated in certain pathological situations could prove efficient (Mackay and
Twelves 2007, Leeet al. 2008).

Staurosporine is a microbial alkaloid that was identified as a PKC inhibitor over
20 years ago. Although its selectivity for PKC is limited, it has served as a lead
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compound from which other PKC inhibitors, e.g. indolocarbazoles and
bisindolylmaleimides, have been developed (Mackay and Twelves 2007). PKChb
selective indolocarbazole inhibitors enzastaurin (LY 317615) and ruboxistaurin
(LY333531) and pan PKC inhibitor midostaurin are all in clinical trials for cancer
treatment (Gould and Newton 2008, Lee et a. 2008). Ruboxistaurin has also been
tested for use in the treatment of diabetic retinopathy and diabetic macular oedema
(Anonymous 2007).

Antisense oligonucleotide aprinocarcen (1SIS 3521) is an inhibitor targeted to the
3’ -untrandated region of PKCa mRNA. It has shown activity against a range of
tumour types including patients refractory to multiple types of conventional
chemotherapy (Rao et a. 2004). The selective PKCd RACK peptide antagonist
KAI-9803 is currently in phase I/11 clinical trials for the prevention of reperfusion
injury in patients undergoing angioplasty following acute myocardial infarction (Lee
et a. 2008, Yonezawa et al. 2009). Bryostatin 1, a macrocyclic lactone, is in phase
Il trials for the treatment of ovarian cancer and non-Hodgkin’s lymphoma. Although
bryostatin 1 is an activator of cPKCs and nPKCs, it downregulates PKC isoenzymes
through proteasomal degradation (Lee et al. 2008, Roffey et al. 2009).

Rottlerin, also known as mallotoxin, is a natural compound isolated from
Mallotus phillippinensis. It is an inhibitor of PKCd (Gschwendt et al. 1994, Keenan
et al. 1997). Rottlerin is widely used as a pharmacological tool in in vitro studies,
but it has not been tested in clinical trials.

Although PKC inhibitors have not been tested in clinical trials for the treatment
of inflammatory diseases, several promising results have been obtained from in vivo
inflammatory disease models. The efficacy of pan PKC inhibitors in inflammatory
disease models suggest that PKC is a potential target in the development of novel
anti-inflammatory agents (Mulqueen et al. 1992, Kuchera et al. 1993, Birchall et al.
1994, DiMartino et a. 1995, Jacobson et al. 1995, Zhou et al. 1999). This is
supported by results from studies with PKC knockout animals. PKCz knockout
mice displayed significant inhibition of ovalbumin-induced allergic airway disease,
suggesting that PKCz could be a therapeutic target in asthma (Martin et al. 2005).
Studies with PKCq knockout animals show that deficiency of PKCq results in
drastically reduced lung inflammation after induction of allergic asthma (Salek-
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Ardakani et al. 2004). In addition, PKCq deficient mice have been shown to be
protected from Thl dependent antigen-induced arthritis (Healy et al. 2006).

Table 2. PKCinhibitorsin clinical trials (www.clinicaltrials.gov, July 2010, Lee et al. 2008)

Compound Selectivity Indication

Aurothiomalate’ pan PKC Lung cancer

Bryostatin 1 cPKC, nPKC Cancer 2

Enzastaurin PKCb Cancer 2

SIS 3521 PKCa Lung/ breast cancer, melanoma
KAI-9803 PKCd Myocardial infarction
Midostaurin pan PKC Leukemia

Ruboxistaurin (LY 333531) PKCb Associated diseases of diabetes®
Sotrastaurin cPKC, nPKC Transplantations, psoriasis
Tamoxifen® pan PKC Bipolar disorder

UCN-01 cPKC > nPKC Cancer 2

TPossesses also other mechanisms of action in addition to inhibition of PKC; in clinical use in the
treatment of RA

?Indicationsinclude several different types of cancer

®Includes e.g. diabetic retinopathy, diabetic neuropathy, diabetic macular oedema

“*Sudies completed; possesses also other mechanisms of action in addition to inhibition of PKC; in
clinical usein the treatment of breast cancer.

2. Nitric oxide

The discovery of NO as an important vasodilating factor started an era of intensive
research work around this small gaseous signaling molecule. Robert Furchgott
discovered that the relaxing effect of acetylcholine on the vascular wall was
attributed to the release of a diffusible factor from endothelium termed endothelium-
derived relaxing factor (EDRF) (Furchgott and Zawadzki 1980). Ferid Murad, for
his part, reported that NO and various nitro compounds relaxed the blood vessels by
increasing the levels of cGMP (Arnold et al. 1977), a mechanism that was later
found to be responsible for the effects of EDRF. In 1987 Furchgott, Louis Ignarro
and Salvador Moncada suggested that EDRF and NO were one and the same
molecule (Palmer et al. 1987, Ignarro et a. 1987). This was confirmed one year
later, when Moncada and his coworkers proved that endothelial cells were able to
transform the amino acid L-arginine into NO and citrulline (Palmer et al. 1988). In
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1998 Furchgott, Ignarro and Murad were awarded the Nobel Prize for their
discoveries concerning NO as a signalling molecule in the cardiovascular system.

Today, NO is known as a molecule that mediates severa physiological and
pathophysiological functions in the human body. In addition to its role as a regulator
of vascular tone, NO prevents leukocytes and platelets from adhering to the vascular
wall. It acts as a neuromodulator or neuromediator in some central neurons and in
peripheral NANC (non-adrenergic non-cholinergic) nerve endings. NO takes part in
both acute and chronic inflammation as well as in host defence mechanisms.
(Nijkamp and Parnham 2005, Tripathi et al. 2007)

2.1 Biosynthesis of nitric oxide

The synthesis of NO from L-arginine and molecular oxygen is catalyzed by nitric
oxide synthase (NOS) enzymes. NOS enzymes are active as homodimers and the N-
terminal oxygenase domain is responsible for their dimerization. The formation of
active NOS enzymes also requires binding of two calmodulin molecules, thus
creating the NOS tetramer. The oxygenase domain contains two binding sites for
cofactors (6R)-5,6,7,8-tetrahydrobiopterin  (BHs) and iron protoporphyrin X
(haem). The C-terminal reductase domain, which is linked by a calmodulin-
recognition site to the oxygenase domain, contains binding sites for flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), and nicotineamide adenine
dinucleotide phosphate (NADPH). The electrons required for NO synthesis are
donated by NADPH to the reductase domain and proceed via redox carriers (FAD
and FMN) to the oxygenase domain where the electrons interact with BH, and haem
to catalyse the reaction of oxygen with L-arginine leading to the formation of
citrulline and NO (Figure 3). (MacMicking et a. 1997, Alderton et al. 2001)
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Figure 3. Biosynthesis of nitric oxide from L-arginine and molecular oxygen (A). Overall reaction
and cofactors of NOS (B). NOS catalyses the production of NO and L-citrulline from L-arginine,
molecular oxygen, and NADPH derived eectrons. Enzymatically active NOS is a tetramer, which
contains NOS as a dimer and two molecules of calmodulin. Cofactors flavin adenine dinuclectide
(FAD) and flavin mononucleotide (FMN) are bound to the reductase domain, whereas
tetrahydrobiopterin (BH,;) and haem (Fe) are bound to the oxygenase domain. (Modified from
Vuolteenaho et al. 2007).

Three distinct isoforms of the NOS enzyme have been isolated and represent the
products of three different genes with different localization, regulation and catalytic
properties. The three human isoforms show approximately 50% homology
(Alderton et al. 2001, Tripathi et al. 2007). Neuronal NOS (nNOS, NOS I) was the
first isoform found and it was cloned in 1991 by Bredt and coworkers (Bredt et al.
1991). It is expressed predominantly in neurones in the brain and the peripheral
nervous system (Zhou and Zhu 2009). The human endothelial NOS (eNOS, NOS
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[11) was cloned in 1992 (Janssens et al. 1992, Marsden et al. 1992) and it is
expressed in endothelial cells, cardiac myocytes, and platelets (Dudzinski and
Michel 2007). Both nNOS and eNOS exist in the cells as preformed proteins (and
therefore are also called constitutive isoforms); their activity is switched on by the
elevation of intracellular Ca?* concentration and the binding of calmodulin in
response to neurotransmitters or vasoactive substances. When activated, both
constitutive isoforms produce small amounts of NO (Dudzinski and Michel 2007,
Zhou and Zhu 2009).

In contrast to the constitutive NOS isoforms, the activation of the third NOS
isoform, inducible NOS (iNOS, NOS 11), is calcium and camodulin independent
(Tripathi et al. 2007). Murine iINOS was originally and independently purified and
cloned from immunoactivated macrophages in 1992 by three groups (Lowenstein et
al. 1992, Lyons et al. 1992, Xie et a. 1992), and the respective human isoenzyme
was first isolated from primary human hepatocytes and chondrocytes (Charles et al.
1993, Geller et a. 1993). The human INOS gene is located at cen-gqll.2 at
chromosome 17. It contains 26 exons spanning over 37 kb and encodes a protein of
131 kDa (1153 amino acids) (Tripathi et al. 2007). INOS expression in various
inflammatory and tissue cells can be induced by proinflammatory cytokines and
microbial products, such as LPS. The production of NO through the INOS pathway
is regulated mainly at the level of INOS expression (Alderton et al. 2001), which is
covered in more detail in chapter 2.3.

2.2 Nitric oxide in inflammation

The role of NO in inflammation and immunity was revealed in 1985 after Stuehr
and Marletta discovered that LPS activated mouse macrophages produce significant
amounts of nitrite and nitrate oxidized from NO (Stuehr and Marletta 1985). Since
then, the production of NO has been demonstrated in a number of immune-system
cells (e.g. dendritic cells, monocytes, macrophages, and eosinophils) and tissue cells
(such as endothelial cells, fibroblasts and chondrocytes) (Bogdan 2001, Tripathi et
al. 2007). The actions of NO in inflammation and immunity depend on the
environment in which NO is produced and on the amount of NO produced. The

enzyme primarily responsible for the production of NO in inflammatory processesis
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INOS. When induced, iNOS can generate large amounts of NO for prolonged
periods of time (Zamora et a. 2000, Bogdan 2001).

NO produced by iNOS has beneficial antimicrobial, antiviral, antiparasital, and
antitumoral effects. In the presence of equal amounts of NO and superoxide (Oy),
the effects of NO as a toxic defence molecule against infectious organisms are
mainly mediated by the formation of peroxynitrite (ONOQO’) (Kumar et al. 2010).
NO also regulates the functional activity, growth and death of many immune and
inflammatory cell types including macrophages, mast cells, T lymphocytes, and
neutrophils (Tripathi et al. 2007). On the other hand, aberrant iINOS induction seems
to be involved in the pathophysiology of human diseases such as asthma, arthritis,
colitis, psoriasis, neurodegenerative disorders, and tumour development (Bogdan
2001, Kleinert et al. 2003). Indeed, compounds that inhibit iINOS expression or
activity have been proved to have anti-inflammatory properties in various forms of
experimentally—induced inflammation. The pro- and anti-inflammatory effects of
NO are described in more detail in Table 3.

Table 3. Modulation of inflammation by nitric oxide

Proinflammatory properties

Promotes vasodilatation and vascular |eakiness
Reacts with O, to form peroxynitrite*
Activates NF-kB, AP-1

Upregulates proinflammatory cytokines
Enhances natural killer cell activity

Cytotoxic: promotes apoptosis

Anti-inflammatory properties

Inhibits mast cell degranulation

Inhibits platal et and neutrophil adhesion to endothelium
Suppresses antigen presenting cell activity
Suppresses T and B cell proliferation

Antimicrobial activity

Downregulates proinflammatory cytokines

T Excessive production causes protein nitration, DNA damage, apoptosis, and necrotic cell death
resulting in cellular/tissue injury.

2 Activation of transcription factors NF-kB and AP-1 leads to the production and release of
proinflammatory mediators.
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2.2.1 Nitric oxide in rheumatic diseases

Osteoarthritis (OA), the most common type of joint disease, is characterized by the
progressive erosion of articular cartilage. Traditionally OA has been considered to
develop as a consequence of mechanical wear and tear of ageing cartilage, but the
presence of inflammatory mediators in OA joints indicate that this disease is a local
dowly processing inflammatory process (Vuolteenaho et al. 2007, Kumar et al.
2010). RA is achronic systemic inflammatory disorder that may affect many tissues
and organs, but principally attacks the joints leading to an inflammatory synovitis
that often progresses to destruction of the articular cartilage (Kumar et a. 2010).
The role of NO in both of these diseases has been studied intensively. NO seems to
be a proinflammatory and destructive mediator in the cartilage, and it is believed to
be involved in the processes leading to chondrocyte death and promote the
destruction of articular cartilage (V uolteenaho et al. 2007, Abramson 2008).

Increased levels of markers of NO production are found in joint fluids and
serum from patients with OA and RA (Ersoy et al. 2002, Karan et al. 2003), as well
as in serum of patients with juvenile idiopathic arthritis (Bica et al. 2007). Positive
correlations between the activity of the disease and the enhanced levels of NO
production are seen in patients with RA and juvenile idiopathic arthritis,
respectively (Ersoy et a. 2002, Bica et a. 2007). INOS expression has been
demonstrated in RA and OA synoviocytes and chondrocytes (Sakurai et al. 1995,
Mclnnes et al. 1996, Grabowski et al. 1997, Vuolteenaho et al. 2001). Vuolteenaho
et a. (2001) also reported that addition of IL-1b, TNFa, and LPS could enhance NO
production by OA cartilage in organ culture. NO synthesis was suggested to derive
from glucocorticoid-insensitive expression of iINOS, since various NOS inhibitors,
but not dexamethasone, suppressed NO production. Recently, the role of adipokines
adiponectin and leptin in enhanced NO production in OA cartilage has been
reported (Lago et al. 2008, V uolteenaho et al. 2009).

2.2.2 Nitric oxide in asthma

Asthma is a chronic inflammatory disease of the airways characterized by the
presence of activated inflammatory cells, such as eosinophils, macrophages, mast
cells, and T-lymphocytes. In asthma, Th2-dependent mechanisms play a critical role
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in eosinophil recruitment to the airways, mucus hypersecretion and airway
hyperreactivity (Kumar et al. 2010). In experimental animal models of asthma,
enhanced NO production and INOS expression have been linked to bronchial
hyperresponsiveness and eosinophilic inflammation (Eynott et al. 2002, Eynott et al.
2003). In addition, acute inhibition of INOS activity has been shown to inhibit
asthma-like responses in a mouse model of asthma (Landgraf et al. 2005). Increased
expression of iINOS has been observed also in human airways of asthmatic patients
(Hamid et al. 1993), and increased concentrations of NO in the exhaled air have
been associated with asthma (Kharitonov et al. 1994). Measurement of exhaled NO
in asthmatics can be used as a non-invasive technigue and can guide the treatment
with inhaled glucocorticoids (Hesslinger et al. 2009). Extended exhaled NO
measurement can be used to separately assess alveolar and bronchial inflammation
and to determine disease activity, severity, and response to anti-inflammatory
treatment in asthma and other inflammatory lung diseases (Lehtiméki et al. 20013,
Lehtimaki et al. 2001b, Lehtonen et al. 2007, Lehtimaki et al. 2010).

2.2.3 Nitric oxide in inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic condition that results from
inappropriate immune activation. Crohn’'s disease and ulcerative colitis are the two
disorders that comprise IBD (Kumar et al. 2010) and the involvement of NO has
been proposed in both of these diseases. NO per se is not cytotoxic to intestinal
tissue, and eNOS derived NO appears to be a homeostatic regulator of several
essential functions of the gastrointestinal mucosa. NO is linked to the regulation of
microvascular and epithelia permeability, the maintenance of adequate perfusion,
and to the major epithelial functions involved in host defence, such as regulation of
mucus and epithelial cell fluid production (Cross and Wilson 2003, Kolios et al.
2004). The role of NO in IBD has been evaluated in several studies with somewhat
conflicting results. In animal models of intestinal inflammation, the induction of
INOS in acute colitis and the beneficial effects of inhibition of INOS have been
reported (Boughton-Smith et al. 1993b, Kankuri et al. 1999, Kankuri et al. 2001).
Patients with ulcerative colitis were reported to have a 100-fold increase in luminal
NO levels as compared to healthy controls (Lundberg et al. 1994). iINOS protein
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expression has been demonstrated by immunohistochemistry to be present in the
epithelia cells of the colonic mucosa of patients with active ulcerative colitis or
acute phase infectious colitis (Kolios et al. 1998). In contrast, no iINOS expression
was detected in samples from healthy controls or in infectious colitis patients in total
remission. Increased iNOS activity has also been demonstrated in the mucosa of
patients with ulcerative colitis, but no increase was seen is samples from patients
with Crohn's disease (Boughton-Smith et al. 1993a). In contrast, Rachmilewitz et al.
(1995) reported 10-fold and 3.8-fold increases in NOS activity and 4.2-fold and 8.1-
fold increases in NO generation in patients with ulcerative colitis and Crohn’'s
disease, respectively.

Despite the many studies in humans and animal models, the role of NO in
IBD is somewhat controversial. Studies with NOS inhibitors and iNOS knockout
mice have reported either improvement or worsening of experimental IBD. The
human studies indicate that in IBD, especially in colitis ulcerosa, iNOS expression
and activity are upregulated and NO production is enhanced. It is likely that NO is
an important mediator in mucosal inflammation, but its role can vary depending on
the cells producing it and exposed to it, its interaction with oxyradicals, and the time
course and severity of the inflammation (Mashimo and Goyal 1999, Cross and
Wilson 2003, Kolios et al. 2004).

2.3 Regulation of iNOS expression

Originally, iINOS enzyme was purified and cloned from a murine macrophage cell
line (Lowenstein et al. 1992, Lyons et al. 1992, Xie et al. 1992) and the respective
human enzyme was firs isolated from primary human chondrocytes and
hepatocytes (Charles et al. 1993, Geller et al. 1993). Subsequently, the expression of
INOS enzyme has been shown in various murine and human cell types and cell
lines. Marked cell type and species specific differences in the responsiveness of
INOS expression to different stimuli have been reported (Kleinert et al. 2003,
Korhonen et al. 2005, Vuolteenaho et al. 2007). Most human cells require multiple
synergistically acting cytokines in order to induce detectable iINOS expression and
NO synthesis, whereas many mouse cell lines express high levels of INOS in

response to LPS or to a single cytokine. In addition, it has been difficult to induce
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INOS expression in human monocyte or macrophage cell lines in vitro, athough
INOS expression in macrophages in inflamed tissues has been shown ex vivo
(Mclnnes et al. 1996, Moilanen et al. 1997, Korhonen et al. 2005). The level of NO
synthesised by iNOS is significantly regulated at the level of INOS transcription.
Depending on the stimulus and the cell type, different signalling pathways activate
different transcription factors, activators (e.g. protein kinases) and inhibitors (e.g.
protein phosphatases). In addition, the expression of iINOS is also controlled at the
post-transcriptional, tranglational, and post-trandlational level (Kleinert et al. 2003,
Aktan 2004, Korhonen et al. 2005).

Molecular mechanisms for the transcriptional regulation of the iNOS gene have
been studied by cloning the murine (Lowenstein et al. 1993, Xie et al. 1993) and the
human (Chartrain et al. 1994, de Vera et al. 1996) promoter regions. Murine and
human iNOS promoters exhibit homologies to binding sites for several transcription
factors, with homology of 55% within the first 1.7 kb of 5’ flanking sequence (Rao
2000, Kleinert et al. 2003). Both INOS promoters contain a TATA box about 30 bp
from the transcription starting site. Binding sites for transcription factors NF-kB,
nuclear factor interleukin 6 (NF-1L6), octamer factors, and transcription factors
induced by TNFa are located near the TATA box. At position —900 bp, murine and
human promoters display binding sites for the transcription factors induced by
interferon-g (IFNQ) (Kleinert et al. 2003) (Figure 4).

Most of the transcription regulatory elements of the murine INOS (miNOS) gene
are located within 1.5 kb of the 5'flanking region (Lowenstein et al. 1993, Xie et al.
1993). The miNOS promoter contains two regulatory elements. The proximal region
(region 1, position —48 to —209) functions as the basal promoter element and
mediates the response to LPS through NF-kB and interferon response factor (IRF)
binding (Lowenstein et al. 1993, Xie et a. 1993). The distal region (region II,
position —913 to —1029) functions as an enhancer element and responds to
stimulation by LPS and IFNg It contains several transcription binding sites
including the NF-kB binding site, gamma-activated site (GAS) element and IRF1
response element (IRE) (Lowenstein et al. 1993, Xie et al. 1993). In the mINOS
gene, 1000 bp out of the 1.5 kb promoter confer full inducibility in response to a
mixture of IFNgand LPS in cultured mouse macrophages, RAW 264.7 (Lowenstein
et a. 1993, Xie et a. 1993).
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In contrast to the MINOS promoter, deletion analysis of the human INOS
(niINOS) 5'flanking region points to the presence of regulatory elements on the
length of 16 kb, and a full-length promoter is required for induction by a cytokine
mixture (de Vera et al. 1996). However, contradictory evidence about the presence
of regulatory elements in the human promoter has been reported. Nunokawa et a.
(1996) reported induction by cytokines when promoter constructs contained the first
3.2 kb. Chu et al. (1998) reported, that only iINOS promoter fractions larger than
3.8 kb exhibit any significant induction with cytokines. In addition, inducibility by
cytokines has been shown with a 8.3 kb promoter fragment (Marks-Konczalik et al.
1998, Kristof et al. 2001). The human iNOS promoter is activated by NF-kB. In
addition to the proximal NF-kB site, functional NF-kB sites are located also further
upstream of the promoter (Marks-Konczalik et al. 1998, Taylor et a. 1998). IFNg
inducible factors that regulate the activity of the hiNOS promoter are not as well
characterised as those that regulate the miNOS promoter. However, two functional
GAS sites have been described of which the upsteam site contains overlapping
NF-kB and STATL1 (signal transducer and activator of transcription 1) binding sites.
Binding of both of these factors to this site is required for full promoter activity
(Gangter et al. 2001). In addition, IRF1 has been reported to be involved in hiNOS
transcription (Flodstrém and Eizirik 1997, Tsutsumi et al. 1999).
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Figure 4. Schematic presentation of murine and human iNOS promoters and transcription factor
binding sites. NF-kB=nuclear factor kB, GAS=gamma-activated site, |SRE=interferon-stimulated
response element, AP-l=activator protein 1, IL6-RE=interleukin-6 responsive eement,
C/EBPb=CAAT/enhancer binding protein b, TNFa-RE=tumour necrosis factor a responsive
element, Oct=octamer factor, TATA=TATA box, NRE=negative regulatory element. (Modified from
Kleinert et al. 2003).

2.3.1 NF-kB pathway

NF-kB is an important transcription factor for INOS. The NF-kB family of
transcription factors consists of five members, p50, p52, p65 (RelA), c-Rel, and
RelB (Hayden and Ghosh 2008, Vallabhapurapu and Karin 2009) and many
cytokines as well as LPS have been reported to activate the NF-kB pathway. Even
trace amounts of LPS are able to activate the innate immunity system via TLR4,
leading to the activation of NF-kB and the production of numerous proinflammatory
mediators (West et al. 2006). In resting cells, engagement of TLR4 receptors results
in the activation of IkB kinase (IKK). The activated IKK complex phosphorylates
kB, which leads to ubiquitination and degradation of 1kB proteins. This releasesthe
NF-kB heterodimer (p50/p65), which is further activated by various
posttranslational modifications. The NF-kB dimer translocates to the nucleus where
it binds to specific DNA sequences and promotes the transcription of the target
genes (Figure 5) (Hayden and Ghosh 2008, V allabhapurapu and Karin 2009).

The importance of NF-kB binding sites for the induction of the INOS promoter
activity has been demonstrated in murine (Lowenstein et al. 1993, Xie et al. 1994)
and human cells (Marks-Konczalik et al. 1998, Taylor et al. 1998). The miNOS
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promoter contains two NF-kB elements (Xie et al. 1994); the proximal NF-kB siteis
required for LPS-induced iNOS expression (Lowenstein et al. 1993, Xie et al.
1993), whereas the upstream NF-kB site is required for maximal expression of
INOS gene in macrophages exposed to a combination of LPS and IFNg (Kim et al.
1997). The hiNOS promoter has several functional NF-kB sites further upstream of
the promoter, in addition to the proximal NF-kB site. Conflicting results have been
published concerning the importance of the NF-kB binding sites in the human
promoter. However, it does seem that at least the proximal binding site seems to be
important (Chu et al. 1998, Marks-Konczalik et al. 1998, Taylor et al. 1998).
Although NF-kB is not essential for iNOS expression in all cell types, it appears to
be a central target for activators and inhibitors of INOS expression (Rao 2000).
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Figure 5. Activation of the NF-AB pathway by LPS. TLR4=Toll like receptor 4, IKK=1kB kinase,
| kB=inhibitory kB, p65 and p50=subunits of NF-kB.
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2.3.2 JAK-STAT pathway

Studies on gene induction by interferons led to the discovery of the Janus kinase
(JAK) -STAT pathway (Darnell et al. 1994), which has subsequently been shown to
be an important signalling pathway activated by a variety of cytokines. JAKs (four
mammalian isoforms; JAK1, JAK2, JAK3, and TYK2) are protein tyrosine kinases
that are pre-associated with membrane-proximal regions of cytokine receptors
(lvashkiv and Hu 2004). Cytokine ligation leads to dimerization of plasma
membrane cytokine receptors. Receptor dimerization results in the activation of
receptor-associated JAKs and phosphorylation of tyrosine residues in the
cytoplasmic domain of the receptor. This leads to the phosphorylation of STATS,
which then dimerize and trandocate to the nucleus to activate gene transcription
(Figure 6) (Shuai and Liu 2003, Ivashkiv and Hu 2004). Typicaly, cytokine
stimulation involves the ligation of at least two different receptor subunits, and this
leads to association of a pair of different JAKs. For instance, IFNg activates JAK1
and JAK2. Similarly, certain cytokines preferentially activate particular STATS (out
of the seven mammalian STATS), e.g. IFNg activates STAT1 (Ivashkiv and Hu
2004). The importance of STAT1 as a mediator of INFg responses has been
demonstrated in STAT1 knockout mice (Meraz et al. 1996) where STAT1 deficient
bone marrow derived macrophages showed a complete lack of responsiveness to
IFNg.

All mammalian iINOS promoters contain several homologies to STAT1a
binding sites (GAS) (Kleinert et al. 2003). Optimal induction of the INOS gene by
IFNg and LPS requires binding of STAT1a to the GAS of the miNOS promoter
(Gao et al. 1997). A requirement for STAT1 in LPS-induced iNOS expression has
been demonstrated also in STAT1 knockout mice (Ohmori and Hamilton 2001).
JAK inhibitors AG-490 and/or WHI-P154 have also been shown to decrease IFNg
or LPS -induced iNOS expression in murine macrophages (Sareila et al. 2006,
Sareilaet a. 2008).
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Figure 6. Activation of the JAK- STAT1 pathway triggered by IFNg IFN=interferon, JAK=Janus

kinase, STAT=dgnal transducer and activator of transcription.

2.3.3 |IRF1 pathway

The distal enhancer region in the miINOS promoter contains several interferon
regulatory factor binding elements (IRF-E) (Lowenstein et al. 1993, Xie et al. 1994).
An essential role in the induction of the INOS promoter has been demonstrated for
one of these IRF1 binding sites (Martin et al. 1994). In reporter assays using
deletion constructs mutations of the binding site (positions -913 bp to -923 bp)
blocked the IFNg mediated enhancement of LPS-induced iNOS promoter activity.
This data was supported by in vivo footprint studies in LPS-stimulated macrophages
(Goldring et al. 1996). The requirement for the transcription factor IRF1 was
confirmed in macrophages from IRF1 knockout mice and in IRF1 deficient glial
cells, where LPS and IFNg-induced iINOS mRNA expression was markedly reduced
(Kamijo et al. 1994, Fujimura et al. 1997). However, Shiraishi et al. (1997) studied
the role of IRF1 in iNOS induction in chondrocytes derived from IRF1 knockout

mice and found no difference in INOS expression levels between wild-type and
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IRF1 deficient chondrocytes. Thus, it seems that IRF1 has a tissue specific role in
the induction of INOS. In addition, IRF1 has been suggested to be involved in
hiNOS transcription (Flodstrom and Eizirik 1997, Tsutsumi et al. 1999).

2.3.4 iINOS mRNA stability

INOS expression and NO production can be regulated aso at the post-transcriptional
level, with one of the most important means being the regulation of the iINOS
MRNA stability. Unstimulated cells may show continuous iNOS transcription in
nuclear run on assays, and human iINOS promoter constructs have been shown to
possess basal activity in colon adenocarcinoma cells (DLD-1) and in liver epithelial
cells (AKN-1). However, no INOS mRNA or protein was detected in those cells
under resting conditions, which suggests that INOS mRNA is highly unstable in the
absence of inflammatory stimuli (de Vera et a. 1996, Laubach et al. 1997, Linn et
al. 1997).

The first data suggesting the involvement of post-transcriptional mechanisms in
the regulation of INOS expression were provided by Vodovotz et al. in 1993. They
demonstrated that in mouse peritoneal macrophages, TGFb could suppress INOS
expression by decreasing iINOS mRNA sability, reducing INOS mRNA translation,
and increasing degradation of iINOS protein.

The 3'—untrandated region (3' UTR) of human and murine INOS mRNA contains
adenylate- and uridylate- (AU-) rich elements (AREs) (Lowenstein et al. 1992,
Lyons et a. 1992, Rodriguez-Pascual et a. 2000), which are known to control
MRNA stability of many transiently expressed genes (Caput et al. 1986, Shaw and
Kamen 1986). Mouse iNOS 3'UTR contains four to six AUUUA sequences (Lyons
et al. 1992), whereas the human INOS mRNA 3'UTR contains four AUUUA
sequences and one AUUUUA sequence (Rodriguez-Pascual et al. 2000). Regulation
of the stability of INOS mMRNA seems to be especially important for hiNOS
expression and some factors can regulate hiNOS mRNA stability by binding to
ARE. HUR has been reported to bind 3'UTR of iNOS mRNA and to gabilize it in
human DLD-1 cells (Rodriguez-Pascual et al. 2000). In addition, tristetraprolin
(TTP) has been shown to stabilize hiNOS mMRNA (Fechir et al. 2005). TTP does not,
however, bind to the 3'UTR of INOS mRNA itself, but it has been shown to mediate
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its effects through KH-type splicing regulatory protein (KSRP) (Linker et al. 2005).
In contrast, ARE/poly-(U) binding factor 1 (AUF1) was found to bind to 3'UTR of
INOS mRNA and to destabilize it in human DLD-1 cells (Pautz et a. 2009).

Increased INOS mRNA stability has been shown also after treatment with
forskolin or cyclic AMP (cCAMP) (Kunz et al. 1994, Oddis et al. 1995) and BH4
(Linscheid et al. 1998). In addition, activation of certain signalling pathways has
been reported to stabilize INOS mMRNA, i.e. c-Jun N-terminal kinase (JNK) (Lahti et
al. 2003, Lahti et al. 2006, Korhonen et al. 2007), PKCd (Carpenter et al. 2001), and
polypyrimidine tract-binding protein (PTB) (Pautz et al. 2006). Decreased stability
of INOS mRNA has been described after treatment with dexamethasone (Korhonen
et al. 2002), 8-bromo-cGMP (Pérez-Sala et al. 2001), and calcineurin inhibitors
(H&amaldinen et al. 2009).

2.3.5 INOSprotein stability

Enhancement or blockage of degradation of the iNOS protein can be considered as
another post-transcriptional regulatory mechanism. Inhibition of iINOS expression
either by TGFb1 in primary murine macrophages (Vodovotz et a. 1993) or by
dexamethasone in rat mesangial cells (Kunz et al. 1996) was claimed to result from
enhanced degradation of INOS mRNA and protein. Subsequently, the degradation
of INOS protein via the proteasome pathway was demonstrated by using proteasome
inhibitor lactacystin in two human intestinal carcinoma cell lines (Felley-Bosco et
al. 2000). The role of the proteasome as the primary degradation pathway for INOS
was confirmed when Musial and Eissa (2001) revealed that lactacystin blocked the
degradation of iNOS protein in transfected HEK293 human epithelial kidney cells,
RT4 human epithelial cells and RAW 264.7 murine macrophages. Later,
Kolodziegjski et al. (2002) reported that ubiquitination was required for iINOS
degradation via the 26S proteasome pathway. Protein degradation through the
ubiquitin-proteasome system is the major pathway of non-lysosomal proteolysis of
intracellular proteins, and it is responsible for the degradation of more than 80% of
intracellular proteins (Wang and Maldonado 2006).

The role of TGFb in the regulation of INOS protein sability has been
demonstrated in murine chondrocytes and macrophages (Vuolteenaho et al. 2005,



Takaki et a. 2006), and the involvement of proteasome in TGFb enhanced INOS
protein degradation was detected in RAW 264.7 macrophages (Mitani et al. 2005).
Peroxisome proliferator-activated receptor a agonists, zinc protoporphyrin and
rapamycin, have also been reported to enhance INOS ubiquitination and/or
proteasomal degradation (Paukkeri et al. 2007, Chow et al. 2009, Jin et al. 2009).
Chen et a. (2009) demonstrated that INOS ubiquitination and subsequent
proteasomal degradation was dependent on CHIP, a chaperone-dependent ubiquitin
ligase. CHIP has also been demonstrated to have a major role in targeting iNOS
protein to the aggresome under circumstances where the ubiquitin-proteasome
pathway is overwhelmed (Sha et al. 2009).

Another mechanism to degrade INOS protein is via the calpain pathway.
Calpains are intracellular proteinases that are able to modulate directly the activity
and/or function of proteins (Sorimachi et al. 1997). In RAW 264.7 macrophages, the
dexamethasone enhanced degradation of INOS protein was efficiently blocked by
calpain inhibitor | (Walker et al. 1997). Subsequently, Walker et al. (2001) reported
that the binding of calmodulin to INOS could play an important role in the
regulation of iINOS protein stability and in the degradation by calpain. The role of
calpain in INOS degradation has been suggested also in murine endothelial cells
(Liu et al. 2008).

2.4 Inhibitors of INOS

The expression of iINOS and the overproduction of NO have been linked to many
chronic inflammatory diseases, and selective inhibition of iINOS appears to be a
promising means for the treatment of inflammatory diseases. However, the
development of iINOS inhibitors is a challenging task. The inhibitors should be truly
selective for INOS, in order to prevent the excessive production of NO from iNOS,
but a the same time, permit the basal formation of NO by congtitutive NOS
enzymes (Tinker and Wallace 2006, Hesslinger et al. 2009). Despite intensive
research efforts in developing iINOS selective inhibitors and successful animal
experiments, no selective INOS inhibitors have reached the market so far
(Hesslinger et a. 2009).
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Some of the earliest inhibitors of NOS contained guanidine, amidine or
isothiourea moieties, that mimicked the binding mode of the endogenous substrate,
L-arginine. Although these inhibitors, such as N®-monomethyl-L-arginine (L-
NMMA), N-iminoethyl-L-ornithine (L-N10), and N®-nitro-L-arginine methy! ester
(L-NAME), are potent (Rees et al. 1990), they have poor selectivity between the
various NOS isoforms (Tinker and Wallace 2006, Paige and Jaffrey 2007). An
amide prodrug L-N6-(1-iminoethyl)lysine (L-NIL) does display more selectivity
against INOS, and it has been reported to be 20-50 -fold more selective towards
INOS than nNOS or eNOS (Moore et al. 1994, Hallinan et al. 2002). L-NIL has
been evaluated clinically in man, where it produced a marked inhibition of exhaled
breath NO in normal and asthmatic subjects without the side effects observed
following the systemic administration of non-selective NOS inhibitors (Hansel et al.
2003).

Arginine competitive, NADPH-dependent inhibitors GW274150 and GW273629
are potent, time-dependent and highly selective inhibitors of iINOS, with 80-100
-fold selectivity against nNOS and eNOS (Young et a. 2000, Alderton et al. 2005).
GW274150 has proven to be effective in animal models (Dugo et a. 2004, De Alba
et a. 2006), although it failed to affect airway hyperreactivity or inflammatory cell
numbers in airways after allergen challenge in human asthmatic patients (Singh et
al. 2007).

| sothioureas have been reported to be potent and somewhat selective inhibitors of
INOS, however they were too toxic for in vivo evaluation (Garvey et a. 1994). The
work with bisisothioureas led to the discovery of a more promising agent, 1400W,
which was claimed to possess 32-fold selectivity against nNOS and > 5000-fold
selectivity against eNOS (Garvey et al. 1997, Paige and Jaffrey 2007).

AR-C102222, a 3,4-dihydro-1-isoquinolinamine, appears to be a potent inhibitor
of INOS (Beaton et al. 2001). It also possesses high oral bioavailability and
reasonable selectivity against nNOS (30-fold) and eNOS (3000-fold). AR-C102222
has also shown excellent efficacy in animal models of inflammation following oral
administration (Tinker et al. 2003).

The latest L-arginine site inhibitors are a novel class of compounds based on an
imidazopyridine backbone. BY K191023, a highly potent inhibitor of iINOS, shows
200-fold and 2000-fold selectivity over nNOS and eNOS, respectively (Strub et al.

2006). Imidazopyridine compounds did not show any toxicity in various human cell
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lines even up to high micromolar concentrations (Strub et al. 2006), and
BYK 191023 has proven to be effective in in vivo rat systemic inflammation models
(Lehner et a. 2006). Thus imidazopyridines appears to be promising candidates for
future therapeutics.

Since NOS isoforms require dimerization for their enzymatic function,
compounds that disrupt or prevent the formation of the iINOS dimer might represent
a way to obtain isoform-selective inhibitors. Some dimerization inhibitors, that are
potent and selective for INOS, have already been developed (Tinker and Wallace
2006, Paige and Jaffrey 2007).

During the writing process of this thesis, only one iNOS inhibitor was found to
be in an ongoing phase Il/l1l clinical trial. This compound, SD6010, is being
developed by Pfizer and currently in tests evaluating its efficacy in the treatment of
knee OA. (www.clinicaltrials.gov, July 2010)

3. Tristetraprolin (TTP)

Tristetraprolin (TTP) was first discovered 20 years ago in screens for genes that
were rapidly turned on by exposure of cultured fibroblasts to insulin, serum or
tumour promoting phorbol esters (Lai et al. 1990). The name tristetraprolin derives
from the presence of three PPPPG amino acid repeats that are conserved across
species. Three other groups also described the same sequence, therefore TTP is also
known as nuclear protein 475 (Nup475) (DuBois et a. 1990), TPA-induced
sequence 11 (TIS11) (Varnum et al. 1989, Varnum et al. 1991) and GO/G1 switch
gene 24 (G0S24) (Heximer and Forsdyke 1993). TTP is encoded by an immediate-
early response gene Zfp-36 (refering to zinc finger protein 36) in mice and the
equivalent human gene ZFP-36 in man (Taylor et al. 1991).

The TTP family is composed of three members in mammals; TTP, TIS11b
(also known as ZFP36L1, BRF1), (Gomperts et a. 1990, Varnum et a. 1991,
Barnard et al. 1993) and T1S11d (also known as ZFP36L2, BRF2) (Varnum et al.
1991, Nie et al. 1995). The fourth member has been identified in frogs (XC3H-4)
(De et a. 1999) and fish (CTH1) (Stevens et al. 1998), and it seems to be restricted
to maternal MRNA pool. TTP is known to be a factor that binds to AREs within the
MRNAS of its target genes, and causes destabilization of the mRNA and decreased
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formation of the protein. All four members of the TTP protein family exhibit ARE-
binding activity and the three mammalian members also exhibit MRNA-
destabilizing capabilities in intact cells (Lai et al. 2000).

The importance of mMRNA stability in the regulation of gene expression is
well recognized, and it is now established that mMRNA degradation is a tightly
regulated process. One important element controlling the mRNA half-life is the
ARE element found in the 3'UTR of many unstable mammalian mRNAS. This was
identified as an mMRNA-destabilizing element more than 20 years ago (Caput et al.
1986, Shaw and Kamen 1986). In addition to its role as a regulator of mRNA
stability in vivo, ARE is a potent stimulator of decapping (Gao et al. 2001) and
deadenylation (Xu et al. 1997) processes. Functional ARES have been categorized
based on their sequence characteristics and decay kinetics. Class | AREs contain
non-adjacent copies of AUUUA in the context of other U-rich sequences. Class I|
ARES contain tandemly repeated copies of the AUUUA motif, whereas class |11
AREs have U-rich sequences in the absence of the AUUUA motif (Chen and Shyu
1995, Xu et a. 1997). The known TTP binding sites in the 3'UTR of cytokine
transcripts resemble class || ARES, whereas the TTP binding site found in the c-fos
J'UTR belongs to the class | AREs (Raghavan et al. 2001). TTP seems to bind to
ARE sequences as a complex that contains also other components of the cellular
MRNA decay machinery; 3'-5 exonuclease Xrnl and the exosome component PM-
scl75 (Hau et a. 2007). However, in dendritic cells from normal human donors,
immunoprecipitation studies indicate that TTP could also interact with and regulate
the expression of non-ARE-containing mMRNAS (Emmons et al. 2008).

3.1 TTPininflammation

TTP knockout mice were generated by Perry Blackshear and his colleagues in the
mid 90s (Taylor et al. 1996a). The mice appeared normal at birth, but within 1-8
weeks developed a characteristic systemic phenotype that included loss of body
weight and body fat, patchy alopecia, dermatitis, severe polyarticular erosive
arthritis, myeloid hyperplasia, autoimmunity, and glomerular mesangial thickening
(Taylor et al. 1996a). The nature of this systemic phenotype resembled the
phenotype caused by chronic administration of TNFa (Keffer et al. 1991). When
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newborn TTP knockout mice were treated with repeated injections of a specific
mADb to mouse TNFa, the development of TTP deficiency phenotype was prevented
(Taylor et al. 1996a) indicating the involvement of TNFa in the development of the
inflammatory phenotype. In a subsequent study, the role of TNFa receptor (TNFR)
subtypes in the TTP deficiency phenotype was investigated (Carballo and
Blackshear 2001). The study reveded that TNFR1 is responsible for the
development of arthritis and cachexia in the absence of TTP. TNFR2 may well have
a protective role in this syndrome, because the TTP deficiency syndrome appeared
to be exacerbated in TTP/ TNFR2 knockout mice.

In a subsequent study, macrophages derived from TTP knockout mice were
shown to secrete elevated levels of TNFa in response to LPS as compared to cells
from wild-type mice (Carballo et al. 1997). This effect was seen in cultured TTP
deficient macrophages derived from the peritoneal cavity or from the bone marrow
of adult TTP knockout mice or in cells from foetal liver, but not in cultured
fibroblasts or T and B lymphocytes. The enhanced levels of TNFa protein were
accompanied by increased levels of TNFa mRNA. The mechanism of this effect
was investigated by Carballo and coworkers (1998) who evaluated the influence of
TTP deficiency on the stability of TNFa mRNA after LPS treatment. The half-life
of TNFa mRNA in the macrophages derived from the bone marrow of TTP
knockout mice was significantly increased compared to that observed in the cells
from wild-type mice, suggesting that TTP could regulate TNFa mRNA expression
post-transcriptionally. These results indicate that the increase in the half-life of
TNFa mRNA in macrophages derived from TTP knockout mice is likely to be
responsible for the enhanced secretion of TNFa from TTP deficient macrophages
and also for the TNFa excess that characterizes the TTP knockout mice.

Carballo and coworkers (1998) studied the possibility that TTP might be
able to bind directly to the TNFa mRNA, which could then lead to its instability.
Using RNA cross linking and gel mobility shift techniques, they were able to show
that TTP bound directly to the ARE within the 3 UTR of TNFa mRNA. A single
mutation of one of the key cysteine or histidine residues within either of the TTP
zinc fingers completely prevented TTP binding to TNFa ARE (Lai et al. 1999).

Hence, the RNA binding site in TTP was identified as the tandem zinc finger
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domain and the binding site for TTP within the target mRNA was recognized as the
ARE (Lai et al. 2000).

After those findings, the question arose whether TTP could regulate also the
stability of other mRNAs containing characteristic class 11 AREs. In primary
cultures of bone marrow stromal cells derived from TTP knockout mice, the absence
of TTP resulted in increased secretion of granulocyte-macrophage colony-
stimulating factor (GM-CSF) in the presence of LPS (Carballo et al. 2000). As
compared to cells derived from wild-type animals, TTP deficiency led also to
increased steady-state levels of GM-CSF mRNA after stimulation with LPS or
TNFa, and increased half-life of GM-CSF mRNA after stimulation with LPS. In
addition, TTP deficiency evoked an almost complete absence of the deadenylated
form of GM-CSF mRNA.

IL-2 was reported to be atarget for TTP in a study by Ogilvie et al. (2005).
They showed that splenocytes or purified T cells from TTP knockout mice
overproduced IL-2, and IL-2 mRNA was more stable in TTP deficient splenocytes
as compared with wild-type cells. Binding of TTP to IL-2 ARE was demonstrated
by gel shift assays. In a subsequent study from Ogilvie and coworkers (2009), the
role of TTP as a mediator of IFNg mMRNA decay was investigated. Using T cells
from TTP knockout mice, they noted that overexpression of IFNg mRNA was due to
stabilization of IFNg mRNA. In a UV cross-linking assay TTP was also shown to
mediate the rapid degradation of I|FNg transcript by binding to the IFNg ARE.

Immediately early response 3 (Ier3) has also been recognized as a target for
TTP mediated mRNA decay in embryonic fibroblasts from TTP knockout mice (Lal
et a. 2006). In that study, microarray analysis of RNA from wild-type and TTP
deficient fibroblast cell lines identified 250 mMRNASs apparently stabilized in the
absence of TTP. Of these, 23 contained conserved binding sites for TTP, with nine
of them appearing to be stabilized. The transcript encoding for ler3 was the most
dramatically affected. In a recent study, IL-10 mRNA was shown to be atarget for
TTP mediated decay in primary macrophages from TTP knockout mice (Stoecklin et
al. 2008). Overall, the results obtained from studies with TTP deficient cells indicate
that TTP acts to downregulate TNFa, GM-CFS, IL-2, IL-10, IFNg, and ler3 gene
expression through ARE-mediated mRNA decay.
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Other possible targets for TTP have been proposed by alternative
approaches. Overexpression studies have indicated that 1L-3, IL-6, COX-2, and TTP
itself may be destabilized by TTP (Stoecklin et al. 2000, Raghavan et al. 2001,
Stoecklin et al. 2001, Sawaoka et al. 2003, Brooks et al. 2004). Later it was shown
that peritoneal macrophages derived from TTP knockout mice overexpressed COX-
2 protein (Phillips et al. 2004). Knockdown of TTP in macrophages by ssIRNA was
shown to result in increased production of IL-6, IL-12, and macrophage
inflammatory protein-2 (a homologue of human IL-8) (Jalonen et al. 2006), whereas
macrophage inflammatory protein-3a was produced at lower levels than in control
cells. In contrast, Fechir et al. (2005) reported that TTP could positively regulate the
expression of human iNOS by enhancing the stability of human iINOS mRNA. TTP
does not bind directly to INOS mRNA, but interacts with KSRP which interacts
with the 3'UTR of human iNOS mRNA. The interaction between TTP and KSRP is
suggested to result in dislodgement of the KSRP/exosome complex from the iNOS
MRNA, thus allowing the binding of HUR, which in turn leads to increased iNOS
MRNA stability and enhanced iNOS expression (Linker et al. 2005). Recently, it
was reported that increased expression of TTP in cystic fibrosis cells resulted in
reduced stability and enhanced deadenylation of IL-8 mRNA (Balakathiresan et al.
2009), in line with the results obtained by Jalonen et a. (2006).

Evidence from mice with altered cytokine mRNA stability, along with
human data, suggests that imbalance between the decay and stability of the
inflammatory cytokine mRNASs could represent a basic mechanism leading to
autoimmunity. Indeed, agents that enhance TTP expression or regulate the function
or activity of TTP e.g. by phosphorylation of TTP, may have potential therapeutic

value for the prevention or treatment of inflammation-related diseases.

3.2 Regulation of TTP expression

TTP mRNA and protein are expressed in several mouse tissues including thymus,
liver, intestine, kidney, lung and spleen (DuBois et a. 1990, Lai et al. 1990, Cao et
al. 2004, Lu and Schneider 2004). A similar expression pattern has been shown in
rat tissues (Smoak and Cidlowski 2006). A number of agents have been reported to

increase TTP mMRNA and/or protein levels in mammalian tissues. These include
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growth factors (e.g. insulin and insulin-like growth factor 1) (DuBois et al. 1990, Lai
et a. 1990), cytokines (e.g. TNFa, IFNg, GM-CSF) (Varnum et al. 1989, DuBois et
al. 1990, Carballo et al. 1998, Sauer et a. 2006), tumour promoters (Varnum et al.
1989, Lai et al. 1990) and the bacterial endotoxin, LPS (Carballo et al. 1998, Cao et
al. 2004, Rigby et a. 2005).

Promoter regions of mouse, human and rat TTP have been demonstrated to
include several different transcription factor binding sites. Mouse, human, and rat
promoter regions contain consensus sequences for binding of activator protein-2
(AP-2) and specificity protein 1 (Spl) (DuBois et al. 1990, Heximer and Forsdyke
1993, Lai et a. 1995, Kaneda et a. 2000). Mouse and human TTP promoter regions
also contain binding sites for early growth response gene-1 (EGR1) (DuBois et al.
1990, Heximer and Forsdyke 1993, Lai et al. 1995). EGR1, AP-2 and TTP promoter
element 1 were observed to contribute to the serum inducibility of mouse TTP (Lai
et a. 1995). The TTP intron region was also found to be important for full serum
inducibility. Some years later, Lai and coworkers (1998) reported that the mouse
TTP intron sequence displayed binding sites for Spl, AP-2, and NF-kB, as well as
an NF-kB-like binding site, and that Spl might contribute to the full serum
inducibility of TTP. Subsequently, a binding site for NF-kB has been located also in
human TTP promoter and intron regions (Smoak and Cidlowski 2006).

Originally TTP was proposed to function as a transcription factor due to its
nuclear localization in mouse fibroblasts (DuBois et a. 1990). However, stimulation
of quiescent mouse fibroblasts with serum or other mitogens was shown to cause a
rapid phosphorylation of serine residues and translocate TTP from nucleus to cell
cytosol (Taylor et al. 1995, Taylor et al. 1996b). Later, it was shown that nuclear
localization of TTPin normal and stimulated cells was actually very minimal, with a
high abundance in dividing cells (Cao et al. 2004). TTP was primarily found to be
localized in cell cytosol in THP-1 monocytic cells (Carballo et al. 1998, Brooks et
al. 2002) and mouse tissues and cells (Cao et al. 2004), aswell asin cells transfected
with GFP-tagged TTP or cells overexpressing TTP (Lai et al. 1999, Cao 2004).
Nuclear export of TTP is mediated by a functional leucine-rich nuclear export
sequence in both mouse and rat (Murata et al. 2002, Phillips et al. 2002). Its transfer
to the nucleus requires the presence of the tandem zinc finger domain, though it

occurs independently of zinc finger RNA-binding ability (Phillips et a. 2002). In
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transfected fibroblasts, the extent of cytoplasmic localization of TTP was increased
by association with 14-3-3 protein (Johnson et al. 2002). This shuttle activity was
aso partially affected by phosphorylation at Ser*™ but not a Ser?® in mouse TTP
(Taylor et al. 1996b, Johnson et al. 2002). The overexpression studies conducted by
Cao (2004) indicated that the nuclear TTP was able to bind TNF mRNA ARE ina
manner similar to that of cytosolic TTP.

In normal tissues and in stimulated cells TTP exhibits a larger molecular
mass on SDS gels than the predicted size (~43 kDa) due to extensive
phosphorylation the TTP molecule (Cao et a. 2004). A number of agents have been
reported to be able to phosphorylate TTP, e.g. LPS (Carballo et al. 2001, Cao et al.
2004), phorbol esters, serum, platelet derived growth factor and fibroblast growth
factor (Taylor et al. 1995). Phosphorylation assays have revealed that the
phosphorylation of TTP at least in vitro may occur via several different protein
kinase cascades. These include p42 MAPK (Taylor et a. 1995, Cao et a. 2003, Cao
2004), p38 MAPK (Carballo et a. 2001, Zhu et a. 2001, Cao et al. 2003, Cao
2004), INK (Cao et al. 2003), MAP kinase-activated protein kinase 2 (MK2)
(Mahtani et al. 2001, Chrestensen et al. 2004, Stoecklin et al. 2004), PKA, PKB, and
PKC (Cao and Lin 2008). Phosphorylation of serine residues has been shown to
modulate several functions of TTP such asthe mRNA ARE binding activity of TTP
in mouse macrophages (Carballo et a. 2001, Hitti et al. 2006). It may also affect
TTP's subcellular localization (Taylor et al. 1996b, Johnson et al. 2002), stability
(Cao et al. 2004), and autoregulation (Brooks et al. 2004, Tchen et al. 2004) as well
as its association with the exosome (Chen et al. 2001), stress granules (Stoecklin et
al. 2004), and other proteins (Twizere et a. 2003, Carman and Nadler 2004).

3.2.1 Pharmacological control

TTP expression may also be regulated by different pharmaceutical agents.
The role of glucocorticoids has been examined in a few studies. First it was shown
that in murine macrophages, dexamethasone and a dissociated steroid, RU24858,
could reduce LPS-induced TTP mRNA and protein expression (Jalonen et al. 2005).
This was suggested to happen in a glucocorticoid response element -independent
mechanism, possibly through histone deacetylation and transcriptional silencing.
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Later, Smoak and Cidlowski (2006) showed that in unstimulated human A549 lung
epithelial cells and various rat tissues, glucocorticoids could enhance TTP mRNA
and protein expression via transcriptional mechanisms. However, they were unable
to observe this enhancing effect in murine RAW 264.7 macrophages.
Dexamethasone reduced TNFa mRNA levels and this was prevented by TTP
SIRNA. The researchers concluded that TTP was critical for the inhibitory effect of
glucocorticoids on TNFa mRNA expression. A similar enhancing effect of
glucocorticoids on TTP expression was seen in unstimulated human bronchial
epithelial cells (Ishmael et al. 2008). In the same study, when mouse embryonic
fibroblasts from wild-type and TTP knockout mice were compared, it was noted that
glucocorticoid-mediated gene expression was absent in cells from TTP knockout
mice. This is further support for a role of TTP as a mediator of the post-
transcriptional effects of glucocorticoids. Altogether, it seems that the effects of
glucocorticoids on TTP expression might be tissue and/or species specific since the
induction of TTP by glucocorticoids was seen in human cell lines and rat tissues but
not in mice. The difference might also stem from different treatment of cells, i.e.
untreated cells versus cells treated with an inflammatory stimulus.

Another group of drugs that seem to regulate the expression of TTP are
agents that increase the intracellular levels of CAMP. These include the cCAMP
analog, dibutyryl cAMP, the adenylate cyclase activator forskolin, and compounds
that activate Gsreceptors (such as bp-agonists). Initial results were obtained when
two research groups showed that dibutyryl cAMP and forskolin could elevate TTP
MRNA levels (DuBois et al. 1990, Kaneda et al. 1992). Subsequently, Jalonen et al.
(2007) reported that bo-agonists (salbutamol, terbutalin and formoterol), forskolin,
and cAMP analogs increased TTP expression in murine J774 macrophages and
human THP-1 monocytes and this was mediated partly through the activation of
transcription factor AP-2. In a further study, Jalonen and coworkers (2008)
examined the effects of these agents on TTP expression in murine macrophages
exposed to an inflammatory stimulus (LPS). This study revealed that cAMP
elevating agents had a decreasing effect on LPS-induced TTP mRNA expression,
and they significantly reduced TTP protein levels as compared to LPS treatment

alone. Therefore it seems that in macrophages TTP partly mediates the anti-



inflammatory effects of b,-agonists and their effects on cytokine production, but this

effect isreversed under inflammatory conditions.

3.2.2 MAPK signalling pathway

The studies on the regulation of TTP expression by different kinase pathways have
focused mainly on the role of MAP kinases. In mouse fibroblasts overexpressing
TTP, TTP Ser’® residue was shown to be phosphorylated by p42 MAPK in vitro
and this was claimed to regulate TTP's function (Taylor et a. 1995). The p38
MAPK pathway has been reported to regulate the expression and posttranslational
modification of TTP in LPS-stimulated RAW 264.7 macrophages (Mahtani et a.
2001). The same study also indicated that MK2 could phosphorylate recombinant
TTP in vitro i.e. it could mediate the effects of p38 on TTP expression. Similar
results were obtained by Brook and coworkers (2006), who reported that in LPS-
stimulated RAW 264.7 macrophages p38 and ERK pathways synergistically
regulated TTP expression at the translational and posttransglational levels. Inhibition
of p38 destabilized endogenous TTP protein, reducing its half-life from >4 h to 30
min. This was shown to occur via MK2-mediated phosphorylation of Ser®? and
Ser'’®, Simultaneous inhibition of p38 and ERK was shown to enhance TTP protein
degradation. The inhibition of p38 also evoked a rapid dephosphorylation of TTP
and increased its nuclear localization. Simultaneous inhibition of p38 and ERK
pathways resulted in enhanced nuclear accumulation and a greater degree of
dephosphorylation, as compared to p38 inhibition alone. Subsequently, it was
reported, that both p38 and ERK activation were required to inhibit TTP function
and to stabilize TNFa mRNA in activated macrophages (Deleault et al. 2008). In
addition, the p38 pathway has been shown to regulate TTP mRNA stability in
murine macrophages (Tchen et a. 2004), TTP protein expression in human
monocytes and murine macrophages (Brooks et al. 2004, Jalonen et al. 2005), TTP
ARE binding activity in bone marrow macrophages from TTP knockout mice
(Carballo et a. 2001), phosphorylation of TTP in murine macrophages (Zhu et al.
2001), and localization of TTP to stress granules (Rigby et al. 2005). ERK and JNK
pathways have also been suggested to participate in the regulation of TTP
expression (Brooks et al. 2004, Jalonen et a. 2005). MK2 was shown to be essential
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for stabilization of TTP mRNA in bone marrow macrophages from TTP knockout
mice (Hitti et al. 2006). Phosphorylation of TTP by MK2 led to increased TTP
protein stability, and reduced ARE binding affinity. It was concluded that MK2
could inhibit the mRNA destabilizing activity of TTP. Phosphorylation of TTP by
MK2 has been reported also in mouse fibroblasts in vivo, where Ser®® and Ser'™
were identified as the putative MK2 phosphorylation sites (Chrestensen et al. 2004).

3.2.3 PKC signalling pathway

Phorbol esters, known activators of PKC, have been shown to increase TTP
expression (Varnum et al. 1989, Lai et al. 1990). However, the signalling pathways
responsible for PMA-mediated TTP induction and the role of PKC in it are not
known in detail. In mouse fibroblasts trested overnight with 1.6 uM PMA to
downregulate PKC isoenzymes, the elevation of TTP induced by insulin and serum
remained unchanged, but this overnight treatment did abolish the induction of TTP
MRNA by PMA (La et a. 1990). In rat fibroblasts and hepatoma cells, overnight
treatment with 16 uM PMA did not change the levels of insulin induced TTP or cfos
MRNAS (Stumpo et al. 1994). However, in a screen of the effects of several kinase
inhibitors on the expression of different immediate early genes in mouse 3T3-L1
cells, PKC seemed to regulate tis11 gene expression (Inuzuka et al. 1999). The PKC
inhibitor RO320432, which according to the manufacturer, inhibits PKCa, PKCbl
and PKCe decreased tisl1 gene expression as well as c-fos, jun-B, egr-1 and some
other immediate early genes, as did the MEK inhibitor, PD98059. Murata et al.
(20008) demonstrated that PMA caused an inactivation of TIS11 transcriptional
activity and this was blocked by PKC and MEK inhibitors. In addition, the PMA
stimulated promoter activity of TTP was shown to be mediated through PKC and
MEK cascades (Murata et a. 2000b). Overall, these results indicate that PKC
isoenzymes might have a role in the regulation of the expression of TTP, however
no studies have actually determined which PKC isoenzymes are responsible for this
putative regulation.

56



Aims of the study

Increased INOS expression and NO production in macrophages and other
inflammatory cells have been implicated in the pathogenesis of severa
inflammatory diseases. TTP expression is also increased in inflammation, but it is
thought to act primarily as an anti-inflammatory factor by destabilising the mRNAs
of various inflammatory genes and thus attenuating their expression. PKC pathways
are major signalling mechanisms in cell differentiation and growth, but less is
known about their specific effects on the regulation of inflammatory genes. The aim
of the present study was to investigate from the drug development perspective the
role of PKC isoenzymes in the regulation of inflammatory genes with iNOS and

TTP as examples of a proinflammatory and anti-inflammatory factors, respectively.
The detailed aims of the present study were:

1. To evaluate if classical PKC isoenzymes are involved in the regulation of
NO production and iINOS expression as well as in the regulation of TTP
expression in activated macrophages using PKC inhibitors and phorbol
esters as pharmacological tools. In addition, to identify which classica
isoenzymes are involved in this phenomenon. (1, I1)

2. To evaluate whether the novel isoenzyme PKCd is involved in the
regulation of NO production and iNOS expression, and in the regulation of
TTP expression using a PKCd specific SRNA and the PKCd inhibitor
rottlerin asinvestigational tools. (111, 1V)

3. To characterize the mechanisms involved in the regulation of NO
production and iINOS expression (I, 1V) and of TTP expression (I, 111) by

PK C isoenzymes.
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Materials and methods

1. Maeids

Reagents were purchased as follows: DMEM and FBS were from Lonza Verviers
SPRL (Veviers, Belgium); penicillin, streptomycin, amphotericin B, trypsin-
EDTA, and Lipofectamine 2000 were from Invitrogen (Paisley, UK); R0O318220,
phorbol 12,13-didecanoate (PDD) and LY 333531 were from Alexis Biochemicals
(Lausen, Switzerland); GO6976, HBDDE and recombinant PKCgwere from
Calbiochem (La Jolla, CA, USA); LPS (Escherichia coli 0111:B4), PMA, rottlerin
and all other reagents were from Sigma Chemica Co (St Louis, MO, USA). Protein
kinase C inhibitors and the other pharmacological compounds used in this study are
lisged in Table 4.

2. Cdl culture

Murine J774A.1 macrophages (I, Il and I11) were obtained from American Type
Culture Collection (ATCC, Manassas, VA, USA) and murine J774.2 macrophages
(IV) were obtained from European Collection of Cell Cultures (Porton Down,
Wiltshire, UK). Both cell lines were cultured at 37 °C in 5% CO, atmosphere and
grown in Dulbecco’s modified Eagle’s medium (DMEM) with Ultraglutamine 1
supplemented with 10% (J774A.1) or 5% (J774.2) heat-inactivated foetal bovine
serum (FBS), penicillin (100 U/ml), streptomycin (100 pg/ml), and amphotericin B
(250 ng/ml). J774A.1 macrophages were harvested with trypsin-EDTA.

Murine L929 fibroblasts (V) (CCL-1; ATCC) were cultured a 37 °C in 5% CO

amosphere and grown in Eagle’s minimum essential medium with L-glutamine

58



containing 10% heat-inactivated foetal bovine serum and supplemented with sodium
bicarbonate (0.15%), non-essential amino acids (1ImM each), sodium pyruvate
(ImM) and 100 U/ml penicillin, 100 pg/ml  streptomycin, and 250 ng/ml
amphotericin B.

Murine L929 fibroblasts were stably transfected with NF-kB responsive
luciferase reporter gene to investigate NF-kB mediated transcription (1V). In
experiments to prepare L929-pNFkB(luc)neo reporter cell line, L929 cells were
stably transfected with a luciferase reporter construct [pNFkB(luc)neo] which
contained five NF-kB binding sites to drive luciferase expression. The luciferase
reporter construct was kindly provided by Professor Hartmut Kleinert at the
Johannes Gutenberg University (Mainz, Germany). The plasmid contained also a
neomycin resistance gene under the control of TK promoter for mammalian
selection. To create a stable transfection, L929 cells were transfected with
pNFkB(luc)neo reporter plasmid using Lipofectamine 2000 according to the
manufacturer’s instructions. Transfected cells were selected with G 418 disulphate
salt (800 pg/ml) treatment. After the selection, the surviving clones were pooled to
give rise to the L929 pNF-kB cell line and then further cultured in the presence of
400 pg/ml of G 418.

Cells were seeded on 96-well plates for cell viability assays, 24-well plates for
SIRNA and RT-PCR experiments and nitrite and ELISA measurements, on 6-well
plates for extraction of whole cell lysates, and on 10 cm dishes for extraction of
nuclear proteins and for PKC trandocation studies. Cells were grown for 48 h

(L929) or 72 h (J774) to confluence prior to the experiments.

3. Cdl viability assays

Cytotoxicity of the tested compounds was examined by measuring cell viability
using Cell Proliferation Kit Il (Roche Diagnostics, Mannheim, Germany). This test
measures the metabolic activity of viable cells, i.e. the ability of cells to metabolize
XTT to formazan via the activity of mitochondrial dehydrogenase. Cells were
incubated with stimulants and tested compounds for 20 h before the addition of
sodium  3'-[-1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis  (4-methoxy-6-nitro)
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benzene sulphonic acid hydrate (XTT) (final concentration 0.3 mg/ml) and N-
methyl dibenzopyrazine methyl sulphate (an electron coupling reagent, fina
concentration 2.5 pg/ml). After 3 h incubation, the amount of formazan
accumulating in the culture medium was assessed spectrophotometrically. Triton
X-100 treated cells were used as a positive control of cytotoxicity. If the treatment
with a tested compound led to a decreased mitochondrial dehydrogenase activity
(20% or greater difference as compared to cells treated with stimulant only), the

compound was excluded from further studies at that toxic concentration.

Table 4. PKC inhibitors and other pharmacological compounds used in this study

Compound Supplier Reference

CGP53353 PKCblI inhibitor Sigma Chemical Co Chalfant et a. 1996

G0O6976 cPKC inhibitor Calbiochem Martiny-Baron et al. 1993

HBDDE PKCa and PKCg Calbiochem Kashiwada et al. 1994
inhibitor

LY 333531 PKCbl and PKCblI Alexis Biochemicals Jirousek et al. 1996
inhibitor

RO318220 PKCb, PKCg PKCe Alexis Biochemicals Daviset a. 1992,
inhibitor Wilkinson et al. 1993

Rottlerin PKCd inhibitor Sigma Chemical Co Gschwendt et al. 1994

Actinomycin D Inhibitor of transcription ~ Sigma Chemical Co

BM S345541 Inhibitor of kB kinase Sigma Chemical Co
(NF-kB inhibitor)

PDD Phorbol ester Alexis Biochemicals

PDTC NF-kB inhibitor Sigma Chemical Co

PMA Phorbol ester Sigma Chemical Co

4.  Nitrite assays

The effects of the tested compounds on the ability of the cells to produce NO was
determined by measuring the accumulation of nitrite, a stable metabolite of NO, in
the culture medium by the method of Griess (Green et al. 1982). Briefly, after 24 h
incubation, 100 pl of culture medium was collected and incubated with 100 pl of
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Griess reagent (0,1% naphthylethylenediamine dihydrochloride, 1% sulfanilamine,
2,4% H3PO,). Absorbance was measured at 540 nm. The concentration of nitrite
was calculated using sodium nitrite as the standard. The detection limit was 0.313
UM,

5. Western blotting

Western blotting was performed using protein extracts from whole cell lysates or,
when trandocation of transcription factors was being studied, with nuclear extracts.

For the preparation of whole cell lysates, cells were rapidly washed with ice-cold
phosphate-buffered saline (PBS) and solubilized in cold lysis buffer containing
10 mM Tris-base pH 7.4, 5mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.5 mM
phenylmethylsulfonyl fluoride (PMSF), 1 mM NaVO, 20 pg/ml leupeptin,
50 pg/ml aprotinin, 5 mM NaF, 2 mM sodium pyrophosphate, and 10 uM n-octyl-b-
D-glucopyranoside. After incubation for 15 min on ice, lysates were centrifuged
(13400 x g, 4 °C, 10 min), supernatants were collected and stored in sodium
dodecyl sulphate (SDS) sample buffer (62.5 mM Tris-HCI pH 6.8, 10% glycerol,
2% SDS, 0.025% bromophenol blue, 5% b-mercaptoethanol) in -20 °C. An aliquot
of the supernatant was used to determine the protein concentration by the
Coomassie blue method (Bradford 1976).

In the preparation of nuclear extracts, cells were rapidly washed with ice-cold
PBS and solubilized in hypotonic buffer A (10 mM HEPES-KOH pH 7.9, 1.5 mM
MgCl,, 10 mM KCI, 0.5 mM dithiothreitol (DTT), 0.2 mM PMSF, 1 mM NagV Oy,
10 pg/ml leupeptin, 25 pg/ml aprotininy 1 mM NaF, 0.1 mM EGTA). After
incubation for 10 min on ice, cells were vortexed for 30 s and the nuclel were
separated by centrifugation at 4 °C, 21 000 x g for 10 s. Nuclei were resuspended in
buffer C (20 mM HEPES-KOH pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM
MgCl,, 0.2 mM EDTA, 0.5 mM DTT, 0.2 mM PMSF, 1 mM NasVO,, 10 pg/ml
leupeptin, 25 pg/ml aprotinin, 1 mM NaF, 0.1 mM EGTA) and incubated for 20 min
on ice. Nuclei were vortexed for 30 s and nuclear extracts were obtained by
centrifugation at 4 °C, 21 000 x g for 2 min. The protein contents of the nuclear
extracts were measured by the Coomassie blue method (Bradford 1976).
Supernatants were collected and stored in SDS sample buffer at -20 °C.
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Prior to Western blotting, proteins were boiled for 10 min with SDS sample
buffer and an equal amount of protein was used per lane on 8% (iINOS and STAT1a
Western blot), 12% (TTP Western blot) or 10% (all other Western blots) SDS-
polyacrylamide gels. Actin was used as a loading control for proteins in whole cell
extracts and lamin A/C for nuclear proteins. After electrophoresis, the proteins were
transferred to Hybond ECL™ nitrocellulose membrane (Amersham Biosciences
UK, Ltd, Little Chalfont, Buckinghamshire, UK). Following transfer, the membrane
was blocked in TBS/T (20 mM Tris-base pH 7.6, 150 mM NaCl, 0.1% Tween-20)
containing 5% non-fat dry milk for 1 h at room temperature and incubated with
primary antibody (Table 5) in the blocking solution at 4 °C overnight (for anti-
EGR1, anti-NF-kB p65, and anti-Spl milk was replaced with 5% BSA). The
membrane was washed with TBS/T and incubated with the secondary antibody
(Table 5) in the blocking solution for 30 min at room temperature and washed.
Bound antibody was detected using Super Signa® West Pico or Dura
chemiluminescent substrate (Pierce, Rockford, USA) and FluorChem™ 8800
imaging system (Alpha Innotech Corporation, I-111) or Image Quant LAS 4000 mini
imaging system (GE Healthcare Bio-Sciences AB, 1V).
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Table 5. Antibodies used in this study

MW (kDa)  Supplier

Primary antibodies

Anti-actin sc-1616R 43 Santa Cruz Biotechnology
Anti-AP-2 sc-184 50 Santa Cruz Biotechnology
Anti-EGR1 #4152 80 Cdl Signaling Technology
Anti-iNOS sc-650 130 Santa Cruz Biotechnology
Anti-lamin A/C sc-20681 69/62 Santa Cruz Biotechnology
Anti-NF-kB p65 #3034 65 Cdl Signaling Technology
Anti-PKCa sc-8393* 80 Santa Cruz Biotechnology
Anti-PKCbl sc-209 80 Santa Cruz Biotechnology
Anti-PKCbll sc-210 80 Santa Cruz Biotechnology
Anti-PKCd sc-213 80 Santa Cruz Biotechnology
Anti-PKCgsc-211 80 Santa Cruz Biotechnology
Anti-Spl sc-17824* 106 Santa Cruz Biotechnology
Anti-STAT 1a sc-345 91 Santa Cruz Biotechnology
Anti-TTP 43 A kind gift from Dr. Perry Blackshear, NIEHS,

Research Triangle Park, NC, USA
Secondary antibodies
Goat anti-rabbit SC-2004 Santa Cruz Biotechnology
Goat anti-mouse # 1858413 Pierce

Primary antibodies are rabbit polyclonal antibodies
*mouse monoclonal antibody

6. PKC trandocation studies

The activation and downregulation of PKC isoenzymes were studied by determining
their translocation from cell cytosol to cell membrane by a Western blot assay. The
cytosolic and membrane fractions were prepared as follows:. at the predetermined
time points, cells were rapidly washed with ice-cold PBS and solubilized in cold
buffer A (20 mM Tris-base pH 7.4, 10 mM EDTA, 5 mM EGTA, 0.5 mM PMSF,
2mM NaVOs, 10 pg/ml leupeptin, 25 pug/ml aprotinin, 1.25 mM NaF). After
incubation for 15 min on ice, the lysates were centrifuged at 100 000 x g for 1 h at
4 °C, supernatants were collected and marked as the cytosolic fraction. Pellets were
resuspended in cold lysis buffer B (20 mM Tris-base pH 7.4, 10 mM EDTA, 5mM
EGTA, 1% Triton X-100, 0.5 mM PMSF, 2 mM NagVOy, 10 pg/ml leupeptin,
25 pg/ml aprotinin, 1.25 mM NaF, 10 uM n-octyl-b-D-glucopyranoside). After

63



incubation for 2 h on ice, lysates were centrifuged at 100 000 x g for 1 h a 4 °C,
supernatants were collected and marked as the membrane fraction. An aliquot of the
supernatant was used to determine protein concentration by the Coomassie blue
method (Bradford 1976). Samples were stored in SDS sample buffer at -20 °C until
analysis. Western blot analysis was performed as described above.

7.  Quantitative real-time polymerase chain reaction (RT-
PCR)

Total RNA extraction was carried out with the use of RNeasy® kit (QIAGEN
GmbH, Hilden, Germany) or GenElute™ Mammalian Total RNA Miniprep Kit
(Sigma-Aldrich, St Louis, MO, USA). Briefly, cells were incubated with the
compounds of interest for indicated times. Thereafter, the cells were washed twice
with PBS, lysed and total RNA was extracted according to the manufacturer’s
instructions. The amount of RNA was measured spectrophotometrically and purity
was confirmed via the absorbance ratio at Azso/Azso.

Total RNA (100 ng) was reverse-transcribed to cDNA using TagMan Reverse
Transcription Reagents and random hexamers (Applied Biosystems, Foster City,
CA, USA). The parameters for the reverse-transcriptase reaction were as follows:
incubation at 25 °C for 10 min, reverse transcription at 48 °C for 30 min, and
inactivation of reverse transcriptase at 95 °C for 5 min.

cDNA obtained from the reverse-transcriptase reaction (corresponding to
approximately 2.5 ng of total RNA) was subjected to PCR using TagMan Universal
Master Mix and ABI PRISM 7000 Sequence Detection System (Applied
Biosystems). The primer and probe sequences were designed using Primer Express
Software, version 2.0.0 (Applied Biosystems) as listed in Table 6. Concentrations
for primers and probes were optimized according to the manufacturer’ s guidelinesin
TagMan Universal PCR Master Mix Protocol part number 4304449 revision C and
were 300 nM and 150 nM, respectively. All probes contained 6-FAM (6-carboxy-
fluorescein) as the 5'-reporter dye and TAMRA (6-carboxy-tetramethyl-rhodamine)
as the 3'-quencher. The expression of IRF1 mRNA was measured using TagMan®
Gene Expression Assay (Applied Biosystems). For luciferase mRNA experiments,



total RNA was treated with DNAse | (Fermentas UAB, Vilnius, Lithuania) prior to
conversion to cDNA.

PCR reaction parameters were as follows. incubation at 50 °C for 2 min,
incubation at 95 °C for 10 min, and thereafter 40 cycles of denaturation at 95 °C for
15 s and annealing and extension at 60 °C for 1 min. Each sample was determined in
duplicate.

The relative mRNA levels were quantified and compared using the relative
standard curve method as described in Applied Biosystems User Bulletin number 2.
Briefly, total RNA was isolated from stimulated cells and reverse transcribed as
described earlier. Standard curves for all quantified genes in the present study were
created using dilution series of cDNA corresponding to approximately 1 pg to 10 ng
of total RNA in PCR. The threshold cycle values were plotted against the dilution
factor to create a standard curve. Relative mRNA levels were then calculated using
the standard curve. The relative amount of gene transcript present was calculated
and normalized by dividing the calculated value of the gene of interest by the
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) value in each sample.

8.  Actinomycin D assay

Actinomycin D assay was performed to sudy the decay of iINOS, TTP or TNFa
MRNA. Cells were incubated with the stimulants and the compounds of interest for
4 h (TTP), 6 h (iINOS) or 9 h (TNFa) before the addition of actinomycin D, an
inhibitor of transcription. Thereafter, RNA was extracted at predetermined time
points and subjected to quantitative RT-PCR to measure the remaining mRNA.
Time points were selected from the expression curve of the mRNA in question.
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Table 6. Primersand probes used in this study

Gene Oligonuclectide  Sequence5 — 3
GAPDH Forward primer GCATGGCCTTCCGTGTTC

Reverse primer GATGTCATCATACTTGGCAGGTTT

Probe TCGTGGATCTGACGTGCCGCC
iNOS Forward primer CCTGGTACGGGCATTGCT

Reverse primer GCTCATGCGGCCTCCTT

Probe CAGCAGCGGCTCCATGACTCCC
Luciferase Forward primer  AAAAAGTTGCGCGGAGGAG

Reverse primer TTTTTCTTGCGTCGAGTTTTCC

Probe TGTGTTTGTGGACGAAGTACCGAAAGGTCTTAC
TNFa Forward primer AATGGCCTCCCTCTCATCAGTT

Reverse primer TCCTCCACTTGGTGGTTTGC

Probe CTCAAAATTCGAGTGACAAGCCTGTAGCCC
TTP Forward primer CTCAGAAAGCGGGCGTTGT

Reverse primer GATTGGCTTGGCGAAGTTCA

Probe

CCAAGTGCCAGTTTGCTCACGGC

9. Downregulation of PKCd by siRNA

PKCd expression was downregulated using Dharmacon ON TARGET plus sSiRNA
oligos (Dharmacon, Lafayette, CO, USA). The transfection conditions were chosen
based on preliminary tests in order to archieve good downregulation and to avoid
cytotoxicity. J774 macrophages or L929 cells were seeded at 1 x 10° cells per well
in 24-well plates 24 h before the transfection with sSIRNA oligos targeted to murine
PKCd or non-targeting control SIRNA using DharmaFECT4 (J774) or
DharmaFECT1 (L929) transfection reagent according to the manufacturer's
instructions (Dharmacon). Cells were incubated for 6 h (J774A.1), 24 h (J774.2), or
48 h (L929) with sIRNA duplexes and the transfection reagent. Subsequently, the
medium was replaced with fresh culture medium and cells were further incubated
for 42 h (J774A.1) or 24 h (J774.2) before the experiments were started and
stimulants and tested compounds were added in fresh culture medium.
Downregulation of PKCd by siRNA was determined by Western blotting from
samples extracted at the beginning of the experiments. The transfection efficacy was
monitored with green fluorescent SSRNA oligos (siGLO green indicator).
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10. Enzyme linked immunosorbent assay

The concentrations of IL-6 and TNFa in the culture medium were determined by
enzyme linked immunosorbent assay (ELISA) by using reagents from R&D

Systems Europe Ltd (Abingdon, UK) according to the manufacturer’s instructions.

11. Electrophoretic mobility shift assay

Electrophoretic mobility shift assay (EMSA) was used to study the activation of
NF-kB transcription factor. For EMSA, nuclear extracts were prepared as described
above. Protein concentrations were determined by the Coomassie blue method
(Bradford 1976) and samples were stored at -70 °C until analyzed. Single-stranded
oligonucleotides that contain the consensus NF-kB binding sequences (5'-
AGTTGAGGGGACTTTCCCAGGC-3, 3 -TCAACTCCCCTGAAAGGGTCCG-
5, Amersham Pharmacia Biotech, Piscataway, NJ, USA) were 5'-**P-end-labeled
with DNA 5'-End Labeling Kit (Boehringer Mannheim Indianapolis, IN, USA). In
the binding reactions, 5 pg of nuclear extract was incubated in 20 pl of total reaction
volume containing 0.1 mg/ml (poly)di-dC, 1 mM DTT, 10 mM Tris-HCl pH 7.5,
1 mM EDTA, 40 mM KCl, and 10% glycerol for 20 min a room temperature.
¥p._|abeled oligonucleotide probe (0.2 ng) was added and the reaction mixture was
incubated for 10 min. Protein - DNA complexes were separated from the free probe
by electrophoresis on a native 4% polyacrylamide gel. The gel was dried and
autoradiographed using an intensifying screen at —70 °C. The quantitation of

densities of specific bands was carried out using FluorChem™ software version 3.1.

12. Carrageenan-induced inflammation in mice

The anti-inflammatory effects of rottlerin in vivo were studied in carrageenan-
induced paw oedema in male C57BL/6 mice. The study was approved by the
Animal Care and Use Committee of the University of Tampere and the respective

provincial committee for animal experiments. Animals were housed under standard
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conditions of light, temperature and humidity (12:12 h light—dark cycle, 22+1 °C,
50-60%) with food and water provided ad libitum.

Mice were randomly divided into three study groups, i.e. control group, L-NIL-
treated group (50 mg/kg) (Kondapaneni et al. 2008), and rottlerin-treated group (10
mg/kg) (Ohno et al. 2010), with six mice in each group. Two hours before
carrageenan, the mice were treated with the same volume of normal saline or the
drug by intraperitoneal injection. The mice were anesthetized with an intraperitoneal
injection of 0.5 mg/kg of medetomidine (Domitor® 1 mg/ml. Orion Oyj, Espoo,
Finland) and 75 mg/kg of ketamine (Ketalar® 10 mg/ml, Pfizer Oy Animal Health,
Helsinki, Finland) and thereafter dosed with a 30 pl intradermal injection of normal
saline containing | -carrageenan (1.5 %) into one hindpaw. 30 ul of saline was
injected into the contralateral paw and it was used as the control. The paw volume
was measured before and three hours after carrageenan injection by use of a
plethysmometer (Ugo Basile) to determine the development of inflammatory
oedema. Oedema was expressed in ul as the difference between the change in the

paw with inflammation and the change in the control paw.

13. Statistics

Results are expressed as mean + standard error of mean (SEM). Statistical
significance of the results was calculated by the analysis of variance supported by
Dunnett’s or Bonferroni’s post test. Differences were considered significant at
P<0.05.
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Results

1.  Activation and downregulation of PKC isoenzymesin
J774 macrophages

J774 macrophages expressed cPKC isoenzymes a, bl, bll, as well as the novel
isoenzyme d. As expected, PKCg expression was not detected in J774 macrophages
(Figure 7).

Translocation of PKC isoenzymes from the cell cytosol to the membrane
fractions can be considered as the hallmark of PKC activation (Steinberg 2008). In
J774 macrophages, treatment with phorbol ester PMA (100 nM) for 10 min led to
the activation of PKCa, PKCbl, PKCblI, and PKCd. The activation was measured
by the translocation of isoenzymes from the cell cytosol to the cell membrane by
Western blotting (Figure 7A-B). In contrast, prolonged treatment of cells with
higher concentrations of PMA is known to cause downregulation of cPKCs and
NPKCs, probably as a result of proteolysis (Huang et al. 1989, Chen 1993). In J774
macrophages, 6 h pretreatment with 1 uM PMA led to the downregulation of PKCa,
PKCbI, and PKCbIl (Figure 7A). Downregulation of PKCd required a longer
pretreatment period (24 h) with 1 uM PMA (Figure 7B).

The siRNA technique is a more efficient and selective way to downregulate PKC
isoenzymes. PKCd specific SRNA downregulated PKCd expression by more than
80% in J774 macrophages (Figure 7D) and L929 fibroblast (Figure 7E).
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Figure 7. Activation and downregulation of cPKC isoenzymes (A, C) and PKCd (B, D, E) in
macrophages. (A and B) J774 cells were treated with 100 nM PMA or 1 uM PMA for the indicated
times. The expression of individual isoenzymes was assessed by Western blot with isoenzyme specific
antibodies. (C) The expression of PKCg in resting J774 macrophages was tested by Western blot
using recombinant human PKCg as a positive control. (D) J774.2 cells and (E) L929 cells were
transiently trandfected with PKCd specific ssIRNA. Non-targeting SRNA (SCONTROL) was used as a
control. The gels shown are representatives of three others with similar results. C = cytosolic
fraction, M = membrane fraction. (Reprinted with permission from Salonen et al. 2006, Br J
Pharmacol 147:790-799 © John Wiley & Sons Ltd, modified and Leppéanen et al. 2010, Eur J
Pharmacol 628:220-225 © Elsevier Ltd, modified).

2. The effects of PKC isoenzymes on NO production and
INOS expression (I, 1V)

Bacterial endotoxin LPS was used to activate cells through a TLR4 dependent
manner which is known to induce NO production and iNOS expression in J774
macrophages. In L929 fibroblasts, NO production and iNOS expression were
induced by a mixture of cytokines IFNg, IL-1b, and TNFa. The concentrations of
LPS and cytokines were selected from dose response curves.

In the present study, the role of PKC isoenzymes in the regulation of NO
production was studied by utilizing three approaches: by using PKC selective
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inhibitors, by activating and downregulating PKC with PMA, and by
downregulating PKCd with sSiRNA. First, to determine the effects of PKC inhibitors
with different selectivity profiles on NO production and INOS expression in
J774A.1 macrophages, LPS-induced NO production and iNOS expression were
measured in the presence of PKC inhibitors RO318220 (inhibits isoenzymes b, g, €)
(Davis et al. 1992, Wilkinson et al. 1993), GO6976 (inhibits all cPKCs) (Martiny-
Baron et a. 1993), LY 333531 (inhibits PKCbl and PKCblI) (Jirousek et al. 1996),
and HBDDE (inhibits PKCa and g) (Kashiwada et al. 1994). Except for HBDDE all
inhibitors reduced LPS-induced NO production and iNOS expression in J774
macrophages in a dose dependent manner (Table 7 and Figure 8). Secondly, therole
of cPKCs was further studied using phorbol ester PMA. When cells were treated
with 100 nM PMA, i.e. cPKC isoenzymes were activated (Figure 7A), LPS-induced
NO production and iNOS expression were enhanced (Table 7). On the other hand,
when cells were pretreated for 6 h with a higher concentration of phorbol esters
PMA or PDD (phorbol 12,13-didecanoate), i.e. cPKCs were downregulated (Figure
7A), LPS-induced NO production and iNOS expression were inhibited (Table 7).
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Figure 8. The effects of PKCb inhibitor LY333531 on LPS-induced NO production (A) and iNOS
expresson (B). NO production was determined after 24 h incubation by measuring the nitrite
concentrations (metabolite of NO) in the culture medium by Griess reaction (n=3, mean + SEM).
iNOS protein expression was measured by Western blot analysis after 24 h incubation (n=3,
mean + SEM).** p<0.01. (Reprinted with permission from Salonen et al. 2006, Br J Pharmacol
147:790-799 © John Wiley & Sons Ltd, modified).
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The role of the novel isoenzyme PKCd was determined by using a selective
inhibitor rottlerin (Gschwendt et al. 1994) and by using PKCd specific SIRNA. In
both cell types tested (J774.2 macrophages and L929 fibroblasts), rottlerin reduced
NO production and iINOS expression in a dose dependent manner (Table 7), and
PKCd specific SRNA had a similar effect (Figure 9). In addition, rottlerin had no
effect in cells in which PKCd had been downregulated by siRNA (Figure 9).

Table 7. Effects of PKC inhibitors on NO production and iNOS expression

Treatment Conc. (uM)  NO production (%) iNOS expression (%)
J774 cells
LPS 10 ng/ml 100 100
+ R0O318220 66.4 £ 2.5** 77.7+105
3 259+ 1.1%** 50.3+11.1**
+ GO6976 0.1 8.9+ 0.7** 46.6 + 4.7 **
1 4.0+ 04%** 7.6+16**
+ HBDDE 30 1125+ 2.7 nd
100 1147+ 7.7 nd
+ rottlerin 3 71.8+1.3** 182+ 2.2**
10 206+ 1.2** 104+ 25%**
+ PMA 0.1 224.3+9.0** 1753+ 14.3**
18 232+21%** 36.1+10.1**
+ PDD 0.1 nd 207.2 £53.9
18 nd 24.1+51%*
L929 cdls
Mixture of cytokines 100 100
+ rottlerin 1 78.7+1.4%** 70.2 £ 5.3**
3 42.6+0.8** 239+ 4.0**

The cells were treated with LPS 10 ng/ml and tested inhibitors for 24 h before NO production or
iNOS expression were determined. Results are expressed as mean + SEM, n=3-4. ** indicates
§< 0.01 as compared to cellstreated with the stimulant alone.

To downregulate PKC expression, the cells were pretreated with 1 uM PMA or PDD for 6 h prior to
stimulation with LPS 10 ng/ml.
Concentrations of the compounds were sel ected from dose response curves.

nd = not determined
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Figure 9. The effects of downregulation of PKCd by siRNA on NO production and iNOS expression
in J774.2 macrophages and L929 fibroblasts. (A) In J774.2 macrophages NO production and iNOS
expression were induced by LPS. NO production was determined after 24 h incubation by measuring
the nitrite concentrations (metabolite of NO) in the culture medium by Griess reaction (n=3, mean
+ SEM). iNOS protein expression was measured by Western blot after 24 h incubation (n=3, mean
+ SEM). (B) In L929 fibroblasts, NO production and iNOS expression were induced by a mixture of
cytokines containing IFNg IL-1b, and TNFa, 10 ng/ml each (n=7 mean + SEM for NO, n=3 mean
+ SEM for iNOS), ** p<0.01.

2.1 Transcriptional regulation of iINOS expression by PKCb - the
role of STAT1 (1)

The results from the studies with cPKC inhibitors on NO production and iNOS
protein expression indicated that the classical isoenzymes, especialy PKCb,
participate in the regulation of LPS-induced iNOS expression. This concept was
further supported by the results from the phorbol ester studies.
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Next, the effects of RO318220 and GO6976 on the expression of INOS mRNA
were studied. In J774 macrophages, LPS induced a transient iNOS mRNA
expression, which peaked at 6 h after LPS addition. Both RO318220 and GO6976
inhibited the expression of INOS mRNA when measured 2 h before and after the 6 h
peak (Figure 10A). However, neither inhibitor affected the half-life of INOS mMRNA
when this was measured by the actinomycin D assay (Figure 10B). These results
indicated that the effects of cPKCs on LPS-induced iNOS expression are mediated
at the level of INOS transcription rather than at the level of INOS mRNA stability.

In order to evaluate whether the effects of cPKC inhibitors on the expression of
INOS mRNA could be a consequence of their effects on transcription factors, their
effects on the activation of NF-kB and STAT1 were studied. Both NF-kB and
STAT1 are important transcription factors for iINOS expression (Xie et a. 1994,
Gao et al. 1997). Neither RO318220 nor GO6976 affected the L PS-induced NF-kB
activation as measured by EMSA (Figure 10C). However, both inhibitors, as well as
the PKCb inhibitor LY 333531, inhibited the activation of STAT1 as measured by
the trandlocation of STAT1a from the cell cytosol to the nuclei by Western blot
analysis (Figure 10D-E). These data suggested that the effects of classical
isoenzymes on LPS-induced iNOS expression were NF-kB independent, but may
have been mediated through the activation of STAT1. In addition, the results
obtained with LY 333531 indicated that PKCb could be the classical isoenzyme
responsible for this regulation.
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Figure 10. Effect of cPKC inhibitors on iNOS mRNA expression (A), iNOS mRNA decay (B), NF-4B
activation (C), and STATL1 activation (D-E). iINOS mRNA expression was measured after 4 hand 8 h
incubation by RT-PCR (n=3, mean + SEM). iINOS mRNA decay was measured by the actinomycin D
assay (n=3, mean + SEM). Activation of transcription factor NF-AB was determined by EMSA at the
30 min time point, the experiment is a representative of three other experiments with similar results.
Activation of transcription factor STAT1 was measured as trand ocation of STAT1a by Western blot
at 6 h time point (n=3, mean + SEM). *p<0.05, **p<0.01. (Reprinted with permission from Salonen
et al. 2006, Br J Pharmacol 147:790-799 © John Wiley & Sons Ltd, modified).
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2.2 Transcriptional regulation of iINOS expression by PKCd—
involvement of IRF1 (1V)

In J774.2 macrophages and L929 fibroblasts downregulation of PKCd by siRNA or
inhibition of PKCd by rottlerin reduced NO production and iNOS expression. These
results indicated that, in addition to cPKC isoenzymes, also PKCd participates in the
regulation of INOS expression. Since rottlerin affected neither NO production nor
INOS expression when used under the conditions when PKCd was downregulated
by sSRNA, it seemed likely that the effects of rottlerin were being mediated by
PKCd.

When the effects of rottlerin or PKCd siRNA on iNOS mRNA expression were
studied it was observed that, in contrast to the cPKC inhibitors, inhibition of PKCd
did not affect INOS mMRNA expression when measured at the early time points (4 h
in L929, 3 h in J774), but it reduced INOS mRNA expression when measured at
later time points (10 hin L929, 9 h in J774) (Figure 11A-B). However, as with the
cPKC inhibitors, no effect on INOS mRNA decay was observed (Figure 11C).

PKCd inhibition did not affect the activity of transcription factor NF-kB as
measured by EMSA (J774) or on NF-kB mediated transcription in L929 cell line
stably transfected with NF-kB responsive reporter (L929-pNFkB cell line) (Figure
12A-B). This result was in line with the finding that inhibition of PKCd did not
affect INOS mRNA levels when measured at the early time points. Instead, when
measured at the 4 h time point, inhibition of PKCd by rottlerin and downregulation
of PKCd by siRNA reduced the expression of IRF1 mRNA (Figure 12C-D). IRF1 is
an important transcription factor for INOS, but in contract to NF-kB, IRF1 has been
shown to act as a later phase transcription factor (Kamijo et al. 1994, Fujimura et al.
1997). In order to test whether downregulation of PKCd by siRNA could affect the
production of other IRF1 responsive inflammatory mediators, the effect of PKCd
SIRNA on IL-6 production was measured. In J774.2 macrophages downregulation of
PKCd by siRNA reduced also LPS-induced IL-6 production (Figure 12E).
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Figure 11. Effects of PKCd downregulation on iNOS mRNA expression. (A) Effects of PKCd
inhibitor rottlerin on iNOS mRNA expression in cytokine-induced L929 fibroblasts were measured by
RT-PCR after 4 h and 10 h incubation (=3, mean + SEM). (B) Effects of PKCd siRNA on LPS
induced INOSmMRNA expression in J774.2 macrophages were measured by RT-PCR after 3hand 9 h
incubation (n=3, mean + SEM). (C) Effects of PKCd inhibitor rottlerin on iNOS mRNA decay in
L929 fibroblasts were measured by the actinomycin D assay (n=3, mean + SEM). *p<0.05.

77



A B 120- C 4-

354
LPS (10 ng/ml) -+ + il i 2 a0
Rottlerin (uM) - - 10 = O °Y1
ottlerin (M) £ 804 = e
- 3°
% 60 < 204
o &
2 40- * E 15
i 10-
20
0.54
0 04
Cytomix (10 ng/ml) = + o+ o+ LPS (10 ng/ml) - + +
Rottlerin (uM) = - 3 - Rottlerin (uM) - - 3
BMS345541 (uM) - - - 15
D 4- " E 3.
454 @ SICONTROL S s
< ' O siPKCs 25+
ke 3.04 *
2 <
< § 25- T =t
Z s €
s >
€ 3 204 £ 154
Lo ©
XX 154 A
'% —_ = 10-
3 101
2
2 5.4 05
0- 0
19 190 LPS (10 ng/ml) - + -+
LPS (ng/ml)

siCONTROL siPKC3

Figure 12. Effects of PKCd inhibition/downregulation on transcription factors and on IL-6
production. (A) Effects of PKCd inhibitor rottlerin on NF-kB activity in J774A.1 macrophages as
measured by EMSA at 30 min time point; this experiment is a representative of three others with
similar results. (B) Effects of PKCd inhibitor rottlerin on NF-AB mediated transcription in L929
PNFAB cell line at 1 h time point as measured by RT-PCR. BMS3445541 is an inhibitor of 14B
kinase and is used here as a control agent (n=4, mean + SEM). (C) Effects of PKCd inhibitor
rottlerin on LPS-induced IRF1 mRNA expression in J774.2 macrophages as measured by RT-PCR
after 4 h incubation (n=3, mean + SEM). (D) Effects of PKCd siRNA on LPS-induced IRF1 mRNA
expression in J774.2 macrophages as measured by RT-PCR after 4 h incubation (n=6, mean +
SEM). (E) Effects of PKCd siRNA on LPS-induced IL-6 production in J774.2 macrophages as
measured by ELISA (n=6, mean + SEM). *p<0.05, **p<0.01.

3. TTPexpression in J774 macrophages (I1, I11)

Resting J774A.1 macrophages expressed very low levels of TTP protein. When the
cells were treated with LPS (10 ng/ml), TTP expression was significantly enhanced.
Treatment of cells with LPS together with PMA (100 nM), further enhanced the
expression of TTP. However, PMA aone did not induce any marked TTP

expression (Figure 13A). TTP protein expression peaked at 9 hours after treatment
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with LPS alone or after treatment with the combination of LPS and PMA (Figure
13B).

TTP mRNA expression was measured by quantitative RT-PCR. Again, PMA
alone was not able to induce any significant effects on the TTP mRNA. Similarly
with TTP protein expression, LPS alone induced TTP mRNA expression and the
addition of PMA further enhanced this effect (Figure 14B).
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Figure 13. The expression of TTP in J774A.1 macrophages. (A) Cells were treated with LPS
(10 ng/ml), PMA (100 nM), or their combination for 9 h and the expression of TTP protein was
determined by Western blot (n=3, mean + SEM) **p<0.01. (B) Time curve of TTP protein
expression after treatment with LPS (10 ng/ml) or LPS (10 ng/ml) and PMA (100 nM). Each
experiment is a representative of three others with similar results. (Reprinted with permission from
Leppéanen et al. 2008, Inflamm Res 57:230-240, © Birkhauser Verlag GmbH, modified).

4.  Effectsof PKC inhibition or downregulation by phorboal
esterson TTP expression (I, 111)

Since PMA (100 nM), a known activator of PKC, together with LPS (10 ng/ml)
induced TTP expression, the effects of PKC isoenzymes on the expression of TTP
were studied. Firstly, since PMA can function as a PKC activator and downregulator
(Figure 7), it was used as a tool to study the effects of PKC isoenzymes on TTP
expression. Cells were pretreated for 24 h with 1 uM PMA to downregulate PKC
expression. Thereafter LPS (10 ng/ml), PMA (100 nM), or their combination were
added into the cell culture. After 9 h, the cells were harvested for the determination
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of TTP expression by Western blot. Pretreatment with 1 uM PMA did not alter the
TTP expression induced by LPS alone. However, it abolished the enhancing effect
of 100 nM PMA on LPS-induced TTP expression (Figure 14A). A similar
expression pattern was also seen in TTP mRNA levels. Again, pretreatment with
1uM PMA had no effect on LPS-induced TTP mRNA, but it abolished the

enhancing effect of 100 nM PMA on LPS-induced TTP mRNA expression (Figure
14B).
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Figure 14. The effects of PKC activation and downregulation on TTP protein (A) and TTP mRNA (B)
expression. J774A.1 macrophages were pretreated with vehicle (no preincubation) or with 1 pM
PMA for 24 h to downregulate PKC expression. Thereafter the cells were stimulated by adding LPS
(10 ng/ml), PMA (100 nM), or combination of LPS and PMA. The expression of TTP protein was
determined at 9 h time point by Western blot analysis and the expression of TTP mRNA was
determined at 6 h time point by RT-PCR (n=3, mean + SEM) *p<0.05, **p<0.01. (Reprinted with
permission from Leppanen et al. 2008, Inflamm Res 57:230-240, © Birkhauser Verlag GmbH,
modified).

The effects of PKC isoenzymes on the regulation of LPS and PMA —induced
TTP expression were further studied by using PKC inhibitors with varying
selectivity profiles. All inhibitors were added to the cell culture 30 min prior to the
addition of the combination of LPS and PMA. R0O318220 and GO6976 inhibited
TTP protein and mRNA expression (Table 8). In addition, both PKCb selective
inhibitors, PKCbl and bll selective LY 333531 (Jirousek et al. 1996) and PKCbl|
selective CGP53353 (Chalfant et al. 1996), reduced TTP protein and mRNA
expression (Figure 15A-B). In contrast, HBDDE, an inhibitor of PKCa and g, did
not affect TTP protein or mMRNA expression (Table 8).
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Table 8. Effects of PKC inhibitorson TTP protein and mRNA expression

Treatment Conc. (uM)  TTPprotein (%) TTP mMRNA (%)
LPS 10 ng/ml + PMA 100 nM 100 100
+ RO318220 0.3 103.2+20.0 nd
1 61.3+84* 23.3+£3.0**
+ GO6976 0.3 83.1+10.1 nd
1 39.6+£64** 46.1 + 2.1**
+ HBDDE 100 nd 118.3+7.9
+ rottlerin 3 T4.7+£4.2% nd
10 482+ 1.8** 71.1+£50%**

The tested inhibitors were added to the cell culture 30 min prior to the addition of LPS (10 ng/ml)
and PMA (100 nM). Cells were incubated for 9 h prior to TTP protein determination and 6 h prior to
TTP mRNA determination. Results are expressed as mean + SEM, n=3. * indicates p<0.05 and **
indicates p<0.01 as compared to cellstreated with the stimulant alone. nd = not determined

Rottlerin, an inhibitor of PKCd, reduced TTP expression (Table 8) and therefore
also the effects of PKCd downregulation by siRNA on TTP expression were
studied. Treatment with PKCd-targeting SSRNA caused a significant reduction in
PKCd expression. Under these conditions, the expression of TTP was significantly
lower than in cells treated with non-targeting control SsSRNA (Figure 15C). In
addition, in cells that were treated with PKCd-targeting siRNA, rottlerin had no

effect on TTP expression.
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Figure 15. Effects of PKCh inhibitors on TTP protein expresson (A), PKCb inhibitors on TTP
MRNA expression (B), and PKCd siRNA on TTP protein expression (C). TTP protein expression was
measured by Western blot after 9 h incubation, n=3 (A), n=6 (C). Expression of TTP mRNA was
determined by RT-PCR after 6 h incubation, n=9. Values are mean + SEM, *p<0.05, **p<0.01.
(Reprinted with permission from Leppanen et al. 2008, Inflamm Res 57:230-240, © Birkhauser
Verlag GmbH, modified and Leppénen et al. 2010, Eur J Pharmacol 628:220-225 © Elsevier Ltd,
modified).
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4.1 Transcriptional regulation of TTP by PKCbH (1)

Since both of the PKCb inhibitors used reduced TTP protein and mRNA expression
in a similar manner, the studies were continued with the PKCbl 1 selective inhibitor
CGP53353. To evaluate whether the effects of PKCbIl on TTP expression were
being mediated at the transcriptional level, the effects of CGP53353 on the activity
of transcription factors were determined. AP-2, EGR1, NF-kB, and Spl have been
reported to have at least one binding site in the TTP promoter or intron region
(DuBois et al. 1990, Lai et al. 1995, Lai et al. 1998) and therefore suggested to be
important for TTP. CGP53353 was added to the culture medium 30 min prior to the
addition of LPS (10 ng/ml) and PMA (100 nM). After 30 min (AP-2) or 1 h (EGR1,
NF-kB, Spl) incubation, the nuclear proteins were extracted and the activation of
transcription factors was determined in terms of their trandocation from the cell
cytosol to the nuclei by Western blot analysis. CGP53353 had no effect on the
activation of EGR1, NF-kB, or Spl (Figure 16A-C), but it reduced the activation of
AP-2 (Figure 16D). In addition, PKC downregulation by pretreatment with 1 uM
PMA totally abolished the LPS + PMA —induced activation of AP-2 (Figure 16E).
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Figure 16. Effects of CGP53353 on (A) EGR1, (B) NF-AB p65, (C) $1, and (D) AP-2 activation,
and (E) the effect of downregulation of PKC by 1 uM PMA pretreatment on AP-2 activation in
LPS+PMA —induced J774A.1 macrophages. PDTC is an inhibitor of NF-AB and is used as a control
agent (n=3-4, mean + SEM), *p<0.05, **p<0.01. (Reprinted with permission from Leppénen et al.
2008, Inflamm Res 57:230-240, © Birkhauser Verlag GmbH, modified).

4.2 Post-transcriptional regulation of TTP by PKCd (111)

Rottlerin reduced TTP expression in control cells, but not in cells in which PKCd
had been downregulated with PKCd siRNA. This indicated that the effect of
rottlerin on TTP expression was most likely being mediated through inhibition of
PKCd and the studies were continued with rottlerin. In contrast to the PKCbl|
inhibitor CGP53353, rottlerin did not affect the activation of the transcription
factors AP-2, ERG1, NF-kB, or Spl (Table 9). Instead, when measured by the
actinomycin D assay, it decreased the half-life of TTP mRNA to about half of that
found in control cells (Figure 17A).



Table 9. Effects of rottlerin on LPS + PMA-induced activation of transcription factorsin
J774A1 cells

Transcription factor Effect of 10 uM rottlerin (%)
AP-2 91.2+14.9

EGR1 80.9+ 13.7

NF-kB p65 136.0 £ 20.2

Spl 112.8 £ 33.3.

Results are expressed as mean + SEM.

In macrophages from TTP knockout mice, the absence of TTP has been shown to
increase the half-life of TNFa mRNA (Carballo et a. 1998, Lai et a. 1999). In
order to study whether the downregulation of TTP expression by rottlerin was
sufficient to alter TNFa mRNA decay, the effect of rottlerin on TNFa mRNA half-
life was measured by means of the actinomycin D assay. The half-life of TNFa
MRNA was increased by 2 h in cells treated with rottlerin as compared to the cells
treated with the stimulants only (Figure 17B). In addition, rottlerin enhanced LPS
and PMA —induced TNFa production as measured by ELISA (Figure 17C). These
results indicate that the downregulation of TTP expression by rottlerin might have

functional significance.
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Figure 17. The effect of rottlerin on (A) TTP mRNA decay (B) TNFa mRNA decay (C) and on TNFa
production. Cells were treated with rottlerin for 30 min before LPS and PMA were added to the
culture medium. After 4 h (A) and 9 h (B) incubation, actinomycin D (1 pug/ml) was added to stop the
transcription. Incubations were terminated at the indicated time points after actinomycin D and
extracted total RNA was subjected to RT-PCR (n=3, mean + SEM). (C) After 48 h incubation, the
effect of rottlerin on LPS and PMA —induced TNFa production was measured by ELISA (n=4,
+ SEM). (Reprinted with permission from Leppanen et al. 2010, Eur J Pharmacol 628:220-225 ©
Elsevier Ltd, modified).

5.  Theanti-inflammatory effects of rottlerin in vivo (1V)

An intradermal injection of carrageenan has been reported to cause a local
inflammatory response in the mouse and rat. This response is partly mediated by
increased NO production (Salvemini et al. 1996). Studies with NOS inhibitors have
shown that INOS is responsible for the production of NO in this rodent model
(Handy and Moore 1998).

In the present study, PKCd inhibitor rottlerin had significant anti-inflammatory

properties in LPS- or cytokine-stimulated murine macrophages and fibroblasts.
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Therefore the anti-inflammatory properties of rottlerin were also studied in vivo, by
using the carrageenan-induced paw inflammation model in the mouse. Intradermal
injection of carrageenan caused a marked inflammatory oedema and an increase in
the volume of the mouse paw (net oedema ~100 pl 3 h after the carrageenan
injection). Intraperitoneal administration of INOS inhibitor L-NIL (50 mg/kg)
reduced the carrageenan-induced inflammatory paw oedema by over 50%. The
PKCd inhibitor rottlerin (10 mg/kg) had a very similar effect as L-NIL, i.e. it
reduced carrageenan-induced paw oedema by 54% (Figure 18). These results
indicated that the novel isoenzyme PKCd participates in the regulation of the

production of the inflammatory response also in vivo.
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Figure 18. Effects of PKCd inhibitor rottlerin on carrageenan-induced mouse paw oedema. L-NIL
and rottlerin were administered i.p. 2 h before carrageenan was injected intradermally. Paw oedema
was measured before and 3 hours after carrageenan injection. Oedema is expressed as the difference
between the carrageenan injected paw and the control paw injected with the vehicle only (n=6, mean
+ SEM), **p<0.01.
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6. Summary of the results

In the present study, the effects of PKC isoenzymes a, bl, bll, and d on the
expression of iINOS and TTP were studied. The roles of different isoenzymes were
investigated by using a battery of PKC inhibitors with different selectivity profiles,
by downregulating PKC isoenzymes with PMA, and by downregulating PKCd with
SIRNA.

The results reveal, that both the classical isoenzyme PKCb and the novel
isoenzyme PKCd do participate in the regulation of INOS and TTP expression in
murine inflammatory cells, but the underlying mechanisms seem to be somewhat
different between these isoenzymes. However, this study did not evaluate the
interplay between the two isoenzymes. The main results obtained in this study are
summarized in Table 10.

Table 10. Summary of the results

Effects of inhibition of PK C isoenzymes on the iINOS pathway

NO iNOS iNOS iNOS
production expresson  mMRNA MRNA

Activation of

IRF1 NF-kB STAT1
decay

PKChb ! ! ! - nd - !
PKCd ! ! ! - ! - nd

Effects of inhibition of PK C isoenzymes on the TTP pathway

TTP TTP TTP

_ Activation of
protein MRNA MRNA
) ) AP-2 EGR1 NF-kB Spl
expression expression decay
PKCbllI ! ! - ! 0 - —

PKCd ! ! 1 - - - -

nd = not determined, | = decrease, 1 = increase, - = no effect
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Discussion

1. Methodology

In these studies, immortalized cell lines (murine J774 macrophages and murine
L 929 fibroblasts) were used to study whether the PKC isoenzymes are involved in
the expression of INOS and TTP. Culturing conditions of the cell lines were
standardized and variation in the conditions was kept to a minimum. Immortalized
cell lines provide a stable and non-varying research material where the repeatability
is excellent and the experiments are comparable. However, the immortalization of
cells may cause them to lose some of the properties of primary cells and thus they
do not represent primary cells as such. Even though cell lines lack the individual
variation that the use of experimental animals may cause, they also lack the signals
that the environment i.e. surrounding cells, provide in a living organism.

NO produced by the cells was assessed as nitrite accumulating in the cell culture
medium and measured by the method of Griess (Green et al. 1982). Nitrite is a
stable metabolite of NO in agueous solution, whereas in blood, the main metabolite
of NO is nitrate (due to the action of haemoglobin). The standards of the nitrite
measurement were diluted into the complete cell culture medium of the cell line in
guestion in order to eliminate the possibility of the presence of nitrite and other
interfering substances in the culture medium. Inhibitors of iINOS were used to
ensure that the nitrite production observed was due to NO produced by the INOS
pathway.

Standard molecular and cellular biology methods were used to determine protein
(Western blot) and mRNA (quantitative RT-PCR) expression. In order to control the
amount of protein loaded in Western blot gels, the protein concentration in each
sample was measured by the Coomassie blue method (Bradford 1976) and equal

amounts of protein were loaded for every sample. In addition, loading controls, i.e.
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actin for whole cell samples and lamin A/C for nuclear samples, were used to
further control the amount of protein. Protein expression was detected with the use
of specific antibodies. The expresson of mMRNA was detected by quantitative
real-time RT-PCR. GAPDH was used as housekeeping gene and the levels of the
MRNA of interest were normalized against it. The expression of GAPDH is usually
not affected by different treatments, however, certain limitations should be kept in
mind (Bustin 2000).

The effects of PKC inhibitors on the degradation of iINOS or TTP mRNA were
studied by the actinomycin D assay. The rate of mMRNA decay can be detected by
measuring the levels of the target mMRNAs at different time intervals after the
transcription has been inhibited with actinomycin D. This method is widely used,
but it has its own disadvantages. Actinomycin D has been suggested to affect the
degradation of some mMRNASs (Chen et al. 1995, Seiser et al. 1995, Dixon et al.
2000), and our group has previously shown that actinomycin D may also stabilize
INOS mRNA (Lahti et al. 2006). These points have to be kept in mind when
interpreting the results. In addition, actinomycin D may inhibit the synthesis of a
factor involved in the expression of the gene of interest and thus cause false
interpretations of the results.

The activation of transcription factors was studied by three different methods.
The activations of the transcription factors for TTP and STAT1 for iINOS were
studied by detecting their translocation from cell cytosol to the nuclei, which is a
required step in their activation cascade. However, this method does not directly
measure the transcription factor mediated transcription. Activation of NF-kB was
studied also by EMSA, which provides information about the translocation of the
transcription factor to the nuclei, and about its DNA binding activity. On the other
hand, EMSA does not detect phosphorylation and other modifications that may alter
the activity of transcription factors. Therefore the effects of the PKCd inhibitor
rottlerin on NF-kB mediated transcription were studied also in a cell line stably
transfected with a luciferase reporter gene construct in which luciferase expression
was under the control of a NF-kB responsive promoter.

The effects of different PKC isoenzymes on iNOS and TTP expression were
studied by using PKC isoenzyme selective inhibitors, by downregulating PKC
isoenzymes by PM A, and by downregulating PKCd by siRNA. PKC inhibitors were
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used as pharmacological tools to evaluate the effects of different isoenzymes. The
inhibitors used possessed varying isoenzyme selectivity profiles and the use of
several inhibitors helped to pinpoint on which isoenzymes might be involved in the
regulation of the expression of iINOS and TTP. However, the inhibitors are not
totally selective, they may also affect the activity of other kinases. Philip Cohen and
his coworkers have studied the selectivity of kinase inhibitors in a panel of nearly
one hundred protein kinases. They have studied the selectivity of some cPKC
inhibitors and reported that e.g. bisindoylmaleimides may affect also other kinases
(Davieset al. 2000, Bain et al. 2007). In order to strengthen the results obtained with
cPKC inhibitors, phorbol esters were used as a tool to activate and downregulate
cPKC. Although PKC is probably the most widely studied target of phorbol esters, it
has been shown that phorbol esters have also some other targets (Kazanietz et a.
2000). Nonetheless, the use of selective inhibitors and phorbol esters together
provided convincing evidence that cPK C isoenzymes do participate in the regulation
of INOS and TTP expression.

The selectivity of rottlerin has been evaluated also in large protein kinase panels,
and it has been found to inhibit some other kinases in addition to PKCd (Davies et
al. 2000, Bain et al. 2007). It has also been suggested to act as a mitochondrial
uncoupler and thus evoke cellular effects that are independent from its direct effects
of PKCd activity (Soltoff 2007). In the present study, PKCd specific SRNA was
used as another meansto investigate the role of PKCd in the regulation of iINOS and
TTP. SRNA was shown to downregulate the expression of PKCd by over 80% in
the cell lines used, and it had similar effects on iINOS and TTP expression as
rottlerin. When rottlerin was used in cells where PKCd had been downregulated
with SSRNA, the effects of rottlerin were abolished. Therefore it was concluded that
the effects seen with rottlerin on the expression of INOS and TTP are most likely
mediated by PKCd.

The use of sSIRNA has disadvantages as well. The transfection of cells with
SiIRNA oligos may have some effect on the responses studied and therefore a
non-targeting SSIRNA was used as a control. SRNA may also have off-target effects,
which must be kept in mind when interpreting the results. The use of knockout
animals may have provided a better research background to study the effects of

individual PKC isoenzymes. However, knockout animals tend to develop
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compensatory signalling systems, especially in the case of PKC, where there seems
to be some functional redundancy among the various isoenzymes. In summary, it
seems that the determination of the role of individual PKC isoenzymes could be
most effective when the results from different research methods are combined, as
was attempted in the present study.

2.  Regulation of NO production and iNOS expression by
cPKC isoenzymes

The role of cPKC isoenzymes a, bl, bll, and g was studied on the regulation of NO
production and on iINOS expression in LPS-stimulated murine J774 macrophages.
With the exception of PKCg, al of the other cPKCs were expressed in J774
macrophages. By using PKC inhibitors with different selectivity profiles, it was
shown that PKCb, but not PKCa, takes part in the regulation of LPS-induced NO
production and iINOS expression. These experiments revealed a novel finding, i.e.
inhibition of PKCb, either by a selective inhibitor or downregulation of PKCb by
PMA, leads to reduced activation of transcription factor STAT1 and in this way it
mediates its effects on iINOS expression.

The classical isoenzymes PKCa, PKCbl, and PKCblI are ubiquitously expressed
(Kubo et a. 1987, Nakashima 2002), whereas the expression of PKCg is largely
restricted to the brain and spinal cord (Saito and Shirai 2002). The regulation of cell
signalling events by PKC is known to be isoenzyme specific and furthermore, the
effects of a single isoenzyme can also be cell type and tissue specific (Tan and
Parker 2003). PKCb has been shown to play a role in LPS signalling and in LPS-
induced changes in mouse peritoneal macrophages (Shinji et al. 1994). PKCa and
PKCb have also been shown to participate in the regulation of iNOS expression in
RAW 264.7 macrophages (Chen et al. 1998b, St-Denis et al. 1998), and in J774
macrophages (Fujihara et al. 1994). However, no detailed mechanisms accounting
for this regulation have been investigated in any of the previous studies. In contrast
to our findings, Fujihara et a. reported that PKCbll was the only classical
isoenzyme expressed in J774 macrophages.
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The role of classical isoenzymes in the regulation of NO production and iNOS
expression was studied by using four PKC inhibitors with different selectivity
profiles. RO318220 (inhibits b, g, and e) (Davis et al. 1992, Wilkinson et al. 1993),
GO06976 (inhibits all cPKCs) (Martiny-Baron et a. 1993), and LY 333531 (inhibits
bl and bll) (Jirousek et al. 1996) reduced LPS-induced NO production and iNOS
expression in a dose dependent manner, whereas HBDDE (inhibits a and Q)
(Kashiwada et al. 1994) had no effect on NO production. The selectivity profiles of
the inhibitors in question suggested that cPKC isoenzymes are involved in iNOS
regulation and that PKCb is most likely the isoenzyme responsible for this
regulation.

Since the selectivity of the inhibitors has been indicated to be somewhat
guestionable (Davies et al. 2000, Bain et al. 2007), the effects of cPKCs were
studied also by other means. Phorbol esters, such as PMA and PDD, are known
activators of cPKCs. They are also known to cause downregulation of cPKCs when
used for prolonged periods of time (Huang et a. 1989, Chen 1993). In this study
PKCa, PKCbl, and PKCbll were shown to be activated and downregulated by
PMA. Under the conditions where PKC isoenzymes were shown to be
downregulated, the production of NO and the expression of iINOS were reduced, i.e.
similar to the results obtained with the PKC inhibitors. Activation of cPKC
isoenzymes by phorbol esters led to an enhancement in NO production and iNOS
expression. These results further support the role of cPKC isoenzymes in the
regulation of iINOS expression.

The reducing effect of PKC inhibitors RO318220 and GO6976 on iNOS mRNA
expression was seen already at the early time points after stimulating the cells by the
addition of LPS. This suggested that the mechanism by which cPKCsregulate INOS
expression occurs at the transcriptional level. This hypothesis was further supported
by the results from the actinomycin D assay i.e. cPKCs did not alter the decay of
INOS mRNA. Surprisingly, cPKC inhibitors had no effect on the activation of NF-
kB which is a critical transcription factor for INOS (Lowenstein et a. 1993, Xie et
al. 1994), even though PKCb has been linked to the NF-kB signalling in PKCb
knockout studies (Saijo et al. 2002). In addition to NF-kB (Xie et al. 1994), STAT1
has also been identified as an important transcription factor for INOS (Gao et al.

1997). Therole of STATL1 in LPS-induced iNOS expression in murine macrophages
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has been investigated also by our group (Sareila et al. 2008). Indeed, RO318220,
GO6876, and LY 333531, as well as downregulation of cPKCs by PMA, inhibited
the activation of STAT1 when this was measured as the translocation of STAT1a to
the nuclei. The typical activation of the JAK-STAT pathway begins with the
activation of type Il interferon receptor, which triggers the formation of JAK
heterodimers. This leads to phosphorylation of STATs, which dimerize and
translocate to the nucleus to activate gene transcription. These results indicate that
the regulation of LPS-induced iNOS expression by cPKCs is NF-kB independent
and likely to be mediated through the activation of the transcription factor STAT1.
In addition, PKCb seems to be the isoenzyme responsible for this regulation.

3. Regulation of NO production and iNOS expression by
PKCd. Anti-inflammatory effects of rottlerin.

In this study, the role of a novel isoenzyme PKCd was studied in the regulation of
NO production and iINOS expression. By using the PKCd inhibitor rottlerin and
PKCd specific SIRNA, it was shown that this novel isoenzyme participates in the
regulation of NO production and iINOS expression in murine macrophages and
fibroblasts. The regulation by PKCd was shown to be mediated at least partly
through the activation of transcription factor IRF1. In addition, anti-inflammatory
effects of rottlerin were demonstrated in vivo.

PKCd is known to play an important role in the regulation of cellular responses
in immunity (Perletti and Terrian 2006). However, less is known about the role of
PKCd in the regulation of inflammatory genes. Our results are supported by the
previous studies where PKCd was reported to regulate the expression of iNOS in
pancreatic b-cells by stabilizing INOS mMRNA (Carpenter et al. 2001) and in RAW
264.7 macrophages through the activation of NF-kB (Chen et a. 1998b).

The PKCd inhibitor rottlerin was shown to reduce LPS-induced NO production
and iINOS expression in J774 macrophages and cytokine-induced NO production
and INOS expression in L929 fibroblasts. However, since the selectivity of rottlerin
against PKCd has been questioned (Davies et al. 2000, Bain et a. 2007, Soltoff
2007), PKCd specific SIRNA was used to confirm the results obtained with rottlerin.
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In both cell lines, PKCd siRNA downregulated the expression of PKCd by over
80% and reduced NO production and iINOS expression in a manner similar to
rottlerin. More importantly, rottlerin had no effect on NO production or iINOS
expression when used under conditions where PKCd was downregulated by siRNA.
These results suggest that the effects seen with rottlerin are most likely mediated
through PK Cd.

In contrast to the results obtained with cPKC inhibitors, PKCd sSiRNA or rottlerin
had no effect on INOS mMRNA expression when measured at the early time points
(< 6 h after stimulating the cells by adding LPS), but significantly reduced iNOS
MRNA expression at later time points (> 6 h after stimulating the cells by adding
LPS). Thisis in line with the results from the study by Carpenter et al. (2001) i.e.
the effect of PKCd on iNOS mRNA expression was observed at 12 h after the
stimulation of the cells with IL-1b. However, in contrast to the results by Carpenter
et a. no effect on the decay of INOS mMRNA was seen in this study when measured
by actinomycin D assay. Consistent with the INOS mRNA data, PKCd inhibition by
rottlerin did not affect the activation of transcription factor NF-kB.

IRF1 has been shown to be an important transcription factor for iNOS, and
macrophages from IRF1 knockout mice show markedly reduced LPS and IFNg
-induced INOS mRNA expression. In contrast to NF-kB, IRF1 is considered to be a
later phase transcription factor (Kamijo et al. 1994, Fujimura et al. 1997). In the
present study, inhibition of PKCd by rottlerin and PKCd downregulation by sSiRNA
reduced also the LPS-induced expression of IRF1 mRNA when measured at the 4 h
time point, indicating that IRF1 might mediate the effects of PKCd on iNOS
expression. In addition, downregulation of PKCd by SSRNA reduced the production
of another IRF1 responsive inflammatory mediator, IL-6 (Faggioli et al. 1997).
These findings are supported by the report by Momose et al. (2000), that in murine
macrophages PMA could synergistically increase IFNg-induced iNOS expression,
this being mediated through | RFL1.

In the present study, the anti-inflammatory effects of the PKCd inhibitor rottlerin
were also studied in vivo in a carrageenan-induced inflammatory model. The paw
oedema induced by carrageenan administration has been reported to be attributable
to a loca inflammatory response which is partly mediated by increased NO
production (Salvemini et al. 1996, Handy and Moore 1998). Similarly to its effects
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in the cell lines, rottlerin was demonstrated to possess anti-inflammatory effects also
in vivo. The effects of rottlerin were similar to the effects of the iNOS inhibitor L-
NIL, suggesting that the anti-inflammatory effect of rottlerin on carrageenan-
induced paw inflammation may be, a least partly, mediated by its effects on NO.

4.  Transcriptional regulation of TTP by PKCbl|

The present study also examined the role of cPKC isoenzymes on TTP expression.
The results indicate that cPKCs, especialy PKCblI, upregulate TTP expression in
activated macrophages, this being mediated at least partly through the activation of
the transcription factor AP-2.

The expression of TTP in murine J774 macrophages was induced by treatment
with LPS, and it was further enhanced by addition of PMA. Pretreatment of cells
with a higher concentration of PMA before stimulation with LPS or LPS and PMA,
was shown to downregulate cPKC isoenzymes. It also abolished the enhancing
effect of the combination of LPS and PMA on TTP expression as compared to TTP
expression obtained with LPS alone. This pretreatment did not affect LPS-induced
TTP expression levels. The results suggested that cPKC isoenzymes might be
involved in the regulation of LPS and PMA —induced expression of TTP. Inhibitors
of cPKCs were used to further evaluate the role of classical isoenzymes on TTP
expression. Since CGP53353 (inhibitor of bll) (Chalfant et al. 1996), as well as
other compounds that inhibit PKCb, reduced the TTP protein and mRNA expression
induced by LPS and PMA, it is concluded that PKCblI is the main isoenzyme
responsible for the regulation of the expression of TTP.

Little is known about the transcription factors that enhance the transcription of
TTP mRNA. However, analysis of sequence elements in TTP promoter and intron
regions have revealed binding sites for AP-2, EGR1, NF-kB, and Spl1 (DuBoiset al.
1990, Lai et al. 1995, Lai et al. 1998). The present study investigated the effects of
PKCDbII on the nuclear translocation of these transcription factors. Inhibition of
PKCblI by CGP53353 had no effect on the translocation of EGR1, NF-kB or Sp1,
but it reduced that of AP-2. This effect on AP-2 activation was also seen with
downregulation of PKC due to PMA pretreatment. These results suggest that the
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effect of PKCbIl on LPS and PMA —induced TTP expression is mediated, at least
partly, through transcription factor AP-2. Subsequently to this study, our group has
observed that b2-agonists and other cAMP-elevating agents can increase TTP
MRNA and protein expression, an effect also associated with the activation of AP-2
(Jalonen et al. 2007).

TTP is a factor that regulates the stability of mRNAs of certain inflammatory
genes. It binds to the AREs within mRNA and causes destabilization of the mRNA
(Lai et a. 2000). TTP may be considered primarily as an anti-inflammatory factor.
The majority of TTP's known targets are proinflammatory mediators whose mRNA
is destabilized by TTP (e.g. TNFa, GM-CSF, IL-2, and IFNg) (Carballo et al. 1998,
Carballo et al. 2000, Ogilvie et al. 2005, Ogilvie et a. 2009). In addition, TTP
knockout mice were shown to develop a severe inflammatory syndrome including
arthritis and autoimmunity (Taylor et al. 1996a). Thus, it seems that by upregulating
the expression of TTP, PKCbl | takes part in the inhibition of the stability of mRNAs
of inflammatory genes, serving as a possible anti-inflammatory feed-back

mechanism to limit the inflammatory reaction.

5. Post-transcriptional regulation of TTP by PKCd

Study 111 focused on the role of novel isopenzyme PKCd on the regulation of TTP
expression in activated macrophages. It was shown that downregulation of PKCd by
siRNA and inhibition of PKCd by rottlerin reduced TTP expression by enhancing
the degradation of TTP mRNA.

Most of the studies concerning the regulation of TTP expression have focused on
the effects of MAP kinases (Mahtani et a. 2001, Tchen et a. 2004, Brook et al.
2006). However, a few reports have indicated that phorbol esters and possibly PKC
may also regulate TTP expression (Lai et al. 1990, Inuzuka et al. 1999, Murata et al.
2000a). The role of cPKC isoenzymes in the regulation of TTP expression was
examined in study Il. Since the novel isoenzyme PKCd is also PMA responsive in
J774 macrophages, its role in the regulation of TTP expression was also evaluated.

PKCd downregulation with SSRNA reduced TTP protein and mRNA expression.

Similar results were obtained with the PKCd inhibitor rottlerin. When the effects of
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rottlerin were studied in cells in which PKCd had been downregulated by sSiRNA,
the effects of rottlerin were abolished, suggesting that the effects seen with rottlerin
are mainly mediated through PKCd. Rottlerin had no effect on the activation of
transcription factors AP-2, EGR1, NF-kB, or Spl. Instead, rottlerin was shown to
destabilize TTP mRNA in an mRNA degradation assay. Previously, p38 MAPK has
been observed to alter the stability of LPS-induced TTP mRNA in RAW 264.7
macrophages (Tchen et al. 2004). The functional relevance of rottlerin’s effect on
TTP mRNA was evaluated in a preliminary study. Since TTP has been shown to
regulate the stability of TNFa mRNA (Carballo et al. 1998), the effect of rottlerin
on the decay of TNFa mRNA was studied. It was found that rottlerin reduced the
decay of TNFa mRNA under conditions where the inhibitory effect of rottlerin on
TTP protein expression was also present. In addition, rottlerin enhanced LPS and
PMA —induced TNFa production, suggesting that the changes seen in TTP
expression levels after rottlerin may have functional significance.

These results are the first evidence that inhibition of novel isoenzyme PKCd can
impair the expression of TTP in activated macrophages. It seems that PKCd is
involved in the upregulation of TTP expression via a mechanism related to the
stabilization of TTP mRNA, but the specific molecular mechanisms responsible for
the effects of PKCd on TTP mRNA stability remain to be clarified. Thus, the
regulation of TTP mRNA stability by PKCd may serve as a feed-back loop to limit
the inflammatory reaction. However, the overall effect of PKCd in inflammation, at
least in acute inflammation, is likely to be proinflammatory as evidenced by the
anti-inflammatory effect of rottlerin in the carrageenan-induced paw inflammation

asshownin study 1V.

6. PKCsasanti-inflammatory drug targets

In the present study, the role of PKC isoenzymes, especially PKCb and PKCd, in
the regulation of the expression of inflammatory genes iINOS and TTP was
examined. PKCb has been claimed to be an important factor in B cell receptor
(BCR) mediated functions (Leitges et al. 1996) and in NF-kB signalling (Saijo et al.
2002) based on studies with PKCb knockout animals. PKCb has also been proposed
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to take part in LPS signalling and LPS-induced macrophage functions (Shinji et al.
1994).

Studies with PKCd knockout animals have revealed that this isoenzyme can
regulate the proliferation of B cells and the formation of self reactive B cells
(Leitges et al. 2001a, Mecklenbréuker et a. 2002, Miyamoto et al. 2002). PKCd has
also been reported to modulate the expression of INOS in pancreatic b-cells by
stabilizing INOS mRNA (Carpenter et al. 2001) and in RAW 264.7 macrophages
through the activation of NF-kB (Chen et al. 1998b). However, little is known about
the effects of PKCb and PKCd in the regulation of inflammatory genes, especially
TTP.

In the present study, inhibition of PKCb and PKCd reduced the expression of
INOS and production of NO under inflammatory conditions. Both PKC isoenzymes,
b and d, seemed to regulate transcription factors known to be important for INOS. In
addition, the PKCd inhibitor rottlerin reduced carrageenan-induced paw
inflammation in mice. In preliminary studies by our group, an inhibitor of classical
PKCs GO6976 and PKCd inhibitor rottlerin reduced cytokine-induced NO
production and iINOS expression also in A549 human lung epithelial cells. Since the
transcription factors involved in the effects of PKC on murine iNOS (STAT1 and
IRF1) are also known to be important for human INOS (Kleinert et a. 2003,
Korhonen et al. 2005), it would be interesting to investigate whether the effects of
PKCs are mediated through the same mechanisms in human cells as in murine cells.
Compounds that inhibit the expression or activation of INOS have been
demonstrated to have anti-inflammatory properties in various forms of
experimentally-induced inflammation. The results from the present study suggest
that inhibition of PKC isoenzymes b and d could possess anti-inflammatory
properties in diseases which are complicated by increased INOS expression and NO
production.

In inflammation, also the factors that limit the inflammatory process, such as
TTP, are activated. In the present study, the expression of TTP was found to be
induced by LPS and PMA, and PMA was used as an example of a compound that
can activate PKC. The present results suggest that PKCbll and PKCd could also
regulate the inflammatory response by upregulating the expression of TTP. TTP has
been shown to stabilize human INOS mRNA through an interaction with KSRP
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(Fechir et al. 2005, Linker et al. 2005), but less is known about the role of TTPas a
regulator of the stability of murine INOS mRNA. In the present study, PKC
isoenzymes did not affect the stability of INOS mRNA, however, this does not
exclude the possibility that TTP could in part mediate the effects of PKC
isoenzymes on iNOS expression.

Overall, PKC isoenzymes, especially PKCb and PKCd, are interesting targets for
anti-inflammatory drug development. In addition to their known effects on B cell
functions, they seem to take part in the regulation of inflammatory genes. However,
the cell type specificity of PKC functions needs to be borne in mind.
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Figure 19. Summary of the effects of PKCb and PKCdon the expression of iNOSand TTP.

1. Inhibition of PKCb attenuated the activation of transcription factor STAT1 and expression of
iNOS. 2. Inhibition of PKCd reduced the expression of transcription factor IRF1 and the expression
of INOS 3. Inhibition of PKChII attenuated the activation of transcription factor AP-2 and the
expression of TTP. 4. Inhibition of PKCd degtabilized TTP mRNA and thus reduced TTP expression.
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Summary and conclusions

The aim of the present study was to evaluate the role of classical PKC isoenzymes
and novel isoenzyme PKCd in the regulation of inflammatory genes, with iINOS and
TTP as examples. The main objectives of the study were to determine which
isoenzymes take part in the regulation of INOS and TTP expression and to
investigate the underlying mechanisms of this regulation. The major findings and

conclusions are as follows:

1. Classical PKC isoenzymes take part in the regulation of LPS-induced NO
production and iNOS expression in macrophages. The main isoenzyme
responsible for the regulation seems to be PKCb. The effects of PKCb on
LPS-induced NO production and iNOS expression are mediated mainly at
the level of transcription, probably by affecting the activity of transcription
factor STAT1.

2. Classical PKC isoenzymes, most probably PKCbll, regulate the expression
of TTP in macrophages and this seems to be mediated, at least partly,
through the activation of transcription factor AP-2.

3. Thenovel isobenzyme PKCd participates in the regulation of NO production
and iNOS expression in activated macrophages and fibroblasts. PKCd does
not regulate the early transcriptional mechanisms related to INOS
expression, but enhances the expression of IRF1. This may explain its
effect on INOS expression.

4. PKCd regulates TTP protein and mRNA expression in macrophages by
affecting TTP mRNA decay.

5. The PKCd inhibitor rottlerin possesses anti-inflammatory effects also in

Vivo as shown in a carrageenan-induced inflammatory model in mice.

The present study provides novel information about the role of PKC isoenzymes

in the regulation of inflammatory genes. Compounds, like PKC inhibitors, that
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downregulate the activation or expression of INOS possess anti-inflammatory
properties and may be beneficial in the treatment of inflammatory diseases. TTP
expression is also enhanced in inflammation as a regulatory mechanism. It
destabilizes the mRNAs of inflammatory genes and this way downregulates their
expression. PKC was found to enhance TTP expression which may serve as a feed-
back loop to downregulate the inflammatory reaction. These results add our
understanding about the inflammatory process and this information can be utilized
in the development of novel anti-inflammatory drugs.
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Inhibition of classical PKC isoenzymes downregulates STAT1
activation and iINOS expression in LPS-treated murine J774
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'Tiina Salonen, 'Outi Sareila, 'Ulla Jalonen, 'Hannu Kankaanranta, 2Raimo Tuominen
& *'Eeva Moilanen

"The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University
Hospital, Tampere, Finland and *The Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki,
Helsinki, Finland

1 Proinflammatory cytokines and bacterial products trigger inducible nitric oxide synthase (iINOS)
expression and nitric oxide (NO) production in inflammatory and tissue cells. In inflammation, NO
acts as an important mediator having both proinflammatory and destructive effects.

2 Protein kinase C (PKC) is a family of serine-threonine protein kinase isoenzymes involved in
signal transduction pathways related to inflammatory responses. The aim of the present study was
to investigate the role of classical PKC (cPKC) isoenzymes in the regulation of iNOS expression and
NO production in murine J774 macrophages and the mechanisms involved.

3 RO318220 (inhibits PKCf, PKCy and PKCs), GO6976 (inhibits cPKC isoenzymes PKCax and
PKCp) and LY333531 (inhibits PKCf) reduced lipopolysaccharide (LPS)-induced NO production
and iNOS expression in a dose-dependent manner as did 6h pretreatment with 1uM phorbol
12-myristate 13-acetate (PMA) (which was shown to downregulate PKC expression).

4 PKC inhibitors also reduced LPS-induced iNOS mRNA levels, but they did not affect the half-life
of iNOS mRNA. PKC inhibitors did not alter LPS-induced activation of NF-xB as measured by
electrophoretic mobility shift assay.

5 All PKC inhibitors used and pretreatment with 1uM PMA inhibited signal transducer and
activator of transcription 1 (STAT1) activation as measured by the translocation of STAT1« from the
cytosol to the nucleus by Western blot. In addition, inhibition of STATI activation by AG-490, an
inhibitor of JAK-2, also reduced NO production.

6 These results suggest that cPKC isoenzymes, especially PKCp, mediate the upregulation of iNOS
expression and NO production in activated macrophages in an NF-xB-independent manner, possibly
through the activation of transcription factor STATI.
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Keywords: iNOS; LPS; macrophages; nitric oxide; protein kinase C; STAT1
Abbreviations: EMSA, electrophoretic mobility shift assay; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NO,
nitric oxide; PDD, phorbol 12,13-didecanoate; PKC, protein kinase C; PMA, phorbol 12-myristate 13-acetate;
STAT]I, signal transducer and activator of transcription 1
Introduction

Nitric oxide (NO) acts as a signalling molecule in, for example,
cardiovascular and neuronal systems. In inflammation, NO
is an important mediator having both proinflammatory and
destructive effects (Moilanen et al., 1999; Korhonen et al.,
2005). High amount of NO is produced by inducible nitric
oxide synthase (iNOS) for prolonged time as a response to
bacterial products, such as lipopolysaccharide (LPS), and to
proinflammatory cytokines (MacMicking et al., 1997; Vallance
& Leiper, 2002). NO production in activated macrophages is
primarily regulated at the level of iNOS expression (Kleinert
et al., 2003; Korhonen et al., 2005).

The protein kinase C (PKC) pathway represents a major
signal transduction system in inflammation (Spitaler &
Cantrell, 2004). Different tissues seem to have their own

*Author for correspondence; E-mail: eeva.moilanen@uta.fi

characteristic patterns of PKC isoenzyme expression and
function (Way et al., 2000). The mammalian PKC family
comprises of serine-threonine protein kinase isoenzymes,
which are divided into three classes based on their structure
and ability to bind cofactors (Newton, 2001). The classical
PKC (cPKC) isoenzymes («, y and the splice variants I and
BII) are activated by diacylglycerol (DAG), Ca’* and
phosphatidylserine. These isoenzymes are targets of the
tumor-promoting phorbol ester PMA (phorbol 12-myristate
13-acetate, also called TPA), a surrogate of DAG. The novel
(nPKC) isoenzymes (4, ¢, n and 0) are Ca>*-independent and
activated by DAG and phosphatidylserine. The third group,
atypical PKC (aPKC) isoenzymes ({ and 1/4), are Ca*>*- and
DAG-independent kinases. In contrast to the classical and
novel isoenzymes, aPKCs do not respond to phorbol esters
(Newton, 2001; Spitaler & Cantrell, 2004). In addition, PKCpu
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and PKCv are sometimes regarded to form a fourth class of
PKC isoenzymes (Newton, 2001).

A role for PKC has been identified in inflammatory diseases,
cancer and heart disease, and PKC inhibitors are under
development to treat these diseases (Bowling ez al., 1999; Chen
et al., 2001; Goekjian & Jirousek, 2001; Newton, 2001; Tan &
Parker, 2003; Aksoy et al., 2004). Several lines of evidence
suggest that cPKC isoenzymes (Fujihara et al., 1994; St-Denis
et al., 1998; Giroux & Descoteaux, 2000; Molina-Holgado
et al., 2000; Foey & Brennan, 2004), PKC6 (Chen et al., 1998a;
Tepperman et al., 2000; Carpenter et al., 2001), PKCx (Chen
et al., 1998b; Pham et al., 2003) and PKCe (Castrillo et al.,
2001; Kang et al., 2001) are involved in the LPS- and cytokine-
induced expression of inflammatory genes including iNOS.

The aim of the present study was to investigate the role of
cPKC isoenzymes in the regulation of iNOS expression and
NO production in activated macrophages and the mechanisms
involved. The results suggest that cPKC isoenzymes, probably
PKCp, mediate the upregulation of iNOS expression and NO
production in activated macrophages in an NF-xB-indepen-
dent manner, possibly through the activation of transcription
factor signal transducer and activator of transcription 1
(STATI).

Methods
Materials

Reagents were purchased as follows: R0O318220, phorbol
12,13-didecanoate (PDD) and LY333531 were from Alexis
Biochemicals (Lausen, Switzerland); G0O6976, HBDDE and
recombinant PKCy were from Calbiochem (La Jolla, CA,
U.S.A.); LPS (Escherichia coli 0111:B4, product number
L-4391) was from Sigma Chemical Co. (St Louis, MO, U.S.A.);
mouse monoclonal PKCo antibody, rabbit polyclonal iNOS,
PKCpI, PKCPII, PKCy and STATIla antibodies and goat
anti-rabbit HRP-conjugated polyclonal antibodies were from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, U.S.A.) and
goat anti-mouse HRP-conjugated antibody was from Pierce
Biotechnology (Rockford, IL, U.S.A.). All other reagents were
from Sigma Chemical Co.

Cell culture

J774 macrophages (American Type Culture Collection) were
cultured at 37°C in 5% CO, atmosphere in Dulbecco’s
modified Eagle’s medium with ultraglutamine 1 (Cambrex
BioScience, Verviers, Belgium) supplemented with 10% heat-
inactivated fetal bovine serum (Cambrex BioScience),
100Uml™!  penicillin, 100 ugml~'  streptomycin  and
250ngml~! amphotericin B (Gibco, Paisley, U.K.) and
harvested with trypsin-EDTA (Gibco). Cells were seeded on
24-well plates for nitrite measurements and RT-PCR, on six-
well plates for Western blot analysis and on 10cm dishes
for translocation studies, preparation of nuclear extracts
and electrophoretic mobility shift assay. Cells were grown to
confluence prior to the experiments. Toxicity of the tested
compounds was ruled out by measuring cell viability using Cell
Proliferation Kit II (Roche Diagnostics, Indianapolis, IN,
U.S.A.) according to manufacturer’s instructions.

Nitrite assays

Measurement of nitrite accumulation into the culture medium
was used to determine NO production. The culture medium
was collected at indicated time points and nitrite was measured
by Griess reaction (Green et al., 1982).

Preparation of cell lysates for Western blotting

At indicated time points, cells were rapidly washed with ice-
cold phosphate-buffered saline (PBS) and solubilized in cold
lysis buffer containing 10 mM Tris-base, pH 7.4, SmM EDTA,
50mM NaCl, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl
fluoride, 1mM sodiumorthovanadate, 20 ugml~' leupeptin,
50 ugml~! aprotinin, 5SmM NaF, 2mM sodiumpyrophosphate
and 10 uM n-octyl-f-D-glucopyranoside. After incubation for
15min on ice, lysates were centrifuged (13,400 x g, 4°C,
10 min), supernatants were collected and stored in SDS sample
buffer in —20°C. An aliquot of the supernatant was used to
determine protein concentration by the Coomassie blue
method (Bradford, 1976).

Preparation of cytosolic and particulate fractions

for PKC Western blotting

At indicated time points, cells were rapidly washed with ice-
cold PBS and solubilized in cold buffer A (20mM Tris-base,
pH 7.4, 10mM EDTA, 5mM EGTA, 0.5mM phenylmethyl-
sulfonyl fluoride, 2mM sodiumorthovanadate, 10 ugmi™
leupeptin, 25ugml™' aprotinin and 1.25mM NaF). After
incubation for 15min on ice, lysates were centrifuged at
100,000 x g for 1h at 4°C, supernatants were collected and
marked as the cytosolic fraction. Pellets were resuspended in
cold lysis buffer B (20mM Tris-base, pH 7.4, 10mM EDTA,
SmM EGTA, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl
fluoride, 2mM sodiumorthovanadate, 10 ugml™' leupeptin,
25 ugml~! aprotinin, 1.25mM NaF and 10uM n-octyl-f-D-
glucopyranoside). After incubation for 2h on ice, lysates were
centrifuged at 100,000 x g for 1h at 4°C, supernatants were
collected and marked as the particulate fraction. An aliquot of
the supernatant was used to determine protein concentration
by the Coomassie blue method (Bradford, 1976).

Preparation of nuclear extracts for electrophoretic
mobility shift assay (EMSA) and STATIo Western
blotting

At indicated time points, cells were rapidly washed with ice-
cold PBS and solubilized in hypotonic buffer A (10mMm
HEPES-KOH, pH 7.9, 1.5mM MgCl,, 10mM KCI, 0.5mM
dithiothreitol, 0.2mM phenylmethylsulfonyl fluoride, 1 mm
sodiumorthovanadate, 10 ugml~' leupeptin, 25 ugml™' apro-
tinin, 1mM NaF and 0.1mM EGTA). After incubation for
10 min on ice, cells were vortexed for 30s and the nuclei were
separated by centrifugation at 4°C, 21,000 x g for 10s. Nuclei
were resuspended in buffer C (20mM HEPES-KOH, pH 7.9,
25% glycerol, 420mM NaCl, 1.5mM MgCl,, 0.5mM dithio-
threitol, 0.2mM phenylmethylsulfonyl fluoride, 1 mM sodiu-
morthovanadate, 10 ugml™" leupeptin, 25 ugml~' aprotinin,
ImM NaF and 0.1 mM EGTA) and incubated for 20 min on
ice. Nuclei were vortexed for 30s and nuclear extracts were
obtained by centrifugation at 4°C, 21,000 x g for 2min.
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Protein contents of the nuclear extracts were measured by the
Coomassie blue method (Bradford, 1976).

Western blotting

Prior to Western blotting, proteins were boiled for 10 min with
SDS sample buffer and 20 ug of protein was used per lane on
8% (iINOS, STATI1a) or 10% (PKC) SDS—polyacrylamide gel
and transferred to Hybond ECL™ nitrocellulose membrane
(Amersham Biosciences, U.K., Ltd, Little Chalfont, Buck-
inghamshire, U.K.). After transfer, the membrane was blocked
in TBS-T (20mM Tris-base, pH 7.6, 150mM NaCl, 0.1%
Tween-20) containing 5% nonfat dry milk for 1h at room
temperature and incubated with primary antibody in the
blocking solution at 4°C overnight. The membrane was
washed with TBS-T and incubated with the secondary
antibody in the blocking solution for 30min at room
temperature and washed. Bound antibody was detected using
Super Signal® West Pico chemiluminescent substrate (Pierce,
Rockford, IL, U.S.A.) and FluorChem™ 8800 imaging system
(Alpha Innotech Corporation, San Leandro, CA, U.S.A.).
Super Signal® West Dura and Femto (Pierce) were used for
the detection of PKC isoenzymes.

Electrophoretic mobility shift assay

EMSA was performed as described previously (Lahti et al.,
2002). Briefly, transcription factor consensus oligonucleotides
for NF-kB (Promega, Madison, WI, U.S.A.) were 5'->*P-end-
labeled with DNA 5-End Labeling Kit (Roche Diagnostics,
Indianapolis, IN, U.S.A.). For binding reactions, 5ug of
nuclear extract was incubated in 20 ul of total reaction volume
containing 0.Imgml™" (poly)dI-dC, 1mm dithiothreitol,
10mM Tris-HCI, pH 7.5, ImM EDTA, 200mM KCI and
10% glycerol for 20min in room temperature. **P-labeled
oligonucleotide probe (0.2ng) was added and the reaction
mixture was incubated for 10 min. Protein—-DNA complexes
were separated from DNA probe by electrophoresis on a
native 4% polyacrylamide gel. The gel was dried and
autoradiographed using intensifying screen at —70°C. The
quantitation of densities of specific bands was carried out
using FluorChem™ software version 3.1.

RNA extraction and quantitative RT-PCR

Cell homogenization, RNA extraction, reverse transcription
of RNA to cDNA and PCR reactions were performed as
described previously (Lahti er al., 2003), with the exception
that in the reverse transcription reaction, the amount of total
RNA reverse transcribed was 100 ng and cDNA used in PCR
corresponded to approximately 2.5ng of total RNA. Glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) was used
as a control gene.

The relative mRNA levels were quantified and compared
using the relative standard curve method as described in
Applied Biosystems User Bulletin number 2. Total RNA was
isolated from LPS-stimulated J774 macrophages and reverse
transcribed. Standard curves for GAPDH and iNOS were
created using dilution series of cDNA corresponding to
approximately 1pg to 10ng of total RNA in PCR. The
threshold cycle values obtained were plotted against dilution
factor to create a standard curve. Relative mRNA levels in test

samples were then calculated using the standard curve. The
relative amount of gene transcript present was calculated and
normalized by dividing the calculated value of iNOS by the
GAPDH value in each sample.

Statistics

Results are expressed as mean+standard error of mean
(s.e.m.). Statistical significance of the results was calculated
by the analysis of variances supported by Dunnett adjusted
significance levels. Differences were considered significant at
P<0.05.

Results

Effects of PKC inhibitors on LPS-induced NO production
and iNOS protein expression

Bacterial endotoxin LPS induced iNOS protein expression and
NO production in J774 macrophages. To determine whether
PKC activation participated in the upregulation of NO
production by LPS, we measured NO production in the
presence of PKC inhibitors. RO318220, an inhibitor of PKC
isoenzymes f3, y and ¢ (Davis et al., 1992; Wilkinson et al.,
1993), and GO6976, a selective inhibitor of cPKC isoenzymes
(Martiny-Baron et al., 1993), both inhibited LPS-induced NO
production in a dose-dependent manner (Figure la and b).
Exposure to increasing concentration of RO318220 resulted in
a 34% (0.3 um) and 74% (1 uM) inhibition of NO production
during 24h incubation. Exposure to GO6976 resulted in
59% (0.3 uM) inhibition of NO production and larger doses
(1 and 3 uM) inhibited NO production almost completely
(91 and 95%). Since the results with GO6976 suggest that
the effect of PKC on NO production could be mediated by
the cPKC isoenzymes, we studied the effects of LY333531,
a selective inhibitor of PKCp (Jirousek et al., 1996), and
HBDDE, an inhibitor of PKC isoenzymes o and y (Kashiwada
et al., 1994), on LPS-induced NO production. LY333531
inhibited NO production in a dose-dependent manner
(Figure 1c), but HBDDE did not have any effect on NO
production when used up to 100uM concentrations (at
concentrations higher than 100 uM HBDDE started to be
toxic to J774 macrophages).

In further studies, we investigated the effects of PKC
inhibitors on iNOS expression by Western blot. Cells cultured
in the absence of LPS did not contain detectable amounts of
iNOS protein. Exposure to LPS enhanced iNOS protein
expression markedly. RO318220 (1-3 um), GO6976 (0.1-1 uM)
and LY333531 (2.5-7.5uM) inhibited LPS-induced iNOS
expression in a dose-dependent manner (Figure 2a—c).

PKC isoenzyme expression in J774 macrophages and the
effect of PMA on PKC isoenzyme translocation

Western blot with antibodies specific for cPKC isoenzymes
(o, L, BII and y) were carried out. Resting J774 cells expressed
three cPKC isoenzymes o, 1 and pII, but PKCy was not found
(Figure 3). In the further studies, cells were treated with a PKC
activator PMA (100 nM), and after 10 min incubation, all three
isoenzymes were activated as measured by isoenzyme translo-
cation from the cytosol to the membrane (Figure 3). In
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Figure 1 Effects of PKC inhibitors on LPS-induced NO production in J774 cells. J774 cells were stimulated by LPS (10ngml™")
and treated with increasing concentrations of RO318220 (a), GO6976 (b) or LY333531 (c). After 24h incubation, nitrite
concentrations in the culture medium were measured as a marker of NO production. Values are mean +s.e.m. (n=06). **P<0.01 as
compared with cells treated with LPS only.
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Figure 2 Effects of PKC inhibitors on LPS-induced iNOS protein expression in J774 cells. J774 cells were stimulated by LPS
(10ngml~") and treated with increasing concentrations of RO318220 (a), GO6976 (b) or LY333531 (c). After 24 h, incubations were
terminated and immunoblots were run using antibody against iNOS. Chemiluminescent signal was quantified as described under the
Methods section. Values are mean+s.e.m. (n=3). **P<0.01 as compared with cells treated with LPS only.
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Figure 3 cPKC expression in J774 macrophages and the effects of PMA on PKC isoenzyme translocation. J774 cells were treated
with 100nM PMA or 1 uM PMA as indicated for 10 min or 6 h, respectively. Subsequent to preparation of cell lysates, the expression
of individual PKC isoenzymes was assessed by immunoblotting with isoenzyme specific antibodies as outlined in the Methods section.
Each experiment is a representative of three others with similar results. C = cytosolic fraction; M = membrane fraction. The expression
of PKCy in resting J774 macrophages was tested by Western blotting using recombinant human PKCy as a positive control.

addition, incubation with a high concentration of PMA (1 uM) almost complete downregulation of cPKCs and nPKCs,
for 6h resulted in the downregulation of all three PKC presumably as a result of proteolysis and it can be used as
isoenzymes (Figure 3). Prolonged exposure to higher concen- another means to downregulate PKC activity (Huang et al.,
trations of phorbol esters, such as PMA, is known to cause 1989; Liu & Heckman, 1998).

British Journal of Pharmacology vol 147 (7)



794 T. Salonen et al

Protein kinase C# and iNOS expression

Effects of phorbol esters on LPS-induced NO production
and iNOS protein expression

To further determine the participation of PKC in LPS-induced
NO production and iNOS expression, we measured the effects
of PMA on NO production and iNOS protein expression.
When PMA was used at concentrations (100 nM) that activate
PKC (Figure 3), it enhanced LPS-induced NO production and
iNOS protein expression as shown in Figure 4a and b. Another

phorbol ester, PDD, also enhanced iNOS protein expression,
when it was used at 100 nM concentration (Figure 4b).

When the cells were pretreated with 1 uMm PMA for 6h
before LPS addition (which was shown to downregulate PKC
expression, see Figure 3), both LPS-induced NO production
and iNOS protein expression were inhibited similarly to the
effects of PKC inhibitors (Figure 5a and b). In addition, 6h
pretreatment with PDD (1 uM) had a similar suppressive effect
on iNOS expression as 1 uM PMA (Figure 5b). These results
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Figure 4 Activation of PKC by phorbol esters induces iNOS protein expression and NO production in J774 cells. (a) J774 cells
were stimulated by LPS (10ngml™') and treated with PMA (100nM) or vehicle (DMSO). After 24h incubation, nitrite
concentrations in the culture medium were measured as a marker of NO production. Values are mean +s.e.m. (n=26). (b) J774 cells
were stimulated by LPS (10ngml~') and treated with PMA (100nM), PDD (100nM) or vehicle. After 24 h, incubations were
terminated and immunoblots were run using antibody against iNOS. Chemiluminescent signal was quantified as described under the
Methods section. Values are mean+s.e.m. (n=3). **P<0.01 as compared with cells treated with LPS.
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Figure 5 PKC downregulation by 6h pretreatment with phorbol esters inhibits iNOS protein expression and NO production
in J774 cells. (a) J774 cells were pretreated with PMA (1 uM) or vehicle for 6 h before stimulation by LPS (10ngml~"). After 24 h
incubation, nitrite concentrations in the culture medium were measured as a marker of NO production. Values are mean +s.e.m.
(n=06). (b) J774 cells were pretreated with PMA (1 um), PDD (1 uM) or vehicle for 6 h before stimulation by LPS (10 ngml™"). After
24 h, incubations were terminated and immunoblots were run using antibody against iNOS. Chemiluminescent signal was quantified
as described under the Methods section. Values are mean+s.e.m. (n=3). **P<0.01 as compared with cells treated with LPS.
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further suggest that PKC is involved in the signalling
mechanisms mediating LPS-induced iNOS expression and
NO production.

Effects of PKC inhibitors on iNOS mRNA expression

We used RT-PCR to investigate the effects of RO318220 and
GO6976 on LPS-induced iNOS mRNA expression. In J774
macrophages, LPS-induced transient iNOS mRNA expression
which had a 2h lag phase and peaked at 6 h after the addition
of LPS. We chose our time points 2 h before and after the 6h
peak to investigate the effects of PKC inhibitors on iNOS
mRNA expression. At all measured time points, 4, 6 and 8 h
after LPS induction, the iNOS mRNA levels were reduced in
both RO318220- and GO6976-treated cells (Figure 6a). To
determine whether PKC inhibitors reduce the half-life of iNOS
mRNA, the cells were treated with LPS and the tested drugs,
and after 6h, transcription inhibitor actinomycin D
(0.1 ugml™") was added into the culture. Cells were then
further incubated for 0, 2, 4, 6 or 8 h before total RNA was
extracted. As shown in Figure 6b, neither of the PKC
inhibitors seemed to have any effect on iNOS mRNA half-
life, nor did 100nM PMA or pretreatment with 1 um PMA
(Figure 6c). These results suggest that the effect of cPKC
isoenzymes on LPS-induced iNOS protein expression is
mediated at the level of iNOS induction rather than at the
level of post-transcriptional events.

Effects of PKC inhibitors on transcription factors NF-xB
and STATI

To evaluate whether the effect of PKC inhibitors on iNOS
mRNA expression levels could be a consequence of their
effects on transcription factors, we measured the effects of
RO318220 and GO6976 on the activation of NF-xB and
STATI1, which are essential transcription factors for LPS-
induced iNOS expression. The activation of NF-xB was
measured by EMSA. RO318220 or GO6976 had no effect on
NF-«xB activation or binding activity (Figure 7). In contrast,
when we investigated the effects of PKC inhibitors on STATI

>
Figure 6 Effects of PKC inhibitors on iNOS mRNA expression
and stability in J774 cells. (a) J774 cells were stimulated by LPS
(10ngml™") and treated with RO318220 (1 uM) or GO6976 (1 um)
for 4, 6 or 8h. At indicated time points, the incubations were
terminated and extracted total RNA was subjected to RT-PCR.
iNOS mRNA levels were normalized against GAPDH mRNA.
(b) Effect of PKC inhibitors on iNOS mRNA degradation. Cells
were stimulated by LPS (10ngml™') and treated with RO318220
(1 uM) or GO6976 (1 um) for 6 h before the addition of actinomycin
D (0.1 ugml™") to inhibit transcription. Incubations were terminated
at indicated time points after actinomycin D and extracted total
RNA was subjected to RT-PCR. iNOS mRNA levels were
normalized against GAPDH mRNA. (c) Effect of PMA on iNOS
mRNA degradation. Cells were treated with LPS (10 ngml™"), with
LPS (10ngml~') and PMA (100 nM) to activate PKC or pretreated
with PMA (1 uM) for 6h to downregulate PKC before the addition
of LPS (10ngml™"). After 6 h incubation with LPS, actinomycin D
(0.1 ugml™") was added to inhibit transcription. Incubations were
terminated at indicated time points after actinomycin D and
extracted total RNA was subjected to RT-PCR. iNOS mRNA
levels were normalized against GAPDH mRNA. Values are
mean+s.e.m. (n=3). ¥**P<0.01 as compared with cells treated with
LPS only.

activation, as measured by the translocation of STAT1« from
the cytosol to the nuclei by Western blot, both RO318220 and
GO6976 inhibited STATIle translocation (Figure 8a). In
addition, the PKCp-selective inhibitor LY333531 (5uM), as
well as pretreatment for 6 h with 1 uM PMA inhibited STAT 1«
translocation to the nuclei (Figure 8b and c). These data
suggest that the effects of cPKC isoenzymes on LPS-induced
iNOS protein expression are NF-xB-independent, but may
well be mediated through the activation of transcription factor
STATI.
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Effects of JAK-2 inhibitor AG-490 on LPS-induced NO
production and STATI activation

To further investigate the role of STAT1 on LPS-induced NO
production, we used JAK-2 inhibitor AG-490. JAK-2 (Janus
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Figure 7 Effect of PKC inhibitors on NF-kB activity. J774 cells
were stimulated by LPS (10ngml™') and treated with RO318220
(1 um) or GO6976 (1 um) for 30min before the preparation of
nuclear extracts. NF-xB DNA binding activity was analyzed by
EMSA. Densities of specific bands were quantified as described
under the Methods section. Values are mean+s.e.m. (n=3).
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kinase-2) is an upstream kinase of STAT1 and inhibition of
JAK-2 leads to the inhibition of STATI1 (Shuai & Liu, 2003).
AG-490 inhibited LPS-induced NO production in a dose-
dependent manner (Figure 9a). Same concentrations that
downregulated LPS-induced NO production also inhibited
LPS-induced STAT] activation, as measured by the transloca-
tion of STAT1« from the cytosol to the nuclei by Western blot
(Figure 9b). These results further suggest that the effects of
cPKC isoenzymes on iNOS expression and NO production
could be mediated through the activation of STATI.

Discussion

In the present study, we show that inhibition of classical
isoenzymes, especially PKCp, inhibits LPS-induced iNOS
expression and NO production in activated J774 macrophages,
and that this effect is possibly mediated through the inhibition
of transcription factor STATI.

Distribution of PKC isoenzymes is cell type- and tissue-
specific. PKCa, fI, SII, 4, ¢ and { seem to be ubiquitous
isoenzymes, and are found in most tissues (Liu & Heckman,
1998). Classical isoenzyme PKCy is largely restricted to the
central nervous system and spinal cord (Liu & Heckman, 1998;
Way et al., 2000). In the present study, we focused on cPKCs
and found that PKCa, PKCpSI and PKCPpII are expressed in
macrophage cultures used. PKC regulates various inflamma-
tory functions in an isoenzyme-specific manner (Tan & Parker,
2003). The regulation of cell signalling events by single PKC
isoenzymes have also been shown to differ between cell types
(Paul et al., 1997).

In the present study, four PKC inhibitors with different
PKC isoenzyme profiles were used to study the role of PKC
and its classical isoenzymes in LPS-induced iNOS protein
expression and NO production in macrophages. PKC inhibi-
tors RO318220, GO6976 and LY333531 inhibited LPS-
induced iNOS expression and NO production in a dose-
dependent manner. RO318220 is a PKC inhibitor, which
inhibits isoenzymes f, y and ¢ (Davis et al., 1992; Wilkinson
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Figure 8 The effect of PKC inhibitors and PMA pretreatment on STATla« translocation. J774 cells were stimulated by LPS
(10ngml~") and treated with RO318220 (1 uM), GO6976 (1 um) (a) or LY 333531 (5 uM) (b) for 6 h before the preparation of nuclear
extracts. STATla translocation to the nuclei was determined by Western blotting using specific antibody against STAT1a. (c) Cells
were pretreated with PMA (1 uM) or vehicle (DMSO) for 6 h before stimulation with LPS (10 ngml~"). Cells were further incubated
for 6h before the nuclear extracts were prepared. STAT 1o translocation to the nuclei was determined by Western blotting using
specific antibody against STATlo. Chemiluminescent signal was quantified as described under the Methods section. Values are
mean+s.em. (n=3). *P<0.05, **P<0.01 as compared with cells treated with LPS only.

British Journal of Pharmacology vol 147 (7)



T. Salonen et al

Protein kinase Cp and iNOS expression 797

a 20 - b 120+
100+
15 =
2 80
- T = 7
= R
3 * ;
o 10+ = 60+
= E i *
= =
= w
40+
5-
* % 204
* % | |
o4 0
LPS (10 ng ml™}) - + + + + — —— - «—STAT1a
AG-490 (uM) - " 3 10
LPS (10 ng ml") - + o+ + +
AG-490 (uM) - - 10 30 100

Figure 9 Effect of JAK-2 inhibitor AG-490 on LPS-induced NO production in J774 cells. J774 cells were stimulated by LPS
(10ngml™") and treated with increasing concentrations of AG-490 (a). After 24 h incubation, nitrite concentrations in the culture
medium were measured as a marker of NO production. Values are mean +s.e.m. (n=6). (b) The effect of JAK-2 inhibitor AG-490
on STAT o nuclear translocation. J774 cells were stimulated by LPS (10 ngml™') and treated with increasing concentrations of AG-
490 for 4h before the preparation of nuclear extracts. STAT1a translocation to the nucleus was determined by Western blotting
using specific antibody against STAT1a. Chemiluminescent signal was quantified as described under the Methods section. Values
are mean+s.e.m. (n=3). ¥*P<0.05, ¥**P<0.01 as compared with cells treated with LPS only.

et al., 1993), GO6976 is more selective to cPKC isoenzymes
(Martiny-Baron et al., 1993) and LY333531 is a selective
inhibitor of PKCf (Jirousek et al., 1996). HBDDE, which is a
relatively selective inhibitor of PKCa and PKCy (Kashiwada
et al., 1994), did not have any effect on LPS-induced NO
production. These results suggest that PKC, probably its
isoenzymes PKCpI and PKCPII, mediate the LPS-induced
upregulation of iINOS expression and NO production in
macrophages.

The results may be complicated by the fact that RO318220
and GO6976 have been reported to inhibit some other kinases
in addition to PKC (Davies et al., 2000). Therefore, we also
studied the effects of phorbol esters PMA and PDD on LPS-
induced iNOS expression and NO production. Phorbol esters
are known to activate cPKC isoenzymes (Castagna et al.,
1982), whereas a longer pretreatment with a higher concentra-
tion of phorbol esters have been shown to result in the
downregulation of cPKCs, presumably due to proteolysis
(Huang et al., 1989; Liu & Heckman, 1998). The bidirectional
effect of PMA and PDD on cPKCs was seen also in the present
study. PMA and PDD at 100nM concentration enhanced
cPKC activation, while 6 h pretreatment with 1 uM concentra-
tion of PMA or PDD suppressed cPKC expression. When used
at cPKC-activating concentrations, PMA and PDD enhanced
iINOS expression and NO production. In contrast, cPKC
downregulation due to 6h pretreatment with PMA or PDD
(1 uM) resulted in the suppression of iNOS expression and NO
production, similarly as inhibition of cPKCs by pharmacolo-
gical means. These results further support the role of cPKC
isoenzymes in the regulation of iNOS expression and NO
production in macrophages.

To determine the mechanisms by which the regulation by
PKC is mediated, we studied the effects of PKC inhibitors
RO318220 and GO6976, and PMA on LPS-induced iNOS
mRNA expression and mRNA stability. Our results show that
inhibition of cPKCs does not effect the stability of LPS-
induced iNOS mRNA. The effect of PKC isoenzymes is rather

at the level of iNOS transcription, since PKC inhibitors
decreased the expression of iINOS mRNA already at the early
time points after addition of LPS.

NF-xB and STATI1 appear to be important transcription
factors for the enhanced iNOS gene expression in macrophages
exposed to LPS (Lowenstein et al., 1993; Chartrain et al., 1994;
Xie et al., 1994; Gao et al., 1998; Jacobs & Ignarro, 2001). In
the present study, all three PKC inhibitors used (RO318220,
GO6976 and LY333531) inhibited STATI activation as
measured by translocation of the transcription factor from
the cytosol to nuclei as did pretreatment with 1 uM PMA. In
contrast, none of the treatments did inhibit NF-xB activation
as measured by EMSA. These results suggest that the
regulation of LPS-induced iNOS protein expression by PKC
is NF-kB-independent and is most likely mediated through the
activation of transcription factor STATI.

RO318220 and GO6976 have earlier been reported to inhibit
LPS and IFN-y-induced NO production in macrophages (Paul
et al., 1997; Chen, B.C. et al., 1998; Chen et al., 1998a). In
addition, PKCé and PKCy have been suggested to regulate
NO production and iNOS expression in activated macro-
phages and some other cell types (Chen et al., 1998a,b;
Carpenter et al., 2001; Banan et al., 2003; Pham et al., 2003).
The present study extends the earlier data by providing a
cellular mechanism for the inhibitory effects of RO318220 and
GO6976 on LPS-induced iNOS expression and NO production
in macrophages. Our results show that inhibition of ¢cPKC
isoenzymes results in the suppression of STATI activation,
which may well explain the inhibitory effect on iNOS
expression and NO production. In addition, we were able to
show that LY333531, a selective inhibitor of PKCp, also
suppressed STATT1 activation and iNOS expression, support-
ing the role of PKCp in the regulation of iNOS expression in
activated macrophages.

In conclusion, the present results show that inhibition of
cPKC isoenzymes, especially PKCf, inhibits the LPS-induced
activation of transcription factor STATI, iNOS expression

British Journal of Pharmacology vol 147 (7)
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and NO production in macrophages. The results suggest that
inhibition of cPKC isoenzymes provides a way to prevent
iNOS protein expression and NO production in inflammation,
offering a novel target for the development of anti-inflamma-
tory drugs.
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Abstract. Objective and design: Tristetraprolin (TTP) is a
3’-UTR-binding protein known to destabilize mRNAs of
TNFo and some other cytokines and to act as an anti-inflam-
matory factor. The aim of this study was to investigate the
role of classical protein kinase C isoenzymes (cPKC) in the
regulation of TTP expression in activated macrophages.
Materials and methods: The expression of TTP in J774 mac-
rophages was induced by a combination of LPS and phorbol
myristate acetate (PMA). The effects of cPKC inhibitors and
the effects of cPKC activation and downregulation by PMA
on TTP protein and mRNA expression were determined by
Western blotting and quantitative RT-PCR, respectively.
Also, the effect of PKCPII inhibitor CGP53353 on the acti-
vation of transcription factors AP-2, NF-kB, EGR1 and Spl
was assessed.

Results: ¢PKC inhibitors RO318220, GO6976, LY333531
and CGP53353 inhibited LPS and PMA —induced expression
of TTP protein and mRNA. Similar effects were obtained
when cPKC isoenzymes were downregulated by PMA. In
addition, CGP53353 decreased the activation of transcrip-
tion factor AP-2.

Conclusions: The results suggest that cPKCs, most likely
PKCRII, upregulate TTP expression in activated macrophag-
es. This regulation is possibly mediated through the activa-
tion of transcription factor AP-2, and serves as an additional
mechanism how PKCp regulates the inflammatory process.

Keywords: tristetraprolin — PKC — AP-2 — macrophages

Introduction

Tristetraprolin (TTP, also known as TIS11, Nup475, Zfp36
or G0S24) is a member of a small family of tandem CCCH
zinc finger proteins. TTP was originally described as a
gene that was induced rapidly and transiently by the stimu-

Correspondence to: E. Moilanen

lation of fibroblasts, and it is now known to be a factor
that can bind to AU-rich elements within 3’-UTR regions
of mRNA resulting in deadenylation and destabilization of
mRNA and eventually to decreased production of the target
protein. TTP expression can be induced by serum, insulin,
tumor promoting phorbol esters and inflammatory stimuli,
such as bacterial products [1-3]. mRNAs of inflammatory
genes, e.g. tumor necrosis factor a (TNF-a), granulocyte-
macrophage colony-stimulating factor (GM-CSF), cy-
clooxygenase 2 (COX-2), interleukin-2 (IL-2), interleukin-
3 (IL-3) and interleukin-6 (IL-6) have been reported to be
destabilized by TTP [4-9]. In contrast to the preceding
inflammatory genes, the degradation of human inducible
nitric oxide synthase (iNOS) mRNA has been reported to
be inhibited by TTP by an indirect mechanism [10]. TTP
deficient mice develop a profound inflammatory syndrome
with erosive arthritis, autoimmunity and myeloid hyperpla-
sia and this has been reported to be mainly due to exces-
sive production of TNF-a [4, 11]. Altogether, TTP seems
to have a role as an anti-inflammatory or arthritis suppres-
sor gene.

The function of TTP has been studied extensively. How-
ever, less is known about the regulation of the expression of
TTP itself. Mitogen-activated protein kinases (MAPK) p38,
c-Jun N-terminal kinase (JNK), extracellular signal-regu-
lated kinase 1 and 2 (ERK1/2), and MAPK-activated protein
kinase 2 (MAPKAPK?2 or MK2) have been reported to regu-
late expression and subcellular localization of TTP [12-17].
In addition, TTP itself has been reported to regulate its own
mRNA expression [18, 19]. Tumor promoter phorbol myr-
istate acetate (PMA) has been shown to increase TTP mRNA
levels or enhance TTP promoter activity in astrocytes and
hepatoma cells [20, 21]. However, the signalling pathways
responsible for PMA-mediated TTP induction are not known
in detail.

One of the cellular targets of PMA is protein kinase C
(PKC). PKC is a family of serine-threonine protein kinase
isoenzymes and represents one of the major signal transduc-
tion systems in inflammation [22, 23]. Differences in the



Vol. 57,2008 PKCpI regulates TTP expression.

structure of the isoenzymes and substrate requirements have
led to the division of the PKC isoenzymes into three groups:
classical (cPKC), novel (nPKC) and atypical (aPKC) isoen-
zymes. Classical isoenzymes (o, v and the splice variants
BI and BII) are activated by phosphatidylserine, Ca** and
diacylglycerol (DAG). These isoenzymes are also targets of
tumor promoting phorbol esters, such as PMA, a surrogate
of DAG. Novel isoenzymes (0, €, 1| and 0) are activated by
phosphatidylserine, DAG and phorbol esters, but not by Ca*.
The third group of PKC isoenzymes, atypical isoenzymes (T
and /M), are activated by phosphatidylserine only [24, 25].

cPKC isoenzymes may regulate the expression of inflam-
matory genes by regulating the activation of transcription
factors NF-kB and AP-1 [26, 27]. PKC may also be involved
in the regulation of mRNA stability of inflammatory genes
if it regulates the expression of TTP. Because the expression
of TTP is induced by PMA, we hypothesized that PKC is in-
volved in the regulation of the expression of TTP. In that case
PKC could have a dual effect on the regulation of inflamma-
tory genes i.e. regulating the activity of transcription factors
important for inflammatory genes and regulating the stability
of mRNA of inflammatory genes.

The aim of the present study was to investigate the hy-
pothesis that cPKC isoenzymes o, I or BII regulate TTP ex-
pression in activated macrophages. The results suggest that
cPKC isoenzymes, probably PKCPIL, are involved in the up-
regulation of TTP expression in activated macrophages and
that this regulation is mediated through the activation of tran-
scription factor AP-2.

Materials and Methods

Materials

Reagents were purchased as follows: RO318220 and LY333531 were
from Alexis Biochemicals (Lausen, Switzerland) and GO6976 was from
Calbiochem (La Jolla, CA, USA). All other reagents were from Sigma
Chemical Co (St. Louis, MO, USA).

Cell Culture

J774 macrophages (American Type Culture Collection, Manassas, VA,
USA) were cultured at 37°C in 5% CO, atmosphere in Dulbecco’s
modified Eagle’s medium with Ultraglutamine 1 (Cambrex BioScience,
Verviers, Belgium) supplemented with 10% heat-inactivated foetal
bovine serum (Cambrex BioScience), 100U/ml penicillin, 100 pg/ml
streptomycin and 250ng/ml amphotericin B (Gibco, Paisley, UK) and
harvested with trypsin-EDTA (Gibco). Cells were seeded on 24-well
plates for RT-PCR and on 6-well plates for Western blot analysis and
cells were then grown for 72h to confluence prior to the experiments.
Toxicity of the tested compounds was ruled out by measuring cell viabil-
ity using XTT test (Roche Diagnostics, Mannheim, Germany) according
to manufacturer’s instructions.

Preparation of Cell Lysates

Cells were incubated with the tested compounds for 30 min prior to the
addition of lipopolysaccharide (LPS; 10ng/ml) or LPS (10ng/ml) and
PMA (100nM). At indicated time points, cells were rapidly washed with
ice-cold phosphate-buffered saline (PBS) and solubilized in cold lysis
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buffer containing 10mM Tris-base, pH 7.4, 5SmM EDTA, 50mM NacCl,
1 % Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride, 1 mM sodium
orthovanadate, 20 pg/ml leupeptin, 50 pg/ml aprotinin, 5 mM NaF, 2mM
sodium pyrophosphate and 10 uM n-octyl-f3-D-glucopyranoside. After
incubation for 15min on ice, cell lysates were centrifuged (13 400 x
g, 4°C, 10min), supernatants were collected and stored in SDS sample
buffer in —20°C. An aliquot of the supernatant was used to determine
protein concentration by the Coomassie blue method [28].

Preparation of Nuclear Extracts

J774 cells were seeded on 10-cm dishes and grown for 72 h to confluence
before the experiments. Cells were incubated with the tested compounds
for 30 min prior to the addition of LPS (10ng/ml) or the combination of
LPS (10ng/ml) and PMA (100nM). Thereafter, at indicated time points,
cells were rapidly washed with ice-cold PBS and solubilized in hypo-
tonic buffer A (10mM HEPES-KOH, pH 7.9, 1.5mM MgCl,, 10mM
KCl, 0.5mM dithiothreitol, 0.2mM phenylmethylsulfonyl fluoride,
1 mM sodium orthovanadate, 10 pug/ml leupeptin, 25 pg/ml aprotinin,
1 mM NaF and 0.1 mM EGTA). After incubation for 10 min on ice, cells
were vortexed for 30 s and the nuclei were separated by centrifugation
at4°C, 21 000 x g for 10s. Nuclei were resuspended in buffer C (20 mM
HEPES-KOH, pH 7.9, 25% glycerol, 420mM NaCl, 1.5mM MgCl,,
0.2mM EDTA, 0.5mM dithiothreitol, 0.2mM phenylmethylsulfonyl
fluoride, I mM sodium orthovanadate, 10pug/ml leupeptin, 25 pg/ml
aprotinin, 1 mM NaF and 0.1 mM EGTA) and incubated for 20 min on
ice. Nuclei were vortexed for 30s and nuclear extracts were obtained
by centrifugation at 4°C, 21 000 x g for 2min. Protein contents of the
nuclear extracts were measured by the Coomassie blue method [28].

Western Blotting

Prior to Western blotting, proteins were boiled for 10min with SDS
sample buffer and 30 pug of protein was used per lane on 10 % (for AP-
2, EGRI1, NF-kB and Spl Western blotting) or 12 % (for TTP Western
blotting) SDS-polyacrylamide gel and transferred to Hybond ECL™
nitrocellulose membrane (Amersham Biosciences UK, Ltd, Little Chal-
font, Buckinghamshire, UK). After transfer the membrane was blocked
in TBS/T (20mM Tris-base pH 7.6, 150mM NaCl, 0.1 % Tween-20)
containing 5 % non-fat dry milk or 5% BSA for 1h at room tempera-
ture and incubated with primary antibody in the blocking solution at
4°C overnight. The membrane was washed with TBS/T and incubated
with the secondary antibody in the blocking solution for 30 min at room
temperature and washed. Bound antibody was detected using Super Sig-
nal® West Pico and Dura chemiluminescent substrate (Pierce, Rock-
ford, USA) and FluorChem™ 8800 imaging system (Alpha Innotech
Corporation, San Leandro, CA, USA). Mouse monoclonal Sp1 antibody,
rabbit polyclonal actin, lamin A/C, and AP-2 antibodies and goat anti-
rabbit polyclonal antibody were from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA) and goat anti-mouse antibody was from Pierce
Biotechnology. NF-kB p65 and EGR1 antibodies were from Cell Sign-
aling Technology (Danvers, MA, USA). The mouse TTP antibody was
a kind gift from Dr Perry Blackshear (NIEHS, Research Triangle Park,
NC, USA).

PKC translocation studies

The activation and downregulation of PKC isoenzymes was studied by
determining their translocation from cell cytosol to cell membrane by
Western blotting. Cytosolic and membrane fractions were prepared as
previously described [29]. For Western blotting 20 pug of protein was
used per lane on 10% SDS-polyacrylamide gel and transferred to Hy-
bond ECL™ nitrocellulose membrane (Amersham Biosciences UK).
After transfer the membrane was blocked in TBS/T containing 5 % non-
fat dry milk for 1h at room temperature and incubated with primary
antibody in the blocking solution at 4°C overnight. The membrane was
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washed with TBS/T and incubated with the secondary antibody in the
blocking solution for 30 min at room temperature and washed. Bound
antibody was detected using Super Signal® West Dura and Femto
(Pierce) chemiluminescent substrate and FluorChem™ 8800 imaging
system (Alpha Innotech Corporation). Mouse monoclonal PKCa anti-
body and rabbit polyclonal PKCI and PKCRII antibodies were from
Santa Cruz Biotechnology, Inc.

RNA Extraction and Quantitative Real-Time PCR (RT-PCR)

Cell homogenization, RNA extraction, reverse-transcription of RNA
to cDNA and PCR reactions were performed as previously described
[29]. The mouse TTP primers and probe were designed using Primer
Express® Software (Applied Biosystems, Foster City, CA, USA) and
were as follows: 5’-CTCAGAAAGCGGGCGTTGT-3’, 5’-GATT-
GGCTTGGCGAAGTTCA-3’ (forward and reverse mouse TTP primer
respectively, both 300nM) and 5’-CCAAGTGCCAGTTTGCTCACG-
GC-3’ (mouse TTP probe, containing 6-FAM (6-carboxy-fluoroscein)
as 5’-reporter dye and TAMRA (6-carboxy-tetramethyl-rhodamine)
as 3’-quencer, 200nM). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as a control gene [30].

Statistics

Results are expressed as mean + standard error of mean (S.E.M.). Statis-
tical significance of the results was calculated by analysis of variances
supported by Dunnett multiple comparisons test. Differences were con-
sidered significant at P <0.05.

Results

The Expression of TTP is Induced by LPS or Combination
of LPS and PMA in J774 Macrophages

Resting J774 macrophages expressed very low levels of TTP
protein. To study the induction of TTP after different stimuli
we treated the cells with bacterial endotoxin LPS (10ng/ml),
phorbol ester PMA (100nM) or with their combination (Fig.
la) and determined the expression of TTP protein by West-
ern blotting. PMA alone had a minor effect on TTP protein
expression in J774 macrophages, whereas LPS clearly in-
duced TTP protein expression and this was further enhanced
by addition of PMA. Following treatment with LPS alone or
with LPS and PMA, the expression of TTP protein peaked at
9 hours (Fig. 1b).

Similar expression pattern was seen when TTP mRNA
was measured by quantitative real-time RT-PCR. PMA alone
was not sufficient to induce significant TTP mRNA expres-
sion. LPS alone or in combination with PMA induced TTP
mRNA expression. As found in TTP protein expression,
treatment with a combination of LPS and PMA further en-
hanced TTP mRNA expression as compared to treatment
with LPS alone (see Fig. 3b and 4b below).

Activation of Classical PKC Isoenzymes Enhances the
Expression of TTP Protein and mRNA

We have previously shown that classical PKC isoenzymes
PKCa, PKCPI and PKCPII are expressed in J774 macro-
phages and that they are responsive to PMA treatment [29].
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Fig. 1. Effect of LPS and PMA on TTP expression in J774 murine mac-
rophages. A: J774 cells were stimulated with LPS (10ng/ml), PMA
(100nM) or the combination of LPS and PMA for 9h. Incubations
were terminated and immunoblots were run using antibody against TTP.
Chemiluminescent signal was quantified as described under Materials
and Methods. Values are mean = S.E.M. (n = 3). **P <0.01 as compared
to unstimulated cells. B: J774 cells were stimulated with LPS (10ng/ml)
alone or with the combination of LPS (10ng/ml) and PMA (100 nM) for
1,3, 6,9, 12 or 24h. At indicated time points, incubations were termi-
nated and immunoblots were run using antibody against TTP. Actin was
detected as a loading control. Chemiluminescent signal was quantified
as described under Materials and Methods. Each experiment is a repre-
sentative of three others with similar results.
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Fig. 2. Activation and downregulation of cPKC isoenzymes after PMA
treatment in J774 macrophages. Cells were treated with 100nM PMA
for 10min or with 1 uM PMA for 6h. The incubations were terminated
at indicated time points and cytosolic and membrane fractions were pre-
pared as described in Materials and Methods. The expression of PKC
isoenzymes a (A), BI (B) and BII (C) was assessed by Western blotting
using isoenzyme specific antibodies. Each experiment is a representa-
tive of three others with similar results. C = cytosolic fraction, M =
membrane fraction.
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Phorbol esters, such as PMA, are known activators of PKC
isoenzymes. However, when cells are exposed to higher con-
centrations of phorbol esters for prolonged times, an almost
complete downregulation of PKC isoenzymes can be detect-
ed as a result of proteolysis [31, 32]. This dual effect of phor-
bol esters on cPKC activity was seen in J774 macrophages
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Fig. 3. The effects of PKC activation and downregulation by PMA on
TTP protein and TTP mRNA expression in J774 macrophages. J774
cells were treated with vehicle (= no preincubation) or with 1 uM PMA
for 24 h before the addition of LPS (10ng/ml), PMA (100nM) or the
combination of LPS (10ng/ml) and PMA (100nM). A: After 9h, in-
cubations were terminated and immunoblots were run using antibody
against TTP. Actin was detected as a loading control. Chemiluminescent
signal was quantified as described under Materials and Methods. Values
are mean = S.E.M. (n = 3). B: After 6h the incubations were terminated
and extracted total RNA was subjected to real time PCR. TTP mRNA
levels were normalized against GAPDH mRNA. Values are mean +
S.E.M. (n=3). *P <0.05 as compared to cells treated with LPS only.
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(Fig 2a—c): when cells were treated with 100nM PMA for
10min all three PKC isoenzymes (o, fI and PII) were acti-
vated as measured by their translocation from cytosol to the
membrane fraction by Western blotting and when the cells
were incubated with 1 uM PMA for 6h all three PKC isoen-
zymes were downregulated.

Since PMA (100nM), when used together with LPS
(10ng/ml), induced both TTP protein and mRNA expres-
sion, we wanted to study if classical PKC isoenzymes are in-
volved in the regulation of TTP expression. First we studied
the effects of PKC activation and downregulation by PMA
on TTP protein expression by Western blotting (Fig. 3a).
Cells were preincubated for 24 h with vehicle or 1 uM PMA
to downregulate cPKC expression. Thereafter LPS (10ng/
ml), PMA (100nM) or their combination was added into the
culture, and cells were harvested for TTP determination after
9h incubation. The treatment with the combination of LPS
and PMA enhanced TTP protein expression as compared to
treatment with LPS alone. Downregulation of cPKC isoen-
zymes by 24h preincubation with 1 uM PMA did not alter
the TTP expression induced by LPS alone, but abolished the
enhancing effect of 100nM PMA on LPS-induced TTP pro-
tein expression.

We also studied the effects of PKC activation and down-
regulation by PMA on TTP mRNA expression (Fig. 3b). Asin
TTP protein studies, treatment with the combination of LPS
and PMA enhanced TTP mRNA expression as compared to
treatment with LPS alone. Preincubation for 24h with 1 pM
PMA abolished the enhancing effect of PMA (100nM) on
LPS-induced TTP mRNA expression as measured by quan-
titative RT-PCR. Similarly to the protein data, the 24 h pre-
incubation with 1 uM PMA did not affect the TTP mRNA
levels induced by LPS alone. These results suggest that the
activation of PKC isoenzymes o, I and / or BII are likely
to take part in the regulation of LPS + PMA-induced TTP
protein and TTP mRNA expression.

PKC Inhibitors Downregulated TTP Protein and mRNA
Expression

To further determine whether PKC activation is involved in
the regulation of TTP expression we studied the expression of
TTP protein and TTP mRNA in the presence of PKC inhibi-
tors. First we studied the effects of two known PKC inhibitors,
R0O318220, an inhibitor of PKC isoenzymes o, 3, yand €, and
GO6976, a selective inhibitor of classical PKC isoenzymes
[33,34]. PKC inhibitors were added to the cell culture 30 min
prior to the addition of the combination of LPS (10ng/ml)
and PMA (100nM). Both inhibitors inhibited LPS + PMA-
induced TTP protein expression (Fig. 4a) as measured by
Western blotting. In addition, when studied at the concentra-
tion of 1 uM, both PKC inhibitors reduced the expression of
TTP mRNA (Fig. 4b) as measured by RT-PCR.

Selective PKCf Inhibitors Downregulated the Expression
of TTP Protein and mRNA

In further studies we wanted to determine which of the three
classical PKC isoenzymes expressed in J774 macrophages
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Fig. 4. Effects of PKC inhibitors on LPS + PMA -induced TTP protein
and TTP mRNA expression in J774 cells. A: J774 cells were treated with
increasing concentrations of RO318220, GO6976 or vehicle (DMSO) for
30min before the addition of combination of LPS (10ng/ml) and PMA
(100nM) or cells were treated with LPS (10ng/ml) alone. After 9h, in-
cubations were terminated and immunoblots were run using antibody
against TTP. Actin was detected as a loading control. Chemiluminescent
signal was quantified as described under Materials and Methods. Values
are mean + S.E.M. (n = 3). B: J774 cells were treated with RO318220
(1uM), G0O6976 (1 uM) or vehicle (DMSO) for 30 min before the ad-
dition of combination of LPS (10ng/ml) and PMA (100nM) or cells
were treated with LPS (10ng/ml) alone. After 6h the incubations were
terminated and extracted total RNA was subjected to real time PCR.
TTP mRNA levels were normalized against GAPDH mRNA. Values are
mean = S.E.M. (n = 3). *P <0.05, **P <0.01 as compared to cells treated
with LPS + PMA.



Vol. 57,2008 PKCpI regulates TTP expression.

A 125+

100

&k

TTP protein
(% of LPS + PMA -induced)

254

0

LPS (10 ng/ml) - + + + +
PMA (100nM) - - + + +
LY 333531 (uM) - - = 25 -
CGP53353 (uM) - - - - 5

TTP |

Actin [— — — ——|

B 110 -
100 -
90 - *
80 - Lt
70
60
50 4
40 4
30 4
20
10 -
0 -
LPS (10 ng/ml) -+ o+ + o+
PMA (100 nM) - -+ o+ o+
LY 333531 (uM) - - - 25 -
CGP53353 (uM) - - = =5

TTP mRNA
(% of LPS+PMA-induced)

Fig. 5. Effects of PKCf inhibitors on LPS + PMA -induced TTP pro-
tein and TTP mRNA expression in J774 cells. J774 cells treated with
LY333531 (2.5uM), CGP53353 (5 uM) or vehicle (DMSO) for 30 min
before the addition of combination of LPS (10 ng/ml) and PMA (100 nM)
or cells were treated with LPS (10ng/ml) alone. A: After 9 h, incubations
were terminated and immunoblots were run using antibody against TTP.
Actin was detected as a loading control. Chemiluminescent signal was
quantified as described under Materials and Methods. Values are mean
+S.E.M. (n = 3). B: After 6 h, incubations were terminated and extracted
total RNA was subjected to real time PCR. TTP mRNA levels were nor-
malized against GAPDH mRNA. Values are mean + S.E.M. (n=9). *P
<0.05, **P <0.01 as compared to cells treated with LPS + PMA.
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(0, PI and PII) are involved in the regulation of LPS + PMA-
induced TTP expression. Both of the PKC inhibitors used,
R0O318220 and GO6976, are reported to inhibit PKCo, PK-
CPIL, PKCPII and PKCy. Since PKCY is not expressed in the
cell line used [29], and an inhibitor of PKCo, HBDDE [35],
did not inhibit LPS + PMA-induced TTP mRNA expression
(data not shown), we concentrated our study on the effects
of PKCP isoenzymes. We investigated the effects of two
PKCf inhibitors with different selectivity. LY333531 is an
inhibitor of both PKCPI and PKCBII [36] and CGP53353
is a selective PKCPII inhibitor [37]. LY333531 (2.5uM)
and CGP53353 (5 uM) were added to the cell culture 30 min
prior to the addition of the combination of LPS (10ng/ml)
and PMA (100nM). Both PKCp inhibitors reduced LPS +
PMA-induced TTP protein and TTP mRNA expression (Fig.
5 a-b). Since both inhibitors are reported to inhibit PKCPIIL,
we continued our studies with PKCPII selective inhibitor
CGP53353.

CGP53353 did not Alter TTP mRNA Half-life as Measured
by RT-PCR

In order to study the mechanisms involved in the regulation
of LPS + PMA-induced expression by PKC, we studied the
effects of CGP53353 on the half-life of TTP mRNA by actin-

120 - 0 LPS+PMA
B LPS + PMA + CGP53353 (5 uM)
100 -
g 80
2
£ 60 -
oy
=
40 -
20 4
0- I T T T
Oh lh 2h 3h
Time after Act D (1 pg/ml) addition

Fig. 6. The effect of PKCPII inhibitor CGP53353 on TTP mRNA deg-
radation. Cells were treated with CGP53353 (5 uM) or vehicle (DMSO)
for 30min prior to the addition of LPS (10ng/ml) and PMA (100nM).
After 4h actinomycin D (1 ug/ml) was added to the cell culture. Incu-
bations were terminated at indicated time points after actinomycin D and
extracted total RNA was subjected to real time PCR. TTP mRNA levels
were normalized against GAPDH mRNA. Values are mean + S.E.M.
(n=3).
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Fig. 7. The effect of PKCRII
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omycin D assay (Fig. 6). CGP53353 (5 pM) was added to the
cell culture 30 min prior to the addition of the combination
of LPS (10ng/ml) and PMA (100nM). After 4h incubation,
transcription inhibitor actinomycin D (1 pg/ml) was added
into the cell culture. Cells were then further incubated for
0, 1, 2 or 3h before total RNA was extracted. As shown in
Figure 6, CGP53353 had no effect on TTP mRNA half-life.
These results suggest that the suppressive effect of PKCP
inhibitors on LPS + PMA-induced TTP mRNA levels is me-
diated at the level of TTP transcription and not at the level of
TTP mRNA stability.

CGP53353 Inhibited the Activation of Transcription
Factor AP-2 as Measured by Its Nuclear Translocation
by Western Blotting

To study the possibility that the effects of CGP53353 on TTP
expression are mediated through its effects on transcription
factors, we measured the activation of NF-kB, AP-2, EGR1
and Spl after CGP53353 treatment. These transcription fac-
tors have been reported to have at least one binding site in the
TTP gene promoter or intron region [2,38,39]. CGP53353
(5uM) was added to the cell culture 30min prior to the
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Fig. 8. The effect of PKC downregulation by PMA preincubation on nu-
clear translocation of transcription factor AP-2. J774 cells were treated
with vehicle (= no preincubation) or with 1 uM PMA for 16h before
the addition of LPS (10ng/ml) or the combination of LPS (10ng/ml)
and PMA (200nM). After 30 min the incubations were terminated and
nuclear extracts were prepared. AP-2 translocation to the nuclei was
determined by Western blotting. Lamin A/C was detected as a loading
control. Chemiluminescent signal was quantified as described under
Materials and Methods. Values are mean + S.E.M. (n = 3-4). **P <0.01
as compared to unstimulated cells.

addition of the combination of LPS (10ng/ml) and PMA
(100nM). After 30min (AP-2) or 1h (NF-kB p65, EGR1
and Spl) incubation with LPS + PMA cytosolic and nuclear
proteins were extracted and the activation of transcription
factors was measured as their translocation from the cytosol
to the nuclei by Western blot. CGP53353 reduced the activa-
tion of AP-2 (Fig. 7a), but it had no effect on the activation
of NF-kB, EGRI and Spl (Fig. 7b—d).

To further confirm the role of cPKC in the regulation
of activation of AP-2, we studied the LPS + PMA-induced
activation of AP-2 also in cells in which cPKC isoenzymes
had been downregulated by preincubation with PMA. First,
cells were preincubated for 16h with vehicle or 1 uM PMA
to downregulate cPKC expression. Thereafter LPS (10ng/
ml) or LPS together with PMA (200nM) was added into
the culture, and after 30 min, cytosolic and nuclear proteins
were extracted and the activation of AP-2 was measured as
its translocation from the cytosol to the nuclei by Western
blot. The treatment with the combination of LPS and PMA
enhanced nuclear translocation of AP-2 in control cells.
However, downregulation of cPKCs by preincubation with
PMA totally abolished the LPS + PMA-induced activation
of AP-2 (Fig 8).

This data suggest that the effects of classical PKC isoen-
zymes, especially PKCPII, on LPS + PMA —induced expres-
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sion of TTP may be mediated, at least in part, through the
activation of transcription factor AP-2 in J774 macrophages.

Discussion

In the present study we have shown that inhibition of clas-
sical PKC isoenzymes downregulates the expression of TTP
in activated macrophages and that the downregulation is
mainly due to the inhibition of PKCII. In addition, we have
presented a possible mechanism for the regulation of TTP
expression by PKCBII. Our data suggest that the regulation
may be mediated, at least partly, through activation of tran-
scription factor AP-2 by PKCpII.

PKC is known to regulate cellular functions in an isoen-
zyme-specific manner [22]. PKC isoenzymes exhibit differ-
ent patterns of tissue expression, PKCa, BI, BIL, d, € and
C being the most ubiquitous isoenzymes [32]. In addition,
differences in subcellular localization as well as in activa-
tor and substrate requirements imply to functional diversity
among isoenzymes. We have previously studied the expres-
sion of cPKC isoenzymes in murine J774 macrophages, and
shown that PKCa, BI and BII, but not PKCy, are expressed
in these cells [29]. Classical isoenzymes PKCBI and PKCBII
are generated by alternative splicing from a single gene locus
and they are expressed as major PKC isoforms in a variety
of tissues [40].

cPKCs may upregulate inflammatory genes by activating
inflammatory transcription factors NF-xB and AP-1 [22, 26,
27]. The present results suggest also an inhibitory effect of
mRNA stability by upregulating TTP and thus serving as a
possible anti-inflammatory feed-back mechanism.

TTP is a factor that binds to AU-rich elements within
certain mRNAs and causes destabilization of those mRNAs.
AU-rich elements (AREs) are critical cis-acting elements
in the 3’UTRs of many cytokine and transcription factor
mRNAs and they are targets for trans-acting proteins that
regulate mRNA stability and translation. At least 14 distinct
proteins have been identified as ARE binding proteins. How-
ever, only few of them have been shown to regulate mRNA
stability [41]. These include AU-rich element RNA-binding
protein 1 (AUF1), HuR and TTP [4, 42, 43]. TTP was origi-
nally described as an immediately activated early gene that
was induced in response to stimuli such as insulin and other
growth factors, activators of innate immunity, and phorbol
esters [1-3]. Today, TTP is the best-understood member of
a small family of tandem CCCH zinc-finger proteins, the
other members being TIS11b (also known as ZFP36L1,
cMGl1, ERF1, BRFI and Berg36) and TIS11d (also known
as ZFP36L.2, ERF2 and BRF2) [44]. TTP has been shown to
regulate the stability of mRNAs of inflammatory genes TNF-
a, GM-CSF, IL-2, IL-3, IL-6, COX-2 and iNOS [4-10]. In
addition, Jalonen et al. [45] have recently provided data sug-
gesting that IL-12, MIP2 (a homologue to human IL-8) and
MIP3a. are novel inflammatory cytokine targets for TTP-me-
diated mRNA decay.

Today, the role of TTP in inflammation has become more
evident. Mice deficient in TTP appear normal at birth, but in
a few months time they develop a severe inflammatory syn-
drome including polyarticular arthritis, myeloid hyperplasia,
autoimmunity and cachexia [4, 11]. Repeated injections of
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a specific antibody against mouse TNF-a completely pre-
vented the development of TTP deficiency phenotype, indi-
cating that this severe inflammatory syndrome is mainly due
to excessive production of TNF-a, which for one part leads
to excessive production of GM-CSF and other inflammatory
factors [44, 46]. This has made TTP a potential target for
the development of new anti-inflammatory drugs. Overall,
in the treatment of inflammatory diseases, shutting down
inflammatory genes, which are already activated, is a more
reasonable target of drug treatment compared to trying to af-
fect the early events in the transcriptional regulation of the
inflammatory factors. The experimental data so far suggest
that factors that enhance TTP expression are likely to have
anti-inflammatory effects through reduced expression of in-
flammatory genes.

In the present study, we investigated the role of classical
PKC isoenzymes in the regulation of TTP expression in J774
macrophages. In our previous study [29] we showed which
cPKC isoenzymes are expressed in J774 cells. In this study,
we demonstrated the conditions where cPKC isoenzymes
are activated and downregulated after PMA treatment and
used this knowledge to investigate their role in the regulation
of TTP expression. Treatment of J774 macrophages with a
combination of LPS and PMA enhanced TTP protein and
mRNA expression and the effect was greater than that caused
by LPS alone. Downregulation of cPKCs by a preincubation
with a higher concentration of PMA abolished the effect of
LPS + PMA —treatment indicating that cPKCs take part in
the regulation of TTP expression. However, PMA preincuba-
tion did not alter the levels of TTP expression when the cells
were treated with LPS alone.

The role of different cPKC isoenzymes in the regulation
of TTP expression was studied using PKC inhibitors with
distinct isoenzyme selectivity. RO318220 has been reported
to inhibit PKC isoenzymes o, 8, y and ¢ [34] and GO6976
all classical isoenzymes [33]. More selective inhibitors were
LY333531, inhibitor of PKCPI and BII [36], and CGP53353,
inhibitor of PKCPII [37]. All four inhibitors reduced LPS +
PMA —induced TTP protein and mRNA expression, while
HBDDE, an inhibitor of PKCa [35], had no inhibiting ef-
fect on TTP mRNA expression. These results indicate that
cPKCs, most likely PKCBII, take part in the regulation of
TTP expression in murine macrophages. In general, the se-
lectivity of kinase inhibitors is not always very clear. Both
RO318220 and GO6976 have been reported to inhibit also
mitogen and stress activated protein kinase 1 (MSK1) [47],
which has been reported to take part in the regulation of TTP
expression [16]. Although our results with cells in which
classical PKCs had been downregulated by PMA preincu-
bation support our finding with PKC inhibitors, the role of
MSKI1 can not be ruled out. Furthermore, PKCP inhibitors
seemed to have a slightly bigger effect on TTP protein than
TTP mRNA levels. This may signify that PKCp isoenzymes
take part also in the regulation of TTP protein stability. This
possibility can not be excluded based on current data but re-
quires further studies.

In order to determine the mechanisms by which cPKCs
regulate TTP expression we first investigated the degrada-
tion of TTP mRNA. Our results show that PKCPII inhibi-
tor CGP53353 did not affect the stability of TTP mRNA as
measured by actinomycin D assay, indicating that the effect
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of PKCPII on TTP expression is rather at the level of TTP
transcription.

Binding sites for NF-xB, Sp1, EGR1 and AP-2 are found
in the TTP gene promoter or intron [2, 38, 39, 48]. There-
fore we studied the effects of PKCPII inhibitor on the acti-
vation of those four transcription factors. PKCPII inhibitor
CGP53353 had no effect on the activation of NF-kB, Spl
or EGR1 but it reduced the activation of transcription fac-
tor AP-2 as determined by nuclear translocation of AP-2 by
Western blotting. In general, activation of AP-2 transcription
factor family is involved in the regulation of cell growth, dif-
ferentiation and inflammation associated genes [49]. AP-2 is
known to be induced by e.g. cytokines, phorbol esters and
cyclic AMP (cAMP) [49-51] and it has been shown to be
involved in PKC signaling pathways [52-57].

The expression of TTP has not been studied as inten-
sively as the functions of TTP in cellular systems. How-
ever, MAP kinases p38, INK, ERK1/2 and MK?2 as well as
cAMP-enhancing compounds and TTP itself have been re-
ported to regulate the expression of TTP, either at the level
of subcellular localization, transcription, mRNA stability
or protein degradation [12-14, 16-19, 58-60]. Recently,
dexamethasone as well as cinnamon extract, cinnamon
polyphenols and green tea were reported to modulate TTP
expression [15, 61, 62]. Our current results extend the pre-
vious data by providing evidence that classical PKC isoen-
zymes, most probably PKCPII, upregulate TTP expression
in activated macrophages and that the regulation may be, at
least partly, mediated through the activation of AP-2 tran-
scription factor.
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Tristetraprolin (TTP) binds to AU-rich elements within the mRNAs of several inflammatory genes and causes
destabilization of the target mRNAs. The protein kinase C (PKC) pathway represents a major signalling system in
inflammation and PKCS is one of the key isoenzymes in the regulation of inflammatory processes. In the present
study, we investigated the role of PKC6 in the regulation of the expression of tristetraprolin in activated
macrophages by using the PKC6 inhibitor, rottlerin, and by downregulating PKCS expression by using PKCS siRNA.
TTP protein and mRNA expression were measured by Western blotting and quantitative RT-PCR, respectively. TTP

Ih(,f::rvg;f;ge and TNFa mRNA decays were studied by the actinomycin D assay. In addition, we measured nuclear translocation
mRNA decay of transcription factors believed to be important for TTP transcription, i.e. NF-xB, AP-2, SP1 and EGRI.
Protein kinase Co Downregulation of PKCS by siRNA decreased significantly TTP expression in activated macrophages. Rottlerin also
Rottlerin decreased TTP expression in wild type cells but not in cells in which PKC had been downregulated by siRNA.

TNFa (tumour necrosis factor-o)
TTP (tristetraprolin)

Rottlerin decreased TTP mRNA half-life as measured by actinomycin D assay but it did not affect the nuclear
translocation of transcription factors NF-xB, Sp1, AP-2 or EGR1 (which have been shown to be involved in TTP
transcription). In addition, rottlerin reduced the decay of TNFou mRNA, which is an important target of TTP. The
results suggest that PKCS up-regulates the expression of TTP by stabilizing its mRNA which may serve as a feed-

back loop to regulate the inflammatory response.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Tristetraprolin (TTP) was found more than 15 years ago as an early
response gene which was induced in response to growth factors,
inflammatory stimuli and phorbol esters (DuBois et al., 1990; Lai et al.,
1990; Varnum et al., 1989). TTP is known to bind to AU-rich elements
within the mRNAs of its target genes, leading to destabilization of the
mRNA and reduced production of the protein (Blackshear, 2002). In a
knock-out mouse model, the lack of TTP has been shown to increase
the stability of tumour necrosis factor-o (TNFat) (Carballo et al., 1998;
Lai et al., 1999), granulocyte-macrophage colony-stimulating factor
(Carballo et al., 2000), interleukin-2 (Ogilvie et al, 2005), and
interferon-y (Ogilvie et al., 2009) mRNAs, and the production of
those proinflammatory cytokines. TTP has also been reported to
regulate the expression of inflammatory genes cyclooxygenase 2,
interleukin-3, interleukin-6, inducible nitric oxide synthase, interleu-
kin-12, macrophage inflammatory protein-2 (MIP2, a homologue to
human interleukin-8), and macrophage inflammatory protein-3a

* Corresponding author. The Inmunopharmacology Research Group, Medical School,
FIN-33014 University of Tampere, Finland. Fax: 4358 3 3551 8082.
E-mail address: eeva.moilanen@uta.fi (E. Moilanen).

0014-2999/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejphar.2009.11.014

(Stoecklin et al., 2000; Sawaoka et al., 2003; Fechir et al., 2005; Jalonen
et al.,, 2006). TTP knock-out mice appear normal at birth, but within a
few months develop a characteristic phenotype that includes loss of
body weight and body fat, severe polyarticular erosive arthritis and
myeloid hyperplasia. This has been reported to be a consequence of
excessive production of TNFa, since treatment of TTP-deficient mice
with neutralizing antibodies to TNFa could prevent the development
of this phenotype (Taylor et al., 1996). TTP can be considered as an
anti-inflammatory or arthritis suppressive gene.

Protein kinase C (PKC) is a family of serine/threonine kinases that
play a crucial role in cellular signal transduction. Members of PKC
family are divided into three groups based on their structure and
cofactor requirements. Conventional isoenzymes (o, BI, BII and vy)
require calcium, diacylglycerol and phosphatidylserine for activation.
Novel isoenzymes (8, €, ) and 0) are calcium independent, but require
diacylglycerol and phosphatidylserine for activation. The third group,
atypical isoenzymes (¢ and L/\), are independent of both calcium and
diacylglycerol for activation (Hofmann, 2004; Spitaler and Cantrell,
2004). PKC isoenzymes regulate various inflammatory responses and
they may be considered as key signalling mediators in inflammation
(Lee et al., 2008).

PKC6 was first cloned from rat brain cDNA library and was
biochemically characterized in the late eighties by Ono et al. (1987).
PKCS is the most extensively studied isoenzyme of the novel PKC
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group. It is ubiquitously expressed in various cells and tissues and it
has been shown to participate in the regulation of cell growth and
differentiation, apoptosis and immune function (Lee et al., 2008;
Kikkawa et al., 2002; Steinberg, 2004). The objective of the present
study was to investigate the role of PKCS in the regulation of the
expression of TTP in activated macrophages. That was based on the
previous findings that phorbol esters (which, in addition to their
other effects, also activate PKCS) enhance the expression of TTP
(Varnum et al., 1989; Leppdnen et al., 2008). Our results suggest that
PKCS is involved in the regulation of TTP expression by influencing
the stability of TTP mRNA.

2. Materials and methods
2.1. Materials

Reagents were purchased as follows: mouse monoclonal Spl
antibody, rabbit polyclonal 3-actin, lamin A/C, PKCS and AP-2 antibodies
and goat anti-rabbit HRP-conjugated polyclonal antibodies were from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA) and goat anti-
mouse HRP-conjugated antibody was from Pierce Biotechnology
(Rockford, IL, USA). NF-kB p65 and EGR1 antibodies were from Cell
Signalling Technology (Danvers, MA, USA). PKCS siRNA, non-targeting
control siRNA and DharmaFECT 4 transfection reagent were from
Dharmacon (Lafayette, CO, USA). All other reagents were from Sigma
Chemical Co (St. Louis, MO, USA). The mouse TTP antibody was a kind
gift from Dr Perry Blackshear (NIEHS, Research Triangle Park, NC, USA).
Rottlerin was obtained from Sigma Chemical Co. (St. Louis, MO, USA)
and the purity was >85% by HPLC according to the manufacturer.
Rottlerin was dissolved in DMSO to obtain 10 mM stock solution which
was stored at —20 °C. It was further dissolved in culture medium with a
ratio of 1:1000 immediately prior to every experiment. The DMSO
concentration in cell culture experiments was adjusted to 0.1% in
controls and in all rottlerin concentrations used, and it was tested not to
affect TTP expression.

2.2. Cell culture

J774 macrophages (American Type Culture Collection, VA, USA) were
cultured at 37 °C in 5% CO, atmosphere in Dulbecco's modified Eagle's
medium with Ultraglutamine 1 (Cambrex BioScience, Verviers, Belgium)
supplemented with 10% heat-inactivated foetal bovine serum (Cambrex
BioScience), 100 U/ml penicillin, 100 pg/ml streptomycin and 250 ng/ml
amphotericin B (Gibco, Paisley, UK) and harvested with trypsin-EDTA
(Gibco). Cells were seeded on 24-well plates for RT-PCR and on 6-well
plates for Western blot analysis and cells were then grown for 72 h to
confluence prior to the experiments. The toxicity of rottlerin was
evaluated by measuring cell viability using the XTT test (Roche
Diagnostics, Mannheim, Germany) and by the Trypan blue method.

2.3. Preparation of cell lysates for TTP protein expression studies

Cells were incubated with rottlerin for 30 min prior to the addition of
lipopolysaccharide (LPS, 10 ng/ml) and phorbol 12-myristate 13-acetate
(PMA, 100 nM). At the indicated time points, cells were rapidly washed
with ice-cold phosphate-buffered saline (PBS) and solubilized in cold lysis
buffer containing 10 mM Tris-base, pH 7.4, 5mM ethylenediamine
tetraacetate (EDTA), 50 mM NaCl, 1% Triton X-100, 0.5 mM phenyl-
methylsulfonyl fluoride (PMSF), 1 mM sodiumorthovanadate (Na,VOy,),
20 pg/ml leupeptin, 50 pg/ml aprotinin, 5 mM sodium fluoride (NaF),
2 mM sodium pyrophosphate and 10 pM n-octyl-B-D-glucopyranoside.
After incubation for 15 min on ice, the cell lysates were centrifuged
(13400xg, 4 °C, 10 min), supernatants were collected and stored in
SDS sample buffer at — 20 °C. An aliquot of the supernatant was used to
determine the protein concentration with the Coomassie blue method
(Bradford, 1976).

2.4. Preparation of nuclear extracts for transcription factor translocation
studies

J774 cells were seeded on 10-cm dishes and grown for 72 h to
confluence before the experiments. Cells were incubated with
rottlerin for 30 min prior to the addition of LPS (10 ng/ml) and PMA
(100 nM). Thereafter, at the indicated time points, cells were rapidly
washed with ice-cold PBS and nuclear extracts were prepared as
described previously (Sareila et al., 2006). The protein contents of the
nuclear extracts were measured by the Coomassie blue method
(Bradford, 1976).

2.5. Preparation of soluble and particulate fractions for PKC6
translocation studies

At the indicated time points, cells were rapidly washed with ice-
cold PBS and solubilized in cold buffer A (20 mM Tris-base, pH 7.4,
10 mM EDTA, 5 mM EGTA, 0.5 mM PMSF, 2 mM Na,VO,, 10 mg/ml
leupeptin, 25 mg/ml aprotinin and 1.25 mM NaF). After incubation for
15 min on ice, the lysates were centrifuged at 100000xg for 1 h at
4 °C, supernatants were collected and marked as the soluble fraction.
Pellets were resuspended in cold lysis buffer B (20 mM Tris-base, pH
7.4,10 mM EDTA, 5 mM EGTA, 1% Triton X-100, 0.5 mM PMSF, 2 mM
Na,VO,4, 10 mg/ml leupeptin, 25 mg/ml aprotinin, 1.25 mM NaF and
10 mM n-octyl-B-D-glucopyranoside). After incubation for 2 h on ice,
the lysates were centrifuged at 100 000x g for 1h at 4 °C, super-
natants were collected and marked as the particulate fraction. An
aliquot of the supernatant was used to determine the protein
concentration by the Coomassie blue method (Bradford, 1976).

2.6. Western blotting

Prior to Western blotting, proteins were boiled for 10 min with
SDS sample buffer and 20 pg (PKCS studies) or 30pg (TTP and
transcription factor studies) of protein was loaded per lane on 10% or
12% SDS-polyacrylamide gel and transferred to the Hybond ECL™
nitrocellulose membrane (Amersham Biosciences UK, Ltd, Little
Chalfont, Buckinghamshire, UK). After the transfer, the membrane
was blocked in TBS/T (20 mM Tris-base pH 7.6, 150 mM Nacl, 0.1%
Tween-20) containing 5% non-fat dry milk or 5% bovine serum
albumin for 1h at room temperature and incubated with primary
antibody in the blocking solution at 4 °C overnight. The membrane
was washed with TBS/T and incubated with the secondary antibody
in the blocking solution for 30 min at room temperature and
washed. Bound antibody was detected using Super Signal® West
Pico and Dura chemiluminescent substrates (Pierce, Rockford, USA)
and FluorChem™ 8800 imaging system (Alpha Innotech Corporation,
San Leandro, CA, USA).

2.7. RNA extraction and quantitative real-time PCR (RT-PCR)

Cell homogenization, RNA extraction, reverse-transcription of RNA
to cDNA and PCR reactions were performed as previously described
(Salonen et al., 2006). Primers and probes (Table 1) for TTP, TNFa and
GAPDH (glyceraldehyde-3-phosphate dehydrogenase, used as a
control gene) were designed using Primer Express® Software
(Applied Biosystems, Foster City, CA, USA) and supplied by Metabion
(Martinsried, Germany).

2.8. Downregulation of PKC6 expression by siRNA

PKCS expression was downregulated using Dharmacon ON-
TARGET plus siRNA oligos. ]J774 macrophages were grown to ~80%
confluence and transfected with PKC5 siRNA or non-targeting control
siRNA using DharmaFECT 4 transfection reagent according to the
manufacturer's instructions (Dharmacon). Cells were incubated for
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Table 1
Primer and probe sequences.

Gene Oligonucleotide Sequence 5'—3’
Murine TTP Forward primer CTCAGAAAGCGGGCGTTGT
Reverse primer GATTGGCTTGGCGAAGTTCA
Probe CCAAGTGCCAGTTTGCTCACGGC
Murine TNFo Forward primer AATGGCCTCCCTCTCATCAGTT
Reverse primer TCCTCCACTTGGTGGTTTGC
Probe CTCAAAATTCGAGTGACAAGCCTGTAGCCC
Murine GAPDH Forward primer GCATGGCCTTCCGTGTTC
Reverse primer GATGTCATCATACTTGGCAGGTTT
Probe TCGTGGATCTGACGTGCCGCC

6 h with siRNA duplexes and the transfection reagent. Subsequently,
the medium was replaced with fresh culture medium, and cells were
further incubated for 42 h before the extraction of proteins. PKC
protein levels were determined by Western blotting.

When the effect of the downregulation of PKCS by siRNA on the
expression of TTP was determined, cells were transfected as described
above. After 42 h incubation with fresh culture medium, cells were
incubated with rottlerin for 30 min prior to the addition of LPS (10 ng/ml)
and PMA (100 nM). Incubations were terminated after 9 h and proteins
were extracted. TTP protein levels were determined by Western blotting.

2.9. Statistics

Results are expressed as mean + standard error of mean (S.E.M.).
Statistical significance of the results was calculated by analysis of
variances supplemented with Dunnett multiple comparisons test.
Differences were considered significant at P<0.05.

3. Results
3.1. PKCé is expressed in J774 macrophages, and activated by PMA

PKCd was expressed in resting J774 macrophages. When the cells
were incubated with a known activator of PKC, phorbol ester PMA
(100 nM) for 10 min, PKC5 was activated. This was detected as
translocation of the enzyme from the cytosol to the membrane fraction
(Fig. 1).

3.2. Rottlerin downregulates TTP protein and mRNA expression

Rottlerin (which inhibits PKCS; Gschwendt et al., 1994) was added
into the culture medium 30 min prior to activating the cells with LPS
(10 ng/ml) and PMA (100 nM), and TTP protein and mRNA were
measured by Western blotting and quantitative RT-PCR, respectively.
As shown in Fig. 2A, rottlerin inhibited TTP protein expression in a
dose-dependent manner. Rottlerin (10 pM) also decreased TTP mRNA
expression (Fig. 2B).

10 min

control

PMA 100 nM

Fig. 1. Expression of PKC5 in J774 macrophages, and its activation after treatment with
the phorbol ester, PMA. Cells were incubated in the absence (control) or in the presence
of 100 nM PMA for 10 min and then cytosolic and membrane fractions were prepared.
PKC5 levels were assessed by Western blotting using an isoenzyme specific antibody.
The panel shown is representative of the three others with similar results. S = soluble
fraction, P = particulate fraction.
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Fig. 2. Effects of rottlerin on TTP protein and mRNA expression in J774 cells. A. Cells
were treated with increasing concentrations of rottlerin for 30 min before the cells
were activated by adding LPS (10 ng/ml) and PMA (100 nM). After 9 h, the incubations
were terminated and immunoblots were run using an antibody against TTP. Actin was
detected as a loading control. Values are mean + S.E.M. (n=4). *P<0.05, **P<0.01 as
compared with cells treated with LPS+PMA. B. Cells were treated with rottlerin
(10 uM) or vehicle (DMSO) for 30 min before the addition of the stimuli. After 6 h, the
incubations were terminated and extracted total RNA was subjected to real-time PCR.
TTP mRNA levels were normalized against GAPDH mRNA. Open column represents
unstimulated cells, and dark grey column represents LPS 4+ PMA treated cells in the
absence of rottlerin. Values are mean + S.E.M. (n =3). **P<0.01 as compared with cells
treated with LPS + PMA.

3.3. Downregulation of PKC6 by siRNA reduces TIP expression

Cells were treated with siRNA targeting PKC6, and there was a
significant reduction in PKC6 expression (Fig. 3A). Under these
conditions, TTP expression was clearly lower than in cells treated
with the negative control siRNA (which did not alter PKC6 expression)
(Fig. 3B). Moreover, when cells were treated with PKC5 targeting
siRNA, rottlerin had no effect on TTP expression. These results indicate
that inhibition and downregulation of PKC5 reduce TTP expression in
activated macrophages and that the effects of rottlerin are mediated
through inhibition of PKC6. In the subsequent studies, we investigated
the mechanisms by which rottlerin inhibits TTP expression.

3.4. Rottlerin does not affect the nuclear translocation of transcription
factors NF-kB, Sp1, AP-2 and EGR1

Transcription factors nuclear factor kappa B (NF-B), specificity
protein 1 (Sp1), activator protein-2 (AP-2) and early growth response
gene-1 (EGR1) have been shown to have at least one binding site on
the TTP gene promoter or intron region and are considered to be
important for TTP transcription (DuBois et al., 1990; Lai et al., 1995;
Lai et al., 1998). Activation of these transcription factors was studied
by measuring their translocation from the cell cytosol to its nucleus by
Western blot. Rottlerin (10 uM) was added to the cell culture 30 min
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Fig. 3. Downregulation of PKC6 by siRNA and its effect on TTP expression. J774 cells
were transiently transfected with siRNAs using DharmaFECT 4 transfection reagent.
Treatment with non-targeting siRNA (siCONTROL) was used as control. A. Protein
extracts were prepared and PKCo expression was determined using Western blotting.
The gels shown are representative of the five others with similar results. B. Cells were
treated with rottlerin (10 uM) for 30 min before the cells were activated by adding a
combination of LPS (10 ng/ml) and PMA (100 nM). After 9 h, the incubations were
terminated and immunoblots were run using an antibody against TTP. Actin was
detected as a loading control. Open column represents unstimulated cells, and dark
grey column represents LPS + PMA treated cells in the absence of rottlerin. Values are
mean + S.EM. (n=6), **P<0.01.

prior to the cells being activated by a combination of LPS and PMA.
After 30 min (AP-2) or 1 h (NF-B p65, Sp1 and EGR1) incubation, the
transcription factors present in the nuclear extracts were measured.
Nuclear levels of NF-«B (p65), AP-2 and EGR1 were increased in the
stimulated cells, but rottlerin had no effect on the nuclear transloca-
tion of any of the four transcription factors studied (Fig. 4A-D).

3.5. Rottlerin decreases TTP mRNA half-life

In the next experiments, we investigated the effects of rottlerin on
TTP mRNA decay by means of the actinomycin D assay. Rottlerin
(10 uM) was added to the cell culture 30 min prior to the cells being
activated with LPS and PMA. After 4 h incubation, actinomycin D
(1 pg/ml), an inhibitor of transcription, was added to the cell culture.
The cells were then further incubated for 0.5, 1 or 2 h before total RNA
was extracted. Real-time RT-PCR analysis showed that when
transcription was blocked with actinomycin D, the TTP mRNA levels
were decreasing faster in rottlerin treated cells (Fig. 5). The half-life of
TTP mRNA was reduced from 2 to 1 h by rottlerin.

3.6. Rottlerin affects the stability of TNFoe mRNA

In macrophages derived from TTP-deficient mice, lack of TTP has
been shown to increase the half-life of TNFae mRNA (Carballo et al.,
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Fig. 4. The effect of rottlerin on nuclear translocation of transcription factors NF-<B p65 (A),
Sp1 (B), AP-2 (C), and EGR1 (D). ]774 cells were treated with 10 M rottlerin for 30 min prior
to the stimulation with LPS (10 ng/ml) and PMA (100 nM). After 30 min (C) or 1 h (A, B, D),
the incubations were terminated and nuclear extracts were prepared. Transcription factor
levels in nuclear extracts were determined by Western blotting using specific antibodies.
Lamin A/C was used as a loading control. Open column represents unstimulated cells, and
dark grey column represents LPS+PMA treated cells in the absence of rottlerin. PDTC
100 uM was used as a control inhibitor of NF-xB. Values are mean+S.EM. (n=3-4).
**P<0.01 as compared with cells treated with LPS + PMA.
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Fig. 5. The effect of rottlerin on TTP mRNA decay. Cells were treated with rottlerin
(10 uM) for 30 min before the cells were activated by adding a combination of LPS
(10 ng/ml) and PMA (100 nM). After 4 h, actinomycin D (1 pg/ml) was added into the
cell culture to stop transcription. Incubations were terminated at the indicated time
points after actinomycin D and extracted total RNA was subjected to real-time PCR. TTP
mRNA levels were normalized against GAPDH mRNA. Open and black symbols
represent LPS+PMA treated cells in the absence or in the presence of rottlerin,
respectively. Values are mean + S.E.M. (n=3).
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Fig. 6. The effect of rottlerin on TNFou mRNA decay. ]774 cells were treated with rottlerin
(10 uM) for 30 min before the cells were activated by adding a combination of LPS
(10 ng/ml) and PMA (100 nM). After 9 h incubation, actinomycin D (1 ng/ml) was
added into the cell culture to stop transcription. Incubations were terminated at the
indicated time points after actinomycin D and extracted total RNA was subjected to
real-time PCR. TNFox mRNA levels were normalized against GAPDH mRNA. Open and
black symbols represent LPS + PMA treated cells in the absence or in the presence of
rottlerin, respectively. Values are mean + S.EM. (n=3).

1998; Lai et al, 1999). The aim was to investigate if the down-
regulation of TTP expression by rottlerin would be sufficient to alter
TNFo. mRNA decay. Rottlerin (10 uM) was added to the cell culture
30 min prior to stimuli, and after 9 h incubation (when rottlerin
evoked a clear reduction in TTP protein levels), actinomycin D (1 pg/ml),
an inhibitor of transcription, was added to the cell culture. Cells were
then further incubated for 0.5, 1, 2, or 3 h before extraction of total RNA.
Analysis of TNFoo mRNA showed that when transcription was blocked
with actinomycin D, the decay of TNFox mRNA was slower in rottlerin
treated cells (Fig. 6). The half-life of TNFoe mRNA was increased by 2 h in
cells treated with rottlerin, indicating that the downregulation of TTP by
rottlerin may be functionally significant.

4. Discussion

In the current study we were able to show that downregulation of
PKCS by siRNA and inhibition of PKCS by rottlerin reduced TTP
expression in activated macrophages. Rottlerin was demonstrated to
enhance the decay of TTP mRNA and to stabilize TNFoe mRNA.

TTP is recognized as an important factor in inflammation and
immunity. It is known to mediate its functions by altering the stability
of mRNAs of several transiently expressed inflammatory genes. Studies
on the regulation of TTP expression have focused mainly on the effects of
mitogen-activated protein kinases (MAPKs) (Mahtani et al., 2001; Brook
et al,, 2006; Hitti et al., 2006). Very little is known about the possible role
of other protein kinases, including PKC. However, phorbol esters are
known to enhance TTP production (Varnum et al., 1989) and though they
have many effects, they also activate classical and novel PKC isoenzymes
(Spitaler and Cantrell, 2004). This suggests that the PKC pathways could
be involved in the regulation of TTP expression. In our earlier study,
classical PKC isoenzymes were shown to take part in the regulation of TTP
expression and PKCBII seemed to up-regulate TTP expression by affecting
the activity of transcription factor AP-2 (Leppdnen et al., 2008). The
present study extends the previous data by providing evidence, for the
first time, that another PKC isoenzyme, i.e. PKC (belonging to novel
PKCs), is likely to up-regulate TTP expression by stabilizing its mRNA.
These two studies together indicate that PKC is involved in the regulation
of TTP expression, but the underlying mechanisms of regulation seem to
be different in these two PKC isoenzymes.

The PKC family, including PKCS, is a major signalling system in
inflammation. The role of PKCS in inflammation and immunity was

confirmed when PKCS knock-out mice were developed independently
by two groups (Leitges et al., 2001; Miyamoto et al., 2002). The PKC6
deficient mice showed increased proliferation of B lymphocytes and
were prone to suffer autoimmune diseases (Miyamoto et al., 2002).
Mecklenbrduker et al. (2002) reported that a deficiency in PKCS
resulted in the maturation and differentiation of self-reactive B-cells
and proposed a role for PKC6 in the production of immunologic
tolerance.

Rottlerin, also known as mallotoxin, is a natural compound
isolated from Mallotus philippinensis. Rottlerin was first found to be
an inhibitor of PKCS in the study of Gschwendt et al. (1994). They
investigated the effects of rottlerin on PKC6 in a kinase assay using
both an enzyme isolated from porcine spleen and a recombinant
enzyme from baculovirus-infected Sf9 insect cells, and found ICsq
values of 3 and 6 pM, respectively. Higher concentrations of rottlerin
inhibited also other PKC isoenzymes, e.g. ICso=42 pM for PKC(3. In
the study of Keenan et al. (1997), the selectivity of rottlerin towards
PKC6 was demonstrated in a rapid in vivo assay using individual PKC
isoenzymes expressed in fission yeast Schizosaccharomyces pombe.
However, Davies et al. (2000) assayed a wide range of kinases and
noted, that rottlerin inhibited also other kinases i.e. MAPKAP-K2,
PRAK, PDK1 and PKA. In the current study, PKCS was found to be
expressed in ]J774 macrophages, and it was activated by PMA.
Downregulation of PKC6 by siRNA reduced TTP expression as did
rottlerin treatment. Moreover, rottlerin had no effect on TTP
expression in cells in which PKC6 had been downregulated by
siRNA. Therefore it seems likely that the effects of rottlerin on TTP
expression found in the present experiments were mediated through
inhibition of PKCb.

In the next series of experiments, the mechanisms involved in
regulation of TTP expression by rottlerin were investigated in more
detail. Rottlerin had no significant effect on the nuclear translocation
(activation) of NF-kB, Sp1, AP-2 or EGR1, which are transcription
factors known to participate in TTP expression or to have a binding
site on the TTP gene intron or promoter region (DuBois et al., 1990; Lai
etal., 1995; Lai et al., 1998). In contrast, when the effect of rottlerin on
TTP mRNA stability was investigated using an mRNA degradation
assay, we observed a more rapid TTP mRNA decay in rottlerin treated
cells. However, the specific molecular mechanisms responsible for the
PKC6-mediated destabilization of TTP mRNA remain to be clarified.

We also made a preliminary attempt to evaluate if the inhibitory
effect of rottlerin on TTP expression might have functional effects on
TTP target genes. TTP-deficient mice are known to have elevated
levels of TNFa due to increased TNFae mRNA stability (Carballo et al.,
1998; Lai et al., 1999). In the present study, we found that rottlerin
reduced the TTP protein levels significantly when measured after 9 h
incubation, and under these conditions TNFoe mRNA decay was also
reduced in rottlerin treated cells. This suggests that the changes seen
in TTP protein levels after rottlerin may have functional significance.

In summary, these results provide evidence that inhibition and
downregulation of PKCS inhibit the expression of TTP in activated
macrophages and indicate that PKC6 is involved in the up-regulation
of TTP expression via a mechanism related to the stabilization of TTP
mRNA which, in turn, may serve as a feed-back loop to downregulate
the inflammatory reaction.
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