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ABSTRACT

Background. Atherosclerosis results from a combination of environmental risk factors and genetic

susceptibility which contribute individually in the clinical expression of cardiovascular disease.

The atherosclerotic disease process is considered to be a chronic proliferative inflammatory

response involving the extravasation and accumulation of blood inflammatory cells i.e., monocyte-

macrophages and lymphocytes in the arterial intima. Myeloperoxidase (MPO) is a heme

peroxidase found in neutrophils, monocytes and tissue macrophages. In addition to the essential

role of MPO as a component of the innate immune responses, both MPO and its reactive oxidants

are enriched in human atheroma. The MPO gene has a functional G/A promoter polymorphism

(rs2333227) at position -463, which affects the transcription efficiency of the GG, AG and AA

genotypes and creates an estrogen receptor  (ER ) binding site to the A-allele.

Objectives. To investigate the association between MPO -463G/A (rs2333227) genotypic

variation and lipoprotein oxidation, coronary reactivity, the carotid artery intima-media thickness

(IMT) and the development of early and advanced atherosclerotic lesions in the thoracic and

abdominal aortas was analyzed. In addition, as the ER  is known to bind more effectively to A-

allele  than  to  G-allele,  the  association  of  MPO  genotype  dependent  effect  on  atherosclerosis

progression during long-term hormone replacement therapy (HRT) was assessed.

Subjects and Methods. The study was based on five different study populations (Studies I-

V), comprising a total of 685 individuals. In Study I, the association of the MPO genotypes with

the coronary blood flow was examined in 49 healthy but mildly hypercholesterolemic men. In

Study II, the link between MPO genotypes and carotid IMT was studied in 37 men with type 2

diabetes mellitus (DM) and in 161 non-diabetic middle-aged men. In Study III, the relationship

between the MPO genotypes and autopsy-confirmed areas of different types of atherosclerotic

lesions in the abdominal and thoracic aorta was examined in 266 middle-aged men. In Study IV,

the effect of the MPO genotype on lipoprotein oxidation was studied in 87 women with long-term

HRT. In Study V, the effect of MPO genotypes on the progression of atherosclerosis was studied

in the same study population.

Results. In Study I, the GG genotype carriers had 18.1% lower coronary flow reserve than A-

allele carriers. In Study II, the non-diabetic subjects GG homozygotes had lower overall carotid

IMT than A-allele carriers whereas no genotype dependent association was found among men with

type 2 DM. In the autopsy Study III, the MPO GG genotype carriers had smaller area of fibrotic

and calcified lesions in the abdominal aorta. The association weakened with advancing age. In

Study IV, the MPO GG genotype carriers on long-term HRT were found to have higher values of
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antibodies against low-density lipoprotein than women without treatment. In Study V, the

progression  of  atherosclerosis  was  faster  in  non-treated  controls  than  HRT users  among the  GG

homozygotes whereas no such association was found among A-allele carriers.

Conclusions. We conclude that the MPO -463G/A (rs2333227) polymorphism is a genetic

marker for atherosclerosis. Postmenopausal females carrying the A-allele may benefit less from

long-term HRT.
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TIIVISTELMÄ

Tausta. Ateroskleroosi on vuosikymmenien aikana kehittyvä sairaus, jonka ilmiasuun vaikuttavat

sekä perinnöllinen sairastumisalttius sekä ympäristötekijät. Ateroskleroosia pidetään kroonisena

inflammaatioprosessina jolle on tyypillistä rasvan ja tulehdussolujen, kuten monosyytti-

makrofagien ja lymfosyyttien, kertyminen valtimon seinämään. Myeloperoksidaasi (MPO) on

neutrofilien, monosyyttien ja makrofagien erittämä hemientsyymi ja osa immuunipuolustuksen

hapettamisjärjestelmää. Sekä MPO entsyymiä että sen reaktiotuotteita on pystytty osoittamaan

ateroskleroosimuutoksista. MPO geenin säätelijä- eli promoottorialueella esiintyy perinnöllistä

vaihtelua, polymorfismia. Geenin aktiivisuuteen vaikuttavan -463G/A pistemutaation (rs2333227)

seurauksena väestössä esiintyy kolme erilaista genotyyppiä GG, AG ja AA. Lisäksi pistemutaation

seurauksena A-alleeliin syntyy estrogeenireseptori  (ER ) sitoutumiskohta.

Tavoite. Väitöskirjatyön tavoitteena oli selvittää MPO geenin perinnöllisen vaihtelun

yhteyttä lipoproteiinien hapettumiseen, sepelvaltimoiden virtauksen reserviin, kaulavaltimoiden

seinämäpaksuuteen sekä rinta- ja vatsa-aortan ateroskleroottisiin muutoksiin. Koska ER  tiedetään

sitoutuvan tehokkaammin A-alleeliin, tutkittiin MPO genotyypin vaikutusta lipoproteiinien

hapettumiseen sekä ateroskleroosin etenemiseen pitkäaikaisen hormonikorvaushoidon aikana.

Aineisto ja menetelmät. Tutkimus perustuu viiteen tutkimussarjaan, joihin kuului yhteensä

685 tutkittavaa. Ensimmäisessä osatyössä tutkittiin MPO genotyypin vaikutusta

selpelvaltimokierron reserviin 49 lievästi hyperkolesterolemisten mutta muutoin terveiden miesten

aineistossa. Toisessa osatyössä tutkittiin MPO genotyypin yhteyttä kaulavaltimoiden

sisäseinämien ultraäänitutkimuksen tuloksiin ei-diabeetikoilla ja tyypin 2 diabetesta sairastavilla

196 keski-ikäisen miehen aineistossa. Kolmannessa osatyössä selvitettiin MPO genotyypin

yhteyttä vatsa- ja rinta-aortan ateroskleroottisiin muutoksiin 266 keski-ikäisen miehen

ruumiinavausaineistossa.  Neljännessä osatyössä tutkittiin MPO genotyypin vaikutusta LDL-

kolesterolin hapettumiseen hormonikorvaushoidon aikana 87 naisen aineistossa. Viidennessä

osatyössä tutkittiin samassa aineistossa MPO genotyypin vaikutusta ateroskleroottisten muutosten

etenemiseen hormonikorvaushoidon aikana.

Tulokset. Ensimmäisessä osatyössä GG genotyyppiä kantavilla nuorilla miehillä oli

alhaisempi sepelvaltimokierron reservi kuin A-alleelin kantajilla. Toisessa osatyössä todettiin GG

genotyypin kantajilla matalampi kaulasuonten seinämäpaksuus kuin A-alleelin kantajilla, mutta

tyypin 2 diabeetikoilla eroa genotyyppien välillä ei tullut esiin. Kolmannessa osatyössä todettiin

GG genotyypin kantajilla olevan pienemmät fibroottiset ja kalkkeutuneet ateroskleroottiset
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muutokset vatsa-aortassa kuin A-alleelin kantajilla mutta yhteys heikkeni ikäriippuvaisesti.

Neljännessä osatyössä todettiin hormonikorvaushoitoa saaneilla GG genotyypin kantajilla

korkeammat hapettunutta LDL-kolesterolia vastaan muodostuneiden vasta-aineiden tasot kuin

niillä GG genotyypin kantajilla jotka eivät saaneet hormonikorvaushoitoa. Viidennessä osatyössä

todettiin ateroskleroosin etenemisen olevan hitaampaa niillä GG genotyypin kantajilla jotka saivat

hormonikorvaushoitoa verrattuna lääkkeettömiin kontrolleihin, kun taas A-alleelin kantajilla ei

vastaavaa yhteyttä todettu.

Johtopäätökset. Yhteenvetona väitöskirjatutkimuksen tuloksista voi todeta että MPO -

463G/A (rs2333227) polymorfismi on yhteydessä ateroskleroosin ilmiasuun ja MPO genotyyppi

toimii ateroskleroosin geneettisenä markkerina. MPO -463G/A polymorfismin A-alleelia

kantavien naisten saama hyöty postmenopausaalisesta hormonikorvaushoidosta saattaa jäädä

vähäisemmäksi kuin GG genotyypin kantajilla.



13

INTRODUCTION

Atherosclerosis of large and medium sized arteries is the main cause of cardiovascular disease

(CVD) which manifests as coronary artery disease (CAD), acute myocardial infarction (MI),

stroke and peripheral vascular disease (Ross 1993, Ross 1999, Lusis 2000).  By the end of the 20th

century, CAD has become the most common cause of death and premature invalidity in the world

(Murray and Lopez 1997, Glass and Witztum 2001). Therefore, an intense discussion about

atherosclerosis prevention has been ongoing in recent decades (LaRosa 1999) and several risk

factors such as age, sex, hypertension, diabetes mellitus (DM), hypercholesterolemia and smoking

have been investigated in epidemiological studies (Criqui 1986). Most of the risk scores for

clinical use are based on these traditional risk factors; i.e. Framingham Study and the European

SCORE –research (Wilson et al. 1998, Conroy et al. 2003). Moreover, a large number of studies

have demonstrated an association of family history with CVD, suggesting that inherited genetic

factors may play an important role in disease progression. There are rare high-risk single gene

defects contributing to atherosclerosis but most commonly CVD is believed to be multifactorial

and result from a combination of many genes which interact with the environment and other genes

leading to individual phenotypes with a different risk of progression of the disease (Lloyd-Jones et

al. 2004, Arnett et al. 2007, Parikh et al. 2007, Zhao et al. 2007). Twin studies have demonstrated

that the heritability of CVD has an inverse relationship with age. According to these studies in

older age environmental risk factors seem to influence disease progression more than genetic

factors (Sorensen et al. 1988, Marenberg et al. 1994). In recent years several candidate genes have

been evaluated and pooling this genetic risk data with environmental risk factors has led to a

promising improvement in the prediction of CAD (Humphries et al. 2007, Morrison et al. 2007).

Several hypothese on atherosclerosis have been evolved ever since the first observations of

the plaque morphology in the 19th century (Stocker and Keaney 2004, Langheinrich and Bohle

2005). The demonstration of oxidatively modificated low-density lipoprotein (oxLDL) in the

atherosclerotic plaque in the late 1970s and 1980s (Ylä-Herttuala et al. 1989, Glass and Witztum

2001) resulted in the oxidative modification hypothesis of atherosclerosis in 1989 (Steinberg et al.

1989)  which  has  contributed  over  the  last  decade  to  the  theory  of  atherosclerosis  as  an

inflammatory disease (Ross 1999). The cornerstone of the classification of atherosclerotic plaque

development is a six-stage process based on the morphological and histological findings (Stary et

al. 1992, Stary et al. 1994, Stary et al. 1995, Stary 2000). According to this model, the initial

atherosclerotic lesion can be seen already in the fetal aortas and is characterized by the

accumulation of low density lipoprotein (LDL) and lipid droplets containing macrophages in the
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intima of the arterial wall (Pearson et al. 1983, Napoli et al. 1997). According to current

knowledge, the event behind the earliest Type I and II atherosclerotic plaques is characterized by

the presence of an excessive number of inflammatory cells as activated T lymphocytes and

monocyte-derived macrophages. Inflammatory cellular and molecular events are involved in every

stage of the atherosclerosis and the long-lasting inflammatory injury seems to be the basis for the

development of mature type IV lesions into symptomatic type V and VI plaques which finally lead

to clinical symptoms of CVD (Stary et al. 1995, Ross 1999, Mullenix et al. 2005).

Myeloperoxidase (MPO), an abundant oxidative hemoprotein compound is expressed in

activated neutrophils, monocytes and macrophages in human atheroma (Daugherty et al. 1994,

Hazen  and  Heinecke  1997).  MPO  is  part  of  the  host  defense  system  of  the  phagocytes  and

responsible for microbicidal activity against a wide range of organisms. The main function of

MPO enzyme is to generate oxidants and contribute to the immune defence system (Nauseef et al.

1988, Hurst and Barrette 1989, Klebanoff 1999). On the other hand, MPO has also been suggested

to have an important role in the propagation of CVD (Hoy et al. 2002, Nicholls and Hazen 2005)

and the oxidative compounds as well as the reaction remnants produced by MPO are found in

atherosclerotic lesion (Daugherty et al. 1994, Hazen and Heinecke 1997). Elevated blood levels of

MPO have been found to predict the presence of CAD (Zhang R et al. 2001). In chest pain

patients, initial plasma MPO levels significantly predict the risk of MI, even in patients who are

negative for troponin at baseline (Brennan et al. 2003). MPO also plays a role in the vascular

signaling and vasodilatory function of nitric oxide (NO) (Eiserich et al. 2002). MPO gene

promoter area has a functional G to A single nucleotide polymorphism (SNP, rs2333227) at site -

463 (Piedrafita et al. 1996, Reynolds et al. 1997). The G-allele promotes binding by SP1 nuclear

transcription factor (SP1) and is associated with stronger promoter activity and gene expression,

whereas the A-allele creates a binding site for an estrogen receptor  (ER ) (Piedrafita et al. 1996,

Reynolds et al. 1997). The association of MPO -463G/A polymorphism (rs2333227) with MPO

activity is age and gender-dependent (Rutgers et al. 2003) and several studies also imply that this

also has an effect on the development of CVD (Nikpoor et al. 2001, Pecoits-Filho et al. 2003b). A

considerable number of SNPs similar to -463G/A are scattered in the human genome and they

appear to be a useful tool in the study of polygenic disorders such as CVD. As in the case of our

candidate gene, many SNPs have functional consequences if they occur in gene coding or

regulatory site and make possible to directly test for association between a phenotype and a

functional variant (Pecoits-Filho et al. 2003a).

In this thesis, the effect of MPO -463G/A promoter polymorphism (rs2333227) on

atherosclerotic biomarkers and atherosclerotic development was investigated in five different
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study series, representing different developmental stages and backrounds of atherosclerosis. In the

first  of  these  studies  positron  emission  tomography (PET)  was  used  to  study  the  effect  of  MPO

polymorphism on the early markers of atherosclerosis i.e., coronary function and reactivity. Also,

the effect of MPO polymorphism on autoantibodies against oxLDL (oxLDL-abs) was studied. In

the second study, the interaction effect of type 2 DM and MPO polymorphism on carotid intima-

media thickness (IMT) was studied. In the third study, the effect of MPO genotypes on

atherosclerotic lesion areas in the abdominal and thoracic aortas was evaluated in an autopsy series

of the Helsinki Sudden Death Study (HSDS). In the fourth study, the effect of MPO polymorphism

and long-term hormone replacement therapy (HRT) on oxLDL-abs was studied. In the last study,

the effect of MPO polymorphism and long-term HRT on ultrasonographically measured

atherosclerosis progression was assessed.
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REVIEW OF THE LITERATURE

1. Pathogenesis of atherosclerosis

1.1. Structure of the artery wall

The normal muscular and elastic arteries consist of three morphologically distinct layers; namely

the intima, media and adventitia. In the primary situation, the arteries have a very simple tissue

structure; the cell types appearing in the intima and media are the endothelial cells (ECs) smooth

muscle cells (SMCs) and in some individuals isolated macrophages. In the adventitia, fibrocytes

are also found (Geer et al. 1961).

Intima. The intima is the innermost, narrow region on the luminal side of the artery. Most of

the pathological changes of atherosclerosis develop in this layer. It is covered with a single

continuous layer of ECs which are bound to the basement membrane. ECs synthesize and secrete

the extracellural matrix components such as fibronectin, type IV and type V collagen, laminin and

proteoglycans and they regulate the permeability of macromolecules, thrombolysis, vascular tone

and immune responses. The subendothelium is divided into the proteoglycan and musculoelastic

layers. The proteoglycan-rich layer consists of connective tissue, macrophages and isolated cells of

synthesizing type of SMCs. The musculoelastic layer underlies the proteoglycan layer and

contains more SMCs, elastic fibers and collagen than the inner layer. SMCs are involved in the

contractility, structural maintenance and lipid metabolism of the intima. The intima is separated

from the media by internal elastic lamina (Geer et al. 1961, Ross and Glomset 1973, Wight and

Ross 1975, Ross and Glomset 1976, Stary 1987, Stary et al. 1992).

Media. The media layer is situated under the internal elastic lamina and is manifested as

diagonally oriented SMCs attached to each other surrounded by collagen, small elastic fibers and

proteoglycans. The synthesizing SMC type produces collagen whereas the contractile SMC type is

involved in vasodilatation and vasoconstriction of the artery. The media layer is surrounded by the

external  elastic  lamina,  which  forms  an  elastic  border  with  the  third  outermost  layer,  called  the

adventitia (Geer and Haust 1972, Ross and Glomset 1976).

Adventitia. The adventitia is separated from the media by the external elastic lamina and

consists of fibroblasts and SMCs surrounded by proteoglycans and type I collagen. The vasa

vasorum provide blood supply to the wall structures of in large arteries, where the media has

several layers of SMCs (Ross and Glomset 1973, Ross and Glomset 1976, Gulbenkian et al. 1993).
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Figure 1. Structure of the artery wall.

See text for details. Modified from Ross and Glomset (1976): The pathogenesis of atherosclerosis (First of two parts).

N Engl J Med  295:369-377.

1.2. Definition and classification of atherosclerosis

Atherosclerosis is a disease characterized by focal thickening of the intimal layer of the artery with

accumulated fatty deposits. It affects particularly large arteries such as the aorta and iliac, femoral,

coronary and cerebral arteries where it is distributed to diffuse plaques (Ross and Glomset 1973,

Ravensbergen et al. 1998). The initiation, speed of progression and the phenotype of

atherosclerotic plaques are artery-related. Foam cell lesions are frequent in the carotid arteries

probably explaining the dynamics in carotid IMT. In the femoral arteries, the atherosclerosis

development is slow and dominated by fibrous plaques. High prevalence of lipid core plaques is

typical for coronary arteries in subjects dying of CAD (Dalager et al. 2007).

In the 1960’s the International Atherosclerosis Project (IAP) launched an international

survey aiming to describe the various types of atherosclerotic lesions. Methodologically, the
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involvement of atherosclerosis was based on visual evaluation after a standard staining process and

was graded visually as fatty streaks, fibrous plaques, complicated lesions and calcification

(Guzman et al. 1968).

In the 1990’s a new classification of atherosclerotic lesions was presented by the Committee

on Vascular Lesions of the Council on Atherosclerosis, American Heart Association (AHA). The

classification was based on cross-sectional microscopic examination of the histology and the

histochemical  composition  of  the  cell  and  the  matrix  components  of  the  lesion.  The  first  report

provided a definition of the arterial intima and atherosclerosis-prone regions (Stary et al. 1992).

Initial lesions were further defined as type I lesions and fatty streaks as type II lesions (Stary et al.

1994). Intermediate lesions (type III) were followed by advanced lesions which were classified by

the numerals IV (atheroma), V (fibroateroma) and VI (complicated lesion) (Stary et al. 1995). In

2000, the classification was updated and the type II lesion was subdivided into progression-prone

(IIa) and progression-resistant (IIb) phenotypes (Stary 2000).
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Table 1. Classification of atherosclerotic lesions.

Histological classification of

atherosclerotic lesions by the AHA

(Stary et al. 1994, Stary et al. 1995)

Macroscopic classification

by the International

Atherosclerosis Project

(IAP) (Guzman et al. 1968)

Intimal Thickening Usually not visible or may

be mistaken for a raised

lesion

Early lesions

   Type I Intial lesion Usually not visible, fatty

dots

   Type IIa Progression-prone type II Fatty streak, fatty dots

   Type IIb Progression-resistant type II

Intermediate lesions

  Type III Preatheroma Fatty streak or fibrous

plaque

Advanced lesions

  Type IV Atheroma Fibrous plaque

  Type Va Fibroatheroma (type V lesion) Fibrous plaque

  Type Vb Calcified lesion (type VII lesion) Calcified plaque

  Type Vc Fibrotic lesion (type VIII lesion) Fibrous plaque

  Type VI Lesion with surface disruption,

hematoma/hemorrhage or

thrombosis

Complicated lesion

Abbreviations: AHA, American Heart Association.
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1.3. Pathogenesis and development of atherosclerotic lesions

1.3.1. Hypothesis of atherogenesis

During decades of research on atherosclerosis many hypotheses have been evinced to explain the

complex events associated with disease development. During early atherogenesis, several

processes are present simultaneously including endothelial injury or activation including shear

stress-related events, local adherence of platelets, lipoprotein oxidation and aggregation,

macrophage chemotaxis and foam cell formation, likewise SMC migration, proliferation and

phenotypic  alteration.  However,  each  of  these  involves  inflammation  as  a  crucial  component  of

atherosclerosis (Williams and Tabas 1995).

The response-to-injury hypothesis. The very early hypotheses regarding atherosclerosis

suggested the disease progression to be a rather a passive deposition with no active cellular

component (Stocker and Keaney 2004). In the 1970s the hypothesis of atherogenesis was

augmented by the theory of compensatory mechanisms following the physical endothelial injury.

The mechanisms included the migration of SMCs and the recruitment of macrophages into the

vessel wall and furthermore the continuing inflammatory processes (Ross and Harker 1976).

However, the endothelium may be intact in most stages of lesion progression (Stary et al. 1994).

The response-to-retention hypothesis. In 1995, the response-to-retention hypothesis was

evinced suggesting lipoprotein retention as the triggering event in atherosclerosis development.

The key event is the retention of lipoproteins within the vessel wall (Williams and Tabas 1995,

Williams and Tabas 1998, Skalen et al. 2002). Retained lipoproteins are then modified into

enzymatic, oxidative and other pathways (Tabas et al. 1993, Schissel et al. 1996, Zhang et al.

2000, Guyton 2001, Pentikäinen et al. 2002, Stocker and Keaney 2004, Öörni et al. 2004).

According to this hypothesis, the role of shear stress in early atherogenesis is mediated through the

synthesis of lipoprotein retention promoting molecules which is necessary to cause lesion in the

normal artery (Munro and Cotran 1988).

The oxidative modification hypothesis. The oxidative modification theory is based on the

observation that the native LDL itself is not atherogenic but needs to be chemically modified to

enter the macrophages through the scavenger receptor (SR). While LDL accumulates in the

subendothelial space of lesion-prone arterial sites it is subject to oxidation which leads to

negatively charged lipoprotein particles (Ylä-Herttuala et al. 1989). Recent data on failure of

antioxidant supplements to lower CAD events has led to a hypothesis that oxidation includes both
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positive and negative actions dependent in cell type and location (Fuster et al. 1999, Ross 1999,

Libby 2001, Kritharides and Stocker 2002, Corti et al. 2004, Williams and Fisher 2005).

1.3.2. Endothelial dysfunction in the development of early atherosclerotic lesions

The ECs of normal muscular and elastic arteries form a continuous layer of flattened and elongated

cells. With the exception of areas of turbulent flow and reduced shear the ECs are oriented in the

direction of flow (Vane et al. 1990, Stary et al. 1992). The normal endothelium does not support

the attachment of circulating immune cells (Libby 2002). The endothelium produces a number of

vasodilator substances such as NO which, besides vasodilatation, also inhibits monocyte adhesion

and platelet aggregation (Ogita and Liao 2004). The disruption of endothelial homeostasis is still

considered to be the crucial event in the inflammatory process, which further evolves into plaque

progression and degeneration (Landmesser et al. 2004). Physiological stress includes both local

and systemic factors such as lipid accumulation, mechanical denudation, oxidative stress, genetic

variability and shear stress. Endothelial dysfunction is functionally and morphologically well

characterized. The main elements of the endothelial response to injury are adhesiveness,

permeability, proliferation and thrombogenesis, each of which has typical mediators, cellular

elements, inflammatory responses and biological effects (Meidell 1994, Landmesser et al. 2004,

Mullenix et al. 2005).

Adhesion. Adhesion of leukocytes to the endothelium is one of the most important events in

the response to injury. Vascular injury induces the upregulation of endothelium-derived adhesion

molecules which mediate the attachment and accumulation of monocytes, macrophages, T

lymphocytes and platelets on the vessel wall (Jonasson et al. 1986, Mullenix et al. 2005). These

include intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-

1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1), integrins and selectins. As the

inflammation proceeds, proinflammatory cytokines, membrane receptors and enzymes are

released. These include interleukins (IL) 1, 2, 6, 7, 8 and 18, tumor necrosis factor  (TNF- ),

interferon-  (IFN- ), monocyte chemotactic proteins (MCPs), CD40 ligand (CD40L), parathyroid

hormone-related protein (PTHrP), osteopontin, cyclo oxygenase-2 (COX-2) and matrix

metalloproteinases (MMPs). A proinflammatory positive feedback recruits additional cytokine

releasing  immune  cells,  promotes  SR  expression  and  aggregation  of  oxLDL  particles  in  the

endothelium and promotes the release of hepatic acute-phase reactants such as C-reactive protein
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(CRP) with attendant activation of the systemic inflammatory cascade (Libby 2002, Ito and Ikeda

2003, Mullenix et al. 2005).

Permeability. The permeability of the endothelium increases in response to injury.

Endothelial passage and deposition of oxLDL results in the influx of circulating macrophages to

further modify and phagocytose the accumulating lipid-derived antigens. Resultant lipid-laden

foam cells are representative of the histology of the early lesions. The protective inflammatory

response may lead to a disproportionate recruitment of additional monocytes, macrophages, T

lymphocytes and mast cells with attendant cytokine and chemokine release. This activates the

classical and alternative complement pathways of the immune system and stimulates the local

proliferation of vascular SMCs. Elaborated chemokines and MCP-1 promote the retention of

recruited leukocytes and monocytes in the plaque itself (Ross 1999, Leskinen et al. 2003, Mullenix

et al. 2005).

Proliferation. Activated endothelium functions in many ways as an endocrine tissue. The

production of platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1),

fibroblast  growth  factor  (FGF),  transforming  growth  factor   (TGF- ),  IL-1  and  TNF-  all

promote SMC proliferation, migration, local vasoconstriction, FGF-mediated collagen synthesis

and matrix deposition, fibrous cap production and additional immune and platelet cell recruitment

and activation (Ross 1999, Mullenix et al. 2005).

Thrombogenesis. Dysfunctional  ECs  lose  their  intrinsic  anticoagulant  properties.  The

factors contributing to the thrombogenic microenvironment are the local inflammatory activity

such as platelet adherence, activation and degranulation, as well as disordered NO metabolism,

increased phospholipase A2 and plasminogen activator inhibitor-1 (PAI-1) activities, the release of

vasoactive agents and the structural denudations in the endothelial layer itself with attendant

collagen exposure, tissue factor (TF) release and MMP activity. MMP-related areas of fissuring or

ulceration in advanced atherosclerotic plaques are particularly vulnerable to platelet-associated

vascular haemorrhage, rupture, thrombosis, embolization and occlusion (Libby et al. 2002).

1.3.3. The role of inflammatory cells and infections during atherosclerosis

The fundamental event in the inflammatory response of atherosclerosis is the localized and

restricted recruitment of blood leukocytes to tissues and organs through the endothelium-

dependent mechanisms (Ross 1999, Osterud and Bjorklid 2003). It is enhanced by the presence of

LDL which undergoes oxidative modification, as well as elevated arterial pressure, DM, chronic

infections and acute activation of the immune system. These cells are mostly monocyte-
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macrophages but also include activated T-cells, dendritic cells and activated degranulating mast

cells all of which both accelerate lesion development and trigger the acute plaque rupture

(Arbustini et al. 1991, Hansson 2005, Shah 2007, Lindstedt et al. 2007).

Monocyte-Macrophages. The accumulation of leukocytes in the lesion-prone areas is

primarily of mononuclear origin (Osterud and Bjorklid 2003). Monocytes are the precursors of

macrophages in all tissues and present in every stage of atherogenesis (Langheinrich and Bohle

2005). Macrophages are mobile phagocytic cells specialized in the endocytosis of cellular and

extracellular debris and microorganisms. Monocyte recruitment into the arterial wall is a cascade

involving leukocyte and EC adhesion molecules that support leukocyte rolling, firm adhesion and

transmigration. The newly arrived monocytes then undergo transformation into macrophages, by

expanding and becoming active in endocytosis and producing lysosomes (Rao et al. 2007). The

subendothelial, modified LDL is hypothesised to provide an initiating ligand for macrophages

which is a critical step for the development of atherosclerosis and is associated with the

upregulation for innate immunity, including SRs and toll-like receptors (Langheinrich and Bohle

2005). Macrophages produce many immunoregulatory molecules which influence the activity of

SMCs, ECs and macrophages themselves (Hansson 2005). Macrophages are also able to release a

range of proteolytic and oxidizing agents including superoxide (O2 ), hydrogen peroxide (H2O2),

lipid peroxides, lipoxygenases (LOs) and possibly hypochlorite (HOCl) (Chisolm et al. 1999).

Macrophage activation can be either pro-inflammatory or anti-inflammatory (Martinez et al

2008). Cytokines of the type 1 helper T-cells (Th1) promote monocyte differentiation into

proatherogenic M1 macrophages while the type 2 helper T-cell (Th2) cytokines lead to anti-

inflammatory M2 macrophage phenotype (Bouhlel et al. 2007). Both M1 and M2 macrophages are

present in atherosclerotic lesions (Charo 2007). The relative appearance of these two types of

macrophages may change dynamically with the recruitment of polarized monocytes from the

blood or through the effects of local cytokines on macrophages in the tissues (Charo 2007).

T lymphocytes. A T-cell infiltrate is always present in atherosclerotic lesions, mostly CD4+

T-cells but a subpopulation of natural killer cells and CD8+ cells are also found. Antigens, such as

oxLDL, are presented to the T-cells by macrophages and dendritic cells to activate the antigen-

specific T-cells in the artery. The cytokines presented in atherosclerotic lesion promote mostly Th1

instead of Th2 response (Frostegård et al. 1999, Hansson 2005). The Th1 response activates an

inflammatory response similar to delayed hypersensitivity reaction, whereas Th2-mediated

response resembles allergic inflammation. The Th1 pathway tends to stimulate atherosclerosis

progression and Th1 type cytokines also dominate in human atherosclerotic plaques. The

cytokines of Th2 pathway are able to inhibit the Th1 cell responses and may therefore promote
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antiatherosclerotic immune reactions (Binder et al. 2004, Hansson 2005, Hansson and Libby

2006).

B lymphocytes. The belief about B-cell involvement in atherosclerosis has been based on

the presence of circulating autoantibodies against oxLDL and immunoglobulins in atherosclerotic

lesions (Ylä-Herttuala et al. 1994, Langheinrich and Bohle 2005). Antibody-producing B-cells are

not numerous in lesions but may contribute to the atherosclerotic activity. Spleen B-cells may be

particularly effective inhibitors of atherosclerosis due to the natural antibodies which some of the

cells produce against oxLDL and apoptic cell membranes. This may lead to the elimination of

oxLDL and dead cells. Accordinlgy, individuals who have undergone splenectomy have increased

susceptility to CAD (Witztum 2002, Hansson 2005).

Granulocytes. Activated neutrophils release several proteolytic enzymes which are potent

for tissue destruction. Granulocytes are rarely detected in atherosclerotic lesions but during acute

MI neutrophils may infiltrate human culprit lesions (Naruko et al. 2002, Langheinrich and Bohle

2005).

Mast cells. Chronic activation of mast cells in the atherosclerotic lesion may predispose to

plaque rupture. Mast cells are found to accumulate in the shoulder region of coronary

atherosclerotic plaques, especially in the segments of plaque rupture. In sites of plaque erosion, the

number of degranulating mast cells is also increased in the adventitia. Mast cells, when stimulated,

degranulate and release their neutral proteases and histamine into the surrounding

microenvironment where they may contribute the acute coronary events (Kovanen et al. 1995,

Laine et al. 1999, Lindstedt et al. 2007).

Infections. Some pathogens and clinical infections have been linked to atherosclerosis and

CAD, such as Chlamydia Pneumoniae, herpes and cytomegalo viruses. In theory, several types of

pathogens and the total burden of varying infections may contribute to the progression of

atherosclerosis and elicit clinical manifestations (Saikku et al. 1988, Moreno et al. 1994, Hansson

2005). Bacterial deoxyribonucleic acid (DNA) has been identified in the coronary arteries

(Lehtiniemi et al. 2005, Ott et al. 2006) and abdominal aorta of atherosclerotic patients

(Renko et al. 2008). Among the several types of pathogens identificated from the lesions are

bacterial sequences similar to those found in human periodontitis (Renko et al. 2008). Oral

infections are also considered a risk factor for coronary heart disease (CHD) (Mattila et al. 2000),

MI (Mattila et al. 1989) and sudden cardiac death (Karhunen et al. 2006) and various oral bacteria

have been detected in coronary plaques (Lehtiniemi et al. 2005). However, these speculations need

to be studied further because the firm findings for this theory are still lacking.
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1.3.4. Development of atherosclerotic lesion and plaque rupture

Fatty streak. As the accumulation of LDL in the vessel wall proceeds the dysfunctional

endothelium expresses several adhesion molecules, such as vascular cell adhesion molecule-1

(VCAM-1) and intracellural adhesion molecule-1 (ICAM-1), in response to the proinflammatory

stimulus (Glass and Witztum 2001). Monocytes adhere to the vessel wall and invade the

subendothelial space in an attempt to protect the arterial wall from the cytotoxic oxLDL. The

transformation of circulating monocytes to local macrophages is triggered by several inflammatory

mediators such as macrophage colony stimulating factor (M-CSF). As the SRs become expressed

in macrophages they uptake oxLDL in an unregulated manner. This leads to the formation of lipid-

laden macrophages, foam cells, which form the basis of the fatty streak (Ross 1993, Hegele 1996).

In addition to macrophages, B and T lymphocytes also enter the intima during lesion evolution.

The interaction between these cells results in the production of a wide range of cytokines and

growth factors (Glass and Witztum 2001).

Lesion progression. Inflammatory proteins such as TNF- , IL-6 and MCP-1 activate

different cell types in the atherosclerotic lesion, including ECs, platelets, SMCs and leukocytes

(Murry et al. 1997, Gerthoffer 2007). The migratory and proliferative activities of vascular SMCs

are regulated by growth promoters such as platelet-derived growth factor (PDGF), endothelin-1

(ET-1), thrombin, FGF, IL-1 and inhibitors such as heparin sulfates, NO, transforming growth

factor  (TGF- ) and the matrix MMPs. These secreted growth factors and cytokines induce a

phenotype change in SMCs from the quiescent contractile phenotype stage to the active synthetic

stage in which they are capable of migrating and proliferating (Ross 1993, Glass and Witztum

2001). SMCs express specialized enzymes that can degrade the elastin and collagen in response to

inflammatory stimulation. Thus, the SMCs penetrate through the elastic laminae and collagenous

matrix of the growing plaque. SMCs then migrate and proliferate from the media to the intimal

space, where they become the principal source of collagens. This response continues uninhibited

and is accompanied by the accumulation of a new extracellular matrix. Apoptosis, proliferation

and migration of SMCs are essential to the pathogenesis of atherosclerosis and finally, to plaque

rupture (Libby et al. 1997, Glass and Witztum 2001).

Plaque rupture. The total amount of collagen in the fibrous cap consists of the biosynthesis

by SMCs and coexistent degradative processes. The balance between these factors determines the

plaque strength (Libby et al. 1997). Matrix depletion in fibrous cap results from the increased

matrix breakdown induced by inflammatory activity and reduced matrix synthesis by the SMCs.

The hemodynamic or other triggering event leads to plaque rupture and thrombosis (Shah 2003).
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The resulting thrombosis causes an arterial occlusion which may in coronary arteries cause acute

MI, unstable angina pectoris and even a sudden cardiac death (Stary et al. 1995, Shah 2007).

Angiographically characterized symptomatic lesions are commonly eccentric stenoses which

account for half of plaque ruptures (Levin and Fallon 1982, von Birgelen et al. 2001).

Plaque rupture is associated with increased number of fibrous cap macrophages, SMC

apoptosis, and reduced number of fibrous cap SMC. Ruptured plaques have several

histomorphological features that are different from intact plaques. The large lipid core, thin fibrous

cap, neovascularity and infiltration of inflammatory cells are thought to indicate vulnerability to

plaque rupture. The inflammatory cells are mostly monocyte-macrophages, in addition to activated

T-cells  and  mast  cells.  They  are  located  near  the  sites  of  cap  rupture  and  also  in  the  adventitia

around areas of neovascularization. These cells produce several types of molecules such cytokines,

proteases and radicals which can destabilize lesions and inhibit the formation of stable fibrous cap

and accelerate the thrombus formation (van der Wal et al. 1994, Kovanen et al. 1995, Shah 2003).

TF is widely expressed in atherosclerotic plaques, especially in macrophages, foam cells, and

the extracellular matrix and is considered to be the main contributor to the thrombogenicity of

atherosclerotic plaques (Tremoli et al. 1999). After fibrous cap disruption, TF triggers thrombus

formation leading to arterial lumen occlusion and embolization. Even though plaque rupture and

thrombosis may remain clinically silent the thrombosis leads to accumulating plaque progression

(Rauch et al. 2001, Croce and Libby 2007).
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Figure 2. Initiation and progression of atherosclerotic lesions.

The atherosclerotic procress consists of a number of different events. The endothelial injury allows an induction of the

adhesion molecules, adherence of platelets and the recruitment of leukocytes. Monocytes and lymphocytes permeate

the arterial wall alongside the appearance of proinflammatory cytokines, infiltration and oxidation of LDL. The

fibrous plaque is formed by the deposition of fibrous tissue and glycosaminoglycans in the intima and by the

activation of the SMCs as well as the formation of foam. By the elaboration of hydrolytic enzymes, accumultation of

lipids and necrotic debris in the plaque the unstable fibrous cap may rupture with ensuing ulcer or hemorrhage,

possible thrombosis and occlusion of the artery. See text for details. Modified from Madamanchi et al (2005).

Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29-38.

Abbreviations: LDL; low density lipoprotein, MCP-1; monocyte chemotactic protein, MCSF; macrophage

colony stimulating factor, ROS; reactive oxygen species, SMC smooth muscle cell.

2. Oxidative stress, oxidative modification of LDL and their role in atherosgenesis

2.1. Free radicals

Reactive oxygen species (ROS) are products of a normal cellular metabolism involved in several

physiological events such as in immunological defense or cellular signaling. The term oxidative

stress is used when the increased formation of oxidants is accompanied by a loss of antioxidants or
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accumulation of the oxidized forms of the antioxidants (Stocker and Keaney 2004). The

production of ROS is regulated by many of the cytokines whose expression is increased after

endothelial injury, shear stress and mechanical disruption. According to current knowledge, the

pathology of atherosclerosis is due in part to excessive oxidative damage. Although low levels of

ROS are necessary for normal vascular function, enhanced production of ROS stimulates the

cellular responses to injury including monocyte adhesion, platelet aggregation, induction of

inflammation and apoptosis, vascular SMC proliferation and migration, matrix degradation and

impaired endothelium-dependent vascular tone regulation (Ferrari et al. 1998, Rosenfeld 1998,

Halliwell 2000, Papaharalambus and Griendling 2007).

2.1.1. Reactive oxygen and nitrogen species

Molecules  or  their  fragments  containing  one  or  more  unpaired  electrons  are  called  free  radicals

and  they  are  usually  highly  reactive.  Therefore,  free  radicals  are  likely  to  take  part  in  chemical

reactions. The two most important oxygen-centered free radicals are O2
- and hydroxyl radical

(.OH). O2
- is derived from molecular oxygen under reducing conditions (Valko et al. 2007). A

radical may join onto a nonradical molecule or abstract a hydrogen atom from a C-H, O-H or S-H

bond of nonradical molecules. Such radical reactions are common in biological systems where

most of the molecules are nonradical. The affected molecules include low-molecular-weight

compounds such as antioxidants, cofactors of enzymes, lipids, proteins, nucleic acids and sugars

(Stocker and Keaney 2004).

Superoxide (O2
-). O2

- is considered the primary oxygen -centered radical produced by the

mitochondria and microsomal membranes of the cell. The mitochondrial electron transport chain is

the main source of ATP in the mammalian cells and during the electron transport chain a small

number  of  the  electrons  are  able  to  form  the  O2
- anion.  O2

- radical has been linked not only to

atherogenesis but also to the pathology of a variety of diseases (Cadenas and Davies 2000, Valko

et al. 2007).

Hydrogen peroxide (H2O2). O2
- and hydrogen peroxide (H2O2)  are  the  products  of  the

univalent and bivalent reduction of oxygen (O2) resulting from normal aerobic metabolism. H2O2

is a weak oxidizing agent and is generally poorly reactive. It may participate in cellular signaling

and, in the presence of transition metals, can give rise to .OH (Stocker and Keaney 2004).

Hydroxyl radical (.OH). .OH has a high reactivity with all biomolecules and has a very

short half-life reacting therefore close to its site of formation. The redox state of the cell is largely

linked to an iron redox couple and is maintained in strict physiological limits. Iron can promote



29

peroxidation of biological macromolecules with ROS and has a toxic potential for cells although

inactivated by specific molecules. Under stress conditions the excess  O2
- is able to oxidize the iron

cluster containing enzymes and facilitate .OH production from H2O2 by enabling the released iron

(Fe2+) to participate in a Fenton reaction (Valko et al. 2007).

Nitric oxide (NO). NO is formed from the amino acid L-arginine catalyzed by NO synthases

(NOSs)  and  plays  an  important  role  in  the  regulation  of  vascular  tone.  NO is  a  relatively  stable

radical but when it reacts with O2
- it generates peroxynitrite (ONOO-), a powerful oxidizing agent.

It is considered that NO inhibits the membrane-bound oxidase responsible for generating O2
-

radicals in activated neutrophils. Reactive nitrogen species may promote LDL oxidation in vivo.

However, it has been suggested that NO may protect LDL from oxidation by several mechanisms

(Rice-Evans and Gopinathan 1995, Heinecke 1998, Stocker and Keaney 2004).

Peroxynitrite (OONO-). Like hydroperoxide, ONOO- is a relatively weak oxidant in

alkaline pH. However, its protonated form, peroxynitrous acid (ONOOH) is extremely reactive. In

biological systems the formation of ONOO- anion is very likely to result in a powerfully oxidizing

environment comparable to that resulting from the generation of .OH. Nonradical oxidants like

peroxynitrous acid (ONOOH) and HOCl appear to react preferentially with proteins rather than

lipids (Stocker and Keaney 2004).

Hypochlorous acid (HOCl). HOCl is a weak acid but a strong oxidant which reacts

preferably with protein rather than lipids and gives rise to secondary reactive species including

chloramines and amino-acid derived aldehydes. Hypochlorite (ClO ) is cytotoxic and reacts with

many biological compounds including heme proteins, porphyrins, ascorbic acid and many protein

constituents (Rice-Evans and Gopinathan 1995, Stocker and Keaney 2004).
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Figure 3. Sources of ROS in phagocytic cells and interactions between different oxidative enzyme

systems.

Activated NAD(P)H oxidase, 12/15-LO and XO generate O2
-. O2

- can dismute spontaneously to H2O2. MnSOD, and

CuZnSOD dismutate O2
- to produce H2O2. Activated NAD(P)H oxidase produces O2

- by phosphorylation of one of its

subunits. 12/15-LO oxidize polyunsaturated fatty acids to hydroperoxy fatty-acids as 12(S)-HETE and 15(S)-HETE.

XO generate O2
- by catalyzing hypoxanthine and xanthine to uric acid. Redox cycling of Fe2+ and Fe3+ through Haber-

Weiss and Fenton reaction formats OH– from H2O2. NOS  catalyze the oxidation of L-arginine to L-citrulline and the

potent vasodilator NO. If L-arginine or BH4 is reduced, the NOS may become uncoupled and reduce molecular

oxygen rather resulting in O2
-generation. MPO can catalyze the formation of HOCl from H2O2 in the presence of Cl-

ions.  Also,  dysfunctional  mitochondrial  respiratory  chain  serves  as  a   source  of  O2
- generation. See text for details.
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Modified from Madamanchi et al (2005). Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29-

38.

Abbreviations: AA; arachidonic acid, BH4; tetrahydrobiopterin, Cl–; chloride ion, Cu/ZnSOD; Copper/Zinc

superoxide dismutase, H2O2; hydrogen peroxide, HETE; hydroxyeicosatetraenoic acid, HOCl; hypochlorous acid, LO;

lipoxygenase, MnSOD; manganese superoxide dismutase, MPO; myeloperoxidase, NAD(P)H; nicotinamide adenine

dinucleotide (phosphate), NO; nitric oxide, NOS; nitric oxide synthase, O2
-; superoxide, OH–; hydroxide radical; ROS;

reactive oxygen species, XO; Xanthine oxidase.

2.2. Sources of oxidants in vascular cells

There are several factors controlling the endogenous release of the free radicals during tissue

injury. Alongside phagocyte recruitment, the activation of the membrane-bound oxidase of

neutrophils, monocytes, macrophages and eosinophils produces O2
- radicals. Activated

macrophages can produce ROS via the membrane associated nicotinamide adenine dinucleotide

(phosphate) (NAD(P)H) oxidase which is able to create O2
- and H2O2 as a part of respiratory burst

– a reaction activated for killing of foreign organisms (Rice-Evans and Gopinathan 1995). In

addition to this, macrophages isolated from rabbit atherosclerotic lesions actively produce

significant amounts of O2
-, H2O2 and NO (Rosenfeld 1998).

2.2.1. Oxidants

Nicotinamide adenine dinucleotide (phosphate) (NADH/NAD(P)H) oxidases. The

NADH/NADPH oxidases are membrane-associated enzymes that catalyze the 1-electron reduction

of oxygen using NAD(P)H as the electron donor. NAD(P)H oxidase is considered to be the major

source of O2
- generation  in  vascular  cells.  It  is  expressed  in  the  phagocytes  and  also  to  a  lesser

extent in vascular SMCs, ECs and adventitial fibroblasts. The vascular NAD(P)H oxidases are

essential in the physiological response of vascular cells but have also been linked to the

inflammatory processes in atherosclerosis (Harrison et al. 2003, Madamanchi et al. 2005). For

example, when incubated with LDL, NAD(P)H oxidase activation of the macrophages is induced

(Aviram et al. 1996).

Xanthine oxidase (XO). In addition to NAD(P)H oxidase, XO is another important source

of O2
-. It has a unique capability to reduce O2 to form O2

- and H2O2. XO is generated in ECs but is

also found from circulation where it binds to the endothelial matrix. XO generates O2
- by

catalyzing hypoxanthine and xanthine to uric acid (Harrison et al. 2003, Madamanchi et al. 2005).
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The XO is activated in the coronary arteries of CAD patients but XO activity is also expressed in

asymptomatic subjects with familiar hypercholesterolemia (Madamanchi et al. 2005).

Nitric oxide synthase (NOS). NOS, and especially its vascular isoform endothelial NOS

(eNOS), uses 5,6,7,8-tetrahydrobiopterin (BH4)  as  a  cofactor  for  the  transfer  of  electrons  from a

heme group within the oxygenase domain to L-arginine to form L-citrulline and NO. If either BH4

or L-arginine is absent, the electrons from the heme reduce O2 to  form  O2
-.  Thus,  an  oxidative

depletion of BH4 can lead to a marked increase in O2
- from the NOSs (Vasquez-Vivar et al. 1998,

Harrison et al. 2003).

Lipoxygenases (LOs). LOs are intracellular non-heme enzymes that peroxidize

polyunsaturated fatty acids to hydroxyperoxy fatty-acid derivatives. Regarding atherosclerosis,

12/15-LO and 5-LO have received the most attention because of their expression patterns in ECs

and inflammatory cells (Lötzer et al. 2005, Funk 2006). The number of 5-LO expressing

leukocytes increases during atherosclerosis progression (Spanbroek et al. 2003). LO-15 protein is

found in atherosclerotic plaques and 12/15-LO enzymatic pathway may promote LDL oxidation in

vivo (Ylä-Herttuala et al. 1990, Heinecke 1998, Funk 2006). In addition, leukocyte-type 12/15-LO

activation induces SMC growth, hypertrophy and inflammatory gene expression (Droge 2002,

Madamanchi et al. 2005).

Mitochondrial respiration. Oxygen (O2) can also be formed as O2
- nonenzymatically by a

reaction with the active compounds of the mitochondrial electron transport chain, such as semi-

ubiquinone (Droge 2002, Madamanchi et al. 2005). The extent of atherosclerosis correlates with

mitochondrial ribonucleic acid (RNA) damage in atherosclerosis-prone mice (Ballinger et al.

2002).

Transition metals (Fenton reaction). H2O2 can react with transition metals as Fe2+ to

produce highly reactive .OH, a reaction known as the Fenton reaction. Fe2+ initiates  the  Fenton

reaction and Fe3+ is regenerated, which in turn maintains the production of .OH (Rice-Evans and

Gopinathan 1995, Kehrer 2000, Madamanchi et al. 2005). Metal ions are the most studied pathway

for  LDL  oxidation.  Cultured  SMCs  oxidize  LDL  if  iron  or  copper  are  present  in  the  incubation

medium. High concentrations of iron or copper oxidize LDL independently of the presence of cells

(Heinecke et al. 1984, Steinbrecher et al. 1984). Instead of involvement in the early

atherosclerosis, the number of free radical ions may be increased around regions of cell death,

leading to necrosis in the advanced plaque (Gaut and Heinecke 2001). However, the exact

mechanism of LDL oxidation by metal ions is not understood and the evidence of the relationship

between plasma iron levels and atherosclerosis is the reverse (Heinecke 1998).
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Myleoperoxidase (MPO). MPO is a heme protein secreted by phagocytotic cells. It has an

ability to produce HOCl and other oxidants. HOCl modified proteins are found in atherosclerotic

lesions and therefore, MPO is thought to be implicated in the macrophage-mediated oxidation of

LDL (Daugherty et al. 1994, Hazell et al. 1996, Jacob et al. 1996).

2.3. Consequences of ROS

2.3.1. Cellular nucleic acid and protein damage, cell proliferation and cell death

In general, oxidized DNA exhibits an increased propensity for genetic mutations and alterations in

transcription by several mechanisms. ROS may damage the DNA directly, interfere with the DNA

repair and affect the cell division, thus disrupting the cell functions during non-carcinogenic

toxicity events (Kehrer 2000, Marnett 2000, Stocker and Keaney 2004). Mitochondrial DNA is

also prone to oxidative damage and ROS formed in mitochondria are associated with enhanced

susceptibility to atherosclerosis (Madamanchi et al. 2005).

Oxidative stress has several effects on the progression of the cell cycle. Exposure of the cells

to low doses of ROS usually results in activation of mitogenic signal transduction pathways

leading to cellular proliferation. ROS are able to alter signal transduction pathways and affect

cellular processes essential for cyclin functions and proteosomal degradation. A wide range of

growth factors become activated by ROS and lead to cellular proliferation of ECs and other cell

types (Cummings et al. 1997, Kehrer 2000, Galle et al. 2006). The oxidation of proteins by ROS

can generate a range of stable as well as reactive products. Among the reactive products are the

protein hydroperoxides that can generate additional radicals, particularly in interactions with

transition-metal ions. Although most oxidized proteins are are rapidly removed, some may

contribute to the damage associated with ageing and chronic diseases (Dean et al. 1997, Kehrer

2000, Stocker and Keaney 2004).

2.3.2. Lipid damage

Lipids have a critical structural and functional role in membranes. The double bounds found in

polyunsaturated  fatty  acids  are  prone  to  free  radical  attack.  The  abstraction  of  a  hydrogen  atom

from one of these double bounds results in a new radical lipid species that can readily interact with

molecular O2. The resulting lipid peroxyl radical can abstract a hydrogen atom from another fatty
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acid yielding another radical and lipid hydroperoxide (LOOH) establishing a chain reaction. The

LOOHs formed are unstable and can decompose into various species including malondialdehyde

(MDA) or it can be reduced to the more stable alcohol form. As these reactions progress, ionic

channels may be affected, membrane transport proteins or enzymes may be inactivated or the lipid

bilayer itself may become more permeable thereby disrupting ion homeostasis. In addition, some

of the oxidized fatty acid species such as the isoprostanes or hydroperoxides, have biologic activity

and an ability to affect signaling pathways (Kehrer 2000, Stocker and Keaney 2004).

2.4. LDL metabolism, oxidation and formation of autoantibodies against oxLDL

2.4.1. LDL metabolism

Serum cholesterol is transported in the circulation by several lipoproteins which are specialized in

transporting dietary and endogenously produced lipids. The dietary lipids are transported by

chylomicrons and the endogenous lipid transport is carried out by very low density lipoproteins

(VLDL),  LDL  and  high  density  lipoproteins  (HDL).  Triglyceride  (TG)  rich  VLDL  particles  are

synthesized by the liver and contain apolipoprotein B (apoB) and apolipoprotein E (apoE) (Glass

and Witztum 2001). After TG removal in the peripheral tissues, such as adipose tissue and

muscles, a portion of the remaining VLDL remnants progressively changes into lipoproteins with

intermediate density and finally to cholesterol-rich LDL. VLDL and intermediate density

lipoprotein (IDL) have a short half-life and are removed from the circulation within hours, whereas

the LDL particles have a rather long life and circulate in the blood for about two days before they

are cleared (Esterbauer et al. 1992).

The human principal cholesterol carrier LDL consists of a hydrophobic core containing TGs

and cholesterol esters in a hydrophilic shell of phospholipids, free cholesterol and ligands for

lipoprotein receptors, the apolipoproteines, predominantly apoB (Smith et al. 1978, Osterud and

Bjorklid 2003, Spiteller 2005). LDL binds to a specific LDL receptor (LDLR) which is expressed

in ECs, monocytes, macrophages and SMCs in atherosclerotic lesions (Hiltunen and Ylä-Herttuala

1998). By the elevated LDL serum levels and the following cholesterol loading, the LDLR

expression is downregulated (Jeon and Blacklow 2005).

Modification of LDL lipids and apoB increases its effects and enhances the inflammatory

process in atherosclerosis (Steinberg 1997). LDL can be oxidized in the subendothelial space and

depending on the degree of oxidation, minimally modified LDL and fully oxidized oxLDL are
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formed (Chisolm et al. 1999). In contrast to native LDL, minimally modified LDL is bound not

only to LDLR but also by a number of SRs whereas oxLDL is attached only by SRs. LDLR and

SRs are expressed in macrophages and some are found in platelets and SMCs (Hiltunen and Ylä-

Herttuala 1998). Modified LDL participates in the development of atherosclerosis by increasing

the monocyte recruitment to the vessel wall and by foam cell formation. It induces the adhesion

molecules and chemokines in ECs and has direct effects on monocytes and promotes (Gleissner et

al. 2007).

2.4.2. Oxidative modification of LDL in atherosclerosis

 Definition of oxLDL. The term oxLDL was traditionally used to describe the LDL modified by

exposure to copper ions which catalyzed lipid peroxidation. Nowadays, the term oxLDL has been

extended to additionally describe several chemical, biological and immunological entities such as

the measurement of conjugated dienes, susceptibility of LDL to oxidation and autoantibodies

against various epitopes of oxLDL (Fraley and Tsimikas 2006). Oxidation of LDL may involve

fragmentation of its constituent molecules, including cholesterol, fatty acids, antioxidants and

apoB. Therefore, oxLDL does not describe only a single particle but also a spectrum of oxidized

particles in different stages (Ahotupa et al. 1998). Immunological methods for the determination of

oxLDL are based on the use of antibodies generated against oxidatively damaged LDL. However,

the specificity of these assays may be impaired by several possible antigenic sites. Antibodies

prepared to identify oxidized LDL may also recognize epitopes on proteins other than LDL

(O'Brien et al. 1996, Ahotupa et al. 1998).

Susceptibility of LDL to oxidation. There are several intrinsic properties of LDL that can

affect its susceptibility to oxidation, such as the antioxidant content, fatty acid composition

(Reaven et al. 1993) and LDL particle size (Chait et al. 1993). There are contradictory studies on

the HDL ability to protect LDL from oxidation and it has been suggested that HDL particles may

be more susceptible to oxidation than LDL (Solakivi et al. 2005).

The antioxidant status of LDL and plasma are important determinants of the susceptibility of

LDL to peroxidation (Stocker and Keaney 2004). In addition, the LDL size and density also

influence the extent of oxidation and small dense LDL is more susceptible to oxidation than large-

buoyant LDL (de Graaf et al. 1991, Berliner and Heinecke 1996). LDL particles carry lipophilic

antioxidants, mostly -tocopherol, but also minor amounts of -tocopherol, carotenoids,

oxycarotenoids and ubiquinol-10 (Esterbauer et al. 1992, Hevonoja et al. 2000). Vitamin E ( -

tocopherol), the major antioxidant of LDL, may influence LDL oxidation. However, increased
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dietary supplementation of vitamin E does not correlate with the susceptibility to LDL oxidation.

In fact, it may even promote lipid peroxidation (Berliner and Heinecke 1996, Stocker 1999).

Vitamin C (ascorbate) is in turn a water soluble antioxidant which prevents lipid peroxidation in

the presence of iron overload (Chen et al. 2000, Mashima et al. 2001). The susceptibility of LDL

oxidation varies among individuals and for example, in patients with non-insulin dependent DM

LDL is more susceptible to oxidation than in non-diabetic subjects (de Graaf et al. 1991, Berliner

and Heinecke 1996).

LDL oxidation. The oxidative process in the arterial wall is a complex reaction involving

several cell types including monocyte-macrophages, granulocytes, lymphocytes, ECs and SMCs.

In the plasma circulation, LDL is protected from oxidation by the presence of antioxidants, but in

the arterial wall the LDL particle is a more vulnerable subject of oxidation. Typically, the

oxidation takes place in a microenvironment where the number of antioxidants is low as in the

vessel wall and only to a minor extent in the blood (Rosenfeld 1998, Osterud and Bjorklid 2003,

Stocker and Keaney 2004). However, the exact mechanisms of this process are not yet fully

understood (Gaut and Heinecke 2001).

The LDL particles undergo a series of modifications such as non-enzymatic glycation,

enzymatic degradation and aggregation, which generates a wide spectrum of oxidation-specific

neo-epitopes (Hörkkö et al. 2000, Binder et al. 2002). Oxidation involves the lipid moiety of LDL

in a chain reaction mechanism. In the initial phase, free radicals preferentially attack highly

oxidizable polyunsaturated fatty acids. Polyunsaturated fatty acids present in LDL phospholipids

are oxidatively converted to LOOHs, which are subsequently cleaved forming aldehydes (Girotti

1998). When polyunstaturated fatty acids undergo peroxidation, a variety of higly reactive

breakdown products is formed, such as MDA which in turn can form covalent adducts with the

lysine residues of the apolipoproteins (Hörkkö et al. 2000, Binder et al. 2002). Aldehydes are able

to covalently modify apoB-100 which leads to the negative overall net charge of the LDL particle,

which is then more recognizable to macrophage SRs (Osterud and Bjorklid 2003). The LDL

oxidation also leads to a significant loss of cholesterol as it is converted into a range of oxysterols

(Jessup and Kritharides 2000). The modified LDL particles and oxidized lipids are pro-

inflammatory and trigger both humoral and cellular immune response (Hörkkö et al. 2000, Binder

et al. 2002).

Scavenger receptors (SRs). Oxidation-altered apoB of oxidized LDL is recognized by the

macrophage SR, which is responsible for foam cell formation. Recognition of oxLDL is related to

the derivatization of lysine residues or fragmentation of apoB which leads to a net negative charge

(Stocker and Keaney 2004). The SRs of monocyte-derived macrophages can recognize a wide
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range of negatively charged macromolecules, oxLDL, damaged or apoptotic cells, and pathogenic

microorganisms. In physiological conditions, SRs serve to scavenge or clean up cellular debris and

other related materials as a part of the host defence (Yamada et al. 1998). OxLDL is known to be

taken up via SRs in a manner which is independent of the cholesterol-dependent LDLR

downregulation. The unlimited accumulation of cholesterol in the macrophages eventually leads to

the formation of foam cells, a cell type already involved in early atherosclerosis (Henriksen et al.

1981, Noguchi et al. 1993).

2.4.3. Proatherogenic activities of oxidized LDL (oxLDL)

OxLDL  has  several  proatherogenic  effects  such  as  the  inhibition  of  eNOS,  promotion  of

vasoconstriction and adhesion, cytokine stimulation and stimulation of platelet aggregation

(Stocker and Keaney 2004, Madamanchi et al. 2005, Singh and Jialal 2006). OxLDL has also been

shown to upregulate vascular endothelial growth factor (VEGF) expression in macrophages and

ECs through activation of peroxisome proliferator-activated receptor-  (PPAR- ) and stimulate TF

and PAI-1 synthesis (Stocker and Keaney 2004, Singh and Jialal 2006). OxLDL have been shown

to powerfully inactivate NO (Chin et al. 1992) and decrease its production in experimental studies

(Liao et al. 1995).

It has been demonstrated that the vascular endothelial function is inversely associated with

oxidized LDL already in childhood (Järvisalo et al. 2004) and coronary reactivity in young healthy

men (Raitakari et al. 1997). OxLDL measured directly from plasma has been reported to be

independently associated with subclinical carotid artery atherosclerosis in middle-aged men

(Metso et al. 2004).
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Table 2. Proatherogenic activities of oxLDL. Modified from Stocker R and Keaney JF (2004):

Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381-1478.

Potential proatherogenic activities of OxLDL.

OxLDL supports macrophage foam cell formation.

OxLDL-derived products are chemotactic for monocytes, T-cells and tissue macrophages.

OxLDL-derived products are cytotoxic and can induce apoptosis.

OxLDL is mitogenic for SMCs and macrophages.

OxLDL alters inflammatory gene expression in vascular cells.

OxLDL can increase the expression of macrophage SRs.

OxLDL is immunogenic and promotes autoantibody formation and activated T-cells.

OxLDL may undergo aggregation, which independently leads to enhanced uptake.

OxLDL induces TF expression and platelet aggregation.

Products of oxLDL impair NO bioactivity.

OxLDL binds C-reactive protein activating the complement pathway.

Abbreviations: NO; nitric oxide, oxLDL; oxidized low density lipoprotein, SMC; smooth muscle

cell, SR; scavenger receptor, TF; tissue factor

2.4.4. Autoantibodies against oxLDL

Cellular immunity and oxLDL. In general, antibodies provide protection against exogenous

pathogens and endogenous altered molecules to maintain homeostasis by neutralization and

clearance. Antibodies can also induce other components of the immune system, such as

complement pathways and effector functions of other immune cells (Binder et al. 2002). OxLDL is

immunogenic  and  a  wide  range  of  epitopes  within  the  apoB  component  of  oxLDL  is  known  to
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provoke an immune response (Fredrikson et al. 2003, Stocker and Keaney 2004). The presence of

the antigen-presenting plaque macrophages and T-cells allow the local cellular immune responses

to oxLDL. The occurrence of oxLDL-specific T-cells is supported by the development of IgG

antibodies specific for oxLDL (Hörkkö et al. 2000). T-cells from human atherosclerotic plaques

recognize oxLDL suggesting that the inflammatory infiltrate in the atherosclerotic plaque is

involved in a T-cell-dependent, autoimmune response to oxLDL (Stemme et al. 1995).

OxLDL autoantibodies. Immune responses against oxidized forms of LDL play a critical

role in the activation and regulation of the inflammatory process that characterizes all stages of

atherosclerosis. Human plasma contains immunoreactivity towards epitopes generated from

oxLDL. In humans oxidized LDL is targeted by both IgM and IgG autoantibodies. These

immunoglobulins  are  present  in  atherosclerotic  lesions  (Ylä-Herttuala  et  al.  1994,  Hörkkö  et  al.

2000, Binder et al. 2002, Shoenfeld et al. 2004). For the measurement of these immunoresponses,

two models of oxLDL are widely used: MDA modified LDL (MDA-LDL) which is generated by

the derivatization of LDL with MDA yielding mainly MDA-lysine epitopes and, secondly, CuSO4-

oxidized LDL, which has many different oxidation-specific epitopes (Binder et al. 2002).

OxLDL-ab in the pathogenesis of atherosclerosis. Several studies have shown that

circulating levels of oxLDL-ab can be used to distinguish between patients with and without

clinically evident atherosclerosis (Shoenfeld et al. 2004). Baseline titer of autoantibodies against

MDA-LDL has been shown to predict the progression of IMT (Salonen et al. 1992) and elevated

oxLDL-ab concentrations may predict the development of CVD (Puurunen et al. 1994, Wu et al.

1997). High oxLDL-ab titers have been associated with the impairment of coronary reactivity in

young adults (Laaksonen et al. 2002), angiographically verified CAD (Lehtimäki et al. 1999),

angina pectoris and serum MMP-9 (Kalela et al. 2002).  Elevated oxLDL-abs are also associated

with hypertension arterialis (HTA), peripheral artery disease and endothelial dysfunction

(Bergmark et al. 1995, Maggi et al. 1995, Fang et al. 2002). ApoE allele  2 is associated with

decreased levels of oxLDL-abs in both patients with CAD and healthy controls (Metso et al.

2003). OxLDL-abs are also prevalent in diseases other than atherosclerosis, namely autoimmune

diseases and DM (Bellomo et al. 1995, Orchard et al. 1999, Shoenfeld et al. 2004). Interestingly,

the level of oxLDL-abs is not necessarily associated with vascular complications in type 2 DM

patients (Uusitupa et al. 1996).

In general, however, the antibodies neutralize pathogens and immunogens and in theory, the

humoral immunity may reduce the incidence of atherosclerosis (Zhou et al. 2001, Shoenfeld et al.

2004). Human oxLDL-abs may play an important role in the regulation of oxLDL levels as the

oxLDL concentrations in the plasma have been shown to be inversely correlated to oxLDL-abs
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(Shoji et al. 2000). The antibody titer against MDA-LDL has been reported to inversely correlate

with the risk of severe CAD (Rontu et al. 2005). In addition, the inverse relationship between

oxLDL-ab titer and carotid IMT in healthy subjects has been published (Fukumoto et al. 2000).

However, there are also several studies where no association was found between oxLDL-abs and

CVD (Uusitupa et al. 1996, van de Vijver et al. 1996, Shoenfeld et al. 2004).

3. Myeloperoxidase (MPO)

Activated phagocytes produce highly reactive oxidants during inflammatory response against

invading microorganisms and tumor cells (Klebanoff 1980, Klebanoff 1999). MPO is a heme

containing lysosomal enzyme of the activated neutrophils, monocytes and tissue macrophages

(Winterbourn et al. 2000). MPO is a critical component of the oxidative activity of the neutrophils

as its activity functions against several microorganisms, from viruses to fungi as well as against

mammalian proteins and cells (Klebanoff 1999, Winterbourn et al. 2000). Besides leukocytes,

MPO has been found in the microglia, granule-containing neurons and pyramidal neurons of

hippocampus in the brain (Nagra et al. 1997, Green et al. 2004) and in the Kupffer cells in the liver

(Brown et al. 2001).

3.1. MPO in atherosclerosis

Several studies in humans and data available from the animal studies suggest that MPO may have

a crucial role in the development of atherosclerosis (Nicholls and Hazen 2005). Peroxidatively

active MPO as well as its protein and oxidation products like 3-chlorotyrosine and L-tyrosine

oxidation remnants have been detected in human atherosclerotic lesions (Daugherty et al. 1994,

Hazen and Heinecke 1997, Heller et al. 2000). MPO is expressed both intra- and extracellularly

predominately in macrophage-rich transitional lesions. In addition, extracellular MPO has been

detected in the lipid-rich domains of transitional and complicated lesions and in the cholesterol

clefts of advanced lesions (Daugherty et al. 1994). MPO-containing macrophages are also present

in those atherosclerotic lesions which provoke acute coronary syndromes (ACSs) (Sugiyama et al.

2001).

Animal studies of atherosclerosis have yielded conflicting results. In the study on LDLR-

deficient MPO-knockout mice the extent of atherosclerosis was increased (Brennan et al. 2001). In

rat model, however, HOCl induced pathological neointimal growth (Yang et al. 2006). However,
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the murine leukocytes carry 10- to 20-fold less MPO than the corresponding human leukocytes,

and therefore the murine model may fail to predict the role of MPO in human atherosclerosis

(Nauseef 2001, Nicholls and Hazen 2005).

Apart from the studies reporting the polymerase chain reaction (PCR) amplification of MPO

transcripts from tissue monocytes or macrophages there is no evidence of MPO protein synthesis

in non-malignant cells other than myeloid precursor cells (Hansson et al. 2006). It is also possible

that MPO present in tissue macrophages may be taken up from the tissue and not synthesized in

the cell itself (Sugiyama et al. 2001, Klebanoff 2005). In fact, blood-derived MPO can also bind

and infiltrate into the vascular wall directly (Baldus et al. 2001, Zhang et al. 2003, Yang et al.

2006). An alternative hypothesis is that tissue macrophages situated in the atheromatous plaque

reinitiate transcription of the MPO gene. Because the foam cells possess no azurophilic granules,

the synthesized proMPO in could enter the foam cells by secretory pathway and be released into

the extracellular space (Nauseef 2001, Malle et al. 2007).

3.2. Storage, biosynthesis and structure of MPO

3.2.1. Storage

The MPO synthesis is initiated in the promyelocyte stage of neutrophil development and

terminated at the beginning of the myelocyte stage, at which time the MPO containing azurophil

granules  are  distributed  to  daughter  cells  where  they  enter  the  specific  granules  (Kinkade  et  al.

1983, Klebanoff 2005). Human monocytes also contain these granules, although in a smaller

amount. The MPO containing granules are usually lost while monocytes mature into macrophages

(Nichols and Bainton 1973).

3.2.2. Biosynthesis and proteolytic maturation

Mature MPO has a molecular mass of approximately 150kDa and consists of a pair of heavy-light

protomers, whose heavy subunits are linked by a disulfide bond (Olsen and Little 1984). The post-

translational processing of the 80-kDa primary translation product, including the heme insertion

and lysosomal targeting, are essential for the maturation of the enzymatically active lysosomal

MPO (Nauseef 2004, Hansson et al. 2006). The active site of MPO is buried deep in the center of

the protein (Zeng and Fenna 1992) and these two hemes are covalently bound to the heavy subunit
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(Hansson et al. 2006). The peroxidase activity of MPO depends on a normal heme group, which

interacts with the protein structure with three covalent bonds and eight hydrogen bonds (Furtmüller

et al. 2006). Structural features unique to the heme group of MPO make it the only member of the

human peroxidases capable of oxidizing chloride ion (Cl-) and  thus  generating  HOCl,  at

physiological pH (Marquez and Dunford 1994, Furtmüller et al. 2000).

The primary 80 kDa translation product preproMPO is processed in the endoplasmic

reticulum as a single-chain precursor and undergoes a complex series of post-translational

modifications prior to packaging into azurophilic granules (Pinnix et al. 1994). PreproMPO

undergoes cotranslational N-glycosylation resulting in 90 kDa apoproMPO, and heme

incorporation to generate enzymatically active proMPO that is exported into the Golgi

compartment. After exiting the Golgi, the propeptide is removed before final proteolytic

processing in azurophilic granules (Hansson et al. 2006). Some proMPO escapes granule targeting

and becomes constitutively secreted to the extracellular environment as a monomer (Hansson et al.

2006). According to current knowledge, the secreted proMPO remains as a monomer and its

physiological function is unknown. MPO species isolated from human plasma include both

precursor and mature forms of MPO (Nauseef 1986, Olsen et al. 1986, Nauseef 1987). In has been

theorized that the enzymatically active MPO could primarily function in the oxidative cell killing

and inactive MPO functions as an immunoregulative molecule through the induction of numerous

cytokines (Lefkowitz and Lefkowitz 2001).

 The processed MPO protein is a glycosylated, predominantly -helical cationic 146 kDa

dimer with a single disulfide bridge between symmetry-related halves (73 kDa), each containing

light chain of  14.5 kDa and heavy chain of 58.5 kDa (Hansson et al. 2006). This dimeric MPO is

found in neutrophils and monocytes (Hansson et al. 2006, Malle et al. 2007) and its granule MPO

comprises 1% of the monocyte cell mass but is lost as monocytes differentiate to tissue

macrophages (Nauseef et al. 1988).

3.3. Physiological actions of MPO

MPO catalyzes several modifications including tyrosyl radical formation, chlorination, tyrosine

peroxide generation and oxidation of serum lipoproteins (Daugherty et al. 1994, Savenkova et al.

1994, Domigan et al. 1995, Hazen et al. 1996a). MPO is a transcytosable protein which can bind to

and infiltrate into the vascular wall directly and enter the vascular cells. It can remain in the

vasculature for several days (Baldus et al. 2001, Eiserich et al. 2002, Zhang et al. 2003). As a



43

strongly cationic enzyme, it is easily attached to negatively charged biological membranes,

especially those found in the sites of the inflammatory processes (Johansson et al. 1997). These

include glycosaminoglycans of the extracellular matrix as well as a number of proteins and

lipoproteins LDL (Daphna et al. 1998, Carr et al. 2000, Baldus et al. 2001). The active site of

MPO is located in a hydrophobic, pocket-like structure, which restricts the accessibility of

substrates (Furtmüller et al. 2006). In vitro studies suggest that water soluble antioxidants, like

ascorbate, inhibit the oxidative reactions of the MPO rather than lipid soluble ones as vitamin E

(Savenkova et al. 1994).

Chlorination by HOCl. MPO is the only human enzyme known to generate HOCl (Harrison

and Schultz 1976). It is suggested that MPO promotes toxicity mainly by the production of HOCl

and the chlorinating species (Winterbourn et al. 2000). HOCl is a potent oxidizing agent which is

capable of oxidizing a variety of biological molecules such as carbohydrates, nucleic acids, peptide

linkages, amino acids and lipids (Hazen et al. 1999a, Klebanoff 1999). HOCl is known to oxidize

at a significant rate sulfhydryl and thioether groups of proteins (Winterbourn 1985) and it

chlorinates the amino groups to chloramines (Thomas et al. 1982). HOCl converts L-tyrosine to 3-

chlorotyrosine and cholesterol to chlorinated compounds (Hazen et al. 1996a, Hazen et al. 1996b).

Tyrosine radicals. MPO  also  acts  as  a  classic  peroxidase  and  about  5%  of  the  hydrogen

peroxide consumed by the enzyme creates tyrosyl radicals (Marquez and Dunford 1995). The

conversion of L- tyrosine to tyrosyl radical may contribute to several oxidizing events such as LDL

lipid peroxidation (Savenkova et al. 1994). Tyrosyl radical is able to promote protein and lipid

oxidation independently of the tocopherol radical of vitamin E (Buettner 1993, Heinecke 1998).

Both 3-nitro and 3-chlorotyrosine are found in elevated levels in human atherosclerotic plaques

(Hazen and Heinecke 1997, Leeuwenburgh et al. 1997a).

Reactive nitrogen species. MPO may be considered an important NO oxidase in the

vasculature as it can oxidize nitrite (NO2 ) to reactive species. MPO uses NO2 , a decomposition

product of NO, to generate chlorinating and nitrating intermediates (van der Vliet et al. 1997,

Eiserich et al. 1998). It has been reported that the MPO system is known to nitrate tyrosine and

tyrosyl residues (Eiserich et al. 1996, Eiserich et al. 1998).
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Figure 4. MPO catalyzed oxidative modifications.

MPO reacts with H2O2 that oxidizes chloride (Cl–) to create HOCl which is able to oxidate a wide range of substrates.

MPO is the only pathway for generating reactive chlorinating species at physiological levels of Cl- in humans. HOCl

reacts with amines to produce chloramines. In the absence of physiological Cl- concentration  MPO  also  acts  as  a

classic peroxidase and tyrosine and nitrate serve as the likely physiological substrates for MPO. Tyrosine is reduced in

a one-electron reaction to produce tyrosyl radical which promote protein ctosslinks via dityrosine formation. MPO can

oxidize nitrite to produce nitrogen dioxide which can create nitrated lipids. Both radical species are able to induce

lipid peroxidation. See text for details. Modified from Klebanoff SJ (2005): Myeloperoxidase: friend and foe. J

Leukoc Biol 77:598-625.

Abbreviations: Cl–; chloride ion, H2O2; hydrogen peroxide, HOCl; hypochlorous acid, MPO; myeloperoxidase.

3.3.1. MPO as a part of host defence sytem and bacterial killing

The bactericidal activity of MPO has been suggested to be dependent mainly on the production of

HOCl (Hampton et al. 1998, Winterbourn et al. 2000). It has been established that HOCl is

produced in the phagosomes corresponding to approximately 12% of the overall consumption of

neutrophil oxygen metabolism (Hazen et al. 1996b, Hammer et al. 2001). Despite the potential for

nitrite oxidation, this reaction is not facilitated because the conditions in the phagosome inhibit

this oxidative reaction by MPO (Jiang and Hurst 1997).

The cellular uptake of MPO is accompanied by modulation of the activation state of

monocyte-macrophages leading to the release of MPO generated radicals (Lefkowitz et al. 1992).
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When monocyte-macrophages are exposed to the MPO released by neutrophils, they exhibit

enhancement of the respiratory burst and increased phagocytosis (Lefkowitz et al. 1996). The

MPO-deficient neutrophils have impaired bactericidal activity, although alternative oxidative

mechanisms are thought to compensate the defect (Winterbourn et al. 2000). According to present

knowledge, only the killing of Staphylococcus aureus is largely MPO dependent (Hampton et al.

1996).

Figure 5. NAD(P)H oxidase -derived H2O2 as a substrate for MPO.

Alongside the release of MPO into the phagosome or extracellular space the NAD(P)H oxidase is activated to generate

the  H2O2 for MPO to mediate HOCl generation. See text for details. Modified from Klebanoff SJ (2005):

Myeloperoxidase: friend and foe. J Leukoc Biol 77:598-625.

Abbreviations: Cl–; chloride ion, H2O2; hydrogen peroxide, HOCl; hypochlorous acid, MPO; myeloperoxidase,

NAD(P)H; nicotinamide adenine dinucleotide (phosphate).
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3.3.2. MPO in inflammatory processes

In addition to acute inflammatory response, MPO-derived oxidants are also present in several

inflammatory diseases such as ischemia-reperfusion injury, respiratory distress syndrome,

glomerulonephritis, arthritis and gastric cancer (Couser 1993, Daher et al. 1997, Winterbourn et al.

2000, Matthijsen et al. 2007, Steenport et al. 2007, Steinbeck et al. 2007). The MPO system and

HOCl have been established to activate the tumor suppressor protein p53 and activate the nuclear

factor B (Schoonbroodt et al. 1997, Vile et al. 1998). In addition, antibodies against MPO have

been associated with several inflammatory diseases (Kallenberg 1998).

3.3.3. Catalytic mechanisms and substrates of MPO

During phagocytosis of the invading microorganisms the NAD(P)H-dependent oxidase is activated

in the plasma membrane of the stimulated neutrophil. The activation produces O2
- and H2O2 from

the molecular oxygen (O2) (Griendling et al. 2000). In the same process, MPO is released into the

phagolysosome. In the presence of H2O2 and halide anion, which in human physiological state is

mainly Cl-, MPO catalyzes the generation of HOCl to kill the ingested microorganisms (Klebanoff

1980, Klebanoff 2005). MPO may modulate the inflammatory actions of PMNLs by inactivating

secreted granule contents and contributing to the termination of the influx of PMNLs in the

inflammatory locus (Nauseef 1988). MPO-deficient PMNLs exhibit a stronger and prolonged

respiratory burst (Rosen and Klebanoff 1976).

3.4. Biomarkers for and the activity assays of MPO

Enzyme immunoassay (EIA) determined serum MPO concentrations represent circulating levels of

MPO released from the neurophils (Hoy et al. 2001). In most studies, the measurement of MPO

gene expression has been evaluated using the peroxidase activity of the blood leukocytes.

Quantification  of  MPO  is  often  reported  as  the  measurement  of  MPO  enzymatic  activity  in

neutrophils by the mean peroxidase activity index (MPXI) calculated on an automated

hematological analyser. However, the measurements may be biased as MPO is not the only

peroxidase of the circulating granulocytes as the eosinophil peroxidase (EPO) may contaminate

the measurements and can markedly affect the total peroxidase activity of the sample (Nauseef et

al. 1998).
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Chlorohydrins are formed by the addition of HOCl to double bonds which are present in

cholesterol or various unsaturated ester and ether-phospholipid species, but their usefulness as

biomarkers is limited (Malle et al. 2006a, Malle et al. 2007). MPO expressing macrophages are

able to chlorinate uracil and the marker of DNA damage, 5-chlorouracil, has been detected in

human atherosclerotic lesions (Takeshita et al. 2006). Another specific MPO-associated biomarker

is 3-chlorotyrosine, which has been identified in human atherosclerotic lesions and lipoproteins

extracted from lesions (Hazen and Heinecke 1997, Malle et al. 2007). Immunohistochemistry with

specific monoclonal antibodies generated against HOCl-modified epitopes enables the

identification of chlorinated biomarkers in atherosclerosis (Malle et al. 1995, Hazell et al. 1996,

Malle et al. 2000). Fractionation of human plaque homogenate by centrifugation and subsequent

immunoblot analysis of the LDL fraction is able to detect the MPO-modified apoB-100 (Hazell et

al. 1996).

The chlorination activity of MPO can be measured by different assays. The chlorination of

monochloride by HOCl results in a decrease in absorbance (Kettle and Winterbourn 1988). The

assay has a tendency to underestimate the chlorinating activity of MPO but is useful for detecting

HOCl, as shown by its complete inhibition by methionine (Kettle and Winterbourn 1988, Malle et

al. 2007). The chlorination of nitrogen compounds with HOCl results in several different

chloramines and the formation of taurin chloramines can be followed sensitively by

spectrophotometric measurements (Thomas et al. 1986, Dypbukt et al. 2005). Also, loss of

ascorbate has been used in assaying the chlorination activity of MPO, although ascorbate can act

directly as a peroxidase substrate which may override the chlorination activity (Chesney et al.

1991, Malle et al. 2007).

The oxidation of tyrosine to dityrosine by peroxidation reactions of MPO can be followed

spectrofluorimetrically (Marquez and Dunford 1995). The loss of H2O2 catalyzed by MPO can be

monitored using an H2O2 electrode  which  in  the  presence  of  Cl- as the only substrate to MPO

allows a direct assessment of the MPO chlorination activity (Kettle and Winterbourn 1994, Malle

et al. 2007).

3.5. MPO deficiency and clinical symptoms

Inherited deficiency of MPO is relatively common in Caucasian population with a prevalence of 1

in 2000 to 4000 individuals. Several studies have identified the most common genotypes involved

in this condition (Nauseef 1990, Nauseef 1998, Nauseef et al. 1998). According to epidemiological

studies hereditary MPO deficiency may be associated with increased susceptibility to candidiasis
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by Candica Albicans and incidence of malignancies (Lehrer and Cline 1969, Lanza et al. 1987,

Lanza 1998). According to some epidemiological studies, individuals with inherited MPO

deficiency have less CAD than normal population (Kutter et al. 2000). Alternative bactericidal

mechanisms are functionally dominant in human neutrophils, which presumably effectively

compensate the immune responses in the absence of MPO (Lehrer and Cline 1969).

3.6. MPO activity related factors

Age. MPO serum levels tend to increase with age and the MPO release from PMNLs increases

(Mohacsi et al. 1996, Hoy et al. 2001). However, reduced neutrophil function and enzyme release

after middle-age has also been reported (Suzuki et al. 1983).

Smoking. Smoking affects the leukocyte count, but independent leukocyte activation has

also been reported (van Eeden and Hogg 2000). Nicotine is known to enhance O2
- anion

generation in human neutrophils and findings also suggest that smoking increases the MPO

activity (Bain et al. 1992, Pitzer et al. 1996, Hoy et al. 2001). Levels of MPO are elevated in

smokers compared with non-smokers and the difference is also evident when former smokers are

compared to never-smokers. The enhanced MPO production in smokers may be associated with

the development and progression of CAD (Lavi et al. 2007, Rudolph et al. 2008).

Diabetes. MPO activity has been reported to be decreased in subjects with type 1 DM with a

significant correlation between HbA1 levels and MPO activity (Sato et al. 1992). Also, in subjects

with type 2 DM the MPO activity in leukocytes is reported to be significantly reduced (Uchimura

et al. 1999). However, in diabetic rats the MPO activity is markedly increased (Zhang et al. 2004).

Estrogen. The intake of oral contraceptives may increase the levels of circulating MPO and

in women on HRT, the intracellular activity and the amount of released MPO is increased (Bekesi

et al. 2001a, Bekesi et al. 2001b, Hoy et al. 2001). Also, women treated with high estrogen levels

have increased plasma MPO concentrations and, in vitro, the presence of estrogen leads to the

release  of  MPO  from  PMNLs  (Jansson  1991,  Santanam  et  al.  1998).  The  release  of  MPO  was

lowered in coronary artery bypass graft surgery patients who were given 17 -estradiol before

surgery (Wei et al. 2001).

Statins. Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)

reductase strongly inhibit MPO mRNA expression in human and murine monocyte-macrophages.

Reduction of MPO mRNA levels by 20- to 200-fold was observed in vivo in leukocytes from

statin-fed mice, correlating with reductions in MPO protein and enzyme activity (Kumar and

Reynolds 2005).
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4. MPO and its role in the development of atherosclerosis

4.1. MPO as a catalyst for LDL oxidation in atherosclerosis

Products of MPO activity, including HOCl, tyrosyl radicals and NO can contribute to oxidative

damage to host lipids and proteins predisposing to atherogenesis (Podrez et al. 2000, Tsimikas

2006). MPO- and HOCl-modified LDL are highly expressed in animal and human atherosclerotic

vessels but not in normal control vessels (Hazen and Heinecke 1997, Malle et al. 2000, Malle et al.

2001). Modified LDL is found both in vascular cells and extracellular spaces and a potent

chemotactic target for leukocytes (Malle et al. 2000).

MPO generated chlorinating oxidants. The 3-chlorotyrosine content of LDL and proteins

derived from human atherosclerotic aorta are significantly increased in atherosclerotic intima when

compared to normal vessel (Hazen and Heinecke 1997). Exposure of LDL to HOCl promotes

lipoprotein aggregation (Hazell et al. 1994) and conversion into a high uptake particle for

macrophages (Hazell and Stocker 1993).

Tyrosyl radical generated by MPO. Dityrosine  is  found  enriched  in  LDL  derived  from

human atherosclerotic lesions (Leeuwenburgh et al. 1997b). MPO-generated tyrosyl radical

promotes the initiation of lipid peroxidation (Savenkova et al. 1994) and modification of HDL

(Francis et al. 1993).

MPO-generated reactive nitrogen species and LDL nitration. MPO-generated reactive

nitrogen species promote apoB-100 protein nitration and the initiation of LDL lipid peroxidation

(Hazen et al. 1999b, Podrez et al. 1999). LDL modified by reactive nitrogen species generated by

MPO-H2O2-NO2 system is converted into a form nitrotyrosine containing LDL that is avidly

taken up by macrophages (Podrez et al. 1999).
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Figure 6. Proatherogenic properties of MPO exposed to the vessel wall.

MPO catalyzes the generation of HOCl and NO-
2 by oxidizing Cl– and NO. LDL and HDL can both be modified by

HOCL or NO-
2; yielding Cl-LDL or NO2-Tyr-LDL and Cl-HDL or NO2-Tyr-HDL. MPO modulates MMP activity via

HOCl, either directively by activating MMP or by suppressing MMP inhibitors. For details, see text. Reprinted from

Lau D and Baldus S (2006): Myeloperoxidase and its contributory role in inflammatory vascular disease.

Pharmacology & Therapeutics 111: 16-26, with permission from Elsevier.

Abbreviations used in the figure: Cl–; chloride, Cl-LDL; chlorinated low density lipoprotein, HDL; high density

lipoprotein, HOCl; hypochlorous acid, LDL; low density lipoprotein, MMP; matrix metalloproteinase, MPO;

myeloperoxidase, NO; nitric oxide, NO2; nitrogen dioxide, NO2
–; nitrite, NO2Tyr-HDL/LDL; HDL/LDL containing

nitrotyrosine.

4.2. MPO modifies apoA-I creating dysfunctional HDL

There is mounting evidence that anti-atherogenic HDL becomes oxidatively modified by MPO

(Nicholls et al. 2005, Malle et al. 2006b). HDL isolated from the blood of the subjects with CVD,
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contains elevated levels of chlorinated tyrosine and HDL-associated protein apoA-I, which acts as

a  selective  target  for  MPO-catalyzed  oxidation  (Bergt  et  al.  2004,  Zheng et  al.  2004).  The  HDL

isolated from the atherosclerotic lesions contains a variety of MPO-derived peptides, including

oxidative modification results of reactive chlorinating and nitrating species (Zheng et al. 2004,

Zheng et al. 2005). These determinants seem to colocalize with apoA-I and MPO in human

atheroma (Marsche et al. 2002, Bergt et al. 2004, Malle et al. 2006b). While the HDL and the

apoA-I are chlorinated, the removal of cholesterol from cultured cells by ATP-binding cassette

transporter A1 is impaired (Peng et al. 2005, Shao et al. 2005, Zheng et al. 2005). In addition, the

modification  of  HDL  by  HOCl  increases  the  binding  affinity  of  HDL  for  MPO.  It  has  been

proposed that the binding of MPO with HOCl-HDL protects the MPO from cellular uptake and

degradation by ECs (Marsche et al. 2008).

4.3. MPO promotes endothelial dysfunction

The interaction of NO with MPO may serve as a modulator of the peroxidase catalytic activity,

influencing the regulation of local inflammatory and infectious events (Abu-Soud and Hazen

2000b). MPO acts as an NO oxidase in the vasculature and affects the anti-inflammatory

properties of ECs (Lau and Baldus 2006). Endothelial-derived NO contributes to the relaxation of

SMC and the inhibition of muscle cell proliferation, adhesion molecule expression and platelet

aggregation (De Caterina et al. 1995, Salvemini et al. 1996, Abu-Soud and Hazen 2000a, Abu-

Soud and Hazen 2000b).

MPO-generated oxidants have been reported to inhibit the activity of NOS directly and by

chlorinating its crucial substrate, L-arginine (Abu-Soud and Hazen 2000a, Abu-Soud and Hazen

2000b). As a consequence, in in vitro studies the formation of NO by ECs has been diminished

and inhibits the acetylcholine-induced relaxation of rat aortic ring segments (Zhang et al. 2001a,

Zhang et al. 2001b). There are several possible ways in which the MPO enzyme can affect NO

synthesis. In addition to HOCl, MPO-modified HDL and nitrogen species are also able to inhibit

the  NO  synthesis  and  reduce  the  availability  of  the  essential  NOS  cofactor  NAD(P)H  (Auchère

and Capeillère-Blandin 1999, Abu-Soud and Hazen 2000a, Marsche et al. 2004).

In a rodent model of acute endotoxemia, MPO knockout mice exposed to an acute

inflammatory stimulus displayed improved vascular function and increased vascular NO

bioavailability suggesting that subendothelial MPO is a significant contributor to impaired NO

bioavailability in vivo (Eiserich et al. 2002). In the study of symptomatic CAD patients, the

forearm perfusion in response to NO-liberating acetylcholine correlated inversely with MPO
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plasma levels (Baldus et al. 2004). In acute MI patients undergoing myocardial reperfusion, the

plasma samples contained increased levels of MPO, which catalytically consumed NO in the

presence of H2O2 (Baldus et al. 2004). In addition, while MPO is mobilized from vascular

compartments by heparin the forearm perfusion increases (Baldus et al. 2006).

In a study of 298 subjects, the MPO levels were found to predict endothelial dysfunction

measured with flow-mediated and nitroglycerin-mediated dilation of the brachial artery. The MPO

levels were found have a strong inverse correlation with flow-mediated dilatation to predict

endothelial dysfunction, even after multivariable adjustment (Vita et al. 2004). However, in

contrast, in a study of 20 patients whose endothelial function was tested during diagnostic

coronary angiography, the MPO and nitrotyrosine gradients were similar both in subjects with

endothelial dysfunction and controls (Lavi et al. 2008).

4.4. MPO and the development of vulnerable plaque

HOCl-modified proteins are accumulated at ruptured or eroded sites in the coronary atheroma of

subjects suffering sudden cardiac death, suggesting a potential mechanistic role for MPO

(Sugiyama et al. 2001). Accordingly, both neutrophils and macrophages alongside with MPO- and

HOCl-modified proteins are localized in the coronary thrombus (Buffon et al. 2002, Naruko et al.

2002). The neutrophils are activated in ACSs (Biasucci et al. 1996) and an increase in neutrophil

MPO activation has been detected in patients with unstable angina pecotris (Buffon et al. 2002).

The activation was independent of the site of the stenosis, which may be a marker of a widespread

inflammatory process occurring in the coronary vasculature (Buffon et al. 2002).

The in vitro studies demonstrate that HOCl is able to promote the activation of MMP-7 and

EC apoptosis which may, in theory, promote the development of the plaque erosion (Fu et al.

2001, Sugiyama et al. 2004). HOCl, generated by the MPO-H2O2-Cl- system inactivates the

activity of tissue inhibitors of MMPs (TIMPs) possibly enabling the proteoloytic activity of MMPs

during inflammation (Wang et al. 2007). In the ECs exposed to MPO or MPO-expressing

macrophages the expression of TF is increased and physiological doses of HOCl also promote the

ECs’ apoptosis (Sugiyama et al. 2004).

4.5. MPO and CAD in clinical studies

MPO as a prognostic biomarker in acute coronary syndrome (ACS). In a study of 604 patients

presenting at the emergency department with chest pain, the initial measurement of plasma MPO
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independently predicted early risk of MI, as well as the risk of major adverse cardiac events in the

ensuing 30-day and 6-month periods (Brennan et al. 2003). MPO levels, in contrast to troponin T,

creatine kinase MB isoform, and CRP levels, identified patients at risk for cardiac events in the

absence of myocardial necrosis, highlighting its potential usefulness for risk stratification among

patients presenting with chest pain. In the multivariable model adjusted for traditional

cardiovascular risk factors, MPO levels were associated with an odds ratio (OR) of 11.9 (95%

confidence interval [CI], 5.5–25.5) for the highest versus the lowest quartiles of leukocyte-MPO

and an OR of 20.4 (95% CI, 8.9–47.2) for the highest versus lowest quartiles of blood-MPO

(Brennan et al. 2003). In the study, plasma levels of MPO tended to be lower in females than in

males and MPO levels showed a tendency for to be a stronger predictor of risk for cardiac events

in females than in males (Brennan et al. 2003, Hazen 2004).

The significance of the MPO levels as the independent predictive value has also been shown

in patients with ACS in a 6 month-follow-up study of 1090 patients. The elevated MPO serum

levels powerfully predicted an increased risk for subsequent cardiovascular events even though

MPO levels did not correlate with blood levels of troponin T, soluble CD40 ligand or CRP or with

ST-segment changes (Baldus et al. 2003). Accordingly, in a cohort study of 193 men with ACS

patients were followed prospectively for the development of death and MI, and the baseline MPO

levels independently predicted MI at 2 years (Cavusoglu et al. 2007). In a study on 140 patients

with acute chest pain and a non-ST elevation in electrocardiography serum MPO level

measurements were submitted. MPO proved to be the only independent variable to predict acute

MI (Esporcatte et al. 2007).

Angiographically diagnosed CAD. In a case-control study including 158 patients with

diagnosed CAD and 175 patients without angiographically significant CAD the leukocyte and

blood MPO levels were both significantly higher in patients with CAD than in controls (Zhang R

et al. 2001). This case-control study of 874 patients with angiographically proven CAD and 194

subjects with normal coronary angiograms MPO levels were measured before angiography. MPO

levels were elevated in patients with CAD and the highest levels of MPO were found in those

subjects with progression of CAD from stable CAD to ACS (Ndrepepa et al. 2008).

Myocardial dysfunction. MPO has been demonstrated to contribute to adverse ventricular

remodeling after AMI. In a study on 512 acute MI patients plasma MPO concentrations were

higher in MI patients than controls and patients with above-median MPO levels in combination

with above-median plasma amino-terminal pro-brain natriuretic peptide (NT-proBNP) or below-

median left ventricular (LV) ejection fraction had significantly greater mortality than other patients

(Mocatta et al. 2007). In a study where 384 post ST segment elevation MI patients were followed
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up until death or MI the median MPO was raised in patients suffering death or MI when compared

to survivors (Khan et al. 2007). In addition, in a cohort of patients with chronic heart failure,

elevated plasma MPO levels were associated with deterioration of the functional class (Tang et al.

2006). In a study on 447 stable outpatients, 113 had impaired LV function resulting from either

nonischemic or ischemic cardiomyopathy. MPO plasma levels were significantly higher in patients

with impaired LV function than in patients with normal LV function regardless of the presence of

CAD (Rudolph et al. 2007a). In MPO knockout mice, a marked reduction in leukocyte infiltration

and ventricular dilatation was also demonstrated (Seekamp and Ward 1993).

5. MPO gene

5.1. MPO gene expression

MPO is encoded by a single gene approximately 11kB in size and located on the long arm of

chromosome 17q23.1 and composed of 11 introns and 12 exons (Chang et al. 1986, Inazawa et al.

1989, Zaki et al. 1990, Law et al. 1995). Expression of the MPO gene is strictly regulated tissue

and development specifically (Lubbert et al. 1991). The MPO expression is restricted to myeloid

cells, as, during the granulocyte differentiation in the bone marrow only promyelocytes continue to

express and synthesize the MPO enzyme (Borregaard and Cowland 1997, Gullberg et al. 1999).

Human MPO messenger RNA (mRNA) is found only during the late myeloblast and promyelocyte

stages of myeloid development and the expression decreases sharply as these precursors mature

along the granulocyte or monocyte lineages (Sagoh and Yamada 1988, Tobler et al. 1988, Lubbert

et al. 1991). When monocytes differentiate to tissue macrophages the MPO gene can be

reactivated in subsets of reactive macrophages as in foam cells in atherosclerotic lesions

(Sugiyama et al. 2001).

MPO promoter region. The promoter elements that regulate the myeloid-specific

expression of the MPO gene are only partially understood and the mechanisms that restrict MPO

gene expression are mostly unknown. The molecular analysis of the human MPO promoter region

in  the  promyelocytic  cells  indicates  the  presence  of  a  complex  array  of  positive  and  negative

regulatory sites and that some additional elements outside the promoter area are needed to reverse

the repression of the human MPO gene in a promyelocyte-specific manner. Several consensus

binding sites for transcriptional activators have been found from the promoter area, including SP1

transcription factor (Chumakov et al. 2000).
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In murine MPO gene, three functionally active initiation sites for MPO RNA synthesis have

been described (Zhao et al. 1997). The analogous three initiation sites for mRNA synthesis have

also been found in human cells: P1, P2 and P3 are situated at about bp -925, -310 and +1 of the

MPO gene. In contrast to the murine gene, where physiological transcription of intact MPO

mRNA may originate at several distinct sites, physiological synthesis of human MPO mRNA

appears to be initiated at the promoter P1 site alone (Lin and Austin 2002).

Regulation of MPO gene expression. A variety of transcription factors regulate MPO

expression. The MPO gene is regulated by the site-specific acute myelogenous leukemia

transcription factor (AML1) and the complete structure of an AML1 binding site is essential for

the proximal enhancer site (Nuchprayoon et al. 1994). This site contains an Alu receptor response

element (AluRRE), which is recognized by various nuclear receptors including SP1 (Vansant and

Reynolds 1995, Piedrafita et al. 1996). The human monocytes exposed to granulocyte-macrophage

colony-stimulating factor (GM-CSF) continue to express MPO in vitro as they differentiate into

macrophages (Sugiyama et al. 2001). Some nuclear receptors such as PPAR  and ER  are able to

regulate MPO gene expression in human macrophages (Piedrafita et al. 1996, Kumar et al. 2004).

Moreover, the PPAR  and ER  may compete for binding the Alu receptor response element

(AluRRE) in the MPO promoter (Vansant and Reynolds 1995, Piedrafita et al. 1996, Kumar et al.

2004).  PPAR  has a binding site in an Alu element preceding the human MPO gene and PPAR

ligands may induce or suppress human MPO gene expression depending on the presence of

macrophage colony stimulating factor (M-CSF) or GM-CSF (Kumar et al. 2004).

5.1.1. Mutations of MPO gene in MPO deficiency

Mutations in the MPO gene that alter any of the steps in this biosynthetic pathway may influence

the phenotype of MPO deficiency in distinct ways (Nauseef et al. 1998). There is heterogeneity in

MPO deficiency at the protein, mRNA and genomic DNA levels (Selsted et al. 1993, Kizaki et al.

1994, Nauseef et al. 1998). Both pre-translational and post-translational defects have been reported

(Tobler et al. 1989, Nauseef et al. 1996).

A variety of mutations resulting in MPO deficiency have been reported including seven

missense mutations. Four of them have been characterized in detail for their impact on MPO

biosynthesis (Nauseef et al. 1994, Romano et al. 1997, DeLeo et al. 1998, Nauseef 2004, Ohashi et

al. 2004). The effects of these genotypes on the synthesis of MPO mutant proteins have been

assessed using cell lines stably transfected with mutant cDNA. Such studies have suggested
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possible structure-function relationships of intracellular progressing and targeting of MPO

precursors (Hansson et al. 2006).

Complete hereditary MPO deficiency affects 1 in 2,000 to 4,000 individuals and several

mutations causing this disease (Parry et al. 1981). The most common genotype in Europe and the

United States is a point mutation C to T in exon 10 causing an arginine replacement with a

tryptophan (R569W) in the heavy subunit (Kizaki et al. 1994, Nauseef et al. 1994). A tyrosine

replacement with cysteine at codon 173 in exon 10 (Y173C) (DeLeo et al. 1998) and methionine at

the light subunit replaced with threonine (M251T) within exon 9 disrupt the light subunit of MPO

protein (Romano et al. 1997). In Japanese population glycine replacement with serine at codon 501

(G501S) in the exon 9 region has been also been identified (Ohashi et al. 2004). A marked share of

the subjects with complete MPO deficiencies are compound heterozygotes and the phenotype of

the patient depends on the relative contribution of each allele to the final product and the

interaction between each allelic product during the biosynthesis (Nauseef et al. 1998).

5.2. Polymorphic sites of MPO

According to the Database of Single Nucleotide polymorphism, 123 SNPs have been identified for

human MPO. However, most of the polymorphisms described in public databases have not been

confirmed. Table 3 presents the detected promoter and coding region SNPs with a known

frequency. Five are nonsynonymous amino acid changes within the coding sequence (V53F,

M251T, A332V, I642L and I717V) and six are located in the promoter region 2000 bp upstream of

the starting site of MPO gene (Hoy et al. 2001, Chevrier et al. 2003).
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Table 3. Positions and denominations of MPO promoter and coding region polymorphisms among

Caucasian controls. See text for details. Modified from Chevrier I et al. (2003): Myeloperoxidase:

new polymorphisms and relation with lung cancer risk. Pharmacogenetics 13:729-739.

Location Base Change Mutation allele frequency Function Denomination

5´flanking -1940A/G 0.05 Noncoding -1940A/G

5´flanking -1812T/G 0.28 Noncoding -1812T/G

5´flanking -638C/A 0.19 Noncoding -638C/A

5´flanking -581T/C 0.27 Noncoding -581T/C

5´flanking -463G/A 0.24 Noncoding -463G/A

5´flanking -129G/A 0.04 Noncoding -129G/A

Exon 2 2986G/T 0.06 Nonsynonymous V53F

Exon 6 4311T/C 0.02 Nonsynonymous M251T

Exon 7 5414C/T 0.02 Nonsynonymous A332V

Exon 11 11672A/C 0.02 Nonsynonymous I642L

Exon 12 12684A/G 0.02 Nonsynonymous I717V

5.2.1. Exonic polymorphisms of MPO

Genetic polymorphisms have been found in exon 2 causing valine replacement with phenylalanine

(V53F), exon 6 causing methionine replacement with threonine (M251T), exon 7 causing alanine

replacement with valanine (A332V), exon 11 causing isoleusine replacement with leusine (I642L)

and exon 12 causing isoleusine replacement with valine (I717V) (Chevrier et al. 2003). Carriers of

53F have been associated with a higher MPO activity (Chevrier et al. 2006). Otherwise, in the two

studies considering the exon polymorphisms no evidence of the functionality of these

polymorphisms was found (Chevrier et al. 2006, Dolley et al. 2008).
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5.2.2. Intronic polymorphisms of MPO

-129G/A. A G/A substitution is located at position -129 upstream from the transcription start site,

abolishing an SP1 binding site. The A-allele has been shown to be associated with lower serum

MPO concentrations and found to reduce MPO activity in neutrophils (Hoy et al. 2001, Rutgers et

al. 2003, Chevrier et al. 2006). The polymorphism has been suggested to account for 2.6% of the

variance in the MPO concentration of the population (Hoy et al. 2001).

-463G/A. Of the MPO promoter polymorphisms, the -463G/A is best known and has also

been studied in clinical settings. -463G/A (rs2333227) is located within an Alu-encoded hormone

response  element  (AluHRE)  consisting  of  a  cluster  of  four  hexamer  half  sites  (Vansant  and

Reynolds 1995, Piedrafita et al. 1996, Reynolds et al. 1997). This cluster is recognized by various

nuclear receptors, and the G-allele creates an SP1 binding site in the first hexamer. The

transcriptional activity of the A-allele has been found to be severalfold less in transient

transfection assays  (Vansant and Reynolds 1995, Piedrafita et al. 1996). In myeloid leukemia cells

the GG genotype presents two- to threefold higher expression of MPO messenger RNA and higher

levels of MPO than A-allele carriers (Reynolds et al. 1997). Although the presence of an SP1

binding site in the 463G allele has been associated with an increase in MPO expression in vitro,

no  effect  on  MPO  concentration  was  detected  in  vivo  (Piedrafita  et  al.  1996).  In  one  study,  the

polymorphism has been reported to exhibit gender and age -dependent differences in MPO activity

(Rutgers et al. 2003). The A-allele creates a stronger binding site for the ER  which may possibly

lead to differential regulation of G- and A-alleles in men and women (Norris et al. 1995, Reynolds

et al. 2000, Kumar et al. 2004). Accordingly, ER  ligand 17 -estradiol (E2) has an ability to block

the effects of PPAR , especially on the -463G/A A-allele (Reynolds et al. 2000, Kumar et al. 2004,

Reynolds et al. 2006).

The GG genotype is most common, being present in 61% of Northern European populations

(Nagra et al. 1997, Reynolds et al. 1997, Reynolds et al. 1999, Cascorbi et al. 2000). There are

ethnic variations in allele frequency, with the AA genotype represented in 15% of African-

Americans, (London et al. 1997) 3 to 7% of Caucasians, (Nagra et al. 1997, Reynolds et al. 1997,

Reynolds et al. 1999, Cascorbi et al. 2000) and 2 to 3% of Japanese-Pacific Islanders (Le

Marchand et al. 2000).

-638C/A. The A-allele of the -638C/A polymorphism has been associated with increased

MPO activity. However, the SNP does not appear to be located in any known regulatory sequence

(Chevrier et al. 2003, Chevrier et al. 2006).
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-765T/C and -822C/A are located in the 5´ region of the MPO gene. However, they are not

located in any known regulatory sequence but may in theory alter the gene expression (Dolley et

al. 2008). The -822C/A has been demonstrated to be associated with increased MPO activity

(Chevrier et al. 2006). A study on 680 subjects failed to show any association between these SNPs

and the LDL phenotype (Dolley et al. 2008).

-1940A/G.  In the studies investigating the polymorphism, no association has been found

with MPO activity and -1940A/G polymorphism (Chevrier et al. 2003, Chevrier et al. 2006).

5.3. MPO polymorphism -463G/A and atherosclerotic diseases

Lipid profile. In a cohort of 82 healthy families consisting of both men and women, the A-allele

of the polymorphism was associated with higher levels of TGs, total cholesterol, LDL cholesterol

and apoB than G-allele homozygotes (Hoy et al. 2001). In a genome-wide scan of 680 subjects, the

A-allele was associated with lower plasma total cholesterol, LDL and apoB levels being lowest

among AA homozygotes. When analyzed further, the results remained significant only in women.

They hypothesized that A-allele carriers had decreased MPO levels, which could attenuate LDL

oxidation and, consequently, facilitate the LDL reuptake by the liver (Dolley et al. 2008). In a

study on 447 stable outpatients, both men and women, the AA genotype also showed a lower

prevalence of hypercholesterolemia (Rudolph et al. 2007a).

Coronary artery disease (CAD). In a cohort of 155 end-stage renal disease patients

comprising both men and women, the GG genotype was associated with higher prevalence of

CVD (Pecoits-Filho et al. 2003b). In a case-control group which consisted of 229 CAD patients,

both men and women, the A-allele was less frequent among cases with CAD than in controls

(Nikpoor et al. 2001). In a study on 277 patients of both gender referred for a first diagnostic

coronary angiography, the GG homozygotes had an increased risk of developing a cardiovascular

event (Asselbergs et al. 2004).

Ventricular dysfunction. In a study on 447 stable outpatients consisting of men and women

113 patients had impaired LV function resulting either from nonischemic or ischemic

cardiomyopathy. The -463G/A polymorphism was not associated with the LV dysfunction

(Rudolph et al. 2007a).

Stroke.  In the study on 450 patients comprising both men and women the allele frequence

did not differ between the stroke patients and controls. However, the frequency of A -allele was

reported to be higher among those patients whose post stroke recovery was poor (Hoy et al. 2003).
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AIMS OF THE STUDY

The association between genetics, lipoprotein oxidation and atherosclerosis is firmly established.

MPO has been shown to be able to produce ROS to oxidize LDL in vivo and in vitro. The -

463G/A promoter polymorphism (rs2333227) has been associated with CAD and other

inflammatory conditions. However, the role of MPO genotypes in different stages of

atherosclerosis is still unclear, as are the factors that interact with MPO and modify the functions

of MPO polymorphism. The present study used four clinical and one autopsy series to elucidate

the relationship between MPO genotypes and indices of lipid oxidation, coronary reactivity,

intima-media thickening and autopsy-verified atherosclerotic lesions. Since estrogen have been

found to be involved in regulating MPO responses as the A-allele of the MPO polymorphism

creates a stronger ER  receptor binding site, the interaction between MPO (rs2333227) genotypes

and estrogen replapcement therapy in postmenopausal women was also studied. The specific aims

of the study were:

1. To elucidate the association between MPO genotypes and the indices of lipid oxidation

both in healthy men and in postmenopausal women receiving HRT (I, IV).

2. To analyze whether MPO genotype is associated with the indices of coronary blood flow as

measured by PET in healthy men (I).

3. To assess the interaction of MPO genotypes and type 2 DM in carotid artery IMT in

middle-aged men (II).

4. To examine the relationship between the MPO genotypes and autopsy-verified early and

advanced atherosclerotic lesions in the abdominal and thoracic aorta (III).

5. To study the interaction of MPO genotypes and disease progression of atherosclerosis in

postmenopausal women receiving HRT (V).
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SUBJECTS AND METHODS

1. Clinical series

1.1. Positron emission tomography (PET) study (I)

Fifty-one men from the Archipelago Sea Naval Command, Archipelago Coast Guard District,

Säkylä Garrison and the Turku Fire Department were invited to participate in the study. The

following inclusion criteria were employed: 1) age 25-40 years, 2) total cholesterol level > 5.5

mmol/l, 3) clinically healthy and 4) no continuous drug therapy or antioxidant vitamin use. For the

background information, the study subjects were asked about their family history of CAD, alcohol

and caffeine consumption, medication, smoking and exercise habits using a validated

questionnaire. In Study I, 49 men out of 51 were included in the statistical analyses and two were

excluded due to technical problems with the PET measurements. The study was approved by the

Ethics Committee of the Turku University Central Hospital and the University of Turku. Each

subject gave written informed consent.

1.2. Random sample of Finnish middle-aged men (II)

The subjects for this study were selected from a cohort of 9,058 males aged 50 to 59 years living

in the city of Tampere. Three hundred men were randomly invited by letter to participate and 223

(74%) consented while 33 refused and 44 did not answer or could not be reached. The blood

pressure of these men was measured and detailed medical histories were collected with a focus on

cardiovascular and metabolic diseases, smoking habits and medication. The standard 2-hour oral

glucose  tolerance  test  (OGTT)  according  to  WHO  1998  criteria,  was  used  to  assess  glucose

tolerance. All the required data, including MPO genotype were obtained from 198 subjects, which

comprised the adjusted study population for the analysis. The Ethics Committee of the UKK

Institute approved the study and the participants gave written informed consent.
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1.3. Long-term Hormone Replacement Therapy (HRT) Study (IV, V)

In 1993, women attending to a private outpatient clinic in Tampere for annual routine

gynecological examinations were invited to participate. For the cross-sectional baseline study in

1993, 120 nonsmoking and nondiabetic postmenopausal women, aged 45-71 years, were enrolled.

In 1998, all of these 120 women were invited by letter to participate in the 5-year follow-up study;

87 of 120 (72.5%) consented. They had no clinically evident CVD or HTA and were classified

into 3 groups based on the use of HRT. The data from MPO genotype (rs2333227) was available

for 87 subjects. The HRT-EVP group (n = 25) used estradiol valerate (EV; 2mg/d) for 11 days,

followed by EV continued with progestin (P; levonorgestrel, 0.25mg/d) for 10 days. The HRT-EV

group  (n  =  32)  used  EV  alone,  and  the  control  group  (n  =  30)  had  never  used  HRT.  At  the

baseline, the mean duration of EV and EVP treatment was 9.2 ± 3.7 and 10.2 ±2.2 years

respectively. The mean time from menopause in the controls was 11.9 ± 4.1 years. The mean ages

in the HRT-EVP, HRT-EV and control groups were 60.4 ± 4.8, 59.5 ± 5.5 and 61.5 ± 5.8 years

respectively. Ultrasonography was performed at baseline and follow-up to determine intima-media

far wall thickness. Study V consisted all of the follow-up atherosclerosis severity score (ASC) data

and in Study IV, the baseline values ASC and oxLDL-abs were used. The Ethics Committee of the

Tampere University Hospital approved the study. All subjects gave written informed consent.

2. Autopsy series

2.1. The Helsinki Sudden Death Study (HSDS) (III)

The HSDS was launched to study the lifestyle and genetic risk factors predisposing Finnish

middle-aged men to sudden death. The HSDS consisted of a series of a total of 300 Caucasian men

whose mean age was 53 years (range 33 to 69 years). The series of men was subjected to a

medicolegal autopsy at the Department of Forensic Medicine, University of Helsinki between

1991 and 1992 (B-series, n = 300). For the collection of data on CAD risk factors, a relative or a

close  friend  of  the  deceased  were  given  a  detailed  questionnaire  including  a  review  of  past  and

recent smoking and drinking habits and previous illnesses (Karhunen and Penttilä 1990). In Study

III, the data from the autopsies and MPO (rs2333227) genotypes were available in 266 cases. Due

to the sudden unexpected death data on CAD risk factors based on the questionnaire was available

in 124 of the study cases.
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3. Measurements of serum lipids, apolipoproteins and glucose tolerance (I, II, IV, V)

In Study I, the blood test was drawn after the 12-hour-fasting to determine the concentrations of

lipids and apolipoproteins, plasma triglyserides and the total and HDL cholesterol. The

concentrations were analyzed by a Cobas Integra 700 automatic analyzer using the manufacturer’s

reagents and calibrators (Hoffmann-La Roche Ltd., Switzerland). LDL cholesterol concentrations

were calculated according to Friedewals’s formula (Friedewald et al. 1972). ApoB and apoA

concentrations were measured by an immunoturbidimetric method using specific controls

(Hoffmann-La Roche Ltd., Switzerland) on the same analyzer as the lipids.

In Study II, lipoprotein fractions were assessed from fresh samples by ultracentrifugation

where 4 ml of serum was transferred to a 6.5 ml centrifuge tube which was then filled by layering

saline on top of the serum. After centrifugation for 16 hours the top layer containing VLDL and

the two layers containing HDL and LDL were transferred to separate flasks. The underlying layers

were centrifugated for a further 20 hours to distinguish an LDL containing top layer and bottom

yellow  fraction  containing  HDL  and  serum  proteins.  The  three  separate  VLDL,  LDL  and  HDL

fractions were then extracted for determination of TGs and cholesterol (Carlson 1973). Cholesterol

was measured from serum and lipoprotein fractions using an enzymatic method (CHOD-PAP),

Boehring Mannheim, Germany). TGs were measured by enzymatic hydrolysis (GPO-PAP,

Boehringer Mannheim, Germany). ApoB was determined by immunonephelometry (Behring,

Behringwerke AG, Germany). To assess the glucose tolerance, the standard 2-hour oral glucose

tolerance test (OGTT) with a 75 g glucose load was performed according to the WHO 1998

criteria (Alberti and Zimmet 1998). The blood samples were taken at baseline one and two hours

after the glucose load, and the plasma glucose concentrations were measured. Fasting glucose level

of 7.0 mmol/l or higher, and/or a 2-h post-challenge glucose level of 11.1 mmol/l or higher were

considered to be diagnostic criteria for type 2 DM (Alberti and Zimmet 1998). Glucose analyses

were carried out on hemolyzed whole blood samples using the glucose dehydrogenase/mutarotase

method (Merck Diagnostica, Germany).

In Studies IV and V, lipid measurements were made at baseline and after 5-year follow-up.

Serum total cholesterol and triglyserides were determined by a commercial method (Kodak

Echtachem 700XR, Eastman Kodak Co., Rochester, NY). Serum HDL cholesterol and its

subfractions (HDL2, HDL3) were separated with a dextran-sulfate-magnesium precipation

procedure and the cholesterol content was analyzed with a Monarch 2000 Analyzer

(Instrumentation Laboratory, Lexington, KY), using the cholesterinoxidase-
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peroxidase/antiperoxidase cholesterol reagent (catalog no. 237574, Roche, Mannheim, Germany)

and a primary cholesterol standard (catalog no 67265 and 67249, Orion Diagnostics).

4. Measurements of autoantibodies against oxLDL (I, IV)

The levels of autoantibodies against oxLDL were measured by a solid phase enzyme-linked

immunosorbent assay (ELISA) as previously described (Lehtimäki et al. 1999). The antigens were

prepared from the pooled plasma of ten donors and were divided into two groups: 1) native LDL

was protected against oxidation by 0.27 mmol/l EDTA and 20 µmol/l butylated hydroxytoluene in

PBS and 2) oxLDL was produced by 24-hour incubation of native LDL with 2 µmol/l CuSO4. Half

of the wells on each ELISA plate were coated with native LDL (5 µg/ml). The coated plates were

incubated, washed and blocked and the serum samples diluted to 1:15 (I) or 1:20 (IV) were added

to the wells. After incubation, peroxidase-conjugated rabbit anti-human IgG antibodies were added

and o-phenylenediaminen substrate (Sigma, USA) was used to detect the anti-LDL binding of the

test samples that was measured as the optical density at 492 nm. The results were expressed as the

mean of duplicated samples. The autoantibody titer against oxLDL was calculated both by

substraction of the binding to native LDL from the binding to oxLDL and oxLDL to native LDL

ratio.

5. Evaluation of myocardial blood flow (MBF) and blood flow reserve by PET (I)

The participants had fasted for 6 hours before the PET studies. At the beginning, two catheters

were inserted, one in the antecubital vein of the left arm for the injection of [15O]H2O and for the

infusion of adenosine, the other in the antecubital vein of the right arm for blood sampling. The

patients were positioned supine in a 15-slice ECAT 931/08-12 tomograph (Siemens/CTI Inc.,

USA). After a transmission scan the subjects’ nostrils were closed and he inhaled [15O]CO for 2

minutes through a three-way inhalation flap-valve. [15O]CO  was  allowed  to  combine  with  the

hemoglobin for 2 minutes before data collection for a static scan was started. During the scan

period, three blood samples were drawn at 2-minute intervals and the radioactivity was measured.

A 10-minute period was allowed for radioactive decay of [15O]CO before the blood flow

measurements were started. Blood flow was measured at baseline and 60 seconds after the

beginning of intravenous administration of adenosine. For the blood flow measurement [15O]H2O
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was injected intravenously for 2 minutes and dynamic scanning was started for 6 minutes. To

calculate the rate-pressure product (RPP), the subject’s heart rate and blood pressure were

monitored throughout the study.

Large regions of interest were placed on representative transaxial ventricular slices in each

study  covering  the  anterior,  lateral,  septal  and  whole  free  wall  of  the  LV (Iida  et  al.  1995).  The

regions of interest were drawn on the images obtained at rest and copied input function was

obtained at rest and copied to the images obtained after adenosine administration.  The arterial

input function was obtained from the left ventricular time activity curve using a previously

validated method (Iida et al. 1992). Since no regional blood flow differences were found, overall

MBF was used for further analyses. The coronary flow reserve (CFR) was defined as the ratio of

overall MBF after administration to flow at baseline. The coronary resistance values were

calculated both at baseline and during adenosine infusion by dividing the mean arterial blood

pressure by the respective flow value. RPP adjusted resting blood flow was calculated by

multiplying the subject’s basal blood flow by the mean RPP of the study population and dividing

the result by subject’s RPP. The CFR adjusted for RPP was calculated as the ratio of MBF during

adenosine administration to RPP adjusted flow at baseline.

6. Ultrasound measurements of arteries (II, IV, V)

6.1. Intima-media thickness (IMT) (II)

Quantitative carotid ultrasound was done by standardized protocol adapted to the Finnish

population (Mercuri 1994, Huang et al. 1999). A high-resolution B-mode ultrasound with a 10

MHz transducer (Biosound Phase 2, Biodynamics Inc USA) was used to examine the left and right

carotid arteries. The examinations were recorded on S-VHS videotapes which were read off-line at

the ultrasound reading center, Wake Forres University, North Carolina, USA. One certified

sonographer and one reader performed all recordings and measurements.

The arteries were identified by Dobbler analysis and imaged from both sides. The protocol

involved scanning of the distal 10-mm of the common carotid artery, the bifurcation and the

proximal 10-mm of internal carotid artery. The distance between media-adventitia interface and

the lumen-intima interface represented the IMT. The maximum IMT of the near and far wall was

measured at 12 well-defined arterial segments. The single largest IMT was determined by

selecting the largest IMT among the individual maximum IMTs in the 12 standard arterial walls,
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i.e., the near and far walls of the common carotid artery, bifurcation and the internal carotid artery

at both sides. The mean maximum IMT (MMax IMT, overall mean) was calculated as the mean of

12 maximum IMTs identified at 12 standard sites (Mercuri 1994). Carotid artery atherosclerotic

disease (CAAD) was defined as an IMT > 1.7 mm in at least one site.

6.2. Atherosclerosis severity score (ASC) (IV, V)

Ultrasonography at baseline and follow-up were performed with Sonolayer V SSA 100 equipment

(Toshiba Corp., Tokyo, Japan). In brief, transverse and longitudinal scans of the extracranial

carotid arteries were carried out bilaterally at four different segments of the artery. Only fibrous

and calcified lesions were taken into consideration and were defined as plaques when distinct areas

of mineralization and/or focal protrusion into the lumen were identified. A far-wall IMT equal to

or more than 1.3 mm at any carotid artery segment was defined as an atherosclerotic plaque

(Furberg et al. 1989) and the total number of atherosclerotic plaques (NAP) was calculated. All

carotid artery examinations were made with a 5.0- MHz convex transducer probe.

Longitudinal ultrasonographs of the abdominal aorta were obtained at 1-cm intervals and

transverse scans at 2-cm intervals in the area of three aortic segments. Significant aortic plaques

were defined as a far-wall IMT equal to or more than 3.0 mm (Furberg et al. 1989). Longitudinal

ultrasonographs of the iliac arteries were performed at two different levels, the common iliac

arteries  and  the  external  iliac  arteries  (Study  V).  All  aortic  examinations  were  performed with  a

3.75-MHz convex transducer probe.

 The replicability of our ultrasonographic protocol for aortic and carotid examination in

Study IV and aortic, carotid and iliac examination in Study V, was examined 1 month after the

first assessment. Twenty randomly selected subjects were invited to attend a repeat examination.

The repeatability of NAP between the first and second examination was 90% for the carotid and

iliac artery sites and 100% for the aortic segments. All ultrasonographies were performed in a

blinded manner by one experienced ultrasonographer and radiologist.

ASC was constructed by dividing the atherosclerosis into three severity classes: 1 = slight

(1.3-2 mm), 2 = moderate (2-3 mm) and 3 = severe (more than 3 mm). The ASC was then

calculated as the sum of the severity classes in aorta and carotid (IV) and aorta, carotid and iliac

arteries (V). The total NAP was calculated, at baseline only, because 5-year data were not

available according to the NAP. Scoring was conducted by one person in a blinded manner

without knowledge of HRT or MPO genotype status.
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7. Measuring the area of atherosclerotic lesions by morphometry (III)

At autopsy, the thoracic and abdominal aortas were collected for analysis. To measure the area of

different types of atherosclerotic lesions, the vessels were dissected free, opened and attached to a

cardboard and fixed in buffered formalin. The arteries were radiographed to detect calcified areas

and then stained with Sudan IV. The degree of atherosclerotic lesions was evaluated according to

standard protocols of the IAP (Guzman et al. 1968) and by the WHO Study Group in Europe

(Uemura et al. 1964). The areas of fatty streaks, fibrotic lesions, complicated lesions and calcified

plaques were measured with a computer-assisted planimetric technique and by radiography in the

case of calcification. The areas of the different types of lesions were expressed in percentage (%).

8. DNA extraction and MPO (rs2333227) genotyping

In  Study  I,  the  DNA was  isolated  from whole  blood  by  Q1Aamp DNA Blood Kit  (Qiagen  Inc.,

USA). In Study III, DNA was isolated from pieces of cardiac muscle by a standard phenol-

chloroform method. In Studies II, IV and V, DNA was isolated from white blood cells using

commercial kit (Qiagen Inc., USA).

MPO -463G/A promoter (rs2333227) genotypes were determined by PCR using restriction

enzyme AciI. A region of the MPO gene in the promoter region was amplified using primers

designed from those reported by London and colleagues (London et al. 1997). PCR was performed

in a 50-µl reaction volume containing MPO forward primer (5´- CGG TAT AGG CAC ACA ATG

GTG AG -3´) and MPO reverse primer (5´- GCA ATG GTT CAA GCG ATT CTT C- 3´), each of

the four deoxynucleotides, DyNAzyme DNA Polymerase and 10 x buffer (Roche Molecular

Systems,  Inc.,  Branchburg,  New  Jersey,  USA).  The  cycling  was  carried  out  in  a  thermal  cycler

(PTC-225, DNA Engine Tetrad MJ Research Inc., Watertown, Massachusetts, USA) at 94°C for

5 min, followed by 35 cycles at 94°C  for 1 min, 58°C for 1 min, and 72°C for 1 min with a final

cycle at 72°C for 7 min followed by cooling to 8°C. Digestion of the PCR product was carried out

in a 25-µl  reaction  volume  with  AciI  restriction  endonuclease  and  10  x  NEB3  buffer  (New

England Biolabs, Inc., Beverly, USA). After digestion fragments were separated using agarose gel

(2.0 %) electrophoresis and visualized by using ethidiumbromide staining. Genotyping was

controlled by analyzing some random samples as duplicates and by including negative (water)

controls. Genotyping was always performed without knowledge of the clinical data.
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9. Statistical methods

Discontinuous variables were compared with Pearson’s 2 test. The t-test for independent samples,

analysis  of  variance  (ANOVA)  or  analysis  of  covariance  (ANCOVA)  was  used  to  compare

continuous variables (I-V). Statistical analyses of the longitudinal data were carried out using

analysis of variance for repeated measures (RANOVA) (II, V). In the case of a significant

interaction Least Significant Difference (LSD) post-hoc test or Mann-Whitney U-test were utilized

to compare the differences between groups. Non-normally distributed data was analyzed after

square root or logarithmical transformation, but the results were expressed in crude form. In

Studies I, III and V the version 1.0.15 of the PS program was used to calculate the power (1-ß) of

the test procedures. In Studies I and III, linear regression analysis was used in the search for the set

of variables that best predict CFR (I) and atherosclerotic lesion area in abdominal and thoracic

aorta (III).

All statistical analyses were carried out using the Statistica for Windows version 5.1 software

package (Statsoft Inc., USA) (I-V) or SPSS version 9.0 (I, III) for Windows (SPSS Inc., USA).

Data in the text are presented as mean ± standard deviation (SD) unless otherwise stated. A p-

value of less than 0.05 was considered statistically significant.
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RESULTS

1. MPO allele (rs2333227) frequencies (I-V)

The distribution of MPO genotypes and allele frequencies in all studies (I-V) are given in Table 3.

The genotype distributions in all studies were in agreement with the Hardy-Weinberg equilibrium.

Table 3. Distribution of MPO gene -463G/A (rs2333227) genotypes and allele frequencies in

Studies I-V.

Genotype, n (%) Allele frequency

N GG AG AA G A

Study I 49 34 (69%) 13 (27%) 2 (4%) 0.83 0.17

Study II 196 116 (59%) 71 (36%) 9 (5%) 0.77 0.23

DM 37 23 (62%) 13 (35%) 1 (3%) 0.80 0.20

Controls 159 93 (59%) 58 (36%) 8 (5%) 0.77 0.23

Study III 266 180 (67%) 79 (30%) 7 (3%) 0.83 0.17

<53 125 83 (66%) 37 (30%) 5 (4%) 0.81 0.19

53 141 97 (69%) 41 (30%) 2 (1%) 0.84 0.16

Study IV, V 87 59 (68%) 26 (30%) 2 (2%) 0.83 0.17

EV 32 22 (69%) 9 (28%) 1 (3%) 0.83 0.17

EVP 25 16 (64%) 8 (32%) 1 (4%) 0.80 0.20

HRT 57 38 (67%) 17 (30%) 2 (3%) 0.82 0.18

Controls 30 21 (70%) 9 (30%) 0 (0%) 0.85 0.15

All 598 389 (65%) 189 (32%) 20 (3%) 0.81 0.19

Abbreviations: DM; diabetes mellitus, EV; estradiol valerate, EVP; estradiol valerate plus

sequential progestin, HRT; hormone replacement therapy.
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2. The effect of MPO genotypes on oxidation of lipids (I, IV)

Study I. In mildly hypercholesterolemic but otherwise healthy men, when MPO GG homozygotes

were compared with A-allele carriers, no significant difference was found between the genotypes

in the autoantibody levels against copper-oxidized LDL (Table 4).

Table 4. Autoantibodies against oxidized LDL according to MPO (rs2333227) genotype groups in

Study I. Values are expressed as means ±SD.

MPO GENOTYPE

GG (N=34) AG/AA (N=15) All (N=49)
ANCOVA

p-value

Ox-LDL-ab - native-LDL-ab 0.06 ± 0.05 0.07±0.08 0.06±0.06 0.435

Ox-LDL-ab to native-LDL-ab ratio 1.94 ±0.92 1.99±1.10 1.95±0.97 0.804

Abbreviations: ANCOVA; analysis of covariance, LDL; low density lipoprotein, MPO;

myeloperoxidase, OxLDL-ab; autoantibodies against copper oxidized LDL, SD; standard deviation.

In ANCOVA age, body mass index, smoking habits and family history of cardiovascular disease

were used as covariates.

Study IV. The study examined the relationship between autoantibodies against copper-

oxidized LDL and HRT in postmenopausal women. A significant interaction was found between

the  MPO genotype  and  HRT treatment  in  the  ratio  of  autoantibody titer  against  copper-oxidized

LDL to native LDL (two-way ANOVA p = 0.021) and with the subtraction of autoantibody titer

against copper oxidized LDL and native LDL (p = 0.046) (Table 5). In further interaction analysis

among the HRT subgroups and controls the oxLDL-ab titer increased in the order of 2.13 in

controls, 2.53 in the EV and 3.21 in the EVP group among subjects carrying the GG genotype

(two-way ANOVA for trend p = 0.006).
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Table 5. Autoantibodies against oxidized LDL according to MPO (rs2333227) genotypes and

HRT use in Study IV. Values are means ±SD.

MPO GENOTYPE

HRT CONTROLS ALL Two-way ANOVA

GG

N = 38

AG or AA

N = 19

GG

N = 21

AG or AA

N = 9

GG

N =59

AG or AA

N = 28

MPO HRT Interaction

Ox LDL-ab –

native LDL-ab

0.11±0.10 0.10±0.05 0.09±0.07 0.17±0.16 0.10±0.09 0.12±0.11 0.579 0.210 0.046

Ox LDL-ab to

native LDL-ab

ratio

2.81±1.24 2.51±1.53 2.13±0.67 3.28±2.02 2.57±1.11 2.76±1.71 0.437 0.800 0.021

Abbreviations: HRT; hormone replacement therapy, LDL; low density lipoprotein, MPO;

myeloperoxidase, OxLDL-ab; autoantibodies against copper oxidized LDL, SD; standard

deviation. Two-way analysis of variance (ANOVA), between MPO genotypes and HRT users and

controls was used.

3. MPO genotype and coronary function (I)

The study examined the relationship between the MPO (rs2333227) genotypes and the coronary

blood flow and reactivity. In ANCOVA analysis, the age, body mass index (BMI), smoking habits

and family history of CVD were used as covariates. The GG genotype carriers had 18.1% lower

CFR (p = 0.019) and 11.5% lower values of adenosine stimulated flow (p = 0.049) than A-allele

carriers (Table 6). In linear regression analysis, after adjustment for age, BMI, family history of

CVD, smoking habits and MPO genotype, the MPO genotype group and BMI were significant

predictors of CFR (p = 0.019 and p = 0.025 respectively, for the entire model p = 0.033, R2 =

0.24). No significant association was found between the MPO genotypes and the RPP-corrected

blood flow at rest.



72

Table 6. Myocardial blood flow according to MPO (rs2333227) genotype groups in Study I.

Values are expressed as means ±SD.

MPO GENOTYPE

GG (N=34) AG/AA (N=15) All (N=49) ANCOVA

p-value

Blood flow at rest (ml g-1 min-1) 0.84±0.22 0.81±0.17 0.83±0.21 0.705

Adenosine stimulated flow (ml g-1 min-1) 3.22±0.79 3.64±0.90 3.35±0.84 0.049

Coronary flow reserve 3.98±1.01 4.60±1.30 4.17±1.13 0.019

Abbreviations: ANCOVA; analysis of covariance, MPO; myeloperoxidase, SD; standard

deviation. In ANCOVA analysis, age, body mass index, smoking habits and family history of

cardiovascular disease were used as covariates.

4. MPO genotype and carotid artery IMT (II)

The carotid IMT and MPO (rs2333227) genotypes were related according to the presence of type 2

DM.  In  two-way  ANCOVA,  with  smoking  and  total  cholesterol  as  covariates,  there  was  a

significant MPO genotype-by-study group (non-diabetic vs diabetics) interaction with internal

carotid artery IMT (p = 0.043) and a borderline significant interaction with overall mean carotid

artery IMT (p =0.05) (Figure 7). In similar statistical analyses for other IMT measurements no

significant interactions were found.

In non-diabetic subjects, the A-allele carriers had 7.3% higher overall mean IMT values than

GG homozygotes (p = 0.015 in ANCOVA analysis) whereas the p-values for other measurements

were borderline significant. In diabetic subjects, there was no similar genotype-dependent

association. When both subjects with type 2 DM and controls were pooled in the same study

group, no significant association was found between the MPO genotype and IMT measurements.



73

Figure 7. Interaction between MPO (rs2333227) genotype and DM status on the overall mean IMT in Study III. In

ANCOVA, smoking and total cholesterol were used as covariates. Least Significant Difference post-hoc test was used

to study the difference between diabetics and healthy controls according to MPO alleles.

Abbreviations: ANCOVA; analysis of covariance, DM; diabetes mellitus, IMT; intima-media thickness, MPO;

myeloperoxidase.

5. MPO genotype and the areas of aortic atherosclerotic lesions (III)

The aim of this study was to evaluate the age dependent interaction with MPO (rs2333227)

genotypes and the severity of atherosclerosis in the abdominal aorta, which is the site where

atherosclerotic lesions first develop, and in the thoracic aorta with delayed disease progression. In

ANCOVA analysis, age and BMI were used as covariates.

There were significant genotype-by-age interactions for the percent area of both fibrotic (p =

0.008) and calcified (p = 0.015) lesions at the predilection site of atherosclerosis in the abdominal

aorta. In ANCOVA involving all of the available known risk factors, the interaction remained
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significant in fibrotic (p = 0.038) and in calcified (p = 0.053) lesion areas in abdominal aorta.

Among the subjects < 53 years old, the A-allele carriers had a 38.6% larger area of fibrotic lesions

(LSD p = 0.017) (Figure 8A) and 43.8% larger area of calcified lesions (LSD p = 0.026) than GG

homozygotes. The power of the test measuring the differences between the areas of calcified and

fibrotic lesions by MPO was 99% for fibrotic and 91% for calcified lesions. By linear regression

analysis  including  all  available  atherosclerosis  risk  factors,  BMI,  age,  HTA  and  DM,  the  MPO

genotype remained as an independent predictor of fibrotic (p = 0.04, for the entire model p =

0.017, R2 = 0.231) and calcified (p = 0.001, for the entire model p = 0.001, R2 = 0.324) lesion

areas. The association changed in men  53 years among whom the A-allele carriers tended (n.s.)

to have slightly lower fibrotic lesions.

In the thoracic aorta, there was also a statistically significant (p = 0.003, ANCOVA, age and

BMI as covariates) interaction between the MPO genotype and age group regarding the fibrotic

lesion area in the thoracic aorta. Among men < 53 years the A-allele carriers tended (n.s.) to have

larger fibrotic areas which became the opposite among men  53 years, where the GG

homozygotes had on average a 24.5% larger area of fibrotic lesions (LSD p = 0.012) than A-allele

carriers (Figure 8B). The power of the test to measure the difference between the area of fibrotic

lesions according to MPO genotypes was 80%. In linear regression analysis, the MPO genotype

did not remain as an independent predictor.



75

Figure 8. A. MPO genotype-by-age interaction on the area of fibrotic lesions in the abdominal aorta in Study III.

Data analysis was based on two-way ANCOVA where age and BMI were used as covariates. The Least Significant

Difference post-hoc test was used to study the differences between groups.

B.  MPO  genotype-by-age  interaction  on  the  area  of  fibrotic  lesions  in  the  thoracic  aorta  in  Study  III.  Data

analysis was based on two-way ANCOVA where age and BMI were used as covariates. The Least Significant

Difference post-hoc test was used to study the differences between groups.

Abbreviations: ANCOVA; analysis of covariance, BMI; body mass index, MPO; myeloperoxidase.
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6. MPO genotype and atherosclerosis development during HRT (IV, V)

Study IV. In this study, the possible association of the MPO genotype and HRT treatment groups

in on ASC was examined. In the two-way ANOVA analysis, no significant interaction was found.

Study V. The  purpose  of  the  Study  IV  was  to  determine  whether  the  MPO  genotype

modifies the effect of HRT on the development of atherosclerosis. Among GG homozygote

subjects, the progression rate of ASC differed significantly between HRT users and controls

(treatment group by time point interaction in analysis of variance for repeated measures

(RANOVA), p = 0.042) being faster in the control group than in the HRT group (Figure 9).

Figure 9. The  effect  of  HRT  on  the  progression  of  atherosclerosis  in  Study  V,  as  measured  by  ASC  in

postmenopausal women with the GG genotype, compared with the progression in controls with the same MPO

genotype and time elapsed from menopause but without HRT. The p-values shown in the figure are from two-way

ANOVA for repeated measures.

Abbreviations: ANOVA; analysis of variance, ASC; atherosclerosis score, HRT; hormone replacement therapy,

MPO; myeloperoxidase.

At baseline, the GG homozygote carriers on HRT-EV tended to have an average of 32.2%

smaller ASC (1.23 vs. 1.80 in controls) and subjects on HRT-EVP had 20.6% smaller ASC (1.44

vs 1.80 in controls) than the controls (for trend p = 0.056, ANCOVA with age and BMI as

covariates). After 5-year follow-up, the corresponding differences between the HRT-EV and HRT-
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EVP groups and the controls were 31.5% (3.00 vs. 4.38, p = 0.010) and 27.2% (3.19 vs. 4.38, p =

0.040; ANCOVA for trend p = 0.035 with age and BMI as covariates (Figure 10)). The

responsiveness to HRT was MPO genotype-specific. Among the A-allele carriers, the progression

rate of ASC in users and controls did not differ.
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Figure 10. ASC in postmenopausal women with GG genotype by HRT group.

A. results from the baseline study. B. Results from the cross-sectional study after 5-year follow-up. The p-values for

the mean ( ±SD, whiskers) differences between the HRT groups and controls shown in the figure were obtained from

ANCOVA with Least Significance Difference post-hoc test. Results were adjusted for age and BMI.

Abbreviations: ANCOVA; analysis of covariance, ASC; atherosclerosis score, BMI; body mass index, HRT;

hormone replacement therapy, SD; standard deviation
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DISCUSSION

1. Study subjects

This thesis consists of Studies I-V including one autopsy and four clinical series. They were used

to examine the relationship between MPO (rs2333227) genotype and different stages of

atherosclerosis. The four series comprised 87 females (IV, V) and 511 males (I-III) who were

unrelated to each other.

The Finnish population is considered suitable for genetic studies because of its homogeneity.

The relatively small population has a history of genetic isolation, the founder effect and genetic

drift, where the inherited risk factors are enriched (Peltonen et al. 1999). The prevalence of CHD

has been high in Finland compared to other Western countries although the trend has been

declining. The most dominant CHD group has been middle-aged men, whereas nowadays the

aged, postmenopausal women comprise the largest CHD group (Tuomilehto et al. 1992, Kattainen

et al. 2006).

Subjects in the clinical studies. Subjects in Study I were young and healthy male

coastguards and firemen. They had only mildly elevated serum total cholesterol levels and normal

PET measurement and therefore it was unlikely that they had any significant stenosis in their

coronary arteries. Due to their occupation, however, the subjects may have been healthier and in

better physical condition than the population on average.

In Study II, the original study group consisted of 300 randomly selected middle-aged men

from ten age-cohorts. Randomized sampling avoided major selection bias, however, 26% of the

invited men refused to participate (n = 33) or could not be reached (n = 44). The final population

with the data of MPO genotype consisted of 199 subjects. CHD was diagnosed according to

medical history or electrocardiographically but not angiographically and therefore, some of the

men may have had advanced atherosclerosis.

Studies IV and V are based on the same study population of postmenopausal women who

were classified into three groups based on their use of HRT and followed for five years. The

original study consisted of 120 women who were invited by letter to participate in the study. The

MPO (rs2333227) genotype data was available from 87 subjects (72.5%).

Subjects in the autopsy series. The subjects included in Study III were the victims of

sudden death or trauma and therefore had been subjected to a medicolegal autopsy. The

conventional cross-sectional or retrospective studies may suffer from the survival bias, which is
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avoided in autopsy studies. However, these subjects may present more severe atherosclerosis than

in randomly selected studies. The CHD risk factors may also be differently distributed, such as the

high alcohol consumption in HSDS subjects. Also, the data available on the traditional CHD risk

factors is limited; the series lack any information available from blood samples, such as lipid risk

factors. The risk factor information available from the interview has been considered reliable

enough to act as confounding factors in statistical analysis. The MPO genotype frequences

followed those previously published for Caucasian population, and therefore, the study may be

considered a representative sample of Finnish middle-aged men, though it has its limitations. The

subjects are males, and therefore the results cannot be generalized to women.

2. Methodological considerations

Candidate gene approach and association studies. Two major catergories of studies are used to

investigate the genes that underlie common diseases and traits. These include candidate-gene

studies, which use association or resequencing approaches and genome-wide studies, which

include both linkage mapping and genome-wide association studies (Hirschhorn and Daly 2005).

Association studies are used to identify relevant candidate genes and genotypes involved in

polygenic disorders using appropriate controls (Daly and Day 2001). SNPs are single-base

differences in the DNA sequence that can be observed between individuals in the population

wherein the least frequent allele has prevalence at the minimum of 1%. One way to perform

association studies is to select SNPs that are more likely to have functionality, as is the case in

promoter variants (Brookes 1999, Daly and Day 2001). In this thesis, the MPO was selected as a

candidate gene because of the reported biological significance in atherosclerosis.

PET methodology. PET  imaging  uses  radionuclides  that  decay  with  positron  emission.  A

positron  has  the  same  mass  as  an  electron  but  a  positive  charge.  The  positron  travels  a  short

distance after which it interacts with an electron and the two undergo annihilation. PET imaging

consists of the detection of these photons. Imaging by PET with electronic coincidence

localization using a ring detector leads to high acquisition efficiency. [15O]H2O is a freely

diffusible tracer with a short physical half-life and therefore the use of [15O]H2O water is restricted

to sites with a cyclotron. However, the ability of water to diffuse freely across plasma membranes

makes this tracer a favorite for quantitation of myocardial blood flow (MBF) (Machac 2005).

Cardiac PET is the only method allowing the assessment of early atherosclerotic changes in
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asymptomatic subjects and has a diagnostic accuracy of  95% even in asymptomatic subjects

(Dayanikli et al. 1994, Pitkänen et al. 1997, Gould 2007).

The earliest finding associated with CAD is abnormal CFR, which is an integrating

measurement of endothelial function and SMC relaxation (Dayanikli et al. 1994). The mechanisms

potentially causing perfusion abnormalities in asymptomatic persons are reduced CFR due to

preclinical, mild, diffuse or segmental coronary atherosclerosis without ischemia or endothelial

dysfunction preceding luminal narrowing and cardiac events (Gould et al. 2000, Schachinger et al.

2000, Sdringola et al. 2001). It has been shown that CFR is impaired in young adults with familiar

hypercholesterolemia, type 1 DM, familial combined hyperlipidemia and HTA (Pitkänen et al.

1996, Laine et al. 1998, Pitkänen et al. 1998, Pitkänen et al. 1999).

Ultrasound methodology. B-mode ultrasound imaging is a widely used technique to detect

the atheroma plaques from relatively large arteries, such as the carotid and femoral arteries (Simon

et al. 1995).  It has been shown that in middle-aged healthy Finnish men the presence of a carotid

plaque multiplies the short-term incidence of acute MI (Salonen and Salonen 1991). The IMT

correlates significantly with the main risk factors for atherosclerosis (Davis et al. 2001, Kieltyka et

al. 2003) and CAD (Wofford et al. 1991, Burke et al. 1995). B-mode ultrasound imaging

overcomes some of the limitations of arteriography, the method is non-invasive and can be used to

examine both asymptomatic high-risk subjects and patients repeatedly with a high degree of

compliance. To obtain acceptable measurement reproducibility by B-mode ultrasound, it is

essential to control for the effects of instrument and operator variability (Mercuri 1994). B-mode

ultrasound may, however, underestimate the large or complicated plaques and lack precision in

detecting total occlusions. It cannot distinguish fatty streaks from localized intima-media

thickening but dense fibrosis and calcified areas are easier to detect because they are more

echogenic (Salonen and Salonen 1993). In Studies IV and V, only fibrous and calcified lesions

were taken into consideration and defined as plaques.

All ultrasonographies were performed by one experienced sonographer and radiologist, who

also scored the severity of atherosclerosis in a blinded manner. The reproducibility of

ultrasonographic protocol for significant aortic, carotid and plaques was also examined in the

study. In Study II, the recordings were also performed by the same certified sonographer and the

images were interpreted and measured at the reading center by one trained reader. The overall

mean maximum IMT (MMax IMT) was the mean of 12 maximum IMTs identified at 12 standard

sites (Mercuri 1994). These methods ensured optimal validity and reproducibility.

Classification of atherosclerotic lesions at autopsy. Most methods evaluating

atherosclerotic lesions in living subjects, such as angiography, only provide information about the
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extent and characteristics of arterial lesions that significantly narrow the lumen. Therefore, autopsy

studies are needed when the early atherosclerotic lesions are studied. In Study III, different stages

of atherosclerosis in thoracic and abdominal aorta were evaluated, from fatty streaks to more

advanced lesions. Some limitations should be taken into consideration. The standardized

histological classification method was not available at the time of data collection (Stary et al. 1992,

Stary et al. 1994, Stary et al. 1995, Stary 2000). Instead the arterial samples were stained red with

Sudan IV according to the protocol of the IAP (Guzman et al. 1968). The protocol may fail to

show the fatty streaks developing on the site of adaptive intimal thickening and therefore not be

visible by staining (Stary et al. 1994).

3. The effect of MPO on oxidation of lipids (I, IV)

 In Study I on healthy, relatively young men, the MPO genotype was not associated with oxLDL-

abs.

In Study IV, however, the MPO polymorphism (rs2333227) was associated with the oxLDL-

abs according to HRT use in postmenopausal women. It has been established in vitro, that

estradiols inhibit LDL oxidation but the study outcomes on HRT have been contradictory (Sack et

al. 1994, McManus et al. 1996, McManus et al. 1997, Arteaga et al. 1998, Wakatsuki et al. 1998).

MPO activity differs according to gender, being higher in women than in men (Kabutomori et al.

1999). These present results seem to support this concept. Estrogen has been reported to enhance

MPO activity  and  to  increase  the  amount  of  MPO in  the  plasma (Jansson  1991,  Santanam et  al.

1998). At the time of menopause, MPO activity is reduced, but may be restored by HRT (Bekesi et

al. 1999). The enhanced MPO acitivity may not predict the higher oxidative stress; in neutrophils

the MPO is related to simultaneous O2
- inhibition leading to diminished total production of free

radicals in granulocytes, so the net oxidative burden might be even dimished (Bekesi et al. 1999,

Bekesi et al. 2001b).

In Study IV, the solid EV administration had no effect on oxLDL ab-titers, whereas among

the EVP treated subjects the GG homozygotes showed significantly higher oxLDL-ab levels than

A-allele carriers. However, the results were only baseline results, so no follow-up measurements

could be made. Is should also be taken into consideration that the autoantibody titer against

copper-oxidized LDL is only one of the markers of the complex process of LDL oxidation among

several other methodologies developed for the oxidation measurements (Esterbauer et al. 1992)

and specific antibodies against HOCl-modified LDL were not used in the present study.
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4. MPO genotype and coronary function (I)

In Study I, the A-allele carriers of rs2333227 had higher adenosine stimulated flow and CFR than

GG homozygotes whereas the basal blood flow at rest did not differ between the genotypes. About

half of the endothelial response to adenosine is endothelium dependent. The exposure of guinea

pig hearts to HOCl results in the complete loss of vasodilatation in response to known

vasodilatators, such as adenosine (Leipert et al. 1992). MPO appears to be an important modulator

of vasomotor function in inflammatory vascular disease during myocardial ischemia (Baldus et al.

2004). MPO can directly modulate the vascular signaling and vasodilatory functions of NO by

regulating its bioavailability (Eiserich et al. 2002). Neutrophil adhesion to the vessel wall and the

tissue concentration of MPO and HOCl are associated with endothelial dysfunction and reduced

NO activity in inflammation and ischemia-reperfusion injury (Leipert et al. 1992, Friese et al.

1996, Granger 1999). In addition, HOCl-modified LDL is known to inhibit the synthesis of NO,

which may also lead to endothelial dysfunction (Nuszkowski et al. 2001).

5. MPO genotype and carotid intima-media thickness (II)

The extent of intimal staining for apoB, MPO and HOCl modified proteins correlates with an

increase in intima-media ratio of iliac arteries (Hazell et al. 2001). In Study III, the MPO genotype

and type 2 DM status were associated in carotid IMT. The A-allele carriers had higher overall

mean IMT values among middle-aged men with normal glucose metabolism. In subjects with type

2 DM, no similar effect was found. In Study III, the MPO genotype-dependent effect was absent in

diabetic subjects. In type 2 DM patients, the other risk factors for atherosclerosis may have greater

significance than mere inflammatory response. It is known that in patients with type 2 DM, MPO

activity is significantly reduced, which could to some extent explain our results (Sato et al. 1992,

Uchimura et al. 1999). One possible mediator for this could be PPAR-mediated regulation (Kumar

et al. 2004).

6. MPO genotype and atherosclerotic lesions in abdominal and thoracic aorta (III)

There was a significant MPO genotype by age interaction on atherosclerotic lesions both in the

abdominal aorta, which is known as the site where atherosclerotic lesions first develop, and in the

thoracic aorta. In abdominal aorta, the GG genotype carriers < 53 years old had smaller area of
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fibrotic and calcified lesions than A-allele carriers. The association changed in men  53 years

among whom the A-allele carriers tended to have slightly smaller area of fibrotic lesions. In

thoracic aorta, the genotype and age-dependent trend in fibrotic lesion area seemed to be similar

but was statistically significant only among men  53 years, where the GG genotype carriers had

larger area of fibrotic lesions than A-allele carriers.

MPO enzyme is thought to be an active contributor to atherogenesis in all stages of disease

progression. However, the MPO-immunoreactive macrophages within atherosclerotic plaques are

particularly evident in advanced atherosclerotic lesions (Daugherty et al. 1994, Sugiyama et al.

2001). In aged individuals monocytes exhibit imbalanced production of cytokines and activation

(Sadeghi et al. 1999). In neutrophils, the MPO activity differs by gender and age (Kabutomori et

al. 1999) and both in older men and women the plasma concentration of MPO is lowered (Bekesi

et al. 2001b). The -463G/A polymorphism may be associated with age-dependent differences in

MPO activity. A-allele carrying men over 55 years may have higher MPO activity than A-allele

carriers under that age (Rutgers et al. 2003). The age range among men in Study III was 33 to 69

years, so the age-dependent differences in MPO activity may to some extent explain our results.

7. MPO genotype and atherosclerosis progression in postmenopausal women receiving HRT (V)

In Study V, the GG homozygotes reflected beneficial effects on atherosclerosis progression during

HRT. All study subjects were clinically healthy, non-diabetic postmenopausal women, who were

nonsmokers and had normal blood pressure. Although most of the CAD risk factors were equally

distributed, the effect of social class cannot be excluded in this study. In general, women who take

HRT are more likely to be better educated, have higher incomes and better access to health care

services and they tend to be healthier than women without HRT (Matthews et al. 1996).

The effect of HRT on CAD outcomes has been studied extensively in recent years. The effect

of HRT on CAD may vary among individuals, possibly due to inherited factors. The effect of

genetically determined response is supported by the studies of our own group (Lehtimäki et al.

2002, Koivu et al. 2003). Estrogen has been found to alter MPO activity by influencing MPO gene

expression, monocyte number and possibly the release of MPO. In isolated neutrophils, estrogen

has been reported to enhance MPO activity (Jansson 1991). In accordance with this, the mean

peroxidase activity index (MPXI) is higher in females than in males and fluctuates with serum

estrogen levels (Kabutomori et al. 1999). In postmenopausal women, the intracellural MPO
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acitivity in neutrophils is lowered whereas during HRT the intracellular MPO activity and MPO

release are restored (Bekesi et al. 2001b).

Some findings suggest that the two alleles of MPO -463G/A polymorphism are regulated

differently depending on gender (Reynolds et al. 2000). The polymorphism is situated within ER

binding site where ER  binds both the G and A promoters, but more effectively to A-allele.

Because ER  binds with creater avidity to A-allele than G-allele, the A-allele appears to be more

readily blocked to other regulation, for example PPRA , by estrogen administration (Kumar et al.

2004). The -463G/A polymorphism is also associated with age-dependent differences in MPO

activity particularly in A-allele carriers. Among A-allele carriers, the MPO activity differs by age,

being higher in women under middle-age than women over 55 years of age, possibly due to

diminishing estrogen levels (Rutgers et al. 2003). However, in Study V the A-allele carriers did

not differ in the progression of atherosclerosis in terms of the HRT use.

In the present study, the HRT used was EV and levonorgestrel. Most large trials use a

restricted range of preparations, mostly conjugated equine estrogen and MPA

(medroxyprogesteroni acetate), which are rarely used by Finnish phycicians. Levonorgestrel and

MPA are reported to potentially inhibit the cardioprotective effects of estrogen (Zhu et al. 1999,

Zhu et al. 2000). The compounds and the administration route used seem to differ in their impact

on CAD risk factors. HRT has modulative effects on several inflammatory markers and some of

the modulative effects are also dependent on the administration route used. Interestingly, if the

first stage metabolism in the liver is prohibited by using transdermal administration, the MPO

levels are reduced (Hermenegildo et al. 2002) and the resistance of LDL to oxidative modification

is likewise enhanced (Wakatsuki et al. 1998).

8. Study limitations and future prospects

One  of  the  main  study  limitations  was  that  the  MPO  activity  was  not  measured  in  any  of  the

studies and the impact of MPO polymorphism (rs2333227) on MPO expression and activity in

vivo thus remains uncertain. It should also be noted that the MPO polymorphism (rs2333227) may

also be linked to some other SNP, which may thus be the major factor behind the results of this

thesis.

Studying functionally significant polymorphisms rather than random polymorphisms offers

advantages in terms of detecting disease-associated genes. The effects of MPO -463G/A

(rs2333227) have been reported in different disease processes but in the beginning of this study,

there were only a limited number of studies given the association in atherogenesis. The results
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remain somewhat controversial. One explanation might be that the regulation of the MPO gene

expression and the protein biosynthesis is complex and mostly unknown. Some studies on the

environmental factors influencing MPO protein expression and activity have been published,

including gender and age. However, there may be other environmental factors regulating the gene

expression possibly confusing the results.

The association of MPO in inflammatory diseases suchs as atherosclerosis has been

demonstrated in multiple studies, but whether there is any turning point at which the presence and

activity of MPO becomes harmful is not yet clear. Most of the studies on the physiological actions

of MPO have been carried out in the neutrophils. In atherosclerosis, the presence of neutrophils

seems to be restricted at the time of sudden cardiac events and mostly, the monocyte-macrophages

are the source of MPO in atherosclerotic plaque (Rudolph et al. 2007b). In clinical studies, MPO

levels have been shown to predict the presence of CAD and the plasma and serum levels of MPO

have been shown to predict the risk of major cardiac events. Although at the present moment the

routine measurement of MPO blood levels is not used in clinical diagnostics, one could predict

that possible future therapeutics for MPO will be targeted at the prevention ACS in high-risk

patients.

Future therapeutic implications may include strategies to prevent the proinflammatory

actions of MPO in the vessel wall. MPO inhibition could be targeted at different levels such as

MPO active site blockade, deflection of MPO from the chlorination cycle or use HOCl scavengers

(Malle et al. 2007). To date, no specific MPO inhibitors are available and considering the general

heme-centered structure of the protein, they will be difficult to develop (Lau and Baldus 2006).

With  enhanced  statin  treatment  it  could  be  possible  to  inhibit  MPO  expression  in  an  attempt  to

reduce MPO protein and enzyme activity in risk patients (Kumar and Reynolds 2005). Also, one

possible way could be to use the ability of heparin to inhibit the MPO binding to the endothelial

wall (Baldus et al. 2001, Baldus et al. 2006). According to current knowledge, the possible

hormonal regulation of MPO gene may cause gender-dependent differences in MPO blood levels.

In the future, one therapeutic perspective could be the use of HRT in those patients who are most

likely to benefit from the treatment. This also includes the male patients who could benefit from

the anti-inflammatory effects of estrogen usage in unstable cardiovascular conditions (Wei et al.

2001).

Single  disease  related  SNP  alleles  may  not  be  sufficient  to  cause  illness,  whereas  the

combined effect of a collection of SNP alleles in several key genes and environmental factors

determines the whether a subject suffers from the disease (Brookes 1999). It is essential that the

overall effects of a particular combination of linked polymorphisms, haplotypes, is considered



86

rather than only interpreting the functional effects of a single polymorphic site (Daly and Day

2001, Humphries et al. 2007). In the present study, the MPO -463G/A (rs2333227) genotype

served as a genetic marker for atherosclerosis. It would be interesting to include this genotype in

haplotype analysis among other known MPO promoter area SNPs.
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SUMMARY AND CONCLUSIONS

Earlier studies suggest that the MPO promoter -463G/A polymorphism (rs2333227) is associated

with an increased risk of atherosclerosis, but conflicting results have also been published. In this

thesis, four clinical studies and one autopsy study were conducted to elucidate the association

between the -463G/A genotypes of MPO and coronary reactivity, carotid IMT and development of

early and advanced atherosclerotic plaques in thoracic and abdominal aorta. As it was previously

known that the -463G/A polymorphism has an ER  binding site the effect of MPO genotype on

atherosclerosis progression during long-term HRT was assessed. The main findings and

conclusions are as follows.

1. In Study I on young, healthy men there were no significant differences in the

autoantibodies against copper-oxidized LDL between the MPO genotypes. However, in

Study IV on postmenopausal women there was an interaction between MPO genotype

status and the use of HRT in relation to the titers of oxLDL-abs.  In women with the GG

genotype the oxLDL-ab titer increased along with the HRT use; in the EVP group the GG

genotype carriers had the most marked difference when compared to A-allele carriers.

2. MPO G-allele homozygotes had lower CFR and adenosine stimulated flow than A-allele

carriers, suggesting that the -463G/A polymorphism may modify coronary reactivity and

reflect differences in the early pathogenesis of coronary dysfunction in this study group of

healthy young men (Study I).

3. In Study II, the MPO genotype and type 2 DM status were associated in carotid IMT.

Among men with normal glucose metabolism, the MPO A-allele carriers aged 50 to 59

years had higher overall mean IMT values than GG homozygotes. In subjects with type 2

DM, no association was observed.

4. In the autopsy study (Study III), the MPO A-allele carrier men < 53 years had larger

calcified and fibrotic lesions in the abdominal aorta than men with GG genotype. In the

thoracic aorta, there was also a statistically significant interaction between the MPO

genotype and age group regarding the fibrotic lesion area. Among men < 53 years the A-

allele carriers tended to have larger fibrotic lesion areas (n.s.). The association turned at the
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opposite both in thoracic and abdominal (n.s.) aorta among men  53 years, where the GG

homozygotes had on average larger fibrotic lesions than A-allele carriers.

5. In observational study (Study V) of postmenopausal women during long-term HRT, the

progression of ASC in subjects with the MPO GG genotype was significantly faster in the

control group than in the HRT group, whereas there were no significant differences in ASC

progression between the control and HRT groups in A-allele carriers. This result suggests

that  the  beneficial  effect  of  HRT on  atherosclerosis  progression  was  restricted  to  women

with the GG genotype.

On the basis of these findings we can conclude that the MPO -463G/A (rs2333227) may serve as

an important genetic marker for atherosclerosis in different stages of the disease. Significant

associations were seen in all stages of atherosclerosis and in the response to atherosclerosis

progression to long-term HRT. The effects of MPO genotype varied according to the age, gender

and the state of the disease. Among young men the A-allele was associated with higher CFR

values whereas middle-aged A-allele carrier men had higher IMT and the area of atherosclerotic

lesions than GG homozygotes. In women, the effect of HRT on atherosclerosis progression and

increased  oxLDL-abs  was  restricted  to  women with  the  GG genotype.  The  findings  concur  with

and support the current knowledge of the importance of MPO in the development of

atherosclerosis.
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Abstract
Chronic inflammation may lead to endothelial dysfunc-
tion, which manifests as an impaired coronary reactivity.
Impairment in coronary flow reserve (CFR), preceding
the clinical symptoms of coronary artery disease, can be
measured noninvasively by positron emission tomogra-
phy. Myeloperoxidase (MPO) is an oxidative enzyme
present in phagocytes and atherosclerotic lesions. The
MPO gene has a promoter polymorphism (–463G/A)
which affects gene transcription. Whether these variants
associate with coronary artery function is not known.
Myocardial blood flow at rest and during adenosine-
induced hyperemia was assessed in 49 healthy young
men with normal or slightly elevated serum total choles-
terol. These subjects were divided into high (G/G) and
low (A/G, A/A) MPO expression groups and effect of
MPO genotype on myocardial blood flow was evaluated.
We found a significant difference between MPO geno-

types in CFR after adjusting for age, body mass index,
smoking and family history of cardiovascular disease
(p = 0.019). Men with G/G genotype had 18.1% lower CFR
than subjects with low-expression genotypes (A/G and
A/A). This was due to an 11.5% lower adenosine-stimu-
lated flow of the G/G genotype carriers (p = 0.049). These
findings provide evidence that MPO polymorphism is
associated with coronary artery reactivity. However, the
number of individuals investigated was low and our
observation should be confirmed by a larger number of
subjects.

Copyright © 2004 National Science Council, ROC and S. Karger AG, Basel

Atherosclerosis is a long-lasting inflammatory process
where the activation of inflammatory cells, such as phago-
cytes, initiates a response to injury processes [45]. Myelo-
peroxidase (MPO) is an oxidative enzyme found in
phagocytes and an essential part of the antimicrobial
defense system [22, 47]. MPO is able to form proathero-
sclerotic particles by its oxidative intermediates [15, 40].
Elevated whole blood and leukocyte MPO levels are asso-
ciated with the presence of coronary artery disease [50].
Accordingly, persons with MPO deficiency have defects
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in leukocyte-mediated initiation of lipid peroxidation in
plasma [51] and reduced risk for cardiovascular damage
[24]. MPO enzyme is expressed in human atheromas [7]
and products of MPO-mediated reactions are present
throughout the atherosclerotic disease process [14, 16,
26]. In patients with unstable angina, a widespread activa-
tion of neutrophils and MPO is present throughout the
coronary vascular bed. This overall inflammatory activa-
tion seems to be independent of the location of stenotic
sites [3].

MPO is able to produce a wide range of oxidative spe-
cies, such as hypochlorous acid, tyrosyl radicals, chlora-
mines and reactive nitrogen species, and has therefore a
large group of potential biological targets [47]. Presence of
hypochlorous acid-modified low-density lipoprotein
(LDL) stimulates the production of reactive oxygen me-
tabolites, enzyme secretion and endothelial adhesion mol-
ecules in the vessel wall [23]. MPO is able to promote
LDL oxidation in vivo [14] whereas oxidized LDL is
known to impair endothelial function and coronary reac-
tivity [41]. Furthermore, hypochlorous acid blocks the
coronary flow response to known vasodilators such as ace-
tylcholine, bradykinin and adenosine in guinea pig heart
[28]. It is interesting, however, that in MPO knockout
mice the progress of atherosclerosis is increased [2].

The promoter region of the MPO gene has a single G-
to-A base substitution at position –463 inside a SP1 tran-
scription factor consensus sequence [35]. This polymor-
phism exhibits marked differences in transcriptional ac-
tivity [35, 42] and leads to high- (G/G) and low-expres-
sion (A/A, A/G) genotypes. In a recent study, A/A and
A/G genotype had a protective role for coronary artery
disease and patients with angiographically proven coro-
nary artery disease had a significantly lower incidence of
allele A than the control group [31].

Changes in the peripheral vascular endothelium belong
to the earliest signs of developing atherosclerosis and cor-
onary artery disease [8, 39]. Endothelial dysfunction and
changes in smooth muscle cell relaxation are manifested
as impairment in coronary flow reserve (CFR) [37, 38].
CFR can be measured noninvasively by positron emis-
sion tomography, which is today the only method allow-
ing the assessment of early atherosclerotic changes in the
coronaries of asymptomatic, healthy subjects [8, 39].
There are no previous studies evaluating the association
between MPO genotype and CFR, an indicator of coro-
nary function. To extend our knowledge about the risk
factors for coronary dysfunction we investigated the pos-
sible relation of MPO gene polymorphism to CFR mea-
sured by positron emission tomography in mildly hyper-

cholesterolemic, otherwise healthy men. Moreover, the
association between the MPO genotype and the autoanti-
body titer against LDL, the marker of in vivo oxidation of
LDL, was studied.

Materials and Methods

Subjects and Study Design
Fifty-one men were invited to participate in the study. The entry

criteria and the background information of the study participants
have been previously described [21]. Two men were excluded due to
technical problems of the positron emission tomography studies and
49 men were included in the analysis. The mean age of the subjects
was 35.0 B 4.0 years (range 26–40 years) and their mean body mass
index was 25.0 B 2.3. Participants had normal or mildly elevated
serum total cholesterol level (average 5.6 B 0.8 mmol/l), but they
were otherwise healthy and none had diabetes. There were 4 smokers
in the study population. All subjects had normal electrocardiograms
at rest and during adenosine infusion. All flow measurements were
considered normal, suggesting that study subjects were free of athero-
sclerotic lesions detectable with positron emission tomography. The
study was approved by the Ethics Committee of the Turku Universi-
ty Central Hospital and the University of Turku. All subjects gave
written informed consent.

Positron Emission Tomography Protocol and Calculation of
Myocardial Blood Flow
Positron emission tomography studies were performed after a 6-

hour fast as previously described [21]. Alcohol, caffeine and smoking
were prohibited 12 h before the study. Myocardial blood flow was
calculated as previously described [21]. The CFR was defined as the
ratio of overall myocardial blood flow after adenosine administration
to flow at the baseline.

Genetic and Biochemical Analyses
Blood samples for biochemical analyses were collected after an

overnight fast. DNA was isolated from whole blood using a commer-
cial kit (Qiagen, Calif., USA). The DNA fragment of the MPO gene
(GenBank accession No. X15377) promoter area was first amplified
and then digested with AciI restriction endonuclease (New England
Biolabs Inc., Beverly, USA) as previously described [29].

The fasting plasma triglycerides, total and high-density lipopro-
tein cholesterol concentrations as well as apolipoprotein B and A1
concentrations were analyzed by Cobas Integra 700 automatic ana-
lyzer (Hoffmann-La Roche Ltd., Basel, Switzerland). LDL cholester-
ol concentration was calculated using the formula of Friedewald et al.
[11]. Autoantibodies against oxidated LDL were measured as pre-
viously described [27].

Statistical Analyses
In view of the small number of low-expression allele A-homozy-

gous subjects (n = 2) we categorized the MPO genotypes into high-
(G/G) and low-expression (A/G, A/A) allele groups, as previously
done in other studies [5, 31, 44]. Discontinuous variables were com-
pared using ¯2-test. Means of continuous variables between MPO
genotypes were compared using one-way analysis of covariance,
wherein age, body mass index, smoking habits (+/0) and the family
history of cardiovascular disease (+/0) were used as covariates. In
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Table 1. Characteristics, lipid and
antioxidant values according to MPO
genotypes

Variable MPO genotype

GG (n = 34)
mean B SD

AG/AA (n = 15)
mean B SD

ANCOVA
p value

Age, years 34.8B3.7 36.3B4.4 0.232
BMI, kg/m2 25.0B2.4 25.1B2.1 0.878
Systolic blood pressure, mm Hg 126.7B13.3 131.0B11.3 0.187
Diastolic blood pressure, mm Hg 74.1B7.3 76.3B6.9 0.314
Heart rate, beats/min 61.4B10.4 61.7B8.0 0.826
Rate-pressure product

mm Hg ! beats/min 5,635.4B1,175.3 5,857.7B1,102.1 0.453
Total cholesterol, mmol/l 5.50B0.79 5.57B0.78 0.974
LDL cholesterol, mmol/l 3.58B0.68 3.63B0.63 0.937
HDL cholesterol, mmol/l 1.38B0.31 1.36B0.224 0.807
Triglycerides, mmol/l 1.19B0.68 1.28B0.64 0.698
Apolipoprotein A1, g/l 1.44B0.24 1.45B0.20 0.967
Apolipoprotein B, g/l 1.04B0.17 1.06B0.19 0.962
LDL ·-tocopherol, Ìmol/l 5.36B1.58 5.05B1.86 0.666
LDL ubiquinone, Ìmol/l 0.32B0.14 0.36B0.24 0.506
Leukocytes, 109/mmol 4.94B1.50 5.33B1.07 0.412
Smokers, na 2 3 0.132
Exercise, times/week 2.8B1.5 2.5B1.5 0.515
Family history (+/0)a 6/28 6/9 0.094
Use of coffee, cups/day 4.5B2.5 4.1B2.9 0.556

ANCOVA = Analysis of covariance; BMI = body mass index; SD = standard deviation. In
ANCOVA, age and BMI were used as covariates for lipids, apolipoproteins, leukocytes and
hemodynamic data. a p values from ̄ 2 test.

linear regression model CFR was used as an independent variable
and age, body mass index, smoking, family history and MPO geno-
type group as explanatory variables. Nonnormally distributed data
was logarithmically transformed prior to analysis, but the following
results are displayed as crude values. A p value of less than 0.05 was
considered significant. Values in the text are means B standard
deviation if not otherwise stated. The statistical analyses were carried
out by using SPSS 9.0 for Windows 95 (SPSS Inc., Chicago, Ill., USA)
and Statistica for Windows version 5.1 software package (Statsoft,
Okla., USA). We used the Power and Sample Size (PS) program ver-
sion 1.0.15 for Windows 95 for power (1–ß) calculations.

Results

Descriptive Analysis
The background characteristics did not differ between

the genotype groups (table 1). The MPO genotypes G/G,
A/G and A/A were found in 34 (69.4%), 13 (26.5%) and 2
(4.1%) of the subjects. The frequencies for G and A alleles
were 82.7% and 17.3%, respectively. The observed geno-
type distribution followed the Hardy-Weinberg equilibri-
um and was in agreement with that of previously pub-
lished Caucasian populations [30, 42, 43].

Myocardial Blood Flow and LDL Oxidation
Table 2 shows the values of myocardial blood flow and

indices of in vivo LDL oxidation among the subjects by
MPO genotype. Subjects with high-expression genotype
G/G had 18.1% lower CFR (p = 0.019) and 11.5% lower
adenosine-stimulated flow (p = 0.049) than low-expres-
sion A/G, A/A genotypes after adjusting for age, body
mass index, smoking habits and family history of athero-
sclerosis. There were no significant differences in blood
flow at rest or in the incidence of ex vivo LDL oxidation
between the MPO genotype groups. In linear regression
analysis, after adjustment of age, body mass index, family
history of cardiovascular disease, smoking habits and
MPO genotype group, the MPO genotype group and body
mass index were significant predictors for CFR (p = 0.019
and p = 0.025, respectively, for the entire model p =
0.033, R2 = 0.24). MPO was the only significant predictor
also in adenosine-stimulated flow (p = 0.046) whereas the
whole regression model remained nonsignificant (data
not shown).
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Table 2. Myocardial blood flow and in vivo oxidation indices according to MPO genotype groups

Variable MPO genotype

GG (n = 34)

mean SD

AG/AA (n = 15)

mean SD

All (n = 49)

mean SD

ANCOVA
p value

Blood flow at rest, ml g–1 min–1 0.84 0.22 0.81 0.17 0.83 0.21 0.705
Adenosine-stimulated flow, ml g–1 min–1 3.22 0.79 3.64 0.90 3.35 0.84 0.049*
CFR 3.98 1.01 4.60 1.30 4.17 1.13 0.019*
Ox-LDL to native-LDL difference (n = 33) 0.06 0.05 0.07 0.08 0.06 0.06 0.435
Ox-LDL to native-LDL ratio (n = 33) 1.94 0.92 1.99 1.10 1.95 0.97 0.804

ANCOVA = Analysis of covariance; Ox-LDL = oxidated low-density lipoprotein; SD = standard deviation. * p ! 0.05 for ANCOVA
between classified genotypes. Age, body mass index, smoking habits and family history of cardiovascular disease were used as covariates.

Discussion

This study demonstrates that MPO polymorphism
–463G/A is associated with coronary reactivity in young,
mildly hypercholesterolemic but otherwise healthy men.
The high-expression genotype (G/G carriers) had signifi-
cantly lower adenosine-stimulated blood flow and CFR
than subjects with the low-expression genotypes (A/G and
A/A). There are no previous studies in which the impact
of MPO gene promoter variation on vascular function
would have been assessed. The incidence of low-expres-
sion allele A has been associated with reduced morbidity
risk to coronary artery disease [31] and now our results
link this protective effect to the early manifestation of cor-
onary dysfunction.

The mechanism behind our result remains to be clari-
fied. The CFR, coronary flow response to adenosine or
dipyridamole, is not a purely endothelial function indica-
tor, rather it is an integrating measure of endothelial func-
tion and vascular smooth muscle relaxation. The endothe-
lial dependency of coronary vasodilation by adenosine
has recently been investigated by Buus et al. [4] and they
found that about half of the response to adenosine is endo-
thelium-dependent. Impairment of CFR has been shown
to be an early manifestation of atherosclerosis and coro-
nary artery disease [1, 6, 8, 39]. It has been observed that
CFR is impaired in young adults with classical coronary
risk factors, i.e., familial hypercholesterolemia [38], fa-
milial combined hyperlipidemia [36], type 1 diabetes mel-
litus [37] and borderline hypertension [25].

Adhesion of neutrophils and increased tissue concen-
tration of MPO and hypochlorous acid are associated
with endothelial dysfunction and reduced nitric oxide
activity in inflammation and ischemia-reperfusion injury

[12, 13, 28]. The exposure of guinea pig hearts to hypo-
chlorous acid results in the complete loss of vasodilatation
in response to known vasodilators, including adenosine,
by blocking the endothelial mediation of coronary dilata-
tion [28]. In fact, it has been shown that when the precur-
sor of nitric oxide, L-arginine, is modified by hypochlo-
rous acid the synthesis of nitric oxide in endothelial cells
of the rat aortic ring segments is inhibited [48, 49]. In
addition, the major metabolite of nitric oxide, nitrite, has
been reported to serve as a substrate for MPO [9, 17].

To our knowledge, there are two studies concerning
MPO –463G/A polymorphism and coronary artery dis-
ease. A/A and A/G genotypes have been reported to have
a protective role for coronary artery disease in French-
Canadian patients with angiographically diagnosed coro-
nary artery disease [31]. In patients with end-stage renal
disease, the G/G genotype was associated with a higher
prevalence of cardiovascular disease when compared to
A/G or A/A genotypes. The G/G genotype carriers also
had higher levels of pentosidine, a marker of oxidative
protein damage, than A allele carriers, which may indi-
cate a difference in production of free radicals between
genotypes [34]. These results are congruent with our
results in the early stage of coronary artery disease. A
allele has also been associated with increased lipid values
and therefore suggested to be a risk factor for cardiovascu-
lar disease [20]. However, we did not record any major
differences in lipid and lipoprotein levels between MPO
genotype groups.

Oxidation of LDL has been associated with the impair-
ment in coronary reactivity [41]. MPO-derived oxidants
are known to have a potential role in the LDL oxidation
and in the promotion of atherosclerosis [18, 19]. Hypo-
chlorous acid-modified LDL is known to inhibit the syn-
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thesis of nitric oxide in endothelial cells, suggesting it to
be an important mechanism in the development of endo-
thelial dysfunction [33]. In the current study, autoantibo-
dy levels against copper-oxidized LDL were measured in
order to indicate the overall atherosclerotic progress [46].
There were no significant differences in autoantibody lev-
els between the MPO genotype groups. Therefore, one
could suggest that the mechanism by which MPO poly-
morphism influences coronary reactivity may not be
related to LDL oxidation. However, it should be noted
that the autoantibody titer against copper-oxidized LDL
is only one marker of the complex process of LDL oxida-
tion among several other methodologies developed for
oxidation measurements [10], and specific antibodies
against hypochlorous acid-modified LDL were not used
in the current study. Thus we cannot rule out the possible
association of MPO promoter genotype with these other
markers of oxidation describing other phases of lipid oxi-
dation.

There were some limitations in our study. The major
limitation was the low number of study subjects. The
power of the study protocol remained weak whereas the
power of 80% would have been obtained with 85 subjects.
Therefore, it would be important to confirm this observa-
tion by using other methods suitable for screening a larger

number of subjects. In addition, only males were enrolled
in the study and therefore our results cannot be extrapo-
lated to female subjects. It is noteworthy that the SP1
transcription factor binding area may function as an
estrogen hormone-binding site leading to gender-specific
expression of MPO [30, 32, 43]. In the population of 49
men, there were only 2 subjects carrying the MPO A/A
genotype.

In conclusion, our results show that MPO gene poly-
morphism has an effect on coronary artery function, the
magnitude of which is similar to traditional risk factors of
coronary artery disease. Thus MPO promoter genotype
may partly explain differences between individuals in the
development of coronary artery disease.
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Abstract

Objectives: Type 2 diabetes mellitus (DM) enhances the development of atherosclerosis and reduces the activity of the oxidative myeloperoxidase
(MPO) enzyme. MPO gene has a functional promoter polymorphism −463G/Awhich leads to high- (GG) and low-expression (AG, AA) genotypes.

Design and methods: We studied the association of MPO polymorphism with carotid artery intima-media thickness (IMT) in 198 randomly
selected Finnish men of Caucasian origin, 161 non-diabetics and 37 with type 2 DM. Their carotid IMT was measured by high-resolution
ultrasonography, and the overall mean IMT value was calculated. MPO genotypes were determined by the PCR-RFLP method.

Results: We found significant MPO genotype-by-study-group (control/DM) interactions with the overall mean IMT and internal carotid IMT
(p=0.05 and p=0.04, respectively). Among non-diabetic subjects, the overall carotid IMT was 7.3% higher in subjects with the low-activity
genotype when compared to the high-activity (G/G) group. The results remained significant after adjustment for total cholesterol and smoking
(p=0.015). No similar genotypic association was found for the subjects with type 2 DM.

Conclusions: This data suggests that in subjects with normal glucose metabolism, MPO gene variation may modify the carotid artery IMT.
© 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Keywords: Myeloperoxidase; Carotid atherosclerosis; Polymorphism; Type 2 diabetes
Introduction

Atherosclerosis is a chronic inflammatory disease process,
which is a major cause of morbidity and mortality in the de-
veloped countries. According to current knowledge, the accu-
mulation of phagocytic cells in the vessel wall results in
enhanced production of reactive oxygen species (ROS) and
oxidation of low-density lipoprotein (LDL) cholesterol [1].
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of Clinical Chemistry, Centre for Laboratory Medicine, Tampere University
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Insulin resistance is present in 80% of type 2 diabetes mellitus
(DM) patients. Interestingly, insulin resistance is also character-
ized by a long-term inflammatory process [2] and, accordingly,
the development of atherosclerosis is enhanced in subjects with
type 2 DM [3,4]. According to prospective and cross-sectional
studies, type 2 DM is a major risk factor of coronary artery
disease (CAD) [5,6].

High-resolution ultrasonography allows noninvasive and
quantitative assessment of atherosclerotic changes in the
peripheral vascular wall [7–9]. Carotid atherosclerosis disease
can be detected by measuring the intima-media thickness (IMT)
by B-mode ultrasonography [10]. IMT is prognostic of ischemic
stroke, and it also reflects simultaneous CAD [11]. Traditional
atherosclerosis risk factors, such as age, hypertension, smoking,
. Published by Elsevier Inc. All rights reserved.
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and DM, are all directly related to an increase in IMT [7,10,12].
In diabetic patients, several studies have shown that their carotid
IMT is larger than that of healthy controls [13,14]. In addition to
this, genetic factors are known to determine the variation in
carotid IMT [15]. However, most of the studies have been
performed on clinically healthy subjects—knowledge about the
genetic determinants and possible gene–environment interac-
tions therefore remains insufficient.

Myeloperoxidase (MPO) is an oxidative enzyme present in
phagocytes, and it is an essential part of the anti-microbial system
and inflammatory regulation [16,17]. MPO is expressed in
atherosclerotic lesions and is able to modify pro-atherosclerotic
lipoprotein particles by its oxidative intermediates [18,19].
Moreover, in humans elevated blood and leukocyte MPO levels
are associated with CAD and the incidence of myocardial
infarction [20,21], and, interestingly, MPO activity is lowered in
DM patients [22]. MPO gene expression is regulated by a single
nucleotide polymorphism (SNP) in the promoter region at
position −463. The G-to-A base substitution creates high- (G)
and low-expression (A) alleles [23,24]. This polymorphism is
known to be a determinant of coronary flow reserve in healthy
subjects and the progression of atherosclerosis during hormone
replacement therapy [25], in addition to being associated with the
prevalence of CAD [26,27]. These earlier findings are important
because they suggest that specific MPO genotypes may be
associated with different outcomes of atherosclerosis, depending
on the prevailing CAD risk factors. Furthermore, relevant genetic
factors may not be detected at all, unless the target sample
is stratified by silent cardiovascular risk factors, e.g., by type 2
DM.

In summary, MPO polymorphism is a potent determinant of
atherosclerosis, and DM is known to affect MPO activity and
possibly even its gene expression by peroxisome proliferator-
activated receptor (PPAR)-mediated regulation [28]. However,
there are no previous studies concerning the association or
interaction of the presence of type 2 DM with MPO poly-
morphism in the development of atherosclerosis. The current
study was undertaken to investigate this issue and to determine
whether this kind of association exists and whether it modifies
the extent of the noninvasive marker of atherosclerosis, i.e.,
carotid IMT, in a random sample of middle-aged men.

Materials and methods

Subjects

Subjects were randomly selected from a total cohort of 9058
men aged 50 to 59 years living in the city of Tampere in southern
Finland. Three hundred subjects representing ten age cohorts
were invited to enter the study, and 223 agreed to participate, the
participation rate being 74%. All required data was obtained for
196 of these participants, and this data constituted the final
analysis of clinical characteristics and carotid IMT. The study
was approved by the local ethics committee, and all participants
gave written informed consent.

Detailed medical histories were collected with particular
emphasis on cardiovascular and metabolic diseases, smoking
habits, and chronic medication. Weight, height, and resting
blood pressure were recorded as described previously [29].
There were 40 smokers and 158 non-smokers, including 71
former smokers, in the study population, and six persons were
already treated for DM. None of the subjects had suffered a
symptomatic cerebrovascular event.

Oral glucose tolerance test

The standard 2-hour oral glucose tolerance test (OGTT) with a
75 g glucose load, according to WHO 1998 criteria, was used to
assess glucose tolerance [30]. The blood samples were taken at
baseline and 1 and 2 h after the glucose load, and the plasma
glucose concentrations were measured. Fasting glucose level of
7.0 mmol/L or higher, and/or a 2-hour post-challenge glucose
level of 11.1 mmol or higher were considered as diagnostic
criteria for type 2 DM [30]. Glucose analyses were carried out on
hemolyzedwhole blood samples using the glucose dehydrogenase/
mutarotase method (Merck Diagnostica, Darmstadt, Germany).

Biochemical analyses

Blood samples were drawn after a 12-hour fast. Lipoprotein
fractions were assessed from fresh samples after ultracentrifu-
gation [31]. Cholesterol levels were measured from serum and
lipoprotein fractions using an enzymatic method (CHOD-PAP,
Boehringer Mannheim, Mannheim, Germany). Triglycerides
were determined from frozen samples by enzymatic hydrolysis
(GPO-PAP, Boehringer Mannheim, Mannheim, Germany).
Apolipoprotein B (apoB) was analyzed by immunonephelome-
try (Behring, Behringwerke AG, Marburg, Germany) and
lipoprotein (a) (Lp(a)) by two-site immunoradiometry (Phar-
macia, Uppsala, Sweden).

MPO genotyping

DNA was isolated from lymphocytes with the aid of a
commercial kit (Qiagen Inc, California, USA). The MPO
genotypes were determined by a polymerase chain reaction
and restriction endonuclease AciI (New England Biolabs Inc.,
Beverly, USA) as described previously [32]. Digested fragments
were separated by electrophoresis on 2.5% agarose gel and
visualized with ultraviolet light after ethidium bromide staining.

Carotid ultrasonography

Quantitative carotid artery ultrasonography was performed
according to a standardized protocol [9,29]. A commercially
available high-resolution B-mode ultrasound device with a
10 MHz transducer was used (Biosound Phase 2, Indianapolis,
USA) to examine the left and right carotid arteries. The
examinations were recorded on S-VHS videotapes, and the
tapes were then read off-line at the ultrasound reading center,
Wake Forest University, North Carolina, USA.

The right and left carotid arteries were scanned from both
sides by means of a circumferential scan including the longi-
tudinal views of the lateral, posterior, and anterior angles. The



Fig. 1. Mean carotid artery IMT according to study group (non-diabetic/
diabetics) and Myeloperoxidase (MPO) genotype status (high-expression
homozygotes GG and low-expression A allele carriers AG or AA). The mean
IMT values are given as mean±standard error. p-values have been derived with
two-way ANCOVA, using the least significant difference (LSD) test as a means
of post hoc analysis. Results are adjusted for smoking and total cholesterol.
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protocol involved the scanning of the distal 10 mm of the
common carotid artery, the bifurcation, and up to 10 mm of the
proximal internal carotid artery. The distance between the media-
adventitia interface and the lumen-intima interface is the IMT.
The maximum IMT of the near and far wall was measured at 12
well-defined arterial segments. The mean maximum IMT
(MMax IMT, overall mean) was the mean of 12 maximum
IMTs identified at 12 standard sites [9]. The intra-observer
variability and measurement reproducibility have been described
previously [29], and they compare with other reports on CAAD
data [33]. Carotid artery atherosclerosis (CAAD) was defined as
an IMTN1.7 mm in at least one site. The cut-off point (1.7 mm)
was calculated in the following manner: overall mean IMT+2
SD. When this cut-off point was used, the prevalence of CAAD
was 21%.

Statistical analysis

Because the number of AA homozygotes was small (n=9),
the study subjects were categorized into high-expression (G/G)
and low-expression (A/G, A/A) allele groups, a categorization
previously used in other related studies [34]. Non-normally
distributed data was logarithmically transformed prior to
analysis, but the results are displayed as crude values. The data
were divided into two groups, non-diabetic and diabetic subjects,
according to the measurements during OGTT. The MPO
genotype and study group (non-diabetic vs. DM) were used as
factors in the two-way analysis of covariance (ANCOVA), where
the possible confounding effects of smoking and total cholesterol
were taken into account by including them in the model as
covariates. The least significant difference test was used as a post
Table 1
Clinical characteristics of the study population by myeloperoxidase genotype

GG SD/% AG/AA SD/%

n=116 n=80

Age (yr) 54.1 3.0 54.3 2.9
BMI (kg/m2) 26.9 3.7 27.3 3.6
Systolic blood pressure (mmHg) 131 18 131 15
Diastolic blood pressure (mmHg) 83.8 11.3 84.0 8.5
Total cholesterol (mmol/L) 5.50 0.82 5.42 0.96
LDL cholesterol (mmol/L) 3.54 0.76 3.55 0.87
HDL cholesterol (mmol/L) 1.24 0.29 1.21 0.24
VLDL cholesterol (mmol/L) 0.72 0.44 0.64 0.40
Triglycerides (mmol/L) 1.55 0.87 1.51 0.86
ApoB (g/L) 1.30 0.27 1.30 0.32
Blood leukocytes (109/L) 5.57 1.50 5.77 1.93
OGTT 0 h (mmol/L) 5.5 1.4 5.5 1.4
OGTT 1 h (mmol/L) 9.5 3.1 9.5 2.8
OGTT 2 h (mmol/L) 7.3 2.9 7.5 3.3
Diabetes mellitus (yes/no)⁎ 23/93 24.7% 14/66 21.2%
CAAD status (yes/no)⁎ 22/94 23.4% 19/61 31.1%
Smoking (yes/no)⁎ 22/94 23.4% 17/63 27.0%
Hypertension (yes/no)⁎ 23/93 24.7% 8/72 11.1%

Statistics: There were no statistically significant differences between genotype
groups in the t-test or χ2 test⁎. Abbreviations used in the table: ApoB,
apolipoprotein B; BMI, body mass index; CAAD, carotid artery atherosclerosis;
HDL, high-density lipoprotein; LDL, low-density lipoprotein; OGTT, blood
glucose on oral glucose tolerance test; VLDL, very low-density lipoprotein.
hoc test to study the differences between the genotype groups.
For the analysis of carotid IMT between the MPO genotype
groups among non-diabetic subjects, one-way ANCOVA was
employed with smoking and total cholesterol as covariates. The
Student's t-test was used for the statistical analysis of descriptive
data. Categorized variables were compared with the χ2 test.

To examine the possible differences in OGTT response curves
betweenMPOgenotypes, we usedANOVA for repeatedmeasures
(RANOVA), where the MPO genotype was used as a dependent
factor and the plasma glucose concentrations measured before (0)
and 1 and 2 h after glucose loadwere included as a repeated (time)
factor. Data are expressed as mean and SD. A p-value equal to or
less than 0.05was considered statistically significant. Calculations
were performed with Statistica for Windows 5.1 (StatSoft Inc.,
Tulsa, Oklahoma, USA) software on a PC.

Results

Descriptive results

The MPO genotype frequencies among the 196 men were as
follows: 116 for GG (59.2%), 71 for AG (36.2%), and 9 for AA
(4.6%). The allele frequencies were 0.77 and 0.23 for G and A,
respectively. The genotype frequencies were in accordance with
previous Finnish studies [25], and the genotypes were in Hardy–
Weinberg equilibrium. Allele A carriers were combined into one
group which was then compared with the GG homozygotes.
Table 1 shows the clinical characteristics of all 196 participants.
There were no statistically significant differences in the means
with respect to traditional risk factors i.e. age, smoking status,
BMI, and lipoprotein concentrations—or in CAAD and hyper-
tension status between the A allele carriers and GG homo-
zygotes. There were no statistically significant differences in
OGTT response curves between MPO genotypes (p=0.702 for
MPO genotype-by-time interaction in RANOVA).



Table 2
Mean carotid artery IMT in different segments of the carotid artery by MPO
genotype in healthy subjects

Carotid artery
IMT (mm)

MPO genotype One-way
ANCOVA
p-value

GG SD AG/AA SD All SD

n=93 n=66 n=159

Common carotid artery 1.03 0.21 1.06 0.18 1.04 0.19 0.071
Bifurcation 1.36 0.30 1.46 0.37 1.40 0.34 0.055
Internal carotid artery 1.05 0.33 1.18 0.50 1.10 0.41 0.069
Overall mean IMT 1.15 0.21 1.24 0.27 1.19 0.24 0.015

Statistics: One-way ANCOVA between MPO genotypes and carotid artery IMT.
Smoking and total cholesterol were used as covariates. Values are means (±SD).
Abbreviations used in the table: ANCOVA, analysis of covariance; IMT, intima-
media thickness; MPO, myeloperoxidase.
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MPO gene variation and IMT in carotid arteries

In two-way ANCOVA, there was a significant MPO
genotype-by-study-group (non-diabetic controls vs. DM) inter-
action with internal carotid artery IMT (p=0.043) and a
borderline significant interaction with mean carotid artery IMT
(p=0.05) (see Fig. 1). In similar statistical analysis for other
IMT measurements, the interaction was not significant. Table 2
shows the mean IMTs in the different segments of the carotid
artery by MPO genotype group in healthy non-diabetic subjects.
The p-values for the overall mean carotid IMT were significant
(p=0.015) and the p-values for the other measurements were
borderline significant. The subjects carrying the low-expression
genotype (AG/AA) had 7.3% higher IMT values than GG
homozygotes. The results remained significant after adjustment
for total cholesterol and smoking (p=0.015, ANCOVA). No
similar genotypic association was found in the subjects with
type 2 DM, or when the ANCOVAwas performed for the whole
study group, including subjects with DM.

Discussion

To our knowledge, this is the first study to investigate the
interactive effect of MPO promoter polymorphism and presence
of type 2 DM on carotid IMT as measured by B-mode
ultrasonography. We found a statistically significant interaction
between MPO genotype and type 2 DM status in relation to both
internal carotid artery IMT and overall mean IMT (Fig. 1). In
healthy non-diabetic subjects, the association of MPO genotype
with carotid IMT was quite distinct, while a similar association
was abolished in subjects with type 2 DM. According to our
results, the low-expression allele A carriers had higher overall
mean IMT values among men with normal glucose metabolism.
In subjects with type 2 DM, there were no significant dif-
ferences in IMT values between the MPO genotypes.

Insulin resistance increases the risk of metabolic abnormal-
ities such as hypertension and dyslipidemias [35]. Subjects with
insulin resistance seem to have a permanent increase in inflam-
matory markers, such as c-reactive protein (CRP), predicting a
constant chronic subclinical inflammation state [5]. It has been
speculated that CRP levels might predict type 2 DM before the
clinical diagnosis of diabetes [36]. In persons with impaired
glucose tolerance (IGT), carotid IMT is increased, indicating that
even small changes in glucose tolerance may increase the risk of
CAD [37]. However, it has been found that in patients with type
2 DM, the increased IMT does not associate with markers of
low-grade inflammation [38]. Accordingly, the MPO genotype-
dependent difference in IMT was not detected in diabetic
patients in the present study. One could speculate that in type 2
DM, other risk factors carry greater significance in artery wall
thickening than a mere inflammatory response.

MPO is a potent oxidative contributor to atherosclerosis, with
the ability to produce a large group of oxidative compounds [39].
MPO is detected in atherosclerotic lesions, and high bloodMPO
concentrations correlate with the incidence of CAD [18]. MPO
and HOCl-oxidized proteins are also found in segments with an
intima-media ratio higher than 1.8, indicating the presence of the
enzyme in CAAD [40]. MPO has been detected in the coronary
vasculature, and high blood MPO levels predict the risk of acute
myocardial infarction [20,41]. In the current study, the genotype-
related benefit of the high-expression genotype GG seemed to be
lost in diabetic persons. It is known that the oxidative metab-
olism of leukocytes is significantly reduced in diabetic patients
[42], while the glucose transport in polymorphonuclear phago-
cytes is increased [43]. In addition to the metabolic changes,
MPO activity is also decreased by an allosteric enzyme blockade
[22,44]. This decrease in the MPO activity of diabetic patients
could partly explain our interaction results.

The expression of the whole MPO gene is regulated by
several ligands, including the PPARγ ligands and estrogen [28].
The PPARγ agonists, such as rosiglitazone, are used as medical
treatment for type 2 DM and are shown to retard the progression
of atherosclerosis in both diabetic and non-diabetic patients [45].
TheMPO expression is alsomediated by the promoter area G-to-
A point mutation which causes a multifold decrease in MPO
gene expression [23,24]. In addition to our current results, MPO
polymorphism has been reported to affect the atherosclerosis
process in several previous studies. GG genotype carriers with
end-point renal disease have been reported to have both higher
levels of oxidation markers and total risk of CAD [27]. Accord-
ingly, the A allele carriers have higher coronary flow reserve and
lower prevalence of angiographically verified CAD than GG
homozygotes [26,46]. In contrast, GG homozygous postmeno-
pausal women benefit from hormonal replacement therapy in
terms of ultrasonographically measured progression of athero-
sclerosis [25]. A similar protective effect of GG genotype as in
our study was observed in an autopsy study where GG carrier
men aged under 53 years had lower areas of atherosclerotic
lesions in thoracic and abdominal aortas than A allele carriers
[47]. According to these recent studies, however, the effect of
MPO genotype in atherosclerosis seems to vary in different
phenotypes, and further investigation is still required. Our results
may also arise from some other single nucleotide polymorphism
effect in the MPO promoter area and, therefore, this data should
be regarded only as preliminary results.

In conclusion, our study of 196 randomly selected middle-
aged men showed that MPO genotype status interacts with
the presence of type 2 DM in relation to carotid IMT values.
Among the GG genotype carriers, the IMT values were lower
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than among A allele carriers, but the effect was abolished in
subjects with type 2 DM. In addition to investigating the major
effects of certain risk genotypes, the stratification of study
groups according to the most important cardiovascular risk
factors–e.g., DM in the present study–may be important, as
these important results are otherwise not found. However, our
results should be considered preliminary, since the number of
subjects in the type 2 DM group was low. The clinical im-
portance of MPO genotype with respect to carotid IMT values
in subjects with type 2 DM therefore needs to be investigated
further in larger studies.
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