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Abstract
Purpose  Limited data from genome-wide association studies (GWAS) focusing on oral tongue squamous cell carcinoma 
(OTSCC) are available. The present study was conducted to explore genetic associations for OTSCC.
Methods  A GWAS on 376 cases of OTSCC was conducted using the FinnGen Data Freeze-12 dataset. The case-cohort 
included 205 males and 171 females. Cases with malignancies involving the base of the tongue or lingual tonsil were excluded 
from the case-cohort. Individuals with no recorded history of malignancy were used as controls (n = 407,067). A Phenome-
wide association study (PheWAS) was performed for the lead variants to assess their co-associations with other cancers.
Results  GWAS analysis identified three genome-wide significant loci associated with OTSCC (p < 5 × 10–8), located 
at 5p15.33 (rs27067 near gene LINC01511), 10q24 (rs1007771191 near RPS3AP36), and 20p12.3 (rs1438070080 near 
PLCB1), respectively. PheWAS showed associations of rs27067 mainly with prostate cancer (OR = 1.06, p = 5.41 × 10–7), 
and seborrheic keratosis (OR = 1.11, p = 1.51 × 10–11). A co-directional effect with melanoma was also observed (OR = 0.93, 
p = 6.24 × 10–5).
Conclusion  The GWAS detected two novel genetic associations with OTSCC. Further research is needed to identify the 
genes at these loci that contribute to the molecular pathogenesis of OTSCC.
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Introduction

Oral squamous cell carcinoma (OSCC) accounts for approxi-
mately 80% of all malignant tumors in the oral cavity, with 
the tongue being the most affected site, particularly in devel-
oped nations [1, 2]. The incidence of oral tongue squamous 
cell carcinoma (OTSCC) among young adults (< 45 years 
of age) has risen globally, although the underlying causes 
for this trend remain uncertain [3]. In addition to tobacco 
and alcohol consumption, which remain the primary risk 
factors for oral cancer, betel quid chewing and processed 
meat are also recognized as risk factors [4]. Unlike oro-
pharyngeal cancer, tongue cancer is infrequently associated 
with human papilloma virus (HPV) infection [2]. However, 
OTSCC can develop in individuals without any known risk 

factors, suggesting a significant role for genetic susceptibil-
ity and gene-environment interactions in oral carcinogenesis, 
particularly among young patients [3, 5]. For instance, poly-
morphisms in alcohol-related genes, such as ADH1B (alco-
hol dehydrogenase 1B) and ADH7 (alcohol dehydrogenase 
7), have already been linked to the disease [6]. Associated 
germline mutations are understudied. Instead, environmental 
factors, such as tobacco and alcohol consumption, may lead 
to somatic mutations or epigenetic changes that play a more 
prominent role in the pathogenesis [7].

Genome-wide association studies (GWAS) examine mil-
lions of genetic variants across multiple genomes to identify 
those that are statistically associated with specific pheno-
types. This approach has yielded numerous strong associa-
tions for various traits and conditions, including cancer, with 
the number of linked variants expected to rise as GWAS 
sample sizes continue to expand. [8] However, relatively 
few GWAS studies have focused on oral cancer. A GWAS 
comprising 6,034 oral cavity and pharyngeal cancer cases 
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and 6,585 controls from Europe, North America, and South 
America detected four loci associated (p < 5 × 10–8) specifi-
cally with oral cancer [9]. These included two novel regions 
at 2p23.3 (containing e.g. GPN1) and 9q34.12 (LAMC3), 
as well as two previously known cancer loci at 9p21.3 
(CDKN2B-AS1) and 5p15.33 (CLPTM1L). A Taiwanese 
study [10] confirmed association of previously identi-
fied loci at 5p15.33 (TERT-CLMPT1L), 4q23 (ADH1B), 
6p21.32 (HLA-DQ gene cluster), 6p21.33 (HLA-B), 9p21.3 
(CDKN2B-AS1), and 9q34.12 (LAMC3) with oral cancer, 
and further identified two novel independent loci at 6p21.32 
(SKIV2 and TNXB). Specific methylation changes associated 
with OTSCC have also been reported [11].

Considering the distinct environmental exposures around 
the world, as well as the genetic diversity among different 
ethnicities, we hypothesize that there are both shared genetic 
susceptibility loci and loci that are unique to defined single 
populations for oral cancer. To date, large-scale GWASs 
on oral cancer remain limited, and none have specifically 
focused on OTSCC. Although the anatomical proximity 
of different subsites in the oral cavity may suggest they 
could be treated as a single entity, cancers in these subsites 
represent distinct diseases with varied etiological, biological, 
and histological characteristics. Indeed, gene expression 
differences associated with head and neck squamous cell 
carcinoma aggressiveness have been reported to be highly 
site-specific. [12] Even subsite-specific differences in gene 
expression have been reported for OSCC [13]. In this study, 
we conducted a GWAS using the FinnGen database to 
identify novel genetic risk variants associated with OTSCC, 
which is the most frequently encountered tumor subsite in 
the oral cavity.

Materials and Methods

Genotype data of participants were obtained from FinnGen 
study release 12. FinnGen (accessible at finngen.fi/en) 
is a collaborative public–private research initiative that 
integrates genomic data from 480,000 individuals in Finland 
(as of release 12) with their digital healthcare records. 
FinnGen involves collaboration between Finnish biobanks, 
associated institutions (such as universities and university 
hospitals), global pharmaceutical industry partners, and the 
Finnish biobank cooperative, FINBB.

In the present study, we included data from the 2024 
Release (Release 12), which comprised approximatively 
480.000 post-QC samples, 520,210 (pre-QC samples), 
520,210 individuals with endpoints, and 520,105 individuals 
with detailed longitudinal data. Information on disease 
diagnoses was obtained from the Care Register for Health 
Care (Finnish Institute of Health and Welfare) and the 
National Cause of Death Register provided by Statistics 
Finland.

Study Population

Patients with OTSCC were identified using the Interna-
tional Classification of Diseases, the tenth and the ninth 
Revision (ICD-10 and ICD-9) codes C02.0, C02.1, C02.2, 
C02.3, C02.8, and C02.9. A total of 376 individuals with 
OTSCC were identified, 205 males and 171 females (Fig. 1). 
Cases with malignancies of the base of tongue (ICD-10: 
C01) or lingual tonsil (ICD-10: C02.4) were excluded from 
the case-cohort. Only patients with a diagnosis of OTSCC 
were included in the analysis. Individuals without record of 
malignancy were used as controls (n = 407,067).

Fig. 1   Demographics for cases 
wih OTSCC
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A quantile–quantile plot of the observed versus expected 
χ2 test statistics did not show a large deviation from what 
was expected by chance (inflation factor λ = 0.99013). The 
great majority of the study population was of white ancestry.

Genotyping and Quality Control

The detailed methods of the FinnGen study have been 
described by Kurki et al. [14]. Briefly, genotyping of the 
FinnGen participants’ peripheral venous blood samples 
was performed using Illumina and Affymetrix chip 
arrays (Illumina Inc., San Diego, CA, and Thermo Fisher 
Scientific, Santa Clara, CA). Samples were removed if they 
were duplicates, had ambiguous sex information, had high 
missing genotype data (> 5%), excessive heterozygosity (± 4 
SD), or were of non-Finnish ancestry. After filtering, the 
FinnGen dataset release 12 included 473,681 individuals. 
Variants were excluded if they exhibited high missingness 
(> 2%), deviated significantly from Hardy–Weinberg 
equilibrium (p < 1 × 10–6), or had a minor allele count below 
three. Prephasing was performed using Eagle 2.3.5 with 
20,000 conditioning haplotypes, and genotype imputation 
was done with Beagle 4.1, using the population-specific 
SISu v4.0 reference panel, which is based on GRCh38 
coordinates and includes whole-genome sequences of 8,554 
Finnish individuals. Variants were further excluded if the 
imputation INFO score was below 0.6 or the minor allele 
frequency was less than 0.0001.

Genome‑Wide Associations

The association analysis for imputed variants was conducted 
using Regenie version 2.2.4. To correct for population 
substructure, the outcome associations were tested using 
an additive model adjusted by sex, age, and the first ten 
principal components of the genetic data. In men, the non-
PAR region of the X-chromosome was coded to reflect 
dosage compensation, where hemizygous men were treated 
equivalently to homozygous women. A genome-wide 
significance threshold was set at p < 5 × 10–8.

Characterization of the Associated Loci

Associated loci were defined as genomic regions within 
a ± 1 Mb window around the primary variant. Each distinct 
locus included at least one genome-wide significant vari-
ant (p < 5 × 10⁻⁸) separated by a minimum of 1 Mb. Novel 
loci were identified according to the NHGRI-EBI catalog of 
human genome-wide association studies. Candidate genes 
within each new locus were prioritized based on their phys-
ical proximity to the index variant and existing literature 
regarding their biological function and clinical importance. 
Based on the NHGRI-EBI catalog of human genome-wide 

association studies, the locus was identified as novel. Genes 
within each new locus were prioritized for analysis based 
on their physical proximity to the index variant and exist-
ing literature regarding their biological function and clinical 
importance.

Research Permission

Participants in the FinnGen study gave informed consent for 
biobank research in compliance with the Finnish Biobank 
Act. Separate research cohorts gathered before the Finnish 
Biobank Act (enacted in September 2013) and at the start of 
the FinnGen study (August 2017) were originally collected 
under study-specific consents. These cohorts were later 
transferred to Finnish biobanks following approval by 
the Finnish Medicines Agency (Fimea) and the National 
Supervisory Authority for Welfare and Health. Recruitment 
procedures adhered to the biobank protocols approved by 
Fimea.

The Coordinating Ethics Committee of the Hospital 
District of Helsinki and Uusimaa (HUS) issued the 
statement for the FinnGen study under Nr HUS/990/2017. 
Additionally, the FinnGen study received approvals from 
the Finnish Institute for Health and Welfare, under permit 
numbers THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, 
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, 
THL/283/6.02.00/2019, THL/1721/5.05.00/2019, and 
THL/1524/5.05/2019; Digital and population data 
service agencies (permit numbers: VRK43431/2017-
3, VRK/6909/2018-3, VRK/4415/2019-3); the Social 
Insurance Institution (permit numbers: KELA 58/522/2017, 
KELA 131/522/2018, KELA 70/522/2019, KELA 
98/522/2019, KELA 134/522/2019, KELA 138/522/2019, 
KELA 2/522/2020, KELA 16/522/2020); and Findata 
permit numbers THL/2364/14.02/2020. The Biobank 
Access Decisions for FinnGen samples and data used 
in FinnGen Data Freeze 11 include the following: THL 
Biobank BB2017_55, BB2017_111, BB2018_19, 
BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, 
BB2019_8, BB2019_26, BB2020_1, BB2021_65; Finnish 
Red Cross Blood Service Biobank 7.12.2017; Helsinki 
Biobank HUS/359/2017, HUS/248/2020, HUS/150/2022 
§12, §13, §14, §15, §16, §17, §18, and §23; Auria Biobank 
AB17-5154 and amendment #1 (August 17, 2020); and 
amendments BB_2021-0140, BB_2021-0156 (August 26, 
2021; February 2, 2022), BB_2021-0169, BB_2021-0179, 
BB_2021-0161, AB20-5926 and amendment #1 (April 
23, 2020) and its modifications (September 22, 2021); and 
Biobank Borealis of Northern Finland_2017_101.

The processing of sensitive data complies with Article 
9(2)(j) of the GDPR and Article 6(1)(7) of the Data 
Protection Act V13.3/2023 (1050/2018), as Article 9(1) of 
the GDPR does not restrict data processing for scientific, 
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historical research, or statistical purposes. The research 
was conducted in accordance with the principles of the 
Declaration of Helsinki.

Results

We performed a GWAS analysis and identified three statisti-
cally significant loci associated with OTSCC with genome-
wide significance (p < 5 × 10−8), located at 5p15.33, 10q24, 
and 20p12.3 (Fig. 2 and Table 1).

The first locus identified mapped to 5p15.33, with the 
lead variant rs27067-T (AF = 47.65%, p = 7.68 × 10−9), 
an intergenic variant situated between CLPTM1L and 
LINC01511 (long intergenic non-protein coding RNA 
1511) (Fig. 3). Notably, several cancer-associated genes 
are located within a 1 Mb proximity including CLPTM1L, 
TERT, BRD9, TRIP13, NKD2, LPCAT1, and IRX4 [14]. 
The second locus in chromosome 10 (10q24.1) har-
bored a novel variant (AF = 0.09%, p = 1.91 × 10−9) 
rs1007771191G near gene RPS3AP36 (Fig.  4). The 
SORBS1 missense variant rs773827645-C (AF = 0.089%, 
p = 4.04 × 10−7) was also in high linkage disequilibrium 
with rs1007771191 (r2 = 89.52%). Locus 10q24.1 also 
spans cancer-associated genes ENTPD1 and PDLIM1 [14]. 
The third locus was located in chromosome 20 (20p12.3) 
and included the PLCB1 intron variant rs1438070080-C 
(AF = 0.02%, p = 2.70 × 10−9) (Fig. 5). The genome-wide 

significant variants at loci 10q24.1 and 20p12.3 are 
reported at lower allele frequencies among Non-Finnish 
Europeans at the Genome Aggregation Database (gno-
mAD) database (available at https://​gnomad.​broad​insti​
tute.​org), implicating Finnish enrichment.

Phenome‑Wide Association Studies of the Lead 
Variants in the FinnGen Study

We assessed the co-directional effects of the identified lead 
variants with other cancers using data from the FinnGen 
study. Among the variants associated with OTSCC, 
rs27067 on 5p15.33 demonstrated significant associations 
with prostate cancer (OR = 1.06, p = 5.41 × 10–7), and 
seborrheic keratosis (OR = 1.11, p = 1.51 × 10–11). While 
prostate cancer and colorectal cancer showed an increased 
risk among T allele carriers, the effect of rs27067 was 
opposite in the case of OTSCC. PheWAS also revealed 
a co-directional effect with melanoma (OR = 0.93, 
p = 6.24 × 10–5). Although breast cancer did not show up 
in the PheWAS results of our study, the same locus on 
5p15.33, and specifically the intron variant rs7726159 
(AF = 32%, p = 2.62 × 10–8), has been reported in a 
previous GWAS study [15]. Variants rs1007771191 or 
rs1438070080 were not significantly associated with any 
cancer phenotype.

Fig. 2   Manhattan plot for cases 
with OTSCC

Table 1   Loci and lead variants associated with oral tongue squamous cell carcinoma

AF Allele frequency, Alt alternative, Chr chromosome, OR odds ratio, CI confidence interval, Ref reference, rsid Reference SNP cluster ID

Chr Position Locus rsid Nearest gene Ref. allele Alt. allele AF p-value OR (95% CI)

5 1,358,786 5p15.33 rs27067 LINC01511 C T 47.65% 7.68 × 10−9 0.67 (0.58–0.76)
10 95,593,168 10q24.1 rs1007771191 RPS3AP36 C G 0.09% 1.91 × 10−8 16.43 (6.19–43.63)
20 8,683,515 20p12.1 rs1438070080 PLCB1 A C 0.02% 2.70 × 10−8 34.99 (9.99–122.55)

https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
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Fig. 3   Regional association plot of OTSCC association on chromosome 5

Fig. 4   Regional association plot of OTSCC association on chromosome 10

Fig. 5   Regional association plot of OTSCC association on chromosome 20
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Cross‑Referencing with UKBB Results

To further validate our findings, we examined the associa-
tions of the identified variants with similar outcomes in 
publicly available UK Biobank (UKBB) data (available 
at https://​pheweb.​org/​UKB-​SAIGE/). The association of 
rs27067 with seborrheic keratosis was replicated in the 
UKBB (AF = 51%, p = 0.006). However, no significant 
association between the lead variant rs27067 at 5p15.33 
and oral tongue cancer was reported in the UKBB database 
(p = 9.9 × 10⁻1). Variants rs1007771191 or rs1438070080 
were not present in the UKBB database.

Discussion

To our knowledge, we report the first comprehensive 
GWAS specifically for OTSCC. Our analysis confirmed 
the previously reported locus at 5p15.33, which is located 
near several genes implicated in cancer. Additionally, we 
identified two novel Finnish-enriched loci, at 10q24.1 and 
20p12.1, which have not been previously associated with any 
phenotype. These loci also harbored several genes associated 
with cancer.

Despite the close anatomical relationship of various 
subsites within the oral cavity, they should not be treated 
as a single entity. Indeed, each subsite represents distinct 
disease features, differing in part in their etiology, biology, 
and histological features [12]. This constitutes the rationale 
for focusing specifically on OTSCC. GWAS offers a robust 
approach to uncovering the genetic background of diseases. 
Indeed, disease-associated loci identified by GWAS may 
inform about previously unrecognized biological pathways 
involved in disease mechanisms.

The association of the region 5p15.33 with OTSCC 
has been previously reported in European and Asian 
populations for oral cancer [9, 10]. Furthermore, in addition 
to oral cancer, several other cancers have been reported 
to be associated with the 5p15.33 region [16]. Potential 
associations, though non-significant, have been reported in 
the UK Biobank and FinnGen databases between the lead 
variant rs27067 and cancer phenotypes, including head and 
neck cancers. This variant is situated closest to LINC01511, 
a long-non-coding RNA. Long non-coding RNAs (lncRNAs) 
interact with DNA, RNA, or proteins to modulate various 
cellular processes, including cell growth, differentiation, and 
apoptosis. Thereby, lncRNAs are increasingly recognized 
as critical regulators in cancer development, by acting as 
tumor suppressors or oncogenes. [17] Several other cancer-
associated genes are located within this locus. Among these, 
CLPTM1L (Cleft lip and palate transmembrane protein 1) 
and TERT (telomerase reverse transcriptase) may be the 
most interesting associations. CLPTM1L was originally 

identified in a screening search for genes that confer 
resistance to cisplatin [18]. CLPTM1L is often overexpressed 
in lung adenocarcinoma and its silencing increases cisplatin-
induced apoptosis of tumor cells [19]. In the UK Biobank 
database, CLPTM1L was significantly associated with 
various cancer phenotypes, including lung, upper digestive 
tract, pancreatic, testicular, nasopharyngeal, and oral cancer. 
Overexpression of CLPTM1L has also been associated with 
poor prognosis of oral cancer patients [20–22] and cervical 
cancer recurrence [23].

TERT stands out due to its well-documented function in 
telomere maintenance and cancer development [24]. Under 
normal physiological conditions, TERT expression in adult 
humans is confined to the germ cells, transit-amplifying 
stem-like cells, and activated B and T cells. However, 
TERT promoter mutations and dysregulation have been 
implicated in several cancers, including those of the head 
and neck [25]. Indeed, telomerase reactivation occurs in 
approximately 85% of cancers [26]. Most head and neck 
squamous cell carcinomas show increased expression of 
TERT transcripts, which is associated with worse prognosis. 
In 2023, Boscolo-Rizzo et al. [27], published a meta-analysis 
in which they found that TERT promoter mutations were 
present in 21% of head and neck squamous cell carcinomas. 
The authors identified a significantly higher prevalence of 
these mutations in OSCC compared with other head and 
neck sites. Namely, in nearly half of OSCCs, TERT promoter 
mutations were found, while in oropharyngeal squamous cell 
carcinomas, their prevalence was as low as 1%, and that in 
larynx/hypopharynx as low as 12%. Moreover, the authors 
underlined those patients with head and neck squamous 
cell carcinoma carrying the − 124 C > T TERT promoter 
mutation in the tumors had more than double the risk of 
death and disease progression compared with patients whose 
tumors lacked this mutation.

The second significant locus, at 10q24.1, is marked 
by rs1007771191, a variant near RPS3AP36, a ribosomal 
pseudogene whose functional significance remains poorly 
understood. Notably, this locus also includes the missense 
variant rs773827645 in SORBS1 (Sorbin and SH3 domain-
containing protein 1). SORBS1 encodes the CAP/Ponsin 
protein, involved among else in cell adhesion, cytoskeletal 
remodeling, and cell migration [28–31]. CAP/Ponsin is 
also involved in the regulation of glucose transport [32] and 
insulin signaling pathways [33]. Variants in the SORBS1 
gene have been associated with insulin resistance-related 
disorders in humans [34]. In breast cancer, the silencing 
of SORBS1 promotes epithelial-to-mesenchymal transition 
and confers a loss of sensitivity to chemotherapeutic agents 
such as cisplatin by inhibiting the activity of p53 [35]. In 
prostate cancer, SORBS1 was shown to be significantly 
downregulated, and might thus act as possible tumor 
suppressor role [36]. However, in vitro studies have also 

https://pheweb.org/UKB-SAIGE/
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demonstrated that overexpression of SORBS1 can enhance 
cancer cell migration, indicating its potential involvement 
in promoting cancer growth and metastasis [37]. SORBS1 
may thus contribute to cancer development by altering cell 
adhesion and migration processes, as well as by influencing 
metabolic pathways that support cancer development.

Other cancer-related genes located at the same 
locus include ENTPD1 (Ectonucleoside triphosphate 
diphosphohydrolase-1), and PDLIM1 (PDZ And LIM 
Domain 1). ENTPD1, also known as CD39, is an immune 
regulatory molecule in the tumor microenvironment through 
the breakdown of extracellular ATP and the production of 
adenosine. Cd39 is expressed on the surface of regulatory 
T cells (Tregs) and catalyzes the conversion of ATP and 
ADP into AMP. Subsequently, AMP is converted into 
adenosine, a strong immunosuppressor. Adenosine acts on 
its receptors on CD4 + , CD8 + T cells, and NK cells, thus 
inhibiting their functions and facilitating tumor growth [38]. 
Indeed, CD39 is overexpressed in various human cancers, 
including head and neck cancers [39]. Experimental studies, 
both in vitro and in vivo with knockout mouse models, have 
demonstrated that inhibiting CD39 effectively reactivates 
T-cell and NK-cell anti-tumor responses, facilitating the 
suppression of hepatic growth of metastatic melanoma 
tumors [40]. Currently, anti-Cd39 monoclonal antibodies are 
under investigation in various clinical trial settings, both as 
single agents and in combination regimens [38].

The PDLIM1 gene encodes a protein involved in actin 
cytoskeleton organization [41] and in regulating signaling 
pathways, including the NF-κB pathway, which plays 
a critical role among others in inflammation, cancer 
cell proliferation, epithelial‑to‑mesenchymal transition, 
angiogenesis, and metastasis [42]. PDLIM1-deficient 
mice demonstrate increased levels NF-κB-mediated 
inflammation, which results in elevated production of pro-
inflammatory cytokines and chemokines, which have been 
associated with cancer progression [43–45]. Expression 
of PDLIM1 was significantly lower in colorectal cancer 
tissue samples compared with adjacent normal mucosal 
tissues. Furthermore, in vivo experiments using mouse 
models showed that loss of PDLIM1 promotes invasiveness 
and metastasis in colorectal cancer, while overexpression 
inhibited the process. [46] Similar observations have 
been reported for hepatocellular cancer, where PDLIM1 
silencing promotes epithelial-to-mesenchymal transition 
and metastasis, whereas PDLIM1 overexpression has the 
opposite effect [47]. However, in breast cancer mouse 
models, PDLIM1 expression seems to increase during cancer 
progression [48].

The third locus, at 20p12.3, was marked by 
rs1438070080, an intronic variant near genes PLCB1 
(Phospholipase C Beta 1) and PLCB4 (Phospholipase C 
Beta 4). These genes encode phospholipase C enzymes 

which are involved in intracellular transduction of many 
extracellular signals via regulation of calcium release from 
the endoplasmic reticulum. Plcb1 is mainly expressed 
in brain tissue, whereas Plcb4 is more ubiquitously 
expressed across various tissues, including the digestive 
tract. Mutations in the PLCB1 gene have been associated 
with epileptic encephalopathy and West syndrome [49, 
50]. Furthermore, PLCB1 has been identified as an 
oncogenic driver, in cholangiocarcinoma [51], breast 
cancer [52], hepatocellular cancer [53], and gastric cancer 
[54]. Overexpression of Plcb1 has been correlated with 
advanced tumor stages and poorer survival outcomes in 
patients with breast, gastric cancers, and hepatocellular 
cancer, where it is thought to facilitate the migration and 
invasion of cancer cells. [52–54]. Similarly, dysregulation 
of PLCB4 has been associated aggressive phenotypes in 
hepatocellular cancer and acute myeloid leukemia [55, 
56]. Given the low allele frequency of rs1438070080 in 
OTSCC, it may represent a rare but high-impact variant. 
The association of this locus with two closely related 
signaling genes underscores its potential importance in 
OTSCC, warranting further functional studies to explore 
its exact role.

Although this study offers findings that could be 
valuable for future research, several limitations must be 
acknowledged. Firstly, GWASs tend to focus on common 
genetic variants, which may lead to missing rare but 
potentially impactful variants. Although adjustments were 
made for sex and age, other confounding factors, such as 
environmental influences, were not accounted for, which 
may impact the results. Furthermore, the findings could not 
be correlated with clinical data, such as cancer size, cancer 
HPV expression, and survival data. Lastly, restricting the 
study to participants of the Finnish ancestry limits genetic 
diversity, thus reducing the generalizability of the findings 
to other populations.

In summary, we identified three OTSCC susceptibility 
loci involving previously identified cancer-associated genes. 
Our findings highlight the importance of non-coding regions 
in cancer susceptibility. Variants in these regions could act 
as regulatory elements, influencing gene expression and 
downstream pathways involved in tumor initiation and 
growth. The loci identified in this study contain genes which 
have been implicated in telomere maintenance, immune 
evasion, and intracellular signaling, processes that are 
hallmarks of cancer [57]. Further validation of our findings 
in independent populations is essential. Furthermore, 
assessing whether the variations we uncovered are OTSCC-
specific or shared between different head and neck cancer 
subsites would be valuable and constitutes the direction 
of our future research. Additionally, comparing variants 
between premalignant lesions and OTSCC would be highly 
relevant for understanding patient susceptibility to OTSCC.
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