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Abstract. The Szilard language of a context-free grammar is the
set of all terminating derivations. By restricting the form of
derivations we obtain the classes of left, depth-first and

breadth-first Sailard languages of context-free grammars. This

work surveys these classes of languages.

In the case of (unrestricted) Szilard languages we mainly deal

with different kinds of decidability problems and the relationship
between Szilard languages and context-free languages. Two inter-
esting topics concerning left Szilard languages are the properties
of bounded left Szilard languages and the relationship between left
Szilard languages and pure languages. Depth-first and breadth-first
Szilard languages are not studied in the literature as much as
Szilard and left Szilard languages. We shall present their bastic

properties only.

A great variety of grammatical similarity relations are introduced
in the literature in order to control grammatical transformations.
We shall show that left Szilard languages are useful when studying

the properties of these similarity relations.

CR Categories and Subject Deseriptors: F.d.2.[Mathematical Logic
and Formal Languages]: Grammars and Other Rewriting Systems -
Grammar types; F.4.3. [Mathematical Logic and Formal Languages]:
Formal Languages - Classes defined by grammars or gutomata,

Deeision problems.

General Terms: Theory

Additional Keywords and Phrases: Szilard language, grammatical

similarity.
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CHAPTER 1: INTRODUCTION AND PRELIMINARIES

1.1. Introduction

There are two major things of interest when studying context-
free grammars as a mathematical model of programming languages:
(1) the language generated by the grammar and (2) the derivational

structures used. This study is devoted to the latter subject.

A traditional way of presenting the derivational structure of a
context-free grammar is to use the forest of derivation trees.
In this paper we present the derivational structure of a context-
free grammar by a language in which we have a word for every
string of productions that corresponds to a derivation from the
start symbol to a terminal word. Such a language is called the
Szilard language of a context-free grammar. (Szilard languages
are called "associate languages" in [Mor] and "derivation lan-
guages" in [Pen74].) By setting conditions to the form of deri-
vations, we can define leftmost, depth-first and breadth-first
derivations and left, depth-first and breadth-first Szilard lan-
guages, respectively. Rightmost derivations are not studied,
since the results would be analogous to those of leftmost deri-

vations.



In chapter 2 we survey the material concerning Szilard languages

associated with arbitrary context-free derivations and in chapter

3 the same is done for left Szilard languages. Although left
Szilard languages are always deterministic context-free lan-
guages and Szilard languages are not necessarily even context-
free, the two classes of languages have several similarities,

e.g. their closure properties are alike.

In chapter 4 we are looking for ways to restrict arbitrary context-
free derivations such that the resulting derivations are more
general than leftmost derivations and the Szilard languages asso-
ciated with them are context-free. The depth-first restriction

is our best result to this direction. We also define breadth-first
Szilard languages, but this class does not have the desired
context-freeness property. However, there are context-free
grammars which have a regular breadth-first Szilard language but

a non-regular left Szilard language.

In chapter 5, our purpose is to apply the results of chapter 3
concerning left Szilard languages to the study of grammatical
similarity relations. We show that the relations undercover [S-SW]
and cover [GH] can be characterized by using the properties of

left Szilard languages and the concept of homomorphism equivalence.

1.2. Preliminaries

We assume a familiarity with the basics of context-free grammars

and languages, decidablity and other related topics as given in



[Har,HU79]. All unexplained concepts are as in these references.

We denote a context-free grammar by G = (N,T,P,S) where N is
the alphabet of nonterminals, T is the alphabet of terminals, P

is the set of productions, and S is the start symbol.

Relations "derives directly” (=) and "derives directly leftmost"”

(= and their transitive (=+ and »{) and reflexive, transitive

Z)
(=" and a;) closures are defined as usual. L{G) stands for

the language generated by G.

A derivation S = « in G = (N,T,P,S) is said to be a terminal
derivation, if a € T". If not otherwise stated, we suppose that
all context-free grammars are reduced, i.e. all nonterminals and
terminals appear in some terminal derivation. A derivation

A - ¢, a € (N U T)*, is recursive, if a = alAaz. Nonterminal

A is then said to be a recursive nonterminal.

The empty word is denoted by X, the length of a word o by 1lg(a),
the empty set by ¢, the cardinality of a set A by card(ad), and

the set of n-tuples of non-negative integers by w".

The following subclasses of context-free languages (i.e. languages
generated by context-free grammars) are assumed to be known: simple
languages (s-languages), linear languages [Har,HU79], and regular
Languages [HU69]. We also consider s-, limear [Har, HU79] and

regular grammars [HUB9T.

We shall need some normal forms for context-free grammars. A



context-free grammar G = (N,T,P,5) 1is said to be in Chomsky normal
form (in CNF, for short) 1if P € N x (N2 U T). The production

S») is also allowed if the start symbol S does not appear in the
right-hand side of any production. G is said to be in Greibach
normal form (in GNF, for short) if P c N X TN®. The production

S\ is ailowed as above. G is in sem<-GNF, if P S N X TN

Appearances of the start symbol are not restricted in semi-GNF.

A context-free grammar G is ambiguous if there exists a word
w in L(G) such that w has at least two leftmost derivations
from the start symbol. Otherwise, G is unambiguous. A context-—
free language for which every context-free grammar is ambiguous

is said to be an inherently ambiguous context-free language.

let G = (N,T,P,S) be a context-free grammar and assume that
the productions in P are uniguely labeled by the symbols of an

alphabet C. The alphabet C 1is then called the tabel alphabet

of G. If a production A-u is associated with a label p, we
write p:A-a. If a sequence Preeeb, =P of labeled productions
is applied in a derivation (resp. leftmost derivation) B =5y
(resp. B =Z ¥), where B and Yy are in (N U T)*, we can
write R =P y (resp. B a? v). The Szilard language Sz(G) and
the left Szilard language Szl(G) of G are defined as

Sz(G) = { n | §="w, weT }
and

Szl(G)={Tr|S=>TZTw,wET* }.
Hence, both Sz(G) and S5zl(G) are languages over label al-

phabet C.

We shall sometimes speak about aerivation 7, when we



actually mean derivation o =" B (or « ST B).
Y )

The following notational conventions concerning symbols and
strings are generally used: small Latin letters from the begin-
ning of the alphabet a, b, c¢,... denote terminals, capital
Latin letters from the beginning of the alphabet A, B, C,...
denote nonterminals, small Latin letters from the end of the
alphabet u, v, w,... denote terminal strings, and Greek letters
from the beginning of the alphabet o, B, Yy,... denote general
strings, i.e. strings consisting of terminals, nonterminals or
both. We need one more convention for the symbols and strings
of label alphabets. We shall use Greek letters from the end of
the alphabet w, p, o,... for denoting both symbols of a label
alphabet and strings of labels. This should not cause any con-
fusion since it is possible to conclude from the context whether

we mean labels of productions or strings of labeled productions.

Let G = (N,T,P,S) be a context-free grammar. We often need the
homomorphism n:(N U T)-(N U {A}) defined by n(a) = A, if

A €N, and n(a) = A, if a € T. (A homomorphism h:A-%, where

A and I are alphabets, is naturally extended to be a function
from A* to ¥ by the conditions h(A) = X and h(wp) = h(w)h(p)

for all 7 in A" and p in A.)

1l.2.2. Pushdown automata

A pushdown automaton is a 7-tuple A = (Q,Z,P,G,qO,ZO,F), where
Q is the set of states, I and T are the alphabets of input
and pushdown symbols, respectively, dq € Q is the initial state,

2, € I' is the ¢nitial symbol of the pushdown store, F = Q is



the set of final states and & 1is the transition funetion

from Q x (£ U {2}) x I to finite subsets of Q x r* [Harl.

We consider only pushdown automata, which accept their input
"pby final state and empty store” [Har, p. 139]. L(A) stands

for the language accepted by a pushdown automaton A.

An instantaneous description is an element of Q x ¥ xr*. A
move is a change in instantaneous description according to the
transition function 6. If (g,x,0) 1s an instantaneous descrip-

tion, then 1lg(a) is the height of the pushdown store.

A pushdown automaton A = (Q,E,F,ﬁ,qO,ZO,F) is deterministie
if for all (qg,a,z) € Q x (L U {)}) x I', we have card(é(qg,a,2)} =< 1
and if §&8(g,A,2) # © then §&(g,a,2) = ® for each a € L. A

context-free language is deterministic, if some deterministic

pushdown automaton accepts it.

A pushdown automaton A = (Q,Z,F,é,qo,ZO,F) is said to be a
one-counter automaton, if the set of pushdown symbols contains
only one symbol other than the initial symbol of the pushdown
store. Since our pushdown automata accept by final state and
empty store, the counter may count down to zero more than once.
Such automata are called "iterated one-counter automata" in

[Har, pp. 147-148]. By "one-counter language"” we mean a language
acceptable by a one-counter automaton, i.e. "iterated one-counter

language" of [Har].

In the sequel, we assume that the concepts "the delay of a push-

down automaton"” and "a realtime automaton’ [Har, p. 142] are known.



1.2.3. Decision problems and complexity

When we speak about decidability and complexity of problems we
suppose that the problems are encoded to language recognition

problems as in [HU79, p. 178].

A problem whose language is recursive is said to be decidable.

Otherwise, the problem is undecidable.

P, NP and PSPACE are classes of languages recognized by deter-
ministic polynomially time bounded Turing machines, by nondeter-
ministic polynomially time bounded Turing machines and by deter-
ministic polynomially space bounded Turing machines [HU79, AHU]J,

respectively.

A language L 1is polynomially reducible to a language L' if

there exists a function £ computable by some deterministic pol-
ynomially time bounded Turing machine such that x is in L if
and only if £(x) is in L'. Languages Ll and L2 are poly-

nomially equivalent if they are polynomially reducible to each

other.

NP-complete and PSPACE-complete languages (and problems) are

supposed to be defined as in [HU79].



CHAPTER 2: ON SZILARD LANGUAGES

This chapter deals with Szilard languages of context-free gram-
mars. In section 2.1 we introduce some basic properties of
Szilard languages. Section 2.2 shows the relationship between
Szilard languages and counter automata. Since there are non-
context-free Szilard languages, we need more than one counter when
recognizing these languages. On the other hand, we can repre-
sent Szilard languages as intersections of one-counter languages.
Section 2.3 is devoted to a study of decision problems for

Szilard languages. It is shown that many problems undecidable

for context-free grammars and languages are decidable for Szilard
languages. In section 2.4 we study the resemblance between
Szilard languages and context-free languages. Different char-
acterizations of context-free languages are applied to Szilard
languages in order to check whether these characterizations are
strong enough to distinguish between Szilard languages and context-

free languages.

2.1. Basic properties of Szilard languages

We shall first make some elementary remarks concerning Szilard

languages.

Let G = (N,T,P,S) be a context-free grammar with label al-

phabet C. A production A-c is said to be terminating, 1if



a € T*; otherwise it is nonterminating. If a word in Sz (G)

is of length two or more, it begins with the label of a non-
terminating production which has the start symbol S in its left-
hand side. Every word in 8z(G) ends with the label of a ter-
minating production. Based on this simple remark we could now
find counterexamples which show that the class of Szilard lan-
guages is not closed under union, catenation, homomorphism, in-
verse homomorphism, and Kleene closure [Pen74]. Language { w*p }
shows that the class of Szilard languages is not closed under

reversal.

The following example shows that the class of Szilard languages
is not closed under intersection with regular languages. We need
here the fact that every infinite Szilard language contains an

infinite regular language [Pen74].

Example 2.1 [Pen74]. Let G be a context-free grammar with

productions

7 : S-+ABS

DA~

g:B=)

T:5-).
Furthermore, let R = 7 p'c’t. Now we have Sz{G) N R =
[ 1PpPeR

pot | n2 0}, which does not contain an infinite regular

language. []

A few further comments concerning example 2,1 are in order. First,
productions p:A-X, o:B-») and T:S-) all have empty right-hand

sides. 1In fact, it would not make any difference, if there were
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terminal symbols in these right-hand sides. However, if we do
not want to allow more than one label for a single production,
we sometimes need terminal symbols to make productions distin-

guishable.

Secondly, example 2.1 shows that there are non-context-free

Szilard languages.

Recall that a language L is prefix—free, if x € L and xy € L
always imply y = A. Let w be in Sz(G) for a context-free

grammar G. It is not possible to continue derivation after pro-
duction string m, because there are no nonterminals left. That

is, Sz(G) 1is prefix-free.

For a language L, define init(L) toc be the set init(L) =

{ x| xy €L}, i.e. init(L) 1is the set of prefixes for a lan-
guage L. Every word in Sz(G) corresponds to a terminal deri-
vation of a context-free grammar G = (N,T,P,5). Similarly,
every word p in init(Sz(G)) corresponds to a derivation

g =P o, where o € (N U T)*.

We have already seen that not all Szilard languages are context-
free. Following [Mor] we now give sufficient and necessary

conditions for a Szilard language to be regular or context-free.

A context-free grammar is said to have rank k 1f there exists

a natural number n such that in any sentential form at most



1L

k nonterminals have more than n occurrences, and moreover,

there does not exist any k', k' < k, having the same property.

If a context-free grammar has rank 0, it is called nonterminal

bounded and if its rank is at most 1, then it is called half-bounded.

When speaking about symbols and strings the following notation
is useful: X(a) denotes the number of occurrences of symbol X

in string o.

A nonterminal A 1is said to be bounded in a context-free grammar
G, if there is a natural number n such that every sentential

form o of G has A(a) < n. Otherwise, A is unbounded.

If a context-free grammar is nonterminal bounded, then it has
a finite number of possible nonterminal combinations in its
sentential forms. By replacing every different combination by
a different nonterminal, we see that in this case the Szilard
language can be generated by a regular grammar. On the other
hand, it is obvious that if a context-free grammar is not non-
terminal bounded, then its Szilard language cannot be regular.

Hence, we obtain

Theorem 2.1 [Mor]. The Szilard language Sz (G) of a context-free

grammar G is regular if and only if G is noaterminal bounded.

Moriya [Mor] has proved a similar result for half-bounded grammars
and context-free Szilard languages. We can state the theorem in

somewhat stronger form. Consider first the if-part.



1.2
lemma 2.1. Let G = (N,T,P,S) be a half-bounded context-free

grammar. Then Sz(G) is a deterministic one-counter language.

Proof. The problem is that we might have more than one unbounded
nonterminal. We must be able to decide which unbounded nonter-

minal has to be counted by the counter.

For each unbounded nonterminal A we must have a nonterminal C

such that C =~ B8, where C(B) =1 and A{(B) > 0 (or A =C and
A(B) » 1), is a derivation in G. Let NA be the set of all nonter-
minals C fulfilling the condition above. If B is another un-
bounded nonterminal in G, we have NA n NB = . Moreover, if C

is in NA, then no nonterminal in NB is reachable from C. The

latter property means that if we ever decide to use the counter for

counting the number of a certain nonterminal, there is no need

tc change the nonterminal counted in any further stage.

If the start symbol is unbounded in a half-bounded context-free gram-
mar, then it clearly is the only nonterminal of the grammar. Hence,

we can assume that the start symbel is bounded.

We can now construct a deterministic one-counter automaton F which
accepts Sz (G) as follows. Automaton F starts reading its input
and remembering the numbers of nonterminals in the corresponding
derivation of G in its state system. When F reads a label

p such that p:B-c¢ is a production and « contains a nonter-

minal from some N all A's kept in the state system will be

AI
moved to the counter. Henceforth, reading a label of a produc-
tion containing A causes a change in the counter. So, for
every unbounded nonterminal of G, F has a block of states in

which it stays while reading the rest of its input after it has

decided which nonterminal must be counted by the counter. [
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Similarly, we could prove the following: for every half-bounded
context-free grammar G we can find context-free grammars
Gl""’Gn such that each Gi' i=1,...,n, has only one unbounded
nonterminal, L(G) = .E L{GiJ and each derivation of G 1is in
G,, for at least onel;ilue of i [M&k85d].

Consider now the converse of lemma 2,1. Following [Mor] we
prove it by supposing first that a given context-free grammar
G = (N,T,P,S) is not half-bounded. Hence, we have senteﬁtial
forms with occurrences of two, say A and B, A # B, unbounded

nenterminals.

We obviously need recursive derivations which increase the numbers
of A's and B's. The recursive nonterminal in these derivations
is A, B or some distinct nonterminal C. All possible forms of
these derivations are listed below according to the number of

nonterminals (other than A or B) needed.

(0) a. A =»* ...A...A...
B =* ...B...B...
b. & =" .B...A...A.
c. B =" ...A...B...B..

(1) 4. ¢ =* ...A...B...C...

B = wBwreBwee

£. C =¥ B...C...

A =" O

(2) F: E S 5yl cilluss
s .B...D...

We consider case d. in detail; the other cases are similar. Name
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first some derivations in G:

c =" u,Au,Bu,Cuy,

a =P Vs B =7 Vo c ="' Vir Yy ET*, i=1,...,3.

ug ET , 1= Lliwreaty

Furthermore, G must have derivation

S =¢ wlez, wl, 5 € T*.

Now, we have Sz(G) n ¢v p*c*t = { ¢n"p"¢™ | n = 0 }. Since

w

Sz (G) has a non-context-free intersection with a reqular lan-

guage, it cannot be even context-free.

We have proved the following

Theorem 2.2. Let G be a context-free grammar. Language 5z(G)
is a deterministic one-counter language if and only if G 1is

half-bounded.

Notice, that the rank of a context-free grammar is always finite,
because the set of nonterminals is supposed to be finite. There
is an algorithm for determining the rank of a given context-free

grammar [Mor].

In this section we introduce twc methods for generating Szilard
languages. We shall also make some remarks concerning the gener-
ative capacity of permutative grammars which are introduced as

the other method for generating Szilard languages.

Recall first that a (context-free) matrix grammar [Sal] consists

of sequences of context-free productions, i.e. matrices, which



15

can be applied only in such a way that all productions in a

matrix are applied in succession.

Let G = (N,T,P,5) be a context-free grammar. Define a matrix
grammar M, which has matrices [S-$S], [$-A] and for every pro-
duction p:A~+a in G a matrix [$-p$, A>n(a)l. The language gen-

erated by M 1is Sz (G) [Pen74].

A matrix of the form ([$-+p$, A-n(a)] makes it possible to arbi-
trarily pick a nonterminal A to be the nonterminal to which the next
production is applied. We can do the same thing by using permu-
tation productions of the form AB»BA. 1In this case we actually
transform the chosen nonterminal to the left-hand side end of the

nonterminal portion in a sentential form.

A grammar is said to be permutative if it has permutation produc-

tions of the form AB-BA besides context-free ones [Sill].

Let G = (N,T,P,S) be a context-free grammar with label alphabet
C. Define a permutative grammar H = (N,C,P +S), where P
per per

contains

1) A-pn(w) for every production p:A-a in P
and

2) AB-BA for every pair (A,B), A % B, in N x N.
We omit the straightforward proof of the fact that L(H) = Sz(G).

By theorem 2.2, we obtain a permutative grammar generating a con-
text-free language if and only if the original context-free grammar

G 1is half-bounded. By relieving the one-to-one correspondence
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between productions and terminal symbols in grammar H, we fall

into the class of so~called label grammars [Hdp, JOJ.

A permutative grammar H = (N,T,P,S) 1is a label grammar if all
context-free productions in P have the form A-aa, where

a € (Tvu {xhH and o € N*, and moreover, P contains a production
AB+BA for every pair (a,B), A # B, in N x N. A language L .

is a label language if there is a label grammar H such that

H generates L.

Label languages are images of Szilard languages under decreasing
homomorphisms (a homomorphism h is decreasing if lg(h(a}) =< 1,
for all a) [JO). Hence, theorem 2.2 gives us a sufficient con-

dition for a label grammar to generate a context-free language.

Theorem 2.3 [Mdk§54]. Let H = (T,N,P,S) be a label grammar and

let G = (N,T,P',S) be the context-free grammar obtained from H
by deleting all permutaticn productions. If G is half-bounded,

then ©L(H) is context-free.

The following example demonstrates why half-boundedness is not

necessary for a label grammar to generate a context-free language.

Example 2.2. Consider label grammars G G and G with the

1.4 R 3
following context-free productions

Gl: G2: G3:
S-»CcSAB S5-+SAB S—+CcSABR
A-a A~a A-a
B-b B~b B-a

S-d S-d S-d.
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The corresponding context-free grammars all have rank 2. Since
Gl generates the Szilard language of a context-free grammar of
rank 2, L{Gl) is not context-free. On the other hand, L(Gz) and

L(G3) are both context-free. [

Label grammars have the right-hand sides cf their context-free
productions in ™" U N*. If we allow arbitrary context-free
productions, then half-boundedness is not sufficient for context-

freeness, as shown in the following example.

Example 2.3 [M#k85d]. Consider a permutative grammar G with the

following context-free productions

S-aAB

B=S5c

A-b

S-d
and with all possible permutation productions. Each word in L(G)
contains equal number of terminals a, b and c. By applying
derivations of the form

S = aAB = aASc = aSAc = aaABAc = aaAABc = aaAAScc = aaASAcc =

aaSAAcc = aaalABAAcc = aaaAABAcc = aaalAAABcc = aaaABRASccc ...

words anbndcn, n > 0, can be generated in G. Hence,
L(G) n a*b*dc” = {a™"ac™ | n > 0 }. This shows that L(G) is

not context-free. [

The situation becomes even more complicated when we do not require
that a permutation preduction AB-BA exists for every nonterminal
pair (A,B), A # B, but only for a subset of N x N. We omit these

considerations.
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2.2 Counter automata and Szilard languages

A deterministic m-counter automaton consists of a finite state
system and m counters (for details, see [FMR]). BSuch a device
recognizes Szilard languages in realtime as describred in [Pen77].
When an m-counter automaton recognizes a word in a Szilard language,
it simulates the corresponding derivation of the context-free
grammar in question by counting the numbers of nonterminals. The
contents of these counters are linearly bounded (by the length of
the input string) and the counter automaton can be simulated by a
deterministic Turing machine which works in space log n [Pen77].
This Turing machine construction is directly given in [Iga], where
it is also shown that log n is optimal space bound for on-line
deterministic Turing machines, i.e. for machines which have read-
only input tape and are not allowed to move the input head to the

left.

What is the number of counters needed in an m-counter automaton which
recognizes a Szilard language? Since the numbers of occurrences of
bounded nonterminals can be counted by the state system, we need

a counter for each unbounded nonterminal only. Instead of proving
this fact in detail, we consider the following theorem, which

states a similar result and is given in [Jan] without a proof.

Theorem 2.4. If a context-free grammar G = (N,T,P,S5) has k
unbounded nonterminals, then the Szilard language Sz (G) 1is
expressible as the intersection of k deterministic one-counter
languages.

Proof. Notice first that when k = 0, we have a special case

where Sz (G) is a regular language and hence, the phrase "the
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intersection of 0 deterministic one-counter languages" must
be interpreted as "a regular language". When k = 1, we have

the case of lemma 2.1.

We shall now turn to the case of arbitrary k » 1. Let A be

a nonterminal in G. Consider those labels in a word p = Py---Py
of 5z (G) whose productions contain at least one occurrence of

A. If Py has A in its left-hand side, we must have at least
one A left in the sentential form obtained by applying produc-
tions pj...p; ;- On the other hand, after the last production
"consuming” A (i.e. having A in the left-hand side but not in
the right-hand side) all A's must be "consumed" and after that,

new A's cannot be "produced".

Define LA to be a language over label alphabet C such that

La contains all balanced words with respect to labels of pro-

ductions containing occurrences of A.

The deterministic one-counter automaton FA accepting LA scans

its input and performs the following actions:

1) F checks that the first symbel of its input is an allowed

A

one,

2) when FA reads the label of a production with A as the

left-hand side, F decrements its counter by one,

A
3) when Fy reads the label of a production with at least
one occurrence of A in the right-hand side «a, F incre-—

A

ments its counter by one Af{a) times.

Action 2) precedes action 3) if some production requires both of

them. Since our one-counter automata accept with final state
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and zero counter, FA accepts its input if and only if the coun-

ter contains zero after reading its input. That is, FA accepts

L

20
Consider now the intersection N L(A). For each nonterminal &
AEN
we have a language L which forces the intersection to contain

A
only words with right relative order of labels of productions
having A in the left- or in the right-hand side. Since every
LA contains all words fulfilling this condition, the intersection
must coincide with Sz (G).

If a nonterminal A is bounded then LA is regular. Hence, all

LA's where A 1is bounded, can be replaced by one regular lan-
guage. Moreover, deterministic one-counter languages are closed
under intersection with regular languages. This completes the

proof of the theorem. [

Corollary 2.1 [C-RM]. The complement Sz (G) of a szilard language

Sz (G) is context-free.

Is it possible to strengthen theorem 2.5 such that the phrase
"k unbounded nonterminals" could be replaced by "rank k"? Lemma
2.1 shows that this is possible in the case k = 1. We leave the

other cases open.

2.3. Decision problems for Szilard languages

Most reasonable decision problems are undecidable for context-free
grammars and languages. However, it is decidable whether the lan-

guage generated by a context-free grammar is empty, finite or
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infinite. These problems are decidable for Szilard languages, too.

Theorem 2.5 [Pen74]. Let G be a context-free grammar. There

are algorithms to determine if Sz(G) is empty, finite or infinite.
Proof. Sz(G) is empty if and only if L(G) is empty and it is
finite if and only if G does not have recursive nonterminals.

Hence, we have algorithms for all three cases. []

Notice that L(G) can pe finite when Sz(G) is infinite.

Consider now problems "Sz(G) = R?", "Sz(G) € R?" and "R < Sz(G)?",

where G 1is a context-free grammar and R is a regular language.

Theorem 2.6. Let G be a context-free grammar and let R be a
regular language. It is decidable whether or not R < Sz(G)
and R = Sz (G).

Proof. We have R c 5z(G) if and only if R N S§z(G) = ®. By
corollary 2.1, language R N Sz (G) is context-free and hence,

it is decidable whether or not it is empty.

If G has rank higher than 0, then 8Sz(G) = R is impossible,
because 5z (G) is not regular. Otherwise Sz(G) = R is decid-

able, since the both languages are regular. [

Recall that a language L is bounded, if there exist finite words

Wyre-., w o such that L ¢ wl*...wn*. Otherwise, L is unbounded.

The following theorem is a simple remark concerning the problem
"5z (G) = R?". We shall reconsider this problem at the end of

this section.
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Theorem 2.7. Let G be a context-free grammar and let R be a
bounded regular language, Then it is decidable whether or not
sz (G) < R.

Proof. If G = (N,T,P,S) has rank 0 or rank 1, it is decid-
able whether Sz(G) < R, since 5z(G) is deterministic context-

free [Har].

Suppose now that the rank of G is at least 2. Let A and B
be unbounded nonterminals in G such that the number of their
simultaneous occurrences is not limited. Since we consider

P 4 and

only reduced grammars, there are derivations A =
B =" v such that u and v are in T*., Derivations p and
T must begin with different productions. Now, all strings in
{ p,7 }* are subwords of some words in Sz (G). Hence, Sz(G) 1is

not bounded and Sz (G) < R, where R is a bounded regular language,

is impossible. O

2.3.1._The equivalence problem
In this subsection we consider the equivalence problem for
gzilard languages. We need some new definitions. Let o and
B be strings of nonterminals. We write o = B if and only if

for all nonterminals A we have Af(a) = A(B).

The following definition of grammar isomorphism differs slightly

from that in [Pen74].

Definition 2.1. Let Gl = (Nl,Tl,Pl,Sl) and G2 = (NZ'TZ’PZ'Sz)

be context-free grammars with a common label alphabet C. G1 and
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G2 are said to be isomorphic, if their productions can be labeled
so that one can define a homomorphism h:Nl—rN2 which has the
follewing properties

1) h:N,=N is a bijection

172
and
2) for every pair p:A-+qg in Py and p:B=+B in P, we have
h(a) = B and h(n(al}} = nla,).
The following theorem is essential.
Theorem 2.8 [Pen74]. Let Gl = (Nl,Tl,Pl,Sl} and G2 =

(N,,T»,P,,5,) be context-free grammars. Then the productions in
P, and P, can be labeled so that Sz(GlJ = S(Gz) if and only

if G and G

1 , are iscmorphic.

Proof. It follows directly from definition 2.1 that if Gl and

G, are isomorphic and if their productions are labeled as required

in definition 2.1, then Sz(Gl) = Sz(GZ).

Suppose now that Sz(Gl) = Sz{GZ). Our first task is to show

that relation h:NIANz, defined by h(A) = B 1if productions

A-»a in Py and B-f in P2 have a common label. is a bijection.

We prove two claims, which will later be used as lemmas.

Claim 1. If p:A»a is in Pl and p:B»B 1is in Y then there
exists a string m in &" (C is the common label alphabet of

G1 and Gz) such that A =" v and B =" w, where v € Tl* and

e T.”
W 2.

We write 1 < v if string 1 is obtained from string v by

erasing symbols of v or if 1 = v.
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’ " a P 'ﬂo
We have a derivation Sl = levz = vlav2 = vlv2v3, where

* 2 » 2 .
Vl’ Vor Vq € Tl , in Gl’ Since Upﬂo is in Sz(Gl) and
g

Sz(Gl) = Sz(Gz), we also have 82 = Bl =PTg wyr wl € Tz*, for

some B, € {N2 urT )*. Since production p:B2f 1is applicable

1 2

we have B(Bl) > 0. Hence, there is 7., € C*, such

to B 1

l.f
that B =°"1 Wyr Wy €T and T, = T

*
2! 1

We can change the roles of G and G and find 1w, € ¢ such

1 2 2
that A =»P"2 Vor Yy € Tl*' and T, £ M. We can repeat this until
Tery = Mo This completes the proof of claim 1.
Claim 2. If 8§, =7 y and 5, =" &, then h(n(y)) = n(8).

Let A be any nonterminal in y. By claim 1 we have ¢ such

that A =° v, v € Tl* and h(A) o W, W € Tz*.

largest natural number such that ﬂpk is in init(Sz(Gl)). Since

Let k be the

Sz(Gl) = Sz(Gz), wuk is also in init(Sz(Gz)J. Clearly k is the
number of occurrences of A in vy and it must coincide with the

number of occurrences of h{(A) in 6. This proves claim 2.

We now return to the proof of the claim about the bijectivity

of h. It is sufficient to show that h:Nl—'N2 and analogously

defined h':NzaNl are both functions. By symmetry, we consider

h only.

Let pl:Aﬂul and pz:Aaaz be in P1 such that pl:Bae and

:C»y are in P Suppose B # C and consider derivation

o 2
Sl =T u'Au", where u', u" € Tl*. Both TP, and TP, are in

init{Sz(Gl)) and hence, also in init(Sz(Gz)}_ We must have
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82 =P § such that & contains both B and C. This contradicts

claim 2 and we must have B = C.

Since every production p:A-a in Py has a corresponding pro-
duction p:B=+B in P2, h maps every nonterminal A in N1 to
some B in N,. The single-valueness of h is proved above.

Hence, h is a function. By symmetry, this holds for h', too. -

That is, h 1is a bijection.

Consider productions p:A-o in Pl and p:B=sf in P2 and deri-

vations

Sl = alAa2 =P Qg

s, =" ByBB, =° B,88,.

By claim 2, we have
h(ﬂ(alAaz)) s n(BlBBZ)

and

h(n(alaaz)) = n(Blﬁﬁz)-

Hence, we have hi(n(a)) = n(B). This completes the proof. [J

There is a deterministic polynomial time algorithm for deciding
whether or not Sz(Gl) = Sz(Gz) holds for arbitrary context-

free grammars Gl and Gy whose productions are labeled. This
algorithm first checks that the left-hand sides of productions

with a common label define a bijection h. And secondly, h must
map the right-hand sides of Gl's productions such that the images
are congruent (modulo =) with the right-hand sides of corresponding
productions in G, -

2

Next, we shall study a more complicated problem. Let Gl and G2
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be context-free grammars. Is it possible to label the productions

of Gl and G2

this problem is polynomially equivalent to the digraph isomorphism

so that Sz(Gl) = Sz(Gz]? We shall show that

problem. The digraph isomorphism problem and problems polynomially
equivalent to it form an interesting class of problems, since it
is open whether or not these problems are NP-complete (consult

[GIJ] for further details).

Digraphs H) = (Vl,El) and H, = (Vz,EZ) [HU79] are said to be
isomorphic if there is a bijection f:Vl—vv2 such that (u,v) is
in E1 if and only if (f(u),£f(v)) dis in B2. The digraph iso-
morphism problem is that of determining, for a pair of digraphs,

whether they are isomorphic.

Theorem 2.9. The digraph isomorphism problem is polynomially equiv-
alent to the problem of deciding whether the productions of two

context-free grammars Gl and G2 can be labeled so that

S5z (Gl) = SZ{Gz) .
Proof. We shall first show that the digraph isomorphism problem is

polynomially egquivalent to the problem of deciding whether two

regular grammars are isomorphic.

Let G1 and G2

construct a digraph Hi = (Vi,Ei) as follows. Hi has vertex for

be isomorphic regular grammars. From Gi, i=1, 2,

each nonterminal in Gi and one additional vertex W. If A-aB
is a production in Gi' take (A,B) to Ei' and if A-a 1is a
production, then take (A,W} to Ei' It is obvious that digraphs
H and H are isomorphic.

1 2

Suppose now that Hy and H, are isomorphic digraphs. The regular



27
grammar Gi = (Ni'Ti’Pi’Si)' i =1, 2, corresponding to digraph
H, = (Vi,Ei) has N, =V, U {Si] and T, = {ai}. For each arc

(A,B) in Ei' grammar Gi has a production A»aiB. Moreover, for
each vertex A in Vi' grammar Gi has productions Si»aiA and

A»a,. Grammars G; and G, are isomorphic.

Oon the other hand, grammar iscmorphism implies the equivalence of
Szilard languages, if the productions are labeled according to the
homomorphism required in definition 2.1. Hence, it suffices to
show that the problem of deciding whether two context-free grammars
are isomorphic (where productions are not beforehand labeled) is

polynomially reducible to the regular grammar version of the same

problem.
Let G = (N,T,P,S) be a context-free grammar. Suppose G has
k productions and let m = max {n| Ava € P and B(a) =n }.

BEN

The case m = 0 is trivial, and we suppose that m > 0. Define

i

a regular grammar R = (N',T',P',S'}) by

N'=NU{AO|AEN]U{Bi|i=l,...,k}U{S' e
T =4{ a, b, d, e} U { Cj 3= 1c.0ym }

and
P' = { §'saB; | 1 =1,..00k } U

{ Bi»bAo | A is the left-hand side of production i } U
{ Bi»cjh | A is the j-th occurrence of the nonterminal
in question in the right-hand side of production i } U
(A>d [ Ae N} U{A-~e|AE N J.
Let G and G

1 2
be regular grammars obtained by the above method from Gl and G2,

be context-free grammars and let Rl and R2

respectively. It is clear that Gl and G2 are isomorphic if

and only if Rl and R2 are isomorphic. []



28

As an example of isomorphic context-free grammars consider now a
syntax-directed translation schema [AU]. A syntax-directed trans-
lation schema is a 5-tuple Y = (N,Tin,Tout,P,S), where N is the
alphabet of nonterminals, Tin is the alphabet of input terminals,
TOut is the alphabet of output terminals, P is the set of pro-
ductions of the form A-+a,B, where a € (N U Tin)* and B €

(NUT ¥ and the nonterminals in # are a permutation of the

out
nonterminals in o, and finally, S is the start symbol. The
translation T(Y) defined by Y is the set of pairs (x,y),
where x € T, * and y €T *, obtained by starting from the

in out
pair (S,8) and consequently applying the production in P (for

further details, see [AUl).

By the definition above, it is clear that context-free grammars

P S), where P =

G, = (N,Tin,Pin,S} and Go = (N,T out’ in

in ut out’

{ a»a | A»a,p € P } and Py { a»8 | A»a,B € P }, are iso-

ut
morphic. If for every production A-a,8 in P we label B&-a
in P, and A-q in P with the same label, we have

in out

Sz(Gin) = 5z (G )&

out

The inclusion problem is undecidable for context-free languages.
The inclusion problem for Szilard languages is studied in [KM],
where it is shown that the problem is decidable. In [KO], it is
studied whether or not it is decidable if Szl(Gl) c Sz(Gz) holds

for arbitrary context-free grammars G, and G,. The answer is

affirmative.

The use of these inclusion properties in connection with syntax-

directed translation schemata is discussed in [KM,KO].
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It is well known that the emptiness problem for the intersection
of two context-free languages is undecidable, while the emptiness
problem for a language L N R, where L 1is context-free and R

is regular, is decidable.

Next, we consider similar questions for Szilard languages. The
following theorem is proved in [C-RM] by showing that both
emptiness problems are polynomially equivalent to the reachability
problem for Petri nets [C-RM]. We reduce the emptiness problems

directly to each others.

Theorem 2.10 [C-RM]. The emptiness problem for the intersection

Sz(Gl) n Sz{GZ), where Gl and G2 are context-free grammars,
is polynomially equivalent to the emptiness problem for the
intersection Sz (G) N R, where G 1is a context-free grammar and

R 1is a regular language.

Proof. Let Gl = {Nl,Tl,Pl,Sl) and G2 = (NZ,Tz,Pz,Sz) be con-
text-free grammars with label alphabets Cl and C2, respectively.
Define sets Py, ﬁz, 52 and 52 as follows:

P} = { A=A ... | p:A»u is in P, and n(a) = - V. T

Ny={A]|Ace N, 1,

P, = { AepAl...An | p:Asa is in P2 such that nl(a) = Al...An s
Furthermore, define a permutative grammar H = (N,T,P,S) by

~

N =N, UN,U {81} (8 is a new symbol),

T=20Cy U Ez u{ el (£ is a new symbol) and
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_ x ' )
P = { S-ES; S, 1 u P] U P, U Pper,

where Pper = { AB-BA | A, B (A % B) are in N; UN, 1.

Since H has the form introduced in subsection 2.1.2, it gener-
ates the Szilard language of some context-free grammar G. If
Sz(Gl) n Sz(Gz) is non-empty, then L(H) contains at least one

word common with R = { E(ag)+ | a€c,, be i

a b }. That

lf 2!
is, Sz(Gl) n Sz(Gz) = @ 1if and only if 8z(G) n R

®. This

proves that the emptiness problem for Sz(Gl) n Sz{G2) is pol-

ynomially reducible to the emptiness problem for Sz (G) n R.

Let G = (N,T,P,S) be a context-free grammar with label alphabet

C and let Gr = (Nr,Tr,Pr,Sr) be a regular grammar such that

L(G)

R. Our preoblem is that of finding two context-free gram-

mars Gl and G2 such that Sz(Gl} n s5z(G

Sz(G) N R = ®.

2) =& if and only if

Let T, = { ayrees ap } and for each a, in Tr let Py, =

{ A»a,B | A~a;B is in P, B € N U {3} }. If every Pai has
at most one production, then R is the Szilard language of some
context-free grammar (having rank 0) and hence, our proof is

complete. Otherwise do the following. Suppose Pa i I 2 Lyamephy

has ji productions. Let Té = { a;

and let P£ be a new set of productions such that it contains

| osmd e mn, I =&k & J. }

the productions of Pr with their right-hand sides uniquely indexed

L] | I 1 ] s
by the symbols of T . Regular language G = (Nr'Tr’Pr'Sr) gen

erates the Szilard language of some context-free grammar Gl'

Suppose GSz = (N,C,P'UP",S) 1is the permutative grammar defined
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as in subsection 2.1.2 such that L(GSZ) = 5z (G) and P' is

the set of context-free productions and P" 1is the set of per-

4 ; 2
mutation productions. Let P = { A*ai ka ] l< i< n, A*aiu is
r

n #
in P', 1 < k = ji }. Grammar Géz = (N,TQ,P UP",8) generates the

szilard language of some context-free grammar G2. We have

Sz (G,) N Sz(Gz) = ¢ if and only if Sz(G) N R = ®. This completes

1
the proof. [

As mentioned above, the both emptiness problems discussed are
polynomially equivalent to the reachability problem for Petri
nets [C-RM]. This reachability problem is known to be decidable

[Kos]. Hence, the emptiness problems are decidable, too.

In theorem 2.7 we proved that the problem "Sz(G) < R?" is
decidable in the special case where R is bounded. Since the
emptiness problem for S5z (G) N R is decidable and Sz(G) < R
if and only if Sz(G) N R = @, "Sz(G) < R?" must alsoc be

decidable.

2.4. Context-free languages vs. Szilard languages

Context-free languages are characterized in many different ways
in the literature. The most typical characterizations are the
{classical) pumping lemmna, some of its modifications [0gd, BMI,
and Parikh's theorem [Har]. The sufficiency of these characteri-

zations is widely discussed in the literature (see e.q. [Wis]).

Theorem 2.2 gives the necessary and sufficient conditions for a
Szilard language to be context-free. However, it is quite natural

to expect that also non-context-free Szilard languages share some
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properties characteristic to context-free languages. The purpose
of this section is to study to what extent (insufficient) charac-
terizations for context-free languages are applicable also to

(non-context-free) Szilard languages.

The material of this section is from [Mdk84al.

We start with the definition of a well-known property of context-

free languages.

Definition 2.2 (Classical pumping property). A language is said

to have the eclassical pumping property, if there are natural
numbers p and g such that every word z in L, which
satisfies 1lg(z) > p, can be written as 2z = UVWXy where

1) lg{vwx) = g

2) 1lg(vx) > 0
and

3) uvlwxly € L, for each i z 0.
The class of non-context-free languages satisfying the classical
pumping property is studied e.g. in [Hor]. The next theorem shows

that there are no Szilard languages in that class.

Theorem 2.11. There are no non-context-free Szilard languages

satisfying the classical pumping property.
Proof. We consider here only Szilard languages of context-free
grammars with rank 2. It is obvious that if the theorem heclds in

this case, it must hold for higher ranks, too.
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Let G = (N,T,P,S) be a context-free grammar with label alpha-
bet C and suppose that G has rank 2. By definition, for each
k 2 0 and some nonterminals A and B, G has sentential forms
¢ such that A(¢) > k and B(¢) > k. For producing such sen-
tential forms, grammar G must have either

(i) a derivation D =P ulAuzBuBDu4, uy €ET , i=1,..., 4,
or

. Ri B2
(ii) derivations D = leszv3 and E = wlezEw3, where
vie Wy € ™, =1, 2, 3.

Suppose now that Sz (G) has the classical pumping property and
that the case (i) holds. G must have derivations S n¢ xlez,
A =° Yqir B =" Yy and D =" z, where Xyr Xy0 Y11 ¥pr 2 e 1"
and ¢, o, T and v do not contain any recursive subderivations.
The Szilard language Sz (G) contains arbitrarily long words
without any other recursive subderivations than p. We next
show that some of these words must contradict the classical
pumping property.
Language Sz (G) contains words %y, = ¢pk0kav, k 2 0. We can
choose k such that lg(xk) > p where p is the natural
number presupposed by definition 2.2. In order to apply the
classical pumping preperty, we must find subwords of Xk to be
repeated. Since p 1is the only subword of Xy corresponding
to a recursive derivation of G, we must repeat p. This increases
the number of nonterminals A and B, and so we must also repeat
subwords ¢ and T. Since k «can get arbitrarily large values
and o0 is non-empty, we have arbitrarily long strings between
the subwords to be repeated. Hence, there cannot exist the

natural number g presupposed by definition 2.2.
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Suppose then that the case (ii) holds. G now has derivation

5 4¢ xlezEx3, where xl, Xos Xq € T*, or derivations

t "
S =¢ xle2 and D =¢

both cases G also has derivation E ¥ z', z' € T, 5z (G)

xiExé, where Xyr Xy xi, xé € T*. 1In

m n _m_n T — y I, m n
= ¢pypy0 T VY or X = ¢ pl¢ py0 T VY,

i s
contains word m, R

Xm,n

where m, n > 0. We can choose m and n such that

1g(x ) > p and 1lg(yx' ) » p where p is as above. We must
m,n m,n

repeat subwords p1 and ¢ or subwords Py and 1, but we

have strings pg (resp. ¢"pg) or " between the subwords to

be repeated. These strings can be arbitrarily long. Hence, as

above, we cannot choose the natural number g of definition

2.2. 0

The result of theorem 2.11 makes it unnecessary to study the
stronger versions of context-free pumping, i.e. Ogden's lemma [0gd]
(Iteration theorem of [Harl) and its generalization [BM]. Instead,
we must go to the opposite direction and relieve the conditions

cf definition 2.2. We use the "generalized pumping" of [X1g].

Definition 2.3 (Generalized pumping property). A language I is

said to have the generalized pumping property of degree k, k = 1,
if there is a natural number p such that every word =z in L,
which satisfies 1lg(z) 2 p, can be written as

z2 = ulvluzvz...ukvkuk+l, where

1) Vova... v, # A

172 k

i i i .
2) ulvlu2v2...ukvkuk+l € L, for each i =z 0.

Hence, a language las the classical pumping property, if it has

the generalized pumping property of degree 2 and condition 1) of
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definition 2.2 holds. The proof of theorem 2.1l was based on the
fact that it is impossible to fulfil this condition in non-

context-free Szilard languages.

Example 2.4. Let Gl be a context-free grammar with productions

m:5-ABS

prA-A

g:B-A

T:S=A-
Gl has rank 2. The Szilard language Sz(Gl) is not context-free,
but it has the generalized pumping property of degree 2. This
can seen as follows. Let ¢ be in Sz(Gl) such that 1lg(¢) > 4.
Word ¢ begins with a string nn, n > 1. We have three different
cases depending on the first symbol of ¢ different from w. Sup-
pose first, that this symbol is p (the case with symbol ¢ is
analogous). Hence, we can write ¢ = nnp¢l, where ¢l = ¢id¢£,
¢i, ¢] € { m,p,0,T }* (respectively ¢ = ﬂn0¢2, where ¢, = ¢ép¢5
L ¢y € { m,p,0,1 }). We can choose u, = nn_l, vy =m0, u, = i,
v, =g and uy = ¢£ (resp. vy, = "0, uy = ¢é, vy =P and uy = ¢5.)
$z(G,) contains all words ﬂn_l(np)i¢i(o)i¢i (resp.

Loy Yoy (o) Teg), 12 0.

Suppose now that ¢ = 14", where n 2 2 and ¢' € { p,0 }zn.
We can write ¢' = ¢l¢2¢3, where ¢2 = po or ¢2 = op and
* o n-1 5 - =
¢y, 04 E { p,0 }7, and further, u; =7 P VY= Touy T TOps Yy = by,
and uy = ¢3_ Sz(Gl) contains all words ﬁn_l(ﬂ)lT¢l(¢2)i¢3'

iz 0.0
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Example 2.5. Let G2 be a context-free grammar with productions
m:S~+ABS
p:A-)
g:B-A
T:5-C

v:C—A.

G2 has rank 2, but its Szilard language Sz(Gz) does not have
the generalized pumping property of degree 2. Sz(Gz) contains
words ﬂnTpnvcn, for each n 2 1. These words cannot be written

in the form CIRALPASLES ]

Example 2.5 shows that for each k, k 2 1, there are Szilard lan-
guages of context-free grammars with rank k such that they do

not have the generalized pumping property of degree k.

2.4.2. Sokolowski's criterion

The following property is necessary for a language to be context-

free,

Definition 2.4 (Sokolowski's criterion) [Sck]. A language L (= )

is said to satisfy Sokolowski's criterion, if for every subset
£' of £ containing at least two distinct symbols, and for

all words u, v, W € ¥, if { uxvxw | x € gt c L then there
' and x" such that ux'vx"w 1is

exist two different words X

in L.

The sufficiency of this criterion for context-freeness is dis-

cussed in [Nij82]. It is easy to see that every Szilard language
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satisfies Sokolowski's criterion, Moreover, we can strengthen
g

the criterion in the case of Szilard languages as follows.

Theorem 2.12. Let Sz(G) = C+) be the Szilard language of a

context-free grammar G = (N,T,P,S). For every non-empty subset

C' of C and for all strings p, o, T € C*, if

n

+
{ promt | m € C'" } = Sz(G) and strings 7' and 7" are in

+
K{p,o,7) = { m € ¢'" | pnowt € Sz(G) }, then strings pn'on"t
and prw"ow't are in 8z (G).
Proof. Let oprmomt be in Sz (G). The prefix p of pronT

corresponds to a derivation S =P @, a € (N U T)+, the suffix

prom B and w € T*,

G : ; o
and the infix o corresponds to a derivation a«' =" 8', where

s =PT

corresponds to a derivation B8 =T w, where S =

pma

o' and S = B'. Hence, all 's in K(p,0,T) must

correspond to derivations o =" o' and B' =" B. Since 7 can

be any string from C'+, each symbol in C' must be associated with
a production of P having the form A-uAv, where u, v € T*. Hence,
both m's in pmomT can be replaced by any strings from

K(p,o,1). O

Let L = { ba"ca”

c | n201}. L is a typical example of the
languages which do not satisfy the property of theorem 2.12. By
replacing equal numbers of a's by arbitrary strings of a's, we
get the language { ba"ca®c }, which satisfies the property and is

a Szilard language. Naturally, the property of theorem 2,12 is

not sufficient for a language to be a Szilard language,

A stronger form of Sokolowski's criterion is given in [Gral. This

extension does not hold for Szilard languages.
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Let ¥ = { ayr Bgreeey an] and let L (c E*) be a language.

Parikh mapping V¥ is a function from I° to W defined by
Plw) = (a) (W), a,(w),..., a (w)). Let (L) ={ y(w) | w €L }.

Languages L,, L, (< £") are said to be Parikh equivalent if

0 + nlal #y et H

ey O are elements of INn,
1 m

w(Ll) = w(Lz}. A set of the form { o % |

n. =20, j=1,..., n}, where a,., o

3 0’
is said to be a linear subset of IN".

A semilinear set is a finite union of linear sets. A language
L 1is semtlinear if ¢(L) is a semilinear set. Context-free
languages are semilinear [Har]. A language L is semilinear if

and only if L is Parikh-equivalent to a regular language [Har].

Lemma 2.2. Let G be a context-free grammar. The languages

5z(G) are 8z1(G) are Parikh-equivalent,
Proof. The only difference between leftmost and arbitrary deri-

vations of a context-free grammar is in the order in which pro-

ductions are applied.[]

It is now easy to prove the following

Theorem 2.13 [HBpl. Szilard languages are semilinear.

Proof. Let G Dbe a context-free grammar. S5zl(G) is context-

free and hence, there is a regular language R such that

¥(8z1(G)) = ¢(R). By lemma 2.2, $(5z1(G)) = Y (Sz(G)). Hence,

5z (G) 1is Parikh-equivalent to a regular language, and equivalently,

5z (G) is semilinear. [
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A language L is Pagrikh-bounded if it contains a bounded language
B such that ¢(L) = ¥(B) [BL]. Context-free languages are
Parikh-bounded [BL]. We can show that Szilard languages have

the same property.

Theorem 2.14. Szilard languages are Parikh-bounded.

Proof. Let G be a context-free grammar. Since Sz1l(G) is
a context—-free language, it is Parikh-bounded and contains a

bounded language B such that ¥(Sz1(G)) = y(B). BAgain, by

lemma 2.2, ¢¥(Szl(G)) = ¥(8z(G)) and hence, ¥(5z(G)) = Ww(B).
Moreover B < Sz1(G) < Sz(G}.0O

Hence, semilinearity and Parikh boundedness are not strong
enough to distinguish between context-free languages and non-

context-free Szilard languages.
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CHAPTER 3: ON LEFT SZILARD LANGUAGES

In this chapter we restrict ourselves to the leftmost derivations
of context-free grammars. While a Szilard language can be non-
context-free, the left Szilard language of a context-free

grammar always belongs to a subclass of the class of s-languages.
Hence, when we study grammars generating left Szilard languages
(section 3.1), automata recognizing them (section 3.2) and
decision problems for this class of languages (section 3.3), we
are dealing with guite restricted special cases of the same ques-

tions for deterministic context-free grammars and languages-

By definition, we have 8Szl(G) < Sz(G) for all context-free

grammars G. Hence, left Szilard languages are prefix-free.

Left Szilard languages are closed under none of the operations
mentioned in chapter 2 in connection with Szilard languages. We

consider intersection with regular languages as an example.

Example 3.1 [M&k83a]. Let G, and G, be context-free grammars

with the following productions

Gl: G2:
T SoAAR m:S—A
prA-A p:A=AA
g:A-A G:A-A.
We have Szl(Gl) = { ﬁpiopjcpko | i, 3, k 2 0 }, which is a
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regular language. The intersection L = Szl(Gl) n Szl{Gz)
consists of those words in Szl(Gl) which have exactly three
occurrences of symbol o. This means L = { wpopoa, mppooc },

which is not a left Szilard language. O

Example 3.1 shows that left Szilard languages are closed neither

under intersection with regular languages nor under intersection.

3.1. Ss-grammars

A context-free grammar G = (N,T,P,S) 1is said to be an ss-gram-
mar if for each preduction 2A-a in P, o is in TN*, and for
each pair A-+aa and B-bB in P, we have a # b. Hence, each
production has a terminal symbol, which uniquely identifies the
production. Recall that in an s-grammar, it is possible to have
A-aq and B-aB, where A # B. There are trivial examples of
s-languages which cannot be generated by any ss-grammar (f.ex.

{ aa 1.

The following thecorem shows the well-known connection between
ss—-grammars and left Szilard languages.

Theorem 3.1. The left Szilard language of each context-free gram—
mar can be generated by an ss-grammar. Every ss-grammar generates

the left Szilard language of some context-free grammar.

Proof. Let G = (N,T,P,S) be a context-free grammar with label
alphabet C. Define an ss-grammar G' = (N',T',P',S') as follows.
Let N' =N, T" =C and S' =S and for every p:A-a in P,

take A-pn(a) to P',



42

Let § ﬂg ue, where u € 7" and @ € (N U T)*. be a leftmost
derivation in G. By induction on the length of w, it is
straightforward to show that grammar G' has derivation

[ ﬁz mn(x). Especially, when S ag w, w E T*, is in G we

have s' =; m in G'.
Similarly, we can show that for every S' az mT, W E C*, in @'

we have S ﬂg v in G, where v 1is in . Hence, L(G') = 5z1(G).

Consider an ss-grammar G = (N,T,P,S8). Let T be the label alpha-
bet of G. Label every production A-ac in P by a. Now

L(G) = sz1(G) holds. 0O

The proof of theorem 3.1 contains a method to define an ss-grammar
which generates the left Szilard language of a given context-free
grammar. This method is originally presented in [AB]. In the
sequel, it is called the method of theorem 3.1.

Next, we shall study a situation similar to theorem 2.1.

Definition 3.1 [Wall. A context-free grammar G = (N,T,P,S)

I3
is said to be left-derivation bounded if there is a natural num-
ber k such that for every leftmost derivation S =, O where

a € (NUT , we have 1lg(n(a)) < k.

Let G be left-derivation bounded and define the ss-grammar G'
that generates Sz1(G) as in the proof of theorem 3.1. Then

G' 1is left-derivation bounded, tooc. We can "simulate" the left-
most derivations of G' by using a regular grammar. Hence, if G

is left-derivation bounded, then Szl(G) is regular. Conversely,
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if 8zl1(G) 1is reqular, then G must be left-derivation bounded.

A necessary and sufficient condition for a context-free grammar

G = (N,T,P,S) to be left-derivation bounded is given in [Wall.

This condition requires that every recursive derivation A a; alAaz

must have oy in o7

As an example, consider grammars Gl and G with the following

2
productions
Gl: GZ:
m:S-A8 m:5-5A
p:A-) p:A-)
g:5-2A g:S=).

kcok1k>0}

§z1(Gy) can be denoted by (rp) ¥a, while 8z1(G,) = { =

which is a non-regular language.

However, there are regular left Szilard languages which cannot be

generated by any regular ss-grammar.

Theorem 3.2 [M&k83a]. All regular left Szilard languages

cannot be generated by regular ss-grammars.
Proof. Consider regular left Szilard language L = { abcb }.
Every regular grammar generating L must have productions of

the form A-bB and C-=b. [

The following example is related tc language L in the proof

above.

Example 3.2 [M&k83al. Let G be a left-derivation bounded ss-

grammar such that k is the fixed upper bound required in
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theorem 3.1. Then G cannot generate language L = { abkcb }.

Similarly, if G 1is left-derivation bounded then it cannot

generate language { ab’cb }. O

A variant of ss—grammars is introduced in [Yaf], where a context-
free grammar G = (N,T,P,S) is said to be left-structural with
respect to a subalphabet I (= T) if
(i) each production in P has the form A~ac, where a is in
T and a in (N U (T~I))7
and
(ii) for any two distinct productions 2A-ao and B-bf, we have

a % b.

Every ss-grammar is left-structural with respect to its terminal
alphabet. On the other hand, in any production of a left-structur-
al grammar G, we can replace each terminal ¢ of (T~E) with
a new nonterminal Ac, and add Ac*c to the set of productions.
This does not change the language L(G). Hence, left-structural

grammars generate the class of left Szilard languages.

3.2. Recognition of left Szilard languages

A deterministic pushdown automaton is said to be a simple machine,
if it operates in realtime and has only one state. The class of
languages recognizable by simple machines and the class of
s-languages coincide [Har]. A simple machine that recognizes

a left Szilard language has the following additional property.

Theorem 3.3 [Pen74]. A language L is a left Szilard language

if and only if L can be recognized by a simple machine
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A = ({q},Z,F,S,q,ZO,{q}) in which conditions
(g,a,X) = (g,a}) and {(g,a,Y) = {(g,B)
always implies X =Y and a = B.
Proof. Suppose first that L is the left Szilard language of
a context-free grammar G' and let G = (N,T,P,S) be an ss-gram-

mar such that L(G) = L.

Let £ =T, I'=N and Z0 = 5 and for every production A-aa
in P define é(g,a,A) = (g,0). Simple machine A =
({q},Z,F,G,q,ZO,{q}) has the required property, and it clearly

recognizes L.

It is now obvious how an ss-grammar can be defined when a simple

machine has the additional property. [

Hence, every left Szilard language can be recognized by a simple
machine in which input symbols always uniquely determine the
topmost element of the pushdown store and the change made to the

store contents.

Next, we shall define the concept of a superdeterministic pushdown
automaton. In [GF] this was done for an arbitrary deterministic
pushdown automaton. For our purposes it is sufficient to define

superdeterminism for simple machines only.

Definition 3.2 [GF]. A simple machine is superdeterministic if

reading an input string w always causes the same change in the
height of the pushdown store (i.e. the change does not depend on
the actual store contents.) A language L is superdeterministic if

there is a superdeterministic pushdown automaton which accepts L.
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The simple automaton introduced in the proof of theorem 3.3

clearly is superdeterministic. Hence, we obtain

Theorem 3.4. Every left Szilard language is superdeterministic.

1t is observed in [GF] that each language generated by a left-
structural grammar is superdeterministic. By our earlier remark
concerning left-structural grammars and left Szilard languages,

this is equivalent to theorem 3.4.

The class of left Szilard languages can also be recognized by

many other types of pushdown automata which are studied in con-
nection with the equivalence problem for deterministic context-free
languages. For example, it is shown in [Lin] that every left

Szilard language is "nonsingular".

Like Szilard languages, left Szilard languages are recognizable

in space log n by a deterministic Turing machine [Pen77].

However, the corresponding counter machine construction is more
complicated for left Szilard languages than for Szilard languages.
For example, the counter automaton introduced in [Pen77] works in

s 3
time n~.

3.3. Decision problems for left Szilard languages

In this section we give without proofs some known decision results
for certain subclasses of context-free grammars and languages. As
special cases we obtain corresponding results for left Szilard

languages.



47

The equivalence problem for s-languages is deéidable [Har].
Hence, it is decidable for left Szilard languages, too. It is
shown in [HRS76b] that there exists a deterministic polynomial
time algorithm for the case where the languages are generated by
linear s-grammars. We have not been able to find a deterministic

polynomial time algorithm for ss-grammars.
The following lemma will be used in chapter 5.

Lemma 3.1 [GF]. Let G be a context-free grammar and let L

be a superdeterministic language. Then there is an algorithm

to determine whether or not L(G) = L holds.

Lemma 3.1 also implies that the inclusion problem is decidable
for left Szilard languages; this is also proved in [Linl].

"

We cannot replace "c" by "=" in lemma 3.1. Namely, "L, = L(G)?"

0
is decidable for an arbitrary context-free grammar G and a fixed

context-free language L0 if and only if L is bounded [HR].

0
The simplest example of unbounded left Szilard languages is the

language { m,p }%o.

However, "L(G) = L?" is decidable if G is a deterministic
context-free grammar and L 1is a left Szilard language [GF].
(This follows also from [TK], since left Szilard languages are

"nonsingular" [Linl).

3.4. On boundedness of left Szilard languages

In this secticn we study situations where the language L(G) generated

by a context-free grammar or the left Szilard language Szl1(G) |is
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bounded. We are able to prove that if G is unambiguous, then
L(G) is bounded if and only if Sz1(G) is bounded. Based on

this result, we give in subsection 3.4.2 a deterministic polynomial
time algorithm which determines whether or not an unambiguous

context-free grammar generates a bounded language.

3.4,1 On bounded L(G)'s and 8zl(G)'s

We start with some definitions and an important lemma.

let G = (N,T,P,S) be a context-free grammar. A leftmost deri-
; L *

vation A = 0y ﬂl"':l o =y uAo, where u is in T and «o

is in (N U T)*, is minimal recursive if A is not the leftmost

nonterminal in any word ai, i & Ly T

A language L is commutative, if uv = vu holds for all u and

v in L.

Lemma 3.2 [Gin]. Let G = (N,T,P,S) be a context-free grammar.

The language L{(G) is bounded if and only if for each nonterminal

A in N the languages

1l

LE(@A) = { u | a="uvax, uer}

and

*

{ v |Aa="5gav, ver1" }

I

Rg (A)

are commutative.

The following theorem is a direct application of lemma 3.2.

Theorem 3.5 [Mdk83al. Let G = (N,T,P,S) be an ss-grammar. The

language L(G) is bounded if and only if the following conditions
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hold
1) for every A in N there is at most one minimal recursive
derivation A w; uAca
and
2) if the word o above is not equal tc A, there is exactly
one derivation o az v, where Vv is in *
Proof. Suppose first that L(G) 1is bounded. If there are two
minimal recursive derivations A »; ulAal and A a; uzAaz, we
must have u; # Uy, But, by lemma 3.2, U Uy = uyug - Hence, uy
is a prefix of u,, Or vice versa. In both cases, we have a
contradiction with the left Szilard property.

If the condition 2) does not hold, we have v and v with

1 2

v, ¥ V and v.v, = V.,V and we can derive a contradiction as

1 2 172 2
above.

Conversely, if the conditions 1) and 2) hold for some context-free

grammar G, then L(G) clearly is bounded. [

The following remark deals with a class of context-free grammars

in which each grammar has an unbounded left Szilard language.

Remark 3.1 [M&k83al. A context-free grammar is said to be expansive

(with respect to leftmost derivations) if there is a nonterminal

+
A such that A = O where o contains at least two occurrences

of A.

If a context-free grammar G is expansive, then the ss-grammar
G' obtained from G by the method of theorem 3.1 is expansive, too.

N ) ; g *
Hence, G' has a minimal recursive derivation of the form A = uAn,
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where u is a terminal string and o contains at least one
occurrence of A, Now we have infinite number of leftmost deri-

vations (instead of one) from o to terminal strings. 0O

Theorem 3.6 [M&k83al, If an unambiguous context-free grammar G

generates a bounded language, then the left Szilard language
Sz1(G) is bounded, too.
Proof. Let G' be the ss-grammar obtained from G = (N,T,P,S)

by the method of theorem 3.1.

Every minimal recursive derivation in G has a corresponding
minimal recursive derivation in G', and vice versa. Hence, for

the condition 1) of theorem 3.5, it is sufficient to show that
G has at most one minimal recursive derivation for any nonterminal

A. To derive a contradiction we suppose we have derivations

A =2 uAa and A ag vAR. We must also have derivations a =g W,
B »; y and A »; x, where w, y, and x are in T*. Since L(G)
is bounded, we have uv = vu and wy = yw. Grammar G has deri-
vations

A ag ulo 5? uvABa =; uvxBa ={ uvxyo :g uvxyw
and

A =€ vAR :g vulap =; vuxof #g vuxwh ﬂg UVEWY .
uvxyw = vuxwy holds, but Twpvto % pmvot, which contradicts

the unambiguous property.

In the same way, we can derive a contradiction by supposing two
terminating derivations from o, when A a; uAg 1is in G. Again,

the same holds in grammar G'. This completes the proof. [
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We cannot strengthen theorem 3,6 to cover all context-free gram-
mars. A counterexample is the ambiguous context-free grammar G
with productions 5-aS, S-aaS and S-b. In this case LI(G) is

bounded, but Szl(G) is unbounded.

Similarly, if a context-free grammar is expansive (with respect
to leftmost derivations) and generates a bounded language, it can
serve as a counterexample. The simplest one of such grammars

has productions §5-S5 and S-a.

By remark 3.1 and theorem 3.6, we also obtain the following

little theorem,.

Theorem 3.7. Let a context-free grammar G be expansive (with
respect to leftmost derivations). If G generates a bounded
language, then G is ambiguous.

The converse of theorem 3.6 holds for all context-free grammars.

Theorem 3.8 [M&k83al. Let G be a context-free grammar. If

5z1(G) is bounded, then L(G) is bounded, too.

Proof. Since 5zl(G) is bounded, the ss-grammar G' obtained
from G Dby the method of theorem 3.1 must fulfil conditions 1)
and 2) of theorem 3.5. This implies that G must also fulfil
these conditions. A context-free grammar fulfilling these condi-

tions generates a bounded language. [

It is decidable whether a given context-free language is commuta-
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tive [Ginl. Hence, by lemma 3.2, we have an algorithm to de-
termine whéther a given context-free grammar generates a bounded
language. Since this algorithm is of exponential time complex-
ity, it was posed open in [HRS76b] whether the test can be done
in polynomial time. In [HRS76b] the given problem was also
positively solved in the case of linear grammars. As shown in
[M&k83b], there is a deterministic polynomial time algorithm

for unambiguous grammars. We shall now present a version of

this algorithm.

By theorems 3.6 and 3.8, an unambiguous context-free grammar G
generates a bounded language if and only if Szl(G) is bounded.

We shall test whether Szl1(G) fulfils the conditions 1) and

2) of theorem 3.5.

Condition 1) is tested by drawing a digraph, which represents all
leftmost derivations starting from a certain nonterminal A. Each
circuit corresponds to a minimal recursive derivation., If there is
more than one circuit, we know that an unbounded language is gen-
erated. Condition 2) is tested by first constructing a set M
which contains all nonterminals having unique leftmost derivation
to a terminal string. Suppose that for a nonterminal A we have
one minimal recursive derivation A =; uAa, where u contains

terminals and o contains nonterminals. It is now sufficient to

test whether or not all nonterminals of & are in M.
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Algorithm
Input: An unambiguous context-free grammar G = (N,T,P,S).
OQutput: "Yes", if L(G) is bounded, otherwise "No".
Method:
1. Use the method of thecrem 3.1 to construct an ss-grammar
G' = (N,C,P',S) such that L(G') = 8zl(G).
2. Construct a subset M of N as follows.

2.1. Set initially i =0 and My ={Aa | apepP', pec,
and pa-p is the only production in P' with the left-
hand side A }.

2.2. set i =1+1 and M, = {A | Arax € P', 0 € M,
and A-aa 1is the only production in P' with left-
hand side A } U Mo -

2:3: IE Mi = M, then set M = Mi' Otherwise goto step 2.2.

i=d’
3. Draw a digraph D with a vertex for each nonterminal in
N and an edge from A to B if there is in P' a pro-
duction with A as the left-hand side and B in the right-
hand side.
4. Set all nonterminals in N unmarked.
5. If all nonterminals are marked, then output "Yes" and halt.
Otherwise, select an arbitrary unmarked A from N.
6. Mark A and do the following.
6.1. If vertex A 1is not contained in any circuit of D,
then goto step 5.
6.2. If in D there is more than one circuit containing
vertex A then output "No" and halt.
6.3, If in D there is exactly one circuit containing
vertex A, then find the corresponding minimal recur-
sive derivation A =; uka, where u € CJr and o € N”

If each nonterminal B having B(a) > 0 is in M,

then goto step 5. Otherwise output "No" and halt.
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It is clear that the algorithm always eventually halts and

checks conditions 1) and 2) of theorem 3.5.

It is evidently possible to construct set M in polynomial
time. The same holds for constructing digraph D and finding

circuits.

Suppose that digraph D has exactly one circuit containing a
vertex A. According to the algorithm, our next task is to find
minimal recursive derivation A =; uAa. The length of o is

bounded by card(N)2'm, where m = max ( lg(n(g)) | A»g € P' }.

Hence, the time needed is a polynomial function of the size |G|,

|G| = = 1g(Aa), of the input grammar G = (N,T,P,S).
(A-a) €EP

3.5. An undecidable problem for context-free grammars

Let G = (N,T,P,S) be a context-free grammar in semi-GNF with
label alphabet C. Define a homomorphism g:CaT* by setting

glp) = w, if p:A-wa, where W € T and o € N*, is in P. We
obviously have g(8z1(G)) = L(G). This property is needed in this

section; it will be used in chapter 5, too.

Consider the following problem: Let G = (N,T,P,S) be a context-
free grammar and let h:T*Tl* be a homomorphism. Are there dis-
tinct words v andé w in L(G) such that h(v) = h{(w)? We shall
show that this problem is undecidable for arbitrary context-free

grammars. Moreover, it is undecidable even for ss-grammars.
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A similar (but more general) problem is studied in connection

with the homomorphism equivalence proklem in [Cul79, Cul80]. It is
studied there, among other things, whether a translation defined

by a finite or pushdown transducer [AU] is one-to-one or func-

tional on a context-free language. (A translation 1 is said to

be funetional if (x,y) € T and (x,z) € 7 implies y = z [Cul791].)
Note that if G and h are as above, homomorphism h defines

a translation T = { (w,h{w)) | w € ¥(G) }. So our problem is

that of deciding whether translations such as T are one-to-one.

The following lemma gives a characterization of the ambiguity of

a context-free grammar in semi-GNF.

Lemma 3.3 [M#k85b]. Let G = (N,T,P,S) be a context-free grammar

in semi-GNF and let homomorphism g be as above. Then G is
ambiguous if and only if the homomorphism g has the property that
for at least one pair of distinct words = and p in 5z1(G),

g(m) = g(p) holds.

Proof. Recall that g(5zl1(G)) = L(G) holds. Words « and p
represent derivations S ﬁg v and S ag w, where g(m) = v and
g(p) = w. If we have g(w) = g(p), then G is ambiguous. Con-
versely, if G is ambiguous, we must have words 7 and p

(i.e. two leftmost derivations) such that g(m) = g(p) (i.e. these

derivations produce equal terminal words). 0

Actually, lemma 3.3 is applicable to all context-free grammars in
the following sense. Let G Dbe a context-free grammar not in
semi-GNF. Replace every terminal a that offends the semi-GNF
property by a new nonterminal A and add A ma to the set of

productions. The original context-free grammar is unambiguous
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if and only if the new grammar is unambiguous.

Theorem 3.9 [M&k85b]. Let G = (N,T,P,S) be an ss-grammar and

*

1

L(G) contains distinct words v and w such that g(v) = g(w).

let g:T-T be a homomorphism. Then it is undecidable whether
Proof. If our problem were decidable then, by lemma 3.3, it would
be decidable whether or not a given context-free grammar is
ambiguous. Since we know [Har] that this is not the case for the

latter problem, our proof is complete. [

A similar result is proved in [Ibal. It is shown there that
deciding whether a homomorphism is one-to-one on a deterministic
cne-counter language is undecidable. Notice that the classes of
left Szilard languages and deterministic one-counter languages

are incomparable.

Theorem 3.10. Let G = (N,T,P,S5) be an ss-grammar generating a

bounded language and let g:Tqu* be a homomorphism. Then it is
decidable whether or not g is one-to-one on L(G).

Proof. Grammar G and homomorphism g uniquely define a context-
free grammar Gl = (N’Tl’Pl'S)' where Pl contains a production
A-g(p)a for each A-pa in P. Gy is in semi-GNF and its left
Szilard language is Sz1{(G). By theorem 3.8, L(Gl) is bounded. From
|Gin] we know that it is decidable whether a context-free grammar
generating a bounded language is ambigucus. The theorem now follows

by lemma 3.3. 0O

The existence of inherently ambiguous context-free languages proves

the following theorem.
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Theorem 3.11. There are context-free languages L (c £*) for

for which the feollowing conditions

1) g(L(G)) =1L

2) G = (N,T,P,S) 1is an ss-grammar
and

3) g:TﬁZ* is a homomorphism

always imply that g is not one-to-one on L(G).

on the other hand, we know some conditions which guarantee that a
context-free grammar is unambiguous, i.e. homomorphism g is
one—to-one on the left Szilard language. The LL(k) property [AU]
is one such condition. It can be given in the following form by
using homomorphism g. (In the definition, notation k:o, where
k is a natural number and o is a string of symbols, means the
prefix of a of length k, if 1lg(a) 2 k, and string o itself,

if lg(a) < k.)

Definition 3.3. Let G = (N,T,P,S) be a context-free grammar

in semi-GNF with label alphabet C and let g:C+T”"  be defined

as above. G 1is an LL(k) grammar if for all words Ty = POqTy
*® .

and Ty = PO,TH, where o, Ty Ty € C and 9y 02 € C, in

Sz1(G) the condition k:g(clTl) = k:g(csz) always implies

As well known, it is decidable whether a given context-free gram-
mar is an LL (k) grammar for a fixed k, but undecidable whether
there exists some value of k such that G 1is an LL(k) grammar

[AU].
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3.6, On the length of context-free derivations

Let G = (N,T,P,S) be a context-free grammar. Given a word w
in L(G), what can be said about the length of derivation = for
which we have 8§ :; w? In this section we answer the guestion in

some special cases.

Notice first that by permuting the symbols of 7 we usually obtain
several general (i.e. non-leftmost) derivations for w. Naturally,
these derivations are exactly as long as w. Hence, the order

in which productions are applied does nct make any difference when

the length of the derivation is concerned and we could have repre-

sented this material already in chapter 2.

We start with simple remarks concerning context-free grammars
in certain normal forms. Let G = (N,T,P,S) be a context-free
grammar in GNF. If S =; w, W € T+, then clearly 1lg(w) = lg(w).

Similarly, if G is in CNF, we have 1lg(w) = 2Lg(w) - 1.

For most classes of context-free grammars, only an upper bound
for the length of a derivation can be given. As an example, we
consider context-free grammars which do not have null productions,
i.e. A-free grammars. In order to avoid difficulties caused by
chain derivations of the form A a; A, we consider ‘"chain-free"

context-free grammars, only.

Theorem 3.12 [Sip]. Let G = (N,T,P,S) be a Ai-free context-

free grammar such that m = card(N) and A =; A is impossible

for each nonterminal A in N. If S =? w, W € T*, then

lg(n) < 2m-lg(w) - m. This bound is minimal.
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Proof. The proof is an induction on 1lg(w). If lg(w) = 1, then
only unit producticns of the form A-+B and terminating productions
are possible in w. The longest possible sequence of unit pro-
ductions has length m - 1, since each sequence of length m has
at least one chain of the form A =; A. Hence, we have

lg(m) £ m = 2m-1lg(w) - m.

Suppose now that 1lg(w) > 1, and as an induction hypothesis that

wl

if 1lg(w') < lg(w), then § =0

z implies 1lg(7') = 2m-lg(w') - m.

Consider derivation S g; w. Let p Dbe the possible sequence of
unit productions in the beginning of 7. As above, 1lg(p) s m - 1.
Let c:AaXl...xn, n > 1, be the first non-unit production. We

now have strings of productions Tyeesor Ty and terminal strings

T4 .
W e JW such that X, =1 w,, i =1,...,n, and w. ... =
Lf "n i "1 it * e 1 Yn e

(Notice, that Ty = A if Xi is a terminal symbol.) We can

apply the induction hypothesis to wi’s and hence, we have

lg(m) = lg(chl...Tn) = 1gl(p) + 1 + % lg(ti) <
n i=1
(m - 1) + 1 +-E (2m-lg(wi) -m) = 2m-lg(w) + (1 = n)-'m <

2m-1g(w) - m.

The minimality of the given bound can be seen by studying a
A-free grammar with the following productions

SﬁAl

AlﬂAz

Am_laa

B _{55.

In this grammar S ﬁg ak, k z 1, implies 1lg(m) = 2mk - m. 0

Several results similar to theorem 3.1l are presented in [Sip]-
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3.7. Left Szilard languages are pure

In a pure grammar no distinction is made between terminals and
nonterminals. In this section we study whether left Szilard lan-
guages are pure context-free languages. It will be shown that

there are left Szilard languages which are not pure context-free lan-
guages, but on the other hand, they all belong to a wider class of
pure languages, namely to the class of pure length—-increasing lan-

guages. The material of this section is from [M&k85e].

A pure grammar is a system H = (L,P,c) where I is a finite
alphabet, ¢ is a finite subset of E+ and P 1is a finite set

of productions of the form o-+B, where « and R are words over

L. Relation = (yields directly) and its reflexive transitive
closure =" are defined in I” as usual. The language generated

by a system H = (§,P,¢) is defined as L(H) = { w | s g5 w, s € 0 }.
Languages generated by pure grammars are referred to as pure lan-

guages [MSW].

A pure grammar H = (I,P,0) is a pure contezt-free grammar (a
PCF grammar for short) if in each producticn a-f we have a
in I. A language is a pure conteat-free language (PCF language)

if it can be generated by a PCF grammar [MSW].

If each production a-8 in a pure grammar H has the property
that o is not longer than g, then H is a PLI grammar (where
PLI stands for "pure length-increasing"). A language is a PLT

language if it can be generated by a PLI grammar [MSW].
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Define a context-free grammar G = (N,T,P,S) to be in pure

form 1f each production in P has the form A-a where a € N*

or o € T, and for each nonterminal occurring in the right-hand
side of some production in P there exists exactly one production
A-»a, a € T. Moreover, A~a and B-=b, where A % B and a, bermT,
imply a # b. (Since we consider reduced context-free grammars

only, the condition "occurring in the right-hand side of some pro-

duction" is for the start symbol.)

If a 1is a terminal in a context-free grammar in pure form then

the unique nonterminal A having A-a is dencted by w(a).

Theorem 3.13. A context-free language L is a PCF language if and

only if it can be generated by a context-free grammar in pure form.
Proof. Suppose H = (f,P,0) is a PCF grammar generating L. De-

fine a context-free grammar G = (N,T,P',8) by setting T = £ and
N={a|a€zIL}ui{s} (S is a new symbol), and to P' take

productions

i) s-a ...a_, for each s = a_...a in o,
n 1 n

ii) a-a, for each a in &

and

iii) a-a,...a i

iii) ~a, a for each asa,...a  in P.
For each word o = a,[...am in L(H) we have a derivation

* = - ;
S = ay--.a8, in G. Hence, a is in L(G). Conversely, for
each a?...a in L(G), we have § =" a ) and so

m 1 m r

*
s = a1...am holds for some s in 0.
Given a context-free grammar G = (N,T,P',S) in pure form,

we can define a PCF grammar H = (I,P,0) generating L(G) by
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setting £ =T, o = { aj--.a, | Sam(al)...w(an) is in P' }

and P = { a»a;...a | w(a)sw(a;)...wl@a ) is in P' }. O

The generative capacity of PCF grammars is much weaker than the
generative capacity of context-free grammars. It is shown in

[MSW] that there are regular languages over one-letter alphabets
which are not PCF languages. Similarly, there are simple languages
which are not pure [Gabl. In contrast to the latter result men-
tioned we first show that all languages in a subclass of left

Szilard languages are PCF languages.

Theorem 3.14. Let G = (N,T,P,S) be a context-free grammar such

that each recursive nonterminal A in N has at least one pro-
duction of the form A-a, o € 7. Then Sz1(G) is a PCF language.
Proof. Let C be the label alphabet of G and let G' =
(N,C,P',S) be the ss-grammar obtained from G by the method of

theorem 3.1.

We shall define two transformations for grammar G', The purpose
of the transformations is to put the grammar into a form where
all nonterminals have exactly one production of the form A-p,
p € C. These transformations will be defined so that they do

neot change the language generated by G',

Suppose a non-recursive nonterminal A occurring in the right-
hand side of some production in P' dces not have any production
A-p, p € C. Let { Aﬂplal,..A, A*pnan } be the set of all pro-

ductions in P' having A in the left-hand side. Since we
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consider reduc¢ed context-free grammars only, this set has at least
one element. Replace every production BapBlABZ...BkABk+l, where
Blreess Biyp € (v~{A1) ", in P by productions
BapBlAjlaleZ...BkAjkujkBk+l, where 1 < ji £ n; Ll = Toewwrp K
and Aj’ j=1,..., n are new nonterminals. Moreover, replace
each production A»pjaj, j=1,..., n, by a production Ajapj.
Hence, we can hereafter suppose that each nonterminal occurring
in the right-hand side of some production in P' has at least

one production BA-p, p € C.

Suppose now a nonterminal A has productions A-=m and A-p,

m, p € C, in P'. Let A  and Ay be new nonterminals. Replace
A~7 Dby Aﬂan and A-p by Apﬁp. Moreover, replace each pro-
duction which contains i, i » 0, occurrences of A by those 2i
producticons which are obtained by replacing A's by all possible
combinations of Aw's and Ap's. (If A is the start symbol,
then add A-»A1T and AaAp to the set of productions.) This
transformation reduces the problem to the case where each &
(possibly excluding the start symbel) has exactly one production

A-»p, p € C.

If A-»m and B-poa, where 7w, p € C and o 1is non-empty, are
productions in P' then @ # p. In each production B-po
replace p by a new nonterminal Ap and add a production Apﬂp
to P'. This does not change the language generated. We now
have the resulting context-free grammar G" in pure form. Hence,

by theorem 3.13, Szl(G) = L(G") is a PCF language. 0

The following example demonstrates the difference between PCF

and non-PCF left Szilard languages.
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Example 3.3. Let Gl be a context-free grammar with the fol-

lowing productions

iS4

p:A-AC

T:A-B

v:B-a

¢:C-a.
We have Szl(G;) = ( 1o"tue™ | n 2 0 }. It is easy to see that
Szl(Gl) is not a PCF language (because no context-free production
can simultaneously increase the numbers of p and ¢). Consider
now a context-free grammar G2 which has all productions of Gl

and moreover, a production y:A+a. We have Szl(Gz) = 5z1(G u

1)
{ npnx¢n [ n 2 0 }). Language Szl(Gz) can be generated by a PCF

grammar ({m,0,1,u,¢,x}, {x2pxd, x>0}, (nx}). DO
All regular languages are pure languages [MSW]. We shall now
show that a similar result holds for left Szilard languages,

too.

Theorem 3.15. Let G be a context-free grammar. Then Szl(G)

is a PLI language.

Proof. Let G = (N,T,P,S) be a context-free grammar with label
alphabet C. We shall define a PLI grammar H = (I,P',o0) such
that L(H) = Szl(G).

Set first I = C. Set I consists of all strings of productions
correspending to terminal leftmost derivations in G containing
no recursive subderivations; i.e. if S #g w, w € T*, is a deri
vation containing no recursive subderivations, then p is in 0.
Let A be a recursive nonterminal in G and let A =; w, w € T*,

be a derivation containing no recursive subderivations. Moreover,
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let A =? uAa be a minimal recursive derivation in G such

that u is produced without recursive subderivations. Now, for
; ; * i e . s

each derivation « :% v, v € T , containing no recursive subderi-

vations, take a production T-uT¢ to P'.

Set P' contains only length-increasing productions and PLI grammar
H clearly generates the language 5z1(G). This completes the

proof. 0

Example 3.4. Consider again grammar Gl of example 3.3. Gl has

g : . . mTU
a non-recursive terminal derivation S wZT a. Hence, we have
¢ = {ntu}. The only minimal recursive derivation is A =§ AC and

the only terminal derivation for A is & =;U 4. Hence, we have

a length-increasing production Tu-pTUG. Szl(Gl) can be generated

by a PLI grammar ({m,p,7,v,9},{tu-ptud},(m1u}). O
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CHAPTER FOUR: ON DEPTH-FIRST AND BREADTH-FIRST DERIVATIONS

By theorem 2.2, we know that the Szilard language S5z (G) of a
context-free grammar G is context-free if and only if G is
half-bounded. Hence, many context-free grammars with rather simple
derivational structure have non-context-free Szilard languages.
This raises the question whether there are reasonable defined

sets of derivations which are more general than leftmost deriva-

tions and for which Szilard languages are always context-free.

Depth-first derivations of context-free grammars were introduced
in [Luk] as an extension of leftmost derivations. In this chapter
we study properties of Szilard languages associated with depth-
first derivations of context-free grammars and show that this
class is a proper subclass of the class of s-languages. Moreover,
we define the class of breadth-first Szilard languages and show
that this class and the class of context-free languages are incom-

parable. The material of this chapter is from [M&k85c].

4.1. Depth-first derivations

Let G = (N,T,P,S) be a context-free grammar with label alphabet

* i . .
= i, = = 0 o & T be a derivation in G.

0 1 0T n® 'n f

1t ar g = BAYy and wy = g6y, L < i s n, then let £(B) = 1 for

C and let d:S = o
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every particular occurrence of a nonterminal B in §. Deriva-
tion d is said to be depth-first if £(A) 2 £(C) holds in

@, 1 = BAy, 1 < i < n, for all nonterminals C in By [Luk].

If a derivation S =P w is depth-first, we write 5 =P

af
depth-first Szilard language Szdf(G) of G can now be defined

w. The
as Szdf(g) = { 7 | 8 #gf w, w € T" }.

By definition and the fact that leftmost derivations are depth-
first, we have Szl(G) < Szdf(G) < S5z(G) for every context-free
grammar G. The next theorem characterizes the cases where Szl (G)

and Szdf(G) or Szdf(G) and S5z (G) coincide.

Theorem 4.1. Let G be a context-free grammar. Then
a. Sz1(G) = Szdf(G) holds if and only if each production in
G has occurrences of at most one nonterminal in its right-
hand side,
and
b. Szdf(G) = Sz(G) holds if and only if G does not have
sentential forms with nonterminals A and B such that

A+ B and £(a) # £(B).

Proof. omitted.

The following thecrem shows that depth-first Szilard languages

are not very much different from left Szilard languages.

Theorem 4.2. Let G be a context-free grammar. Then the depth-
first Szilard language . szdf (¢) is an s-language.

proof. Let G be a context-free grammar with label alphabet C.
Define an s-grammar G' = (n',T',P',8") as follows. First set

P' = C and S§' = [8]. For each production AﬂaoAlul...un_lAnan,
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where Ai € N and Gj e T" for all i=1,..., n and
=0, 1,..., n, in P add [Al...An] to N'. Nonterminals

[A .Bn] are considered equal if B is

l...Bn

(Hence, the order of G's nonterminals

l...AnJ and [Bl..

a permutation of Al...An.
wilthin brackets does not make any difference.) Furthermore, for

3 L}
each [Al...Ai...An], where n > 1, in N add [Al"'Ai—lAi+l"'An]
to N' (if it is not already there) and repeat this as long as

new nonterminals can be found.

's and

For each production p:BmﬂaOAlal...an_lAnan, where aj
' :

Ai s are as above, in P, and for each [Bl...Bm...Bk],

where Bi * Bm for all i =1,...,m-1, in N’ add to P' a

production [Bl...Bm...Bk]*paB, where

[Al...An], if n>0

&_
A, otherwise
and
g = LBl"'Bm—le+l'°‘Bk]' if k > 1

A, otherwise,

(It might be necessary to reorder G's nonterminals in o or

8 in order to obtain a nonterminal in N'.)

It is straightforward to show by induction that s-grammar G'

generates the depth-first Szilard language Szdf(G) of G. [

An s—-grammar with productions S~aA and BA-a shows that the

class of depth-first Szilard languages is a proper subclass of

the class of s-languages.

4.2. Breadth-first derivations

Another natural restriction of context-free derivations is to
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require that nonterminals are replaced in a breadth-first order.
Depth-first derivations have £(A) z £(C) for nonterminal A to

be replaced next and for all other nonterminals C in the sen-
tential form in question. A derivation is said to be breadth-

first if its sentential forms fulfil the condition £(A) < £(C),
where A and C are as in the definition of depth-first derivations.
The breadth-first Szilard language associated with the breadth—first

derivations of a context-free grammar G is denoted by Szbf(G).

Notice that not all leftmost derivations are breadth-first.

Theorem 4.3. There are non-context-free breadth-first Szilard
languages.
Proof. Consider a context-free grammar G with the following

preductions
p:5=+5S8

g:S5-A

T:B-A,

+
Let L = Szbf(G) n p o*1". since each word in L starts with

n=lonn | s 2 ). gince Szbf(G) has a non-

p, we have L = { p
context-free intersection with a regular language, it cannot be

context-free. [

There are also context-free grammars with a non-context-free
Szilard language and a context-free breadth-first Szilard lan-

guage. Consider a context-free grammar G with the following

1
productions

p:S5-+ABS

g:A-A

T:B-=A

ViS—A.
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Sz(Gl) is non-context-free, but Szbf(G,) is even regular.

1
Indeed, Szbf(Gl) can be denoted by the regular expression

v + plpotT + pTo + opT + o1p + TPO + TOD)*(UOT + VTIo + OVT + OTv + TVO + TOV).
This can be seen as follows. After an application of p:S-ABS
in a breadth-first derivation, we must apply productions g:hA—),
1:B»} and p:S-»ABS (or v:S=+A) in some order. As long as we do
not apply v:S-), we can repeat all possible subderivations
containing one occurrence of p:S=ABS, C:A~)} and T1:B=A. When

we replace p:S-ABS by v:S8=+XA in a subderivation, we cannot

continue the derivation any longer.

Language Szl(Gl) is also regular, while Szdf(Gl) is non-

regular.

Lastly, consider a context-free grammar G, obtained from G

by replacing production p:S»ABS by p:S-5AB. We have

1

Szdf(Gl) = Szdf(Gz) and Szbf(Gl) = Szbf(Gz), but the left Szilard
language Szl(Gz) is non-regular. Hence, G, is an example of
context-free grammars which have regular breadth-first Szilard

language and non-regular left Szilard language.
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CHAPTER FIVE: ON GRAMMATICAL SIMILARITY

This chapter is devoted tc a study of grammatical similarity
relations. A concise survey of these relations is given in

[Woo, section I.2]. We shall concentrate our study on some "cover-—
like" relations. Different versions of grammatical coverings

are studied and surveyed in [GH, Nij80). We give a special empha-
sis to an attempt to interpret properties of cover-like grammat-
ical relations as properties of the left Szilard languages of the

context-free grammars in guestion.

Following [Nij80, S-SW, RH] we now recall the motivaticn which is

usually given for studying grammatical covering relations.

The convenience of expressing the semantics and the efficiency

of parsing are often difficult to achieve simultaneously. For
example, a parsing method may require that the grammar to be
parsed is in some normal form or belongs to a given class of gram-
mars (such as LL(k) grammars). Hence, it is sometimes bhetter to
use one grammar for expressing the semantics and a different gram-
mar for parsing. The grammars are called the semantic grammar
and parsing grammar (S5-SW, RH], respectively. The grammars must
be related to each others in such a way that the ability to effec-
tively parse the parsing grammar allows one to systematically

preduce a parse in the semantic grammar. In covering relations
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this is done by a homomorphism between the production sets of the
grammars. Several formalizations of the homomorphism are intro-
duced in the literature. We shall focus our study on relations

undercover [S-SW] and cover [GH].

In section 5.1 we study the concept of derivation preservation,
which is common to several covering relations. Indeed, many of
them have the property that the homomorphic image of a terminal
derivation in the parsing grammar is always a terminal derivation

in the semantic grammar,

In section 5.2 we deal with undercover relation and in section 5.3
with cover relation. Our main results in these sections are

homomorphic characterizations of undercover and cover relations.

5.2. Derivation preservation

A system consisting of two context-free grammars and a homomorphism
between the production sets of the grammars is of interest in the
theory of parsing. A great variety of grammatical relations is
introduced for controlling these systems. A common basis for sev-
eral such relations is that the homomorphism between production
sets "preserve derivations", i.e. the homomorphism maps derivations
to derivations and terminal derivations to terminal derivations.

The concept of derivation preservation is introduced in [HRS76a].

The material cof this section is from [M&kS84b].
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Let Gl = (Nl’Tl’Pl’Sl) and G2 = (NZ,TZ,PZ,Sz) be two context-

free grammars with label alphabets Cl and CZ' respectively,
and let h be a homomorphism h:Cl—>C2 U {A}. It is sometimes
more convenient to consider h as a homomorphism h:Pl+P2 u {a}.
Since the labeling of productions is assumed toc be bijective, we
can always choose between h:C -C, U {2} and h:py =P, U {A}.

If G G and h are as above, they are said to form a system

1" 72
(Gl'GZ'h)' When we later speak about systems (Gl,Gz,h), we im-
plicitly assume the notations given above. Following [HRS76al]

we can now give

Definition 5.1. Homomorphism h preserves derivations in a

system (Gl,GZ,h) if the following conditions hold

T * ™ . . h('") T
1) o € (N1 U l} and Sl =, 0 implies 5, "y B for some
*
B € (W, UT,
and
2) veT * and S, =" v implies S =h(ﬂ) w for some w e T."
1 72 P 2 T g

We can equivalently define derivation preservation by using left

Szilard languages as follows.

Definition 5.1'. Let (Gl,Gz,h) be a system and let Szl(Gl)

and Szl{Gz) be the left Szilard languages of Gl and G2,

respectively. Homomorphism h preserves derivaticns in (Gl'Gz’h)
if the following conditions hold

1") h(init(Sz1(Gy))) € init(Sz1(G,))
and

2') h(szl(G))) < 8z1(G,).

2
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We now show that under the assumption that only reduced grammars
are considered condition 2' implies condition 1'. For all words
®x in init(Szl(Gl)) we must have a string y such that xy

is in Szl(GlJ. Now, by the properties of homomorphism, if

h(xy) is in Szl(Gz), then h(x) 1is in init(Szl(Gzl). We have

proved the following

Theorem 5.1. Let (Gl’Gz’h) be a system. Homomorphism h

preserves derivations if and only if h(Szl(Gl)} s Szl(Gz).

By lemma 3.1 and theorem 5.1 we obtain

Theorem 5.2. It is decidable whether or not homomorphism h

preserves derivations in a system (Gl,Gz,h).

Next we shall define some grammatical relations which guarantee
derivation preservation. Notice that for undercover (item a.)
and cover (item b.) relations we can define several variations

0f the main idea by using leftmost or rightmost derivations in
both grammars or leftmost derivations in one grammar and right-
most derivations in the other one. Since in chapter 3 we studied
left Szilard languages only, we now omit all other versions but
the ones where leftmost derivations are used in both grammars.
For obvious reasons we use names "undercover" and "cover"

instead of the more complete names "left undercover” and "left

cover" used in the literature.

Definition 5.2. Let Gl = (Nl,Tl,Pl,Sl) and G2 = (Nz’T2'P2’52)

be context-free grammars. In system (G

l’G2’h)

a. G2 is said to undercover Gl with respect to h if
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‘I‘l = ‘I'2 =T, h(A-a) ¥ A for all BA-a in Pl’ and for all

s * m . ; . h(m)
w in T Sl ;W in Gy always implies S, =
in G2 [S~SW]

b. Gl is said to cover G2 with respect to h if Tl =T, =T
and for all w in 7" the following conditions hold
m 5 ; h(m) ;

1) whenever Sl az w 1is in Gl then 52 = is

in G2
2) whenever 52 =g W is in G2 then there exists a 1!

1
such that h(r') =7 and s, =TL‘ w in G [GH]

o0 G2 is said to SI-cover Gl if there exists a homomorphism

f:(N1 U Tl)a(N2 U Tz} such that f(Sl) =5, f(Nl) c NZ’
*

f(Tl) €T, and h(A»a) = f(A)»f{a) for all A-a in

Pl [RH]
d. G2 is said to FReynolds cover Gl if G2 SI-covers Gl’
and moreover, f(a) = a for all a in Tl [GH, RH].

Notice, that in cover relation h maps the productions of the
parsing grammar to the productions of the semantic grammar, while
in other relations it maps productions of the semantic grammar
to the productions of the parsing grammar. Hence, in all four

cases the parsing grammar "covers" the semantic grammar.

Contrary to SI-cover, relations cover, undercover and Reynolds
cover require that the corresponding derivations generate the

same terminal word in both grammars.

Theorem 5,3. Let (G,,6,,h) be a system. If

2!

a. G2 undercovers Gl

b. Gl COVers GZ

& 62 SI-covers Gl
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or
o [ G, Reynolds covers Gy
then h preserves derivations in (Gl'Gz'h)'

Proof. Cases a. and b. are obvious.

Consider cases c. and d. By definition, we have f(Sl) = 52
and hence, h(Sl»u) = SZ*B, BE (N, U Tz)*, for every production
S

g in Gl with left-hand side S Moreover, for every pro-

1 1Y
duction A-=o in Gl’ we have equal numbers of nonterminals in the
right-hand sides of A~»a and h{(A-»a). Hence, for every leftmost

derivation 7w from 8 in G we have a corresponding leftmost

1 1’

derivation h(r) from 52 in G2 such that 7 reaches a ter-

minal word if and only if h{m) reaches a terminal word. O

In this subsection we study the properties of a nonterminal rela-

tion induced by derivation preserving homomorphism h. This rela-
tion connects a nonterminal A in Gl to a nonterminal B in G
if we have h(A-»a) = B-+R for some productions A-a in Gl and

B i .
-3 in G2
our first theorem concerning this nonterminal relation says that

it is a partial function.

Theorem 5.4. Let (Gl,G2,h) be a system such that h preserves
derivations. If h(A*dl) = B+ and h(Aﬂaz) = C-+y, then B = C.
Proof. Suppose that h preserves derivations in (Gl’GZ’h) and

h(A-o = B+ and h(A»0a,) = coy but B # C,

1!



i)

We have S, ég uAd in Gy for some u in Tl* and § in
(Nl ] Tl)*. Both p:A-»a; and o:A»a, can be applied to sen-

tential form ulAé, Hence, both wp and 7o are in init(Szl(Gl)).

So, we have h(mp) and h(ng) in init(Szl(Gz)). However, in

h(m) . *
G2 we have 52 = ¢ for some r in (N2 U T2)

and only one of B-f and C-y can be applied to the leftmost

nonterminal in ¢. This is a contradiction. [

Following [S-SW] the partial nonterminal function induced by h

is denoted by h. Hence, if h(A»a) = B8, then h(A) = B. If
it is not allowed to have h(a-a) = A for any production A-a
in G we can prove the following theorem, which has been proved

ll
in [8-SW] in the case of undercover relation. Hence, the

following is not essentially a property of undercover, but a

property of any system in which derivations are preserved.

Theorem 5.5. Let (Gl,GZ,h) be a system such that h preserves
derivations and h{A-»a) *# A for all 2A-a in Gl' Then the
nonterminal relation h induced by h is a function.

Proof. Since h(A-a) = A is impossible, h maps every nonter-
minal A in Gl tc some nonterminal in Gz. By theorem 5.4,

h is single-valued. 0O

Note, that theorem 5.5 is applicable also to systems (Gl,Gz,h)

where G2 Reynolds covers or SI-covers G

1
If we require a closer resemblance between a production A-a
in G1 and its image h(A-a), we come to the following theorem.

The number of nonterminals in the right-hand side of a nroduction

labeled with p is denoted by ni(p).



78

Theorem 5.6. Let (Gl’Gz'h) be a system such that h preserves
derivations and for all p:A-o in G/ n(p) = n{h(p)) holds.
Then homomorphism h induces a function H:NlﬁNz such that if
A~ in Gl has nonterminals A

(in this order) then

h (A=) = E(A)—»Blﬁ (Al) By .BmE(Am) Bl

l""'An in its right-hand side

for scme Bi in T i = Lywmey Ml

*
2 r
pProof. The claim concerning left-hand sides holds by theorem 594
In order to prove the claim concerning right-hand sides, suppose

it does not hold for some p:A+a in G By definition 5.1 and

1
theorem 5.4, we have for every derivation

LT P
Sl 42 udy =l uay
in Gl a derivation

s, =3(™ vE@ s =51P) vps

2"
Let i be the smallest index such that H{Ai) differs from

the i-th nonterminal Bi in fA. Since n(p) = n(h{p)), we

have equally long derivations to terminal strings from
Ays---sA; y In G, and from h(Al),...,h(Ai_l) in G,.
Hence, we have

S =? uly =g u'a,y

1 i
in Gl and
him) _+— h(m") \ ' o
52 = vh({A) 8 az v Bid , where h(Ai) £ Bi’
in G2. This contradicts theorem 5.4. O

If a system (Gl,Gz,h) is as in theorem 5.6 we can define a

homomorphism £ such that it maps nonterminals as required in
the definition cof SI-cover. However, the situation cof theorem
5.6 does not imply anything about terminal symbols, and hence,

a SIl-cover is not necessarily obtained.
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5.2. Undercover

We start with some simple remarks concerning systems (Gl'Gz'h)

where G undercovers G with respect to h.

2 1
Since a terminal derivation S1 dg v in Gy always implies
that 82 ¢?(ﬂ) v is in Gz, we have L(Gl) = L(GZ)' Because of

this property we need an easy method for detecting if a given

string is in L(Gz) but not in L(Gl)'

IE G2 undercovers Gl and G2 is unambiguous, then Gl is

unambiguous, too.

In definition 5.2.a we required that h(A~»a) * A holds for
every production A-a in Gl' This is a natural restriction,
since if A-»a were nct mapped to any production in parsing

grammar, then the semantics associated with it would be lost.

It follows that the corresponding derivations in Gl and 62
must be equally long. Hence, we can conclude that if G2 is in

CNF or in GNF, then also G must be in the same normal form.

1

Another consequence of the requirement h{(A-»a) # % is that
theorem 5.5 is applicable to all systems (Gl,Gz,h) where Gl
undercovers G2. If we further suppose that a condition similar

to that in thecrem 5.6 holds, we obtain the following theorem

which gives a relaticnship between undercover and Reynolds cover.

Following [5-5W] we first give a definition concerning homomorphism
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h in a system (Gl,Gz,h). A homomorphism h is said te be type

preserving if h(AﬂXlxz...XmJ = B2Y,¥,...Y  implies m =n and

X,» i=1,...,n, n 2 0, is nonterminal if and only if Yy is

nonterminal.

Theorem 5.7 [S-S5W]. Let (Gl’GZ'h) be a system where G2 under-

covers Gl with respect to h. Then G2 Reynolds covers G

if and only if h is type preserving.

1

Procf. If G Reynclds covers G. then, by the definition of

2 1
Reynolds cover, h must be type preserving.

Assume then that h 1is type preserving. By theorem 5.3, h
preserves derivations. We can apply theorem 5.6, and hence, the
nonterminal relation h induced by h fulfils the condition for

nonterminals in the definition of Reynolds cover.

Suppose now that for some production o:A-a in Pl we have

h(A-»a) = B»f such that a = aqaa, and B = Blez, where
lq(al) = lg(gl), a € Tl, b € T2 and a # b.
T * * 4 7

Let Sl g uAél, where u € Tl i 61 € (Nl U Tl) , be a derivation
: ; h(m)
in Gl. Since G2 undercovers Gl’ we must have 82 al VBG2
for some v € TZ* and 62 £ (N2 U Tz)*. Since h is type
preserving, we have 1lg(u) = lg(v) and lg(él) = lg(ﬁz). For the
same reason derivations al ﬁg u', where u' € Tl*, in Gl and
Bl ﬁh(ﬂ) v' where v' € Tz*, have 1lg(u') = 1lg(v'). Derivations

Tpa , Lhi{mpa) ' 1), & '
Sl =, uu aﬁl and 82 ) vV béz, where Ilg(uu') lg(vv')

and a # b, contradicts the undercover property. Hence, (Gl’GZ‘h)
also fulfils the condition for terminals in the definition of

Reynolds cover. [
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Let G1 and G2 be regular grammars. Then homomorphism h

must be type preserving, if G, undercovers G, in (Gl’G2’h)‘

So we have the following corollary.

Corollary 5,1 [S8-SW]. If Gl and G2 are regular grammars,

then G, undercovers Gl if and only if G, Reynolds covers Gy-

The following example shows that in theorem 5.7 we cannot replace
condition "h 1is type preserving" by the condition of theorem 5.6
which says merely that the corresponding productions have equal

numbers of nonterminals.

Example 5.1. Let G, and G, context-free grammars with produc-

tions

Gl: G2:

S—ah S-aba

A=bc A=cC.
Then G2 undercovers Gl and vice versa, but neither G2 Reynolds
covers Gl nor vice versa. [

Does there exist an algorithm for deciding whether or not G,

undercovers Gl with respect to h 1in a given systen (Gl,GZ,h)?

We leave the question open in the case of two arbitrary context-
free grammars, but we shall show that there is an algorithm if

Gy and G2 are in semi-GNF.

We need some concepts from the theory of homomorphism equivalence.
Let L (< ) be a language and let h1 and h2 be homomorphisms
defined on 2T, We say that h and h are equivalent on L

1 2

if hy(w) = h,(w) holds for all words w in L. The problem of

homomovphism equivalence for a class of languages is that of de-
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ciding whether or not two arbitrary homomorphisms are equivalent

on a language of this class [CS].

Lemma 5.1 [ACK,CS]. The problem of homomorphism equivalence is

decidable for the class of context-free languages.

Next, we give a characterization of undercover relation in the case
where both the semantic grammar and the parsing grammar are in

semi-GNF. Recall first our notations. Let Gl = (Nl'Tl'Pl'
G2 = (N2,T2,P2,52} be context-free grammars in semi-GNF, where

Sl) and

Ty =T, =T, with left Szilard languages Szl(Gl) (e Cl*) and
Szl(GZ) (= Cz*), respectively, and a homomorphism h:Cl»CZ.
Furthermore, define homomorphisms hi:Ci+T*, i =1, 2, by setting

hi(p] = w, if p:d-wa, where w € T and o € Ni*, is in P,.
i

We have the situation described in figure 5.1.

L(G,) L(G,)
y h,

521(G i

z l) SZl(Gz)

Figure 5.1.
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In the next theorem, the composition of homomorphisms h and h2

is denoted by h2nh.

Theorem 5.8 [M&k85al]. Let Gi’ Szl(Gi), h, Ci and hi' i=1, 2,

be as above. Then G, undercovers Gl with respect toc h if

and only if the following two conditions hold
1) h(Szl(Gl)) c 5z1(G,)
and

2) homomorphisms hl and hzoh are equivalent on Szl(Gl).

Proof. Suppose first that G2 undercovers Gl' By definition,
we have a leftmost terminal derivation hi(w) in Gy for every

leftmost terminal derivation w 1in G Hence, condition 1)

1
holds. In order to prove that 2) holds, suppose there is a

word © in Szl(Gl) such that hl(ﬂ) + hz(h(w)). This means

that we have derivations Sl =2 w and 52 =§(“) v such that

w # v, a contradiction.

Conversely, suppose that 1) and 2) hold. Condition 1) implies

that for each terminal derivation 1w in G1 we have a terminal

derivation h(w) in G Moreover, condition 2) implies that

¢
these two derivations generate the same terminal word. Hence,

G undercovers G

2 with respect to h. 0O

i

By using this characterization, we can prove the following

Theorem 5.9 [Mdk85a]. Let G1 and G2 be context-free grammars

in semi-GNF. It is decidable whether or not G, undercovers

Gl with respect to a homomorphism h.
Proof. Let Szl(Gi), Ci and hi’ i=1, 2, be as above. 1In

conditien 1) of theorem 5.8, h(Sz1(G.)) is a context-free lan-

1
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guage and Szl(Gz) is a left Szilard language. Hence, by lemma 3.1,

we have an algorithm for checking condition 1). By lemma 5.1, we
also have an algorithm for checking the equivalence of hl and
h' = hzoh on Szl(Gl)- Hence, we conclude the theorem. []

5.3, Cover

Fermally, a system (Gl’szh) where Gl covers G2 resembles

cleosely a system in which G, undercovers G, We have only

relinguished condition h(A-a) % A and on the other hand, we

now forbid such derivations in G, which are not homomorphic images
of any derivations in Gl‘ However, cover and undercover relations
have the fundamental difference that the roles of semantic and

parsing grammars are opposite.

The possibility to have "empty production" as the image of a
production under h, releases us from the requirement that corre-
sponding derivations are equally long. This makes it possible

to find covering grammars in several normal forms. A survey of

such covering grammars can be found in [Nij807.

On the other hand, if Gl covers G2 then L(Gl) = L(Gz). Also

the following simple theorem holds.

Theorem 5.10. Let Gl = (Nl,Tl,Pl,Sl) and G2 = (Nz,T2,P2,82)

be context-free grammars such that G1 covers G2 in (Gl’Gz'h)'

Then card(Pl) ES card(Pz) and card(Nl) = card(Nz).

The conclusion of theorem 5.10 naturally holds also when G2 under-

covers or Reynolds covers Gl'
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In the previous section we left open the question if it is

decidable whether G2 undercovers Gl in (Gl,Gz,h}, where Gl

and G, are arbitrary context-free grammars. Consider now the
corresponding problem for cover relation. We can restrict

ourselves to the case where both G, and G have only two,

i 2

say 0 and 1, terminal symbols.

et G = (N,T,P,S) be a context-free grammar over { 0,1 } such

that the right-hand sides of G's productions are in OoN* U IN* U N

It is undecidable whether L(G) = { 0,1 }*. We shall construct
context-free grammars G, and G, such that L(G) = {o0,11"
if and only if G, covers G,. Define G, = (N U { Sy, % Y

{0,113}, pu/{ Sl—»5$, $-1 1, Sl}, where N n { Si% } = ®, and
Gy = {{ s, Pof 0.1 Yo A 5,05, 824182, 52*1 by §,). Homomorphism
h is defined by

h(A-+Q0q) = 82»052, for each A-0a, o € N*, in P,
h(A-la) = 32*152‘ for each A-la, o € N*, in P,
h{$-1) = Szﬂl;
h(A-a) = A, for each A-a, o € N*, in P,

and
h{s;2S%) = ).

It is straightforward to show that L(G) = { 0,1 }* if and only
if Gl covers G, with respect to h (for further details, see

[HRS76b]) . Hence, we obtain the following

Theorem 5.11 [HRS76b]. Let Gl and G2 be context-free grammars

over { 0,1 }. Then it is undecidable whether G, covers G, in

a system (G Gz,h).

lf

*

.
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A characterization similar to theorem 5.8 is a useful tool when

studying the undecidability of cover relation.

Theorem 5.12. Let Gi' Szl(GiJ, Ci and hi, i=1, 2, be as

in theorem 5.8 and let h De a homomorphism h:C,~C, U {x 1.

Then Gl covers G, with respect to h 1if and only if the
following three conditions hold

1) h(Szl(Gl)) c Szl(Gz),

2) homomorphism hl and hzoh are equivalent on Szl(Gl),
and

3 Szl(Gz) = h(Szl(Gl)J.
Proof. As in the proof of theorem 5.8, we can show that condition
1) of definition 5.2.b holds if and only if 1) and 2) hold.
(Indeed, in this respect the possibility to have h(A-=a) = A
for a preoduction A-a in Gl does not make any difference.)
Similarly, conditicon 3) corresponds to condition 2) of defi-

nition 5.2.b. O

Since there are algorithms to check conditions 1) and 2) of
theorem 5.12, the decidability of the cover problem depends on

the inclusion Szl(Gz) = h(Szl(Gl)).

It is shown in [HRS76a) that the cover problem is decidable in

2,h), where Gl and G2 are linear grammars. (In fact this

problem is shown to be PSPACE-complete in [HRS76al],) In this case

(6,6

both 8zl (G and h(Szl(Gl)) are regular.

5)
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Theorem 5.13. Let Gl and G2 be context-free grammars in semi-

GNF. There is an algorithm for deciding whether Gl covers G

2
with respect to a given homomorphism h if

1) Gl and G2 are left-derivation bounded
or
2) Gl (or Gz) is unambiguous and it generates a bounded lan-

guage.

Proof. If Gl and G2 are left-derivation bounded, then

Szl(Gl), Szl(Gz) and h(Szl{Gz)) are all regular. The inclu-

sion problem is decidable for regular languages.

If a context-free grammar is unambiguous and generates a bounded
language, then by theorem 3.6, its left Szilard language is
bounded. Bounded languages are closed under homomorphism [Gin].
It is decidable whether L, € L, holds for context-free lan-

guages L, and L2 if one of them is bounded [Gin]l. O

If Gl covers Gz, then by conditions 1) and 3) of theorem 5.12,

h(Szl{Gl)) = Szl(Gz). As mentioned in section 3.3, "Ll = Lz?“

is decidable if L is a deterministic context-free language and

1

L2 is superdeterministic. A simple special case where h(Szl(Gl))

is deterministic is that where h(A-a) # A for all productions

A-o in Gl and h(A»al) + h(Aaaz) for all productions A»ul

and A+a2 with common left-hand side. In this case h(Szl(Gl))

is an s-language.

We also have the following



88

Theorem 5.14. Let (Gl’Gz’h) be a system where Gl covers G,

with respect to h. If Szl(Gl] is regular (resp. bounded), then

Szl(Gz) is regular (resp. bounded), too. Moreover, if Gl is

unambigucus, then Szl(Gl) is bounded if and only if Szl(G2) is
bounded.

Proof. The first claim is obvious, since h(szl(Gl}) = Szl(Gz)
and regular and bounded languages are closed under homeomorphism,
Suppose now that Gl is unambiguous. If Szl(Gz) is bounded,

then by theorem 3.7, L(G2J is bounded, too. We have L(Gl) = L(G2)

and by theorem 3.6, Szl(GlJ is bounded. 0l
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CHAPTER SIX: CONCLUSION

We have studied context-free derivations by representing the set
of derivations in a context-free grammar as a language, termed
Szilard language, in which we have a word for every terminating
derivation. Although there are non-context-free Szilard
languages, several decision problems undecidable for context-free
languages are decidable for Szilard languages. The relationship
between context-free and Szilard languages was further studied

in section 2.4.

By restricting the form of context-free derivations we obtain
subsets of Szilard languages. The most natural restrictions

are leftmost and rightmost derivations. 1In section 3 we studied
left Szilard languages associated with leftmost derivations.
Interesting results were obtained when we studied situations where
the language generated by a context-free grammar or the left

szilard language of a context-free grammar is bounded.

If a context-free grammar is in semi-GNF, then we can define a
homomorphism h such that L(G) is the homomorphic image of
$z1(G) wunder h. In section 3.5 the ambiguity of a context-free

grammar was characterized by the properties of homomorphism h.

Other restrictions of context-free derivations were studied in
chapter 4. The main result of this chapter was that each depth-
first Szilard language associated with depth-first derivations

is an s-language.

Lastly, in chapter 5, we applied the results of chapter 3 to the
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theory of grammatical similarity relations, especially to certain
cover-like relations. Our main results in this chapter were
homomorphic characterizations of undercover and cover relations

for context-free grammar in semi-GNF.
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