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Abstract

This thesis considers the detection of muscle contractions and saccadic eye
movements on the basis of biomedical signals originating from facial land-
marks. The detection task is performed with detectors that operate on the
measured signals and recognise phenomena that are characteristic to the
above physiological events. While participating in two successive projects
aimed at developing novel human-computer interaction techniques, the au-
thor of the thesis designed, implemented, and tested practical detectors that
can be used to detect the aforementioned physiological events. The main
design goals were the capability of operating in the presence of noise, the
capability of adapting to changes in the noise characteristics, the capabil-
ity of processing signals originating from different subjects without laborious
search for suitable parameters, and low computational requirements, which
is essential if a detector is used in a near real-time application such as a
human-computer interface. The developed detectors can also be used in
other types of human-machine interfaces. Example tasks include guiding a
wheelchair, operating assistive robots and platforms, and controlling artificial
prostheses. Although human-computer interaction gave the basic motivation
for the research, there is no reason why the developed detectors could not be
used in more traditional medical applications, such as research work, medical
diagnosis, and patient monitoring.

Keywords: biomedical signal processing, detection theory, electromyogra-
phy, electro-oculography.
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Chapter 1

Introduction

Most organisms belonging to the animal kingdom, including humans, consist
of specialised organs that constitute or are parts of various physiological
systems. These carry on many vital functions and physiological processes.
For example, the circulatory system of a human consists of the heart and
the blood vessels. It is responsible for the circulation of the blood and the
distribution of oxygen and nutrients in the body. Physiological systems are
accompanied by or generate signals that describe their state and functions.
Such signals are commonly referred to as biomedical signals, or biosignals
for short. Biomedical signals appear in different types, including electrical,
acoustic, physical, and biochemical. Most of them can be measured with
suitable instruments that range from non-invasive surface electrodes affixed
to the skin to invasive catheter-tip sensors inserted into the cardiac chambers
of the heart. In this thesis, we are only concerned with biomedical signals that
are electrical to begin with. In other words, we are concerned with electrical
signals generated by the tissue, the organ, or the physiological system under
investigation.

As conveyors of information describing the state and functions of physi-
ological systems, biomedical signals play a significant role in medicine where
they are used in research work, medical diagnosis, and patient monitoring.
The objective of medical diagnosis is to identify diseases, defects, disorders,
damage, or other phenomena adversely affecting the functions and the gen-
eral well-being of the human body. These phenomena cause alterations in
the normal functions of a physiological system and, consequently, alter the
signals it generates. Therefore, the analysis of biomedical signals is impor-
tant when assessing the state of a physiological system. Besides physicians
performing medical diagnosis, also paramedics, emergency room staff, and
intensive care units make considerable use of biomedical signals in patient
monitoring. Novel applications include mobile health monitoring [32, 49, 73]
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that can be used to extract information describing the physical condition of
the subject. On the basis of this information, it is possible to inform the
subject of his or her health status and provide guidelines in daily life as well
as in emergency situations. In fact, with this technology it is possible to alert
medical personnel to the scene if a medical emergency should occur. This
is particularly convenient if the subject is incapacitated and there is no one
present who would call the paramedics.

Besides medical work and research, the analysis of biomedical signals has
been found valuable in other areas as well. Particularly, the use of biomedical
signals in various human-machine interfaces has been investigated. Example
tasks include using a traditional computer, guiding a wheelchair, operating
assistive robots and platforms, and controlling artificial prostheses. The basic
principle is to measure related biomedical signals from the user with suitable
instruments, analyse the measured signals in some meaningful manner, and
convert them into control commands for the particular machine. As an ex-
ample, traditional input devices used with computers, such as a keyboard
and a mouse, can be replaced with devices based on biomedical signals. The
user can, for instance, guide the cursor with his or her gaze and activate
objects by contracting facial muscles or execute commands by performing
certain facial gestures. Severely disabled people are largely excluded from
the benefits of the society. Novel human-machine interfaces enable disabled
people to use modern equipment, enjoy more services and benefits, and be an
active member of their community. All this probably improves their general
quality of life. Although most novel human-machine interfaces are designed
for disabled people, new ways to interact with machines may be beneficial
for non-handicapped people as well.

None of the applications were possible without suitable signal processing
methods. Particularly, the implementation of many applications requires the
detection of certain physiological events. Considering the background of the
thesis at hand, the need for detectors arose in two successive projects the
author participated. The first project, called Wireless Technology and Psy-
chophysiology [89], ran for four years from January 2002 to December 2005. It
was funded by the Academy of Finland. The project produced several results,
including new wireless measurement devices, models of human physiological
measurement, biosignal processing techniques employing wavelets and neural
networks, and hands-free multimodal interfaces. The second project, called
Face Interface [26], an ideological successor to the first one, started in Jan-
uary 2007 and it is also funded by the Academy of Finland. The aim of the
project is to develop a facial prosthesis that can be used to control computers
and other electronic devices, such as mobile phones, wirelessly. The prosthe-
sis uses biomedical signals originating from facial musculature and the eyes
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measured with novel light weight wireless electrode technology. This new
technology will make a significant contribution to the development of user
interfaces for people with functional challenges so that many disabilities fol-
lowing from neuronal disorders, such as spinal cord injury or amyotrophic
lateral sclerosis, can be attenuated or even overcome. The ultimate goal is to
develop a facial prosthesis that is capable of monitoring eye movements and
facial muscle activity and, at the very least, mimicking the use of a mouse
in a graphical user interface. The second project was still in progress during
the writing of this thesis.

This thesis considers the detection of muscle contractions and saccadic eye
movements on the basis of biomedical signals originating from facial land-
marks. While participating in the two previously mentioned projects, the
author of the thesis designed, implemented, and tested practical detectors
that can be used to detect the above physiological events. The detection of
muscle contractions is performed on the basis of an electromyographic signal
that describes the electrical activity of the muscle tissue. The detection of
saccadic eye movements is performed by observing the potential changes of
an electro-oculographic signal that reflects the movements of the eyes. The
main design goals were the capability of operating in the presence of noise,
the capability of adapting to changes in the noise characteristics, the capabil-
ity of processing signals originating from different subjects without laborious
search for suitable parameters, and low computational requirements, which
is essential if a detector is used in a near real-time application such as the
previously envisioned “Face Interface”. Because neither medicine nor human-
computer interaction but computer science is the major discipline of the
author, the research problem has been approached from the technical view-
points of signal processing and algorithmics. The work and its results are
presented in five articles that have been published in refereed international
journals and conferences.

The outline of the thesis is as follows. Chapter 2 gives a brief overview
of the basics of detection theory, which forms the common foundation for all
detection problems. As mentioned above, the work and its results have been
presented in form of five articles. These will be summarised in Chapter 3.
Also, brief descriptions of the relevant biomedical signals will be given in the
same chapter. Finally, we will make some concluding remarks and discuss
possible future endeavours in Chapter 4.
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Chapter 2

Basic Detection Theory

In many signal processing applications a need arises to determine if a cer-
tain type of event occurs at some particular time instant. In practice this is
accomplished by passing the observed signal through a particular system, a
detector, that makes the decision whether the event has occurred or it has
not. The discipline that concentrates on this task is called detection theory,
or signal detection theory. The alternative name comes from the fundamental
problem of detection theory: we are interested in determining if the observed
signal contains a certain signal of interest (SOI) embedded in noise or if the
observed signal is composed of noise alone. The SOI is typically understood
as a known wave shape, a specific change in the observed signal’s characteris-
tics, or some other phenomenon that is associated with the particular event.
Much of the early work in detection theory was done in the field of radar
research [57, 75, 76]. Besides radar, detection theory has an important role
in sonar technology [20], medicine [3, 17, 69, 80], psychophysics [31], various
other fields [44], and in numerous mundane appliances, such as automatic
fire alarm systems, elevator door sensors, and traffic enforcement cameras.
Model change detection, or the detection of abrupt changes [8], can be seen
as a sub-discipline of detection theory. Detection theory is also related to
pattern recognition [10, 23, 84], where the fundamental problem is to classify
a pattern between two or more categories or classes.

2.1 Neyman-Pearson theorem

The foundations of detection theory are in the mathematical and statistical
decision theory, where decision making relies on hypothesis testing. In a hy-
pothesis test we are faced with a problem of choosing between two or more
competing hypotheses. If we consider the fundamental problem of detection
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theory, we have two hypotheses to choose from: either the observed signal
is composed entirely of noise or it is a composition of the SOI and noise.
The former is referred to as the null hypothesis and the latter is called the
alternative hypothesis. Kay [44] defines two primary approaches for simple
hypothesis testing: Neyman-Pearson [60] and Bayesian [9]. The method em-
ployed depends upon our willingness to incorporate prior knowledge about
the probabilities of occurrence of the various hypotheses [44]. If we are able
to assign prior probabilities for the hypotheses, we can use the Bayesian ap-
proach. However, in most detection problems we cannot say how probable an
event is and we have to use the Neyman-Pearson approach instead. There-
fore, only the Neyman-Pearson approach will be considered in this discussion.
For more information regarding the Bayesian approach, the reader is referred
to the literature [9, 10, 23, 44, 84].

Let us denote the null and the alternative hypotheses by H0 and H1,
respectively. The Neyman-Pearson theorem states that we should decide in
favour of H1 if

Λ(x) =
p(x|H1)

p(x|H0)
> γ, (2.1)

where Λ(x) is called the likelihood ratio, x = [x0, . . . , xN−1] is an observa-
tion vector of N elements, p(x|H0) and p(x|H1) are the joint probability
density functions (PDF) of these N elements under hypotheses H0 and H1,
respectively, N is a positive integer, and the threshold γ is defined by the
probability of false alarm

Pfa =

∫
{x|Λ(x)>γ}

p(x|H0) dx,

which is the probability that the likelihood ratio is larger than the thresh-
old when the observation is composed entirely of noise. The probability of
detection

Pd =

∫
{x|Λ(x)>γ}

p(x|H1) dx

is the probability that the likelihood ratio is larger than the threshold when
the observation is a composition of the SOI and noise. Equation (2.1) is
known as the likelihood ratio test. This comes from the procedure in which
the likelihood ratio is compared with the threshold and the decision between
H0 and H1 is made accordingly. The Neyman-Pearson theorem states that
the likelihood ratio test is optimal in the sense that it maximises Pd for a
given Pfa. A hypothesis test having this property is called a uniformly most
powerful (UMP) test. Unfortunately, UMP tests seldom exist and one can
exist only if the hypothesis test is one-sided [44].
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In hypothesis testing terms, the decision between H0 and H1 is made by
comparing a relevant test statistic T (x) with a threshold γ′. A decision in
favour of H1 is typically made if

T (x) > γ′, (2.2)

although the direction of the inequality may be the opposite, which depends
on the alternative hypothesis. If the hypothesis test is two-sided, both direc-
tions have to be taken into consideration. The tests (2.1) and (2.2) appear
to be similar. However, the latter is more general because it does not im-
pose limitations on the test statistic. Indeed, the test statistic of a detector
is probably dissimilar to the likelihood ratio. Therefore, it is more conve-
nient to define the probabilities of detection and false alarm in terms of the
test statistic T (x) and the threshold γ′. By using the simplifying notation
t = T (x), we can write

Pd =

∫ ∞
γ′

f(t|H1) dt (2.3)

and
Pfa =

∫ ∞
γ′

f(t|H0) dt, (2.4)

where f(t|H1) and f(t|H0) are the test statistic’s PDFs under hypotheses H1

and H0, respectively. Assuming that all other parameters remain fixed, the
choice of the threshold γ′ can be seen to have a distinctive effect on the two
probabilities. Increasing the threshold in order to decrease Pfa results in a
lower Pd, and vice versa. A liberal detector would decide in favour of H1

every time, which results in Pd = Pfa = 1. On the other hand, if the detector
were conservative, it would decide in favour of H0 every time, whereupon
Pd = Pfa = 0. All this is to say that unless the detection problem is trivial,
false alarms and misses may occur no matter how we choose the threshold. In
other words, an undeniable and inevitable truth is that we cannot always be
correct whether we wanted to. In realistic situations, uncertainty is always
involved when making a decision of any kind. Besides the aforementioned
probabilities, two other commonly used measures are the probabilities of miss
and correct rejection:

Pmiss = 1− Pd

and
Pcr = 1− Pfa.

False alarms and misses are also referred to as Type I and II errors, or errors
of the first and second kind, respectively.
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Example 1 – Change in mean

As an example, let us consider a simple hypothesis testing problem where the
elements of x = [x0, . . . , xN−1] are independent and identically distributed
(IID) and follow the normal distribution under both the null and the alter-
native hypothesis:

xk ∼
{

N
(
0, σ2

)
under H0

N
(
µ, σ2

)
under H1,

where both the mean µ and the variance σ2 are positive and k = 0, . . . , N−1.
Because the elements of x are mutually independent, the likelihood ratio test
(2.1) is given by

Λ(x) =

N−1∏
k=0

1

σ
√

2π
exp

(
−(xk − µ)2

2σ2

)
N−1∏
k=0

1

σ
√

2π
exp

(
− x

2
k

2σ2

) =

exp

(
− 1

2σ2

N−1∑
k=0

(xk − µ)2

)

exp

(
− 1

2σ2

N−1∑
k=0

x 2
k

) > γ.

After taking the natural logarithm of both sides of the inequality and making
some simplifications, we get

ln Λ(x) = − 1

2σ2

(
−2µ

N−1∑
k=0

xk +Nµ2

)
> ln γ.

This can be further simplified to

T (x) =
1

N

N−1∑
k=0

xk >
σ2

Nµ
ln γ +

µ

2
= γ′.

In other words, we should decide in favour of H1 if the sample mean is
sufficiently large. Clearly,

T (x) ∼
{

N
(
0, σ

2

N

)
under H0

N
(
µ, σ

2

N

)
under H1.

Now, after denoting the mean and the variance of the test statistic under
hypothesis Hj by µj and σ 2

j (j = 0, 1), respectively, and recalling (2.3) and
(2.4), we get

Pd =

∫ ∞
γ′

1

σ1

√
2π

exp

(
−(t− µ1)2

2σ 2
1

)
dt = 1− 1

2

[
1 + erf

(
γ′ − µ1

σ1

√
2

)]
8



and

Pfa =

∫ ∞
γ′

1

σ0

√
2π

exp

(
−(t− µ0)2

2σ 2
0

)
dt = 1− 1

2

[
1 + erf

(
γ′ − µ0

σ0

√
2

)]
,

where erf(z) stands for the error function.1 One way to choose the threshold
value is to set Pfa = Pmiss and solve for γ′, which yields

γ′ =
σ0µ1 + σ1µ0

σ0 + σ1

.

The obtained threshold is optimal in the sense that Type I and II errors
are equiprobable. One can also fix the false alarm probability and compute
the threshold with the inverse cumulative distribution function (CDF) of the
normal distribution:

γ′ = µ0 + σ0

√
2 · erf−1

(
2(1− Pfa)− 1

)
.

According to the Neyman-Pearson theorem, this threshold maximises Pd for
the given Pfa. Considering the example of Figure 2.1, the first method yields
γ′ = 1, whereupon Pd ≈ 0.841 and Pfa ≈ 0.159. If the threshold is increased,
the Pfa is decreased, but so is Pd, as discussed earlier. If the inverse CDF
method is used instead and it is required, for example, that Pfa = 0.067, we
get γ′ ≈ 1.499 and Pd ≈ 0.692.

Example 2 – Change in variance

The second example considers a change in variance. Let the elements of
x = [x0, . . . , xN−1] be IID and follow N(0, σ 2

0 ) under H0 and N(0, σ 2
1 ) under

H1. Furthermore, let σ 2
1 > σ 2

0 > 0. This time the likelihood ratio test (2.1)
is given by

Λ(x) =

N−1∏
k=0

1

σ1

√
2π

exp

(
− x 2

k

2σ 2
1

)
N−1∏
k=0

1

σ0

√
2π

exp

(
− x 2

k

2σ 2
0

) =

1

(2πσ 2
1 )

N
2

exp

(
− 1

2σ 2
1

N−1∑
k=0

x 2
k

)
1

(2πσ 2
0 )

N
2

exp

(
− 1

2σ 2
0

N−1∑
k=0

x 2
k

) > γ.

1The error function
erf(z) =

2√
π

∫ z

0

exp
(
−t2

)
dt

is encountered when evaluating the CDF of the normal distribution. It is an odd function
and has an inverse function such that

erf
(
erf−1(z)

)
= erf−1

(
erf(z)

)
= z.
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Figure 2.1: Test statistic’s PDFs in a simple hypothesis testing problem.
If the observation consists only of noise, T (x) ∼ N(0, 1), but if the SOI is
present, T (x) ∼ N(2, 1). The vertical dashed and solid lines correspond to
thresholds γ′ = 1 and γ′ = 1.5, respectively. If γ′ = 1, Pd = Pcr ≈ 0.841 and
Pfa = Pmiss ≈ 0.159. On the other hand, if γ′ = 1.5, Pd ≈ 0.691, Pcr ≈ 0.933,
Pfa ≈ 0.067, and Pmiss ≈ 0.309. The latter two have been highlighted as dark
grey and light grey areas.

After taking the natural logarithm of both sides of the inequality and making
some simplifications, we get

ln Λ(x) =
N

2
ln

(
σ 2

0

σ 2
1

)
− 1

2

(
1

σ 2
1

− 1

σ 2
0

)N−1∑
k=0

x 2
k > ln γ,

which can be further simplified to

T (x) =
1

N

N−1∑
k=0

x 2
k >

2
N

ln γ − ln
(
σ 2
0

σ 2
1

)
1
σ 2
0
− 1

σ 2
1

= γ′.

That is to say, we should decide in favour of H1 if the sample variance is
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large enough. Because the test statistic is a scaled version of a chi-square
distributed random variable, it follows the gamma distribution under both
hypotheses [53]:

T (x) ∼

{
Γ
(
N
2
,

2σ 2
0

N

)
under H0

Γ
(
N
2
,

2σ 2
1

N

)
under H1.

(2.5)

An intuitive approach would be to choose

γ′ =
σ 2

0 + σ 2
1

2
.

But then again, an optimal threshold value in the Neyman-Pearson sense can
be computed with the inverse CDF of the gamma distribution. For example,
let N = 10, σ 2

0 = 1, and σ 2
1 = 3.5. By using our intuitive approach, we

get γ′ = 2.25, Pd ≈ 0.778, and Pfa ≈ 0.013. But if we use the inverse CDF
method instead and require, for example, that Pfa = 10−2, we get γ′ ≈ 2.321
and Pd ≈ 0.760.

The preceding discussion addressed the simple hypothesis testing prob-
lem, where it is assumed that the PDF of the observation is completely known
under each hypothesis. Particularly, it is assumed that both the distribution
families and respective distribution parameters are completely known. This
is necessary if we want to construct the likelihood ratio test: the likelihood
ratio in (2.1) depends on the PDF of the observation under both hypotheses.
In certain situations, we can make assumptions regarding the distribution
families, but we do not necessarily know all parameters. For example, even
though we do not have a complete knowledge of the interference, in most
situations it is assumed to be additive white Gaussian noise of zero mean.
The Gaussian noise assumption is done for mathematical simplicity and it
is usually justified by the central limit theorem: the superposition of nu-
merous noise sources should be approximately normally distributed. If we
have only limited knowledge of the distribution parameters, we are faced
with the composite hypothesis testing problem. The unknown parameters
can be replaced with their maximum likelihood estimates, which leads to the
generalised likelihood ratio test [44]. Also other factors, such as the com-
plexity of the likelihood ratio or statistical dependency, may complicate the
Neyman-Pearson approach. The aforementioned issues do not necessarily foil
the design process if some other approach is used. Indeed, the design of a
detector seldom begins analytically, but instead by making observations of
the SOI and the inherent noise. Based on these observations, we attempt to
design a suitable detector that does not necessarily have much in common
with the Neyman-Pearson approach. The detector is then evaluated and re-
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designed if it fails to operate satisfactorily. Most often experience, and even
intuitiveness, contributes to the design of a detector.

2.2 Practical detectors

A considerable number of signal processing applications function in real-time,
or more precisely in near real-time, whereupon practical detectors have to
be able to operate on sequential data. Because most signal processing is
nowadays carried out with digital signal processing (DSP) techniques [22,
37, 59, 62, 77], it is convenient to comprehend detectors as discrete-time
systems. The input of a discrete-time system is a signal that is represented
by a sequence

x(n) = xc(nTs),

where xc(nTs) is the analogue continuous-time signal that is sampled in order
to produce the discrete-time signal x(n), the time index n is an integer, and
the constant Ts is the sampling interval in seconds, which is the reciprocal of
the sampling frequency

Fs = 1/Ts (Hz = s−1).

According to the Nyquist-Shannon sampling theorem, the sampling frequency
has to be at least twice the bandwidth of the continuous-time signal for the
samples to describe it completely.2

A generic discrete-time detector can be understood as a cascade of two
sub-units, as portrayed in Figure 2.2. On the basis of the input signal x(n),
the test function computes the test statistic T (n). It serves as an input to
the decision logic that makes the decision regarding the presence of the SOI.
Typically, the decision logic performs a simple comparison and decides in
favour of H1 if

T (n) > γ′.

The above test is almost identical to the test (2.2), the only difference being
the notation. Particularly, the test statistic is not a function of the observa-
tion vector x, but a function of the time index n. However, the observation

2The sampling theorem is named for Harry Nyquist and Claude Shannon. It was
introduced by Nyquist [61] in 1928 and proved by Shannon [74] in 1949. The sampling
theorem states that a continuous-time signal has to be bandlimited below the Nyquist
frequency, which is half of the sampling frequency, before sampling. If this condition
is not achieved, the higher frequencies are aliased so that the original signal cannot be
unambiguously constructed from its sampled representation.
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Figure 2.2: Block diagram of a generic discrete-time detector.

vector can be understood as a snapshot in time so that its elements cor-
respond to consecutive samples of the input signal. The analogy can be
expressed with the identity

xk = x(n− k), (2.6)

where k = 0, . . . , N − 1. The outcome of the test is reflected by the binary
output signal

y(n) =

{
1 if T (n) > γ′

0 otherwise.

The decision logic may be more sophisticated if necessary. For example, it
may involve the estimation of several SOI related parameters that are used in
conjunction with the test statistic to make the final decision. Indeed, several
unambiguous criteria may have to be fulfilled before a decision in favour of
H1 is made.

It depends mainly on the requirements of the framework system whether
the output signal should be one for each time step the detection criteria are
fulfilled. If the task is to detect the discrete occurrences of the SOI, then it
is convenient that the detector gives an indication of detection only once for
each detected occurrence. This may happen, for example, after all criteria
have been fulfilled. New detections are typically impossible until a certain
refraction criterion has been fulfilled. For example, it may be required that
the test statistic has to cross the threshold in the opposing direction before
new detections are possible. In addition, premature detections are typically
suppressed by preventing the decision logic from making any decisions until
the detector is fully immersed in the input signal. This can be accomplished,
for example, by fixing the test statistic to some neutral value until full im-
mersion occurs. Naturally, the exact immersion requirements depend on the
actual implementation.

Because practical detectors operate on sequential data, the input samples
contributing to the test statistic will occasionally originate from a region that
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can be understood as a transition between H0 and H1. Therefore, it is justi-
fied to ask are the probabilities of detection and false alarm valid measures
of detection performance. They are because it does not make much of a
difference whether detection is triggered by data that completely consists of
the SOI or only partially does. It is usually assumed that if detection had
occurred in the latter case, then it would certainly have happened in the
former case as well. By making such assumption, one simplifies the perfor-
mance evaluation of a detector. Therefore, when evaluating the detection
performance of a detector, it is customary to consider only H0 and H1 and
to omit transitional hypotheses.

Example 3 – Segment boundary detection

In certain applications it may be necessary to identify boundaries between
signal segments that reflect different states of nature. From the viewpoint
of detection theory, the problem is to detect changes in the observed signal
that can be perceived as indicators of segment boundaries. In other words,
a specific change makes up the SOI. This example considers a simple model
change detection problem. For a more in-depth treatment, the reader is
referred to [8] and [44]. Let

x(n) ∼ N
(
0, σ2

)
under H0

and
x(n) ∼

{
N
(
0, σ 2

0

)
before change

N
(
0, σ 2

1

)
after change

under H1, where σ2, σ 2
0 , and σ 2

1 are positive and σ 2
0 6= σ 2

1 . The detection
problem is similar to the one considered in Example 2, albeit there are two
differences. First, the hypothesis test is two-sided. Second, we do not only
want to determine that a change has occurred, but we also want to determine
when it occurred. We will consider a detector that is shown in Figure 2.3.
The test statistic is computed with a cascade of a square-law rectifier, an
N -point moving average (MA) filter, and a division operator. The output of
the MA filter is an estimate of the signal variance. Because of the N -point
delay line, the numerator and the denominator of the division correspond to
adjacent regions of the input signal. The detector implements the famous
Fisher’s F-test for the equality of variances:

T (n) =

1

N

N−1∑
k=0

x2(n− k)

1

N

2N−1∑
k=N

x2(n− k)

> γ′ or T (n) < γ′−1.
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Figure 2.3: Block diagram of a detector that can be used to locate a change
in the variance of a zero mean signal. This detector implements Fisher’s
F-test for the equality of variances.

In other words, we decide in favour of H1 if either of the inequalities holds.
Clearly,

T (n) ∼ F
(
N,N

)
under H0

and
Pfa = FN,N

(
γ′−1

)
+ 1− FN,N

(
γ′
)
,

where Fd1,d2(z) stands for the CDF of the F-distribution with d1 numerator
and d2 denominator degrees of freedom. A detector whose test statistic’s
PDF does not depend on the noise variance under H0 is called a constant
false alarm rate (CFAR) detector [44, 75, 76]. Because this is the case, the
considered detector is a CFAR detector. The main advantage of a CFAR
detector is that the threshold can be determined without knowledge of the
noise variance. Indeed, a threshold value that guarantees a desired Pfa can
be computed with the inverse CDF method:

γ′ = F−1
N,N

(
1− Pfa

2

)
.3

According to our earlier discussion regarding transitional hypotheses, we de-
fine that under H1 the segment boundary coincides with the time index
n − N + 0.5, which is located between the signal regions contributing to
the numerator and the denominator of the test statistic. The test statistic
deviates from unity according to the variance ratio σ 2

1 /σ
2

0 under H1. Hence,

σ 2
0

σ 2
1

· T (n) ∼ F
(
N,N

)
under H1.

3We have used the property

Fd,d(z−1) = 1− Fd,d(z),

which follows from the properties of the regularised incomplete beta function that is used
to define the CDF of the F-distribution.
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When determining Pd, one has to take into account the two-sided nature
of the hypothesis test and consider the two possible change directions sepa-
rately:

Pd =

 1− FN,N
(
σ 2
0

σ 2
1
· γ′
)

if σ 2
1 > σ 2

0

FN,N

(
σ 2
0

σ 2
1
· γ′−1

)
if σ 2

0 > σ 2
1 .

The detector gives an indication of a segment boundary only once for each
detection. New detections are impossible until the corresponding threshold is
crossed again in the opposite direction. An estimate of the segment boundary
location is computed by subtracting N−0.5 samples from the location of the
local extremum that is found between the threshold crossings. This places the
estimate between the aforementioned signal regions. The first 2N − 1 values
of the test statistic are fixed to unity in order to guarantee the suppression
of premature detections.

An application example is shown in Figure 2.4. The objective was to
detect segment boundaries where the signal variance changed by a significant
amount. A white Gaussian noise signal with zero mean and unity variance
was amplitude modulated with an envelope waveform whose amplitude was
switched between 1 and 2, whereupon the variance ratio can theoretically
reach 4 or 0.25 at a segment boundary, depending on the direction of the
change. The sampling frequency was 1 kHz. The length of the MA filter was
201 samples, whereupon the first 401 values of the test statistic were fixed
to unity in order to prevent premature detections. The threshold γ′ ≈ 2.009
was computed with the inverse CDF method for Pfa = 10−6. It yields Pd ≈ 1
for both directions.

Example 4 – Matched filtering

If the SOI is a deterministic signal, it is possible to use a well-known technique
called matched filtering [17, 31, 37, 44, 69, 76, 77]. A matched filter is a linear
filter whose impulse response is the time inverse of the SOI, or its close
approximation. The matched filter is optimal in the sense that it maximises
the signal(-of-interest)-to-noise ratio (SNR) at its output. The matched filter
can be derived in different ways. In this example we will use the Neyman-
Pearson approach. Let

x(n− k) =

{
w(n− k) under H0

h(k) + w(n− k) under H1
,

where the noise samples w(n−k) are IID and follow N(0, σ2) with σ2 > 0, h(k)
is the N -point impulse response of the matched filter, and k = 0, . . . , N − 1.
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Figure 2.4: Example of using the detector of Figure 2.3 to detect segment
boundaries defined by the envelope waveform (a) from a noisy signal (b).
The vertical dashed lines represent location estimates of the detected seg-
ment boundaries. The test statistic (c) represents the variance ratio between
adjacent signal regions. The horizontal dashed lines represent a two-sided
threshold chosen to accommodate for Pfa = 10−6.
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By using the notational identity (2.6), the likelihood ratio (2.1) can be written
as follows:

Λ(x) =

N−1∏
k=0

1

σ
√

2π
exp

(
−
(
x(n− k)− h(k)

)2

2σ2

)
N−1∏
k=0

1

σ
√

2π
exp

(
−x

2(n− k)

2σ2

) > γ.

After applying the identities of exponentiation, taking the natural logarithm
of both sides of the inequality, and making simplifications, the above test can
be expressed as

ln Λ(x) = − 1

2σ2

(
− 2

N−1∑
k=0

h(k)x(n− k) +
N−1∑
k=0

h2(k)︸ ︷︷ ︸
ε

)
> ln γ.

This can be further simplified to

T0(n) =
N−1∑
k=0

h(k)x(n− k) > σ2 ln γ − ε

2
= γ′0,

where ε is the squared sum of the impulse response. The test statistic is
the convolution between the matched filter’s impulse response and the input
signal, which is essentially what is done when a signal is filtered with a
discrete-time filter. One can show that

T0(n) ∼
{

N(0, σ2ε) under H0

N(ε, σ2ε) under H1
, (2.7)

which means that the actual shape of the impulse response does not affect the
probabilities of detection and false alarm. The matched filter is not optimal in
the Neyman-Pearson sense if the interference is not zero mean white Gaussian
noise, but can still be said to maximise the SNR at its output [44]. In essence,
the matched filter simply correlates its impulse response with the input signal.
If the SOI is present and it is aligned with the impulse response, the output
should be maximum. To determine an optimal threshold γ′0 in the Neyman-
Pearson sense, the inverse CDF method can be used as demonstrated in the
earlier examples.

The detector can be modified so that the cross-correlation coefficient be-
tween the filter’s impulse response and the input signal is used as the test
statistic. This is achieved by dividing the output of the matched filter by a
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Figure 2.5: Block diagram of a detector that can be used to detect the
presence of a known waveform. The design uses a matched filter whose
output T0(n) should be maximum when the SOI is present. The output of
the matched filter can be modified so that the cross-correlation coefficient
T1(n) between the input signal and the matched filter’s impulse response
is computed instead. Now the decision threshold can be chosen in a more
intuitive way by defining the relative similarity that is required for detection.

suitable normalisation factor, as depicted in the block diagram of Figure 2.5.
Now, the test is given by

T1(n) =
T0(n)√√√√ε ·

N−1∑
k=0

x2(n− k)

> γ′1.

The value of the cross-correlation coefficient always lies on the interval [−1, 1].
Hence, the threshold γ′1 can be chosen in an intuitive way by defining the
relative similarity that is required for detection. But then again, the prob-
abilities of detection and false alarm are more difficult to determine. The
difficulty comes from the fact that the test statistic is a ratio of two corre-
lated random variables from different distribution families. At least under
H0 an asymptotic distribution can be found for the modified test statistic.
Under H0, the normalisation factor can be written as√√√√ε ·

N−1∑
k=0

w2(n− k) =

√√√√εN · 1

N

N−1∑
k=0

w2(n− k) =
√
εNσ̂2,
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where σ̂2 is an unbiased estimator of σ2.4 Now, as N →∞, or in an asymp-
totic sense,

T1(n)→ T0(n)√
εNσ2

under H0.

It follows that
T1(n)

a∼ N
(
0, 1

N

)
under H0.

5

This result has been illustrated in Figure 2.6 for N = 51. The PDF estimate
was obtained with Monte Carlo simulations and the histogram method. A
histogram of the simulation results was computed and its values scaled so
that reasonable CDF estimates could be obtained with the Riemann sum
method when equal subinterval lengths were assumed. Because the test
statistic’s asymptotic PDF does not depend on the noise variance under
H0, the modified matched filter detector can be said to be asymptotically a
CFAR detector.

The detector gives an indication of detection only once for each detected
occurrence of the SOI. New detections are impossible until the test statistic
falls again below the threshold. The local maximum between the threshold
crossings is used to estimate the location of the SOI. The initial location is
corrected for the delay of (N − 1)/2 samples that is induced by the matched
filter section. The first N − 1 values of the test statistic are zeroed in order
to suppress premature detections.

An application example is shown in Figure 2.7. The task was to de-
tect QRS complexes from an electrocardiogram (ECG). A QRS complex is a
prominent wave shape of the heart cycle that is caused by the rapid depolar-
isation of the ventricles. The duration between successive QRS complexes,
known as the R-R interval, can be used to compute an estimate of the in-
stantaneous heart rate. The ECG signal was measured with a sampling
frequency of 500 Hz and a passband of 0.07–192 Hz. The measured signal
was pre-processed with an infinite impulse response (IIR) high-pass filter,
having the Z-transform

H(z) =
1− z−1

1− 0.995z−1
,

4The unbiasedness of σ̂2 comes from

E
(
σ̂2
)

=
1
N

N−1∑
k=0

E
(
w2(k)

)
=

1
N

N−1∑
k=0

(
E
(
w2(k)

)
− µ2︸︷︷︸

0︸ ︷︷ ︸
σ2

)
=

1
N
·N · σ2 = σ2.

5Symbol “ a∼” denotes “is asymptotically distributed according to”.
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Figure 2.6: Experimental PDF estimate and theoretical asymptotic PDF of
the modified test statistic of the matched filter detector underH0. The length
of the matched filter’s impulse response was 51 samples. The PDF estimate
(solid line) was obtained with Monte Carlo simulations and the theoretical
asymptotic PDF (dashed line) is the PDF of N

(
0, 1

51

)
.

in order to remove baseline drift. The matched filter section of the modified
matched filter detector was designed as follows. First, 10 representative QRS
complexes were extracted from the ECG signal. Second, the QRS complexes
were temporally aligned and a prototype impulse response was computed
by averaging across the QRS complexes. Finally, the prototype impulse
response was reversed to acquire the matched filter’s impulse response. The
matched filter had 51 coefficients. The threshold γ′1 = 0.5 was used because
it accommodates for a moderate correlation. The first 50 values of the test
statistic were zeroed in order to prevent premature detections. Laplacian
noise was used in order to simulate interfering noise spikes (location and
scale parameters 0 and

√
0.5, respectively, and amplified by a factor of 50).

In addition, this set-up shows that the detector can operate even though the
Gaussian noise assumption is not entirely valid.
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Figure 2.7: Example of using the detector of Figure 2.5 to detect QRS com-
plexes from an ECG signal (a) embedded in Laplacian noise (b). The test
statistic (c) gives the cross-correlation coefficient, which is close to unity when
a QRS complex is present. The dashed horizontal line represents a threshold
that accommodates for a moderate correlation.
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Figure 2.8: Block diagram of a detector that can be used to detect a narrow
band signal, such as a sinusoid of a given frequency. The band-pass filter
passes the frequency band of interest. Then an estimate of the signal variance
is computed with a cascade of a square-law rectifier and an MA filter. The
SOI is said to be present if the variance estimate is sufficiently larger than a
fixed threshold.

Example 5 – Energy detection

This example considers the application of the energy detector to a detection
problem where the SOI is a sinusoid of a known frequency. The energy de-
tector is portrayed as a block diagram in Figure 2.8. The band-pass filter
passes the frequency band of interest and the following cascade of a square-
law rectifier and an N -point MA filter computes an estimate of the signal
variance. Kay [44] does not incorporate a band-pass filter into the energy
detector, but we will follow Green and Swets [31] who make such incorpo-
ration. This makes sense because in our example the SOI is a sinusoid of a
known frequency. The band-pass filter is a narrowband filter whose centre
frequency fc (Hz) matches the frequency of the sinusoid to be detected and
whose coefficients are normalised so that the maximum amplification in the
passband is 0 dB. The energy detector implements the test

T (n) =
1

N

N−1∑
k=0

z2(n− k) > γ′, (2.8)

where z(n) is the output of the band-pass filter. Let

z(n) =

{
w(n) under H0

s(n) + w(n) under H1
,

where the noise samples w(n) are IID, follow N(0, σ 2
n ), and σ 2

n , the noise
variance after band-pass filtering, is positive. According to (2.7), σ 2

n = σ2ε,
where σ2 is the noise variance before band-pass filtering and ε is the squared
sum of the band-pass filter’s impulse response. One should not be confused
although the detector is called an energy detector but the test statistic is an
estimator of the average signal power. This issue can be rectified simply by
multiplying the test statistic by N . Green and Swets [31] present PDFs of the
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test statistic under both hypotheses, but they assumed an ideal band-pass
frequency response and did not consider the correlation induced by discrete-
time filtering. Indeed, the consecutive output samples of a practical finite
impulse response (FIR) filter are correlated. Furthermore, as the length of the
filter’s impulse response increases, so does the time span of the correlation.
For example, if the correlation issue is disregarded, it follows from (2.5) that

T (n) ∼ Γ
(
N
2
, 2σ 2

n
N

)
under H0.

This is not the case in practice, however, as illustrated in Figure 2.9. The
band-pass filter was a 51-point linear phase FIR filter whose centre frequency
and the half-power bandwidth were, approximately, 5 and 3.5 Hz, respec-
tively. The length of the MA filter was 21 samples. The PDF estimate was
obtained in the same way as in Example 4. If the band-pass filter is ignored
and the input signal scaled to achieve the noise variance of σ 2

n , the two
PDFs will coincide. Hence, the difference is caused mainly by the correlation
induced by the FIR band-pass filter.

Although the inter-sample correlation makes it difficult to derive the PDFs
of the test statistic, there are other ways to determine feasible values for the
various detector parameters. For example, we can expand the test statistic
given in (2.8) under both hypotheses:

T (n) =
1

N

N−1∑
k=0

z2(n− k) =
1

N

N−1∑
k=0

w2(n− k) = σ̂ 2
n under H0

and

T (n) =
1

N

N−1∑
k=0

z2(n− k) =
1

N

N−1∑
k=0

(
s(n− k) + w(n− k)

)2

=
1

N

N−1∑
k=0

(
s2(n− k) + 2s(n− k)w(n− k) + w2(n− k)

)
=

1

N

N−1∑
k=0

s2(n− k) +
2

N

N−1∑
k=0

s(n− k)w(n− k) +
1

N

N−1∑
k=0

w2(n− k)

= ϕ̂+
2

N

N−1∑
k=0

s(n− k)w(n− k) + σ̂ 2
n under H1,

where σ̂ 2
n is an unbiased estimator of σ 2

n and ϕ̂ is an unbiased estimator of
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Figure 2.9: Experimental PDF estimate and theoretical PDF of the test
statistic T (n) of an exemplar energy detector under H0. The PDF estimate
(solid line) was obtained with Monte Carlo simulations. The theoretical PDF
(dashed line) is the PDF of Γ

(
21
2
, 2σ 2

n
21

)
. If the band-pass filter is ignored and

the input signal scaled to achieve the noise variance of σ 2
n , the two PDFs

will coincide.

ϕ = A2/2, the mean-square value of a sinusoid of amplitude A.6 Furthermore,

E
(
T (n)

)
= E

(
σ̂ 2

n

)
= σ 2

n under H0

6The unbiasedness of ϕ̂ comes from

E
(
ϕ̂
)

=
1
N

N−1∑
k=0

E
(
s2(n− k)

)︸ ︷︷ ︸
mean of A2 sin2(x)

=
1
N
·N · A

2

2π

∫ 2π

0

sin2(x) dx︸ ︷︷ ︸
π

=
A2

2
.
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and

E
(
T (n)

)
= E

(
ϕ̂
)

+
2

N
· E

(
N−1∑
k=0

s(n− k)w(n− k)

)
︸ ︷︷ ︸

0

+E
(
σ̂ 2

n

)

=
A2

2
+ σ 2

n under H1.

With these we can define at least in some sense sensible bounds for the
threshold γ′. For example, an intuitive approach would be to choose the
threshold so that

A2

2
+ σ 2

n > γ′ > σ 2
n . (2.9)

If we do not have better knowledge of σ2, we could choose

γ′ =
A2/2

2
. (2.10)

A reasonable value for N is given by⌈
Fs

fc
+ 1

⌉
,

where Fs/fc gives the duration of one cycle of a sinusoid of frequency fc in
samples. An additional sample is added because every (Fs/fc)th sample can
be seen common between adjacent cycles. Ceiling function guarantees that
the resulting value is an integer.

An application example is shown in Figure 2.10. The task was to detect
the presence of a 5 Hz sinusoid, whose amplitude was 2, embedded in zero
mean white Gaussian noise. The sampling frequency was 100 Hz. The band-
pass filter was a linear phase FIR filter of type 1. It was designed with
the window method using the Kaiser window (window parameter was 0.5).
Specifications stated that the lower and upper cutoff frequencies should be 3
and 7 Hz, respectively. The designed filter had 51 coefficients and its centre
frequency and the half-power bandwidth were, approximately, 5 and 3.5 Hz,
respectively. The length of the MA filter was 21 samples. The detector
reports that the SOI is present if the test statistic is larger than γ′ = 1,
which was chosen according to (2.10). The first 70 values of the test statistic
were zeroed in order to guarantee full immersion on part of both filters. Even
though the sinusoid is embedded in a relatively strong noise, the detector is
able to indicate regions where it is present. However, the delay of 35 samples
(350 ms) that is induced by the cascaded filter sections could be seen as a
moderate weakness.
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Figure 2.10: Example of using an energy detector to detect the presence of a
5 Hz sinusoid (a) embedded in white Gaussian noise (b). The test statistic (c)
gives an estimate of the signal power. The horizontal dotted lines represent
upper (UB) and lower (LB) bounds according to (2.9). The horizontal dashed
line represents a threshold computed with (2.10).
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2.3 Performance evaluation

The probabilities of detection and false alarm are usually of interest when
the performance of a detector is discussed. The probability of detection de-
scribes how well the presence of the SOI is detected by the detector, whereas
the probability of false alarm describes how susceptible the detector is to
the effects of noise. According to Section 2.1, both probabilities can be ex-
pressed in terms of the test statistic’s PDFs under corresponding hypotheses.
In addition to the detection criteria, such as the threshold, both probabilities
are also functions of certain detector and noise parameters. Because of the
common zero mean white Gaussian noise assumption, the noise is usually
characterised simply by its variance. Where the probability of false alarm is
a function of the above-mentioned parameters, the probability of detection
is also a function of certain SOI related parameters.7 Because both proba-
bilities are computed by integrating the test statistic’s PDF under certain
hypothesis, as in (2.3) and (2.4), we have to know them in order to compute
both probabilities. If we are unable to derive the exact PDFs, then sometimes
we can at least come up with asymptotic PDFs, as in Example 4. It should
be noted that the traditional definitions of the two probabilities consider
only a single threshold as the decision criterion. Indeed, it may happen that
although we were able to find the PDFs of the test statistic, they could not
be used in a straightforward manner to compute the (overall) probabilities
of detection and false alarm.

If we are unable to analytically derive even the asymptotic PDFs of the
test statistic, the only option is to revert to the experimental approach in
performance evaluation. An obvious course of action is to experimentally
derive the PDFs of the test statistic under both hypotheses. This calls for
Monte Carlo simulations where we use repeated random sampling to acquire
data that is used to derive estimates of the PDFs. The problem with Monte
Carlo simulations is that if we wish to get accurate estimates, we have to
repeat the simulations a considerable number of times. In addition, if we
want to achieve as general results as with the analytical approach, the same
set of simulations have to be repeated for numerous parameter combinations,
which yields a family of PDF estimates. In other words, the derivation of the
test statistic’s PDFs may become a very laborious task if the experimental
approach is used. The PDFs can be estimated, for example, by using the
histogram method, which was used in Examples 4 and 5, or by fitting some
known distribution to the data. Density estimation in general, and other

7However, as hinted in Example 3, the probability of false alarm does not depend on
the noise variance in case of a CFAR detector.

28



specific approaches besides the above two, are discussed in the literature
[10, 23, 84].

Because of the aforementioned problems, or maybe because the objective
is merely to demonstrate the function of a detector in certain circumstances,
the detector may be tested in a restricted set-up and PDF estimation ignored
altogether. In such set-up, the test data is processed with the detector under
evaluation and the results are analysed by computing suitable performance
measures. Because we do not know the PDFs of the test statistic, the prob-
abilities of detection and false alarm cannot be used. Alternative measures
are the true alarm rate (TAR) and the false alarm rate (FAR) given by

Nd

Ns
and

Nfa

Nr
,

respectively, where Nd is the number of correct detections, Ns is the number
of occurrences of the SOI, Nfa is the number of false detections, and Nr is the
number of all reported detections. These quantities conform to the following
restrictions:

Nd ≤ Ns, Nfa ≥ 0, Nr = Nd +Nfa ≥ Ns, and Ns > 0.

Which detection is defined to be correct, or a true alarm, depends on the
actual test set-up. The TAR is the proportion of correctly detected occur-
rences of the SOI, whereas Pd is the probability that the test statistic is larger
than the threshold when the SOI is present. Hence, the TAR may be seen
as an estimate of Pd as Ns →∞. The same cannot be said about FAR and
Pfa. Where the FAR is the proportion of false detections out of all reported
detections, Pfa is the probability that the test statistic is larger than the
threshold when only noise is present. In other words, Nfa is compared with
Nr and not with all time instants the test statistic could have been above
the threshold. A modified measure Nfa/L, where L is the number of time
instants when the SOI is absent, could be used to estimate Pfa, however.
In addition, one should not be mistaken to think that FAR has something
to do with CFAR. If a detector has the CFAR property, the detector tries
to maintain constant Pfa, not constant FAR although the appellation CFAR
would suggest otherwise.

When using the experimental approach in performance evaluation, either
genuine or artificial data is required to perform the necessary experiments.
Using artificial data relates to the setting where we assume to have full knowl-
edge of the input signal’s distributions under both hypotheses. Indeed, with
artificial data we have full control over the noise parameters, the interfering
artefacts, the occurrences of the SOI and its parameters, etc. Simply put,
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the whole test set-up is under absolute control. If genuine data is used, then
some of these are out of the control of the experimenter. For example, with
artificial data, the exact locations of the occurrences of the SOI are known,
whereas with genuine data they are not. If these were identified by a human
expert, then subjective criteria would certainly affect the results. Besides,
an average human observer cannot easily process vast amounts of numeri-
cal data because of boredom and fatigue. Indeed, artificial data provides
objectiveness that cannot be guaranteed with genuine data. Even so, one
can always argue that the results obtained with artificial data cannot fully
represent those obtained in realistic situations. Because of this, genuine data
should be used to verify the function of a detector in a realistic situation. In
addition, genuine data can also reveal certain not well-defined concepts such
as distinction between false and nuisance alarms as discussed in Section 4.2
of Publication II.

The aforementioned performance measures do not tell how good or ac-
curate the detections are. Some additional measures are required to answer
such questions. Particularly, the accuracy of the SOI related parameter es-
timates, the temporal accuracy of detection, and the latency of detection
have to be assessed. If the detector is used in a near real-time application,
also computational complexity [19] of a detector should be of interest. It
should be noted, however, that low computational complexity alone does not
guarantee suitability for a near real-time application. Low computational
complexity merely suggests that all computations required by a single time
step may possibly be carried out during one sampling interval. Also the la-
tency of detection, which can usually be controlled by adjusting the detector
parameters, determines if the detector is suitable for a near real-time ap-
plication. In the end, however, each practical discrete-time system induces
some time delay.
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Chapter 3

Selected Contributions

This thesis is based on studies presented in five articles that can be classi-
fied into two subcategories according to the detection problem they address.
These are the detection of muscle contractions and the detection of saccadic
eye movements. In this chapter, the relevant biomedical signals and the as-
sociated detection problems are introduced and short descriptions of the five
articles are given.

3.1 Detection of muscle contractions

The function of muscles is to generate force and motion. They enable loco-
motion and tend to various vital bodily functions. There are three types of
muscle tissue: skeletal, smooth, and cardiac. Skeletal muscles are anchored
to bones by tendons and generate the movements of the endoskeleton and the
body. Smooth muscles generate the movements of internal organs. For exam-
ple, the (thoracic) diaphragm has an important role as part of the respiratory
system as it is responsible for the ventilation of the lungs. As another exam-
ple, the musculature of the digestive tract produces peristalsis that propels
food and enables digestion. Cardiac muscle tissue can only be found in the
heart. The heart is the central unit of the circulatory system whose function
results in the circulation and distribution of blood, oxygen, and nutrients
in the body. Smooth muscles and the cardiac muscle are controlled by the
autonomic nervous system. Only skeletal muscles can be controlled voluntar-
ily. Muscles under voluntary control are of greater importance in this thesis.
Therefore, the structure and function of only skeletal muscle tissue will be
considered in detail.

The function of muscles is enabled by their capability to contract. Con-
traction capability, in turn, comes from the structure and the electrochemical
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properties of the muscle tissue [14, 69, 88]. A muscle is composed of numerous
muscle fibres whose diameters are orders of magnitude smaller than a mil-
limetre. Muscle fibres are made up of smaller structures known as myofibrils.
Myofibrils, in turn, are mainly composed of actin and myosin based protein
filaments that are organised into repeated sub-units, called sarcomeres, along
the length of the myofibril so that they can slide in an interlocking manner.
The interlocking of the protein filaments causes the shortening of the my-
ofibril and, consequently, the shortening of the whole muscle fibre. When
this happens, the muscle fibre is said to undergo a contraction. Muscles are
divided into functional units referred to as motor units. A motor unit, which
is the smallest muscle unit that can be activated by volitional effort [69], is
composed of a motor neurone, its axon, and all muscle fibres innervated by
the axon. Motor neurones are primarily located in the anterior horn of the
spinal cord, but in the case of the head muscles they are located in the cranial
nerves of the brain stem [14]. When a motor neurone is activated, its action
potential travels along the axon towards the muscle tissue where the neuro-
transmitter acetylcholine is released into the innervated muscle fibres. This
initiates electrochemical reactions that cause the contraction of the muscle
fibres. The contraction of a muscle is the consequence of the contraction of
its muscle fibres.

Electromyography is concerned with the measurement, processing, and
analysis of electrical signals originating from the muscle tissue. The func-
tion of a motor unit generates an electrical signal referred to as the motor
unit action potential. The superposition of the action potentials of all ac-
tive motor units is the basis of the electromyographic (EMG) signal, or the
electromyogram, which can be measured with instruments ranging from in-
vasive fine-wire and needle electrodes to non-invasive surface electrodes of
various shapes and sizes. The location of the studied muscle and the scope
of the investigation govern the choice of the measurement instruments [70].
In medicine EMG signals are used in the diagnosis of neuromuscular dis-
eases, disorders of muscle functions, and chronic pain [17, 52, 67, 69]. In
psychophysiology EMG signals have been used to investigate affective influ-
ences [50]. In addition, novel human-machine interaction techniques based on
EMG signals have been investigated in tasks such as controlling a traditional
computer [7, 18, 39, 65, 81], a wheelchair [27], and an artificial prosthesis
[2, 24, 35, 71, 64, 66, 79].

Because invasive techniques may be painful to the subject and there is a
risk of inflammation and damage when the muscle tissue is penetrated, EMG
signals are typically measured with non-invasive bipolar surface electrodes.
The resulting signal is referred to as the surface EMG signal. It is common to
use an alternating current (AC) powered differential amplifier. Most energy
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Figure 3.1: Segment of facial surface EMG signal (a) measured with bipolar
surface electrodes and an AC powered differential amplifier. The waveform
in (b) gives an estimate of the instantaneous variance. An onset and a
termination of muscle contraction occur, approximately, at 1.25 s and 3.75 s,
respectively.

in a bipolar measured surface EMG signal resides between 10 and 200 Hz.
Therefore, the measurement passband is chosen so that this frequency band
is preserved. A typical passband ranges from 10 to 500 Hz, although applied
passbands vary to some extent [14, 16, 21, 28, 88]. A narrower passband is
used in order to attenuate excessive interference that is caused, for example,
by baseline wandering, movement artefacts, signals from other physiological
sources, power-line noise, and high frequency noise. A surface EMG signal
presents a stochastic nature in its samples, as illustrated in Figure 3.1. The
moving average remains close to zero, because of the band-pass filtering,
whereas the instantaneous variance fluctuates with the level of muscle con-
traction. The signal is seldom used in its raw form but processed in some
meaningful way to acquire a more suitable presentation. The instantaneous
variance is just one possible approach. The reader is referred to [51] for an
investigation on different quantification techniques.

The detection of muscle contractions is usually done before carrying out
further analysis. As it was suggested above, the onset and the termination
of muscle contraction are embodied as changes in the instantaneous variance
of a surface EMG signal. Hence, from the viewpoint of detection theory,
we are dealing with a model change detection problem. Several computer-
based methods have been developed for the detection of the onset of muscle
contraction. Notable comparisons between various methods have been con-
ducted by Hodges and Bui [36] and Staude et al. [80]. However, these inves-
tigations were limited to the single-trial onset detection problem and neither
termination detection nor performing detections repeatedly were considered.
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The capability of detecting both the onset and the termination of muscle
contraction repeatedly is essential in near real-time applications. Two differ-
ent approaches to solving the described detection problem are considered in
Publications I and II.

3.1.1 Neural network based detector (I)

A multi-layer perceptron (MLP) neural network was used as the core compo-
nent of the detector in Publication I. An artificial neural network, or simply
neural network, is a distributed parallel processing system capable of learning
its operation from the input data [10, 23, 33, 34, 82, 84].1 A neural network
is composed of neurones that are connected to each other with weighted con-
nections. A single neurone is a relatively simple element and is capable of
computing only a simple function of its input, but a network of neurones is
capable of computing far more complex functions. The neurones of an MLP
are organised into two or more layers (see Figure 3.2). The neurones of the
input layer perform no computations and their sole purpose is to relay the
input to the following layers. An MLP may contain a number of hidden lay-
ers whose neurones perform computations. So do the neurones of the final
layer, the output layer, whose output also makes up the overall output of the
MLP. The MLP is a feedforward neural network because the information
flows in one direction, from the input layer towards the output layer. There
are no feedback connections.

The objective of the study was to develop and test an MLP-based detector
that can be used to detect voluntarily produced contractions of corrugator
supercilii and zygomaticus major facial muscles. A block diagram of the
detector is shown in Figure 3.3. Either band-pass filtering or wavelet de-
noising [55] is used for pre-processing. Normalised root-mean-square (RMS)
values computed from the adjacent sub-segments of the observed signal seg-
ment make up the input of the MLP. RMS was used because according to
LeVeau and Andersson [51] it is a good descriptor of the EMG signal in a
mathematical sense. The MLP classifies the signal segment into one of the
three classes representing the onset of muscle contraction, the termination
of muscle contraction, and constant level of muscle contraction. The tested
MLPs had two input neurones, from zero to five hidden neurones in one layer
or five neurones in two hidden layers each, and three output neurones corre-

1The research on artificial neural networks has been motivated from the beginning by
the fact that the human brain processes data in an entirely different way than a con-
ventional computer does [33]. Indeed, the human brain has been the paragon for neural
networks. Neural network attempts to mimic some properties of its biological counterpart,
such as non-linearity, generalisation, fault tolerance, and learning capability.

34



Figure 3.2: Exemplar MLP neural network (a). The network has 2 input, 3
hidden, and 2 output neurones organised into respective layers. The MLP
is a feedforward neural network because the information flows in one di-
rection, as indicated by the arrows. Only the hidden and the output neu-
rones perform computations. Such a neurone (b) computes a function of the
weighted sum of its inputs, where the weights w0, . . . , wN correspond to the
inputs x0, . . . , xN . The function f is known as the activation function of the
neurone. It is typically a sigmoidal function such as the logistic function
f(x) = 1

1+exp(−ax)
, where a controls the slope of the function.

sponding to the three output classes. The results show that the MLP-based
detector functions well, producing recognition accuracies ranging from 96 to
99%. The best accuracies were achieved with one hidden layer of two to five
neurones after wavelet denoising. Also the smallest MLP without any hidden
neurones functioned well. Because all tested MLPs were small in respect to
the number of computational neurones, the computational requirements of
the detector should not be an issue.

Although the results suggest that the MLP-based detector enjoys the
generalisation property of neural networks, this is probably caused by the use
of normalised RMS values: the normalised RMS values do not carry on the
information about the absolute magnitude of the observed EMG signal. Also,
the good performance of the smallest MLP supports this claim: the output
neurones alone are capable of solving the underlying classification problem.
Furthermore, if one considers the performance of the MLP with one hidden
neurone, the input data from the two input neurones are compressed into
one value that is enough for the output neurones to form a mapping to the
three output classes. There is one considerable drawback in applying the
MLP-based detector. If the detector is operated in a sequential manner in
order to perform detections repeatedly, the output values of the MLP will
saturate at some point, which complicates the estimation of the onset and
termination locations. The saturation is caused by the sigmoidal activation
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Figure 3.3: Block diagram of the MLP-based detector. The pre-processor
is either a traditional band-pass filter or a wavelet denoiser. Normalised
RMS values computed from the adjacent sub-segments of the observed signal
segment make up the input of the MLP. The output of the MLP reflects the
classification of the observed signal segment.

functions. The fact that the MLP has to be trained can also be seen as
another drawback of the MLP-based detector. In other words, a considerable
amount of preliminary work is required before the MLP-based detector can
be put into practical use. The considered detection problem may be too
simple to justify the use of a neural network. The task of classifying limb
movements on the basis of an EMG signal offers a more suitable application
area. See, for example, [63, 64, 66, 79].

3.1.2 Modified two-point backward difference (II)

The motivation behind the detector of Publication II was that it can be used
without training and it does not suffer from similar saturation issues as the
MLP-based detector. A block diagram portraying the detector is shown in
Figure 3.4. The surface EMG signal is first pre-processed with a band-pass fil-
ter in order to reduce the disturbing effects of interference. The pre-processed
signal is input to an envelope detector that extracts the modulating envelope
waveform. On the basis of this waveform, a modified two-point backward
difference (MTPBD) is used to compute a test statistic that reflects the
occurrence of either an onset or a termination of muscle contraction. The
decision logic takes care of both the decision making and the estimation of
event locations. The described detector can be implemented in a compu-
tationally efficient manner with conventional DSP techniques. Therefore, it
can be used in near real-time applications. The results that were obtained
experimentally on artificial data show that the MTPBD detector functions
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Figure 3.4: Block diagram of the MTPBD detector. s(n) is the pre-processed
surface EMG signal, v(n) is the extracted envelope waveform, and v(n − q)
is its delayed version.

reliably if a long enough MA filter is used for smoothing in the envelope
detector. Verification that was conducted with a few genuine surface EMG
signals supports the obtained results. Afterwards, a detector configuration
using RMS values in place of the envelope detected samples was tested. The
results were virtually identical with those obtained with an envelope detector
using a square-law rectifier.

Although the MTPBD adds to the non-linearity of the detector and,
therefore, complicates its analytical analysis, the choice of the detection
threshold can be made on a relative basis. Thus, the detector can be easily
used with signals originating from different subjects. Also, if the detector
is operated by a non-technically oriented person, this can be seen as a clear
advantage. For a technically oriented person, the MTPBD detector does not
appear simply as a black box system, which can be the case with the MLP-

37



based detector. Guidelines for choosing the detector parameters were given.
Also, a detailed description of the experimental set-up was presented. The
set-up includes a signal generator that can be used to generate artificial sur-
face EMG signals. By using the Publication II as a guide, one can implement
an identical signal generator.

The MTPBD detector has already been used in an experimental human-
computer interface that uses optical gaze tracking and facial surface EMG
signals. Voluntary facial muscle contractions were detected in order to em-
ulate mouse clicks. The results from this preliminary investigation were
promising and they show that the MTPBD detector can also be used in
practice.

3.2 Detection of saccadic eye movements

Eyes are photosensitive sensory organs that make up the front-end of the
human visual system. The lens of an eye focuses the light onto the retina.
The photoreceptor cells of the retina, which are the rods and cones, convert
the light into nerve impulses [56]. The nerve impulses make up the visual
information that is transmitted to the brain via the optic nerve. The fovea,
an area on the retina where the photoreceptor cells, mainly cones that enable
colour vision, are densely packed and the resolution is highest, is small and
the eyes have to be moved so that the target of interest would be aligned
with this focal area. The capability of fixating on the target of interest in
the visual field comes from the musculature of an eye. Six orbital muscles
generate horizontal, vertical, and torsional eye movements. Eye movements
appear in varying amplitudes and patterns. Movement velocities may reach
several hundred degrees per second.

The analysis of eye movements has proven to be valuable in both medical
work and research. Eye movement research has been conducted by various
authors [4, 5, 25, 29, 86]. In medicine eye movement data are used to in-
vestigate and diagnose, for example, vestibular or otoneurological disorders
[42, 56], Parkinson’s disease [15], optic ataxia [45], and various other con-
ditions [47]. Eye movement data is also used in sleep studies [1, 11, 72].
Besides medical applications, eye movement data has been used in various
human-machine interfaces. Example tasks include controlling a traditional
computer [12, 13, 30, 38, 43, 48, 54, 58, 81, 83, 90], operating assistive robots
and platforms [46, 87], and guiding a wheelchair [6, 68].

Eye movements can be measured with different methods, but optical and
electrical are probably the most common ones. In this thesis, we are con-
cerned with the electrical method of measuring eye movements. A pair of
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surface electrodes are affixed to the temples of the subject in order to measure
horizontal eye movements, whereas vertical eye movements can be measured
with a pair of surface electrodes affixed above and below either eye socket.
The resulting signals are referred to as electro-oculographic (EOG) signals,
or electro-oculograms. The basis of the EOG signal is the standing potential
of the eye, which is caused by the potential difference between the cornea
and the retina. As the eye rotates, the standing potential measured at the
electrodes changes. Both AC and direct current (DC) powered amplifiers
can be used in the measurement of EOG signals. Which one to use depends
on the objective of the application. If the eye position information is to be
preserved, a DC powered amplifier has to be used because with an AC pow-
ered amplifier the signal drifts towards zero level after each eye movement.
Regardless of the type of the amplifier, the measurement passband may be
limited below 50 Hz because it results in the attenuation of both high fre-
quency and power-line noise. However, a higher low-pass cutoff frequency
should be used in order to preserve information describing the velocity and
acceleration of rapid eye movements. Applied low-pass cutoff frequencies
vary considerably. Reported cutoff frequencies include, for example, 5 Hz
[90], 10 Hz [46], 35 Hz [1, 5, 6], 40 Hz [86], 42 Hz [91], 70 Hz [15], 75 Hz [83],
100 Hz [54], and “less than 500 Hz” [48].

The detection of saccadic eye movements, or simply saccades, and the
extraction of related parameters, such as maximum angular velocity, am-
plitude, and duration, are usually performed during the analysis of EOG
signals. Typically saccades are detected by comparing the rectified velocity
waveform of an EOG signal to a fixed threshold. If the threshold is exceeded,
a saccade is said to be present. Different techniques such as duration lim-
iting [5, 78], several test statistics and rejection criteria [1], adaptive filters
and thresholds [15, 40, 85], and syntactic methods [41, 42] have been used
to implement more robust saccade detection methods. As illustrated in Fig-
ure 3.5, saccades can be identified as fast jumps in the EOG signal and as
prominent peaks and valleys in the velocity waveform. This observation re-
veals why so many saccade detection methods analyse the velocity waveform
in order to detect saccades. If the SNR is relatively high and the noise char-
acteristics are known beforehand and they do not change, a simple detector
employing a fixed detection threshold can be used to accomplish the detec-
tion task. But if these assumptions do not hold, some form of sensitivity
adjustment has to be performed in order to limit the number of false alarms.
Publications III and IV introduce two techniques, cell-averaging (CA) and
order-statistic (OS) CFAR, for implementing a saccade detector that contin-
uously adjusts its detection sensitivity in order to maintain a constant false
alarm probability. The developed detector was refined and subjected to a

39



0 1.25 2.5 3.75 5
−10

−2.5

5

12.5

20

Time (s)

A
m

p
lit

u
d

e
 (

°
)

(a)

0 1.25 2.5 3.75 5
−400

−200

0

200

400

Time (s)

V
e

lo
c
it
y
 (

°
/s

)

(b)

Figure 3.5: Example of a horizontal EOG signal (a), measured with bipolar
surface electrodes and an AC powered amplifier, and the corresponding ve-
locity waveform (b). Saccades can be identified in (a) as fast jumps in the
signal level and in (b) as prominent peaks and valleys.

more in-depth analysis in Publication V.

3.2.1 Introducing CA and OS CFAR (III & IV)

The main motivation for using CFAR was that optimal measurement condi-
tions cannot be always guaranteed with novel wearable measurement equip-
ment, and an adaptive system could probably operate satisfactorily even if
the noise characteristics change during the measurement. The CFAR tech-
niques discussed in Publications III and IV are not new, but they have been
used in radar receivers [75, 76]. Actually, another motivation was that the
velocity peaks of saccadic eye movements resemble the echoes of simple tar-
gets at the output of the demodulator of a radar receiver. Therefore, it was
thought that it would not be difficult to adapt the particular techniques to
be suitable for detecting saccades from an EOG signal. Both publications
show that this was indeed the case.

A block diagram of the CFAR saccade detector is shown in Figure 3.6.
Either a low-pass or a band-pass filter is used for pre-processing. The pre-
processed EOG signal is input to a two-point central difference differentia-
tor that extracts the velocity waveform. The velocity waveform is full-wave
rectified and input to the CFAR processor, where an adaptive threshold is
computed by first computing a certain noise statistic and then multiplying it
by a constant s, whose value depends on the desired false alarm probability.
The statistic is the sample mean in case of CA CFAR and a specific order
statistic in case of OS CFAR. The decision logic compares the outputs of the
CFAR processor and makes a decision regarding the presence of a saccade
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Figure 3.6: Block diagram portraying the architecture of the CFAR saccade
detector. The reference samples are used to compute an adaptive threshold.
Depending on the type of the CFAR processor, either the average or a specific
order statistic is used in the computation of the threshold value. The value
of s depends on the desired false alarm probability.

accordingly. The CFAR saccade detector is computationally efficient, it can
operate autonomously without user assistance, and it is capable of detecting
saccades in a sequential fashion. Closed form expression for estimating the
value of the constant s, under zero mean white Gaussian noise assumption,
was derived for both CFAR techniques. Other detector parameters received
more attention in Publication V.

3.2.2 Experimenting with the CFAR approaches (V)

A refined version of the CFAR saccade detector was presented in Publica-
tion V. In contrast to Publications III and IV, the detector was subjected to
a more in-depth analysis, which included a comparison against a typical de-
tection method that uses a fixed detection threshold. The results show that
both CFAR techniques can be used to decrease the number of false alarm in
noisy conditions. Therefore, the CFAR saccade detector finds potential use
in applications where fast and automated signal analysis is a requirement,
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ideal measurement conditions cannot be guaranteed, and noise presents a
considerable problem. Such applications include, for example, the human-
machine interfaces that were mentioned earlier in Section 3.2. Because the
detector performed well in case of a relatively high SNR, it can also be used
in more traditional medical applications. Indeed, although a human expert
would verify the analysis results, enforcing low false alarm probability leads
into fewer false alarm and, consequently, less verification work. In addition,
the application example of Publication V clearly showed that because of the
sensitivity adjustment, the CFAR saccade detector can be easily used with
EOG signals originating from different subjects without laborious search for
suitable parameters.

However, constant false alarm probability is maintained at the expense of
the detection sensitivity, which means that some of the smaller saccades are
missed. To elaborate, as the detection threshold is increased in order to main-
tain a low false alarm probability, the probability of detection is decreased.
This should not be a surprise after recalling Section 2.1. The decrease in
detection sensitivity has to be tolerated when using a CFAR detector and,
particularly, if the desired false alarm probability is low. Also, one should
understand that a CFAR technique does not guarantee false alarm free oper-
ation: the appellation CFAR stands for constant false alarm probability, not
zero false alarm probability. It should be also noted that the CFAR property
holds only if the true noise distribution resembles the assumed noise distri-
bution. If one would have to choose between CA and OS CFAR, it would be
rather difficult on the basis of the obtained results because both performed
equally well. However, if the number of reference samples is small, OS CFAR
may be a better choice. Particularly, order statistics near the median are not
as sensitive to outliers as the mean is.

In the end, maybe the best approach would be a hybrid system that
incorporates the best of both worlds: rely on a fixed detection threshold until
the noise characteristics change in such a way that it is beneficial to use an
adaptive threshold. The decision logic could be improved by using some SOI
related parameters to suppress false alarms. Indeed, if the decision logic were
more sophisticated, the desired false alarm probability could be higher. The
design of an optimal differentiator was not considered. If the differentiator
were better, in other words, it attenuated noise as well as possible but at
the same time preserved the velocity waveform during saccades, the overall
performance might be improved. Incorporating even some of the ideas could
be a step closer towards a better saccade detector.

The problem of choosing various detector parameters received more at-
tention than in Publications III and IV. While certain parameters can be
computed with closed form equations, others have to be chosen intuitively.
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The number of reference and guard samples serve as examples. However,
experimental knowledge, such as the amplitude-duration relationship, can
be used to alleviate the situation. Also, a detailed description of the exper-
imental set-up was presented. The set-up includes a signal generator that
can be used to generate artificial EOG signals. By using the Publication V
as a guide, one can implement an identical signal generator.
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Chapter 4

Discussion

This thesis considered the detection of muscle contractions and saccadic eye
movements on the basis of biomedical signals originating from facial land-
marks. While participating in two successive projects aimed at developing
novel human-computer interaction techniques, the author of the thesis de-
signed, implemented, and tested practical detectors that can be used to de-
tect the aforementioned physiological events. The main design goals were the
capability of operating in the presence of noise, the capability of adapting
to changes in the noise characteristics, the capability of processing signals
originating from different subjects without laborious search for suitable pa-
rameters, and low computational requirements, which is essential if a detector
is used in a near real-time application such as a human-computer interface.
Although human-computer interaction gave the basic motivation for the re-
search, there is no reason why the developed detectors could not be used in
more traditional medical applications, such as research work, medical diag-
nosis, and patient monitoring.

Publications I and II focused on the problem of detecting the onset and
the termination of muscle contraction on the basis of a surface EMG signal.
The MLP approach was considered in Publication I. The results show that
the MLP-based detector is functional. Even the smallest MLP with least
computational power functioned surprisingly well. Therefore, computational
requirements should not be an issue. There are, however, some drawbacks in
the MLP approach. Particularly, the output values of the MLP will saturate
at some point if the detector is operated in a sequential manner, which com-
plicates the estimation of the onset and termination locations. The fact that
the MLP has to be trained can be also seen as a weakness. The amount of
preliminary work can be reduced by using the detector of Publication II. The
results show that the MTPBD detector functions reliably if a long enough
MA filter is used for smoothing in the envelope detector. The MTPBD detec-
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tor is computationally efficient and it does not suffer from similar saturation
issues as the MLP-based detector. Therefore, the estimation of the onset and
termination locations is easier. Because the choice of the detection threshold
can be made on a relative basis, the MTPBD detector can be easily used with
signals originating from different subjects. Also, if the detector is operated
by a non-technically oriented person, this can be seen as a clear advantage.
Finally, because surface EMG signals originating from different muscles are
similar, both detectors can be also used in applications that do not focus on
facial muscles.

Publications III–V focused on the detection of saccadic eye movements
from an EOG signal with a CFAR detector. The main motivation for choos-
ing CFAR was that optimal measurement conditions cannot be always guar-
anteed with novel wearable measurement equipment, and an adaptive system
could probably operate satisfactorily even if the noise characteristics change
during the measurement. The CFAR techniques considered are not new, but
they have been used in both radar and sonar receivers. Actually, another
motivation was that the velocity peaks of saccadic eye movements resemble
the echoes of simple targets in a radar signal. The work and the results
presented in Publications III–V show that the particular CFAR techniques
could be adapted to another field and they offer a method for lowering the
number of false alarms in noisy conditions. Therefore, the CFAR saccade
detector finds potential use in applications where fast and automated signal
analysis is a requirement, ideal measurement conditions cannot be guaran-
teed, and noise presents a considerable problem. However, constant false
alarm probability is maintained at the expense of the detection sensitivity,
which means that some of the smaller saccades are missed. This has to be
tolerated when using a CFAR detector and, particularly, if the desired false
alarm probability is low.

The five publications illustrated some of the problems that are present
when designing and testing detectors. First of all, there is not necessarily a
common set of genuine test data available. Therefore, comparing detectors
is usually difficult or laborious. For example, the results of Publication I
represent only one set of test data. Using some other data would probably
had yielded different results. In addition, although it is commonly recognised
that genuine data represent the ultimate test for any system, genuine data
do not necessarily provide as much control or objectiveness as artificial data.
These issues were also discussed in Section 2.3. Because of the aforemen-
tioned issues, artificial data were used in the experiments of Publications II
and V. Still, genuine data were used to verify the results. One problem of
detector design is the choice of suitable parameters. Sometimes detectors
are designed and tested with some set of parameters, but no guidelines, even
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intuitive ones, are presented for choosing them. In Publications II–V, we
tried to present such guidelines. These guidelines are useful when a detector
is applied in practice.

The software components used to conduct the experiments were at first
implemented in Matlab code. As the research work progressed, all detec-
tors and necessary components, excluding the MLP-based detector, were
implemented in C++. Because the various components are implemented as
classes, they can be easily used in other C++ programs. This facilitates and
speeds up the ensuing software development process because the detectors
have already been implemented.

Near future endeavours include further development of the saccade de-
tector considered in Publications III–V. One of the objectives is to integrate
it into the “Face Interface”, which was presented in Chapter 1, as it would
enable the analysis of saccadic eye movements. Baseline drift poses a notable
problem in an EOG signal measured with a DC powered amplifier. Another
objective is to use the CFAR saccade detector in a novel drift removal system.
While participating in the second project, the author of the thesis has been
developing a frowning detector that operates on a signal measured with a
capacitive sensor. The future work shows if this approach is better, or worse,
than the surface EMG approach used in Publication II.
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Addenda and Corrigenda

The following list contains additions clarifying some parts of the text and
corrections for errors that were found after the thesis was printed. However,
these additions and corrections do not cover Publications I–V but only the
introductory part of the thesis.

Page iii, list of keywords.
Add “human-machine interaction” to the end of the list.

Page 1, last complete sentence on page.
Operating room staff was unintentionally omitted from the list. Change the
sentence to “Besides physicians performing medical diagnosis, also paramed-
ics, emergency room staff, operating room staff, and intensive care units make
considerable use of biomedical signals in patient monitoring.”

Page 14, 3rd complete sentence on page.
Change the sentence to “It is usually assumed that if detection occurred in
the latter case, then it would certainly occur in the former case as well.”

Page 14, 4th to last sentence on page.
Change “moving average” to “moving-average”.

Page 19, caption of Figure 2.5.
Add the following sentence before the last sentence: “Divisions by zero can
be overcome, for example, by using saturation arithmetic (see Publication II
for details).” Also, change the last sentence to: “The threshold γ′1 can be
chosen in an intuitive way by defining the relative similarity that is required
for detection.”

Page 19, 1st complete sentence of the body text.
Add the following sentences, as a footnote, just after the equation defining
T1(n): “This is not the commonly used Pearson correlation coefficient but
a normalised version of the cross-correlation. For example, Ifeachor and
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Jervis [37] give a similar definition for the cross-correlation coefficient.”

Page 19, 2nd to last complete sentence on page.
Change “two correlated random variables” to “two dependent random vari-
ables”.

Page 23, 1st sentence of the caption of Figure 2.8.
Change “given frequency” to “known frequency”.

Page 32, last complete sentence on page.
Change “(AC) powered” to “(AC) coupled”.

Page 33, 1st sentence of the caption of Figure 3.1.
Change “AC powered” to “AC coupled”.

Page 35, 1st sentence of the 2nd paragraph of the body text.
Replace the colon ( : ) with a period ( . ) and begin the following sentence
with a capital letter.

Page 36, caption of Figure 3.3.
Add the following sentence before the last sentence: “Divisions by zero can
be overcome, for example, by using saturation arithmetic (see Publication II
for details).”

Page 36, Section 3.1.2.
No information was given on the tested rectifiers or smoothing filters. Add
the following sentences after the 4th sentence of Section 3.1.2: “The envelope
detector is a cascade of a rectifier and a smoothing filter. Three types of recti-
fiers were tested: half-wave, full-wave, and square-law. Only MA smoothing
filters were considered. This choice was made because MA filters have linear
phase response and they can be implemented in a computationally efficient
manner.” Also, change the following sentence to “The envelope waveform is
input to a modified two-point backward difference (MTPBD) that computes
a test statistic reflecting the occurrence of either an onset or a termination
of muscle contraction.”

Page 37, caption of Figure 3.4.
The role of the delay factor q was not explained. Add the following sentence
to the end of the caption: “The delay factor q, whose value mainly depends
on the characteristics of the envelope detector, is chosen so that neither v(n)
nor v(n− q) is corrupted by information contributing to the other.”
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Page 39, 4th complete sentence on page.
Change “(DC) powered” to “(DC) coupled”.

Page 39, 6th complete sentence on page.
Change “DC powered” to “DC coupled” and “AC powered” to “AC coupled”.

Page 40, 1st sentence of the caption of Figure 3.5.
Change “AC powered” to “AC coupled”.

Page 41, caption of Figure 3.6.
The role of the guard samples may remain unclear. Add the following sen-
tence before the last sentence: “Information overlap between the test and the
reference samples is decreased by placing an appropriate number of guard
samples between them.”

Page 41, 2nd to last sentence of the 1st paragraph of the body text.
Change “zero mean white Gaussian noise assumption” to “the zero-mean ad-
ditive white Gaussian noise assumption”.

Page 41, last complete sentence on page.
Change “the number of false alarm” to “the number of false alarms”.

Page 42, 3rd complete sentence on page.
Change “fewer false alarm” to “fewer false alarms”.

Page 49, 1st paragraph.
Add the following sentence to the end of the paragraph: “I designed the
detectors considered in the publications.”
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