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On document classification with self-organising maps
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"Department of Computer Sciences and Department of Information Studies,
33014 University of Tampere, Finland
{ Jyri.Saarikoski, Kalervo.Jarvelin, Jorma.Laurikkaa, Martti.Juhola} @uta.fi

Abstract This research deals with the use of self-organising maps for the classi-
fication of text documents. The am was to classfy documents to separate
classes according to their topics. We therefore constructed self-organising maps
that were effective for this task and tested them with German newspaper docu-
ments. We compared the results gained to those of k nearest neighbour search-
ing and k-means clustering. For five and ten classes, the self-organising maps
were better yielding as high average classification accuracies as 88-89%,
whereas nearest neighbour searching gave 74-83% and k-means clustering 72-
79% astheir highest accuracies.

1. Introduction

The growth of digital documents and information stored as text in the Internet has
been rapid in the recent years. Searching and grouping such documents in various
ways have become an important and challenging function. A myriad of documents are
daily accessed in the Internet to find interesting and applicable information. Distin-
guishing in some way interesting documents from the uninteresting onesiis, even if a
sdlf-evident goal, crucial. For this purpose, computational methods are of paramount
importance. We are interested in researching the classification of text documents, aso
those written in languages other than English.

There are known methods for constructing groups, clusters or models of docu-
ments, see for ingance (Doan €. al., 2003; Sebastiani, 2002; Serrano and del Cadtillo,
2007). These machine learning methods have included k nearest neighbour searching,
probabilistic methods such as Naive Bayesian classifiers (Duda et d., 2001) and evo-
lutionary learning with genetic algorithms (Serrano and del Castillo, 2007). The
methods were of the supervised category. We investigated the use of unsupervised
K ohonen self-organising maps (Kohonen, 1995) that seemed to be seldom used in this
field. They have been, however, applied to constructing visual maps of text document
clugters, in which documents were clustered based on the features they contain.
WEBSOM (Honkela, 1997; Lagus et d., 2004) was employed to organize large
document collections, but it did not include document classification in the sense to be
compared with the current research. Chowdhury and Saha (2005) classified 400, 500
and 600 sport articles, whereas Guerro-Bote et al. (2002) employed 202 documents
from a bibliographic database. Moya-Anegdn et a. (2006) made domain anaysis of
documents with self-organising maps, clustering and multidimensiond scaling. In-
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stead of document clustering, we were interested in investigating how accurately and
reliably self-organising maps are able to classify documents. Therefore, we con-
structed self-organising maps on document sets belonging to different known classes
and used them to classify new documents. We employed ten-fold crossvalidation runs
on our test document collection to assess classification accuracy in the document col-
lection. We aso performed comparable tests with k nearest neighbour searching and
k-means clustering which employ supervised learning to find a basdline level for the
classification of the document data used. In principle, the use of self-organising maps
isreasonable, because outside | aboratory tests there is not necessarily ardiably classi-
fied learning set available.

In the present research, we extend our previous research of using self-organising
maps for information retrieval in the same German document collection as in
(Saarikoski et a., 2008). In the prior work, we studied retrieval from the document
collection, the topics of which were associated with some of its documents, and we
used both relevant and non-reevant documents in the document sample extracted
from the collection. In the present work, our interest was in the classification, in other
words separation between document classes. We therefore used only documents rele-
vant to the classes examined.

2. Thedata and its preprocessing

We used a German document set which was taken from an original collection of
294809 documents (Airio, 2006) from CLEF 2003 of the years 1994 and 1995
(http://www.clef-campaign.org/). The articles were from newspapers such as Frank-
furter Allgemeine and Der Spiegel. There were 60 test topics associated with the col-
lection. In every topic there was a relatively small subset of relevant documents.
Relevant topics were included in our tests. At first, 20 topics were taken from the 60
topics otherwise randomly. From those 20 selected the smallest classes (topics) were
till left out which included 6-25 relevant documents in the collection. Such small
document classes would not have been quite reasonable for 10-fold crossvalidation
tests, because their average numbers of test documents in test sets would only have
been from 0.6 to 2.5, which might have resulted in considerable random influence.
Thus, we attained 10 topics (classes) and 425 relevant documents (observations) so
that the numbers of the rdevant documents of the topics were 27, 28, 29, 29, 34, 39,
44, 53, 55 and 87.

The concept of relevance means here that the association of the documents to the
topics had been manualy ensured in advance by independent evaluators who had
nothing to do with the present research.

To transform pertinent document data into the input variable form for a sef-
organisng map, some preprocessing was required. At firgt, the German stemmer
called SNOWBALL was run to detect word stems like ‘gegenteil’ from ‘ Gegenteil” or
‘gegenteilig’ from all documents and topics chosen. In addition, alist of 1320 German
stopwords was used to sieve semantically useless words from them. Stopwords are
prepositions like ‘ab’, articles like ‘ein’ and ‘eine’ or pronouns like ‘al€’, adverbs or
other uninteresting “small words’, which are mostly uninflected words. They were
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removed from the documents and topic texts. Thereafter, short words, shorter than
four letters, were removed, because they are typically, after semming, as word pre-
fices rather useless as term words. The last preprocessing phase included the compu-
tation of the frequencies of remaining word stems.

The documents and topics were of SGML format. In the following, the first exam-
ple presents an (abbreviated) SGML document and the second example depicts a
topic connected to some other documents. Classification variables were formed on the
basis of words occurring in the actual text parts of the documents and topics.

A document:

<DOC>

<TITLE>Ahornblatt nach 33 Jahren vergoldet</TITLE>

<TITLE>Zum 20. Mal Eishockey-Weltmeister</TITLE>

<TITLE>Seg im Penaltyschie3en</TITLE>

<TITLE>Finnland </TITLE>

<TEXT>Das Eishockey-Mutterland Kanada ist nach 33 Jahren wieder die Nummer eins in der Welt.
Durch einen 3:2-Erfolg im Penaltyschief3en gegen Finnland |6sten die Ahornblétter im WM-Finale in
Mailand den eingt Uberméchtigen Rivalen und Titelverteidiger Rulland ab, der bereits im Viertelfinale
gegen die USA (1:3) ausgeschieden war. Nach regulérer Spielzeit und Verlangerung hatte es 1:1 (0:0,
0:0, 1:1, 0:0) gestanden. Zuvor hatte Brind'’Amour (56.) die Fihrung der Finnen durch Keskinen (47.)
ausgeglichen. Im Penaltyschie3en zeigten die Kanadier die besseren Nerven, die Finnen verschossen
viermal in sechs Versuchen. Robitaille verwandelte den sechsten Penalty fir Kanada. Die Kanadier,
zuletzt 1961 bei der WM in Genf und Lausanne auf dem Thron, feierten bei den 58. Titelkampfen ihren
20. WM-Titel und machten damit...

<ITEXT>

</DOC>

A topic:
<DE-title> Rechte des Kindes </DE-title>
<DE-desc> Finde Informationen Uiber die UN-Kinderrechtskonvention. </DE-desc>

We computed document vectors for al documents by applying the common vector
space mode with tf-idf weighting for all remaining word stems. Thus, a document is
presented in the following form

D, = (Wiy, Wy, W, eooy W) @

where wi is the weight of word kin document D;, 1 <i <n, 1 <k<t, wherenisthe
number of the documents and t is the number of the remaining word stems in all
documents. Weights are given in tf-idf form as the product of term frequency (tf) and
inverse document frequency (idf). The former for word k in document D; is computed
with

freq, )
max, { fre%}

where freg; equals the number of the occurrences of word k in document D; and | is
for all words of D;, 1=1,2,3,..., t-1, t. The latter is computed for word k in the docu-
ment set with
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where N is equal to the number of the documentsin the set and ny is the number of the
documents, which contain word k at least once. Combining equations (2) and (3) we
obtain aweight for word k in document D;

Vvik :tfik >1dfk (4)

Based on this computation al 425 documents were mapped as document vectors
weighted with the tf-idf form.

Finally, the length of each document vector was shortened only to include 500 or
alternatively 1000 middle (around median) word stems from the total word frequency
distribution increasingly sorted. Very often the most and least frequent words are
pruned in information retrieval applications, because their capacity to distinguish
relevant and non-relevant documents (to atopic) is known to be poor. We chose either
500 or 1000 words, since from severa values we found these as good choices for this
datain our earlier research (Saarikoski et al., 2008).

It is worth noticing that document vectors were only computed from a learning set
in crossvalidation. Information about its corresponding test set was not used in order
to create as aredistic situation as possible, where the system knows an existing learn-
ing set and its words in advance, but not those of atest set. Thus, each learning set in-
cluded its own word set, somewhat different from those of the other learning sets, and
the document vectors of its corresponding test set were prepared according to the
words of the learning set.

3. Clasgfication with self-organising maps

Kohonen self-organising maps are neural networks that apply unsupervised learning
and they have been exploited for numerous visualisation and categorisation tasks
(Duda et d., 2001). We employed them to study their applicability to divide the test
documents into different classes on the basis of document vectors computed. We used
the SOM_PAK program written in C (http://www.cis.hut.fi/projects/'somtoolbox/) in
Helsinki University of Technology, Finland.

In our previous research on the same German document collection (Saarikoski et
al., 2008), we observed that random initialisation, bubble neighbourhood and up to
17x17 nodes were good choices. Different numbers of learning epochs were tested.
Finally, asfew as 3 coarse and 15 tuning epochs were applied.

The following procedure was implemented.

1. Create aself-organising map using alearning data set.

2. Form the modd vector of a node during the learning process of the network. Its
dimension isequal to that of the input vectors.

3. Determine a class for a node of the map according the numbers of documents of
different classes in the current node. The most frequent document class determines
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the class of the node. If there are more than one class with the same maximum, la-
bel the node according to the class of the document (from the maximum classes)
closest to the model vector (learnt during the process) of the node. Consider al
nodesin this manner.

After this procedure each node corresponded to some document class. Some node
could also remain empty, which would be bypassed during the later process.

Next the classification of atest document set was performed where atest document
was compared to the modd vector of each node to find which node was the closest
(the best fit), on the basis of Euclidean distance, to the test document.

After computing all document vectors of a test set, classification accuracy was
computed by checking for every document of atest set j whether it was classified into
its correct class.

_c ®)

a 100%

J
n,

Here g (j=1,..,10) is equal to the number of the correctly classified documents in test
set j and nj isthe number of all documentsin that test set. Accuracy & was obtained
for each test set. Since a random element is involved in the initialisations of neural
networks, we repeated 10 tests for every learning and test set pair. For each such
crossvalidation pair about 90% of documents were put to a learning set and the rest
10% to its corresponding test set. Documents were selected into learning sets and test
sets so that the relative proportions of various kinds of documents were similar in
both sets. Thus, 10-fold crossvalidation was applied, which produced 10 times 10 test
runs for atest document set. Average classification accuracies were finally calculated
from those 100 runs.

4. Nearest neighbour searching and k-means clustering

In order to compare results obtained by self-organisng maps, we tested with nearest
neighbour searching and k-means clugtering by using exactly the same crossvalidation
document sel ections as above for the documents.

Classification with nearest neighbour searching was performed with the following
procedure.

1. Search for k nearest neighbours of atest document from alearning set.

2. Compute the majority class from those k documents, i.e. the most frequent docu-
ment class among the neighbours.

3. Determine the class of the text document on the basis of the preceding step. If
there are two or more classes including the same maximum number of documents,
select the class randomly from those majority classes.

4. Repeat theformer steps for all documents of a test set.



After the nearest neighbour searching, the classification results were assessed for
correctness. Values of k were 1, 3, 5, 7 and 9. The Euclidean distance measure was
applied. The procedure was run for all 10 pairs of the learning and test sets, for which
average classification accuracies were calculated. We employed the Matlab program.
Nearest neighbour searching included no such an initialisation property of random
character as self-organising maps and clustering. Consequently, the nearest neighbour
searching wasrun only once for every learning and test set pair.

Clustering was accomplished with the Matlab program according to the test proto-
col smilar to that of nearest neighbour searching. The documents of a learning set
were clustered into k clustersin the Euclidean space of the document vector variables,
when k was equal to 2, 5, 10 and 20. The class of each cluster was determined simi-
larly to the above “voting” principle of nearest neighbour searching. A test set was
then dealt with and results computed. This was done 10 times for all 10 learning and
test setsto obtain the average results.

5. Reaults

We tested with the two input vector lengths, 500 and 1000 word stems, either 2, 5 or
10 classes (topics), which respectively included 142, 278 or 425 relevant documents
in total. Less than 10 classes (5 or 2 largest classes) were tested in order to see what
may happen when we merely restricted ourselves to the largest document classes, i.e.
discarded the classes smaller than with 39 or 55 documents. In the following, we pre-
sent the means and standard deviations of 100 crossvalidation test runs of the self-
organising maps and k-means clustering and those of 10 crossvalidation runs of near-
est neighbour searching. The crossvalidation division into test and learning sets was
identical between al three machine learning methods used.

Table 1 shows the results computed with the self-organising maps. The highest re-
sult at each row is written in bold in Tables 1-3. The best 2-class and 5-class Situa-
tions in Table 1 were with the smallest network of the 25 nodes. Instead, the 10-class
condition gave its best results with the networks of 7x7 nodes. The vector lengths
used did not yield so unambiguous an outcome. For the self-organising maps, 4.8% of
all nodes as minimum were empty with the size of 5x5 nodes and 5 classes. As maxi-
mum 66.9% were empty with the size of 13x13 and 2 classes. These empty nodes ob-
tained hits (incorrect classifications) from 0.8% (10 classes) to 5.0% (2 classes) both
with the size of 5x5.

Table 2 presents the results of nearest neighbour searching. Its results of all 2-class
test alternatives were exceptionally high. Thiswas at least partly dueto very different
topics of the two classes one being ‘children theme' and the other ‘nuclear power
theme'. The 5-class and 10-class situations were at their best with nearest neighbour
searching of k equal to 1. For the 2-class alternatives the longer vector length of 1000
word stems produced better results than the shorter length of 500, but for the 5-class
and 10-class dlternatives it was vice versa.

The numbers of 2, 5, 10, 20, 40, 60, 80, 100 and 120 clusters were tested for clus-
tering. Table 3 describes most clustering results excluding those of 40, 60, 100 and
120 clusters since these were poorer than the results of 80 clusters. The best results



were gained by using the cluster number of 80, except for the 2-class condition. The
shorter vectors were better than thelonger ones.

Running times of individual learning and test pairs were moderate while using a
computer with a 1.6 GHz processor and 1 GB memory. They varied from 1.6 sto 13 s
for the self-organising maps. The Matlab implementation of nearest neighbour search-
ing took from 0.4 sto 1.1 s and that of k-means clustering from 1.8 sto 34 s. These do
not contain the short time of the preprocessing common to al three.

Table 1. Means and standard deviations of classfication accuracies (%) of sef-organising
maps for 100 test runs

Number | Vector Number of nodes
of classes | length
5x5 7x7 9x9 11x11 13x13
2 500 03.2+8.2 | 88.4+10.2 | 77.4+11.1 | 68.8+11.5 | 60.6+13.8
1000 90.5+8.0 | 86.4+9.5 | 75.7+115 | 67.2+13.1 | 62.5+14.3
5 500 87.8+6.2 | 86.0+6.9 | 84.3+7.1 | 77.5¢6.6 | 73.4+7.9
1000 89.0+6.8 | 87.0+5.9 | 83.2+7.3 | 78.1+75 | 72.248.2
10 500 79.2+7.3 | 88.1+5.6 | 86.7+t5.8 | 82.6+6.6 | 79.6%6.3
1000 76.5t5.1 | 89.2+5.4 | 88.0+5.4 | 84.2+4.8 | 80.815.6

Table 2. Means and standard deviations of classification accuracies (%) of nearest neighbour

searching for 10 test runs

Number | Vector Number k of nearest neighbours
of classes | length
1 3 5 7 9
2 500 95.1+4.6 | 97.1+3.7 | 95.8+3.6 | 97.9+34 | 99.2+2.4
1000 99.3+2.1 | 99.3+2.1 | 99.3+2.1 | 98.7+4.2 | 98.7£2.8
5 500 83.4+6.2 | 76.3+t7.1 | 69.0+6.7 | 70.5+5.4 | 69.7+8.4
1000 74.4£55 | 60.8+7.7 | 56.5+9.9 | 59.0+7.7 | 59.4+10.9
10 500 83.3t7.0 | 81.8+6.1 | 80.2+6.8 | 78.9+5.7 | 78.5¢5.7
1000 80.746.0 | 72.6+6.2 | 69.7¢5.7 | 67.9+6.9 | 71.1+5.7

Table 3. Means and standard deviations of classification accuracies (%) of k-means clustering
for 100 test runs

Number | Vector Number k of clusters
of classes | length
2 5 10 20 80
2 500 62.1+£5.7 | 73.7£17.7 | 92.4+14.7 | 97.9+7.0 | 95.9+5.9
1000 61.3t1.6 | 65.0+11.2 | 76.9+18.3 | 83.6+17.7 | 91.9+9.7
5 500 52.0+6.9 | 59.2+7.4 | 65.5+6.0 | 78.5+7.3
1000 446+9.8 | 54.4+7.1 | 58.8+6.6 | 72.3%6.9
10 500 48.145.7 | 56.9+7.3 | 73.6+8.3
1000 427457 | 52.1+5.7 | 71.9+6.2




Fig. 1 shows an example of the self-organising maps. It includes 10 classes with
383 documents of a learning set when the size of the map was 7x7, the input vector
length was 1000 and arandom test run was chosen. Its average classification accuracy
was 88.8%.

Fig. 1. The numbers of relevant documents of a learning set hit each node are
counted in the map. The darker the node, the more compact the concentration of the
document group is. The larger the node, the greater the number of documents. The
other 42 documents of all 425 documents were not here, but allocated to the test set.

Fig. 2 depictsthe same map as Fig. 1, but the nodes are marked with the class iden-
tifiers computed. The following list gives the class identifiers, numbers of documents
and classtitles occurring in Fig 2.

#186:
#156 :
#147 :
#195:
#193:
#184 :
#150:
#152:
#190:
#187:

24
25:
26:
26:
31:
35:
40 :
48 :
50:
78:

Hollandische Regierungskoalition
Gewerkschaften in Europa
Olunfélle und Vogel

Strelk italienischer Flugbegleiter
EU und baltische Lander

M utterschaftsurlaub in Europa

Al gegen Todesstrafe

Rechte desKindes

Kinderarbeit in Asen
Atomtransporte in Deutschland



0.5

0.4

Fig. 2. The class identifiers are attached to the nodes where they beat voting as “majority”
classes. Notice that we cannot sum up the numbers of documents from this figure and the pre-
ceding list and to compare them directly to those of Fig.1, because the nodes also include some
probably incorrect (non-relevant) classifications from “minority” classes.

To statigticaly compare the results, the Friedman test (Conover, 1999) was con-
ducted. Since nearest neighbour searching included 10, but the others 100 test runs,
the means of the 10 crossvalidations of the latter two methods were first calculated.
For the 2-class condition nearest neighbour searching and clustering obtained signifi-
cantly (p = 0.004) better results than the self-organising maps for the vector length of
500. For the length of 1000, nearest neighbour searching was significantly (p =
0.00005) better. For the 5-class and 10-class conditions, the self-organisng maps
outperformed significantly (p < 0.001) the other methods with both vector lengths.

6. Conclusions

We tested self-organising maps, nearest neighbour searching and k-means clustering
with documents from a German newspaper article collection. Except the 2-class alter-
native which favoured nearest neighbour searching, self-organising maps gave the
best results. Table 1 suggests that if more classes are involved, the number of the
nodes in a network should increase. On the other hand, for nearest neighbour search-
ing the disperson of documents to several classes supports the idea to keep to the



number k of neighbours equal to 1. Table 3 (k-means) suggests that the number of the
cluster is best to set high. Differences caused by the vector lengths were not conss-
tent, but the self-organising maps were mostly somewhat better with the length of
1000 word stems, meanwhile nearest neighbour searching and k-means clustering fa-
voured the length of 500. Doubtless the self-organising maps were effective classifi-
ers for the current data. Excluding the 2-class condition, they outperformed the other
two methods, when the self-organising maps gave the average classification accura
cies of 88-89%, nearest neighbour searching reached 74-83% and clustering 72-79%.
A 2-class condition is an extreme situation. A more realistic alternative contains a
greater number of classes. Nearest neighbour searching was the fastest method.

We can continue our research with the current document data and larger document
sets. We are going to perform an extensive analysis with additional learning methods.
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