KLAUS NORDHAUSEN

On Invariant Coordinate Selection and
Nonparametric Analysis of Multivariate Data

ACADEMIC DISSERTATION
To be presented, with the permission of
the Faculty of Medicine of the University of Tampere,
for public discussion in the Auditorium of
Tampere School of Public Health, Medisiinarinkatu 3,
Tampere, on December 12th, 2008, at 12 o’clock.

UNIVERSITY OF TAMPERE



ACADEMIC DISSERTATION

University of Tampere, School of Public Health

Finland

Supervised by
Professor Hannu Oja
University of Tampere
Finland

Docent Tapio Nummi
University of Tampere
Finland

Distribution

Bookshop TAJU

P.O. Box 617

33014 University of Tampere
Finland

Cover design by
Juha Siro

Acta Universitatis Tamperensis 1370
ISBN 978-951-44-7538-2 (print)
ISSN 1455-1616

Tampereen Yliopistopaino Oy — Juvenes Print
Tampere 2008

Reviewed by

Professor Ronald H. Randles
University of Florida

USA

Professor Anne Ruiz-Gazen
University Toulouse 1
France

Tel. +358 3 3551 6055
Fax +358 3 3551 7685
taju@uta.fi
www.uta.fi/taju
http://granum.uta.fi

Acta Electronica Universitatis Tamperensis 792
ISBN 978-951-44-7539-9 (pdf)

ISSN 1456-954X

htep://acta.uta.fi



Acknowledgements

First of all I wish to warmly thank Professor Hannu Oja for supervising me during
the past years. I would especially like to thank him for introducing me to this
interesting topic, his expert guidance, constant support and also infinite patience
when answering my many questions. I also wish to express my sincere gratitude
to my second supervisor Professor Tapio Nummi for his guidance and continuous
support as well as the many winter swimming sessions together.

I have been very fortunate to have excellent co-authors for all of my papers.
It was a great experience and pleasure to work together with Professor David E.
Tyler, Professor Davy Paindaveine and Dr. Esa Ollila as well as a great chance to
learn from all of them. My special thanks go to Professor David E. Tyler for his
great hospitality when I visited Rutgers in May 2008.

Furthermore, I would like to thank Professor Ilkka Porsti for providing this
interesting data set which brought the real world into this project.

I wish to thank Professor Uwe Ligges who was a great help when making the
R packages and Jarmo Niemeld who helped me with any I¥TEX problem I had.

I would like to express my gratitude to my referees Professor Anne Ruiz-Gazen
and Professor Ronald H. Randles for their careful reading of the thesis and their
constructive comments.

The work was financially supported by the Academy of Finland and the Tam-
pere Graduate School of Information Science and Engineering (TISE) and was
carried out while I was a researcher in the biometry group of the Tampere School
of Public Health and at the Department of Mathematics and Statistics of the
University Tampere. I especially wish to thank here Catarina Stahle-Nieminen for
her constant help with all my practical problems. Furthermore, all my colleagues
made this time a memorable experience and it was especially great to be a mem-
ber of the “Friday Book Seminar” and the “Nonparametric & Robust Multivariate
Methods Research Group”.

Finally I wish to warmly thank all my friends and my family for always being
there for me and their constant support. Especially I want to thank Elina for her
constant encouragement and support while still making sure that I do also other
things in my free time.

Tampere, November 2008

Klaus Nordhausen






Abstract

The aim of this doctoral thesis was to investigate further properties and applica-
tions of the recently introduced two scatter matrices transformation of [Oja, Sirkiél
and Eriksson| (2006) and |[Tyler, Critchley, Diimbgen and Ojal (2008)). We con-
sider this transformation in the framework of multivariate model selection, robust
independent component analysis and multivariate nonparametric location tests.
Especially the last one leads to robust affine invariant location tests which are
highly efficient for appropriately chosen score functions. The transformation was
implemented in R with a large choice for scatter functionals and made publicly
available. Together with the other R packages resulting from this work, all meth-
ods discussed can be easily applied. For a practical demonstration a hemodynamic
data set is analyzed using the methods discussed here.

KEY WORDS: affine equivariance, affine invariance, multivariate distributions, marginal
signs and ranks, transformation retransformation.
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Abbreviations

~ distributed as

T transpose of a vector - or a matrix -

E() multivariate expectation of (-)

Es(") location functional based on third moments of (-)
COV(") variance-covariance matrix of (-)

COVy(+) scatter matrix of fourth moments of (-)

e; p-variate vector that has at its ith position a 1 and otherwise zeros
1, p-variate vector of ones

I, p-variate identity matrix

D diagonal matrix

diag(a) diagonal matrix with diagonal elements given in a
diag(A) vector of the diagonal elements of matrix A

P permutation matrix (obtained by permuting the rows or columns of Ip,)
J sign change matrix (diagonal matrix with entries +1)
(0] orthogonal matrix

-1l vector norm of -

11k Ly, norm of -

sgn(+) sign of (-)

©) Hadamard product (entrywise)

ICA independent component analysis

ICS invariant coordinate system

PCA principal component analysis

df degrees of freedom

ii.d. independent and identically distributed

A~ B A is replaced by B

Multin(n,7) Multinominal distribution with parameters n and =
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1 Introduction

In multivariate data analysis several variables are observed for each experimental
unit and the dependence structure between the different variables is considered
relevant. Usually the analysis starts with some exploratory methods and a descrip-
tion of the data, like scatter plots and computing measures of central tendency
and dispersion. Further steps consist often in making inference for example about
the location or shape of the data, model building using regression methods or try-
ing to find groups using classification (supervised or unsupervised). Especially for
these further steps model assumptions must be made. In the classical multivariate
analysis this means that one assumes normality of the residuals. This assumption
has the advantage that the optimal methods under this assumption are tractable
and relatively easy to apply and it is often justified by the central limit theo-
rem which states that under general assumptions the distribution of the sum of
random vectors converges to a multivariate normal distribution as the number of
observations increases (see for example Morrison, [1998b). In reality, however, the
assumption of normality is seldom met, not all observations are well behaving and
the number of observations is often small.

In practise the analyst often tries to enforce normality by transforming the
variables, for example by taking logarithms or so. This might make the inter-
pretation of the model parameters more difficult. In research on the other side
that led to investigations on how robust actually the classical methods are. Ro-
bustness in this context means that methods should not be sensitive to violations
of the assumptions. An overview of such findings can for example be found in
Krzanowski| (1998)) which shows for instance that the nominal level of the one
sample Hotelling’s T? tests suffers more from the skewness than from the kurto-
sis of the background distribution. However the normal model does not offer the
possibility to incorporate different skewness or kurtosis values. The normal dis-
tribution is fully specified by its first two moments. As solutions to this dilemma
robust methods are developed which often are based on replacing the mean vector
and covariance matrix, the main tools of the classical methods, by more robust
measures of location and scatter. Another approach extends the normal model
to a more general semiparametric model or nonparametric model and develops
methods which are valid under these more general assumptions.

It is often hoped that the results of a multivariate data analysis do not de-
pend on the chosen coordinate system. A change of the coordinate system can be
expressed as an affine transformation of the form

y = Ax + b,

where x is the point in the original coordinate system, A is a full rank p x p
transformation matrix, b is a p-variate vector and y is the point given in the new
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coordinate system. In this transformation b shifts the origin and A transforms the
axes. The transformation of the axes can be better re-enacted using the singular
value decomposition

A =0*DO7,

where O* and O are orthogonal matrices and D is a diagonal matrix. When
changing now the axes, x is first rotated / reflected using O, then componentwise
rescaled using D and finally rotated / reflected by O*. For example rescaling and
shifting the origin is needed when converting temperatures measured in Fahrenheit
into Centigrade. Estimates that follow a change in the coordinate system in the
appropriate way are called affine equivariant and tests that do not depend on the
coordinate system are called affine invariant.

The different approaches to generalize and/or robustify the classical methods
have led to a huge body of literature (to name only a few textbooks, see for example
Fang and Zhang| (1990)), Genton| (2004])), Hampel, Ronchetti, Rousseeuw and Stahel
(1986)), [Hettmansperger and McKean| (1998]) [Huber| (1980) or Maronna, Martin
and Yohai (2006)) with different families of location and dispersion measures and
several alternative semiparametric and nonparametric models. The data analyst
is now left with the decision to choose an appropriate model and appropriate
analysis tools for the data at hand.

The structure of this thesis is as follows. In the next chapter different extensions
of the classical normal model are discussed. In Chapter 3, location and scatter
measures are defined in a more formal way and it is discussed when they refer
to the same population quantities. Furthermore it is described how location and
scatter functionals are used for data transformations. Usually only one location
and one scatter measure are used at the time. Chapter 4 shows that a simultaneous
usage of two location and two scatter measures can be very informative and may
help to distinguish between the different models. The next two chapters consider
in detail two applications of the joint usage of two scatter matrices - first in
the context of independence component analysis and then in the nonparametric
location problem. In the last chapter the theory is illustrated by an analysis of a
hemodynamic data set.

14



2 Multivariate models

All models discussed in this thesis can be derived from the location scatter model
x = Qe+ u,

where x = (z1,...,2,)7 is a p-variate random vector, € = (e1,...,€,)7 is a p-
variate random vector standardized in a way explained later, €2 a full rank p x p
mixing matrix and g a p-variate location vector. The quantity ¥ = QQ7 is the
scatter matrix parameter. For further analysis, as mentioned above, the assump-
tions imposed on € are crucial. Note however, that the standardized vector € is
actually not observed, only x is directly measureable. The vector € is rather a
mental construction than something with a physical meaning. Yet, in some cases,
€ can have an interpretation and it might even be the goal of the analysis to re-
cover it when only x is observed. Either way, one of the first challenges one faces
in practical data analysis is to evaluate which assumptions on € can be justified
for the data at hand.

The following eight models will be considered in more detail and they all differ
by their assumptions on e.

A1: Multivariate normal model. € has a standard multivariate normal distribution
N(0,1,).

A2: Elliptic model. € has a spherical distribution around the origin, i.e. O€ ~ €
for all orthogonal p x p matrices O.

A3: Exchangeable sign-symmetric model. In this model € is symmetric around
the origin in the sense that PJe ~ € for all permutation matrices P and sign
change matrices J.

A4: Sign-symmetric model. € is symmetric around the origin in the sense that
Je ~ € for all sign change matrices J.

A5: Central symmetric model. € is symmetric around the origin in the sense that
—€~ €.

B1: Finite mixtures of elliptical distributions with proportional scatter matrices.
For a fixed k is € = Zle pi(€; + p;), where p = (p1,...,px) is Multin(1, )
distributed with 0 < m; < 1 and Zle m; = 1 and €;’s are all independent
and follow A2.

B2: Skew-elliptical model. € = sgn(e;  —a— B¢y )e”, where (e*T, e;H)T satisfies
A2 but with dimension p+ 1, and «, 3 € R are constants.
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B3: Independent component model. The components of € are independent with
E(e;) =0 and Var(e;) = 1.

The models A1 — A5 are models that are symmetric whereas the distributions
in the models B1 — B3 may be asymmetric. The symmetric models A1 — A5 are
ranked from the strongest symmetry assumption to the weakest one, which means

Al C A2 C A3 C A4 C A5.

It is also easy to see that the symmetric models can be seen as border cases of the
asymmetric models and we have the following relationships:

e A1=A2NnB3
e A2 C Bl and A2 C B2

Note that the different symmetry concepts of the models A1-A5 do not cover
all concepts of multivariate symmetry found in [Serfling (2006)), for example. For
instance angular symmetry, which is defined as

€ €

llellz— lell2”

is not included in this list of models. Likewise also directional elliptical symmetry
(Randles| [1989) is not included. This symmetry concept assumes

€ Oe

~ =
el llell2

The model with directional elliptic symmetry can be seen as an extension of the
model A2 and the models with angular symmetry yields an extension of model
A5.

In the following we describe the models A1-A5 and B1-B3 in a bit more
detail.

2.1 Multivariate normal model

The multivariate normal model is the classical model in multivariate analysis. It
is the only fully parametric model in our list and has the density

Pl ) = {51520 - wl B

(2m) 2|32

The N(0,1I,) distribution is the only spherical distribution having independent
components. The multivariate normal model is symmetric around . All marginal
distributions are univariate normal and therefore have the same kurtosis value,
the classical kurtosis measure is

Ba(x;) = (=, ' =3.
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2.2 Elliptical model
The density f of an elliptically distributed vector x is given by

FximE) = 272 exp{—p(||Z7*(x — w)13)},

where p(-) is a function independent of p and X.

It is obvious that the multivariate normal distribution is a member of this
model with p(t) = 1/2t?>+p/2log(27). Other prominent distributions in the ellipti-
cal model are the multivariate ¢-distribution (e.g. Kotz and Nadarajahl [2004) and
the power-exponential distribution (Gomez, Gomez-Villegas and Marin) {1998).
This model extends the normal model by allowing also lighter or heavier tails
while still requiring that all marginal distributions are similar in shape. The cen-
ter of symmetry is p. Given the first two moments exist,

E(x)=p and COV(x)=c¢,3,

where ¢, is a constant depending on p. In the multivariate normal case, for exam-
ple, ¢, = 1 and in the ¢, case ¢, = v/(v —2).

This model is in practice the most common extension of the multivariate nor-
mal model and the standard multivariate methods have been extended to this
model (see for example Fang and Zhang} [1990)). Also robust estimation techniques
often assume this model.

2.3 Exchangeable sign-symmetric model

This model is similar to the elliptic model but a broader range of shapes is possible.
In this model the margins of € are exchangeable and symmetric around 0. For
densities of € it holds that

f(e) = f(IPe).
An example for densities with this property is the class

f(e) = ¢, exp(=p([[€]]));

where ¢, is a normalizing constant depending on the radial function p. Any norm
[| - || which fulfills the condition ||e|| = ||PJel|| can be used, as for example any
L,-norm.

Given the first two moments exist

E(e) =0 and COV(e) = oI,

and therefore
E(x)=p and COV(x)=o’%.

The margins of € are uncorrelated but may be dependent and have all the same
scale.

17



2.4 Sign-symmetric model

In the sign-symmetric model the components of € are again uncorrelated. They
can have different scales however. This is the main difference compared with the
previous model. Again p is the center of symmetry of the distribution of x, and
given the existence of the first two moments

E(x)=p and COV(x) = Q diag(o?,...,02) QF,

’Tp

where o2 is the variance of the i-th component of e.

2.5 Central symmetric model

This kind of symmetry is often also called “reflective”, “diagonal”, “simple” or
“antipodal” symmetry (see for example |Serfling, [2006)). For the density of x in
this case it holds that

fx—p) = flp—x).

The central symmetry is the most direct analog of the univariate concept of sym-
metry (Serfling] 2006). There are no restrictions on the covariance structure of €
and given the first two moments exist

E(x)=p and COV(x)=Q COV(e) Q7.

2.6 Finite mixtures of elliptical distributions

In this model € is a mixture of k spherical populations which can have different
symmetry centers and different scales. Assuming their existence, the first two
moments of the different mixture populations are

E(e;) =p; and COV(e;) = 771,
i=1,..., k. Therefore
k
E(G) = Zﬂ-ll"l
i=1
and
k k
COV(e) = (Z m—Tf) I, + Z WiMiMZT — Z Z Wiwjui,ujT.
i=1 i=1 i=1 j=1

The location g will not any longer be the center of symmetry of x and

k
E(x)=Q) mpi+p and COV(x) = QCOV(e)Q”.
i=1
The distributions in this model can be symmetric or skew depending on the means

1;, the proportions 7; and the distributions of the €;’s. For example, if pu; = ... =
pi: then x is elliptically symmetric.

18



2.7 Skew-elliptical model

The skew-elliptical model was proposed quite recently and, in this approach, there
are alternative ways to introduce skewness into the elliptical model. For a recent
overview see |Genton| (2004]).

The interpretation closest to our definition comes from a hidden truncation
model. The “true” population distribution is an elliptic distribution but the sam-
pling procedure is selective so that an observation is sampled only if its value
of an hidden variable exceeds a threshold value. Conscripts, for example, do not
represent the whole male population of their age group but only those considered
fit enough to bear arms.

If @ = 0 and the population distribution is multivariate normal, then one ob-
tains the canonical form of the skew-normal distribution of|Azzalini and Capitanio
(1999). In most skew-elliptical model definitions it is assumed that o = 0 because
that simplifies the models considerably (the sign change probability is then 0.5).

The moments of € ,if they exist, depend on the elliptical density, a and (. The
expressions are quite complex. The first two moments of € for the skew-normal
distributions with a = 0 are, for example,

T
E(e) = (0,...,0, 727J1f762>

and

COV(e) = diag (1.... 11— 2
€)=diag | 1,...,1, 1)

The corresponding moments of x are
E(x) = QE(e) + p and COV(x) = QCOV(e)Q”.

A natural extension of this model would be given by allowing truncations in several
different directions. This will however not be considered in this paper. For a general
discussion about skew models related to a hidden truncation, see |Arnorld and
Beaver| (2002} 2004).

2.8 Independent component model

The independent component model is often used in signal processing or in image
analysis applications. It is a rather flexible model with possibly asymmetric dis-
tributions. The model is however ill specified, since for any permutation matrix P
and any sign change matrix J

x = (QPJ)(JPe) = Q¢,

which means that the independent components do not have fixed signs and that
their order is also arbitrary.
By definition
E(e)=0 and COV(e) =1,
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Figure 2.2: Pairwise scatter plots for a sample of size 150 following model A2.
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Figure 2.4: Pairwise scatter plots for a sample of size 150 following model B3.
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and therefore the corresponding moments of x are
E(x)=p and COV(x)=Q0’.
For a recent overview of this model see Hyvérinen, Karhunen and Ojal (2001)).

To demonstrate how much the shape of the data can vary just by changing
the distribution of € four 3-variate samples of size 150 are shown in Figures 2.]]
- In the first case € is N(0,1I3) distributed (model A1), in the second case
€ follows a t5 distribution rescaled so that COV(e) = I3 (model A2), the third
case is a skew-normal distribution with & = 0 and 8 = 3 (model B2) and the
last case is an independent component model where the three marginals have
standardized normal, uniform and exponential distributions (model B3). In all
cases the location parameter and the mixing matrix are

2 1.5 -05 —-0.3
p=1 —1 and Q=1 1.0 2.0 0.5
1 05 05 1.7

Note that the samples in Figure Figure 2.2] and Figure 2.4 have the same
first two theoretic moments. Yet, their scatter plots differ considerably. The data
coming from the ¢5 distribution have visibly much heavier tails than the data
coming from the normal model. Both samples though have similar elliptically
symmetric contours.
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3 Location, scatter and their
usage

The multivariate normal distribution is fully specified by its first two moments.
It is then sufficient to base the analysis of the data only on the mean vector
and the covariance matrix. Although the other models discussed in Chapter
offer the incorporation of more features like skewness or kurtosis, the inference in
multivariate analysis is usually still based on location and scatter statistics.

In the following we define location and scatter functionals more carefully.

3.1 Location and scatter functionals

Let x be a p-variate random variable with cdf F. A vector valued functional T(F)
or T(x) is a location functional if it is affine equivariant in the sense that

T(Ax+b)=AT(x)+b

for all full rank p x p matrices A and all p-variate vectors b.
A matrix valued functional S(F') or S(x) is a scatter matrix if it is affine
equivariant in the sense that

S(Ax +b) = AS(x)AT

with A and b as defined above.

Location and scatter functionals are thus defined in such a way that they
change in a logical way when the coordinate system is altered.

Location and scatter statistics, the finite sample versions of location and scat-
ter functionals, must fulfill similar affine equivariance conditions. They will be
denoted accordingly T(F),) or T(X), respectively S(F,) or S(X), where F), is
the empirical cdf of the p x n data matrix X. Note that in the remainder of this
chapter everything will be discussed only at the population level.

The classical location functional is the mean vector E(x) and the classical
scatter functional the covariance matrix

COV/(x) = E((x — E(x))(x — E(x))").

There exist however a large number of different general techniques to construct
other location and scatter functionals, such like M-estimates (Maronnal [1976), S-
estimates (Davies| |1987) CM-estimates (Kent and Tyler}|{1996), T-estimates (Lop-
uhadl, [1991)) and many more. For a recent overview see for example Maronna et al.
(2006).

In this thesis only M-estimates will be discussed further. However, prior to
that, some variations of scatter functionals need to be defined.
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3.1.1 Special scatter matrices

Several scatter functionals actually do not achieve affine equivariance in the sense
of
S(Ax +b) = AS(x)AT,

but only in the sense of
S(Ax +b) o« AS(x)AT.

In that case they are usually called shape matrices. In many applications this
form of equivariance is sufficient. To make different shape matrices comparable
they are often normalized so that, for example, tr(S(x)) = p or |S(x)| = 1. For
further details about normalization methods of shape matrices, see |Paindaveine
(2008).

An important class of scatter functionals consists of those functionals that have
the so called independence property (Oja et all2006). The independence property
states that if x has independent components, then S(x) will be a diagonal matrix.

Most scatter functionals found in the literature do not have the independence
property. For any scatter functional S, a symmetrized version can be constructed
as

Ssym (%) := S(x1 — X2),

where x; and x5 are independent copies of x. All symmetrized scatter functionals
have the desired independence property (Oja et al.| [2006]).

3.1.2 M-estimators of location and scatter

The family of multivariate M-estimates was introduced by [Maronna| (1976) and
the location and scatter functionals are usually estimated jointly. They are given
as the simultaneous solution of the following two implicit equations

T(x) = E(wi(r)” E(wi(r)x)

and
S(x) = B(wa(r)(x — T(x))(x — T(x))"),

where wq(r) and wy(r) are nonnegative and continuous functions of the Maha-
lanobis distance r = ||S(x)~/?(x — T(z))||2. To obtain robust functionals usually
the weight functions are chosen to be also nonincreasing.

The mean vector and the regular covariance matrix are M-estimators with
wi(r) = wa(r) = 1. Other prominent members in this class are Huber’s M-
estimators (Huber} |1964)) with the weight functions

r<c

r>c¢’

wor={ g 150w = { AT

where ¢ is a tuning constant chosen to satisfy ¢ = Pr(x3 < ¢*) and o is a scaling
factor such that E(Xf,wQ(Xp)) = p. Tyler’s shape matrix (Tyler, [1987)), which has
wa(r) = p/r? and is computed with respect to a given location functional T(x).
A joint estimation of the affine equivariant spatial median with Tyler’s shape
matrix is obtained by using w1 (r) = 1/r and we(r) = p/r? (Hettmansperger and
Randles| [2002). This pair of estimates is denoted by (Tgyr,Sur). The weights
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wi(r) = wa(r) = (p+v)/(r?> + v) correspond to a M-estimator derived as the
maximum likelihood solution from a t-distribution with v > 1 degrees of freedom
and is described in [Kent and Tyler| (1991)).

An important family of scatter functionals consists of the so called one-step
M-functionals. Given a pair of location and scatter functionals (T1,S;) and two
weight functions wq(r) and wy(r) the one-step functionals are

T2 (x) = E(wi(r1)) " "E(w: (r1)x)
and
Sa(x) = E(wa(r1)(x — T1(x))(x — T1(x))"),

where 71 = [|S1(x)71/2(x — T1(x))|[2.

An interesting special case starts with the pair (E, COV) and uses the weight
functions wy(r) = 72 and wo(r) = r2/(p + 2). The resulting estimates Ty and
Sy are consistent at the multivariate normal model. They are called the vector of
third moments E3 and the matrix of fourth moments COV 4 and are given by

By (x) = %E(ﬁx) and COV,(x) = ]ﬁE(ﬂ(x _EX)(x - Bx)T).

A shape matrix used later in this thesis is the one-step normal score signed-
rank scatter matrix of [Hallin and Paindaveine| (2006)) which has the form

12
Iz |>S 1)

where the starting pair (Tggr,Sgr) is the [Hettmansperger and Randles (2002])

Sip(x) = SY3(x)E (wp (B (2112))

estimate, z = S, 1/2 (x — Tur(x)) and 1, denotes the cdf of a chi-square distri-
bution with p degrees of freedom. This functional needs no moment assumptions
and has a strong nonparametric nature.

In general M-estimator scatter functionals do not posses the independence
property. Among the M-estimators mentioned so far only the regular covariance
matrix and the matrix of fourth moments do. Symmetrized M-estimators of scatter
with the independence property are described in |Sirkié, Taskinen and Ojal (2007).
The symmetrized version of Tyler’s shape matrix is known also as Diimbgen’s
shape matrix (Dumbgen) [1998).

3.2 Location and scatter for data transformation

Besides just describing the central tendency or the dispersion of the data location
and scatter functionals can also be used to transform the data. The goal then
usually is to obtain a coordinate system that has nice mathematical properties or
that highlights the features of interest. The transformation is traditionally based
on the mean vector and the covariance matrix.

3.2.1 Whitening

The whitening transformation is a basic data transformation. It subtracts the
mean vector to move the location center to the origin, rotates the data to jointly
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uncorrelate the marginal variables and finally rescales the marginal variables to
have unit variances. Formally this transformation can be described as

y = COV™2 (x)(x — E(x)),

where then
E(y)=0 and COV(y)=1I,.

COV ™2 denotes here the matrix square root of COV ™. In the new coordinate
system of y no direction is more interesting than any other with respect to the
variation. In the normal model (A1) whitening makes the coordinates independent
whereas in the other models it only uncorrelates them. In the elliptic model (A2)
y is spherical. Note that this transformation does not usually recover €. This is
related to the fact that the coordinate system obtained by whitening is not affine
invariant and it only holds that

COV ™% (Ax + b)(Ax + b — B(Ax + b)) = O COV ™% (x)(x ~ B(x)),

for some orthogonal matrix O. This means they might differ by a rotation which
depends on the matrix A, on the distribution of x and on the matrix square root
of COV used. In this thesis matrix square roots are taken to be symmetric.

3.2.2 Principal component analysis

The principal component analysis also creates a coordinate system where the
different coordinates are uncorrelated. The difference to whitening is however,
that in PCA the variables in the different directions are not chosen to have unit
variances. The aim is to create the new variables successively in such a way that
they are the linear combinations that maximize the variation under the constraint
of being orthogonal to the previous variables. This is obtained also by using the
eigenvector-eigenvalue decomposition of the covariance matrix

COV(x) = ODO7,

where D is a diagonal matrix containing the ordered eigenvalues of COV (x) and
O is orthogonal and the columns contain the corresponding eigenvectors. The new
coordinates, also called the principal components, are then obtained as

y = 0"x,

and now COV(y) =D.

There are often two transformations preliminary to the PCA. The first one
is that x is centered, i.e. x «— x — E(x), which means that in the analysis x
is replaced by x — E(x). The other transformation scales the components, i.e.
x; « m;/0;, where o? is the variance of z;. This corresponds to perform the
principal component analysis using the correlation matrix instead of the covariance
matrix. Latter transformation is recommended when the components of x have
completely different scales to give each component the same weight in the analysis.
It is obvious that PCA, even with theses pretransformations, does not give an affine
invariant coordinate system.
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Original data

Whitenend data

Principal components

5

Figure 3.1: The top figure shows 70 observations from a bivariate normal distri-
bution, the figure in the middle the whitened data and the bottom figure the
principal components for the centered data.
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The PC transformation has several nice geometrical properties as for example
described in [Jolliffe| (2002). In general PCA does not make any distributional as-
sumptions (except the existence of second moments) but has further interpretation
possibilities in the multivariate normal case (Jolliffel |2002]).

The difference between whitening and PCA is demonstrated in Figure [3.1
where the two transformations are applied to a sample of 70 bivariate normal
observations. The whitened data have along both axes the same variation whereas
the first axis after the principal component transformation has a much larger
variation than the second one.

3.2.3 Factor analysis

Factor analysis can be seen as a model based transformation where the underlying
model is given by
x=Al+v+pu

where the components of the observed p-variate random vector x are linear com-
binations of the latent m(< p) components of ¢ added by some random noise
v. The location center is given by the p-vector w. It is assumed that E({) = 0,
COV(¢) =1,,, E(v) =0 and COV(v) = D, and that ¢ and v are independent.
The parameters in this model are however not well-defined and the p x m matrix
A and ¢ are only defined up to a rotation. The aim of this model-based trans-
formation is to find m latent variables that explain the dependence between the
original variables.

There are several ways to estimate the new coordinate system and they all are
based on the decomposition

COV(x) = AAT +D
given an value for m. For an overview see for example |Anderson| (2003). In some
of the approaches multinormality of ¢ and v is assumed.

3.2.4 Canonical correlations

In the canonical correlation analysis the correlations between two subvectors x;
and xo (x = (xI xI)7) are described in a simple way. One finds a new coor-
dinate system that consists of two subsystems for x; and x5 which explains the
correlations between the two vectors in a canonic way. For the analysis, one uses
a partition of COV(x) = X corresponding to x; and X

Y1 Yo
Y= .
( o1 Yo )
Consider the vectors a and b satisfying

a’3jja=1 and bT3pub=1

and then maximize a”315b. Given the first solution one searches a second com-
ponent that is uncorrelated to the previous one and so on. The solutions for a and
b are the eigenvectors of

3 E12X5) B
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and
o o1 X7 Tip

respectively. For details, see for example Shubhabrata and Sen| (1998).

3.2.5 Robust transformations

All the transformations considered so far are based on the regular covariance ma-
trix which has the well-known disadvantages. In robust approaches the regular
covariance matrix is replaced by some robust scatter functional. Robust PCA
is described in [Croux and Ruiz-Gazen| (2005)), robust factor analysis in
[Rousseeuw, Filzmoser and Croux| (2003) and robust canonical correlation analysis
in [Taskinen, Croux, Kankainen, Ollila and Ojal (2006). This replacement is basi-
cally not a problem if the scatter measures estimate the same population quantity;
this is true in models A1-A3 (see Tyler et al. 2008, who even conjecture that
A3 is the largest class with this property). In other models the interpretation of
the results is difficult. It should be also noted, that the regular covariance matrix
can not always just be replaced by another scatter functional (as we will see for
example in Chapter , since sometimes some special properties of the regular
covariance matrix are of importance. And as with the covariance matrix the same
is also true with the mean vector - also the mean is often replaced without a
question by a robust location functional. All location functionals yield the same
population quantity, the center of symmetry, in the models A1-A5. The symme-
try assumption which is very common in multivariate analysis can also be seen
as an attempt to give the location a clear interpretation. In asymmetric models
different location measures estimate different population quantities. A comparison
of the values of two location measures and two scatter statistics is useful when
describing skewness and kurtosis of multivariate data.
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4 Simultaneous use of two
location and/or two scatter
functionals

In this chapter the simultaneous usage of two location and / or two scatter func-
tionals is discussed. Note that in this thesis the interest lies only on applying the
functionals to the same population, i.e., it is not of interest to compare the same
functional computed for two different populations which has a long tradition in
statistical analysis.

4.1 Early simultaneous usage of two different func-
tionals

The simultaneous use of two location functionals (T, Ts) and/or two scatter func-
tionals (S1,S2) does not have a long tradition in multivariate analysis. Whereas
in univariate analysis already Karl Pearson saw the potential of the approach and
measured the skewness of the data with the standardized difference of two loca-
tion measures. (Ojal (1981) for example points out that the kurtosis of a random
variable could be measured by the ratio of two scale measures. Also the classical
univariate measures of skewness and kurtosis of a random variable x, namely

E((x = E(2))*) E((x = E(2))")
(Var(z))3/2 (Var(z))?

can be expressed in such ways. Setting
5 2
Es(z)=E L(x)
Var(z)

x — E(x)
Var(z)

Bi(x) = and fa(z) =

and

Vary(z) = FE ( ) (x — E’(w))2 ,

then 3; and (3> can be rewritten as

CB@-E@
B Var(z) d fol@) Var(z)

_ Vary(z)

Bi(z)

However as |Kotz, Balakrishnan and Johnson| (2000) point out, so far using
two functionals for measures of skewness and kurtosis has got less attention in the
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multivariate case than in the univariate case. In the multivariate case Isogail (1982)
uses the mean vector Ty and the multivariate mode Ty (not affine equivariant)
to get a measure of skewness

Skrsogai(x) = (Ta(x) — T1(x))" (w(COV(x))) " (T2(x) — T1(x)),

where w(-) is a matrix valued function for the covariance matrix, for example just

the identity function. (1983)) suggests
Skoja(x) = (T2(x) — T1(x))" COV(x) ™ (Ta(x) — T1(x)),

where T is also the regular mean vector but Ty is the Oja median. In the same
paper Oja defines also a kurtosis measure

E(A(x1,...,x,,E(x)))*

Kurtojq(x) = ,
e (BE(A(x1,...,%xp, E(x)))?)?
where x; = (i1 ... )T, i=1,...,p+ 1, are independent copies of x and
1 1 ... 1
) T Zi1 v T(p41)l
A(X1, ... Xpe1) = abs | — | P12 T2z 0 T(pt1)2
p! . . .
Tip T2p "t T(p+1)p
is the volume of the simplex with vertices x1,...,%Xp41. The joint usage of two

scatter functionals can be found also in other areas of multivariate analysis. In the
early applications only specific combinations of (S1, S2) were considered. In cluster
analysis and outlier detection, for example, two scatter functionals were used by
|Art, Gnanadesikan and Kettenring| (1982), [Yenyukov| (1988)), Caussinus and Ruiz
(1990), (Caussinus and Ruiz-Gazen| (1993} 1995, [2006), |Caussinus, Fekri, Hakam
[and Ruiz-Gazen| (2003)) or [Critchley, Pires and Amado| (2008). The approach of
Caussinus and Ruiz-Gazen is known as the generalized principal component anal-
ysis (GPCA) and the approach of Critchley, Pires and Amado as the principal
axis analysis (PAA). Furthermore in the independent component analysis (ICA)

the so-called FOBI algorithm (Cardoso, [1989) can be seen as the joint usage of

the regular covariance matrix (COV) and the scatter matrix of 4th moments
(COVy).

A general theory of the joint usage of location and / or scatter functionals
has been developed quite recently. First |Oja et al.| (2006) investigated the gen-
eral usage of two scatter matrices for real-valued ICA problems.
Koivunen| (2008]) extended then these results also to the complex data ICA prob-
lem. [Kankainen, Taskinen and Ojal (2007)) developed a theory for testing multi-
variate normality using two location or two scatter functionals. The most general
theory about the joint usage of two scatter functionals as a tool in multivariate
analysis was given in Tyler et al.| (2008). The approach was then the called invari-
ant coordinate selection (ICS) and reconciled all the previously mentioned goals
as well as found also further applications. The results in the following section are
mainly due to |Tyler et al,| (2008).
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4.2 Two scatter matrices and ICS

The main idea of ICS is to compare two scatter functionals S;(x) and Sa(x) by
solving B(x) and D(x) in the eigenvalue-eigenvector problem

81" (x)82(x)B” (x) = BY (x)D(x).

D(x) is a diagonal matrix containing the p eigenvalues of S7*(x)Sz(x) and the
rows of B(x) are the corresponding eigenvectors. For brevity, in the following
denote S;(x) = S, S2(x) = Sy, D(x) = D and B(x) = B.

It follows from this derivation of B that B jointly diagonalizes S; and Sy, i.e.,

BS;B” =D; and BS,B” = D,,

where D; and D, are diagonal matrices with D1_1D2 =D.

Since the order, sign and length of the eigenvectors are not uniquely defined
some conventions are needed. The following two conventions seem to be relevant
in practise:

1. (a) Fixing the order of D « PD and B <« PB so that di1 > ... > d,,.
(b) Rescaling B + D*B, where D* is a diagonal matrix such that
BS;BT =1,
(c) Fixing the sign of B «— JB so that T (Bx) > T (Bx) for two location
functionals T¢ and Ts.

2. (a) Fixing the order of D «+— PD and B < PB so that di1 > ... > dp,.
(b) Rescaling B « D*B, where D* is a diagonal matrix such that
diag(BTB) = 1,,.
(c) Fixing the sign of B «— JB so that, for i =1,...,p,
max(bi1,. .., bip) = max(|bal,. .., |bip])-

The first convention therefore fixes the length and sign of the eigenvectors
based on the pairs (T1,S1) and (T2, S3) whereas in the second convention they
do not depend on the functionals used. The second convention is more natural in
the framework of ICA where different estimates of B might be compared. The con-
vention used in the analysis does not change the interpretation of the eigenvectors
as they only may have different scales and signs.

In the following we will assume, if not mentioned otherwise, that B is stan-
dardized according to the first method. The only ambiguities remaining are when
some components of Bx are symmetric, and/or when Sl_ISQ has less than p dis-
tinct eigenvalues. For the reminding part of this section we will assume however
that the eigenvalues are all distinct. For details about the case of non-distinct
eigenvalues see Tyler et al.| (2008]).

This comparison of the two scatter matrices can also be interpreted as a com-
bination of the two ways to uncorrelate a vector. In this case x is first uncorrelated

. -1/2 . —-1/2 o .
using S; 7’7, i.e. y = 87 /7(x)x and then a principal component analysis is per-
formed on y using S»(y). Actually, the feature from which ICS got its name is
then that this double decorrelation transformation yields an invariant coordinate
system in the sense that

B(x)x = JB(Ax)(Ax),
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which means that the components differ at most by signs. The new coordinates
z = B(x)x are therefore referred to as the invariant coordinates and B is the
transformation matrix to the invariant coordinates.

Recalling the earlier statement that in the models A1-A3 the scatter func-
tionals S; and S, measure the same population quantity, it is obvious that in
these models the PCA step with respect to So cannot find any directions with
alternating variation. This can be seen as a way to explore whether S; carries any
additional information of the distribution in addition to Ss.

A nice feature when comparing two scatter matrices S; and Ss in this way is
that ST!(x)S2(x) can be seen as a ratio of two scatter functionals and therefore
as a measure of kurtosis. The connection to kurtosis becomes obvious when con-
sidering the univariate variable y = aTx with a € R?. Now a’'S; (x)a is a measure
of variation of y, or that of x in the direction a and similarly for a’Sy(x)a. Thus

a’S,(x)a

() = aTsS;(x)a

is the ratio of two different measures of variation in the direction of a. Recall here
the discussion in Chapter [£.1]

Tyler et al. (2008) point out, the maximum of x(a) is obtained if a = by and
the minimum is obtained if a = b,, where b; is the eigenvector corresponding
to the eigenvalue d;;, that is, the ith row of B. Therefore the components of the
invariant coordinates z are ordered according to their kurtosis values measured
by S; and So. The values of these kurtosis measures correspond to the diagonal
entries of D. We refer to D as the generalized S; — Sa-kurtosis. The matrix D
depends on the scaling of the scatter functionals. If both functionals are standard-
ized under the multivariate normal model, D(x) = I, if x ~ N(p, 3). However if
they are standardized differently a direct comparison is difficult. Sometimes D is
standardized so that [[}_, d;; = 1.

Since two scatter functionals S; and Ss typically measure different population
quantities different choices of the pair S; and S, will yield different coordinate
systems. The problem on how to choose S1 and S, needs still to be investigated. It
seems that there is no general best combination and the choice should depend on
the purpose of the invariant coordinates and that the scatter functionals should
have properties needed in further analysis (e.g. root-n consistency, asymptotic
normality, the independence property, etc.).

Two rough guidelines that can be provided so far:

e Tyler et al.| (2008) recommend to use two scatter matrices with a low break-
down point (like COV and COV,) only if there are no outlying observations
or if the objective is to find outliers. Two scatter matrices with a high break-
down point (close to 1/2) on the other hand represent only the inner part
of the data cloud. A good choice in their opinion is to use one medium ro-
bust scatter matrix (e.g. M-estimators with breakdown point 1/(p+ 1)) and
one scatter matrix with high breakdown point or to use two medium robust
scatter matrices.

e Given a pair of scatter functionals, the roles of S; and Ss can be interchanged
since
S;'S$;B” =B'’D < S;'S,B" =B’D .
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This means the order has no effect on the transformation matrix B, only
the elements of D will be inverted and reversed.

But what is an ICS actually good for?

There are basically four uses of invariant coordinates considered so far : (i)
Descriptive statistics and model selection; This is motivated by the idea that
D provides measures of kurtosis and the two functionals T and Ty that were
used to fix the signs of the rows of B provide a measure of skewness. These
descriptive measures can then be used for model selection in the spirit of Pearson’s
system. This will be still discussed further in Section (if) ICS can be used
in the independent component analysis (ICA) where the goal is to estimate Q
assuming that the components of € are independent (model B3). In this case ICS
is a generalization of Cardoso’s FOBI algorithm (Cardosol [1989). This will be
discussed further in Chapter |5 Application (iii) is classification, outlier detection
and dimension reduction; the idea behind this is that clusters or outliers might be
found in the invariant coordinates with high or low kurtosis and for example k < p
invariant components might be chosen to be used in further analysis. This area
of application is not carefully discussed in this thesis, but Paper II contains some
examples. For further details, see Tyler et al.| (2008). As pointed out earlier, affine
equivariance is an important property for functionals. The invariance properties
of tests under affine transformations is important as well, a test decision (the p-
value) should not depend on the underlying coordinate system. Yet, there are for
example nonparametrical tests and estimates which do not have this property. A
solution is then to use invariant coordinates for the estimation and testing using
the invariant coordinates - the estimates naturally have to be retransformed to
the original coordinate system. This is our last area (iv) of application and will
be discussed in Chapter [6]

We end this section with an example to compare the original coordinate system,
the whitened coordinates, the principal components and the invariant coordinates.
For this purpose 500 observations were sampled from model B1 which in this case
is a finite mixture of three 5-variate spherical normal distributions with different
means and different variances. Figures[4.1]- [4.4]show the four different coordinates
systems. Only the invariant coordinates find the underlying structure which is
revealed in the first and last coordinate.

4.3 Multiple location and scatter functionals for

descriptive data analysis and model selection
As mentioned above the diagonal elements of D can be seen as generalized kurtosis
measures and together with two location functionals also measures of skewness are
available. In this section we modify the general ICS by centering the components

with respect to a scatter functional T;. We choose two pairs of functionals (T4, S1)
and (T2, S2) and define the invariant coordinates as

z = B(x — T1(x)).
The matrix B is now chosen to satisfy

Ti(z) =0, Ty(z)=s>0, Si(z)=I, and Sy(z)=D.
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The coordinate system is unique if s > 0 and if the diagonal entries of D are
distinct.

Based on these two pairs of functionals the distribution of x can be summarized
having the following four descriptive functionals,

Location: T;(x) Skewness: T(z)
Scatter: S;(x) Kurtosis: S;(z).

The four descriptive measures given above can be used to get an impression of the
data but furthermore also help to decide about a model that might fit the data
best. Recall that in the well-known univariate Pearson system of distributions
(see for example (Ord, [1986) the choice of the model is based on the first four
moments. This system is derived from a differential equation and 3 and (o are
used to choose an appropriate distribution for a sample at hand. Kotz (1975) noted
however, that Pearson’s system seems difficult to transfer to the multivariate case
from a differential equations point of view. Paper I suggests to distinguish the
eight models discussed in Chapter [2[ using the the pairs (T1,S;) and (T2, Ss).
Again any pairs of functionals could be used. The suggestion of paper I is to

use the pairs
(E, COV) and (Eg, COV4)

The main motivation of this choice is that the four functionals are multivariate
versions of the classical univariate location, scale, skewness and kurtosis function-
als based on the first four moments. This combination is not very robust, however,
and the existence of the first four moments are assumed.

The number of distinct elements of D can be used to distinguish between the
models. Let D(k) be the set of all positive definite diagonal matrices with at most
k distinct diagonal entries. A first overview about the possible values of s and D
in the 8 models of Chapter [2| is given in Table The results of this table will
now be a bit more elaborated.

Model Skewness s Kurtosis D

Al 0 I,

A2 0 D(1)
A3 0 D(1)
A4 0 D(p)
A5 0 D(p)
B1 >0 D(k)
B2 X €, Or X €] D(2)
B3 >0 D(p)

Table 4.1: Possible values of s and D in the eight models under consideration.

In the symmetric models the skewness measure s is 0 and therefore only the
kurtosis can be used to separate between A1-A5. Since both scatter functionals
are normalized under the normal model, the kurtosis measure must be the identity
matrix I, in the normal model. Under A2, COV and COV, measure the same
population quantity and both are proportional to 3 = QQ7. Therefore D must
be a diagonal matrix and all diagonal entries are the same. For a ¢, distribution,
for example, D = (v — 2)/(v — 4)I,,. However also in A3, D is a diagonal matrix
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Figure 4.1: Scatter plot matrix of a sample of size 500 following model B1.
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Figure 4.2: Scatter plot matrix of a sample of size 500 following model B1 after
whitening.
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Figure 4.3: Scatter plot matrix of the principle components from a sample of size
500 following model B1.
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Figure 4.4: Scatter plot matrix of the invariant coordinates from a sample of size
500 following model B1.
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with identical values on the diagonal. Therefore it is not possible to distinguish
between A2 and A3. In the sign-symmetric model A4 however D can have distinct
diagonal entries. This is the case for the central symmetry A5 model as well.
Therefore models A1-A3 can be separated from the models A4-A5.

If however s > 0, with some elements larger than zero, a skew model must be
chosen. Tyler et al. (2008) considered B1 in more detail and showed that there
D will have at most k distinct diagonal values and the corresponding vectors of
B span (heuristically spoken) Fisher’s linear discriminant subspace. Therefore D
in this case gives an idea about the number of mixture components and suggests
the coordinates to separate them. In the skew-elliptical model |[Azzalini and Cap-
itanio| (1999)) defined the skew-normal distribution in the canonical form where
all skewness is absorbed in one component and the remaining p — 1 components
are N(0,1,_1) distributed. Basically for any skew-elliptical distribution ICS will
find the canonical from, it collects all skewness in one component whereas the re-
maining components are elliptic. All symmetric components have in this canonical
form the same kurtosis value and therefore due to the convention of the order of
the components the skew component will be the first or the last one. Hence, s
and D must have in this model one of the two forms given in Table [£.I] In the
IC model it is important that both, S; and So, have the independence property.
If both scatter functionals have the independence property and if the components
have different kurtosis measures with respect to S; and S, then, as |Oja et al.
(2006) show, z gives € up to sign, scale and order. The elements of D give the
classical kurtosis measures of the components in the IC model B3 when the pair
(COV,COVy,) is used.

This model will actually be considered in more detail in the next chapter.

Before that however still some concluding remarks. The method proposed here
can be used to distinguish between a wide range of models and but should be com-
bined with graphical displays. Tests to separate between different models are not
yet available. In most models the transformation matrix €2 can not be recovered,
only under assumptions A4 and B3 this is often possible.
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5 Independent components
analysis and robustness

In this chapter we will have a closer look at the independent component model,
where often the main goal is to estimate €. Focusing on this problem, we assume
that x is centered. Therefore in this chapter we consider only the model

x = Qe,

where € has independent components.

5.1 Main ICA estimation techniques

Since the model is ill defined, € and € can not be recovered as such. [Theis| (2004)
proves that ©~! can be estimated up to signs, scales and permutations of its
rows if there is at most one gaussian component. The signs and the order of the
independent components are similarly arbitrary but the scales are fixed in model
(B3) by COV(e) = I,,. Actually this definition of the model requires finite second
moments for the components of €. This moment assumption is made in most ICA
algorithms. Most algorithms usually start with whitening the observed data using
the covariance matrix and then continue as in PCA to search for directions in
which a measure of non-gaussianity is maximized. From this point of view these
ICA algorithms can be seen also as projection pursuit methods.

The non-gaussianity criterion is heuristically motivated by the central limit
theorem that suggests that the observed sums of random variables tend to be
closer to a gaussian random variable than the latent ones.

The most popular algorithm of this type is the so called fastICA (Hyvarinen:
and Oja, 1997) which maximizes negentropy NFE. Negentropy is a normalized
version of the entropy EN and is defined for a standardized random variable x as

NE(z) = EN(z) — EN(x),

where z ~ N(0,1). Then NE(z) > 0 and the equality holds only if x is gaussian. It
is however difficult to apply directly negentropy, respectively entropy, in practise
since it requires the knowledge of the density of z. Different expansion methods
lead to different approximations and the following three are often used in practise.
A cumulant based approximation is
SEW + (B - 3
12 48 '
The two parts of this approximation are based on the classical univariate skewness
and kurtosis measures. This approximation is however not robust.
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More robust approximations are given by
(E(G(x)) — B(G(2)))?,

with the choices
1 1,
Gly) = - log(coshlan)) or Gly) = —exp (—54)

with 1 < a < 2 as a tuning constant.

Brys, Hubert and Rousseeuw| (2005)) investigate possibilities to robustify ICA
algorithms further, especially in the context of fastICA. They consider for example
replacing the covariance matrix in the whitening step with the MCD scatter func-
tional, a high-breakdown S-functional. They report however that this approach
leads to convergence problems of the fastICA algorithm. This may be because the
MCD scatter functional does not have the independence property, which plays an
important role in this model. In the final approach of [Brys et al| (2005) outly-
ing observations are removed before whitening the data. They however point out
the difficulties of this approach as the skewness and the tailweight are important
features at the second step of the separation.

5.2 ICA based on two scatter matrices

FOBI was one of the first ICA algorithms and it is a special case of ICS with
non-robust S; = COV and Sy = COVy. |Oja et al.| (2006) show that any pair of
scatter functionals can be used for ICA if both functionals have the independence
property and D has distinct eigenvalues. In the case of FOBI this means that
the components cannot have the same classical kurtosis values. The independence
property requirement can actually be neglected (Tyler et all 2008 if p — 1 com-
ponents are symmetric. Robust choices of S; and Sy guarantee the robustness of
the procedure. Also, moment assumptions can be avoided with suitable choices.

It is important that the S; — So-kurtoses of the components differ. In cases
where FOBI fails, one may find another pair (S1,Ss3) for which D has distinct
elements. An example for such a situation is for example the bivariate independent
component model where one component has a x5 distribution and the other a
Laplace distribution. Then both components have the same classical kurtosis value
B2 = 6 but differ in their higher moments. Using the regular covariance matrix
and a scatter functional based on sixth moments however separates these two
components. One could conjecture therefore that the only case that never can be
resolved with this method is the case of components with identical distributions,
which is a restriction compared to the other type of algorithms which can also
handle that case given the identical margins are not gaussian.

The two scatter matrices approach in ICA is similar to the main approach in
the sense that (i) Sy is first used for the whitening and (ii) then S, for rotation. But
the maximization criterion x(a) of the second step depends on the distribution of
the whole vector x and not only on the distribution of a’x. Therefore this method
is not a projection pursuit method.

The differences between the procedures make comparisons difficult. It is im-
portant that the criterion that is used to measure the performance of an algorithm
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is scale invariant besides being permutation and sign change invariant since in the
two scatter matrices approach €2 is scaled so that S;(27'x) =1I,,.

A common criterion is Amari’s performance index (Amari, Cichocki and Yang}
1996) PI which uses the true mixing matrix € and an estimated unmixing matrix
Q1. The criterion is based on the product G = Q~1Q. If Q! is a good estimate
then G should be a permuted diagonal matrix, which is measured by PI as

p p p

1 |97”‘ B - ‘gm|
PI(G) = 2p(p — 1) Z(Z maxy, |gin| )+ Z z::

22 202 ma, g

Now clearly PI(PG) = PI(G) but PI(DG) = PI(G) is not necessarily true.
Therefore, for a fair comparison, Q! should be standardized always in the same
way. The second standardization method mentioned for ICS in Chapter [4.2]is for
example a good way to fix the scales and signs, i.e. the rows of £2! (wl cwp)
(i.e. the rows of B in ICS) so that

(i) max(wi1, ..., wip) = max(jwitl, ..., lwipl), 1 =1, ..., p

The performance index PI(G) can take values in [0, 1] and small values mean
a good estimate €271

Paper III compares in a simulation study several combinations of scatter func-
tionals and fastICA, using the two functions for G as defined above. The study
shows that two robust scatter matrices seem a better choice than the FOBI com-
bination and that in case of outliers such combinations have also a clear advantage
compared to fastICA.
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6 Inference on location based on
marginal signs

So far the difference of two location functionals has been used as a measure of
skewness. For asymmetric distributions different location functionals measure the
location in different ways. Therefore the null hypotheses

Hy:Tyr(x)=0 and Hp:E(x)=0,

for example, represent different features of the distribution. Here recall that T gy g (x)
is the affine equivariant spatial median as defined in Chapter 3.1.2] Hence, when
testing or estimating location in asymmetric models one should first consider what
“location” one has actually in mind. To avoid this confusion a common assump-
tion is to require some form of symmetry. In that case different tests and estimates
refer to the same population quantity. Some of the tests of location are also valid
in more general models but this is not of interest here and we consider only sym-
metric models.

In this chapter let X = (x7 ... x,,) be the pxn data matrix of n i.i.d. p-variate
observations where x; = (21 ... @iy)7, 4 = 1,...,n. For simplicity we will test
whether the center of symmetry is the origin, i.e.

Hy: p=0 wversus Hy: pu#0.

Naturally other hypotheses p = po can be tested by shifting each observation
using the null value x; <« x; — .
We call a test statistic @), with critical value ¢y, o, valid if

P, (Qn > cna) =

The test sequence (Qn, cn,o) is asymptotically valid if it holds that
lim P, (Qn > cn,a) =
n—oo

The following list contains some tests considered in the literature for the one
sample location problem:

Hotelling’s T?: This test is the multivariate analogue of the t-test and can be
seen as the classical test for multivariate location. The test can be derived
from different points of view (see for example [Morrison, [1998a). T2 is a
monotonic function of the likelihood ratio test in the multivariate normal
model. This test is the uniformly most powerful affine invariant test in model
A1l. Tt is also asymptotically valid in models A2-A5 given the first two
moments exist. It is however well known that Hotelling’s 72 is not very
efficient when the distribution has heavy tails. The test is also not very
robust against outliers.
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Signed-rank score tests by Hallin and Paindaveine: These tests combine
the ranks of pseudo-Mahalanobis distances between the data points and the
origin either with Randles’ interdirections (Hallin and Paindaveine| 2002a))
or with the so-called standardized spatial signs (Hallin and Paindaveine,
2002b)). These tests need no moment assumptions, are affine invariant, robust
and with a good choice of the score function also highly efficient. The tests
are optimal in the Le Cam sense at correctly specified densities. The test us-
ing van der Warden scores is asymptotically at least as good as Hotelling’s T2
in model A2 when considering asymptotic relative efficiencies. |Oja and Pain-
daveine| (2005) combined Randles’ interdirections with lift-interdirections
and constructed a hyperplane-based version of the original tests of Hallin
and Paindaveine. All the tests however target only model A2 and are in
general not valid in models A3-A5.

Marginal sign and signed-rank tests: These tests are, for example, described
in [Puri and Sen| (1971)). The tests combine marginal signed-rank score tests
and are asymptotically valid in the models A1-A5. No moment assumptions
are required but the tests are not invariant under affine transformations. The
efficiency of the tests suffers if the margins are dependent. We will discuss
these type of tests later in more detail and describe also possibilities to make
them affine invariant.

Spatial sign and signed-rank tests: These test have been for example re-
viewed by Mottonen and Ojal (1995) and are based on spatial signs and
signed-ranks. They are asymptotically valid in the models A1-A5 and, as
the previous marginal tests, also lack invariance under affine transforma-
tions. For spherical distributions they are however more efficient than the
ones based on marginal signs and signed-ranks. These tests can be made
invariant by pretransforming the data using any scatter matrix. Randles’
spatial sign test (Randles| [2000) uses Tyler’s shape matrix for this purpose
and is strictly distribution-free in model A2 (actually even in the larger
directional elliptical symmetric model).

Tests based on Oja signs and signed-ranks: Hettmansperger, Nyblom and
Ojal (1994) and Hettmansperger, Mottonen and Ojal (1997)) use the affine
equivariant Oja signs and signed-ranks and obtain invariant tests which are
asymptotically valid in A1-A5. In the spherical case these tests and the
tests based on spatial signs and signed-ranks are asymptotically equivalent.
The tests are however difficult to compute.

6.1 Marginal sign and signed-rank tests

The tests based on marginal signs and signed-ranks are of special interest in this
thesis. For this purpose let w; = sgn(x;) = (sgn(xi1) ... sgn(zip))T denote
the vector of the marginal signs of the ith observation and r; = (r;1 ... rip)T,
where r;; denotes the rank of |z;;| among all |zj],...,|z,;|. Furthermore let
K(u) = (Ki(u1) ... Kp(up))T be a p-variate vector of score functions with K
being (i) continuous, (ii) satisfying fol (K;(u;))%du; < oo and (iii) expressable as
the difference of two monotone functions.
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The test statistic is then given by
Qk = nmi V' mg,

Ty

where myk = % SrowiOK (n +1) is the average of the signed-ranks and Vg =

{vi;} is the sample covariance matrix of the signed-ranks with elements

1 — Tki Tk
ij = — Wi K K; ).
. "kz—‘{wkw'” (n+1> j(nﬂ)

Under the null hypothesis Qk is asymptotically chi-square distributed with p
degrees of freedom.

In practise all p score functions K; are often chosen to be the same. The
following three versions are the most prominent.

Marginal sign test: Ky(u)=1, i=1,...,p.
Marginal Wilcoxon signed-rank test: K;(u)=u, i=1,...,p.

Marginal van der Waerden signed-rank test:
Ki(u) =o' (u) = o-1(E), i =1,...,p where ® is the cdf of the standard
normal distribution.

6.1.1 Marginal signed-rank tests and affine invariance

The marginal signed-rank tests are not affine invariant, even not rotationally in-
variant. This is of course a huge drawback in practise since then the decision
depends on the coordinate system. The larger the dependence between the differ-
ent coordinates, the more the efficiency suffers. See Table 6.2.4 in [Hettmansperger
and McKean| (1998)) for the efficiencies of marginal Wilcoxon signed-rank test
compared to Hotelling’s T2 for bivariate data.

Chakraborty and Chaudhuri (1999) applied their data-driven transformation
(Chakraborty and Chaudhuri, [1996) on marginal tests and showed that this so-
called transformation retransformation technique can be used to obtain invariant
tests. For the one sample location problem the transformation retransformation

technique selects then p + 1 data points with indices listed in I = (g, i1, - . ., ip)-
The transformation matrix based on the selected points is then By = (x;, —
Xig +e- Xip — x;,) "1 and the test is performed using the transformed observations

Z; = B;X. The resulting test is affine invariant.

The obvious question here is how to select the p + 1 observations? In general
any points can be selected to achieve affine invariance, but in order to make the
tests as efficient as possible they should be chosen so that the coordinates are
as uncorrelated as possible. [Chakraborty and Chaudhuri (1999) suggest a choice
such that B;EB7 becomes as close to a diagonal matrix as possible. The scatter
parameter ¥ is of course unknown and should be replaced in practise with an
affine equivariant estimate of a scatter matrix, e.g. with COV(X). An adaptive
procedure for such a selection is described in |Chakraborty, Chaudhuri and Ojal
(1998). The asymptotic theory of |(Chakraborty and Chaudhuri| (1999) seems to be
developed for the elliptical model A2 only.
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As shown earlier, ICS yields an invariant coordinate system that is easier to
compute then the adaptive data-driven coordinate system of |Chakraborty and
Chaudhuri (1996). Paper IV investigates the performance of the marginal signed-
rank tests in an invariant coordinate system. When constructing an invariant
coordinate system for a location testing problem, one should use scatter functionals
with respect to the null value. The scatter functionals should also be invariant
under permutations of the observations. We thus require that

SL(AXPJ) = AS . (X)AT, k=1,2.

An important difference between the original observations and the observations
in the invariant coordinate system is that latter are not independent anymore.
Under the null hypothesis they are exchangeable however.

An obvious idea when applying tests in an invariant coordinate system is trying
to make use of the kurtosis ordering of the invariant coordinates. The components
with extreme kurtosis values can be expected to give the directions of the location
shift. Applying a univariate signed-rank test to any single component yields a
distribution-free affine invariant multivariate test. Unfortunately however it seems
that using only subsets of components for testing and combining them as done in
the multivariate marginal signed-rank tests seems to have not as much power as
using all of them.

6.2 Marginal signed-rank tests in the symmetric
independent component model

The marginal signed-rank tests are asymptotically valid in the models A1-A5. The
dependence between the components is taken care of with the estimated covariance
matrix Vk. Naturally if the components are independent Vi is converging to a
diagonal matrix. For the independence we need stronger assumptions than A5. We
assume an independent component model and symmetry, that is, A5 N B3. This
model and the elliptic model are different extensions of the multivariate normal
model. The Maxwell-Hershell Theorem (see for instance Bilodeau and Brenner]
1999, pp. 51) states that the multivariate standard normal distribution is the only
spherical distribution with independent margins.

The main idea when constructing the test in this model is first to recover the
underlying independent components and then apply univariate signed-rank tests
to the estimated independent components 7 = Q1X. Here 27! is an estimate
of the unmixing matrix Q1. The estimated unmixing matrix Q! must be (i)
affine invariant, (ii) invariant under individual sign changes of the observations,
(iii) invariant under permutation of the observations and (iv) root-n consistent.
Secondly, the condition (ii) fol(Ki(ui))Qdui < oo used for the score functions K;
must be replaced by the stronger assumption (iib) fol (Ki(u))?T0du; < oo for some
0> 0.

The gain in this approach is that the matrix Vg can now be replaced by its
probability limit

Vi = diag(E(Ky(u)?),..., BE(K,(u)?)),

where u is uniformly distributed on [0, 1] and that this test is affine invariant.
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In paper V the asymptotic relative efficiencies (ARE) of Qk are computed
with respect to Hotelling’s T2. The AREs can be expressed in terms of univariate
AREs of the marginal signed-rank test with respect to the t-test.

If all score functions used correspond to the underlying densities of the inde-
pendent components, then the test is optimal in the Le Cam sense.

In this thesis Q! is based on two scatter matrices (the ICA problem). From a
fully nonparametric point of view the two scatter functionals used should naturally
avoid any moment assumptions and paper V recommends therefore to use the pair
(Styi, Sap) where both are taken with respect to the origin. The only restriction
is then that the underlying components must have distinct S; — So-kurtoses.

These tests are in detail explained in paper V which also contains finite sample
efficiencies coming from a Monte Carlo study and some robustness considerations.

46



7 Example

To demonstrate the methods described in this thesis a medical data set is ana-
lyzed using R 2.7.0 (R Development Core Team), 2008) and the R packages ICS
(Nordhausen, Oja and Tyler, |2008b), ICSNP (Nordhausen, Sirkia, Oja and Tyler,
2007), JADE (Nordhausen, Cardoso, Oja and Ollila, [2008a), lattice (Sarkar| 2008)
and zoo (Zeileis and Grothendieck] [2005)).

In our example we give the estimates of the multivariate skewness and kurtosis.
The estimates of the (asymptotical) variances and covariances of these estimates
are not known yet and therefore no inference tools are available so far. These tools
should be developed in future research.

7.1 The data

The data analyzed here are the hemodynamic data collected as a part of the
Young Finns Study using whole-body impedance cardiography and plethysmo-
graphic blood pressure recordings from fingers. For these data, in 2003 and 2004,
243 healthy subjects between 25 and 42 years of age took part in the recording of
the hemodynamic variables both in a supine position and during a passive head-
up tilt on a motorized table. During that experiment the subject spent the first
ten minutes in a supine position, then was tilted for five minutes to a head-up
tilt position (60 Degrees) and for the last five minutes the table was returned
to the supine position. Continuously during the experiment several hemodynamic
variables were measured while the subject was supposed to be silent and not to
move. For a more detailed description, see |Paiva, Kahonen, Lehtiméaki, Raitakari,
[Jula, Viikari, Alfthan, Juonala, Laaksonen and Hutri-K&dhonen| (2008]). For this
analysis only four one minute averages are available. These are the averages of
the last minute before the upwards tilt, the first minute after the head-up tilt, the
last minute before the downwards tilt and the fifth minute after the downwards
tilt. The four periods will be denoted from now on as recording phases 1, 2, 3
and 4. However only for 235 subjects successful measurements for all recording
phases are available. The profiles of those subjects are presented in Figure [7.1] for
the three key variables heart rate, cardiac output and vascular resistance index
(SVRI).
Different questions arise from the data.

1. Do the key variables return to the pretilt levels after the downwards tilt?

2. Do the subjects react in the same way to the tilt? (Hypothesis is that there
are two ways to deal with the tilt.)
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Figure 7.1: Profile of three key variables from the hemodynamic experiment in the

Young Finns Study. The thick black line denotes the mean profile.
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In the following we will try to answer these questions using the methods de-
scribed in this thesis.

Naturally it would be also interesting to see the actual continuous signals from
such an experiment. Such data was made available from a similar experiment by
Ilkka Porsti at the Tampere University Hospital. The measurements here shown
later are from a 62 year old male subject and were recorded 2007. The number
of observations available corresponds to the number of heart beats of the subject
during the experiment.

7.2 The analysis

We will start by considering question 1.

7.2.1 Location tests

This question can be reformulated as a paired data problem with the hypothesis
that the “expected difference” between the first and the last recording phase is
zero. As pointed out earlier, the test one should use depends on the underlying
distribution of the data.

Therefore, the data is first inspected using the sample versions of E, E5, COV
and COV 4 to get a feeling for the data. The following values are obtained (ignoring
the scatter):

Location: fi = (3.5872 0.4719 — 225.2213)7
Skewness: § = (0.8383 0.3519 0.1783)7

N

Kurtosis: diag(D) = (4.5584 2.2514 1.0062)

These estimates suggest some skewness and also heavy tails in two directions.
However, when looking at the scatter plot of the invariant coordinates as shown
in Figure one could suspect that the skewness and large kurtosis of the first
two components is mainly due to the outliers found in those directions, which are
clearly visible in the figure.

Thus, this suggests replacing E, E3z, COV and COV, by robust measures.
For example when using T = Tgg, the affine equivariant spatial median, To=
transformation retransformation componentwise median, S; = Sy i Tyler’s shape
matrix jointly estimated with T and So = Sy p, the one step M-estimator scatter
matrix based on ranks the following results are obtained:

Location: T} = (3.4934 0.4269 — 202.5677)7

Skewness: § = (0.2114 0.0621 0.2200)7

A

Kurtosis: diag(D) = (1.1777 1.0064 0.8437)

The interpretation of the kurtosis values is partly lost since the scatter matrices
used are shape matrices and the kurtosis values are standardized so that their
product is one. It is also difficult to draw any conclusions without estimated stan-
dard errors. Believing however in symmetry, this suggests that models A4 or A5
might be good candidates for further analysis.
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Figure 7.2: Scatter plot of the invariant coordinates of the pairwise differences of
the three key variables of the Young Finns Study.

Knowing that there are outliers, robust tests are needed to test the hypothesis
of no difference. We used the invariant version of the Puri and Sen test with
Wilcoxon scores. If model A5 is assumed then one has to estimate V. Under the
symmetric IC model, B3 N A5, one can use the known diagonal probability limit
of Vk. In both cases the invariant coordinate system was based on Tyler’s shape
matrix and on the one step M-estimator scatter matrix based on ranks, both with
respect to the origin. The results seem very similar as can be seen in in Table

Test assumes Test statistic  p-value
symmetric IC model 151.8241 < 0.001
symmetric NP model 151.3460 < 0.001

Table 7.1: Results of two locations test to test the hypothesis of no difference
between recording phase 1 and 4.

Therefore both tests reject clearly and one has to reject the hypothesis that
after the tilt those key variables return immediately to their pretilt levels. The
affine equivariant version of the marginal Hodges-Lehmann estimator described in
Paper IV can then be used to estimate the mean difference in pretilt and aftertilt
levels.
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7.2.2 Clustering

To answer the second question the clustering should find different profile shapes
and therefore using a clustering method based on the four recording phases is
not advisable. The shape of the profile is found more likely by considering the
differences between recording phase 1 and recording phase 2 and between recording
phase 1 and recording phase 3. This gives 6 variables which could be used easily
for clustering since the dimension is still relatively small.

However to illustrate our approach, we would like to reduce the dimension.
We first create an invariant coordinate system using Tyler’s shape matrix and
the one step M-estimator scatter matrix based on ranks. Furthermore, since the
hypothesis is that there are two clusters, we use the invariant coordinates with the
smallest kurtosis measure and with the largest kurtosis measure, since these are
the most obvious candidates to show the clusters. The actual clustering is then
done with the kmeans algorithm. The resulting groups are plotted in Figure

This figure shows that subjects in cluster 1 have basically a constant cardiac
output and only a little change in their vascular resistance, whereas in cluster 2
the vascular resistance changes more and the output of the heart is reduced dur-
ing the head-up tilt. The view that these cardiovascular phenotypes are clinically
significant is supported by the finding, that the two groups differ in their pulse
wave velocities (PWV) at rest. Cluster 1 has a median pulse wave velocity of 9.40
(95% CT (8.96,9.84)) and cluster 2 of 8.75 (95% CI (8.51,8.99)) and the approxi-
mate Wilcoxon signed-rank test yields a p-value of 0.0018. Such an increased pulse
wave velocity in cluster 1 suggests that subjects in that cluster have stiffer larger
arteries than the subjects in the other cluster.
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Figure 7.3: Profiles of three key variables from the hemodynamic experiment in the
Young Finns Study for the two clusters obtained using kmeans on two invariant
coordinates. The thick black lines denote the mean profiles.
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7.2.3 Continuous signals

The subject which is now under a closer investigation had 1237 heartbeats in the
20 minutes lasting experiment. Ten recorded variables are shown in Figure [7.4]
The grey vertical lines correspond to a change in position. (Note that the the first
line actually is not a change is position but of the first ten minutes in the supine
position, the first five minutes are considered as a phase where the subject should
get used to the experimental environment.) As can be seen in the in Figure
there are several single atypical observations which can be considered artifacts due
to small movements. For a more detailed description of such data and its analysis
see [Tahvanainen, Koskela, Tikkakoski, Lahtela, Leskinen, Kahonen, Nieminen,
Ko6bi, Mustonen and Porsti (2008)).

We will investigate these signals now by applying four ICA algorithms (33
measurements had to be removed because of missing measurements). The first
three algorithms are based on two scatter matrices methods and the following
choices were made

ICA1: S; = COV and S; = COVy. Corresponds to the FOBI algorithm. Not
robust and requires the components to have different kurtosis measures.

ICA2: S; = M-estimator of shape using Cauchy weights and S; = M-estimator
of shape using ty distribution weights. A robust solution but requires that
at least nine of the components are symmetric and all components have
different kurtosis measures.

ICA3: S; = Diimbgen’s shape estimator and S; = Symmetrized Huber M-
estimator. Robust and no assumptions about skewness, however requires
also unequal kurtosis measures.

For the comparison we applied also the JADE algorithm which can deal also
with components that have equal kurtosis values. It is however also not very
robust.

The first thing one notices when comparing the four ICA algorithm results is,
that the non-robust algorithms use three components to collect the outliers. This
means that if structures would be in those directions they might be lost. Compared
to that the outliers can be seen in almost all components of the robust algorithms
and no components are used to collect them. This feature makes however also
a further visual comparison difficult since especially the outliers have a great
effect on the scaling of the components which differs anyway due to the different
algorithms. A reasonable thing to do might be to use now some trimming method
and trim for example 5 percent of each component - this might make them more
comparable. Here we refrain however from doing so and just want to point out that
all algorithms seem to have one component which has a clear level shift during the
tilt and a component that shows higher variation during the tilt. Furthermore all
solutions have a component that shows a level change after the tilt, this component
for example might mainly describe the feature of the variable SV.

These findings are summarized in Table[7.2]and for example for further analysis
the components with these phenomena (excluding the outliers) might be sufficient.
In that case ICA would have been a tool reduce the number of dimensions.
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Figure 7.4: Hemodynamic measurements of a single subject. The grey vertical lines
correspond to a change in position.
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Phenomenon ICA1 ICA2 ICA3 JADE

Outliers 1,2, 3 - - 4,6,9
Shift change during tilt 10 5 6 7
Higher variation during tilt 4 4 3 5
Shift change after tilt 9 8 7 8

Table 7.2: Description of the independent components produced by different ICA
algorithms.

These sections showed that the methods presented, which are also more or less
completely implemented in R, obtain reasonable results in practice. Naturally the
analysis here is not sufficient but demonstrates the use of the introduced methods.

59



60
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Nordhausen, K., Oja, H. and Ollila, E. (2008). “Multivariate mod-
els and the first four moments”, (submitted to the Festschrift for
Thomas P. Hettmansperger, edited by Hunter, D.R.., Rosenberger,
J.L. and Richards, D.).

The multivariate normal model has been generalized in several ways which
all have shown to be useful in practical data analysis. This paper consid-
ers seven such extensions including the elliptical model, the skew-elliptical
model, the independent component model, finite mixtures of elliptical dis-
tributions and so on. The paper suggests to use multivariate measures of
skewness and kurtosis to separate the different models. The multivariate
measures of skewness and kurtosis applied here are based on the simulta-
neous use of two location functionals and two scatter functionals. This ap-
proach should provide the practical data analyst with a tool to decide which
model and methods might be most appropriate for a data set at hand. The
decision making is demonstrated using simulated and real data examples.

Nordhausen, K., Oja, H. and Tyler, D.E. (2008). “Tools for ex-
ploring multivariate data: The package ICS”, Journal of Statisti-
cal Software, 28, 1-31.

This paper reviews the invariant coordinate selection (ICS) due to [Tyler
et al.| (2008) and illustrates how it can be applied for descriptive statistics,
outlier identification, clustering, independent component analysis and in the
context of multivariate nonparametrics using a wide range of examples. All
applications are analyzed using the introduced R-package ICS which imple-
ments besides a function for ICS also several scatter functionals and two
tests for multivariate normality.

Nordhausen, K., Oja, H. and Ollila, E. (2008). “Robust indepen-
dent component analysis based on two scatter matrices”, Austrian
Journal of Statistics, 37, 91-100.

In independent component analysis (ICA) most algorithms start by whiten-
ing the data using the mean vector and the covariance matrix. The whitening
step assumes the existence of second moments and is very sensitive to out-
liers. |Oja et al.| (2006]) generalized the FOBI algorithm of |Cardoso| (1989)
and showed how and when to use any two scatter matrices to estimate the
mixing matrix and the independent components in ICA. A simulation study
compares several combinations of scatter functionals for this purpose using
the fastICA algorithm of Hyvarinen and Ojal (1997) as a reference. The find-
ings of this study show that two robust scatter functionals produce robust
estimates of the target quantities.

61



IV. Nordhausen, K., Oja, H. and Tyler, D.E. (2006). “On the efficiency
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of invariant multivariate sign and rank tests”. In Liski, E.P., Iso-
talo, J., Niemeld, J., Puntanen, S., and Styan, G.P.H. (editors),
“Festschrift for Tarmo Pukkila on his 60th birthday”, 217-231,
University of Tampere, Tampere, Finland.

Multivariate estimates and tests based on marginal signs and ranks are not
affine equivariant and affine invariant, respectively. This paper considers the
one and two sample location problem when performing the tests using in-
variant coordinates obtained from ICS. It is shown that these tests are then
affine invariant. It is furthermore investigated whether any advantage can be
taken from the ordering of the invariant coordinates. The finite sample effi-
ciencies of the tests, which utilize different number of invariant coordinates,
are compared to Hotelling’s T2 test.

. Nordhausen, K., Oja, H. and Paindaveine, D. (2008). “Signed-

rank tests for location in the symmetric independent component
model”, Journal of Multivariate Analysis (accepted).

New tests for the one sample location problem are introduced in the symmet-
ric independent component model. The tests are based on marginal signed-
ranks and are affine invariant when the estimate of the mixing matrix is
affine equivariant. The tests do not require any moment assumptions and
are for appropriate chosen score functions locally and asymptotically opti-
mal in the Le Cam sense at given densities. Local powers and asymptotic
relative efficiencies with respect to Hotelling’s T2 test are derived. These
show that when using van der Waerden scores the asymptotic relative effi-
ciency of the test is always greater than or equal to one when compared to
Hotelling’s T? test. Finite sample efficiencies and the robustness of the tests
are investigated in a simulation study.
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Abstract

Several extensions of the multivariate normal model have been shown to
be useful in practical data analysis. Therefore tools to identify which model
might be appropriate for the analysis of a real data set are needed. This
paper suggests the simultaneous use of two location and two scatter func-
tionals to obtain multivariate descriptive measures for multivariate location,
scatter, skewness and kurtosis, and shows how these measures can be used
to distinguish between a wide range of models that extend the multivariate
normal model. The method is demonstrated with examples on simulated
and real data.

1 Introduction

Recently several extensions of the multivariate normal model with nice tractable
features have been introduced and have appeared to be useful in multivariate data
analysis. The extensions we have here in mind are the family of elliptical distribu-
tions shown to be useful by Fang and Zhang (1990), the independent component
model frequently used in signal processing and medical image analysis (see e.g.
Hyvérinen et al., 2001) or the family of skew-elliptical distributions described in
Genton (2004). Naturally in the practical data analysis it is important to decide
which model is the most appropriate one for the data and problem at hand. One
can then use statistical inference tools, tests and estimates, tailored for that model.
In this paper we propose some guidelines for this task: We use two old ideas from
Karl Pearson but transfer them to the multivariate case.

Karl Pearson was perhaps the first scientist to see the importance of skewness
and kurtosis in the model selection. In the univariate case, besides seeing these
two properties as the properties measured by the standardized third and fourth
moments, he also suggested to measure skewness with standardized differences
between two location measures such as

mean — mode mean — median

or .
standard deviation standard deviation

In a similar way, kurtosis may be seen as a ratio of two univariate scale measures
(see for example Oja, 1981).
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The classical measures of skewness and kurtosis for a univariate random vari-
able x are thus the standardized third and fourth moments,

E[(@ - E@)’] E[(@— B@)*]

1(z) = x and [Bo(x) = 5
A=) [Var(z)*? Pa() [Var(z)]

Also 1 can be expressed as a standardized difference of two location measures
and (B, is a squared ratio of two scale measures, respectively. To see that, first
write

2 2
x — E(x) r— E(x) 2
Ey(z)=F || ——=—==| 2| and Vary(z)=F || ——==| (@ - E(=z
3(2) ( Var(x)> (z) < VaT(x)> ( (x))

Now E3(x) is an affine equivariant location measure (based on three first moments)
and the square root of Vars(x) yields an affine equivariant scale measure (based
on four first moments). Then

ﬁl(ar):w and ﬁz(x)=‘m-

Note also that, for a standardized variable z = (z — E(z))//Var(x), f1(z) =
Es(z) and fBa(x) = Vara(z).

The other idea of Karl Pearson we want to pick up again is the Pearson’s
system of frequency curves (see for example Ord, 1986). This flexible system of
distributions has been an important tool in identifying the unknown distribution
of the observations or of a sample statistic. The procedure is then to use 3; and
B2 to decide which distribution might fit best to the data. The subfamilies of
probability densities in this system were originally given as solutions of a simple
differential equation. The extensions to the multivariate case have proved difficult
(Kotz, 1975).

The structure of this paper is as follows. The next section describes how two
location functionals and two scatter functionals can be jointly used to obtain
descriptive statistics for multivariate data. Section 3 investigates the behavior of
descriptive measures for multivariate skewness and kurtosis in a wide range of
models. In Section 4 the model selection is demonstrated using simulated and real
data. Some technical results are collected in the appendix.

2 Moments and multivariate descriptive statistics

Let now x be a p-variate random vector with cdf F'. Then a vector valued functional
T = T(F) = T(x) is a location functional if it is affine equivariant in the sense
that T(Ax + b) = AT(x) + b for any full rank p x p matrix A and any p-vector
b. A p X p-matrix valued functional S = S(F) = S(x) is a scatter functional if it
is affine equivariant in the sense that S(Ax + b) = AS(x)A’, again for all A and
b as defined above.

The most familiar location and scatter functionals are naturally the mean
vector and covariance matrix,

E(x) and COV(x)=E((x - E(x))(x—E(x))").



MULTIVARIATE MODELS AND THE FIRST FOUR MOMENTS

There are, however, several general families of location and scatter functionals
with different properties. For a recent overview with references see Chapter 6 of
Maronna et al. (2006). The mean vector and the covariance matrix are functionals
based on the first two moments. As in the univariate case, we can define a mul-
tivariate location functional and a multivariate scatter functional which use first
three moments and first four moments, respectively. These functionals are
Es(x) = “E(?x) and COVi(x) = ——B[r(x — B(x))(x — E(x))].
p p+2

where 72 = (x — E(x))'COV(x)"}(x — E(x)). See Oja et al. (2006), for example.
These two estimates can be seen as one step M-estimates and are the natural
multivariate extensions of F3 and Vary given in the introduction. It is remarkable
that COV(x) and COV4(x) have the so called independence property: If x has
independent components, then both COV (x) and COV4(x) are diagonal matrices
but of course with possibly different diagonal elements. (If x ~ N,(p,X) then,
however, COV(x) = COV,(x) = X. This is due to the appropriate scaling of the
second matrix.) The idea in the following is to try to identify the multivariate
model with two pairs of functionals, (E, COV) and (Ez, COVy).

The usage of two scatter functionals, say S; and So, has become quite pop-
ular recently in multivariate data analysis. Cardoso (1989) used in the first ICA
algorithm FOBI the regular covariance matrix (S; = COV) and the matrix of
fourth moments (Sy = COVy), Caussinus and Ruiz-Gazen (1994) used two differ-
ent scatter matrices (Dispersion Matrix of Gnanadesikan and Kettenring and the
regular covariance matrix) for projection pursuit and Critchley et al. (2008) use
a one step Tyler matrix and the regular covariance matrix in their principal axis
analysis. For a general theory for the comparison of different scatter matrices, see
Tyler et al. (2008) and the references therein. In the following we list some of the
results given in Oja et al. (2006) and Tyler et al. (2008).

Let S; and Ss be the values of two different scatter functionals at the distri-
bution of a p-variate random variable x. Let then a p X p matrix B and a p X p
diagonal matrix D solve the eigenvector and eigenvalue problem

S;'S,B' = B'D.

The column elements of D are then the eigenvalues and the rows of B are the
eigenvectors of matrix S;'Sy. The directions of the eigenvectors (up to sign) are
well defined if the eigenvalues of 8;182 are distinct. The eigenvectors are then
unique up to a multiplication by non-zero constants. Then, for all choices of B,
the transformed observations z = Bx, which are called invariant coordinates, yield
S1(z) = Dy and Sa(z) = Do, where D; and D» are two diagonal matrices such
that D = D' Ds.

Besides two scatter matrices S; and So, two location functionals T; and Ty
may sometimes be used to standardize the random variable in a unique way. We
then choose the matrix B in such a way that, if z = B(x — T (x)) then

Ti(z) =0, Ty(z) >0, Si(z) =1, and Ss(z)=D.

The standardized vector is uniquely defined if T9(z) > 0 and if the diagonal
elements of D are distinct. This then suggests multivariate descriptive measures
for location, scatter, skewness and kurtosis as
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Location: T1(x)

Scatter: S1(x)

Skewness: T2(z)

Kurtosis: S2(z)
These measures are moment based if one chooses
T, =E, S;=C0OV, Ty, =E3 and S, = COVy4.

In the univariate case we then get the classical measures given in the introduction.

3 The moments in some multivariate statistical
models

3.1 General structures for models

We consider multivariate location-scatter models where the observations x are
thought to be generated by
x=0e+pun

with a random vector € standardized in some way. Random vector € is often used
just to formulate the model but sometimes it can be thought to be a real la-
tent variable of its own interest. The models are then distinguished by different
assumptions on the vector €. The p-variate vector p is the location vector (pa-
rameter), and X = Q€' is the scatter matrix (parameter). Matrix €2 is called the
transformation matrix.

In the following we often need some matrix notation: J is a sign change matrix,
that is, a diagonal matrix with diagonal entries +1, P is a permutation matrix ob-
tained from an identity matrix by successively permuting its rows and/or columns.
Finally, O is an orthogonal matrix, that is, OO’ = O’O = I. Clearly, J and P are
orthogonal.

A structure of symmetrical models is obtained with assumptions

(A1) e ~ N,(0,1).
(A2) € ~ Oe for all orthogonal O.
(A3) PJe ~ € for all permutation matrices P and sign change matrices J.
(A4) Je ~ € for all sign change matrices J.
(A5) —e~e.
Skew distributions are obtained, for example, if we assume that
(B1) e=Y1, pi(e; + p;) where
(p1y---sp) ~ Multin(1; (71, ..., 7))

and €; are independent and satisfy (A2).
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(B2) €= sign(e;, | — o — fBe;)e* where (€*',€5, ) satisfies (A2).
(B3) The components of € are independent with FE(e;) =0 and Var(e;) = 1.
The symmetry assumptions satisfy
(A1) = (A2) = (43) = (A4) = (A5).

It is also easy to see that the symmetric models can be seen as border cases of the
asymmetric models and we have the following relationships:

(A1) & (A2)&(B3) and (A2) = (B1)&(B2).

If the assumptions (A1)-(A5) or (B1)-(B3) are true, the resulting models are called
models (A1)-(A5) or (B1)-(B3), respectively. In the following we describe these
models in more detail.

3.2 Elliptical Model

Elliptical model is obtained under the assumption (A2). If assumption (A2) is true
then the standardized random variable € has a spherical distribution around the
origin and has a density of the form

fe) = exp{—p(lle]])},

with Euclidean distance ||e]| = (€2 + ... + 6127)1/2 and some function p(-). Random
vector x is then elliptically symmetric. The scatter matrix 3 and p are con-
founded. Therefore one often assumes that E(||€||?) = p (second moments exist)
or Med(|le||*) = x2 5. Under this assumption, both p and X are uniquely defined,
and ¥ is the covariance matrix in the multivariate normal case. Transformation
matrix € is not well defined.

The multivariate normal distribution N,(u,X) given by assumption (Al) is
naturally a member in the family of elliptical distributions with the choice p(r) =
Plog(2m) + 4r2. The family of elliptically distributed random variables thus ex-
tends the normal model by allowing lighter as well as heavier tails while still
maintaining symmetry around p. Prominent distributions in the elliptical model
are the multivariate ¢-distributions and the power-exponential distributions. This
model is in practice the most popular extension of the multivariate model and
standard multivariate gaussian methods have been extended to this wider model,
see for example Fang and Zhang (1990). Also robust procedures often assume
elliptical symmetry.

If we assume that first four moments exist then, in the elliptic model,

E3(z) =0, and COVy(z) = c,I,.
Here, as before, z = B(x—E(x)). All marginal distributions have the same kurtosis

which is a function of p. In the multivariate normal case ¢, = 1 and in the p-variate
t, case c, = (v —2)/(v — 4)L,.
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3.3 Other symmetric models

First consider the model with assumption (A3). The model includes all elliptical
distributions as well as the cases with i.i.d components ey, ...,€,. An interesting
submodel with different shapes of density contours is obtained if the density of €
is of the form

f(€) = exp(—p(|[€])),

where the norm ||-|| is any norm that satisfies the condition that ||z|| = ||PJz|| for
all permutations P and sign changes J. This is true for any L, norm, for example.
If we again assume that first four moments exist then also in this model

E3(z) =0, and COVy(z) = ¢/I,.

Remember that again z = B(x — E(x)). This means that the first four moments
can not be used to distinguish model (A2) from model (A3). As in the elliptic
model, both g and X, but not €2, are uniquely defined.

A still wider symmetric model is obtained if we assume (A4). Assuming that
first four moments exist then

E3(z) =0, and COVy(z) =D.

where D is a diagonal matrix. Thus model (A4) can be separated from model
(A3) just by looking at the diagonal elements of D: If the diagonal elements are
not all the same, then the model (A3) is not correct any more. It is remarkable
that, in this model (A4), both p and € are uniquely defined, and 27! gives a
transformation to a standardized latent variable, €.

The widest symmetric model is obtained if one assumes (A5). Under the same
assumptions as before,

E;(z) =0, and COV4(z) =D.

where D is again a diagonal matrix with possibly distinct diagonal elements.
Thus it is not possible to make a distinction between models (A4) and (A5). Our
conjecture is that the distinction can be made if one uses three different scatter
matrices.

3.4 Models with skew distributions

Consider next the model of finite mixtures of elliptical distributions. This is given
by assumption (B1). If the first four moments exist then in this model

E;(z) =s, and COVy(z) = D.

If uy = ... = py we are back in the elliptic case. Also in the nonelliptic cases s may
be zero under some special conditions. D has at most k distinct diagonal elements.
Only p and 3, not €2, are well defined parameters. Fisher’s linear subspace to dis-
criminate between the mixture populations corresponds to the subspace spanned
by the components of z = B(x — E(x)) which correspond to the distinct values of
D (without any knowledge on the population membership).

Skew-elliptical distributions are given by assumption (B2). Given the first four
moments exist,

Es3(z) =s, and COVy(z) =D,
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where s has at most one non-zero element and, in a similar way with the same
division, the multiplicities of two possible values of the diagonal elements D are 1
and p — 1. The corresponding (p — 1) subvector of z = B(x — E(x)) is spherically
distributed, and one component of z absorbs all skewness.

Finally, the independent components model is given by (B3). If the first four
moments exist, then

E;(z) =s, and COVy4(z) =D,

where the elements of s and of the diagonal of D can be related to the classical
moment based univariate kurtosis and skewness measures if all diagonal elements
of D are distinct: Then (1 (z;) = ps; and fa2(z;) = (p+2)Ds; —p+1. As both COV
and COV, have the independence property, z is a latent vector of independent
components. This procedure to find independent components, a solution for the
ICA problem, is the well-known FOBI algorithm proposed by Cardoso (1989).

4 Examples

In this section we want to apply this approach on some simulated and real data.
All computations are done in R 2.7.0 (R Development Core Team, 2008) by using
the package ICS (Nordhausen et al., 2008b). Naturally all the population versions
with expected values above will be replaced sample versions with sample means.
However, general statistical inference tools (tests and estimates with confidence
ellipsoids) based on s and D have not been developed so far.

4.1 Examples with simulated data

First we want to evaluate the procedure in four simulated 3-variate data sets, where
the observations are obtained following the used model definition (sampling € and
then transforming to x = Qe + p). We choose (i) a multivariate normal model,
(ii) an elliptic t19 model, (iii) a skew-normal model with & = 0 and § = 4 and (iv)
an independent component model where the three independent components have
a normal, t19 and uniform distribution, respectively. In all four cases, the sample
sizes are n = 1000 and

2 -2 =03 1
Q= 1 2 05 and p=1| 1
05 05 1.7 2

The estimates of s and D are then presented in Table 1.

True distribution s diag(D)

Normal 0.0052 0.0557 0.0271)"  (1.0095 0.9766 0.9594)
Elliptic 0.0247 0.0059 0.0133)"  (1.3060 1.2266 1.1218)
Skew-normal 0.2304 0.0021 0.0021)"  (1.1753 1.0406 0.9437)
IC (symmetric) 0.0810 0.0142 0.0069)"  (1.1845 0.9938 0.7478)

S~~~ ~

Table 1: Skewness and Kurtosis measures for the four simulated data sets.

The estimates are based on higher moments and have therefore a large variation
even with sample size n = 1000. Observed values of s and D calculated from the
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Figure 1: Scatter plot matrix of the invariant coordinates of the simulated skew-
normal data set.

sample from a normal distribution clearly suggest model (A1) as s is close to
zero and all the diagonal elements of D are close to 1. Observed values for the
elliptical data only suggest (A2) or (A3) since the diagonal values of D are the
same but distinct from 1. It is remarkable that, in the case of ¢, distribution, the
value Doy = 1.22 suggests a value v = 13 whereas the true value is v = 10. The
skew-normal sample offers the possibilities (B1)-(B3), however, since the skewness
is concentrated in one component and since that component has a clear distinct
kurtosis measure compared to the others a skew-elliptic model might be the most
parsimonious solution. Furthermore, since the two remaining kurtosis measures
are both more or less 1, the skew-normality assumption may seem realistic. Of
course, instead of looking at the values of the estimates only, one should have a
look at the bivariate scatter plots of the transformed variables in z. See Figure
for the plots of the simulated skew-normal data. The last sample values suggest
(A4) or (A5) or (B3) with symmetry as well. In general, and as suggested earlier,
a look at a third scatter matrix might help to make the distinction. Similarly
looking at the scatter plots can also help to distinguish between the models as will
be shown in the next section.

4.2 Examples with real data sets

Now we turn from simulated data to real data. The first data set is the famous
Fisher’s Iris data set where there are four different measurements on 150 iris plants
which come from three different species (n = ny + na + ng, n1 = ng = nz = 50).



MULTIVARIATE MODELS AND THE FIRST FOUR MOMENTS

-2 0o 1 2 -20 -05 05 15
I T N B | T T T B |

0123

>
Do
%
%
%
B
£
AT
T
T T T T T T

-2

- °§ rj"’&:h; o A%ﬁffiﬁ.:ézg
o &,& IC.2 %@ i

§ oy
ono Ny
4 2 %7 BRI 5,
- Ak 48 PN o
~ A a
A

ﬂ,ﬁ‘;m $,°

1.0

- st ol
»A&5.

@ °
1 T T 1
-2 01 2

IC.4

-0.5

I |
T

-2.0

o  Setosa A Versicolor +  Virginica
Figure 2: Scatter plot matrix of the invariant coordinates of the Iris data set.

The group membership information is ignored in the analysis. The second data
set is the Australian Athletes data set (AIS) that was considered as an example
of a skew-normal data in Azzalini and Capitanio (1999) (The four variables are
Body Mass Index, Body Fat, Sum of Skin Folds and the Lean Body Mass). In this
example, we consider separately the data set of all (men and women) n = 202
athletes and that of the n = 100 female athletes.

Data S diag(D)
Iris (0.0613 0.1794 0.0226 0.1176)"  (1.2074 1.0269 0.9292 0.7405)
AIS, all (0.4821 0.0928 0.1473 0.1687)"  (1.7154 1.2788 0.9353 0.7659)

AIS, Female (0.3231 0.1611 0.1369 0.0654)"  (1.3583 1.1320 1.0322 0.8330)

Table 2: Skewness and Kurtosis measures for the Iris and the Australian athletes
data.

Table 2 gives the values of s and the diagonal elements of D for the above
real data sets. It is obvious from these values that there are two still mildly skew
components in the Iris data and that two components have a deviating kurtosis.
Therefore there models (B1) and (B3) are possible candidates. Figure 2, the scatter
plot of the invariant components reveals that the first component has probably
a different kurtosis measure to catch some slightly outlying observations whereas
the last component shows that the means of the three groups all lie on a line and
that this component could be used for separation.

A skew-elliptical model for the Australian athletes data set sounds tempting
since the individuals in the data set are certainly collected from a population
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Figure 3: Scatter plot matrix of invariant coordinates of the Australian athletes
data set.

using a kind of selective sampling. However the descriptive statistics for the full
data set seems to contradict this. The reason becomes apparent when looking at
Figure 3, where the last component shows the two clusters of men and women.
Looking therefore only at the female athletes, a skew-normal model seems much
more realistic; the first component is the one that absorbs all skewness.

5 Discussion

The approach proposed in the paper gives some simple tools to consider critically
the model assumptions. Even if one is using multivariate nonparametrical tests as
in Hallin and Paindaveine (2002) and Nordhausen et al. (2008a) , one can use tests
and estimated tailored for certain target distribution, e.g. multivariate normal
distribution. Naturally, the skewness and kurtosis cannot distinguish between all
models, but using a third scatter matrix may help to decide about (A4) (A5) or
(B3). It is also important to have a careful look at the scatter plots of the invariant
coordinates. Also further extensions of the considered model (e.g. skewness in
several directions in the skew-elliptic model) are still possible.

Finally note that the choice of the two location and two scatter functionals in
this paper was motivated by their univariate classical counterparts (1, o2, 31, B2).
However this choice assumes the existence of first four moments and the sam-
ple statistics are highly nonrobust. It is obvious that the two location statistics
and two scatter matrices used here can be replaced them by other, more robust,

10
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functionals. The model selection follows then the same rough rules. The scatter
functionals should then be rescaled so that the regular covariance matrix is ob-
tained in the multivariate normal case. In the independent components model, the
scatter functionals should have the independence property.

A Technical details

This section collects technical details which are valid when S; and S, are any two
scatter matrices. Proofs are given only for new results.

Result 1. If € satisfies (A4) then any scatter functional gives a diagonal matrix.

Proof of Result 1. If € ~ Je, then S(e) = S(Je) = JS(€)J. Be S(e) = A where
A is a symmetric psd matrix, and therefore must be A = JAJ for any sign change
matrix J. Let J* be a signchange matrix with

gio_f LA
T =1, if =i

Then S(J%€) changes the signs of the off-diagonal elements of the ith row and the
ith column of A. Therefore those elements must be 0 in order for A = J*AJ? to
hold. Since this is true for all ¢ = 1,...,p, A has to be a diagonal matrix.

Result 2. If € follows (A4) then the two scatter transformation on x = Qe + p
estimates €2 up to scale and permutation.

Proof of Result 2. Proof follows the lines of the Proof of Theorem 5.3 of Tyler et
al. (2008) together with the Result 1 and the fact that in this model x = Qe+p =
(QD~1J)(JDe) + p = Q*€* + p where €* is also part of (A4).

Result 3. Assume model (B1), k =2 and p1 # po then
di1=...= p—1,p—1 >dpp or dyg >dyp=...= pp OT di1 = dep

In the first two cases, the subspace corresponding to the eigenvalue with multi-
plicity 1 is Fisher’s discriminant subspace. The result for general k is stated in
Theorem 5.2 of Tyler et al. (2008).

Result 4. If € satisfies (B2), then any scatter functional gives a diagonal matrix.

Proof of Result 4. If (¢ ¢}, ,) satisfies (A2) then also €* and any of its com-

ponents satisfies (A2) but with different dimension. The sign(e;,; — a — fBe;) is
therefore for the first first p — 1 components of €* a random sign change. Clearly
Jie~efori=1,...,p—1and

S(e) = S(J'e) = J'S(e)T".

Applying the same reasoning as in the proof of Result 1 shows again that S(e)
must be a diagonal matrix.

Result 5. If € satisfies (B2) then

di1=...= p_1,p_1>dpp or d11>d22:...=dpp or d11=...:dpp.

11
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Proof of Result 5. Using again the fact that the first p — 1 components of €
still follow (A2) one knows, that these components are exchangeable and therefore
must hold

S(e) = S(P*e), where P*= < 5, (1) >
From which one can conclude that the first p — 1 diagonal elements of S(€) must
be the same. The rest follows by applying Theorem 4.2 of Tyler et al. (2008).

Result 6. Assume that € satisfies (B3) and D is based on any S; and Sy having
the independence property. If the diagonal elements of D are distinct then € and
B(x — E(x)) differ by at most a permutation and/or change in componentwise
signs and scales. For the case of non-distinct eigenvalues, see Theorem 5.6 of Tyler
et al. (2008).
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Abstract

Invariant coordinate selection (ICS) has recently been introduced as a method for
exploring multivariate data. It includes as a special case a method for recovering the
unmixing matrix in independent components analysis (ICA). It also serves as a basis
for classes of multivariate nonparametric tests, and as a tool in cluster analysis or blind
discrimination. The aim of this paper is to briefly explain the (ICS) method and to
illustrate how various applications can be implemented using the R package ICS. Several
examples are used to show how the ICS method and ICS package can be used in analyzing
a multivariate data set.

Keywords: clustering, discriminant analysis, independent components analysis, invariant co-
ordinate selection, R, transformation-retransformation method.

1. Introduction

Multivariate data normally arise by collecting p measurements on n individuals or experimen-
tal units. Such data can be displayed in tables with each row representing one individual and
each column representing a particular measured variable. The resulting data matrix X is then
n X p, with the row vector x; € %P denoting the measurements taken on the ith individual or
ith experimental unit. Hence X' = [z{,...,z,]. To be consistent with the convention used

in the programming language R, all vectors are understood to be row vectors.

We begin by introducing some concepts which are used throughout the paper. An affine
transformation of a data vector z; is a transformation of the form

.I‘i—>$iAT+b, 1=1,....n,
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or equivalently,
X - XAT +10,

where A is a nonsingular matrix of order p, b € 1, and 1,, € R" denotes a vector consisting
of all ones. Besides affine transformations and linear transformations (X — XAT with
A nonsingular), other important classes of transformations are orthogonal transformations
(X — XU with UTU = UUT = I,), sign-change transformations (X — X.J where J is a
p X p diagonal matrix with diagonal elements +1), and permutations (X — X P where P is a
p X p permutation matrix, i.e., one obtained by successively permuting rows or columns of I,).
These transformations can also be applied on the left-hand side of X, in which case A, U, J,
and P are matrices of order n rather than of order p. Note, for example, that a right-sided
sign-change transformation simply results in a change of the sign of the jth variable if the
jth entry of J is —1, whereas a left-sided permutation transformation simply reorders the
individual observations.

A fundamental multivariate data transformation method is the so-called ‘whitening’ or ‘stan-
dardization’ of the data. This is given by

X = Z=(X-1z)COV(X) 2,

where z = 1,X/n = Y i' | z;/n is the vector of the column means of X and COV(X) =
(X —1,2)T(X —1)2)/(n — 1) is the sample covariance matrix of the columns of X. The
‘whitened’ data matrix Z has its mean at the origin (z = 0), with all the variables being
standardized and uncorrelated with each other (COV(Z) = Ip,).

This transformation, however, has several drawbacks. First, it is not unique in the sense that
it depends on the particular choice or definition of the square-root matrix COV(X )% Recall
that for a symmetric positive semi-definite matrix V', a square root of V is any matrix C
such that CCT = V. Two common choices for the square-root C' which are uniquely defined
are the lower triangular square-root and the symmetric positive definite square-root. Second,
even for a well defined square-root matrix, the ‘whitening’ transformation is not invariant
under affine transformations of the data. Rather, one has

XAT[COV(XAT)]"2 = X[COV(X)] 2T,

with U = U(X,A) being an orthogonal matrix which is dependent on both X and A. In
other words, a ‘whitened’ data matrix is only well defined up to post multiplication by an
orthogonal matrix.

Also, this ‘whitening’ transformation is not very robust since both the sample mean vector Z
and the sample covariance matrix COV (X)) are both highly non-robust statistics. In particular,
just one ‘bad’ data point can greatly affect the standardization. An obvious remedy for the
last problem is to simply replace those two statistics by more robust ones. This gives a more
general framework for a whitening transformation, namely

X = 7Z=[X-1]T(X)]S(X)"3,

where the statistic 7(X) is a multivariate location statistic and S(X) is a scatter matrix.
Here, we say that T'(X) is a location statistic if it is affine equivariant, i.e., if

T(XAT +170) =T(X)AT +b
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for any nonsingular matrix A of order p, and any b € #P. The matrix S(X) is said to be a
scatter matrix if it is affine equivariate in the following sense:

S(XAT +1b) = AS(X)AT

with A and b as before. Such a statistic is sometimes referred to as being affine ‘covariant’.
Choosing robust statistics for 7(X) and S(X) then yields a robustly whitened coordinate
system. This new coordinate system though is still not invariant under affine transformations
of the original data matrix.

Besides whitening, there are other methods one can use to linearly transform a multivariate
data set to a new coordinate system, such as those arising in principal components anal-
ysis (PCA), those arising in independent components analysis (ICA), and those arising in
invariant coordinate selection (ICS). Principal components analysis has a long history and is
perhaps one of the most common methods used in multivariate analysis, whereas independent
components analysis is a fairly recent subject which is becoming increasing popular in areas
such as computer science, engineering, meteorology and other applied areas where multivari-
ate data arise. Invariant coordinate selection has recently been introduced as a very general
method for exploring multivariate data, and is explained in more detail in the Section 3.1.
These three methods respectively involve the following transformations of the data (here we
ignore the centering part of the transformations, which if desired could be done after the
transformation).

e Principal components analysis
The principal components are obtained by rotating the data matrix, namely

X >Z=XU",

where U is an orthogonal matrix whose columns are the ordered eigenvectors of
COV(X). This gives COV(Z) = D, with D being a diagonal matrix whose diagonal ele-
ments are equal to the corresponding ordered eigenvalues of COV(X). The matrices U
and D thus correspond to those in the spectral value decomposition COV(X) = U DU.
PCA can also be viewed as a rotation of the data matrix arising from first finding the
projection of maximal variance, and then finding subsequent projections of maximal
variance subject to the constraint of being uncorrelated with the previously extracting
projections.

e Independent components analysis

Unlike principal components analysis, ICA transformations presume a model. The
most common model is to presume that the p measured variables arise from a linear
transformation of p independent variables. The goal of ICA is to recover the original
independent variables. Most ICA algorithms first involve whitening the data and then
rotating them in such a way as to make the resulting components as independent as pos-
sible. When the components are derived sequentially, this typically implies finding the
‘most’ nongaussian projection subject to being uncorrelated to the previously extracted
projections. Such ICA transformations then have the form

X — Z=XCOV(X)2Q =XB"
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where () is an orthogonal matrix. The matrix B is typically called the unmixing matrix.
For ways to choose the final rotation matrix @), or more generally for a review of ICA,
see Hyvérinen, Karhunen, and Oja (2001).

¢ Invariant coordinate selection
The ICS transformation is based upon the use of two different scatter matrices. One
scatter statistic is first used to ‘whiten’ the data, while a second scatter statistic, defined
differently from the first, is used to find a rotation of the data obtained from a PCA of
the ‘whitened’ data. Specifically, this gives the transformation

X - Z=X8/(X)"2U,] =XB',

where Us is given by the spectral value decomposition of Sy(Z;) = Uy DUy for Z; =
XS1(X )_% As described later in the paper, this new coordinate system is invariant up
to a sign change under affine transformations of the original data matrix X.

The goal of this paper is to describe how the ICS method, as well as a certain class of ICA
algorithms, can be implemented using the R package ICS. The structure of this paper is as
follows. In the next section, a review of some scatter matrices to be used later within the
paper is first given. Section 3 explains the ICS method in more detail and discusses its various
applications. One such application involves the recovery of the unmixing matrix in the ICA
problem. Section 4 describes the R package ICS, and finally Section 5 concludes the paper
with several examples showing how the ICS method and package can be used in analyzing a
multivariate data set.

2. Scatter matrices

Conceptually, the simplest alternative to the sample mean and sample covariance matrix is
to use a weighted mean and covariance matrix respectively, with the weights dependent on
the original Mahalanobis distances. This gives the location and scatter statistics

aveluq (1) ;]

T(X)= and S(X) = ave[ug(r;)(z; — E)T(:cz — )],

aveluy (1;)]
where r; = |[z; — Z||cov(x), and with uj(r) and ua(r) being non-negative weight functions.
Here, we use the general notation

y|[2 =y 'y T,

which defines a norm on RP whenever I' is a symmetric positive definite matrix of order p.
Since a single outlier can greatly affect the value of all of the Mahalanobis distances, the
weighted mean and covariance statistics can be also highly sensitive to a single outlier.

Many classes of robust location and scatter statistics have been proposed. For our purposes, we
briefly discuss only the multivariate M-estimates. For a detailed overview of the M-estimates
and other robust estimates, we refer the reader to Maronna, Martin, and Yohai (2006).

The multivariate M-estimates of location and scatter may be viewed as adaptively weighted
means and covariance matrices respectively. More specifically, they can be defined as solutions



Journal of Statistical Software

to the M estimating equations

ave[uy (r;) ;]

T(X) = , and S(X) = avelua(r;)(x; — T(X))T(wi - T(X))],

ave[u (r;)]
where now r; = ||z; — T(X))||s(x), and again u1(r) and uz(r) are non-negative weight func-
tions. Note that these are implicit equations in (7(X), S(X)) since the weights on the right-
hand side of the equations depend upon them.

The multivariate M-estimates of location and scatter were originally derived as a general-
ization of the maximum likelihood estimates for the parameters of an elliptically symmetric
distribution. Hence these maximum likelihood estimates are special cases of the multivariate
M-estimates. Of particular interest here are the maximum likelihood estimates associated
with a p-dimensional elliptical t-distribution on v degrees of freedom. These maximum like-
lihood estimates correspond to M-estimates with weight functions

_ p+v
r24 v

up(r) = ua(r)

An important property of these t M-estimates, for v > 1, is that they are one of the few
Me-estimates which are known to have a unique solution to its M-estimating equations and a
proven convergent algorithm, see Kent and Tyler (1991).

A useful variation of a scatter matrix is a scatter matrix with respect to the origin. We
defined this to be a statistic S,(X) which is invariant under sign changes of the individual
observations and equivariant or ‘covariant’ under nonsingular linear transformations. That
is,

So(JXAT) = AS,(X)AT
for any nonsingular matrix of order p and any sign change matrix J of order n. An example
of a scatter matrix about the origin is the matrix of second moments My(X) = ave[z; x;].
Other examples are weighted second moment matrices and M-estimates of scatter about the
origin. These are defined as

So(X) = avelug(ry)z] x4,

with 7; = [|z;]|pr,(x) for the former and r; = ||z;[|g,(x) for the latter.

One important application of scatter matrices with respect to the origin is that they can be
used to construct symmetrized scatter matrices. A symmetrized scatter matrix Ss(X) is a
scatter matrix defined by applying a scatter matrix with respect to the origin to pairwise
differences of the data. More specifically, given a scatter functional with respect to the origin
S,, a symmetrized scatter matrix is then defined as

Ss(X) = S,(Xs),

where X, is N = n(n — 1)/2 x p with row vectors d; ; = x; — x; for i < j. Note that
a location statistic is not needed in defining a symmetrized scatter statistic. As explained
later in Section 3.4, symmetrized scatter matrices play a crucial role when using ICS for
independent components analysis.

Another scatter matrix which plays a role in independent components analysis involves the
4th central moments (Cardoso 1989). This is given by

COV4(X) =

e 2ave[rz~2(1:¢ —2) " (x; — )]
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where 7; = ||z; — Z||cov(x). This scatter matrix is a special case of a weighted sample
covariance matrix, namely one with weight function us(r) = r2/(p+2). A curious observation
is that this weight function upweights rather than downweights outliers. The constant 1/(p+2)
is used to make COV4(X) consistent for the covariance matrix under random samples from a
multivariate normal distribution.

Finally, a popular M estimates of scatter within the area of nonparametric multivariate
statistics is Tyler’s shape matrix (Tyler 1987). For a given location functional 7°(X), this is
defined as a solution to the implicit equation

g T —
S(X):pave[m ()T (2 T<X>>]

sz - T(X)Hi*(x)
Tyler’s shape matrix about the origin is obtained by simply setting 7'(X) = 0 in the above
definition, which corresponds to an M estimate of scatter about the origin with weight function

ua(r) = 1/r2. The symmetrized version of Tyler’s shape matrix is known as Diimbgen’s shape
matrix (Diimbgen 1998). It is implicitly defined by

4 [(%‘ — ;)" (i — l‘j)] ‘

||z _xjH%S(X)

Tyler’s shape matrix and Diimbgen’s shape matrix are not well defined scatter matrices
since they are defined only up to a constant. That is, if S(X) and Ss(X) satisfy the above
definitions respectively, then so do AS(X) and ASs(X) for any A > 0. This however is the
only indeterminancy in their definitions. Consequently, they possess the following equivariant
property under affine transformations,

S(XAT +1)b) oc AS(X)AT,

for any nonsingular matrix A of order p and any b € RP. For the applications discussed in
this paper this equivariant property is sufficient.

3. Multivariate data analysis using an ICS

3.1. Invariance of ICS

As noted in the introduction, using the sample mean and covariance matrix or some robust
affine equivariate alternatives, say (7'(X), S(X)), to ‘whiten’ a multivariate data set yields a
new ‘standardized’ coordinate system in the sense that the ‘new’ data set has uncorrelated
components with respect to S. This new coordinate system, however, is not invariant under
affine transformations of the original data set X since for nonsingular A and b € RP, one
obtains

(XAT +170) — 1T T(XAT +170)]S(XAT) "2 = [X — 1] T(X)][S(X)] "2V,

with U being an orthogonal matrix depending on X, A and S, and on the particular definition
of the matrix square-root being used. Thus, ‘standardizing’ X does not necessarily give the
same coordinate system as ‘standardizing’ X A" + 1. b.
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Tyler, Critchley, Diimbgen, and Oja (2008) show however that an affine invariant ‘whitening’
of the data can be obtained by introducing a second scatter statistic. They call this transfor-
mation invariant coordinate selection ICS. The definition of ICS as given in the introduction
can be seen as a two step transformation. First the data is ‘standardized’ with respect to
one scatter statistic S7(X) and then a PCA transformation is performed on the ‘standard-
ized’ data using a different scatter statistic So(X). Note that if one applies the same scatter
statistic S1(Z) to the ‘standardized’ data, then one simply obtains S1(Z) = I, for which a
PCA transformation is meaningless.

An alternative formulation of ICS, which makes some of its properties more transparent,
is as follows. For two different scatter statistics S1(X) and S2(X), let B(X) be the p x p
matrix whose rows corresponds to the eigenvectors of S1(X)~1S2(X) and let D(X) be the
diagonal matrix consisting of the p corresponding eigenvalues. For brevity, denote S; = S1(X),
Sy = 53(X), B=B(X) and D = D(X), and so

S7'SBT=B"D or SyB" =S8 B'D

Note that any matrix B satisfying the above definition also jointly diagonalizes both S; and
So. This gives
BSi:BT =D; and BS;B' = D,

with D and D> being diagonal matrices. Moreover, D| 1Dy = D. If the roles of S; and So
are reversed, then the matrix of eigenvectors B is the unchanged, but D — D~

We hereafter use the convention of normalizing the eigenvectors to have length one relative
to the scatter matrix Sy, i.e.,

BS,B" =1,

and hence D = D. We also presume the eigenvalues, i.e., the diagonal elements of D, are
ordered. The resulting transformation matrix B corresponds to that given in the introduction.
The matrix B can be made unique by imposing some restrictions like the element in each row
with largest absolute value must be positive.

The transformation defined by the matrix B(X), i.e.,
X —-Z=XBX)"

is invariant under nonsingular linear transformations in the following sense. Presuming the
eigenvalues in D(X) are all distinct, it follows that for any nonsingular matrix A

X, =XAT - Z. = X.B(X,) = (XA")B(XA") " =XB(X)"J =2/,

for some sign change matrix J. A similar statement can be made in the case of multiple
eigenvalues, see Tyler et al. (2008) for details. Given an affine equivariant location statistic
T(Y), if either the variable X or the transformed data Z is center by subtracting T'(X) or
T(Z) respectively from each of the rows, then the resulting transformation is affine invariant
up to a sign change matrix. Finally, we note that the eigenvalues are also affine invariant.
Specifically,

D(XAT +1,)b) = D(X).

Thus, given two scatter statistics, one can easily generate an invariant coordinate system.
For the most part, which scatter statistics are best to use is an open problem. Most likely it
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depends on the particular application in mind. The following sections show some applications
of using ICS in multivariate data analysis, and points out those situations where certain types
of scatter matrices are needed.

3.2. Descriptive statistics

In this section, let Z = XB(X)' be the invariant components obtained from ICS based on
the scatter statistics S1(Y) and S2(Y’). The components of Z are thus standardized with
respect to S1 and uncorrelated with respect to Ss, i.e.,

S1(Z)=1 and S3(Z)=D,

where D is an ordered diagonal matrix. We hereafter refer to the diagonal elements of D
as generalized kurtosis measures. In the univariate setting, the classical kurtosis measure
can be viewed as a comparison of two different univariate dispersion measures, namely the
square-root of the fourth central moment and the variance. The ratio of any two dispersion
measures can be used to define a generalized univariate kurtosis measure. In the multivariate
setting, one can consider the ‘ratio’ of two different scatter matrices S1(X)~1S3(X). The
maximal invariants under nonsingular linear or under affine transformations can then be
shown to be D, and thus we view D as a multivariate affine invariant generalized kurtosis
measure, again see Tyler et al. (2008) for details. The individual elements of D represent a
generalized kurtosis measure for the corresponding components of Z, with these components
being ordered according to their generalized kurtosis.

Consequently, the two scatters and the ICS transformation along with two different location
statistics (denoted correspondingly as 77 and T%) can be used to describe four of the most
basic features of a data set:

e The location: 77 (X)
e The scatter: S;(X)
e Measure of skewness: T»(Z) — T1(Z)

e Kurtosis measures: S2(Z)

The last two measures can even be used to construct tests of multinormality or ellipticity.
The usage of two different location and scatter statistics for such tests is described in more
detail in Kankainen, Taskinen, and Oja (2007).

3.3. Diagnostic plots and dimension reduction

Perhaps the most common type of diagnostic plot for multivariate data is the classical Ma-
halanobis distance plots based upon the sample mean vector and sample covariance matrix.
Such a plot, i.e., a plot of the index i versus the Mahalanobis distance r; = ||z; — Z||cov(x)s
can be useful in detecting outliers in the data. Such plots though are known to suffer from the
masking problem. To alleviate this problem, one can replace the sample mean and covariance
by robust location and scatter statistics respectively, and then generate robust Mahalanobis
distance plots, see e.g., Rousseeuw and van Zomeren (1990). Another type of diagnostic plot,
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e.g., used in Rousseeuw and van Driessen (1999) to help uncover outliers or groups of outliers,
is a plot of the classical Mahalanobis distances versus the robust Mahalanobis distances.

One feature of Mahalanobis distance plots is that they are invariant under affine transforma-
tions of the data. Given two location and scatter statistics, one can plot the corresponding
Mahalanobis distances against each other. However, a more complete affine invariant view
of the data is given by the pairwise plots of the invariant coordinates Z obtained from ICS.
The ordering of the components of Z is with respect to their generalized kurtosis measures.

Moreover, if we take
(D) = bSab" /bS1HT

as a generalized kurtosis measure for the univariate linear combination X', then (b) achieves
its maximum at the first component of Z and its minimum at the last component of Z. The
other components of Z successively maximize or minimize x(b) subject to being ‘uncorrelated’
relative to Sp or So, with the previously extracted components, e.g., blslbér = blsgb; = 0.
Extreme kurtosis measures can indicate non-normality of coordinates and hence indicate
coordinates which may be of special interest for further examination. Thus, focusing on the
‘extreme’ ICS components yields a natural method for dimension reduction. This criterion
for dimension reduction is demonstrated in Section 5.2.

The ICS transformation is also known to have other important properties which justifies
its use as a data analytic method. For example, if the data arise as a location mixture
of two multivariate normal distributions, or more general two possibly different elliptical
distributions, with proportional population scatter matrices, then Fisher’s linear discriminant
function for discrimination between the two components of the mixture corresponds to one
of the two extreme ICS components even though the classification of the data points are not
known. For more details and generalizations to mixtures with more than two components,
we again refer the reader to Tyler et al. (2008). Another important property of ICS is its
relationship to independent components analysis, which is discussed in the next section.

Special cases of the ICS transformation have been proposed as diagnostic methods for detect-
ing outliers or groups of outliers by Caussinus and Ruiz-Gazen (1994) and more recently by
Critchley, Pires, and Amado (2008). The former consider the case when S; is taken to be
the sample covariance matrix and S5 is taken to be a weighted sample covariance matrix as
defined in Section 2. They refer to their method as generalized principal components analysis
(GPCA). Critchley et al. (2008) also consider the case when S is taken to be the sample
covariance matrix. For So, they use a weighted covariance matrix based upon the weight
function us(r;) = 1/r2, and they refer to their method as principal axis analysis (PAA). Since
these are special cases of ICS, the R package ICS can be used to implement GPCA or PAA.

3.4. Independent components analysis

So far no assumptions have been made as to how the data arises, other than the reference
to mixture models in the previous section. In this section, we now assume the observations
represent a random sample from a multivariate population, with the population representing
a nonsingular linear transformation of a vector of independent components. More specifically,
the observations

.CL‘Z':ZZ'AT, izl,...,n

where the mixing matrix A is a full rank p x p matrix A, and z; is a p-variate latent vector
with independent components. This is the independent components (IC) model in its simplest
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form. The aim of independent components analysis (ICA) is to find an unmixing matrix B
so that z; B has independent components. Note that this model is not well defined since for
any diagonal matrices D and permutation matrices P

X =7*A*T = (ZPD)(D'PTAT).

Therefore for any unmixing matrix B, B* = DPB is also a valid unmixing matrix. For a
recent overview about ICA see Hyvirinen et al. (2001).

Oja, Sirkié, and Eriksson (2006) show, under fairly general conditions, that the transformation
matrix B defined in Section 3.1 is also an unmixing matrix for the IC model. One condition is
that the population values of the generalized kurtosis values for the independent components
of z; have different values. Another condition is that the population version of the scatter
matrices S7 and S5 posses the co-called ‘independence property’. This independence property
requires that if z; has independent components, then the population version of S(Z) is a
diagonal matrix. In general, scatter matrices do not necessarily possess this property, but
symmetrized scatter matrices do.

The regular covariance matrix COV and the matrix of 4th moments COV} also possess
the aforementioned independence property since they can be represented as symmetrized
scatter matrices. Consequently, the FOBI algorithm (Cardoso 1989), can be seen as a special
case of the ICS based algorithm with S; = COV and Sy = C'OVj. For this case, it turns
out that that the generalized kurtosis measure D;; can be transformed into an estimate
of the classical kurtosis measure for the j** independent components, specifically by taking
Rj = (p+2)(Dj; —1). Simulations given in Nordhausen, Oja, and Ollila (2008a) indicate the
performance of the algorithm is better when more robust scatter functionals are used.

3.5. Multivariate nonparametrics

Multivariate extensions of univariate signs, ranks and the median can be easily obtained by
applying signs, ranks and medians to the individual components of a multivariate dataset.
Such componentwise or marginal signs, ranks and median, as well as spatial signs, spatial
ranks and spatial median, are not invariant or equivariant under affine transformations of the
data. This lack of invariance is partially responsible for the lack of power or efficiency when
the data are highly correlated, see e.g. Bickel (1965) and Puri and Sen (1971).

To construct invariant tests and estimates using such multivariate signs and ranks, Chakraborty
and Chaudhuri (1996), Chakraborty and Chaudhuri (1998) and Chakraborty, Chaudhuri,
and Oja (1998) introduced the ‘transformation-retransformation’ (TR) technique. The TR
method first linearly transforms the data to a new invariant coordinate system, and then the
marginal tests or estimates are constructed on the transformed coordinates. Finally, estimates
can then be retransformed to the original coordinate system. The transformation used in the
TR technique in one sample problems is based on the selection of p data points. The data
is then linearly transformed so that these p data points are mapped into the Euclidean basis
vector. A major difficulty with the TR procedure involves the selection of the ‘best’ p data
vectors.

In this section we discuss how the ICS transformation can be used as a simpler alternative
in the construction of invariant componentwise tests and estimates. We concentrate here on
the signs, ranks, and medians for the one sample problem. For applications of ICS in the two
sample problem see Nordhausen, Oja, and Tyler (2006).
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Suppose X arises as a random sample from a p-variate continuous distribution. Further,
assume its distribution is symmetric about some unknown location parameter p. In other
words, the distributions of (z; — pu) and —(x; — p) are assumed to be the same. Consider
first the problem of testing the null hypothesis Hy : © = 0. To apply the ICS method to
this testing problem, we require now that the two scatter matrices be scatter matrices with
respect to the origin, as defined in Section 2, and to be invariant under permutations of the
data points. Hence, for k = 1, 2, we require

S(PJXAT) = ASp(X)AT
for any nonsingular A, permutation P and sign-change .JJ, which then implies
B(PJX) = B(X).

Under the null hypothesis, the rows of X represent a random sample from a distribution
symmetric about the origin. Hence, the distribution of X and PJX are the same for any
permutation matrix P and any sign-change matrix J. Consequently, for such P and J,

Z(X)=XB(X)" ~y PJZ(X).

Note that the rows of Z, z; for ¢ = 4,...,n, do not represent a random sample since the
transformation matrix B(X) is data dependent. Nevertheless, under the null hypothesis, the
n observations in Z have an exchangeable and symmetric distribution.

Consider now the jth component or column of Z which corresponds to (21j,...,2,;) . It
then readily follows that under the null hypothesis

n
Uj =Y I(zi5 > 0) ~4 Bin(n,0.5)
=1

for each j = 1,...,p. Hence, the sign test statistic U; is distribution-free and invariant under
any nonsingular linear transformation of the data. Likewise, if we denote R;; to be the rank
of || among |21, ..., |zn;|, then the Wilcoxon signed-rank statistic

W; = ngn(zij)R;;

i=1

is also distribution-free under the null hypothesis, specifically it has the distribution of the uni-
variate Wilcoxon sign-rank statistic, and is similarly invariant. Note that these test statistics
are distribution-free under any symmetric model and not only under elliptically symmetric
models. Of course, other score functions can be used in an analogous manner.

Unfortunately, U, ...,U, as well as Wy,..., W, are not mutually independent and their
corresponding joint distributions are not distribution-free under the null hypothesis. Exact
finite sample distribution-free tests can be constructed though if one uses only one of the
extreme ICS, specifically Uy or U, for the sign test or Wi or W), for the sign-rank test.
Which extreme should be used depends on the choice of the scatter statistics used in the
ICS transformation. Alternatively, conservative finite sample distribution-free tests can be
constructed if one uses each of the test statistics, that is either Ui,...,U, or Wr,..., W),
together with Bonferonni’s method. Another alternative is to combine the individual test

11
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statistics, either the two extremes or all p, to form approximate y? statistics as described in
Puri and Sen (1971).

Nordhausen et al. (2006) compare the efficiencies of the following three strategies: (i) using
only one of the extreme components, (ii) using an approximate x? statistic based on the first
and last component, and (iii) using an approximate x? statistic based on all the components.
Although the exact as well as the asymptotic distribution of (ii) and (iii) are still open
questions, the efficiency comparisons showed that a X% approximation works well for strategy
(iii). Furthermore, strategy (iii) using the Wilcoxon signed-rank statistics appears to be the
best test statistic among these, and is a serious competitor to Hotelling’s T2 test even at
the multivariate normal model. These tests using signs and ranks in an ICS are not only
distribution-free under elliptically symmetric models but rather under any symmetric model.

To obtain an affine equivariant location estimate in this setting, let i be either the vector of
marginal medians or the vector or marginal Hodges-Lehmann estimators. These, by them-
selves, are not a true multivariate location statistics since they are not affine equivariant.
However, they can be applied to the ICS transformed coordinates (where the scatter matrices
now are not taken with respect to the origin), and then transformed back to the original
coordinates. This gives

uX)=pxB) (BN,

where B = B(X) is the ICS transformation matrix. The resulting statistic i(X) then cor-
responds to an affine equivariant multivariate median, or respectively Hodges-Lehmann es-
timator. Applying this method with any other univariate location statistics yields an affine
equivariant multivariate version of the statistic. Note that if the univariate statistic is the
sample mean, then the resulting multivariate statistic is the usual multivariate sample mean.

4. ICS and R

The package ICS is freely available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=ICS and comes under the GNU General Public Licence
(GPL) 2.0 or higher licence.

The main function of the package ICS is the function ics. This function computes for a given
numeric data frame or matrix the unmixing matrix, the (generalized) kurtosis values and the
invariant coordinates. The function is written in a flexible way so that the user can choose for
their computations any two scatter functions desired. The user can either submit the name
of two arbitrary functions that return a scatter matrix or submit two scatter matrices already
computed in advance to the arguments S1 and S2.

In principle after deciding on two scatter matrices which scatter matrix is chosen as S7 and
which as Sy makes no difference. The effect of relabeling S; and Sy is that the coordinate
order is reversed and that the kurtosis values are inverted. The later is however only the case
when S7 and Sy are both actual scatter matrices and none of them is a shape matrix. If one
or both of S; and S are shape matrices, the product of the kurtosis after reversing one of
the vectors is no longer 1 anymore but only constant since in this case, the kurtosis measures
are only relative.

To avoid arbitrary scales for the kurtosis values and in order to make them also more compa-
rable, the logical argument stdKurt can be used to decide if one wants the absolute values of
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the kurtosis measures or one rather wants them standardized in such a way, that the product
of the kurtosis elements is 1.

The best choice for S; and Sy for a given data set is still an open question, in most cases
the choice seem not to have a very big effect, in some cases however as shown for example
in Tyler et al. (2008) it can have a substantial effect. Also the choice can depend heavily on
the application. When, for example, the estimation of the mixing matrix in an independent
components analysis is the goal, then the simulation study given in Nordhausen et al. (2008a)
shows that robust combinations always dominate non-robust combinations, even when there
are no outliers present. Whereas in Nordhausen, Oja, and Paindaveine (2008b) the com-
bination of scatter functionals had no impact on the efficiency of a test for location in the
symmetric independent component model, where ICS was used to recover the independent
components. In general, given the current knowledge of ICS, we recommend trying several
combinations of scatter matrices for 57 and S2. Here, R offers many possibilities. The package
ICS itself offers, for example, the matrix of fourth moments (cov4), the covariance matrix
with respect to the origin (covOrigin), a one-step Tyler shape matrix (covAxis) or an M es-
timator based on the ¢ distribution (tM). Other packages offer still more scatter matrices. The
following list names a few functions from different packages. For details about the functions
see the corresponding help pages.

e covRobust (Wang, Raftery, and Fraley 2003): cov.nnve.

e ICSNP (Nordhausen, Sirkid, Oja, and Tyler 2007): tyler.shape, duembgen.shape,
HR.Mest, HP1.shape.

e MASS (Venables and Ripley 2002): cov.rob, cov.trob.

e robustbase (Méchler, Rousseeuw, Croux, Todorov, Ruckstuhl, and Salibian-Barrera
2008): covMcd, covOGK.

e rrcov (Todorov 2008): covMcd, covMest, covOgk.

Naturally the user should ascertain that the scatter matrices he uses have all the different
properties like affine equivariance or independence property and so on, needed for the appli-
cation at hand. The application has also an impact on the preferred form of the unmixing
matrix B, which as mentioned above is not unique. The function ics offers two options via
the argument stdB. Setting this argument to Z standardizes the unmixing matrix B in such
a way, that all invariant coordinates are right skewed. The criterion used to achieve this is to
use the sign between the mean and median of each component. Whereas the option stdB =
"B" standardizes the ummixing matrix such that each row has norm 1 and in each row the
element with the largest absolute value has a positive sign. The later method is more natural
in an independent component model framework.

A call to the function ics creates an object of the S4 class ics and the package offers
several functions to work with such objects. The two most basic ones are the functions
show (equivalent to print) for a minimal output and summary for a more detailed output.
The generic function plot for an ics object returns a scatter plot matrix which shows by
default when p > 7 only those components with the three smallest kurtosis measures and
the three largest kurtosis measures, since often the main interest is on the components with
‘extreme’ kurtosis values. However using the index argument any component can be included
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or excluded in the scatterplot. Another plotting function for an ics object is the generic
screeplot.ics which works similar as R’s function screeplot for principal components with
the difference, that it plots the kurtosis values against the number of the component. The
function fitted returns the original data but it can also be used in the ICA framework when
some components may be suppressed. The invariant coordinates or independent components
can be obtained by calling ics.components. The transformation matrix or unmixing matrix
B can be extracted from an ics object by using coef.

Not mentioned so far is, that the package offers also two tests for multinormality. The function
mvnorm. skew.test is based on the difference between the mean vector and the vector of third
moments, implemented as mean3. And in the same spirit compares mvnorm.kur.test the
regular covariance matrix and covariance matrix of fourth moments.

For further details on the functions see their help pages and the references therein.

5. Examples for multivariate data analysis using an ICS

In this section we will present how to use ICS for the different purposes previously discussed.
For the examples we use for the output the option options(digits = 4) in R 2.7.1 (R
Development Core Team 2008) together with the packages ICS 1.2-0, ICSNP 1.0-2 (Nord-
hausen et al. 2007), MASS 7.2-44 (Venables and Ripley 2002), mvtnorm 0.9-2 (Genz, Bretz,
and Hothorn 2008), pixmap 0.4-9 (Bivand, Leisch, and Méchler 2008) and robustbase 0.4-3
(Méchler et al. 2008). Random seeds are provided for reproducibility of all examples.

5.1. Descriptive statistics

The first example will show how to obtain the four summary statistics from Section 3.2
using the the regular covariance matrix, the matrix of fourth moments, the mean vector and
the location estimated based on third moments. At the beginning we will load the needed
packages, create a random sample from a multivariate normal distribution, and create our
ICS. Note that due to our interest in the kurtosis the absolute kurtosis values are needed.

R> library("ICS")

R> library("mvtnorm")

R> set.seed(2)

R> X <- rmvnorm(1000, c(0, 0, 1))
R> ics.X <- ics(X, stdKurt = FALSE)
R> Z <- ics.components(ics.X)

The first summary statistic is the vector of means:

R> colMeans (X)
[1] 0.06200 0.02102 1.06619

The second summary statistic is the covariance matrix:

R> cov(X)
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[,1] [,2] [,3]
[1,] 1.030117 0.033838 -0.001187
[2,] 0.033838 0.988104 -0.003239
[3,] -0.001187 -0.003239 1.037944

The skewness measures are:

R> mean3(Z) - colMeans(Z)

IC.1 IC.2 IC.3
0.0010350 0.0135414 -0.0002974

Finally, as noted in Section 3.4, for this special case of ICS we can estimate the excess kurtosis
values from the generalized kurtosis measures of the ics object as follows:

R> (dim(X)[2] + 2) * (ics.X@gKurt - 1)

[1] 0.40294 0.02736 -0.22158

5.2. Diagnostic plots and dimension reduction

Exploratory data analysis is often used to get some understanding of the data at hand, with
one important aspect being the possible occurrence of atypical observations. Sometimes the
identification of these atypical observations is the goal of the data analysis, more often however
they must be identified and dealt with in order to assure the validity of inferential methods.
Most classical methods are not very robust when the multinormality assumption is violated,
and in particular when outliers are present.

Mahalanobis distance plots are commonly used to identify outliers. As we will demonstrate
now, outliers can also be identified using ICS. The example we use here is the modified wood
gravity data set which is for example part of the robustbase package as the data set wood.
This data set consists of 20 observations for six variables, with a few of the observations being
known outliers inserted into the data. This is a common data set used to demonstrate the
need for robust scatter matrices, and in particular high breakdown point scatter matrices, to
identify the outliers.

To demonstrate this idea, we first compute the Mahalanobis distances based on the sample
mean vector and the sample covariance matrix and then one based on the minimum volume
ellipsoid (MVE) estimate as implemented by cov.rob in the MASS package. Points which
have distances larger than ,/X]%;O.g% are usually viewed as potential outliers, and so we will
label such points accordingly.

R> library("MASS")

R> library("ICS")

R> data("wood", package = "robustbase")

R> mahal.wood <- sqrt(mahalanobis(wood, colMeans(wood), cov(wood)))
R> set.seed(1)

R> covmve.wood <- cov.rob(wood)

15
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Figure 1: Mahalanobis distance plots for the wood data set. The red points are according to
the robust Mahalanobis distances outliers.

R> maha2.wood <- sqrt(mahalanobis(wood, covmve.wood$center, covmve.wood$cov))
R> max.maha.wood <- max(c(mahal.wood, maha2.wood))
R> out.id <- ifelse(maha2.wood <= sqrt(qchisq(0.975, 6)), 0, 1)

It is worth noting that cov.rob in the MASS package does not actually give the raw MVE
but rather a reweigthed scatter matrix which uses the location and scatter from the MVE as
the initial statistics.

We next plot the distances against the observation number, include a horizontal line at the
cutoff value and color the points that exceed the cutoff according to the robust distances.

R> par(mfrow = c(1, 2), las = 1)

R> plot(mahal.wood, xlab = "index" ,ylab = "Mahalanobis distance",

+ ylim = c(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1)
R> abline(h = sqrt(qchisq(0.975, 6)))

R> plot(maha2.wood, xlab = "index", ylab = "robust Mahalanobis distance",
+ ylim = ¢(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1)
R> abline(h = sqrt(qchisq(0.975, 6)))

R> par(mfrow = c(1, 1))

As can be seen from Figure 1, the classical Mahalanobis distances do not reveal any outlier
whereas the robust distances classify 4 points as clear outliers and one borderline case.

The difference between the two Mahalanobis distances can also be observed in a distance
versus distance plot, which ideally should have all points on the bisector. The results of the
following code are given in Figure 2.
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Figure 2: Distance distance plots for the wood data set. The red points are according to the
robust Mahalanobis distances outliers.

R> plot(mahal.wood, maha2.wood, xlab = "regular Mahalanobis distance",

+ ylab = "robust Mahalanobis distance", ylim = c(0, max.maha.wood),

+ x1lim = c¢(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1,
+ las = 1)

R> abline(0, 1)

For outlier identification, it is usually necessary to use Mahalanobis distances based on robust
location and scatter statistics. Although, we still advise using robust scatter statistics for
ICS, identifying atypical observations using ICS tends to be less dependent on the robustness
properties of the scatter matrices being used. As an example, we fit here three different ICS
systems based on three different combinations of scatter matrices for the wood data set, and
observe that the choice of S and Sy does not seem to greatly affect the results.

R> library("ICSNP")

R> my.HR.Mest <- function(X,...) HR.Mest(X,...)$scatter
R> ics.default.wood <- ics(wood)

R> ics.2.wood <- ics(wood, tM(wood)$V, tM(wood, 2)$V)

R> ics.3.wood <- ics(wood, my.HR.Mest, HP1.shape)

R> par(mfrow=c(1, 3), las = 1, mar = c(5, 4, 1, 1) + 0.1)

17
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Figure 3: The last invariant coordinate from three different ICS’s. The red points are accord-
ing to the robust Mahalanobis distances outliers.

R> plot(ics.components(ics.default.wood)[,6], xlab = "index", ylab = "IC 6",
+ sub = "ICS using cov and cov4", col = out.id + 1, pch = 15 * out.id + 1)
R> plot(ics.components(ics.2.wood) [,6], xlab = "index", ylab = "IC 6",

+ sub = "ICS using tM(,1) and tM(,2)", col = out.id + 1,

+ pch = 15 * out.id + 1)

R> plot(ics.components(ics.3.wood)[,6], xlab = "index", ylab = "IC 6",

+ sub = "ICS using HR.Mest and HP1.shape", col = out.id + 1,

+ pch = 15 * out.id + 1)

R> par(mfrow = c(1, 1), las = 0)

From Figure 3, it can be noted that all three plots clearly display the four extreme points,
even though the three pairs of scatter matrices are quite different. The first ICS uses two
highly nonrobust scatter matrices, namely they have unbounded influence functions and zero
breakdown points. The other two ICS have bounded influence functions, non-zero but not
necessarily high breakdown points. The second ICS system presumes first moments, whereas
the third does not presume any moments.

The last example also demonstrates the ease of use for the ics function. One can submit
just two function names when the functions return only the scatter estimates, one can write
without difficulties a wrapper around functions that return more than a scatter matrix, as
done was done here for HR.Mest, or one can submit directly scatter matrices computed in
advance, such as (tM(wood)$V and tM(wood, 2)$V).

In practice, one often encounters very high dimensional data sets, and so a common practice
nowadays is to use PCA or other methods as a dimension reduction technique. The invariant
coordinates, i.e., ICS, can also be used for this purpose. We will demonstrate this on Fisher’s
Iris data set (Fisher 1936).

We start by loading the needed packages and call for the 4 explanatory variables in the data
set ics.

R> library("ICS")
R> library("MASS")
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Figure 4: Scatter plot matrix for invariant coordinates of the Iris data set.

R> data("iris")
R> iris.ics <- ics(iris[,1:4])
R> plot(iris.ics, col = as.numeric(iris[,5]))

The invariant coordinates are then plotted with different colors for the different species in
Figure 4. As can be seen in this figure, the coordinate with the lowest generalized kurtosis
separates the three species very well, even though the species identification is not being
taken into account in this analysis. Heuristically spoken one can say that the last coordinate
corresponds to Fisher’s linear discriminant subspace.

Since both ICS and PCA can serve as dimension reduction methods which helps identify
clusters, we also plot for comparison purposes the principal component variables for the Iris
data.

R> pairs(princomp(iris[,1:4])$scores, col = as.numeric(iris[,5]))

19
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Figure 5: Scatter plot matrix for principal components of the Iris data set.

By comparing Figures 4 and 5, we note that both plots clearly separates one species from the
other two, but the PCA plot is less successful than the ICS plot at distinguishing between
the other two species.

Finally, we look at a so called discriminate coordinate plot, which unlike the two previous
plots takes into account the group memberships. Such a plot can be done using ics by
specifying as S7 the regular covariance matrix and as So the within group matrix, which we
will call cov.within.

R> p <- dim(iris[, 1:4]1)[2]

R> n <- dim(iris[, 1:4])[1]

R> ngroup <- aggregate(iris$Species, list(iris$Species), length)$x
R> colMeans.iris <- colMeans(iris[, 1:4])

R> colMeans.iris.groups <- by(iris[, 1:4], iris$Species, colMeans)
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Figure 6: Discriminate coordinate plot for the Iris data set.

R> colMeans.iris.diffs <- sapply(colMeans.iris.groups,"-",

+ colMeans.iris, simplify = FALSE)

R> matrix.iris <- sapply(colMeans.iris.diffs, tcrossprod, simplify = FALSE)
R> freq <- rep(ngroup, each = p~2)

R> matrix.iris <- array(unlist(matrix.iris),

+ dim = c(p, p, nlevels(iris$Species)))

R> cov.within <- rowSums (matrix.iris * freq, dims = 2)/n

R> ics.iris.disc <- ics(iris[,1:4], cov(iris[,1:4]), cov.within)

R> plot(ics.iris.disc, col = as.numeric(iris$Species))

As can be seen from Figures 4 and 6, the fourth component of ICS a and the first component
of the discriminate analysis are similar. As noted in Section 3.3, this is what is theoretically
anticipated. We continue by taking a closer look at the 4th invariant coordinate of iris.ics.



22 ICS: Tools for Exploring Multivariate Data

Kernel Density of 4th component

0.5 —

0.4

Density
o
w
|

0.2 —

0.1

0.0 4 - T I\ mwlw LIl

-1 0 1 2

N =150 Bandwidth =0.15

Figure 7: Kernel density estimate of the 4th invariant coordinate of the Iris data set with
rugs for the different species. Bandwidth = 0.15.

Looking at a kernel density estimate of that component, with rugs representing the different
species, confirms that this component serves very well for discriminating among the three
species (see Figure 7).

R> iris.z <- ics.components(iris.ics)

R> plot(density(iris.z[,4], bw = 0.15), las = 1,

+ main = "Kernel Density of 4th component")

R> rug(iris.z[1:50, 4], col = 1)

R> rug(iris.z[51:100, 4], col = 2)

R> rug(iris.z[101:150, 4], col = 3, ticksize = -0.03)

This result agrees also with Bugrien (2005) who used ICA components for classification for
the same data.

To demonstrate this we will randomly select 80% of the observations of the data set as the
training set and use first the regular data to create a linear discrimination rule to classify the
remaining 20% of the observations and afterwards we will use the training set to create an
invariant coordinate system and use only the 4th component to create the discrimination rule
and classify the test sample using this rule.

R> set.seed(4321)
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R> train <- sample(1:150, 120)

R> lda.iris <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length +
+ Petal.Width, prior = c(1, 1, 1)/3, data = iris, subset = train)

R> table(iris[-train, 5], predict(lda.iris, iris[-train, ])$class)

setosa versicolor virginica

setosa 12 0 0
versicolor 0 11 1
virginica 0 1 5

R> ics.iris <- ics(as.matrix(iris[train, 1:4]))

R> iris.comp4 <- (ics.components(ics.iris))[,4]

R> lda.ics.iris <- lda(iris$Species[train] ~ iris.comp4, prior = c(1, 1, 1)/3)
R> iris.comp4.pred <- (as.matrix(iris[-train, 1:4]) 7}*J} t(coef(ics.iris)))[,4]
R> table(iris[-train, 5], predict( lda.ics.iris,

+ data.frame(iris.comp4 = iris.comp4.pred))$class)

setosa versicolor virginica

setosa 12 0 0
versicolor 0 12 0
virginica 0 1 5

As the two tables show, both methods classify the species pretty well, however using an ICS
we were able to reduce the number of explanatory variables from four to one.

In our analysis of the Iris data, the number of components considered for further analysis has
been based only on graphical arguments. The values of the generalized kurtosis parameters
can also be used to help decide which components may be of further interest. Within the
framework of principal axis analysis (PAA) clear guidelines have been proposed. As pointed
out in Section 3.3, PAA is a special case of ICS. Consequently, we demonstrate with the Iris
data how PAA can be implemented using the function ics.

ICS yields PAA by calling ics using cov and covAxis for the centered data and requires the
absolute values of the generalized kurtosis measures. Which in this case correspond to what
is called the empirical alignment values in PAA.

R> iris.centered <- sweep(iris[,1:4], 2, colMeans(iris[,1:4]), "-")
R> iris.paa <- ics(iris.centered, cov, covAxis, stdKurt = FALSE)

In PAA, the generalized kurtosis measures are referred to as the empirical alignment values,
which we now extract. The mean of the empirical alignment values always equals one.

R> emp.align <- iris.paa@gKurt
R> mean(emp.align)

(1] 1

R> emp.align
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Figure 8: Screeplot for iris.paa. Components that exceed the vertical line are of interest.

[1] 1.2336 1.0168 0.9312 0.8184

The PAA guidelines given in Critchley et al. (2008) for deciding which components deserve to
be considered for further analysis are those which have an empirical alignment greater than
one. This can be visualized by using a screeplot and checking which components are indeed
larger than one (see Figure 8).

R> screeplot(iris.paa, las = 1)
R> abline(h = 1)

So, in this example, we note that the first component is of clear interest whereas the second
component may be of boarderline interest.

5.3. Independent components analysis

Independent components analysis has many applications as, for example, in signal processing
or image separation. We will demonstrate here how the function ics can be used to restore
three images which have been mixed by a random mixing matrix. The three images, which
are displayed in the first row of Figure 9, are part of the package ICS. Each of them is on a
greyscale and has 130 x 130 pixels. The figures are loaded as follows:

R> library("ICS")
R> library("pixmap")
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R> figl <- read.pnm(system.file("pictures/cat.pgm", package = "ICS")[1])
R> fig2 <- read.pnm(system.file("pictures/road.pgm", package ="ICS")[1])
R> fig3 <- read.pnm(system.file("pictures/sheep.pgm", package = "ICS")[1])

For our analysis we have to vectorize the pixel matrices and combine them to form a data set.

R> p <- dim(figl@grey) [2]
R> X <- cbind(as.vector(figl@grey), as.vector(fig2@grey), as.vector(fig3@grey))

Next, we create a 3 x 3 mixing matrix A (the random seed is here set to ensure a proper
mixing of the three pictures), mix the three pictures and use the FOBI algorithm via ics to
recover the pictures.

R> set.seed(4321)

R> A <- matrix(rnorm(9), ncol = 3)
R> X.mixed <- X }*) t(A)

R> ICA.fig <- ics(X.mixed, stdB="B")

For a good comparison we plot into one figure in the first row the three original pictures, in
the second row the three mixed pictures, and in the last row the recovered images.

R> par(mfrow = c(3, 3), omi = rep(0.1, 4), mai = rep(0.1, 4))
R> plot(figl)
R> plot(fig2)
R> plot(fig3)

R> plot(pixmapGrey(X.mixed[,1], ncol = p))
R> plot(pixmapGrey(X.mixed[,2], ncol = p))
R> plot(pixmapGrey(X.mixed[,3], ncol = p))
R> plot(pixmapGrey(ics.components(ICA.fig)[,1], ncol = p))
R> plot(pixmapGrey(ics.components(ICA.fig)[,2], ncol = p))
R> plot(pixmapGrey (ics.components(ICA.fig)[,3], ncol = p))

As Figure 9 shows, we are able to recover the three images quite well. The new order of the
images is related to their generalized kurtosis measures. Also, the cat is now a negative, since
the signs of the components are not fixed. However the positive version of the cat could be
easily obtained by multiplying the corresponding component by -1 before the plotting.

5.4. Multivariate nonparametrics

In this section, we demonstrate via examples, the use of an invariant coordinate system for
estimation and testing problems. For the estimation example, we choose the componentwise
Hodges-Lehmann estimator (Hettmansperger and McKean 1998). For the testing example,
we use the one sample location test using marginal normal scores (Puri and Sen 1971).

We start the demo with loading the three packages needed.

R> library("ICS")
R> library("mvtnorm")
R> library("ICSNP")
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Figure 9: ICA for three pictures. First row are the original pictures, second row the mixed
pictures and the last row the pictures recovered by ICA.

Now we will create a simulated data matrix X of 150 samples coming form a N3((1 2 —1),1)
distribution, a 3 x 3 transformation matrix A and a location shift vector b = (1 1 1). The
transformed data will be denoted Xirans. Also needed is the function HL.estimator in order
to extract the Hodges-Lehmann estimator from the function wilcox.test.

R> set.seed(2000)

R> X <- rmvnorm(150, c(1, 2,-1))

R> A <- matrix(rnorm(9), ncol = 3)

R> b <- c(1, 1, 1)

R> X.trans <- sweep(X 7*J t(4A), 1, b, "+")

R> HL.estimator <- function(x){

+ wilcox.test(x, exact = TRUE, conf.int = TRUE)S$estimate}
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The results when applying then the Hodges-Lehmann estimator on X and transforming the
estimate using A and b and applying the estimator directly on Xians differ as the following
lines show.

R> HLE.X <- apply(X, 2, HL.estimator)
R> as.vector(HLE.X 7*}, t(A) + b)

[1] 4.2068 -0.3024 -1.9104
R> apply(X.trans, 2, HL.estimator)
[1] 4.2025 -0.2617 -1.9073

since the Hodges-Lehmann estimator is not affine equivariant.

This can be avoided as explained in Section 3.5 by using an ICS. We therefore use the function
ics and choose as 57 the regular covariance matrix and as Se Tyler’s shape matrix. First we
will apply it only on X, estimate using the obtained coordinates the Hodges-Lehmann esti-
mate and transform the estimate back into the original coordinates using the inverse of the
transformation matrix B~!, this estimate is denoted as HL.ics.X. Repeating the same pro-
cedure on the transformed data X A" we can see that the corresponding estimate HL.ics.AX
equals the transformed estimate of HL.ics.X.

R> ics.X <- ics(X, S1 = cov, S2 = tyler.shape)

R> HL.ics.Z1 <- apply(ics.components(ics.X), 2, HL.estimator)

R> HL.ics.X <- as.vector(HL.ics.Z1 }*}, t(solve(coef(ics.X))))

R> ics.X.trans <- ics(X.trans, S1 = cov, S2 = tyler.shape)

R> HL.ics.Z2 <- apply(ics.components(ics.X.trans), 2, HL.estimator)

R> HL.ics.X.trans <- as.vector(HL.ics.Z2 },*}, t(solve(coef(ics.X.trans))))
R> as.vector(HL.ics.X }*J t(A) +b)

[1] 4.2092 -0.3084 -1.9269
R> HL.ics.X.trans
[1] 4.2092 -0.3084 -1.9269

For the testing example we first generate a random sample of size 60 coming from a 4-variate
te distribution having mean (0 0 0 0.48). The 4 x 4 transformation matrix in this context is
called A2.

R> set.seed(1979)

R> Y <- rmvt (60, diag(4), df = 6) + matrix(rep(c(0, 0.48), c(3%60, 60)),
+ ncol = 4)

R> A2 <- matrix(rnorm(16), ncol = 4)

We test the null hypothesis that the sample has the origin as its location on the original data
Y first, and then for the transformed data Y A2T. For invariant tests, the decisions are the
same.
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R> rank.ctest (Y, scores = '"mormal")
Marginal One Sample Normal Scores Test

data: Y
T = 9.653, df = 4, p-value = 0.04669
alternative hypothesis: true location is not equal to c(0,0,0,0)

R> rank.ctest((Y /*J), t(A2)), scores = "normal")
Marginal One Sample Normal Scores Test

data: (Y %x*% t(A2))
T =9.387, df = 4, p-value = 0.05212
alternative hypothesis: true location is not equal to c¢(0,0,0,0)

As expected the decisions differ, they differ even that much, that assuming an a-level of 0.05
we would once reject and once fail to reject the null hypothesis.

Again, using an ICS avoids this problem. However, when testing a location parameter we
have a hypothesis for it which should also be used in the computation of the scatter matrices.
Therefore when creating our ICS we use scatter matrices with respect to the origin.

R> Z.Y <- as.matrix(ics.components (ics(Y,
+ S1 = covOrigin, S2 = cov4, S2args = list(location = "Origin"))))
R> rank.ctest(Z.Y, scores = "normal'")

Marginal One Sample Normal Scores Test

data: Z.Y
T =9.737, df = 4, p-value = 0.04511
alternative hypothesis: true location is not equal to c(0,0,0,0)

R> Z.Y.trans <- as.matrix(ics.components(ics(Y 7%*}, t(A2),
+ S1 = covOrigin, S2 = cov4, S2args = list(location = "Origin"))))
R> rank.ctest(Z.Y.trans , scores = "normal')

Marginal One Sample Normal Scores Test

data: Z.Y.trans
T =9.737, df = 4, p-value = 0.04511
alternative hypothesis: true location is not equal to c(0,0,0,0)
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Robust Independent Component Analysis
Based on Two Scatter Matrices

Klaus Nordhausen!, Hannu Oja' and Esa Ollila?
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Oja, Sirkid, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed
that, under general assumptions, any two scatter matrices with the so called
independent components property can be used to estimate the unmixing ma-
trix for the independent component analysis (ICA). The method is a general-
ization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular
covariance matrix and a scatter matrix based on fourth moments. Different
choices of the two scatter matrices are compared in a simulation study. Based
on the study, we recommend always the use of two robust scatter matrices.
For possible asymmetric independent components, symmetrized versions of
the scatter matrix estimates should be used.

Keywords: Affine Equivariance, Kurtosis, Source Separation.

1 Introduction

Let x1, s, ..., x, be a random sample from a p-variate distribution, and write
X = (xl Ty ... xn)
for the p X n data matrix. We assume that X is generated by
X =AZ,

where Z = (2125...2,) and 21, . .., 2, are independent and identically distributed latent
random vectors having independent components and A is a full-rank p x p mixing ma-
trix. This model is called the independent component (IC) model. The model is not well
defined in the sense that the model may also be written as

X=A7Z

where
A*=AP'D! and Z*=DPZ

for any diagonal matrix D (with nonzero diagonal elements) and for any permutation
matrix . (A permutation matrix P is obtained from identity matrix /, by permuting its
rows.) If Z has independent components, then also the components of Z* = DPZ are
independent. The problem in the so called independent component analysis (ICA) is to
find an unmixing matrix B such that Bx; has independent components. Based on the
discussion above, the solution is then not unique: If B is an unmixing matrix, then so is
DPB.

Most ICA algorithms then proceed as follows. (For a recent review of different ap-
proaches, see Hyvirinen, Karhunen, and Oja, 2001.)
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1. To simplify the problem it is first commonly assumed that the x; are whitened so
that E(z;) = 0 and cov(x;) = I,. Then

X=U7"

with an orthogonal matrix U and Z* with (columns having) independent compo-
nents such that E(z) = 0 and cov(z]) = I,

2. For the whitened data X, find a p X r matrix U with orthonormal columns (r < p)
which maximizes (or minimizes) a chosen criterion function, say g(U’X). Mea-
sures of marginal nongaussianity (negentropy, kurtosis measures) g(u'X) and like-
lihood functions with different choices of marginal distributions are often used.

In the FastICA algorithm (Hyvérinen and Oja, 1997) for example in each iteration step
(for stage 2) the columns of U are updated one by one and then orthogonalized. The
criterion of the FastICA algorithm maximizes the negentropy which is approximated by

9(u'X) = [ave{h(u'z;)} — E[h(2)]] (D

with z ~ N(0, 1) and with several possible choices for the function A(-).

A different solution to the ICA problem, called FOBI, was given by Cardoso (1989):
After whitening the data as above (stage 1), an orthogonal matrix U is found as the matrix
of eigenvectors of a kurtosis matrix (matrix of fourth moments; this will be discussed
later). The data transformation consists of a joint diagonalization of the regular covariance
matrix and of the scatter matrix based on fourth moments. FOBI was generalized in Oja et
al. (2006) (real data) and Ollila et al. (2007) (complex data) where any two scatter matrices
which have the so called independent components property can be used. An interesting
question then naturally arises: How should one choose these two scatter matrices in a
good or optimal way?

The paper is organized as follows. First, in Section 2 scatter matrices and their use
in the estimation of an unmixing matrix is reviewed. In Section 3 we describe the results
from simulation studies where new ICA estimates with several choices of scatter matrices
are compared to classical FastiICA and FOBI estimates. Also an image analysis example
is given. The paper ends with some conclusions in Section 4.

2 Two Scatter Matrices and ICA

Let x be a p-variate random vector with cdf F,. A functional T'(F') is a p-variate location
vector if it is affine equivariant in the sense that T'(F4,p) = AT(F,) + b for all z, all
full-rank p x p matrices A and all p-variate vectors b. Using the same notation, a matrix-
valued p x p functional S(F') is called a scatter matrix if it is positive definite, symmetric
and affine equivariant in such way that S(Fa,.,) = AS(F,)A’ for all z, A and b. The
regular mean vector F/(z) and covariance matrix C'ov(z) serve as first examples. There
are numerous alternative techniques to construct location and scatter functionals, e.g. M-
functionals, S-functionals, etc. See e.g. Maronna, Martin, and Yohai (2006).

A scatter matrix S(F') is said to have the independent components (IC-) property if
S(F.,) is a diagonal matrix for all z having independent components. The covariance
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matrix naturally has the IC-property. Other classical scatter functionals (M-functionals,
S-functionals, etc.) developed for elliptical distributions do not generally possess the IC-
property. However, if z has independent and symmetrically distributed components, then
S(F,) is a diagonal matrix for all scatter functionals S. It is therefore possible to develop
a symmetrized version of a scatter matrix S(F'), say Sy, (), which has the IC-property;
just define

Ssym(Fm) = S(F11*x2)7

where z; and 7, are two independent copies of X. See Oja et al. (2006), Ollila et al.
(2007) and Sirkii, Taskinen, and Oja (2007).

An alternative approach to the ICA using two scatter matrices with IC-property (Oja
et al., 2006, Ollila et al., 2007) has the following two steps:

1. The z; are whitened using 5, (instead of the covariance matrix) so that Sy (F,) =
I,,. Then
X=U7

with an orthogonal matrix U and with Z* with (columns having) independent com-
ponents such that S (2]) = I,,.

2. For the whitened data X, find an orthogonal matrix U as the matrix of eigenvectors
of S 2 (F Z; ) .

The resulting data transformation X — BX then jointly diagonalizes S; and 5
(S1(BX) = I, and S3(BX) = D) and the unmixing matrix B solves

Sy'S1B'=B'D™.

The matrix B is the matrix of eigenvectors and the diagonal matrix D is the matrix of
eigenvalues of S;'S;. Note the similarity between our ICA procedure and the principal
component analysis (PCA): The direction u of the first eigenvector of S, 'S; maximizes
the criterion function (u'Sju)/(u' Sou) which is a measure of kurtosis (ratio of two scale
measures) rather than a measure of dispersion (as in PCA) in the direction u, etc. The
independent components are then ordered according to this specific kurtosis measure.
The solution is unique if the eigenvalues of S, 'S, are distinct.

Different choices of S; and S, naturally yield different estimates B. First, the re-
sulting independent components BX are rescaled by S; and they are given in an order
determined by Ss. Also the statistical properties of the estimates B (convergence, limit-
ing distributions, efficiency, robustness) naturally depend on the choices of .S; and Ss.

3 Performance Study

3.1 The Estimates B to be Compared

We now study the behavior of the new estimates B with different (robust and non-robust)
choices for S, and Ss. The classical FastICA procedures which use

hy(v'x;) = log(cosh(u'z;)) or  ho(u'z;) = —exp(—u'z;)
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in equation (1) serve as a reference. These algorithms will be denoted as Fast/CA 1 and as
FastICA2, respectively. According to Hyvirinen and Oja (2000), these choices are more
robust than the traditional negentropy estimate with criterion

1 1
g(u'X) = — [ave {(u'xi)?’}}Z + — [ave {(v'z;)*} — 3]2 :
12 48
The FOBI estimate by Cardoso (1989) assumes that the centering is done using the
mean vector, and

Su(F)=covls) and So(Fy)=— 5B [I7 (@ ~ B@)|Pla~B()a—B() ]
Then S5 is a scatter matrix based on the fourth moments, both S; and S5 possess the
IC-property, and the independent components are ordered with respect to their classical
kurtosis measure. The FOBI estimate is member in the new class of estimates but highly
non-robust due to the choices of S} and S,.

In our simulation study we consider scatter matrices which are (unsymmetrized and
symmetrized) M-functionals. Simultaneous M-functionals for location and scatter cor-
responding to chosen weight functions ws(r) and ws(r) are functionals which satisfy
implicit equations

T(F,) = [Elw,(r)]] " 'Elw, (r)x] and S(F,) = E[wsy(r)za'],
where 7 is the Mahalanobis distance between = and 7'(F,), i.e.
r? = (x —T(F,))S(F,)  (z — T(F,)).
In this paper we consider Huber’s M-estimator (Maronna et al., 2006) with

1/0? r<c

1 r<c B
wl(r)_{c/r r>c and w2(r)_{02/02r2 r>c.

The tuning constant c is chosen to satisfy ¢ = Pr(x; < ¢?) and the scaling factor ¢
so that E[x ws(x2)] = p. Tyler’s shape matrix (Tyler, 1987) is often called the most
robust M-estimator. Tyler’s shape matrix and simultaneous spatial median estimate, see
(Hettmansperger and Randles, 2002), have the weight functions

wy(r) = - and  wo(r) = 7%

Symmetrized versions of Huber’s estimate and Tyler’s estimate then possess the IC-
property. The symmetrized version of Tyler’s shape matrix is also know as Diimbgen’s
shape matrix (Diimbgen, 1998).

In this simulation study we compare

e FastICA1 and FastICA2 estimates
e El1: FOBI estimate
e E2: Estimate based on the covariance matrix and Tyler’s shape matrix

e E3: Estimate based on Tyler’s shape matrix and the covariance matrix
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e E4: Estimate based on Tyler’s shape matrix and Diimbgen’s shape matrix
e ES5: Estimate based on Tyler’s shape matrix and Huber’s M-estimator (¢ = 0.9)

e E6: Estimate based on Diimbgen’s shape matrix and symmetrized Huber’s M-
estimator (¢ = 0.9).

All computations are done in R 2.4.0 (R Development Core Team, 2006); the package
fastICA (Marchini, Heaton, and Ripley, 2006) was used for the FastICA solutions and the
package ICS (Nordhausen, Oja, and Tyler, 2006) for the new method.

3.2 Simulation Designs

In this simulation study the independent components are all symmetrically distributed.
Therefore all choices of S; and S5 are acceptable. The designs were as follows:

e Design I: The p = 4 independent components were generated from (i) a normal
distribution, (i) a uniform distribution, (ii1) a t3 distribution, and (iv) a Laplace
distribution, respectively (all distributions with unit variance.) The sample sizes
ranged from n = 50 to n = 2000. For each sample size, we had 300 repetitions.
For all samples, the elements of a mixing matrix A were generated from a N (0, 1)
distribution.

e Design II: As Design I but with outliers. The max(1,0.01n) observations x; with
the largest Lo norms were multiplied by s;u; where s; is +1 or —1 with probabilities
1/2 and u; has a Uniform(1, 5) distribution. This was supposed to partially destroy
the dependence structure.

3.3 Performance Index

Let A be the “true” mixing matrix in a simulation and B an estimate of an unmixing
matrix. For any true unmixing matrix B, BA = PD with a diagonal matrix D and a
permutation matrix P. Write G = (g,;) = BA. The performance index (Amari, Cichocki,
and Yang, 1996)

p p p

1 i - 4

i=1 \j= i=1

is then often used in comparisons. Now clearly P/(PG) = PI(G) but PI(DG) =
PI(G) is not necessarily true. Therefore, for a fair comparison, we standardize and re-
order the rows of B = (by ...b,)" (B — PDB) such that

o ||bi]|=1,i=1,...,p
o max(b;,...,b;p) =max(|bal,...,|byp|),i=1,....p
° maX(bﬂ, .. .,bip) > max(bjl,. .. ,bjp), 1<9 S] < D-

For the comparison, also A~! is standardized in a similar way. R
The performance index PI(G) can take values in [0, 1]; the smaller is PI(BA) the
better is the estimate B.
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Figure 1: Results of the simulations. The top row shows the results for Design I and
the bottom row for Design /. The left column shows the mean of P/ (B’A) for 300
repetitions and the right column boxplots of PI(G) when n = 1000. The estimates based
on two scatter matrices besides F'OBI are E2: covariance matrix & Tyler’s shape matrix,
E3: Tyler’s shape matrix & covariance matrix, £4: Tyler’s shape matrix & Diimbgen’s
shape matrix, £/5: Tyler’s shape matrix & Huber’s M-estimator and £6: Diimbgen’s
shape matrix & Symmetrized Huber’s M-estimator.

3.4 Simulation Results

The results of the simulations are summarized in Figure 1 and show, that in the non-
contaminated case (Design /) the two versions of the fastICA algorithm dominate all
estimates based on two scatter matrices. Surprisingly, in this case, the FOBI estimate
seems to be the worst choice among all, whereas the best is estimate E6 which is based
on two symmetrized scatter matrices. The differences are minor, however. The results
change considerably when adding outliers (Design /7). The procedures £'4, 5 and F6
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based on two robust scatter matrices are least affected by the outliers. Estimate £6 using
robust symmetrized estimates presumably has a lowest breakdown point among the robust
estimates which may explain its slightly worse behavior here. The order in which the two
scatter matrices are used has no effect on the results; £2 and £3 have naturally the same
performance in the simulations.

3.5 An Example

To demonstrate the effect of outliers in a real example we will attempt to unmix three
mixed images. The original images which show a cat, a forest track and a sheep, are all
in a greyscale having each 130 x 130 pixels and are part of the the R-package ICS. In the
analysis of image data, the pixels are thought to be individuals (n = 130 x 130), and each
individual has three measurements corresponding to the three pictures (p = 3). The three
pictures are first mixed with a random 3 x 3 matrix using the vector representation of the
pictures. Contamination is added to the first mixed image by blackening 60 pixels in the
right upper corner, which corresponds to less than 1 percent of outliers. The algorithms
E5 and FastIC A2 are then applied to recover the original images. To retransform the
independent components to a reasonable greyscale, for all independent components, val-
ues smaller than the 2.5% quantile are replaced by the quantile and the same was done for
values larger than the the 97.5% quantile. The result is shown in Figure 2.

As can be seen, some images are negatives of the original images. This is due to the
arbitrary sign of the independent components. Nevertheless, it can be observed, that £'5
performs better than FlastIC' A2 even when the amount of contamination is so small. The
algorithm E'5 recovers the two images with the sheep and the cat well and only in the
image of the forest track the head of the cat is slightly present. In the images recovered
by FastIC' A2 however none could be called well separated. The picture with the cat
has still the windows that belong to the picture with the sheep and in the picture of the
sheep and of the forest track the head of the cat is still visible. The good performance
of E'5 is noteworthy here especially when considering that the images probably do not
have underlying symmetric distributions. Using two robust scatter matrices having the
IC-property like symmetrized scatter matrices might therefore even improve the result.
However the dimension of this example with 16900 observations and three variates is
currently too large to apply symmetrized scatter matrices since the resulting large number
of pairwise differences is a too huge computational task and hence not feasible.

4 Conclusion

Based on the simulation results, we recommend the use of two robust scatter matrices
in all cases. For possible asymmetric independent components, symmetrized versions
of the scatter matrix estimates should be used. Symmetrized scatter matrices are how-
ever based on U-statistics and computationally expensive; n = 1,000 observations for
example means almost 500, 000 pairwise differences. However, as the image example
shows, ICA problems have easily several thousand observations and therefore this is not
feasible yet. To relieve the computational burden, the original estimate may then be re-
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Figure 2: ICA for three pictures. The first row shows the original pictures, the second row
the mixed pictures including some contamination. The third row used two robust scatter
matrices (E5) to recover the pictures and the fourth row the FastIC A2 algorithm.
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placed by an estimate which is based on an incomplete U-statistic. Further investigation
is needed to examine the situations where the components are not symmetric. For asym-
metric independent components, FastICA algorithms for example are known to have a
poorer performance.

References

Amari, S., Cichocki, A., and Yang, H. (1996). A new learning algorithm for blind source
separation. In Advances in neural information processing systems 8 (p. 757-763).
Cambridge, MA.: MIT Press.

Cardoso, J. (1989). Source separation using higher order moments. In Proceedings of
IEEFE international conference on acustics, speech and signal processing (p. 2109-
2112). Glasgow.

Diimbgen, L. (1998). On Tyler’s M-functional of scatter in high dimension. Annals of
Institute of Statistical Mathematics, 50, 471-491.

Hettmansperger, T. P., and Randles, R. H. (2002). A practical affine equivariant multi-
variate median. Biometrika, 89, 851-860.

Hyvirinen, A., Karhunen, J., and Oja, E. (2001). Independent component analysis. New
York: Wiley.

Hyvirinen, A., and Oja, E. (1997). A fast fixed-point algorithm for independent compo-
nent analysis. Neural Computation, 9, 1483-1492.

Hyvirinen, A., and Oja, E. (2000). Independent component analysis: Algorithms and
applications. Neural Networks, 13, 411-430.

Marchini, J., Heaton, C., and Ripley, B. (2006). fastICA: FastICA algorithms to perform
ICA and projection pursuit [Computer software manual]. (R package version 1.1-8)

Maronna, R., Martin, R., and Yohai, V. (2006). Robust statistics. Chichester: Wiley.

Nordhausen, K., Oja, H., and Tyler, D. (2006). ICS: ICS / ICA computation based on two
scatter matrices [Computer software manual]. (R package version 0.1-2)

Oja, H., Sirkid, S., and Eriksson, J. (2006). Scatter matrices and independent component
analysis. Austrian Journal of Statistics, 35, 175-189.

Ollila, E., Oja, H., and Koivunen, V. (2007). Complex-valued ICA based on a pair of gen-
eralized covariance matrices. (Conditionally accepted by Computational Statistics
& Data Analysis)

R Development Core Team. (2006). R: A language and environment for statisti-
cal computing [Computer software manual]. Vienna, Austria. Available from
http://www.R-project.org (ISBN 3-900051-07-0)

Sirkid, S., Taskinen, S., and Oja, H. (2007). Symmetrized M -estimators of multivariate
scatter. Journal of Multivariate Analysis, 98, 1611-1629.

Tyler, D. E. (1987). A distribution-free M -estimator of multivariate scatter. Annals of
Statistics, 15, 234-251.



100 Austrian Journal of Statistics, Vol. 37 (2008), No. 1, 91-100

Authors’ Addresses:

Klaus Nordhausen

Tampere School of Public Health
FIN-33014 University of Tampere
Finland

E-mail: klaus.nordhausen@uta.fi

Hannu Oja

Tampere School of Public Health
FIN-33014 University of Tampere
Finland

E-mail: hannu.oja@uta.fi

Esa Ollila

Signal Processing Laboratory
Helsinki University of Technology
P.O. Box 3000

FIN-02015 HUT

Finland

E-mail: esollila@wooster.hut.fi



Festschrift for Tarmo Pukkila on his 60th Birthday

Eds. E.P. Liski, J. Isotalo, J. Niemel4, S. Puntanen, and G.P.H. Styan
© Dept. of Mathematics, Statistics and Philosophy,

Univ. of Tampere, 2006, ISBN 978-951-44-6620-5, pages 217-231

On the efficiency of invariant
multivariate sign and rank tests
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Abstract. Invariant coordinate selection (ICS) is proposed in Oja and Tyler
(2006) for constructing invariant multivariate sign and rank tests. The mul-
tivariate data vectors are first transformed to invariant coordinates, and
univariate sign and rank tests are then applied to the components of the
transformed vectors. In this paper, the powers of different versions of the one
sample and two samples location tests are compared via simulation studies.
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1 Introduction

The classical L type univariate sign and rank methods, estimates and tests,
have been extended quite recently to the multivariate case. Multivariate
extensions of the concepts of sign and rank based on (i) the vector of marginal
medians, (ii) the so called spatial median or vector median, and (iii) the affine
equivariant Oja median (Oja 1983) have been developed in a series of papers
with natural analogues of one-sample, two-sample and multisample sign
and rank tests. See e.g. Puri and Sen (1971), Motténen and Oja (1995), Oja
(1999), and Oja and Randles (2004) and references therein. These multivariate
location estimates and tests are robust and nonparametric competitors of
the classical MANOVA inference methods.

Unfortunately, the tests based on marginal signs and ranks and those
based on spatial signs and ranks are not invariant under affine transforma-
tions of the observation vectors. Chakraborty and Chaudhuri (1996, 1998)
and Chakraborty et al. (1998) introduced and discussed the so called trans-
formation and retransformation technique to circumvent the problem: The
data vectors are first linearly transformed back to a new, invariant coordinate
system, the tests and estimates are constructed for these new vectors of
variables, and, finally, the estimates are linearly retransformed to the original
coordinate system. In the one sample and several samples p-variate location
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problems, the transformation matrix was then based on p and p + 1 original
observation vectors, respectively.

Other nonparametric approaches for multivariate data analysis include the
depth-based rank sum tests introduced by Liu and Singh (1993). The so called
zonotopes and lift-zonotopes have been used to describe and investigate the
properties of a multivariate distribution, see Mosler (2002). Randles (1989)
developed an affine invariant sign test based on interdirections, and was
followed by a series of papers introducing nonparametric sign and rank
interdirection tests for multivariate one-sample and two-sample location
problems. These tests are typically asymptotically equivalent with spatial
sign and rank tests. Finally, in a series of papers, Hallin and Paindaveine
constructed optimal signed-rank tests for the location and scatter problems
in the elliptical model; see the seminal papers by Hallin and Paindaveine
(2002, 2006).

In this paper, as proposed by Oja and Tyler (2006), two different scatter
matrices are used to construct an invariant coordinate system. It is remark-
able that, in the new coordinate system, the marginal variables are ordered
according to their kurtosis. The multivariate variables are first transformed
to invariant coordinates, and the univariate sign and rank tests are then
applied to these transformed variables. Unlike most other invariant multi-
variate sign and rank methods, the resulting tests are distribution-free not
only at elliptically symmetric models but rather at any symmetric model. The
powers of different versions of the one sample and two samples location
tests are compared via simulation studies.

Hence the structure of the paper is as follows. In Section 2 we introduce
the basic notations and tools that are necessary to construct an invariant
coordinate system and show its relationship with the kurtosis of the compo-
nents. In Section 3 we point out different strategies to use univariate tests
on the transformed data components to test the location problem in the one
and two sample case. Section 4 gives results of a simulation study which
compares the performance of the different strategies. The paper ends with a
brief discussion in Section 5. For a complete discussion of this approach, see
Oja and Tyler (2006).

2 Invariant coordinate selection (ICS)
2.1 Notations
Let y1, 32, ..., ¥n be independent p-variate observations and write

Y=01y2 ... ¥n)

for the corresponding p X n data matrix in the one sample case. In the several
samples case, write
Y=(Y ... Y)



ON THE EFFICIENCY OF INVARIANT MULTIVARIATE SIGN AND RANK TESTS

where Y, ..., Y. are independent random samples with sample sizes ny, ...,
Ne, N =Ny + - - - + Ne, from p-variate distributions. In this paper we consider
the one sample and two samples multivariate location problems only.

It is often desirable to have statistical methods which are invariant or
equivariant under affine transformations of the data matrix, i.e. under trans-
formations of the form

yi—Ayi+b, i=1,...,n,

or equivalently
Y — AY + b1/,

where A is a full-rank p X p matrix and b is a p-vector. The vector 1 is a
n-vector full of ones. Some interesting transformations are orthogonal trans-
formations (Y — UY with U'U = UU’ = I), sign-change transformations
(Y — JY where J is a p X p diagonal matrix with diagonal elements +1), and
permutations (Y — PY where P is a p X p permutation matrix obtained by suc-
cessively permuting the rows and/or columns of I). Note that transformation
Y — YP with a n X n permutation matrix P permutes the observations.

2.2 Location vector and scatter matrices

We start by defining what we mean by a location statistic, a scatter statistic,
and a scatter statistic with respect to the origin:

Definition. (i) A p-vector valued statistic T = T(Y) is called a location statis-
tic if it is affine equivariant, that is,

T(AY +b1') = AT(Y) +b

for all full-rank p x p-matrices A and for all p-vectors b.
(ii) Second, p x p matrix § = S(Y) > 0 is a scatter statistic if it is affine
equivariant in the sense that

S(AY + b1') = AS(Y)A’

for all full-rank p X p-matrices A and for all p-vectors b.
(iii) Third, a scatter statistic with respect to the origin is affine equivariant
in the sense that
S(AY]) = AS(Y)A’

for all full-rank p x p-matrices A and for all n X n sign change matrices J.

If Y is a random sample, it is also natural to require that the statistics are
invariant under permutations of the observations, that is,

T(YP)=T(Y) and S(YP)=S(Y)

219



220

KLAUS NORDHAUSEN HANNU OJA DAVID E. TYLER

for all n x n permutation matrices P.

In the semiparametric elliptic model, for example, the location statistic
estimates the unknown center of symmetry g and the scatter statistic S(Y),
possibly multiplied by a correction factor, is an estimate of the regular covari-
ance matrix X if it exists. Different scatter statistics S1, So,... then estimate
the same population quantity but have different statistical properties (con-
sistency, efficiency, robustness, computational convenience). In practice, one
would choose the one that is most suitable for the problem at hand.

Different location and scatter statistics may also be used to construct
skewness and kurtosis statistics; e.g. as in Kankainen et al. (2006),

ITy - T3 and [IS7'S2 —I)1°

that is, the squared Mahalanobis distance between location statistics T} and
T, and the squared matrix norm (Frobenius norm) of S; 1§, — I where $; and
S»> (again equipped with correction factors) are different consistent estimates
of the regular covariance matrix at the normal model. In this paper we will use
two different scatter statistics to transform the data to invariant coordinates.
See Section 2.4.

2.3 M-estimates of location and scatter

One of the earliest robust estimates developed for multivariate data are the
M-estimates of multivariate location and scatter (Maronna 1976). The pseudo
maximum likelihood (ML) estimates, including the regular mean vector and
covariance matrix among others, are members of this class. Many other
classes of estimates, like the S-estimates, CM-estimates and MM-estimates
may be seen as special cases of M-estimates with auxiliary scale (Tyler 2002).
M-estimates of location and scatter (one version), T = T(Y) and S = S(Y),
satisfy implicit equations

T = [ave[w: (r)]] " ave[w; (1) yi]

and
S =ave[w2(r))(¥i —T)(yi —T)']

for some suitably chosen weight functions w;(¥) and w»(v). The scalar
v; is the Mahalanobis distance between y; and T = T(Y), that is, ; =
lly; — Tlls. Mean vector and covariance matrix are given by the choices
w1 (r) =w2(r) = 1.

If T, = T:(Y) and §; = $;(Y) are any affine equivariant location and
scatter functionals then one-step M-functionals T> = T>(Y) and S> = S>(Y),
starting from T; and S, are given by

T> = [ave[w; (r)]1] " ave[w (1) yi]
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and
S = ave[w2(ry) (i — T1) (yi — T1)']

where now 7; = |ly; — Tills,. It is easy to see that T and S, are affine
equivariant as well. Repeating this step until it converges yields a solution
to the M-estimating equations with weight functions w; and w». If T; is the
mean vector and S; is the covariance matrix, then

!

ave[r? (yi = ¥) (¥i— 3)']

1 1
T> = —ave[r’y;] and S»=
2=, [v7yil e
are one-step or reweighted M-estimates of location and scatter. Note that
the scatter statistic S» = S>(Y) is a scatter matrix estimate based on fourth
moments. It is consistent for the regular covariance matrix at the multinormal
model.

2.4 Invariant coordinate selection

Scatter matrices are often used to standardize the data:
Y - Z=[S(Y)]"'/?y.

Transformation matrix [S(Y)] /2 thus yields the new coordinate system
with uncorrelated components (in the sense of S). Unfortunately, this new
coordinate system is not invariant under affine transformations; it is only
true that

[S(AY)]"Y2(AY) = U[S(Y)] /%Y

with an orthogonal matrix U depending on Y, A and S.

Two different scatter functionals S; = $1(Y) and S» = S$»>(Y) may be
used to find an invariant coordinate system as follows. For a more detailed
discussion of the invariant coordinate selection (ICS), see Oja and Tyler (2006).
Starting with $; and S», define a p X p transformation matrix B = B(Y) and
a diagonal matrix D = D(Y) by

S,'$1B'=B'D

that is, B gives the eigenvectors of S, 1S,. The following result can then be
shown to hold.

Result 1. The transformation Y — Z = B(Y)Y yields an invariant coordinate
system in the sense that

B(AY)(AY) = JB(Y)Y

for some p x p sign change matrix J. Matrix B can be made unique by
requiring that the element with largest absolute value in each row of B is
positive.
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2.5 Kurtosis and ICS

Let B = B(Y) be the transformation matrix yielded by $; and S». Observe
that the elements of Z = B(Y)Y are now standardized with respect to S; and
uncorrelated with respect to Sp, that is,

$1(Z)y=1 and $2(Z)=D

where D is a diagonal matrix. The diagonal elements of D yield the kurtosis
measures for the components. Therefore the components of Z are ordered
with respect to kurtosis. Recall the discussion on kurtosis in Section 2.3.

In the simulations in this paper we use the invariant coordinate selection
based on the regular covariance matrix $; and the scatter matrix S» based
on the fourth moments. The jth diagonal element of matrix D is then

1 2 2 2 .
Djj = p+23V€i{Zij(Zi1+'"+Zip)}, j=1,...,p.

Consider the case having some special interest in our simulations: Assume
that Y = {y1 ... ¥»} is arandom sample from a distribution which is a mix-
ture of two multivariate normal distribution differing only in location: y; has
a Ny (0, I)-distribution with probability 1 — £ and a Ny (Aey, I)-distribution
with probability € (¢ < 0.5). (The last element in vector e, is one, other
elements are zero.) Then $;(Y) —p I and $2(Y) —p D where D is a diag-
onal matrix with D17 = -+ = Dy_1-1 = 1. The last diagonal element is
1+ by/(p + 2) where b> is the classical univariate kurtosis measure for the
last component. Note that the last component has the highest kurtosis for
£ < (3 + v/3)71 and lowest kurtosis otherwise (compare Preston 1953). Also
the amount of kurtosis strongly depends on the value of A; the greater A the
larger is the absolute value of kurtosis. This behavior is visualized in Figures
1 and 2.

3 Invariant sign and rank tests
3.1 Marginal signs and ranks

Let z;, i = 1,...,n, be the p-variate residuals in the multivariate location
case, and consider the L; type criterion functions

avei{lzi| + -+ +zplt  and  ave;j{lzi —zjil + -+ [Zip — Zjpl}.

The resulting L, estimates are the vectors of marginal medians and marginal
Hodges-Lehmann estimates. The corresponding score tests are based on
the vectors of marginal (univariate) signs or marginal (univariate) ranks.
See Puri and Sen (1971) for a complete discussion of this approach. The
inference methods are invariant/equivariant under componentwise rescaling
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Figure 1. Kurtosis for a location mixture of normal distributions as a function of A for
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but not orthogonally invariant/equivariant. The efficiencies do not exceed the
univariate efficiencies and are quite low if the margins are highly correlated.

Invariant test versions can be obtained by first transforming the data to
invariant coordinates. The use of the standardized data set [S(Y)]1/2Y
does not help as the standardization is not affine invariant. See Section 2.4.
Chakraborty and Chaudhuri (1996, 1998) avoided the problem by using
p observations with indices listed in & = (i1,...,ip), 1 < i3 < -+ <
ip < n, to construct, in the one-sample location case, a transformation
matrix B(«) = (¥i, Vi, --- yin)’l. Now clearly B(x)Y is invariant un-
der affine transformations ¥ — AY and the data set B(x)Y may then
be used for invariant one-sample test construction. In the several sam-
ple case, they choose &« = (iy,...,ip+1), 1 < i1 < .-+ < ipy1 < n and
B(x) = (¥iy = ¥Yipoy Vi — Yipus --- Yip — Yip,,) |- This technique is then
called the transformation and re-transformation (TR) technique. The problem
naturally is how to choose «, that is, the coordinate system in an optimal
adaptive way. Techniques proposed for choosing « tend to be computation-
ally intensive since they require optimizing some criterion over all possible
subsets of size p + 1 from the sample. In the following we use the computa-
tionally simple invariant coordinate selection method based on two scatter
matrices §; and S».

3.2 One sample case

LetY = (¥1 ... ¥n) be arandom sample from a p-variate continuous distrib-
ution symmetric around unknown u. We wish to test the null hypothesis Hy:
p = 0 and estimate the unknown u. For the test, let §; and S» be two scatter
matrices with respect to the origin. Assume also that they are invariant under
permutations to the observations. Then, for k = 1, 2,

Sk(AYP]) = ASi(Y)A', VAP,],
and therefore
B(YJP) = B(Y)
As, under the null hypothesis, Y is a random sample from distribution
symmetric around the origin, it is also true that
Z(Y)~Z(Y)JP, v J,P.

Clearly Z = (z7 ... zy) is not a random sample any more. However, under
the null hypothesis, the variables in (zy,...,z,) are exchangeable.

Consider next the jth component of the z; vectors, that is, the observations
(zj1,.--,2Zjn). Then, it is easy to see that

Result 2. Under the null hypothesis, the univariate sign test statistic

n
Uj = > I(zj; > 0) ~ Bin(n,0.5).

i=1
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Thus, for all j = 1,..., p, U; is an invariant distribution-free multivariate
sign test statistic. Unfortunately, the p sign test statistics Uy, ..., Up are not
mutually independent.

Let next R;i be the rank of |zj;| among |zjil, ..., |zjn|. The univariate
Wilcoxon signed-rank test statistic

n
Wi = > sgn(zji)R};
i-1

is then distribution-free as well:

Result 3. Under the null hypothesis, the distribution of W; is that of the
one-sample Wilcoxon signed-rank test statistic.

The result easily follows from the facts that sgn(z;i), ..., sgn(z;,) are iid
and independent of (1zj1l,...,|zjnl). Also, |zj1], ..., [zjn| are exchangeable.
All the test statistics Uy, ..., Up and Wy, ..., W, are thus distribution-

free but dependent (the dependence structure depends on the background
distribution). How then to choose U; or W}, or how to combine these statistics
for the testing problem? One goal of the present paper then is to provide
some insight into this rather complex question. As the components are
ordered according to their kurtosis, and one expects to see a high absolute
value of kurtosis in the direction of u, often the last (or first) component is
most powerful and contains the most information. This fact can be utilised
when constructing the “overall” test statistic where one can choose between
different strategies. For example one could use only the first or only the last
component or those two components combined. One could also use a rule
like use the k < p components with the highest absolute value of kurtosis or
one could simply use all components.

The corresponding affine equivariant location estimates are obtained as
follows: Let T be the vector of marginal medians or the vector of mar-
ginal Hodges-Lehmann estimators. These estimates are not location statis-
tics as they are not affine equivariant. Let B = B(Y) be the transformation
based on two scatter matrix estimates. Then multivariate affine equivariant
transformation-retransformation median and Hodges-Lehmann estimate are
obtained as

T(Y) =B 'T(BY)

3.3 Two samples case

Let Y = (Y7 Y2) where Y; and Y> are independent random samples of
sizes n; and n2, n = n; + N2, from p-variate continuous distributions with
cumulative density functions F(y) and F(y — u), respectively. We wish to
test the null hypothesis Hy: y = 0 and estimate the unknown location shift
p.Let S; = $1(Y) and S> = $»2(Y) be two scatter matrices calculated from
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the combined data set and invariant under permutations to the observations.
This is to say that, for k = 1, 2,

St ((AY + b1')P) = AS;(Y)A', VYV A,b,P,

and B(YP) = B(Y). Under the null hypothesis, the combined sample Y =
(Y1Y>) is a random sample of size n, and

Z(Y) ~ Z(Y)P, vV P.

Again, Z = (z; ... zy) is not a random sample but, under the null hypothesis,

the variables in (zy,...,2,) are exchangeable.
Affine invariant distribution-free multivariate rank tests may be constructed
as follows. Let now Rj; be the rank of z;; among zj1, ..., Zjn. AS 21, ..., Zn

are exchangeable,

Result 4. Under the null hypothesis the distribution of the univariate Wilcoxon
rank test statistic
n
Wi= > Rji
i=n1+1
is that of regular two samples Wilcoxon test statistic with sample sizes n;
and no.

General rank score test statistics Z’iim +1 a(Rj;) may be constructed as
well. The two samples sign test statistic (Mood’s test statistic) is given by
the choice a(i) = 1(0) for i > (<)(n + 1)/2. All the test statistics W1y, ...,
W, are thus distribution-free but unfortunately dependent (the dependence
structure depends on the background distribution). The question of which of
those test statistics to use for the decision making allows the same strategies
as in the one sample case.

Corresponding affine equivariant multivariate shift estimates are obtained
as follows: Let T be the vector of marginal difference of the medians (Mood’s
test) or the vector of marginal two-sample Hodges-Lehmann shift estimators
(Wilcoxon test). These estimates are not affine equivariant. Let B = B(Y) be
the transformation based on two scatter matrix estimates. Then multivari-
ate affine equivariant transformation retransformation estimates are again
obtained as

T(Y) =B 'T(BY)

4 Simulation results

As mentioned in Section 3.2 and 3.3, several strategies are available for the
decision making. We performed a simulation study to compare the following
strategies in the one and two sample case:
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(i) Using a componentwise sign test and signed rank test as described in
Puri and Sen (1971) based on all p components, denoted as U[1:p],
respectively as W[1:p].

(ii) Using the same componentwise sign test and signed rank test as before
but only to combine the first and last component, denoted as U[1, p],
respectively as W[1, p].

(iii) Using an exact sign test respectively a Wilcoxon signed rank test for the
last component only, denoted as U[p], respectively as W[p].

for different sample sizes and underlying distributions. As a reference test
also Hotelling’s T2 for the original observations is included. We note that
both the exact and asymptotic distributions for case (i) and (ii) are still open
questions. To approximate their distributions we suggest using distributions
analogous to the asymptotic distributions given by Puri and Sen (1971), and
conjecture that these approximate distributions are asymptotically correct.
A size simulation (not shown here) supports this conjecture.

All simulations are based on 5000 repetitions and were performed using
R 2.2.0 (R Development Core Team 2005) at the level & = 0.05. The critical
values for the tests were based on the limiting null distributions.

Not shown in the following subsections are results for the strategy which
uses only the component with the largest absolute value of the kurtosis since
this strategy had in all settings in the one sample case always less power
than strategy (iii) and in the two sample case it was less powerful or about
equal when compared to strategy (iii).

4.1 One sample case

In this simulation we obtained the ICS with respect to the origin as described
in Section 2.5 for data coming from a normal distribution and t3 and t¢
distributions for different dimensions and sample sizes.

A size simulation (not shown here) yielded for all tests the designated level
except for U[p] which was always smaller than 0.05 due to the discreteness
of the test statistic and for Hotelling’s T2 for heavy tailed distributions and
small sample sizes.

To compare the power of the different strategies the location parameter of
the distributions were set to gg = (A,0,...,0)" and A in such a way chosen,
that given the dimension p and the sample size n the power of Hotelling’s
T2 is 0.5 under normality. This means

P[F(p,n—-p,6) > Fx(p,n—p)] = 0.5

where F(p,n — p, 6) is a random variable having a noncentral F distribution
with degrees of freedom p and n — p and noncentrality parameter § = %AZ
and Fx(p,n — p) is the 1 — & quantile of F(p,n — p) = F(p,n — p,0). This
gives in our case a range for A from 0.159 to 0.471.
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The simulation results provided in Table 1 show that there is a lot of
information in the last component, however the power of the strategies
increases with the number of components they are based on and strategy (iii)
can therefore not compete with strategy (i). Especially the signed rank test
WI[1:p] can be seen as a serious competitor to Hotelling’s T2 since it is
almost as efficient as Hotelling’s T2 under normality and more efficient for
heavier tails.

Table 1. Simulated power in the one sample case in number of rejections per 1000
cases.

sign tests signed rank tests
Dist. 14 n T2 Ull:p] Ull,p] Ulp]l Wll:p] W[l,p] Wlp]
normal 2 50 499 340 340 208 472 472 323
200 502 333 333 220 479 479 327
5 50 500 281 180 122 441 257 203
200 508 319 197 137 472 283 213
10 50 507 204 124 89 385 168 159
200 503 288 140 104 458 195 152
tio 2 50 415 317 317 194 417 417 309
200 413 324 324 213 429 429 298
5 50 405 256 180 138 387 235 211
200 414 301 195 139 419 255 193
10 50 427 191 124 92 334 166 158
200 409 283 138 101 417 185 147
t3 2 50 261 286 286 180 334 334 257
200 221 281 281 193 334 334 249
5 50 244 237 169 117 299 200 182
200 215 267 177 129 315 205 168
10 50 270 173 130 95 267 155 149
200 213 246 131 105 313 153 135

4.2 Two samples case

The setup for the two sample simulations are of a similar fashion as in the
one sample case. The size simulation (also not shown here) gave similar
results as in the one sample case, namely that the size of U[p] was always
smaller than 0.05 and also Hotelling’s T2 was smaller for heavier tails when
the sample size was small.

The difference of the population locations pg = (A,0...,0)" was set also
in such a way that under normality Hotelling’s T2 would achieve a power of
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0.5. The corresponding value of A can then be computed via

P[F(p,n—p—-1,8) > Fx(p,n—p—-1)]1=0.5
where the noncentrality parameter § is given as § = %AZ. This gives a
range for A from 0.223 to 0.637.

Table 2 shows the results for the two sample power simulations where
in two settings the two populations are of equal size and in one setting the
mixture probability is € = 0.2 (compare Section 2.5).

The same conclusions as for the one sample case apply basically also
for the two sample case except one surprising occurrance for the rank test
WI[1:p] where the power drops considerably when the dimension and the
sample sizes of both populations are large.

Table 2. Simulated power in the two sample case in number of rejections per 1000
cases.

sign tests signed rank tests
Dist. p m np T2 Ull:p] Ullpl Ulpl WIll:p]l WIl,p]l WIp]
normal 2 50 50 504 321 321 177 482 482 321
200 50 494 326 326 205 477 477 332
200 200 494 329 329 203 477 477 317
5 50 50 504 307 201 117 475 278 210
200 50 491 309 191 137 464 267 199
200 200 507 316 203 130 482 292 211
10 50 50 499 259 136 86 449 192 159
200 50 484 282 144 99 443 198 154
200 200 501 212 145 92 310 199 153
tio 2 50 50 404 304 304 170 423 423 297
200 50 405 310 310 214 418 418 307
200 200 409 306 306 195 421 421 294
5 50 50 402 277 182 114 409 252 207
200 50 400 290 195 135 422 256 201
200 200 393 290 191 121 405 255 194
10 50 50 422 251 130 89 416 186 167
200 50 414 293 142 97 421 179 146
200 200 410 189 132 86 280 176 138
t3 2 50 50 233 277 277 160 334 334 244
200 50 219 278 278 179 330 330 239
200 200 214 285 285 179 336 336 246
5 50 50 233 249 177 102 320 221 175
200 50 213 254 181 122 321 211 164
200 200 194 268 174 110 318 210 152
10 50 50 230 204 123 72 296 145 132
200 50 209 241 136 99 306 152 126

200 200 197 183 135 84 211 149 119
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5 Final comments

This simulation study serves as an introduction to the use of two different
scatter matrices to obtain an ICS where invariant sign and rank tests can be
constructed. It is obvious that invariance of the test statistics is a worthwhile
aim to pursuit and the ICS is a promising tool to achieve this goal and has for
example compared to the TR technique the advantage that not p, respectively
p +1, data points have to be singled out on which the transformation depends
on. However for the ICS a choice of the two scatter matrices must be made
and further research is necessary to compare the effect of different choices.
For instance from a nonparametric point of view the assumption of fourth
order moments as in this study is not fortunate. Also surprising for us was
that contrary to the spatial sign test in the elliptical case for large n and p
the efficiencies of the tests used here seem not to tend to 1 in the two sample
case.

Another point to pursuit would be the efficiencies of the tests for different
values of A which would occur for example if a larger power for Hotelling’s
T2 would be required because then, as can be seen in Figure 1, the main
direction of the data would become more distinct given in the two sample
case that the mixing probability £ would be not too close to 1/(3 + +/3).
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The so-called independent component (IC) model states that the observed p-vector X is
generated via X = AZ + u, where u is a p-vector, A is a full-rank matrix, and the
centered random vector Z has independent marginals. We consider the problem of testing
the null hypothesis #, : u© = 0 on the basis of i.i.d. observations X, ..., X, generated
by the symmetric version of the IC model above (for which all ICs have a symmetric
distribution about the origin). In the spirit of [M. Hallin, D. Paindaveine, Optimal tests for
multivariate location based on interdirections and pseudo-Mahalanobis ranks, Annals of
Statistics, 30 (2002), 1103-1133], we develop nonparametric (signed-rank) tests, which are
valid without any moment assumption and are, for adequately chosen scores, locally and
asymptotically optimal (in the Le Cam sense) at given densities. Our tests are measurable
with respect to the marginal signed ranks computed in the collection of null residuals
A~'X;, where A is a suitable estimate of A. Provided that A is affine-equivariant, the
proposed tests, unlike the standard marginal signed-rank tests developed in [M.L. Puri,
P.K. Sen, Nonparametric Methods in Multivariate Analysis, Wiley & Sons, New York, 1971]
or any of their obvious generalizations, are affine-invariant. Local powers and asymptotic
relative efficiencies (AREs) with respect to Hotelling’s T test are derived. Quite remarkably,
when Gaussian scores are used, these AREs are always greater than or equal to one,
with equality in the multinormal model only. Finite-sample efficiencies and robustness
properties are investigated through a Monte Carlo study.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let X1, ..., X, be a sample of p-variate random vectors generated by the location-scatter model

X,':AZ,'+,LL, izl,...,ﬂ,

where the p-vector u is the location center, the full-rank p x p matrix A is called the mixing matrix, and the Z;'s are
i.i.d. standardized p-variate random vectors. We consider the multivariate one-sample location problem, that is, we wish
to test Hp : ;. = 0 versus #; : w # 0 (any other null value pg can be tested by replacing X; with X; — o). Of course,
different standardizations of the Z;'s lead to different location-scatter models—and to different definitions of .« and A. Such
models include

e The multinormal model: Z; has a standard multinormal distribution. This is a parametric model with mean vector x and
covariance matrix ¥ = AA’.
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e The elliptic model: Z; has a spherical distribution around the origin (0Z; 2 Z; for any orthogonal p x p matrix O; throughout,
2 stands for equality in distribution) with Med[||Z;||?] = sz"s, where Med[-] denotes the population median and Xzz,a

denotes the o quantile of the x? distribution. This is a semiparametric model with symmetry center x and scatter matrix
Y = AA’(in the multinormal submodel, X is the covariance matrix).

e The symmetric independent component (IC) model: the components of Z; are independent and symmetric (—Zi(r) 2 Z,-m)
with Med[(Zi(r))z] = X]ZNS, r =1,...,p.This is a semiparametric model with symmetry center x and mixing matrix A

(again, in the multinormal submodel, ¥ = A A’ is the covariance matrix). This model is used in the so-called independent
component analysis (ICA), where the problem is to estimate A.

e The symmetric nonparametric model: Z; has a distribution symmetric around the origin (—Z; 2 Z;). Then, neither A nor ¥
are uniquely defined.

Note that the semiparametric/nonparametric models above do not require any moment assumption, and that pu,
irrespective of the model adopted, is properly identified as the center of symmetry of X;. The assumption of symmetry
is common in the one-sample location case. It is for example quite natural in the classical matched pairs design for the
comparison of two treatments: if for pairi,i = 1, ..., n, the response variable is X;; = Y; 4+ &; + u for treatment 1

and X5; = Y; + & + u, for treatment 2, with mutually independent Y;, £4;, and &5; (2 £1;), then the difference used in
the analysis, namely X; = X5; — Xy, is symmetric about 4 = @, — 4. The literature proposes a vast list of multivariate
one-sample location tests. Some of the tests do not require symmetry; note however that only in the symmetric case the
different tests are for the same population quantity. The tests include.

e The Hotelling’s T? test, which is equivalent to the Gaussian likelihood ratio test (and actually is uniformly most powerful
affine-invariant at the multinormal), is asymptotically valid (i.e., asymptotically meets the nominal level constraint)
under any distribution with finite variances. However, its power is poor away from the multinormal (particularly so
under heavy tails), and it is also very sensitive to outlying observations.

o The optimal signed-rank scores tests by Hallin and Paindaveine [1,2] are based on standardized spatial signs (or Randles’
interdirections; see [3] for the corresponding sign test) and the ranks of Mahalanobis distances between the data points
and the origin. They do not require any moment assumption and are optimal (in the Le Cam sense) at correctly specified
(elliptical) densities. They are affine-invariant, robust, and highly efficient under a broad range of densities (AREs of their
Gaussian-score version with respect to Hotelling’s test are uniformly larger than or equal to one in the elliptic model).
Later [4] showed that interdirections together with the so-called lift-interdirections allow for building hyperplane-based
versions of these tests. All these tests however strictly require ellipticity.

e The signed-rank scores tests by Puri and Sen [5] combine marginal signed-rank scores tests in the widest symmetric
nonparametric model. Unfortunately, these tests are not affine-invariant and may be poorly efficient for dependent
margins. Invariant tests are obtained if the data points are first transformed to invariant coordinates; see [6,7].

e The spatial sign and signed-rank tests (see [8] for a review), which are based on spatial signs and signed ranks, are also
valid in the symmetric nonparametric model. They improve over the Puri and Sen tests in terms of efficiency, but not in
terms of affine-invariance. Again, affine-invariance can be achieved if the data is first transformed by using any scatter
matrix (the spatial sign test based on Tyler’s scatter matrix [9] is strictly distribution-free in the elliptic model and even
in the wider directional elliptic model; see [10]).

e The sign and signed-rank tests by Hettmansperger et al. [11,12] are based on multivariate Oja signs and ranks. They can
be used in all models above, are asymptotically equivalent to spatial sign and signed-rank tests in the spherical case, and
are affine-invariant. However, at the elliptic model, their efficiency (as well as that of the spatial sign and signed-rank
tests) may be poor when compared with the Hallin and Paindaveine tests.

Only the [1,2,4] tests combine robustness and affine-invariance with a locally optimal - and uniformly excellent - power
behavior. The required ellipticity assumption, however, may not be appropriate in practice. This model assumption is often
easily discarded just by a visual inspection of bivariate scatter plots or marginal density plots; equidensity contours should
be elliptical, and the marginal densities should be similar in shape. The IC model which serves as an alternative extension of
the multivariate normal model cannot be ruled out as easily in practice. Of course, more statistical tools should be developed
for the important model choice problem.

This paper introduces signed-rank tests which enjoy the nice properties of the Hallin and Paindaveine ones (absence of
moment assumption, robustness, affine-invariance, Le Cam optimality at prespecified densities, uniform dominance over
Hotelling for Gaussian scores, etc.), but are valid in the symmetric IC model. The proposed tests are marginal signed-rank
tests (with optimal scores) applied to the residuals A~1X,i=1,...,n where A is a suitable (see Section 3) estimate of the
mixing matrix A. Although they are based on marginal signed-rank statistics, our tests, unlike the marginal Puri and Sen
signed-rank tests or any of their obvious generalizations, are affine-invariant.

The outline of the paper is as follows. Section 2 defines more carefully the IC models under consideration. Section 3
introduces the proposed tests and studies their asymptotic null behavior. In Section 4, we explain how to choose score
functions to achieve Le Cam optimality at prespecified densities, derive the local powers of our tests under contiguous
alternatives, and compute their AREs with respect to Hotelling’s T? test. Section 5 discusses the practical implementation

Please cite this article in press as: K. Nordhausen, et al., Signed-rank tests for location in the symmetric independent component model, Journal of
Multivariate Analysis (2008), doi:10.1016/j.jmva.2008.08.004




K. Nordhausen et al. / Journal of Multivariate Analysis I (1HEN) IIE-HER 3

of our tests and presents simulations that investigate their finite-sample efficiencies and robustness properties. Finally, the
appendix collects proofs of technical results.

2. IC models and identifiability

In the absolutely continuous case, the IC model will be indexed by the location vector w, mixing matrix A, and the pdf g of
the standardized vectors. The location vector w is a p-vector and A belongs to the collection M, of invertible p x p matrices.

As for g, it throughout belongs to the collection & of densities of absolutely continuous p-vectors Z = (ZV, ..., Z®) whose
marginals are (i) mutually independent, (i) symmetric about the origin (i.e., —Z™ 2 z® for all r), and (iii) standardized
so that Med[(Z")?] = x%  forallr = 1,...,p.Any g € ¥ of course decomposes into z = (z'V,...,z?) — g(z) =
Hle g-(z"). Denote then by P;YA,g,g € F,the hypothesis under which the p-variate observations X1, . . ., X, are generated
by the model X; = AZi+u,i=1,...,n,whereZ; = (Z,-(l), R Zi(p))’,i =1,...,narei.i.d. with pdfg. Clearly, the likelihood,
under PZ.A,g' is given by LZ,A,g = |det A" ]_[?:l(]_[le g (e, A7 (X; — w))), where e, is the vector with a one in position r

and zeros elsewhere.

In the symmetric IC model above, the location parameter u is the unique center of symmetry of the common distribution
of the X;’s and therefore is a well-defined parameter. In sharp contrast, the parameters A and g are not identifiable: letting
P be any p x p permutation matrix and S be any p x p diagonal matrix with diagonal entries in {—1, 1}, one can write
X; = (APS)(SP™'Zj)+u =: AZ+ ., where Z; still satisfies (i), (ii) and (iii) above. If § is the density of Z, then P , . = P s
This indeterminacy can be avoided by requiring, for instance, that marginal densities are given in a specified (e.g., kurtdsfs)
order and that the entry having largest absolute value in each column of A is positive.

In the independent component analysis (ICA) one wishes to find an estimate of any A such that A~'X; has independent
components. If A~'X; has independent components then so has DSP A~'X;, where D is any diagonal matrix with positive
diagonal elements. This same identifiability problem is well recognized in the ICA literature, and it has been proven (see,
e.g., [13] for a simple proof) that these three sources of non-identifiability are the only ones, provided that not more than
one IC is Gaussian, an assumption that is therefore made throughout in the ICA literature. Note that the third source of non-
identifiability D is avoided in our model building by fixing the scales of the marginals of Z; in (iii) above. In the classical ICA
the estimation of A is the main goal, whereas in our problem it is only a primary device to yield the components used for
the testing. The sign-change or permutation of the components will not be a problem in our test construction. We naturally
also would like to deal with distributions where there are more than one Gaussian IC. In particular, we do not want to rule
out the multinormal case, for which all ICs are Gaussian! Quite fortunately, the resulting lack of identifiability will not affect
the behavior of our tests (we discuss this further in Section 5).

3. The proposed tests

Define the (null) residual associated with observation X; and value A of the mixing matrix as Zi(A) = A~7'X.
The signed ranks of these residuals are the quantities S;(A)R;(A), with S;(A) = (Si(l)(A), e, Si(p)(A))/ and R;(A) =

RV (A),...,R”(A)),i = 1,...,n, where S (A) = L0 y=01 ~ 1z (ay<oy 18 the sign of z(A) and R{” (A) is the
rank of |Z" (A)| among [Z\"(A)|, ...,1Z\"(A)|. Let K™ : (0,1) — R,r = 1,...,p be score functions and consider
the corresponding p-variate score function K defined by u = @, ..., u®) — K@) = KPw®),...,K®uP))y.

We throughout assume that the K™’s are (i) continuous, (ii) satisfy fol (KD ))*Tdu < oo for some § > 0, and (iii)
can be expressed as the difference of two monotone increasing functions. These assumptions are required for Hajek's
classical projection result for linear signed-rank statistics; see, e.g., [ 14], Chapter 3 (actually, Hijek’s result requires square-
integrability rather than the reinforcement of square-integrability in (ii); we will need the latter however to control the
unspecification of A; see the proof of Lemma 3.3).

The (K-score version of the) test statistic we propose is then

Qe (A) = (Te(A) T ' Te (A),

where Ty (A) = n~"2 YL Tei(A) = n" 2 3L [Si(A) © K] and T = diag(E[(K (U))?], ..., E[(KP (U))2]);

throughout, © denotes the Hadamard (i.e., entrywise) product and U stands for a random variable that is uniformly
distributed over (0, 1).
The asymptotic behavior of Qi (A) can be investigated quite easily by using the representation result in Lemma 3.1 below.

In order to state this result, we define z = (zV,...,z®) i G, (z) := (G\"zM),..., G (z?)), where G stands for
the cdf of |2 (A)| under P§ 4 - Symmetry of g, yields G (t) = 2GM(t) — 1, where t > GP(t) = fioo g-(s)ds is the cdf
of " (A) under Py , ..

Lemma 3.1. Define Ty.g(A) = n 231 Teei(A) = n 237 [Si(A) © K(G(1Zi(A)])], where |Zi(A)| =
(1Z"(A)]. ... 1ZP (A)]). Then, forany A € My and g € F, E[|[T¢(A) — Ty:g(4)[] = 0(1) as n — oo, under Py , ..
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Lemma 3.1 implies that under the null - hence also under sequences of contiguous alternatives (see Section 4.2 for the
form of those alternatives) - Ty (A) is asymptotically equivalent to Tk.,(A), where g is the “true” underlying noise density.
Since Tk.g(A) is a sum of i.i.d. terms, the asymptotic null distribution of T (A) then follows from the multivariate CLT.

Lemma 3.2. Forany A € M, Tx(A), under Uges {Pg , g} is asymptotically multinormal with mean zero and covariance matrix
TI.

Itreadily follows from Lemma 3.2 that Q¢ (A), under Uge {Pg,A,g}‘ is asymptotically chi-square with p degrees of freedom.
The resulting test therefore consists in rejecting the null at asymptotic level « iff Qx(A) > X;?,pa-

Of course, as already mentioned, A in practice is unspecified and should be replaced with some suitable estimate A.The
choice of this estimate is discussed in Section 5, but we will throughout assume that Ais (i) root-n consistent, (ii) invariant
under permutations of the observations, and (iii) invariant under individual reflections of the observations with respect to
the origin (i.e., /AX(leh R & ) = A(X1, ..., Xp) forall sq,...,s;, € {—1, 1}). The replacement of A with Ain Qx(A)
yields the genuine test statistic Qx = Qx(A). The following result establishes that this replacement has no effect on the
asymptotic null behavior of the test (see the appendix for a proof).

Lemma 3.3. Forany A € Mp, T (;\) = Tx(A) + op(1) (hence also QK = Qg (A) +o0p(1))as n — oo, under Ugef{ngAvg}.

The following theorem, which is the main result of this section, is then a direct corollary of Lemmas 3.2 and 3.3.

Theorem 3.1. Under U e, Ugey{Pg,A’g}, QK is asymptotically ng so that, still under U se.y, Ugef{Pg’Aqg}, the test ¢y that
rejects the null as soon as QK > X;]fa has asymptotic level o.

The behavior of our tests under local alternatives will be studied in Section 4. . ) A

Let us finish this section with some particular cases of the proposed test statistics Q. To this end, write S; and R; for the
empirical signs S,(A) and ranks R,(A) respectively. Then (i) sign test statistics are obtained with constant score functions
(K™ (u) = 1 for all r, say). The resulting test statistics are

R " n 1<, 1T Eamn
’ ’ @)
QS=ST5=HZSij=EZZSirSjr. (1)
ij=1 ij=1r=1
(ii) The Wilcoxon-type test statistics, associated with linear score functions (K™ (u) = u for all r, say), take the form
Qw = 3T}, T SPSURIR™. (2)
w = 3% = n(n“)zUZl;

(iii) Gaussian (or van der Waerden) scores are obtained with K™ (u) = @;] (u) = &~ 1((u+ 1)/2), where @ is the cdf of the
standard normal distribution. The corresponding test statistics are

p()
R R
g -1 J
Quaw = TiqwTvaw = — ZZS @ <n+1)¢+ <n+]>. (3)

l_]lr]

As we show in the next section, this van der Waerden test is optimal in the Le Cam sense (more precisely, locally and
asymptotically maximin) at the multinormal submodel.

4. Optimality, local powers, and AREs

In this section, we exploit Le Cam’s theory of asymptotic experiments in order to define versions of our tests that achieve
Le Cam optimality under correctly specified noise densities. We also study the behavior of our tests under sequences of local
alternatives and compare their asymptotic performances with those of Hotelling’s T? test in terms of asymptotic relative
efficiencies (AREs).

4.1. Local asymptotic normality and optimal signed-rank tests

The main technical result here is the locally and asymptotically normal (LAN) structure of the IC model with respect to
u, for fixed values of A and g. Such LAN property requires more stringent assumptions on g. Define accordingly Fian as
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K. Nordhausen et al. / Journal of Multivariate Analysis I (1HEN) IIE-HER 5

the collection of noise densities g € F that (i) are absolutely continuous and (ii) have finite Fisher information for location,
e, dg = ffooo (g, (2))%g,(z)dz < oo for all r, where, denoting by g/ the a.e.- derivative of g,, we let ¢y, := —g,/g..Forg €
Fian, define the p-variate optimal location score function gz by z = (27, ..., z?) > ¢g(2) == (g5, (2V), ..., @, (2P))’.
We then have the following LAN result, which is an immediate corollary of the more general result established in [15].

Proposition 4.1. For any A € M, and g € Fian, the family of distributions P} Ny = {P" Ag i € RP}is LAN. More
precisely, for any p-vector  and any bounded sequence of p-vectors (t,), we have that ( lettmg Si(i, A) stand for the sign
of Zi(u, A) := A~ (X; — w)) (i) under P, , ., asn — oo,

1
(n)
log (dP/1.+n—1/2r Ag/ Pﬂ Ag) =1 A:Ag 2 ”FAgT” +op(1),
: () o —1/2 =1y N1 . . a—=1/20 A=1y N ) .
with central sequence A", . = n~V2(ATY YL @ (Zi(1n, A)) n= V(AT YL [Si(v, A) © (ﬂg(|Zz(l/«, A)D] and
information matrix 'y, = (A" 447" = (A”)/diag(lgl,.. s g) A 1 and that (ii) still under P Pl g AL")Ag

asymptotically multinormal with mean zero and covariance matrix I'y g.

Fix now some noise density f € Fian. Le Cam’s theory of asymptotic experiments (see, e.g., Chapter 11 of [16]) implies
that an f-optimal (actually, locally and asymptotically maximin at f) test for #, : © = 0 versus #; : u # 0, under fixed
A € My, consists, at asymptotic level «, in rejecting the null as soon as

) m ) (
Qr(A) = (AO]?AA,f) FAonnAf > Yot a

Letting Ky be the p-variate score function defined by KO = @5, o F;rl, r =1,..., p(with the same notation as in Section 3),
one straightforwardly checks that Qs (A) = (TKf F(A)) I Kf TKf; 7(A), which, by Lemmas 3.1 and 3.3 (provided that the score

function K satisfies the assumptions of Section 3), is asymptotically equivalent to QKf under Pg Af Therefore, denoting by

Lj’\p,j the collection of densities f € Fian for which the K,’s (i) are continuous, (ii) satisfy fo (K, (u))?du < oo for some

& > 0, and (iii) can be expressed as the difference of two monotone increasing functions, we have proved the following.

Theorem 4.1. For any f € }‘L'j\'ﬁ, the test Pk; that rejects the null as soon as QKf > sz 1_q (D) has asymptotic level a under

Usen, Ugey{Pg,A’g} and (i) is locally and asymptotically maximin, at asymptotic level o, for U e, Ugey{Pg,A’g} against
alternatives of the form U0 U ae u, {PZ.A,f}'

This justifies the claim (see the end of the previous section) stating that the van der Waerden version of the proposed
signed-rank tests is optimal at the multinormal model. More generally, Theorem 4.1 indicates how to achieve Le Cam
optimality at a fixed (smooth) noise density f.

4.2. Local powers and asymptotic relative efficiencies

Local powers of our signed-rank tests ¢ under local alternatives of the form P"
computed from the following result (the proof is given in the appendix).

1204008 € Fian can be straightforwardly

Theorem 4.2. Fixg € Fiay and define I g = diag(x g, - - -, [gw g,), With Iy 4 = E[K(”(U)<pg,((Gﬂ:))‘l(U))], where U

is uniformly distributed over (0, 1). Then, Qx is asymptotically X;(r’(A”)’IK,gFK_]IK,gA”r) under Py, . where xZ(©)
stands for the noncentral chi-square distribution with £ degrees of freedom and noncentrality parameter c.

This also allows for computing asymptotic relative efficiencies (AREs) with respect to our benchmark competitor, namely
Hotelling’s T2 test. In the following result (see the appendix for a proof), we determine these AREs at any g belonging to the
collection %4y of noise densities in Fiay with finite variances. We want to stress however that our signed-rank tests ¢,
unlike Hotelling’s test, remain valid without such moment assumption, so that, when the underlying density does not admit
a finite variance, the ARE of any ¢y with respect to Hotelling’s test actually can be considered as being infinite.

Theorem4.3. Fix g € ?j\N. Then the asymptotic relative efficiency of ¢ with respect to Hotelling’s T? test, when testing
Ho : w = 0against #;(t) : © = n~ 21, under mixing matrix A M, and noise density g, is given by

T(A Y Ik kg AT
ARE4 ¢ gl T?] = N £ , (4)
/(A l)/z*g Al

where ¥, := diag(o? agzp), witho? = [ 7%g(z)dz.

gl,...,
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Table 1

AREs of various univariate signed-rank tests (with sign, Wilcoxon, and van der Waerden scores, as well as scores achieving optimality under t;,, tg, and
t; densities) with respect to Student’s test, under t (with 3, 6, 12 degrees of freedom), Gaussian, and power-exponential densities (with tail parameter
n=2,35)

Underlying density
t3 te t12 N ) €3 €s

S 1.621 0.879 0.733 0.637 0.411 0.370 0.347
w 1.900 1.164 1.033 0.955 0.873 0.881 0.907
Score vdw 1.639 1.093 1.020 1.000 1.129 1.286 1533
ti 1.816 1.151 1.040 0.981 0.973 1.024 1.102
to 1.926 1.167 1.026 0.936 0.820 0.800 0.779
t3 2.000 1.124 0.944 0.820 0.569 0.479 0.385
For p = 1, ¢ (resp., T?) boils down to the standard univariate location signed-rank test qb,%“i" based on the score

function K (resp., to the one-sample Student test St), and the ARE in (4) reduces to the well-known result

212
i K.g
AREumv [ unlv!St] — g , (5
et E[K2(U)] :
which does not depend on 7, nor on A. For p > 2, however, the ARE in (4) depends on 7 and A. Letting v =
—-1/2 , 1
X A .
@D, ... Py = {1/27T, we can write
g a1z
2 . )\2 gr K(” kW )\2 univ univ
ARE, ¢ o[¢. T’ =) () KOO Z(v )?ARES™ ) o0, Stl, (6)
r=1

which shows that ARE4 ; ¢[¢x, T?] can be seen as a weighted mean of the corresponding univariate AREs (those of the
univariate signed-rank tests with respect to Student’s). The weights depend on the shift t through the “standardized”

shift A™'z; if the latter is in the direction of the rth coordinate axis, then ARE, ; ¢[¢x, T?] = AREj"i"] 0 g [qb;‘(’r‘}’ St]. In
=1 2SI

all cases, irrespective of T and A, ARE, ; ¢[¢x, T?] always lies between the smallest and the largest “univariate” AREs in

{AREYY ) P T2 r=1,....p}

This explams thatitis sufficient to give numerical values for these univariate AREs. Such values are provided in Table 1, for
various scores (sign, Wilcoxon, and van der Waerden scores, as well as scores achieving optimality at fixed t distributions)
and various underlying densities (t, Gaussian, and power-exponential densities with lighter-than-normal tails). Power-
exponential densities refer to densities of the form g, (r) = ¢, exp(—a,r"), where ¢, is a normalization constant, 7 > 0
determines the tail weight, and a, > 0 standardizes g, in the same way as the marginal densities in # (see Section 2).

All numerical values for the van der Waerden signed-rank test ¢,qw in Table 1 are larger than one, except in the normal
case, where it is equal to one. This is an empirical illustration of the [17] result showing that AREY™, _  [¢baw, St] > 1 for
all T and g (with equality iff g is Gaussian). Hence, (6) entails that, in the IC model under consideration, the AREs of our
p-variate van der Waerden test ¢,qw, with respect to Hotelling’s, are always larger than or equal to one, with equality in the
multinormal model only.

Coming back to the general expressions of our AREs in (4) and (6), it is clear (in view of (5)) that, in order to maximize the
local powers/AREs above with respect to the score function K, one should maximize the cross-information quantities ko) g,

r =1,..., p.The Cauchy-Schwarz inequality shows that Iy , is maximalatK" = g o (G1)~1, which confirms the rule
for determining optimal score functions that was derived in Section 4.1.

5. Practical implementation and simulations

In this section, we first focus on the main issue for the practical implementation of our tests, namely the estimation of
the mixing matrix A. Several approaches are possible, but the approach presented in [ 18] is chosen here. Then finite-sample
efficiencies and robustness properties of our tests are investigated through Monte Carlo studies.

Computations were done using the statistical software package R 2.6.0 [19]. Note that the proposed method for
estimating A is implemented in the R-package ICS [20], whereas the tests proposed in this paper are implemented in the
R-package ICSNP [21]. Both packages are available on the CRAN website.

5.1. Estimation of A

An interesting way to obtain a root-n consistent estimate of A is to use two different root-n consistent scatter matrix
estimates as in [18].

Let X be a p-variate random vector and denote its cdf by Fx. A scatter matrix functional S (with respect to the null value of
the location center, namely the origin) is a p x p matrix-valued functional such that S(Fy) is positive definite, symmetric, and
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affine-equivariant in the sense that S(Fax) = AS(Fx)A’, VA € M,. Examples of scatter matrices are the covariance matrix
Scov(Fx) := E[XX'], the scatter matrix based on fourth-order moments Sy, (Fx) = E [(X/(SCOV(FX))‘1X)XX/] , and [9]'s
scatter matrix Sty defined implicitly by Sy (Fx) = E [(X(Sty(Fx))™'X) 71XX'] .

As we now show, the mixing matrix A can be estimated by using a couple of different scatter matrices (Sy, S;). Recall that
our tests require a root-n consistent estimate of A under the null, that is, under #§ = {Pg , g AEM g€ F}. However,
since A is not identifiable in ) (see Section 2), estimation of A is an ill-posed problem We therefore restrict to a submodel
by using a couple of scatter matrices (S1, S) as follows.

Define the model £ (S;,S;) as the collection of probability distributions of (Xi,...,X,) generated by X; = AZ,
i=1,...,n, wherez = (Zi“), R Z,-(m)/,i =1,...,narei.id. from a distribution F; for which S;(F;) = I and S,(F;) = 2
where £2 = (£2y) is diagonal with £21; > £ > .-+ > £p,(> 0). Theorem 5.5 of [22] and our assumption that Z has
independent and symmetric marginals imply that S,(F7), £ = 1, 2 are diagonal matrices, so that this submodel actually
only imposes that the quantities §2,,,r = 1, ..., p are pairwise different. Before discussing the severity of this restriction,
we note that P§'(S1, S,) takes care of the permutation (and scale) indetermination by merely assuming that the ICs are first
standardized in terms of their “S;-scales” and then ordered according to their “(Sy, So)-kurtoses”. As for the signs of the ICs,
they can be fixed by requiring, e.g., that the entry having largest absolute value in each column of A is positive (and similarly
with 21); see Section 2.

Most importantly, the affine-equivariance of S; and S, then implies that

S2(FO)) T 'S1(F) (A7 = (a7h'e™! (7)
(where X stands for a p-variate random vector with the same distribution as X;,i = 1, n), thatis, A~! and £27! list the
elgenvectors and eigenvalues of (S; (FX)) 1S, (Fy), respectlvely Replacing S (Fx) and Sz (FX) with their natural estimates 51
and 52 in (7) yields estimates Aand 2. Clearly, 1f51 and 52 are root-n consistent, then A is root-n consistent as well. Since
our tests are based on statistics that are invariant under heterogeneous rescaling and reordering of the ICs, their versions
based on such a A will remain valid (i.e., will meet the asymptotic level constraint) independently of the particular signs,
scales, and order of the ICs fixed above in £ (S, S;). Note that their optimality properties, however, require to order the
scores K;,r =1, ..., p according to the corresponding “(S1, S;)-kurtoses”.

As we have seen above, the only restriction imposed by #§ (S, S;) is that the “(S;, S,)-kurtoses” of the ICs are pairwise
different, so that the ordering of the ICs is well defined. Note that this rules out cases for which two (or more) ICs would
be identically distributed. More precisely, consider the case for which exactly k (>=2) ICs are equally distributed and the
distributions of the remaining p — k ICs are pairwise different. Then the estimator A above allows for recovering the p — k
ICs with different distributions, but estimates the remaining k ones up to some random rotation. Note however that if those
k ICs are Gaussian, the components of A~1X - conditional on this random rotation - converge in distribution to Z (since
- possibly rotated - uncorrelated Gaussian variables with a common scale are independent), so that the asymptotic null
distribution of our test statistics is still sz (also unconditionally, since this conditional asymptotic distribution does not

depend on the value of the random rotation). As a conclusion, while our tests, when based on such A, would fail being valid
when several ICs share the same distribution, they are valid in the case where the only equally distributed ICs are Gaussian,
which includes the important multinormal case.

If however one thinks that ruling out equally distributed non-Gaussian ICs is too much of a restriction, then he/she can
still use a root-n consistent estimator of A that does not require this assumption. See for example [23] for an overview.

5.2. Finite-sample performances

We conducted a simulation study in the trivariate case (p = 3) in order to evaluate the finite-sample performances of
our signed-rank tests.

We started by generating i.i.d. centered random vectors Z; = (Z(l) Z(2> 2(3))’ i = 1,...,n(weused n = 50 and
n = 200) with marginals that are standardized so that Med[(Zfr))z] = 1,r = 1, 2, 3. We considered four settings with the
following marginal distributions for Zf]), Zl(z), and 21(3):

Setting I: tg, Gaussian, and power-exponential with n = 2 (see Section 4.2) distributions
Setting II: t3, tg, and Gaussian distributions

Setting IIl: ty, ts, and Gaussian distributions

Setting IV: three Gaussian distributions (the multinormal case).

Denoting by I, the ¢-dimensional identity matrix, samples were then obtained from the IC models X; = AZ + u,
i=1,...,n, with mixing matrix A = I3 (this is without loss of generality, since all tests involved in this study are affine-
invariant) and location values u = 0 (null case) and u = n~"2zee,, £ = 1,2,3,4,r = 1,2, 3, (cases in the alternative),
where 7; = 2.147, 1, = 3.145, 13 = 3.966, and 74 = 4.895 were chosen so that the asymptotic powers of Hotelling’s T2
test, in Setting IV, are equal to .2, .4, .6, and .8, respectively.

First, we studied the sensitivity of our tests with respect to the choice of the estimator Ain Setting 1. To this end, we
considered three estimators in the class of estimators introduced in Section 5.1:
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(1) The estimator 211 is based on S; = S¢oy and S; = Syyyt; root-n consistency of 2\1 requires finite eighth-order moments.

(2) The estimate 2\2 is based on S§; = STyl and S; = Spym, Where Spim stands for [24]'s scatter matrix (which is the
symmetrized version of Syy); although A, is root-n consistent without any moment assumption, it does not fulfill the
assumptions of Section 3, since Spym (hence also Az) is not invariant under individual sign changes of observations.

(3) Finally, defining Sran. = EL%; " (Fjg-vzy (IS “XID) X

K5y 1, where ¥, denotes the distribution function of a sz random

variable, the estimate ?13, based on S; = Sty and S; = Spni fulfills all the assumptions of Section 3 and is root-n
consistent without any moment conditions.

For the sake of comparison, we also considered the unrealistic case for which A is known. For brevity reasons we refrain
from showing the results and only point out that the behavior of our tests does not depend much on the choice of the
estimator for A. Actually even knowing the true value of A did not show to be of any clear advantage. However, it is crucial
that the estimator A that is used is root-n consistent, which, in Setting I, is the case of 21,», i=1,2,3.InSettings I, Il and III,
the “(S1, S;)-kurtoses” from (1), (2) and (3) order the marginal distributions in the same way.

Second, we compared, in Settings I to IV, several versions of our tests with Hotelling’s T? test. We considered the following
signed-rank tests: the sign test based on é_g in (1), the Wilcoxon test based on QW in (2), and the van der Waerden test based
on dew in (3).In each setting, we also included the corresponding optimal signed-rank test (based on QKf in Section 4.1);

we denote by égpt, and the statistics of these setting-dependent tests (the optimal test in Setting IV is the van der

pt’
Waerden test based on dew) Of course, these optimal tests use the unspecified underlying density, which is unrealistic,
but this is done in order to check how much is gained, in each setting, by using optimal scores. Since the properties of the
proposed tests are not very sensitive to the choice of A, each signed-rank test was based on the estimator As (only the latter
satisfies our assumptions on A in all settings). All tests were performed at asymptotic level 5%.

Figs. 1-4 report rejection proportions (based on 5000 replications) and asymptotic powers of the above tests in Settings
I to IV, respectively. We should stress that preliminary simulations showed that, under the null in Setting I, the van der
Waerden test and the test based on égpt, when based on their asymptotic chi-square critical values, are conservative and
significantly biased at small sample size n = 50. In order to remedy this, we rather used critical values based on the
estimation of the (distribution-free) quantile of the test statistic under 4+ = 0 and under known value A = I5 of the
mixing parameter. These estimations, just as the asymptotic chi-square quantile, are consistent approximations of the
corresponding exact quantiles under the null, and were obtained, for the van der Waerden test and the test based on Q0
the empirical 0.05-upper quantiles q g5 of the corresponding signed-rank test statistics in a collection of 10 000 51mu1pated
(standard) multinormal samples, yielding q"dW = 7.239 and q°ptI 6.859, respectively. These bias-corrected critical
values both are smaller than the asymptotic chi-square one X3,.95 = 7.815, so that the resulting tests are uniformly less
conservative than the original ones. Note that these critical values were always applied when any of those tests were used
with n = 50 since in practice one does not know the underlying distribution. In all other cases (i.e., for all other tests at
n = 50, and for all tests at n = 200), the asymptotic chi-square critical value X§,495 was used.

Based on the simulation studies we therefore recommend that for small sample sizes one should calculate the p-value
based on simulations or just use a conditionally distribution-free test version. This is not a problem with the current speed
of computers, and all three approaches have been implemented in the package ICSNP. Our simulations show that alternative
ways to calculate p-values are needed especially when one of the score functions K;, used is associated with a light-tailed
density f;.

A glance at the rejection proportions under the null in Figs. 1-4 shows that all signed-rank tests appear to satlsfy the 5%
probability level constraint. In particular, for n = 50, the bias-corrected versions of the tests based on dew and on QC,Dt are
reasonably unbiased, whereas the asymptotic X3 approximation seems to work fine in all other cases. Note that Hotelling’s
T? test satisfies the 5% probability level constraint also in Setting III, which was unexpected since one of the marginals
(the t; distributed one) has infinite second-order moments whereas in all other settings Hotelling’s T? seems to reject too
often.

As for the power properties, the proposed signed-rank tests behave uniformly well in all settings, unlike Hotelling’s
test, which, for instance, basically never detects the shift in the t; component of Setting III (still, it should be noticed
that, in the same setting, Hotelling’s test works pretty well if the shift is in another component; we will explain this
unexpected behavior of Hotelling’s test in Section 5.3). In Setting II (see Fig. 2), Hotelling’s test competes reasonably well
with our tests for small sample sizes, when the shift occurs in a heavy-tailed component. For larger sample sizes, however,
our tests outperform Hotelling’s and, except for Qg behave essentially as Hotelling’s test when the shift occurs in the
Gaussian component (this is totally in line with the ARE values in Table 1). Note that when a light-tailed component is
present as in Setting I (see Fig. 1), our tests perform as expected. Furthermore the proposed tests also work well in the
multinormal model (Fig. 4), although As is there only a random rotation; see the comments at the end of Section 5.1.
As a conclusion, our optimal tests exhibit very good finite-sample performances in IC models, both in terms of level
and power.
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Fig. 1. Rejection proportions (for n = 50 and n = 200, based on 5000 replications) and asymptotic powers, in Setting I, of Hotelling’s T? test and of the
As-based versions of the sign, Wilcoxon, van der Waerden, and Setting I optimal signed-rank tests. The integer r indicates in which coordinate the shift
occurs.

5.3. Robustness evaluation

In this section, we investigate the robustness properties of the proposed signed-rank tests (in the bivariate case) by
studying their power functions under contamination, and by comparing the results with Hotelling’s test.

Starting with bivariate i.i.d. random vectors Z; = (Zl.(]), Zi(z))’,i =1,...,n(weusedn = 50 in this section) with centered
t; and Gaussian marginals in the first and second components, respectively (still standardized so that Med[(Zl(r))z] =1,
r = 1,2), we generated bivariate observations according to X; = AZ; + ﬁ(o, 1),i = 1,...,n, where A = I, and
where t = 3.301 is so that the asymptotic power of Hotelling’s test (at asymptotic level « = .05) is .5. For any fixed
8§ = (8M, @) e R?, denote then by X(8) the sample of size n obtained by replacing the first observation X; with X; + 6.

Clearly, the value of a test statistic computed on X(§) - hence, also the power of the corresponding test - depends on
8. For any test ¢ rejecting ¢, : « = 0 at asymptotic level « whenever Q > X22,1—a' we define the power function of ¢
as & — power($, Q) := P[Q(X(5)) > Xzqufa]. Of course, this function can be estimated by generating a large number of
independent samples X(§) and by computing rejection frequencies.

We estimated the power functions over § = (£5i, 5j)’, withi,j = 0, ..., 10, of Hotelling’s T? test and of two versions
of the van der Waerden signed-rank tests based on (3): the first one (resp., the second one) is based on A (resp., on Ajz),
where A;, i = 1, 3 are as in Section 5.2. To be in line with what we did there, all van der Waerden tests were based on
an estimate (under the null) of the exact (at n = 50) distribution-free 95%-quantile of the known-A van der Waerden test
statistic. In this bivariate case, this estimated quantile, based on 10 000 independent values of this statistic, took the value
5.354(<5.991 = x3 o5).
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Fig. 2. Rejection proportions (for n = 50 and n = 200, based on 5000 replications) and asymptotic powers, in Setting II, of Hotelling's T? test and of the
As-based versions of the sign, Wilcoxon, van der Waerden, and Setting Il optimal signed-rank tests. The integer r indicates in which coordinate the shift
occurs.

Fig. 5 presents the estimated power functions (based on 1000 replications) of Hotelling’s T? test and of the As-based van
der Waerden test. Results for the A;-based version of the latter are not shown since they are very similar to those of the
As-based one (which is actually surprising since one would guess that the lack of robustness of A; would severely affect
the test).

Quite unexpectedly, for @ = 0, the power of Hotelling’s test does not suffer under the value of §V. It is even so
that compared with the noncontaminated case § = 0, for which the power functional of Hotelling has the value .516, the
functional shows higher power for |§(V| < 10 and 0 < §® < 10. However, if |§'¥] is large, the power drops quickly,
especially so when there is no or little contamination in §(V. The power can then drop even below the size value of .05;
e.g., at§ = (0, —20)’,itis only .012.

The puzzling robustness of Hotelling’s test with respect to an outlying observation in the first variate can be explained
as follows. Let X = (X;X;--- X;) be a sample of i.i.d. p-variate observations (whose common distribution admits finite
second-order moments) and partition it into

Xi) _ (X Xa - X

Xo X2 X2 -0 Xm2)’
where the X;;'s are random variables and the X;,’s are (p— 1)-random vectors. Now, by using (14) in [25], it can be shown that,
ifonereplaces Xy = (Xq1, X{,)" with (X146, X},)  and lets § — oo, then, under the assumption (as in the setting above) that
the X;p's are i.i.d. with mean 7 /+/n and covariance matrix X5y, lims_, oo T2(X) = T2(Xy) + 1+ 0p(1) = o ('3, t)+1,

£ . . . . _ .
asn — oo, where — denotes convergence in law. This is to be compared with the asymptotic X;(‘L'/Ezzlf) distribution of
T%(X) under the assumption that the X; = (X/;, X,)"’s are i.i.d. with mean (0, )’ and with an arbitrary covariance matrix
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Fig. 3. Rejection proportions (for n = 50 and n = 200, based on 5000 replications) and asymptotic powers, in Setting III, of Hotelling’s T? test and of the
As-based versions of the sign, Wilcoxon, van der Waerden, and Setting IIl optimal signed-rank tests. The integer r indicates in which coordinate the shift
occurs.
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Fig. 4. Rejection proportions (for n = 50 and n = 200, based on 5000 replications) and asymptotic powers, in Setting IV, of Hotelling’s T? test and of
the As-based versions of the sign, Wilcoxon, and van der Waerden (which is optimal in Setting IV) signed-rank tests. Without loss of generality (since the
underlying distribution is spherically symmetric), the shift occurs in the first coordinate only.
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Fig. 5. Estimates of the power functions power (8, T?), power (8, Quaw (A)), power (8, dew(;\l)), and power (8, dew(;\z))- The sample size is n = 50 and
the estimation is based on 1000 replications.

such that Var[Xj;] = X-,. For small dimensions p, obtaining (by contaminating a single observation) a sz_1 (1’22_211:) +1

distribution rather than the expected X;(r/Zz_zl 7) one can bias the results considerably.

Hence, one can say that an outlier in one variate (i) destroys all information about that variate and (ii) biases the result
for the “remaining data”. This also explains the unexpected behavior of Hotelling’s test in Setting III of Section 5.2: the t;-
distributed variate can be seen as a completely contaminated variate which therefore basically contains no information;
still, Hotelling’s test can detect shifts in the remaining variates.

Fig. 5 shows that on the other hand the test based on Quaw(A3) proves much more robust than Hotelling’s and is hardly
affected by the value of §;. Note that if the contamination § is negative (resp., positive), the power of this test slightly goes
down (resp., up) as 8; goes through the Z;; data cloud. This slight decrease (resp., increase) of the power function can be
explained by the fact that, for any negative (resp., positive) value of §,, the contaminated observation - with the scale used
in our setting — immediately gets the smallest (resp., largest) rank assigned. The range of the dew(f\3)—power function in
Fig. 5 goes from .193 to .582, which is comparable with those associated with Qyqw(A) (from.263 to.576) and with dew(fl1)
(from .237 to .580).
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Appendix A. Proofs of Lemmas 3.1-3.3

In this section, we will write, T\ (A) (resp., T,

K;g(A)) for the rth component of Ty (A) (resp., of T.g(A)), r =1,...,p.

Proof of Lemma 3.1. Fix A € M,,g € F,andr € {1,..., p}. Then, under Pj , ,, the vector of signs (Sir)(A), LS A))
collects i.i.d. random variables with ngA’g[S,.(')(A) =1 = Pg’A’g[Si(])(A) = —1] = 1/2, (ii) the vector of ranks
(RY) A),..., R,Y)(A)) is uniformly distributed over the set of all permutations of {1, 2, ..., n}, and (iii) the vector of signs

is independent of the vector of ranks. Consequently, Hajek’s classical projection result for signed-rank linear statistics (see,

, M Ay 0 AN — (=125 <) YL O Ny S gt 27
e.g.,[14], Chapter 3) yields that E[(T; ' (A) TK;g(A))] E[(n Sl ST (AIKD( ) = K'"(G (1Z7 (M) D))D]is

n+1
o(1) under P§ , g0 aS 1 — 00, which establishes the result. O

Note that this also shows that E[(K® (R” (4)/(n + 1)) = K™ (G} (12" (A))))*] = E[(n~ "2 31, sO(A) KD (R (A)/
(n+ 1) — KOGz (M) is0(1) asn — 0o, under Py, .
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Proof of Lemma3.2. Fix A € Mp,andg € F.Foranyr = 1,...,p, the CLT shows that T,E';)g(A) is, under Py , .,
asymptotically normal with mean zero and variance E[ (K" (U))?]. Therefore, the mutual independence (still under Py A g)

of T,EC;(A), r=1,...,pentails that T, (A) is asymptotically multinormal with mean zero and covariance matrix I'. The
result then follows from Lemma 3.1. O

It remains to prove Lemma 3.3. We do so by showing that, forany A € M;,g € #,andr € {1, ..., p},

EL(T{ (A) — T (4))*1 = o(1) (A1)
asn — oo, under P&A,g. In the rest of this section, we therefore fix such A, g, and r. All expectations and stochastic
g and we will write Z”, 57, and R” for Z" (4), S (), and R (4), respectively.

Finally, we will denote the empirical counterparts of these quantities (based on A) by 2,8, and R".
We will need the following preliminary result.

convergences will then be under Py

LemmaA.1. Asn — oo, (i) 2\” — 2" = 0p(1),(ii) E[KDP R /(n + 1)) — KOG (12" (A)])))] = o(1) and (iii) E[|S\” —
s"|9] = o(1) forany a > 0.

Proof of Lemma A.1. (i) Denoting by [|Al| - the sup norm of the array A, we have 2" — Z\"| < ||Z; — ;|| < A" —
A7 £]IX1]l. The claim therefore follows from the root-n consistency of A.

(ii) Applying Lemma 2 of [26], witha = (vec A) and g(X, @) = [e/[A~'X]|yields that (R /(n+1)) -G (1Z\" ) is 0(1) as
n — oo (note that Conditions (a) and (b) of that lemma are fulfilled: (a) is our root-n consistency assumption on A, whereas
(b) can be checked exactly along the same lines as in [26], once it is noticed that [|e/[(A 4+ n~/2L)~1X]| — |e.[A7IX]|| <
(A +n~120)~1 — A=1]X||, for any fixed p x p matrix L).

Now, the continuity of K entails that

RO
K (n ) K@iz (A2)

is op(1) as n — o0. To prove that this convergence also holds in quadratic mean (which is precisely Part (ii) of the
lemma), it is sufficient to show that (A.2) is uniformly integrable. The second term in (A.2) is of course uniformly integrable
since the integrable random variable I(T(GS[)(|Z](")|)) does not depend on n. As for the first term in (A.2), recall that

KOR" /(n+ 1) — KOG (127])) = 0,2(1) as n — oo (see the remark after the proof of Lemma 3.1), which implies that

o) N
K®( %) is uniformly integrable. Finally, the latter uniform integrability and the invariance of A under permutations of the
RO
observations in turn imply that K (”(:jr—]
andtheresulg(f(gllow(s.) 5(r) @) 5(r) (r) 5(r) ) ¢ ) () (r) () )
] r r ) — ) — r ) — r r r r r r r r
(i) Since S, — 1" = (1Z," 17V = 1Z,"I"™)z,” + 1Z,"|"'(Z;” — Z{"), we have |S}” — S}"| < 2|12,” —Z;"|/12,"| = Y,".

Now, fix some 8 > 0.Then, foralln > 0, P[Y;” > 8] < PIY," I o0 _ . > 8/21+ P[Y\"I ;o . > 8/2] < P[IZ}"] <
1 1 =
nl+ P[Y](')IHZ(,>|>”] > 5/2] = p™ + p{", say. For all ¢ > 0, there exists 7 = n(e) such that p{" < &/2. As for p\”, note
>
that Yl(r)l[\z(”pn] < (2/n)|Z1(r) — Zl(r) [, so that Part (i) of the lemma entails that p,~ < &/2 for large n. We conclude that
=

) is uniformly integrable. We conclude that (A.2) is indeed uniformly integrable,

(n)

15" — 5" < v converges to zero in probability, which establishes the result (since [S"” — S\”| is bounded). O

Proof of Lemma 3.3. We have to prove (A.1). Since the proof of Lemma 3.1 establishes that E[(TIE” (A) — Tlg)g(A))z] =o0(1)
asn — oo, it is sufficient to show that E[(T,Q”(A) — T,ECL(A))z] = o(1) asn — oo. To do so, write T,({)(fx) - T,Ef)g(A) =
Hy+H,, withHy := n 231 8O KORY /(n+1)) =KD G (127 )))) and Hy := n= 2 3, S =KD @GP (1Z27))).

Then, by using the invariance of A under individual reflections of the observations about the origin, we obtain

E[(H1)’] % D EET KPR [+ 1) = KOG (127 1)))°]
i=1

= E[KO R /(n+ 1) =K G (12" )))*]
and, by using Holder’s inequality,

E[(H2)*]

1< ~
LY G - SR 260z )
i=1

— ELG” — sSORKO G0 (1274 < EIEY — sO)E D E[KOU)E) S,
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where ds := 2 + §, U is uniformly distributed over (0, 1), and § > 0 is the real number involved in our assumptions
on K (see the beginning of Section 3). By applying Lemma A.1(ii)~(iii), we then conclude that E[(T{" (A) — T,g)g (A)?] <
2(E[(H1)*]1+ E[(Hy)*])iso(1)asn — oo. O

Appendix B. Proofs of Theorems 4.2 and 4.3

Proof of Theorem 4.2. Fix A € M, and g € Fian. Applying successively Lemmas 3.1 and 3.3 yields that, as n — oo, under
P(?,A,g'
Q = (Tieg (A))' T Treg (A) + 0p(1). (B.1)

Recall that Ty, (A), under Py , ,,
of Lemma 3.2. Now, it is easy to see that, under Py

is asymptotically multinormal with mean zero and covariance matrix Ix; see the proof
ag Tkig(A) and the local log-likelihood log(dP:,l/zr’Ayg/dPg’A’g)

asymptotically are jointly multinormal with covariance IK,gA”r. Le Cam’s third Lemma thus yields that Tg.z(A),
under P:,l eag is asymptotically multinormal with mean I g A~'t and covariance matrix I. The result then follows

from the fact that contiguity implying (B.1) holds also under P,’:,l rag O

Proof of Theorem 4.3. Fix A € Myandg € }‘Lf\N. In this proof, all expectations, variances, and covariances are under P(’,‘, Ag

Since Var[X;] = AX,A’ (where X, is defined in the statement of the theorem), we have that § := % X —
X)X — X) = AXgA" + o0p(1) as n — oo, under Pg , .. Consequently, letting Z; = Zi(A) = A™'X;and Z =
1311 Z;, Hotelling's test statistic T2 satisfies T2 = nX'S™'X + op(1) = (Vn2)'X;'(v/nZ) + op(1) asn — oo,

under P} (from contiguity). Clearly, ﬁz is asymptotically multinormal with mean zero

n
0.4.¢» ence also under P

n=1/27 Ag
and covariance matrix X, under Py , .. Proceeding as in the previous proof, one then shows that /nZ and the local

log-likelihood log(dP" Prag /dPg 4 o) asymptotically are jointly multinormal under Py , ,, with asymptotic covariance

A7, Le Cam’s third Lemma thus implies that ﬁz, under Pr'l‘,l/zr Ag' is asymptotically multinormal with mean A~ 't
and covariance matrix . Therefore, T° is asymptotically x; (z'(A™")' X, 'A~"¢) under P, , .

This establishes the result since the AREs of ¢ with respect to Hotelling’s T test are obtained by computing the ratios
of the noncentrality parameters in their respective asymptotic distributions under local alternatives. O
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