
Kristian Skogberg

GENERATING UI CODE FOR SCIENTIFIC

COMMAND LINE TOOLS USING LARGE

LANGUAGE MODELS

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Dr. Jussi Rasku

Prof. Jyrki Nummenmaa

May 2025

i

ABSTRACT

Kristian Skogberg: Generating UI Code for Scientific Command Line Tools Using Large Language
Models
Master of Science Thesis
Tampere University
Advanced Studies in Software Engineering
May 2025

This thesis explores the current capabilities and limitations of using artificial intelligence (AI)
and large language models (LLMs) to generate user interface (UI) code. In the action research
component of this thesis, a graphical user interface (GUI) was developed for VeRyPy, a scientific
Python library for solving vehicle routing problems. The GUI code was generated using GitHub
Copilot and OpenAI’s GPT-4o model.

In this action research, the VeRyPy GUI development process was carried out in five iterations,
following cycles of planning, action, analysis, and conclusion. In the beginning of the research, the
GUI requirements were gathered and structured into user stories, which were then mapped to an
iteration plan. In the first iteration, a GUI design was generated using two AI tools: Vercel V0 and
Galileo AI. In the subsequent iterations, the GUI features were generated in code according to the
iteration plan. The GUI development workflow was documented in detail in the results chapter.

Although AI significantly accelerated especially the early stages of GUI development, it still has
notable limitations, such as inability to manage large contexts, occasional unintended code modifi-
cations, and challenges in integrating the AI-generated code into existing codebases. Leveraging
AI in software development is still a relatively manual process, as it requires writing numerous
prompts, reviewing changes, and manual testing to achieve the best results.

Based on the results of the action research, an autonomous UI code generation process uti-
lizing LLMs was proposed. In this process, AI would be used to generate tests prior to generating
code for the required features. These tests would be executed whenever new code is applied to
the codebase, with the context being updated in the background. Although this process could
eliminate some of the manual work involved in AI-powered UI development, having clear require-
ments, continuous iteration, and validation remain essential aspects of software engineering.

Keywords: code generation, large language model, artificial intelligence, graphical user interface,
software engineering

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Kristian Skogberg: Käyttöliittymäkoodin generointi tieteellisille komentorivityökaluille kielimallien
avulla
Diplomityö
Tampereen yliopisto
Ohjelmistotuotannon syventävät opinnot
Toukokuu 2025

Tässä diplomityössä tutkitaan tekoälyn ja kielimallien nykyisiä kykyjä ja rajoituksia käyttöliitty-
mäkoodin generoimisessa. Diplomityön toimintatutkimuksessa (engl. action research) kehitettiin
graafinen käyttöliittymä VeRyPy-nimiseen tieteelliseen Python-kirjastoon, jonka avulla voi ratkais-
ta ajoneuvojen reititysongelmia. Käyttöliittymäkoodi generoitiin GitHub Copilotin ja OpenAI:n GPT-
4o-kielimallin avulla.

Tässä toimintatutkimuksessa VeRyPy-käyttöliittymän kehitysprosessi toteutettiin viidessä ite-
raatiossa, joissa noudatettiin suunnittelun, toiminnan, analyysin ja johtopäätösten syklejä. Tutki-
muksen alussa käyttöliittymän vaatimukset kerättiin ja jäsenneltiin käyttäjätarinoiksi (engl. user
story), joiden pohjalta luotiin iteraatiosuunnitelma. Ensimmäisessä iteraatiossa luotiin käyttöliitty-
mäsuunnitelma Vercel V0 ja Galileo AI -tekoälytyökalujen avulla. Myöhemmissä iteraatioissa käyt-
töliittymän toiminnot toteutettiin koodina iteraatiosuunnitelman mukaisesti. Käyttöliittymän kehitys-
prosessi dokumentoitiin yksityiskohtaisesti tulokset-luvussa.

Vaikka tekoäly nopeutti merkittävästi erityisesti käyttöliittymän kehitystä alkuvaiheessa, sillä
on edelleen merkittäviä rajoituksia. Näitä rajoituksia ovat esimerkiksi kielimallien kyvyttömyys hal-
lita suuria konteksteja, satunnaisia ylimääräisiä koodimuutoksia ja haasteita generoidun koodiin
integroimiseen olemassa oleviin koodikantoihin. Tekoälyn hyödyntäminen ohjelmistotuotannossa
on edelleen melko manuaalinen prosessi, sillä se edellyttää lukuisten syötteiden (engl. prompt)
kirjoittamista, jatkuvaa muutosten tarkistamista ja manuaalista testausta parhaan lopputuloksen
saavuttamiseksi.

Toimintatutkimuksen tulosten seurauksena muodostui ehdotus autonomisen käyttöliittymäkoo-
din generointiprosessiin kielimallien avulla. Tässä prosessissa tekoäly generoisi ensin testejä vaa-
dituille toiminnallisuuksille, jonka jälkeen generoitaisiin koodia. Nämä testit suoritettaisiin aina, kun
uutta koodia lisätään koodikantaan ja kontekstia päivitettäisiin jatkuvasti taustalla. Vaikka tämä
prosessi voisi mahdollisesti automatisoida osan tekoälyavusteisen käyttöliittymäkehityksen ma-
nuaalisesta työstä, selkeiden vaatimusten, jatkuvan iteraation ja validoinnin merkitys vaikuttaisi
säilyvän oleellisena osana ohjelmistotuotantoa.

Avainsanat: koodin generointi, kielimalli, tekoäly, graafinen käyttöliittymä, ohjelmistotuotanto

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

USE OF ARTIFICIAL INTELLIGENCE IN THIS WORK

Artificial intelligence (AI) has been used in generating this work:

□ No

□× Yes

I hereby declare, that the AI-based applications used in generating this work are as fol-

lows:

Application Version

OpenAI ChatGPT 1.11.2024 – 14.04.2025

GitHub Copilot v1.263.0 – v1.267.0

Vercel V0 9.12.2024 – 22.12.2024

Galileo AI 8.12.2024

Purpose of the use of AI

Utilizing AI tools was at the core of the action research component of this thesis. At the

beginning of the research, Vercel V0 and Galileo AI were used to generate a GUI design

for the VeRyPy GUI. During the later iterations, GitHub Copilot and OpenAI’s GPT-4o

model were used to generate the UI code for the VeRyPy GUI. Details on how these AI

tools were used are documented in the results chapter.

Parts of this work, where AI was used

In addition to using AI in the action research of this thesis, ChatGPT was used to search

for relevant sources and to identify potential grammatical errors throughout the text. It

also helped generate the initial versions of Table A.1 in Appendix A and the iteration plan

in Appendix B.

Acknowledgement of risks

I hereby acknowledge, that as the author of this work, I am fully responsible for the con-

tents presented in this thesis. This includes the parts that were generated by an AI, in

part or in their entirety. I therefore also acknowledge my responsibility in the case, where

use of AI has resulted in ethical guidelines being breached.

iv

PREFACE

I would like to express my gratitude to Dr. Jussi Rasku for his guidance, interest, and

role as examiner throughout this thesis. I also thank my second examiner, Prof. Jyrki

Nummenmaa, for their valuable time and feedback during the evaluation process. I am

grateful to my comfortable office chair at home, which made long hours of writing more

pleasant, as well as to my friends and family for their continuous support. Finally, I extend

my thanks to GPT-Lab at Tampere University for providing the thesis topic and a license

to use OpenAI’s latest large language models.

Tampere, 7th May 2025

Kristian Skogberg

v

CONTENTS

1. Introduction . 1

2. Background. 3

2.1 Software Engineering Process 3

2.2 Requirements Engineering . 3

2.3 User Interface Design . 4

2.4 Artificial Intelligence in Software Development 6

2.4.1 Large Language Models 7

2.4.2 AI Copilots . 10

2.4.3 Related Work . 11

2.5 The Vehicle Routing Problem 14

2.5.1 Solving VRPs using Heuristics 15

2.5.2 Tools for Solving VRPs 16

2.5.3 Scientific User Interfaces for Solving VRPs 16

3. Methods . 17

3.1 Action Research . 17

3.2 Selected AI Tools. 19

4. System Under Study . 21

4.1 VeRyPy Overview . 21

4.2 VeRyPy GUI Requirements and Features 24

4.3 User Stories and Iteration Planning 24

5. Results . 26

5.1 Iteration 1: GUI Design . 26

5.1.1 Planning . 26

5.1.2 Action . 26

5.1.3 Analysis . 32

5.1.4 Conclusion . 33

5.2 Iteration 2: Basic GUI and Problem Input 34

5.2.1 Planning . 34

5.2.2 Action . 34

5.2.3 Analysis . 38

5.2.4 Conclusion . 40

5.3 Iteration 3: Algorithm Selection and Execution 41

5.3.1 Planning . 41

5.3.2 Action . 41

vi

5.3.3 Analysis . 58

5.3.4 Conclusion . 59

5.4 Iteration 4: Solution Visualization, Metrics, and Export Options. 60

5.4.1 Planning . 60

5.4.2 Action . 60

5.4.3 Analysis . 73

5.4.4 Conclusion . 75

5.5 Iteration 5: Improved Problem Input 76

5.5.1 Planning . 76

5.5.2 Action . 77

5.5.3 Analysis . 92

5.5.4 Conclusion . 93

6. Findings . 95

7. Discussion . 97

8. Conclusion .104

References .106

Appendix A: Features and User Stories of the VeRyPy GUI113

Appendix B: Iteration Plan for the VeRyPy GUI.115

B.1 Iteration 1: GUI Design .115

B.2 Iteration 2: Basic GUI and Problem Input115

B.3 Iteration 3: Algorithm Selection and Execution116

B.4 Iteration 4: Solution Visualization, Metrics, and Export Options.117

B.5 Iteration 5: Improved Problem Input117

vii

LIST OF FIGURES

2.1 User interface design process, inspired by [16, 17, 18]. 5

2.2 Context windows of commonly used large language models. 8

2.3 Evolution of context windows of OpenAI’s GPT models. 9

2.4 Interaction between user, AI copilot, and LLM. 11

2.5 An example of a vehicle routing problem. 15

3.1 Action research cycle for VeRyPy GUI development. 18

4.1 Geographic distribution of GitHub users interacting with the VeRyPy repos-

itory. 22

4.2 Structure and distribution of source files in VeRyPy. 23

4.3 Breakdown of VeRyPy lines of code at the start of this action research. . . 23

5.1 VeRyPy GUI design for mobile generated using Galileo AI (1/2). 27

5.2 VeRyPy GUI design for mobile generated using Galileo AI (2/2). 28

5.3 VeRyPy GUI design for web generated using Galileo AI (1/2). 29

5.4 VeRyPy GUI design for web generated using Galileo AI (2/2). 30

5.5 The final VeRyPy GUI design generated using V0 by Vercel. 31

5.6 Button for adding code generated in Vercel V0 to an existing codebase. . . 31

5.7 Code review suggestions by GitHub Copilot (1/2). 36

5.8 Code review suggestions by GitHub Copilot (2/2). 36

5.9 Prompt for fixing an issue with the ’solve’ button and a partial response. . . 37

5.10 GitHub Copilot suggestion for fixing an error. 38

5.11 Prompt for searching heuristic algorithms from the VeRyPy codebase and

a partial response. 43

5.12 A code change GitHub Copilot kept suggesting multiple times. 45

5.13 Prompt for importing heuristic algorithms and a partial response. 47

5.14 A code snippet generated by GitHub Copilot. 48

5.15 Algorithm solution logs in server.py terminal. 49

5.16 Prompt for improving the VeRyPy GUI usability and a partial response. . . 50

5.17 Current state of the VeRyPy GUI. 52

5.18 GitHub Copilot response limit error. 53

5.19 Heuristic algorithm selection menu in the VeRyPy GUI. 54

5.20 VeRyPy GUI with algorithm parameter input fields. 55

5.21 A code suggestion by GitHub Copilot. 55

5.22 An example of misinterpretation by GitHub Copilot. 56

viii

5.23 VeRyPy GUI after iteration 3. 58

5.24 Prompt for displaying VRP solution metrics in the GUI and a partial response. 61

5.25 Initial version of displaying VRP solution metrics in the VeRyPy GUI. 62

5.26 Feasibility metrics added to the solution metrics element in the GUI. 64

5.27 Prompt for generating the VRP solution visualization and a partial response. 65

5.28 Initial VRP solution visualization in the VeRyPy GUI. 66

5.29 Prompt for adding route cost to the VRP solution and a partial response. . 67

5.30 Error in the solution visualization in the VeRyPy GUI. 68

5.31 Added an element for route costs to the VeRyPy GUI. 69

5.32 Added route details to the route costs element in the VeRyPy GUI. 70

5.33 Improved solution visualization and route metrics in the VeRyPy GUI. . . . 71

5.34 Solution metrics exported as a JSON file. 72

5.35 VeRyPy GUI after iteration 4. 73

5.36 Prompt for generating a function to create a temporary .vrp file and a

partial response. 78

5.37 Prompt for modifying the create temp vrp file function and a partial

response. 82

5.38 Error displayed in Google Chrome DevTools when calculating utilization

rate for routes. 83

5.39 VeRyPy GUI and visualization for solving a TSP. 84

5.40 Prompt for improving TSP and CVRP validation and a partial response. . . 85

5.41 An example of an unnecessary code change suggested by GitHub Copilot. 86

5.42 Improved folder structure suggestion by GitHub Copilot. 87

5.43 Contents of the example.vrp file generated by GitHub Copilot. 89

5.44 An example of a code change that GitHub Copilot attempted to revert. . . . 90

5.45 VeRyPy GUI after iteration 5. 91

5.46 Breakdown of VeRyPy lines of code at the end of this action research. . . . 94

7.1 Proposal for an autonomous AI-powered UI code generation process. . . . 101

ix

GLOSSARY

AI Artificial Intelligence

AR Action Research

Context Window The maximum amount of text (measured in tokens) that a large

language model can process at once to generate a response

Copilot An AI assistant that provides an interface for interacting with large

language models to provide suggestions and help users complete

their tasks efficiently

GUI Graphical User Interface

Heuristic A problem-solving method for finding approximate solutions fast

and efficiently

LLM Large Language Model

UI User Interface

VeRyPy A Python library for solving CVRPs using heuristic algorithms

VeRyPy GUI A graphical user interface for the VeRyPy library

VRP Vehicle Routing Problem

1

1. INTRODUCTION

Most if not all industries are changed forever by the adaptation of artificial intelligence (AI)

and large language models (LLMs) [1, 2, 3, 4]. Utilizing LLMs and AI tools can greatly

increase productivity [5, 6], when some tasks that once took hours or longer can now be

completed in a fraction of the time. Moreover, as AI tools and LLMs improve, they are

becoming more capable of completing longer and more complex tasks in less time [7].

Therefore, having some understanding of the available AI tools and how to utilize them

has become essential to improve efficiency in almost every field. In this thesis, LLMs and

AI tools are put to the test by generating a graphical user interface (GUI) for a scientific

command line tool.

Scientific tools are usually designed by researchers and scientists, and while they can

provide a lot of data and insight, most of the time they are not designed user experience

in mind. In other words, usability is not the main focus of scientific tools. Poor usability

significantly reduces adoption, as regular users may find it difficult to use these tools.

A solution to help especially the non-technical users to use a system more easily is to

design and develop a GUI which is an essential part of almost any kind of software today.

This thesis is divided into six main parts. The background chapter introduces key con-

cepts relevant to this thesis, such as requirements engineering, user interface design,

large language models, AI copilots, related work, and the vehicle routing problem (VRP).

The methods chapter outlines the action research approach used to generate a GUI for

VeRyPy, a scientific command line tool for solving VRPs [8], using AI tools. The system

under study chapter presents the VeRyPy library and describes the VeRyPy GUI require-

ments and features. The workflow of the VeRyPy GUI generation process is documented

in the results chapter. The findings chapter includes the strengths, current limitations, and

overall experience of AI-powered UI code generation observed during the action research.

Finally, the discussion chapter compares the findings with related work and proposes a

more autonomous UI code generation process as a direction for further research.

The topic for this thesis was provided by GPT-Lab. GPT-Lab is a research hub focused in

AI, and it was founded at Tampere University in June 2023. GPT-Lab aims to study how

generative AI can be utilized to the fullest in the software engineering industry [9]. GPT-

Lab offers solutions for companies looking to integrate AI in their processes through a

2

sandbox environment where businesses can test AI-powered solutions and by connecting

businesses with AI researches. Using LLMs to generate UIs autonomously aligns with

GPT-Lab’s research interests, and this thesis aims to provide valuable insights and ideas

about the current state of AI-powered UI generation.

3

2. BACKGROUND

2.1 Software Engineering Process

Software engineering is a relatively unique field compared to other engineering fields as

software systems are abstract and not limited by physical constraints. Well-designed soft-

ware systems can usually be modified relatively easily, quickly, and cost effectively, even

after being deployed to production. Therefore, software development is a very iterative

process where changes occur all the time during the software life cycle.

There are countless ways in which different organizations and teams build software, but

agile methods are usually present in one form or another. For instance, scrum is a pop-

ular agile framework where development is divided into fixed-length iterations or sprints,

typically lasting two to four weeks [10]. This structure helps teams prioritize and manage

their work effectively. Kanban is another agile method that emphasizes continuous devel-

opment by using visual tasks to help manage the workflow [11]. Today, most software is

developed in iterative cycles, where each sprint begins with prioritizing features from the

product backlog, followed by estimating the time required for each task, and concludes

with the development of those features [12].

Because software development has such an iterative nature, it is easy to spend a lot of

time discussing changes in meetings, which takes time out of implementing the software

and its features. In 2024, Rasheed et al. [13] presented an idea for a workflow to improve

productivity in software development using AI and LLMs. Their vision is to have multi-

ple AI agents executing tasks and constructing a working software in the background of

meetings based on what is discussed in the meeting. This kind of process would acceler-

ate software development, because working code would be generated already during the

meeting instead of taking place after the meeting.

2.2 Requirements Engineering

Collecting requirements and specification for a system plays a central role in software

engineering. Requirements are descriptions and statements of how the system should

behave, and they are outlined at the early stage of development [12]. In other words, col-

lecting and understanding the requirements of a system helps guide the software develop-

4

ment in the right direction. To minimize misunderstandings and prevent using resources

on unnecessary features, requirements should be clear, unambiguous, and easily under-

stood by all stakeholders.

Epics and User Stories

A common approach to modeling requirements of a system is to present them as epics

and user stories. In the software development context, epics are large chunks of work

representing the major requirements of a system. Epics are usually broken down into

smaller tasks known as user stories. User stories are concise sentences that describe

the desired functionality and scenario of a system from the perspective of the end user

[14, 12]. User stories typically outline a type of user, their goal of using the system,

and the benefit they get after achieving their goal. User stories are usually written in the

following Connextra format [14]:

As a [role], I want to [goal], so that [benefit].

Due to the simple structure, user stories are designed to be easily understood by all

stakeholders, even without technical knowledge. Developers can design and implement

features that correspond to the goals and benefits of different types of user described

in the user stories. Furthermore, user stories can be useful reminders for developers to

check if the implemented features correspond to the user stories and what kind of features

are required but not yet implemented.

Each user story is usually assigned estimates based on their complexity and how much

effort implementing them would require. These estimations are known as story points,

and they can be a useful way of planning and prioritizing the development of different

features.

2.3 User Interface Design

User interfaces (UIs) play a crucial part in software development as they allow users to

easily use a system. UIs are closely linked to the usability of a software, despite the fact

that UI design can be somewhat decoupled from the software development life cycle [15].

This suggests that UI design may not always be emphasized enough, even though it is a

key factor that directly impacts the usability of a system. Incomplete or unclear UIs are

difficult to use, which can hinder usability and delay the adoption of the software.

The UI design process consists of multiple tasks for different purposes, but it can be sim-

plified into four key phases [16, 17, 18] as shown in Figure 2.1. In the first phase, potential

users are identified along with the tasks they will perform using the UI, as well as the en-

vironment in which these tasks will take place. This analysis provides the data needed

5

for the next phase, where the UI is designed. It is crucial to design the interface in a way

that helps users complete tasks more easily while boosting their productivity. The third

phase involves implementing the UI based on the design. This implementation is typically

an interactive prototype, as it is quicker to create and modify than a full implementation in

code. Finally, in the fourth phase, the implemented UI is evaluated and validated. Evalu-

ation can be done, for example, by having users test the UI and observing or interviewing

them to identify what they found useful and what could be improved in the UI.

Figure 2.1. User interface design process, inspired by [16, 17, 18].

After the evaluation is completed, it is generally recommended to improve the UI through

a few iterations of the design process based on user feedback rather than using the initial

design as the final design. This claim was supported by Nielsen [19] where they studied

iterative UI design and presented four case studies of iterative design. They measured

UI design improvement in percentages by considering attributes such as task completion

time, errors made, and subjective satisfaction. Across these case studies, Nielsen found

that the median improvement of an UI after three versions was 165 % and the average

improvement from one version to the next was estimated to be 38 %. Their findings

highlight the importance of continuous improvement based on user feedback. Nielsen

found that the greatest improvements came from the first iterations, which makes sense

considering that early iterations tend to address the most obvious usability issues.

Software engineers often prioritize the implementation of required functionalities and core

business logic over increasing usability through intuitive UI design. However, there are

signs that this trend is changing where UI design and implementation is emphasized

6

more. Myers and Rosson [20] conducted a survey with 74 responses, where they found

that developers spend on average 48 % programming the user interface and that UI de-

velopment is emphasized in most of the phases of the software life cycle.

A well-designed UI has a great impact on the sales and profitability of a software system.

If users are able to accomplish their tasks easily and conveniently using the UI, they are

likely to continue using it and potentially even recommend it to others. Lohse and Spiller

[21] studied how the user interface of an internet retail store affects traffic and sales in

1999. They found that product list navigation features which reduce the time to purchase

products accounted for 61 % of the variance in monthly sales. This suggests that intu-

itive UI design where users can easily search and browse products would increase sales

greatly. If users find UIs confusing or difficult to use, they may choose to switch to a

competitor’s system, causing the business to lose a potential customer in the process.

Pratama and Cahyadi [22] also studied the effect user interface and user experience have

on application sales. They compared the UI and features of two very similar note taking

applications for mobile. One of the application has a minimal and appealing UI where the

UI of the other application looks more complicated and lacks consistency in some of the

UI elements. Even though these applications have very similar functionality, the one with

a better appearance has significantly more downloads and higher ratings. While other

factors such as marketing and search engine optimization also play a role in download

numbers, it can still be said that an intuitive, well-designed UI has a significant impact on

the software’s popularity and profitability.

2.4 Artificial Intelligence in Software Development

Artificial Intelligence (AI) has a huge impact on how software are developed today. An

individual developer can assemble a complete team of AI agents assigned for different

tasks such as idea generation, requirements engineering, code generation, and testing.

AI has also made it easier to create software for individuals who may lack the otherwise

required technical skills in software development.

However, leveraging AI to the fullest requires a certain level of technical knowledge. Writ-

ing clear prompts, requesting specific technologies, validating the AI outputs, and inte-

grating them into a codebase is necessary to produce high-quality software. AI can be

particularly useful to explore new ideas and in automating repetitive tasks, which in turn

frees up more time for developers to focus on problem solving and other higher-level

aspects of software development.

AI has already been integrated with some of the most used code editors. For instance,

Visual Studio offers IntelliCode AI assistant for C# in Visual Studio 2022 and Python in

Visual Studio Code [23]. Pycharm, which is one of the leading code editors for Python

7

projects, also has integrated AI directly within their code editor [24]. Cursor [25] is an

example of a trending AI-powered code editor, which has been designed to leverage

LLMs in code generation. Even popular design tools such as Figma have integrated AI

into their products where users can generate designs using LLMs [26].

2.4.1 Large Language Models

Large language models (LLMs) are the most common application of AI. LLMs are com-

plicated systems trained on vast amounts of data to be able to understand and generate

outputs in natural language without requiring a specific input format. LLMs use deep

learning techniques to process large datasets and predict text by modeling complex lan-

guage patterns and dependencies. Examples of some popular LLMs include OpenAI’s

GPT-4o, DeepSeek’s R1 and Google’s Gemini.

Due to their broad use cases, most popular LLMs can be used in all stages of software

development: from ideas to planning, from code generation to testing, and even for de-

ployment and maintenance [27, 28, 29, 30]. However, while LLMs can be used throughout

the entire software development process, they are not always the most suitable choice for

every task. Specialized AI tools and models trained for specific purposes, such as code

generation, UI design, and requirement analysis, often provide more precise and efficient

solutions for those particular tasks.

Context Windows in LLMs

One of the main drawbacks of using LLMs in software development today is their inability

to manage large contexts. The context window refers to the maximum number of tokens

that an LLM can process simultaneously [31, 32], including tokens used in both input and

output. For example, if a model has a context window of 128 000 tokens and 100 000

tokens are used for input, then up to 28 000 tokens remain for output generation. The

context window is essentially the working memory of an LLM, and it affects how long the

LLM can keep track of the conversation before it starts to forget previous messages [32].

While LLMs generally perform well in short and straightforward contexts, their accuracy

tends to decline as context size increases. This issue is particularly evident in code

generation, where there are often numerous source files and folders, and understanding

the full context is necessary for producing accurate results. For example, using LLMs to

generate a function for fetching data is typically manageable, but integrating that data with

other components may exceed the model’s context window, often leading to hallucinations

or unintended results. Due to the limited context window size of LLMs, it is often advised

to split complex tasks into multiple smaller tasks where the LLM would complete them

one by one. This approach was also suggested in GitHub Copilot’s documentation [33].

8

The current context windows of some commonly used LLMs are shown on a logarithmic

scale in Figure 2.2. Among these models, Google’s Gemini 1.5 Pro model has a context

window of up to 2 million tokens [34], where Anthropic’s Claude 3.7 Sonnet and OpenAI’s

o3-mini models have a context window of 200 000 tokens [35, 36]. Other popular models

can manage up to 128 000 tokens, which is about 96 000 English words on average [37].

Figure 2.2. Context windows of commonly used large language models.

Although context windows exceeding 100 000 tokens may seem substantial, only a por-

tion of this capacity is available for output generation. For example, the GPT-4o model

offers a context window of 128 000 tokens, yet it can use a maximum of 16 384 tokens

in the output. However, the ratio between the context window size and the maximum

output tokens varies significantly across different LLMs. For instance, the o3-mini model

provides a context window of 200 000 tokens and can use up to 100 000 tokens for output

generation. Similarly, Claude 3.7 Sonnet supports up to 128 000 output tokens while also

having a context window of 200 000 tokens.

The context windows of LLMs have increased rapidly in recent years. Figure 2.3 shows

the growth of context windows in OpenAI’s popular GPT models from 2018 to 2024, visu-

alized with a scatter plot and a trendline. The GPT-1 model was released in 2018 and had

a context window of just 512 tokens [38], which increased to 1024 tokens in GPT-2 [39]

and 2048 tokens in GPT-3 [40]. Meanwhile, the newer GPT-4o model offers a significantly

larger context window of 128 000 tokens. This trend suggests that future LLMs will likely

have larger context windows than the previous models.

9

Figure 2.3. Evolution of context windows of OpenAI’s GPT models.

In practice, the effective context windows of LLMs are often much smaller than what is

advertised. In 2024, Hsieh et al. [41] at NVIDIA introduced RULER, a benchmark for

evaluating context windows of long-context language models. They found significant per-

formance drops across almost all evaluated models as the context size increased. Ad-

ditionally, most of the evaluated models fell well below their advertised context windows.

For example, the effective context size of OpenAI’s GPT-4 and Meta’s Llama3.1 (70B)

models was evaluated to be 64 000, which is 50 % less than advertised. This suggests

that the advertised context windows of LLMs may serve more as a marketing tactic, and

relying on them can be misleading when designing processes around LLMs.

Additional Constraints of LLMs

In addition to the limited context windows, LLMs have other major constraints, such as

expensive training costs, the quality of the training data set, and the lack of executive

power [42]. The quality and accuracy of responses generated by LLMs depend on the

quality and extent of their training datasets. Additionally, since generative AI models must

be trained before they can be used, their training data will always be somewhat outdated,

unless the model is trained again with updated data. In other words, the quality and

timeliness of the training data directly impacts the accuracy of AI-generated responses,

making high-quality datasets very valuable resources.

Building and training LLMs is expensive. For instance, training the DeepSeek V3 model

cost $5.576 million [43], while training OpenAI’s GPT-3 model was estimated to cost over

10

$4.6 million [44]. Furthermore, the training cost for OpenAI’s newer GPT-4 model ranges

from $63 million to over $100 million [45, 46]. These significant costs are primarily due

to the extensive computational resources, such as graphics processing units (GPUs),

required to train the models. As LLMs continue to advance, training cost is likely to remain

a critical consideration in their development and practical use.

The lack of executive power means that LLMs cannot independently execute actions us-

ing their generated responses. For example, while LLMs can generate content such as

text, code, or images, it is usually up to the user to manually copy and paste the out-

put into their application of choice. However, AI copilots designed for specific purposes,

along with plugins and application programming interfaces (APIs), can bridge the gap be-

tween LLMs and action execution. These actions can include, for example, creating and

scheduling social media posts [47], improving digital marketing [48], writing emails and

autocompleting sentences [49] as well as automating invoice processing [50].

2.4.2 AI Copilots

AI copilots, also referred to as AI assistants or AI tools, are essentially user interfaces

for accessing and using LLMs in different applications. AI copilots are typically designed

to have chat-like conversational UIs that enable interaction with LLMs using natural lan-

guages [42, 51]. This is likely one of the reasons why AI copilots have been rapidly

adopted across various industries, as using them is easy and does not require technical

knowledge or familiarity with specific syntax.

While OpenAI’s ChatGPT is one of the most well-known AI tools used for a wide range

of tasks [52], GitHub Copilot is one of the earliest and most widely used AI copilots in

code generation, with over 36 million installations on the Visual Studio Code Marketplace

[53]. GitHub Copilot, developed by GitHub in collaboration with OpenAI and Microsoft,

is trained on a wide range of programming languages and source code from publicly

available sources, such as public code repositories on GitHub [54]. GitHub Copilot allows

users to select and use LLMs from other companies, such as OpenAI and Anthropic,

and it is available in popular code editors such as Visual Studio Code, Visual Studio, and

Pycharm. Other examples of AI copilots in code generation include Aider, Cursor, and

Supermaven.

Figure 2.4 illustrates how users can interact with LLMs through AI copilots. First, the user

provides input in natural language via the AI copilot interface, which is known as a prompt.

The AI copilot then sends the prompt to the LLM, where it is processed, and a response is

generated. Response generation is a complex process in which a neural network predicts

the next word in a sequence based on the given context. Once processed, the generated

response is returned to the AI copilot and displayed to the user in the interface.

11

Figure 2.4. Interaction between user, AI copilot, and LLM.

2.4.3 Related Work

Numerous studies have explored how LLMs can be used to improve the software develop-

ment process. Prather et al. [55] studied how novice programmers use GitHub Copilot on

typical programming assignments, and they recognized two primary interaction patterns.

Some programmers manually typed out Copilot’s code suggestions and then adapted

the code based on their needs. Other programmers were fast to accept Copilot’s sug-

gestions without really understanding them, resulting in more time spent debugging the

AI-generated code.

Pandey et al. [56] also studied the efficiency and challenges of using GitHub Copilot

in real-world software projects. In their study, a mix of 26 junior and senior engineers

used GitHub Copilot in daily tasks within a full stack cloud development environment.

They found that GitHub Copilot was particularly useful for generating boilerplate code,

debugging, and providing code explanations, suggestions, and examples. Code quality

12

improved significantly when context was provided through files and using descriptive nam-

ing in functions and variables. The identified key challenges were the inability to generate

code for a unique business logic and distributing the code to multiple files.

Bilgram and Laarmann [57] studied how ChatGPT-4 can be used to help especially peo-

ple without much UI and UX knowledge to create a working prototype. They found that

ChatGPT is able to generate easy-to-follow instructions for performing specific tasks such

as designing a UI that opens in a web browser. Additionally, LLMs were proven helpful for

guiding the user through the task and fixing errors along the way. They also highlighted

the importance of task definition, requirements, and workflow integration which directly

affects the outcome of AI-assisted prototyping. Finally, they suggested that organizations

and teams should rethink they way they use LLMs in their workflows as it is now much

faster to make edits and experiments than to define the requirements and contexts.

One interesting aspect of using AI copilots in software engineering is how much different

descriptions and prompts of the same outcome affect the generated code. Mastropaolo

et al. [58] did an empirical study where they asked GitHub Copilot to generate 892 Java

methods from the original Javadoc descriptions. They generated equivalent descriptions

for the same methods and found different code generations in about 46 % of cases. Fur-

thermore, they found that about 28 % of code generated using the equivalent descriptions

was incorrect or did not pass some of the tests. This suggests that writing clear prompts

plays a crucial role in generating code that produces the desired result.

One of the biggest issues in using LLMs is hallucinations or outputs that are incor-

rect or contain false or misleading information. Liu et al. [59] studied this problem and

they developed a taxonomy for categorizing different kinds of hallucinations in code

generations. They found that the selected models (GPT-3.5 turbo, Codellama-7B and

DeepSeek-Coder-7B) struggle to identify hallucinations and especially to mitigate them.

This highlights the need to develop specialized methods for managing hallucinations in

AI-generated code as well as further research in this area.

Liang, Yang, and Myers [60] conducted a large-scale survey with responses from 410

developers. They found that one of the biggest issues in using AI copilots in programming

was giving up on incorporating the outputted code. Developers reported that the reason

for sometimes not using AI-generated code was that the code does not perform the cor-

rect action or it does not meet functional or non-functional requirements. In other words,

the generated code does not always align with the developers intent, and therefore it may

sometimes be more convenient to write code manually instead of relying on AI copilots.

Xu, Vasilescu, and Neubig [61] studied the promise and challenges of using in-IDE code

generation from natural language by developing a plugin for PyCharm. They found that

while developers had a positive experience of using the plugin, there were no statistically

significant gains in any measurable outcome when using the plugin. They also found

13

several issues of using the plugin such as developers usually had to modify the generated

code before it could be used, the code often lacked necessary context, and sometimes

the results were not related to the search.

Barke, James, and Polikarpova [62] studied how programmers interact with AI copilots for

code generation. They found two distinct interaction modes: acceleration and exploration.

In acceleration mode, developers know their goal and use AI to reach it faster. Exploration

mode is used when developers are uncertain how to proceed and use AI copilots to

explore options or get a starting point. They also found that programmers in acceleration

mode are quick to discard AI-generated code, where programmers in exploration mode

prefer to accept and modify generated code.

Bajcetic, Draskovic, and Bojic [63] researched how a Python Tkinter GUI can be im-

plemented using ChatGPT 3.5 and Google Bard. They defined a specification for the

application in natural language written as scenarios. They found that while the generated

code provided a good starting point and covered most of the scenarios, the code was

sometimes incomplete and contained errors. They also found that assigning functional-

ities separately did not result in higher quality code, and specifying all functionalities in

one go may be the better approach. This specific finding indicates that, while AI tools

may work well in the implementation of GUIs for small-scale applications, a more robust

process is needed to integrate AI with the development of more complex systems.

Fakhoury et al. [64] studied how test-driven practices could be integrated with AI-powered

code generation. They presented a test-driven interactive code generation workflow that

guides user intent by automatically generated tests while also improving the accuracy of

AI-generated code. They found that incorporating test generation into code generation

significantly improved the accuracy of generated code while also reducing task-induced

cognitive load. Furthermore, presenting users with test cases and asking for validation re-

sulted in code that is more aligned with their needs, and users were also likely to correctly

evaluate the AI-generated code.

Kolthoff et al. [65] studied how effective LLMs are in detecting the implementation of user

stories in GUI prototypes and recommending GUI components. They proposed an ap-

proach to validate user stories against a GUI prototype. This user story validation was

done by extracting components from the GUI and checking if they validate any user story.

In order to obtain the required training dataset, they selected 60 existing GUI prototypes

and performed a questionnaire to collect user stories for the already implemented func-

tionalities in the selected GUIs. Although the training dataset collected was small, they

still managed to get promising results in the validation of the user story and the recom-

mendation of components.

In addition to the previously highlighted studies and frameworks, there are many other

workflows that aim to improve the AI-powered UI code generation process. For instance,

14

Mu et al. [66] introduced a framework to detect ambiguous or unclear requirements and

generate clarifying questions before generating code. Wu et al. [67] introduced an auto-

mated method for fine-tuning LLMs to generate UI code from textual descriptions. Liang

et al. [68] designed a strategy for generating HTML code from UI designs and images.

Similarly, Wan et al. [69] introduced an approach for converting webpage screenshots into

UI code by dividing the screenshots into smaller segments and generating correspond-

ing HTML and CSS code for each segment. The vast number of tools and workflows

built around LLMs suggests a growing interest among researchers in improving the AI-

powered code generation process.

To conclude the related work, many recent studies show that LLMs can help with common

tasks such as generating code, validating user stories, recommending components, and

even creating test cases to improve code quality. While the results are often promising,

common challenges remain, such as handling vague requirements, generating incorrect,

and incomplete code, or code that does not align with the developer’s objective. Overall,

these studies highlight the potential of using LLMs to assist in different areas of software

development, especially for creating and prototyping UIs.

2.5 The Vehicle Routing Problem

The vehicle routing problem (VRP) is a concept in the field of transportation that has been

researched since the 1950s. VRPs are essentially mathematical optimization problems in

which the goal is to find the optimal routes for a set of vehicles visiting customers at differ-

ent locations [70, 71, 72]. VRP generalizes the traveling salesman problem (TSP) while

also being more complex with additional constraints such as multiple vehicles, vehicle

capacity limits, and route length restrictions.

The vehicle routing problem is visualized in Figure 2.5 on the next page. The dots in

the figure represent customer locations, while the lines connecting them form the optimal

routes. Each route starts from the depot, visits the nearest customers, and returns to the

depot. These routes are typically traversed by vehicles to, for example, deliver goods or

pick up customers as efficiently as possible.

15

Figure 2.5. An example of a vehicle routing problem.

There are a few different variations of the vehicle routing problem. In the capacitated

vehicle routing problem (CVRP), all vehicles are identical and share the same capacity

and depot [70, 71, 72]. Another variant, the vehicle routing problem with time windows

(VRPTW), requires each customer to be visited within a specific time window. Among the

different VRP variations, the CVRP is the most widely studied variation of VRP.

2.5.1 Solving VRPs using Heuristics

Calculating the perfect route can be extremely time-consuming and computationally de-

manding, especially when dealing with multiple vehicles with varying capacities, hundreds

of locations, and priority constraints for certain locations. Therefore, using heuristics is

beneficial as they enable the computation of optimal or near-optimal routes more effi-

ciently and with fewer computational resources. Heuristics are techniques designed to

find not exact but still optimal solutions to problems faster than classical methods.

A well-known heuristic for solving VRPs is the savings algorithm developed by Clarke

and Wright in 1964 [73]. In their algorithm, an optimal or near-optimal route is calculated

incrementally for vehicles with varying capacities visiting multiple delivery points from a

central depot. It starts by assigning each delivery point its own route from the depot.

Next, it calculates the potential distance savings from merging two routes. Routes are

merged based on the highest savings as long as vehicle capacity and routing constraints

are respected. This process continues until no more efficient merges can be made.

16

2.5.2 Tools for Solving VRPs

There are many tools available for solving VRPs and they can be divided into two cate-

gories: open-source and commercial. Open-source tools, such as jsprit [74], VeRyPy [8],

VRPy [75] and Google’s OR-Tools [76], are commonly used since they are flexible, free

to use and support different types of VRPs such as VRPs with time windows or capacity

limits. These tools usually use heuristics to find good solutions efficiently.

Commercial tools, such as Gurobi [77] and CPLEX [78], can be used to model VRPs as

mathematical optimization problems. These tools can compute exact solutions and are

effective in small to medium-sized cases. However, using exact techniques to solve VRPs

does not scale well as the problem size or complexity increases [72]. Therefore, exact

techniques are used primarily in research settings or as benchmarks.

2.5.3 Scientific User Interfaces for Solving VRPs

There are several scientific tools with UIs created by researchers to solve VRPs. For

example, VeRoViz [79] is a Python package which is designed to help visualizing VRPs.

In VeRoViz, the first step is to define an area or location coordinates, which are used to

generate nodes. VeRoViz uses these nodes to generate a time matrix and a distance

matrix. VeRoViz provides a simple solver, but more sophisticated solving is left to the

user. The VeRoViz website has a map which can be used to draw a bounding region and

coordinates, but the visualization requires installation of the VeRoViz package.

Vroom [80] is another open-source VRP optimization application. Vroom provides a fron-

tend that can be used to add locations to a map and to create a route visiting all locations

using real-life roads. On default, Vroom uses one vehicle when solving VRPs, but new

identical vehicles can be added in the right-hand side control panel. A breakdown of

which vehicles visited which locations can also be seen in the control panel, and each

route is drawn in a different color to the map. The route duration, distance, and comput-

ing time can be seen in the bottom-left corner of the frontend. However, it is unclear what

kind of algorithm is used to solve the VRPs and it is not possible to change the algorithm

in the Vroom frontend.

17

3. METHODS

3.1 Action Research

To select the most suitable method for this research, it is important to understand various

research methods. In case studies, a particular subject, entity, or phenomenon are ex-

amined in its context within a restricted time frame [81]. Case studies allow researchers

to focus on a specific example instead of multiple different cases, and this approach can

help to identify core issues for a complex problem. A case study is purely observational,

with the goal of gaining insights and better understanding the studied subject.

Design science research (DSR) was also considered as the research method in this the-

sis. In DSR, an artifact (which is a construct designed to solve a problem within a specific

context) is developed to address a particular real-world issue [82, 83]. In other words,

DSR focuses on the development of efficient and effective designs over theoretical explo-

ration. However, reviewing the generated UI code is not the primary focus in this research,

which is why DSR was not utilized in this research.

Action research (AR) is another commonly used research method. Action and interven-

tions are central to AR, which is typically conducted in iterative cycles of planning, action,

evaluating, and reflection [84, 85]. In AR, the researcher actively participates in solving

the studied entity or modifying some aspect of it while simultaneously conducting re-

search [81]. Similar to DSR, AR also produces an artifact [83], and AR focuses more on

improving processes and is a more action-oriented research method compared to case

studies.

Ultimately, a mix of action research and some case study practices was selected as the

research method for this thesis. The goal is to get more insights into the process of

generating UI code using LLMs, which requires a lot of iteration. Using the selected AI

tools requires active participation from the researcher as well as experience in utilizing

AI tools and continuous documentation throughout the research. Finally, it is important to

study existing applications of using LLMs for generating UIs, which highlights the need for

case study methods.

In this action research, the researcher is also the author of this thesis. The researcher is

using AI tools to generate UI code while also documenting the experience of AI-powered

18

code generation. Ideally, one researcher would use AI to generate code, while another

researcher would observe and interview them to document the process. Therefore, it

is important for the researcher to document every step of the VeRyPy GUI generation

process in detail to be able to identify the current benefits and challenges of AI-powered

code generation.

Action Research Cycle

Figure 3.1 below depicts the cycle used in the action research component of this the-

sis, consisting of four distinct phases. In the planning phase, the researcher becomes

familiar with related work to understand how other researchers have approached UI gen-

eration using LLMs. This is important as it provides insight into existing tools, challenges,

and best practices. Additionally, the planning phase includes defining user stories and

conducting iteration planning for the VeRyPy GUI. The output of the planning phase is

knowledge of best practices for using LLMs in UI generation along with the requirements,

user stories, and iteration plan for the VeRyPy GUI. These preparations and outputs will

be utilized in the next phases of the AR cycle.

Figure 3.1. Action research cycle for VeRyPy GUI development.

The action phase involves implementing the VeRyPy GUI according to the user stories

and iteration plan defined in the planning phase. The researcher uses the selected AI

tools and methods to implement the GUI in multiple iterations of experimentation and data

collection. Therefore, the outputs or artifacts of the action phase include AI-generated

19

code, prompts used, and documentation of the GUI implementation process. It is crucial

for the researcher to document the process – i.e. what was done, when, and why – as

these insights are needed in the next analysis phase.

In the analysis phase, the researcher reviews the workflow from the previous planning and

action phases. The data collected during the action phase is organized to highlight what

went well and to identify the challenges and bottlenecks in the code generation process.

Additionally, the analysis phase includes validating the user stories and features of the

implemented VeRyPy GUI and suggesting ideas for what an automated UI generation

workflow could look like.

Finally, the conclusion phase involves compiling the most important insights and highlights

from the entire AR cycle to share the acquired knowledge for further research. It is also

important to reflect on whether the findings of this AR confirm or conflict with the related

work and what improvements or ideas this research can offer in the context of UI code

generation in software development.

In this action research, a total of five iterations were carried out to generate the VeRyPy

GUI features in stages, and the workflow for each iteration is documented in the results

chapter. The number of iterations was fixed during the research to remain within the

scope of this thesis. It is also important to note that the study of the related work was

done prior to these iterations to gain a better understanding of how other researchers

have approached the AI-powered UI code generation process. Furthermore, the most

important findings and recurring themes of the VeRyPy GUI generation experience are

documented in a separate findings chapter.

Finally, the researcher’s knowledge and abilities to utilize AI tools in code generation sig-

nificantly influence the quality and direction of this research. Having studied Information

Technology at Tampere University since 2019 – prior to the widespread adoption of AI

tools – the researcher has a lot of knowledge in the software engineering field. The

researcher has practical experience with AI tools such as ChatGPT, as well as in design-

ing and implementing user interfaces for both web and mobile platforms. For example,

in early 2024, the researcher led a project that heavily incorporated LLMs to develop a

gamified website along with multiple personal projects focused on UI design and frontend

functionalities.

3.2 Selected AI Tools

There are multiple popular AI tools available from many different vendors. GitHub Copi-

lot and Cursor were identified as the most promising AI tools, and they were compared

against each other by reading what developers say about them on online forums like Red-

dit, Stack Overflow and Medium articles. Developers seem to have mixed feelings for both

20

of these popular AI tools. Some argue that Cursor offers better context awareness, while

others claim that GitHub Copilot provides more accurate code generation. In addition to

the debate over these tools, the fast pace of improvement in AI tools and the variations in

their usage make it challenging to compare them consistently.

Ultimately, GitHub Copilot was selected as the AI copilot to generate code for the VeRyPy

GUI while using OpenAI’s GPT-4o model in the background. OpanAI’s ChatGPT [86] and

their GPT-4o model was also used to assist with the user story generation and iteration

planning. Vercel V0 AI tool [87] and Galileo AI [88] were used to generate the GUI design

for VeRyPy. Table 3.1 below presents the selected AI tools and how they were utilized in

this action research.

AI tool Usage

OpenAI’s ChatGPT (GPT-4o) User story generation and iteration planning

Galileo AI Initial VeRyPy GUI design generation

Vercel V0 Final VeRyPy GUI design generation

GitHub Copilot (GPT-4o) VeRyPy GUI code generation

Table 3.1. The selected AI tools and their usage.

GitHub Copilot and OpenAI’s GPT-4o models were selected because they represented

the state of the art at the time of writing this thesis. In addition, GPT-Lab at Tampere

University, as mentioned in the preface of this thesis, granted the researcher a license

to freely use OpenAI’s LLMs. GitHub Copilot was also free for students, although it be-

came free for all users of Visual Studio Code (VS Code) during the writing of this thesis

[89, 90]. Furthermore, GitHub Copilot is integrated into the VS Code editor, making it

convenient for generating features for the VeRyPy GUI. Vercel’s V0 was selected based

on recommendations from other developers and YouTube videos. Vercel is a well-known

vendor that provides developer tools and cloud infrastructure services, such as web appli-

cation deployment and hosting. Finally, Galileo AI was selected to enable a comparison

of GUI designs generated by two different platforms, and it was also recommended by

other developers and mentioned in online blog posts.

21

4. SYSTEM UNDER STUDY

4.1 VeRyPy Overview

In this action research, the system under study is VeRyPy. VeRyPy [8] is a lightweight

Python-based open-source library for solving CVRPs. VeRyPy was created by Dr. Jussi

Rasku during his PhD thesis conducted in 2019 [91]. VeRyPy contains 15 classical

heuristic algorithms, multiple local search heuristics, and some additional constructive

heuristics.

Originally, VeRyPy provided a command line interface (CLI) for accessing the imple-

mented heuristic algorithms to solve CVRPs. However, using a CLI is not very intuitive

and can be difficult, especially for less technical users. Therefore, a GUI was needed to

make VeRyPy more accessible to more people.

Currently, the VeRyPy code repository has been starred by 278 users, forked by 57, and

is being watched by 9 users. Figure 4.1 on the next page illustrates the geographic distri-

bution of GitHub users who have starred, forked, or are watching the VeRyPy repository.

Users who have starred the repository are represented by orange stars, those who have

forked it are shown as dark blue triangles, and users currently watching the repository are

marked with gray dots.

22

Figure 4.1. Geographic distribution of GitHub users interacting with the VeRyPy reposi-
tory.

VeRyPy Codebase

The structure and distribution of the source files in VeRyPy are visualized in Figure 4.2

using a tool created by Wattenberger [92]. The color of the circles represents the file type,

while the circle size indicates the file’s size. The code is primarily distributed in the verypy

and tests directories with the majority of files being Python files (.py). Most of the code is

dedicated to heuristic algorithms and test files.

23

Figure 4.2. Structure and distribution of source files in VeRyPy.

Prior to this action research, the lines of code in VeRyPy were calculated using cloc [93],

as shown in Figure 4.3 below. Initially, VeRyPy had 13 024 lines of code spread across

83 different files, most of which were Python files. The compact size of VeRyPy reflects

its lightweight design philosophy which the GUI should mirror in its implementation.

Figure 4.3. Breakdown of VeRyPy lines of code at the start of this action research.

24

4.2 VeRyPy GUI Requirements and Features

A set of main requirements for the VeRyPy GUI was identified through discussions with

the author of VeRyPy. These requirements are presented as epics in Table 4.1. There

are various user roles in the field of routing optimization, ranging from logistics analysts

to dispatchers and algorithm developers. For the scope of this research, only dispatchers

and algorithm developers were selected as the main users of the VeRyPy GUI. Each

of these users approaches VRPs from a different perspective, highlighting the need for

diverse use cases and requirements for the VeRyPy GUI.

Table 4.1. Epics for VeRyPy GUI.

Role Epic

Dispatcher As a Dispatcher, I want to be able to input details about my VRP (e.g.

customer locations and vehicle capacities), so that I can model and

solve real-world delivery scenarios.

Algorithm

Developer

As an Algorithm Developer, I want to select from the heuristic algorithms

implemented in VeRyPy, so that I can test and compare different VRP-

solving methods.

Algorithm

Developer

As an Algorithm Developer, I want to see a visualization and metrics of

the routes calculated by the heuristic algorithms, so that I can under-

stand the solutions more easily.

Dispatchers are solving real-world delivery problems by inputting customer locations and

vehicle information into the VeRyPy GUI. They represent delivery and logistics compa-

nies where their business model requires planning and completing deliveries efficiently.

By utilizing the VeRyPy GUI, dispatchers can optimize routes and improve operational

efficiency.

Algorithm developers are more technical and research-oriented, focusing on designing

methods and algorithms to solve routing problems. They need to experiment and com-

pare different algorithms for solving VRPs by considering their computational time, re-

sources used, and accuracy. Students and researchers studying routing optimizations

could also be considered as algorithm developers in this context.

4.3 User Stories and Iteration Planning

The epics presented in Table 4.1 were broken down into 14 user stories, which are listed

in Appendix A. OpenAI’s ChatGPT and their GPT-4o model were used to assist in defining

user stories for the VeRyPy GUI. The intended use of the VeRyPy GUI and the epics were

25

provided to ChatGPT as prompts, instructing it to generate concise user stories. After

generating the initial set of user stories, ChatGPT was also used to create a template for

the iteration plan, which is detailed in Appendix B.

User stories and iterations that fell outside the scope of the VeRyPy GUI were filtered

out, while missing user stories were added to ensure comprehensive coverage of the

required functionalities. Additionally, some user stories were refined to align better with

the VeRyPy GUI specification.

Each iteration followed an iteration plan that outlined the specific features and user stories

to be implemented. The first iteration focused on designing the VeRyPy GUI using the

selected AI tools, while the remaining iterations concentrated on constructing the GUI and

implementing the required features by generating UI code. The workflow, analysis, and

observations of every iteration are documented in detail in the following results chapter.

26

5. RESULTS

This chapter presents the workflow, observations, and results of a total of five iterations

conducted during the action research where a GUI was generated for the VeRyPy library

using LLMs and AI tools such as Vercel V0, OpenAI’s GPT-4o, and GitHub Copilot. The

GitHub Copilot chat logs and the code generated during these iterations are available in

the VeRyPy-GUI repository on GitHub [94], which was forked by the researcher from the

original VeRyPy repository.

Whenever the term ’Copilot’ is mentioned in the following iterations, it refers to GitHub

Copilot. Similarly, whenever the term ’VRP’ is used, it refers specifically to the CVRP

variant. Lastly, the term ’GUI’ refers to the VeRyPy GUI.

5.1 Iteration 1: GUI Design

5.1.1 Planning

Refer to Iteration 1: GUI Design in Appendix B for the iteration 1 plan including the user

stories and features implemented in this iteration.

The plan of the first iteration is to generate a GUI design for the VeRyPy GUI before

generating any code. I will use Galileo AI and Vercel V0 to generate two GUI designs and

select the one that best fits the VeRyPy GUI requirements. Once the GUI design looks

good, I will convert it to code to prepare it for the next iterations where the VeRyPy GUI

features corresponding to the user stories will be implemented in code. It is important to

write prompts that clearly describe the main requirements of the VeRyPy GUI to get the

most accurate results.

5.1.2 Action

In the beginning of this iteration, I used Galileo AI to generate a GUI design for the VeRyPy

GUI. Galileo AI can generate GUI designs separately for mobile and web. First, a mobile

design was generated, followed by a web design. The initial GUI design for mobile can

be seen in Figure 5.1 and 5.2, while the initial GUI design for web is shown in Figure 5.3

and 5.4. I was unable to share the GUI designs generated in Galileo AI as URLs.

27

I used the following prompt in Galileo AI: Design a minimal and easy-to-use user interface

for a single page web app for a VRP solver library. The UI should allow users to easily

input their VRP problem and select from a dropdown menu a heuristic algorithm and

visualizing the result. The UI should allow users to view some statistics of the algorithm

result and also be able to playback the solution in stages. (Note: The playback feature

was filtered out at the end of this action research to remain within the scope of this thesis.)

Figure 5.1. VeRyPy GUI design for mobile generated using Galileo AI (1/2).

28

Figure 5.2. VeRyPy GUI design for mobile generated using Galileo AI (2/2).

29

Figure 5.3. VeRyPy GUI design for web generated using Galileo AI (1/2).

30

Figure 5.4. VeRyPy GUI design for web generated using Galileo AI (2/2).

Next, I used V0 by Vercel to generate another GUI design for the VeRyPy GUI with the

same prompt I used in Galileo AI. I was able to generate a really good GUI design after

the first attempt, but it still required some fine-tuning. I wanted to move the algorithm

metrics on top of the visualization element instead of having them at the bottom. I also

wanted to allow the user to input their problem either by uploading a .vrp formatted file

or to input details about their problem manually. The final GUI design generated in V0

can be seen in Figure 5.5 on the next page, and the V0 chat logs are presented in the

references [95].

31

Figure 5.5. The final VeRyPy GUI design generated using V0 by Vercel.

Figure 5.6 below shows that it is possible to integrate code generated in Vercel V0 into

existing projects using Shadcn, a library designed to manage custom GUI components.

While this feature is convenient, it would add another dependency to the project, which is

against VeRyPy’s requirements to minimize external dependencies.

Figure 5.6. Button for adding code generated in Vercel V0 to an existing codebase.

32

To prepare the GUI design for the next iterations, I wrote a prompt in the V0 chat instruct-

ing it to convert the UI code into HTML and CSS. V0 successfully generated the code

without altering the original design much. However, I noticed that the button for toggling

between manual input and file input for the VRP no longer worked, as I was unable to

display the input fields while entering VRP details manually. This issue occurred because

the HTML and CSS code lacked any interactive code, but it can easily be added in the

next iteration, where I will use these HTML and CSS files as a starting point to generate

code for features of the VeRyPy GUI.

5.1.3 Analysis

Galileo AI offers a way to convert the generated GUI designs to both code and Figma

files for further prototyping. When I clicked the ’code’ button, the UI was converted into

HTML code which uses Tailwind CSS, a popular CSS library, for styling. The HTML code

can then be exported as plain code for further development. Additionally, it is possible to

create a Replit project via Galileo AI, which is a nice way to quickly render the CSS in the

cloud without having to run the HTML page locally. This is convenient, especially for less

technical users and designers, as the generated HTML document can be set up and run

without requiring technical skills.

The GUI designs generated by Galileo AI were clear and minimal, as requested in my

prompt. The applied Tailwind CSS styling improved the GUI look a lot, and it followed

good GUI design principles, such as using enough padding between the UI elements and

using varying font weights to guide the user to focus on the most important elements.

Although the GUI design generated by Galileo AI was impressive, it was a bit too extensive

for the VeRyPy GUI. For example, multiple different pages and a navigation bar are not

needed in the VeRyPy GUI as the focus is to generate a minimal but intuitive GUI for

solving VRPs without any additional content. However, the GUI designs generated by

Galileo AI could easily be refined with additional prompts.

While generating the VeRyPy GUI design using Vercel V0, it actually generated the GUI

code that was used to preview the GUI design. This makes sense as it can be easier

to train LLMs using machine-readable content, such as code, compared to images or

screenshots of different GUIs. The generated GUI code can then be compiled into the

GUI design using existing compilers. In other words, AI tools focusing on GUI design

generation may just be UI code generators, but instead of displaying the code, they display

the result after compiling the generated code. This also enables users to convert GUI

designs to code as the code already exists.

Initially, Vercel V0 generated code in TypeScript and using Next.js, a popular React frame-

work for web applications. The code included custom UI components, which were im-

33

ported at the top of the file and abstracted away from the user. Although the use of these

stylized components improved the look of the GUI a lot, this also makes the code less

modular because the developer may not have these components created or installed and

therefore requires extra manual work to get the code running locally.

V0 was able to convert the UI code from TypeScript, Next.js, and some custom UI com-

ponents to HTML and CSS, which looked almost exactly the same and aligned with the

minimal dependencies requirement of the VeRyPy GUI. However, this step required an

extra prompt that specifically describes this conversion, as well as knowledge of these

web development techniques and languages. In V0, it was also possible to view the pre-

vious versions of the generated GUI in code, which was useful in case there was a need

to return to earlier designs.

Overall, the generated GUI designs followed a standard website design where the navi-

gation bar is at the top of the page. The app logo was placed on the left side, and the

navigation links were located on the right side. There is a lot of padding on the left and

right sides of the page, which helps the user to focus on the center of the screen. Respon-

sive web design was also taken into account in the code, making the HTML page usable

even on smaller screen sizes. This was great to see, considering I did not specifically

mention the responsive design in the prompt.

5.1.4 Conclusion

Both Galileo AI and Vercel V0 provided great results in GUI design generation. Both of

these AI tools provided ways to convert GUI designs into code. This feature makes it more

convenient for developers to incorporate these AI tools into their GUI design workflows

because it is easy to add the code generated using these tools to existing codebases.

The GUI design generated in Vercel V0 was more in line with the vision I had for the

VeRyPy GUI. Also, V0 was a bit faster compared to Galileo AI, but the current server load

for both of these tools was also likely affecting the performance. However, it was difficult

to implement business logic and add functionalities to the UI elements within these tools.

Also, it is currently not possible to import an existing code repository into either of these

tools. However, it is possible to upload files to V0, but it is not very convenient if a project

consists of multiple or hundreds of files and folders.

Overall, Vercel V0 and Galileo AI offer promising solutions for quickly creating mockups

and GUI designs without requiring technical expertise. The generated designs featured

consistent elements and followed good design practices, such as clear labels and enough

padding between the UI elements. However, issues may arise when connecting business

logic to the UI, especially with existing codebases that may not align with the technologies

used in the AI-generated code.

34

5.2 Iteration 2: Basic GUI and Problem Input

The goal of iteration 2 is to generate a basic structure for the VeRyPy GUI and to allow

users to input their vehicle routing problem along with parameters relevant to the VRP.

One of the most important aspects of this iteration is selecting the framework and tech-

nology stack used to implement the VeRyPy GUI, as subsequent iterations will build upon

this foundation.

5.2.1 Planning

Refer to Iteration 2: Basic GUI and Problem Input in Appendix B for the iteration 2 plan

including the user stories and features implemented in this iteration.

The plan for this iteration is to first ask GitHub Copilot for suggestions regarding the

implementation technology for the VeRyPy GUI. However, I intend to use basic Python

modules to implement the GUI, as the heuristic algorithms and the VeRyPy codebase are

written in Python, and the GUI needs to utilize these existing functions and algorithms to

solve VRPs. Additionally, using basic Python modules supports the minimal dependency

requirement of the VeRyPy GUI.

I also prefer to use a web-based architecture so that the VeRyPy GUI could be deployed

as a web application in the future. Flask would be a suitable lightweight framework for

Python-based web applications, but it is still too heavy for VeRyPy and does not align

with the minimal dependency requirement. Therefore, the VeRyPy GUI will likely be a

small-scale web app with a Python backend and a frontend built using HTML, JavaScript,

and CSS.

After selecting the technology, I will construct the basic GUI by utilizing the HTML and

CSS code generated by Vercel V0 in the first iteration. It is crucial to establish and test

the connection between the frontend and the backend. The frontend must be able to pass

data to the backend in order to call the heuristic algorithms implemented in VeRyPy, and

the solution must be returned to the frontend.

5.2.2 Action

First, I initiated a new chat with GitHub Copilot within Visual Studio Code and asked for

recommendations on the most suitable technology for implementing the VeRyPy GUI.

Copilot suggested Tkinter, Flask, and Python’s built-in HTTP server module. I chose

the basic HTTP server module for generating the VeRyPy GUI, as it meets the minimal

dependency requirement and is well-suited for a simple GUI. Copilot then generated the

server code using Python’s HTTP server module. I created a new file called server.py
and pasted the generated code there.

35

Next, I copied and pasted the HTML and CSS code (generated by Vercel V0 in the previ-

ous iteration) into the GitHub Copilot chat and asked Copilot to use them as the foundation

for the VeRyPy GUI. Initially, Copilot combined the HTML and CSS into a single file, just

as V0 had done previously. However, separating the HTML and CSS into distinct files

is beneficial for cleaner code, particularly as new features are added to the GUI. I in-

structed Copilot to move the CSS to a separate file, but this required the understanding

that separating CSS and HTML is not only possible but also considered good practice in

web development. As a result, I manually created the necessary files (index.html and

styles.css).

To test the GUI and ensure it was working correctly, I started the server using the python
server.py command, as suggested by Copilot. The server started successfully and was

running on port 8000. I then accessed the GUI by navigating to localhost:8000 in

the Google Chrome web browser. The GUI appeared exactly as it had in V0’s preview

window.

I reviewed the implementation of the GUI. Copilot had generated a Python-based backend

using native Python modules (such as http.server), while the frontend was structured

with HTML and CSS. However, the frontend lacked interactive functionalities, such as

event listeners for button clicks and input field interactions, which were also missing in

the code generated by Vercel V0 in the first iteration. In other words, the foundation of

the VeRyPy GUI was a full-stack web-based interface, with a Python backend and an

HTML-based frontend. To enable interactivity, JavaScript would be required to handle

user interactions and update the UI elements.

I wrote a prompt asking Copilot to add interactions to the HTML elements. In response,

Copilot generated event listeners in JavaScript within the index.html file. To keep

the code organized, I created a new file called scripts.js and moved the generated

JavaScript code there.

Next, I prompted Copilot to validate the input fields when the user clicks the ’solve’ button

in the VeRyPy GUI. I also requested Copilot to display the selected algorithm and other

parameters from the HTML form in the server logs to ensure the data is being correctly

sent from the frontend to the backend. After reviewing the code generated by Copilot, I

applied the necessary changes to the scripts.js and server.py files.

I asked Copilot to parse the information from the example VRP file in .vrp format

(E-n51-k5.vrp), which was provided in the VeRyPy library, by attaching it as context

for Copilot. Copilot was able to parse the .vrp formatted file correctly without any issues.

I then asked Copilot to add a reset button to reset the input field values. Additionally,

I requested Copilot to move the scripts from the HTML file to a separate scripts.js
file, similar to how the CSS was moved to the styles.css file. I had to create the

scripts.js file manually.

36

When I continued the project a few days later, I noticed that nothing happened when

the ’solve’ button was clicked after correctly inputting a VRP. I suspected the problem

lay in the event listener linked to the ’solve’ button. I highlighted the event listener and

used the ’Review using Copilot’ feature to ask Copilot to review it. Copilot suggested

some useful quality-of-life changes, which are displayed in Figures 5.7 and 5.8. Among

these suggestions, Copilot recommended changing locations to locations.trim()
and response.text to response.json. While these suggestions were helpful, they did

not resolve the issue where nothing happened after clicking the ’solve’ button.

Figure 5.7. Code review suggestions by GitHub Copilot (1/2).

Figure 5.8. Code review suggestions by GitHub Copilot (2/2).

I asked Copilot in chat to fix the ’solve’ button issue. It generated some changes that

overrode the previously accepted quality-of-life improvements. Copilot suggested modi-

fications to the server.py and scripts.js files, but they did not resolve the issue. I

received an error in the Google Chrome DevTools console, which I copied and pasted

into Copilot. It briefly explained the error and suggested some fixes, but those did not

solve the issue. I tried again, but the same error occurred. After pasting the error again,

Copilot suggested fixes similar to those it had proposed earlier. However, this time, it

recommended a small change in the server.py file that affected how the server was

started, as shown in Figure 5.9. After restarting the server, the ’solve’ button was finally

working as expected.

37

Figure 5.9. Prompt for fixing an issue with the ’solve’ button and a partial response.

After the GUI was working again, I highlighted the server.py file and asked Copilot to

review it using the ’Review using Copilot’ feature. Initially, Copilot suggested removing

some redundant logging configurations. It also recommended changing the way the VRP

file was parsed, opting for a line-by-line approach instead of reading the entire file into

38

memory. Following this, Copilot added a comment to the do GET method. Additionally, it

proposed error handling for the do POST method to account for missing Content-Length
headers. Copilot also added error handling for the json.loads function in cases where

the request body is not valid JSON. Finally, it suggested modifying server.py to allow

handling multiple requests concurrently.

I applied each change to the server.py file as suggested by the ’Review using Copilot’

feature. However, I noticed a few errors related to the use of return statements outside of

functions. In other words, some issues arose in the code generated by Copilot. When I

hovered over these errors, a menu called ’Fix using Copilot’ appeared. Copilot provided

a brief description of how it would address the issue, as shown in Figure 5.10 below.

After clicking Accept, Copilot generated a fix, which I accepted. Following this, the code

compiled without errors.

Figure 5.10. GitHub Copilot suggestion for fixing an error.

I moved to the scripts.js file to review it with Copilot again. First, it suggested moving

a function inside an event listener to a separate function, ensuring that it would not be

executed every time the script runs. Then, it proposed adding error handling for parseInt
and parseFloat. Copilot also recommended updating the UI element instead of using

an alert, as it is more user-friendly. It then noticed an error logged to the console that was

not visible to the user, so it suggested displaying the error message to the user via an

alert. Additionally, it suggested error handling for invalid vehicle capacity and locations.

I applied all the changes, but encountered an error where .then was called twice in

succession inside the fetch request to the /run endpoint. I resolved this by using the

’Fix using Copilot’ feature, though it could have been easily fixed manually as well. After

testing the application with these adjustments, it worked exactly as before, with no visible

difference in functionality.

Next, I switched to the index.html file and highlighted the page title. I asked Copilot to

change it to ’VeRyPy VRP Solver.’ It made the change quickly, as expected, though this

could have easily been done manually. Requesting such small changes through the chat

might be overkill, as it would have generated the entire HTML file.

5.2.3 Analysis

When selecting the technology stack, Copilot suggested multiple options, including Tkin-

ter, Flask, and Python’s built-in HTTP server module. Because LLMs have been trained

39

with a lot of data, and due to the popularity of using Tkinter and Flask in Python projects,

it will assume it is the most likely way to build other similar Python projects. While Flask

is a great framework for Python-based web applications, it does not align with the mini-

mal dependency requirement of the VeRyPy GUI. However, if the VeRyPy GUI was more

complex, had multiple pages, and minimizing external dependencies was not a require-

ment, then Flask could have been selected as the framework. On the other hand, Tkinter

would align with this requirement, but generating the GUI as a web application was my

personal preference.

Integrating the code from Vercel V0 to the VeRyPy GUI codebase required some manual

steps. Initially, Copilot placed both HTML and CSS code in a single file, similar to V0’s out-

put. Separating them required explicit prompting and knowledge that separating them is

possible and generally recommended. The same issue came up when moving JavaScript

code into a separate scripts.js file where Copilot was able to generate the code but

it did not automatically create the necessary file. There was a button in the Copilot win-

dow to create a new file that would include the contents of the generated code, but it did

not work for some reason. These observations indicate that while Copilot can accelerate

code generation, developers must still guide structural decisions to maintain clean and

scalable code.

Reviewing and improving the server.py file demonstrated Copilot’s strengths and weak-

nesses in optimizing existing code. Copilot was able to identify redundant logging, sug-

gested improvements to file parsing, and introduced better error handling for HTTP meth-

ods. However, applying these improvements also introduced errors, such as incorrect re-

turn statements outside functions. Although Copilot provided fixes for these errors through

the ’Fix using Copilot’ feature, it does not eliminate the careful review of the generated

code. In other words, the generated code sometimes introduced new errors that require

additional debugging.

Similarly, reviewing scripts.js with Copilot revealed useful improvements, such as bet-

ter error handling and user-friendly notifications in the GUI. However, at one point a code

generation led to a double .then() call in a fetch request. This indicates that while

Copilot can suggest useful improvements at the function level, it may also introduce side

effects.

I noticed that most of the time, Copilot generated entire files regardless of where the

change was applied in the code. This behavior slowed down the code generation pro-

cess, as it would be more efficient if only the modified parts of the code were generated

instead of the entire file. Additionally, using Copilot for trivial or minor changes may be

unnecessary, since manual adjustments are often quicker.

40

5.2.4 Conclusion

During the iteration 2, the VeRyPy GUI design generated in the previous iteration was

integrated into the existing VeRyPy codebase. The VeRyPy GUI uses a Python backend

(http.server), while the frontend is built with HTML, CSS, and JavaScript (index.html,

styles.css, and scripts.js). The frontend interacts with the backend through stan-

dard HTTP requests.

The code generated by GitHub Copilot worked relatively well, requiring only minor clari-

fications and adjustments. This was expected, given that my prompts were both concise

and clear. Selecting the appropriate technology required prior knowledge of various ap-

proaches for implementing a GUI that would meet the requirements of the VeRyPy GUI.

Additionally, multiple prompts were used to build and refine the GUI, highlighting the iter-

ative nature of software development, regardless of whether AI is involved.

Troubleshooting with GitHub Copilot proved somewhat challenging. Since Copilot lacks

visibility into error messages and runtime behavior, especially in full-stack applications, I

had to manually describe and explain the issues encountered while interacting with the

GUI. Resolving problems, such as the failure to redirect the user to the /run endpoint after

clicking the ’solve’ button, required several attempts. However, fixing syntax errors was

much easier and more convenient, as they were clearly highlighted in red by the code

editor and quickly detected by Copilot.

41

5.3 Iteration 3: Algorithm Selection and Execution

The goal of the third iteration is to integrate the existing heuristic algorithms from VeRyPy

into the GUI. Once this step is completed, users will be able to select any of the imple-

mented algorithms to solve their VRPs. The solution will be displayed in a text-based

format within the GUI, with visualizations to be added in the following iteration.

5.3.1 Planning

Refer to Iteration 3: Algorithm Selection and Execution in Appendix B for the iteration 3

plan including the user stories and features implemented in this iteration.

I studied the existing VeRyPy codebase to understand how to call the implemented heuris-

tic algorithms for solving VRPs. The algorithms are located in the verypy/classic heuristics

directory as separate files. Each algorithm file contains a function ending in init, which

can be called from other files to utilize the algorithms. Additionally, there are some help-

ful examples in the examples directory, particularly the single solve example.py file,

which provided valuable insights into how the algorithms should be used.

I will ask Copilot to find the implemented heuristic algorithms from the VeRyPy codebase,

testing how well it can understand the codebase without being provided the exact path to

the relevant files. If Copilot cannot find the algorithms, I will either provide the path to the

directory containing the algorithms or attach the algorithm code files as context.

Next, I plan to ask Copilot for the best and most efficient way to integrate these algorithms

into the VeRyPy GUI, while considering scalability and modularity. It’s crucial to import

the existing algorithms in a manner that respects potential future modifications, such as

new algorithms or changes to algorithm parameters or naming conventions. Once the

selected algorithms are integrated correctly into the GUI, adding additional algorithms will

be more straightforward.

5.3.2 Action

I noticed that there is already a function for parsing .vrp files implemented in VeRyPy. In

the previous iteration, I asked Copilot to generate the same parsing logic by providing the

E-n51-k5.vrp file as context, which resulted in JavaScript code in the scripts.js file. I

wanted to remove this redundancy and use the already implemented VRP parser instead.

I asked Copilot to do this refactoring. First, it suggested creating a separate api.py file

using Flask, but this approach was against the requirements of the VeRyPy GUI. I then

asked it to add the endpoint to the server.py file instead. I tested these changes, and

they worked perfectly on the first try.

42

I noticed that I need to extract vehicle constraints, customer demands, and the distance

matrix from the uploaded .vrp file. I asked Copilot to modify the server.py file and

scripts.js file to extract these attributes, as they are used in the provided example files

for solving VRPs. I applied the changes generated by Copilot and tested the GUI, which

worked without any issues.

I moved on to integrating the implemented algorithms into the VeRyPy GUI. This time,

I added the codebase as context in Copilot chat. I asked Copilot to search for the im-

plemented heuristic algorithms in this codebase and to provide a quick summary of how

they can be used. I had to verify my GitHub account and provide read access to my

public and private repositories before I could proceed. Copilot searched for "heuristic al-

gorithms" and provided a nice summary of the implemented heuristics in VeRyPy, along

with how they can be called and what parameters are required. The prompt and the

partial response can be seen in Figure 5.11 on the next page.

43

Figure 5.11. Prompt for searching heuristic algorithms from the VeRyPy codebase and a
partial response.

Then, I asked Copilot what would be the most optimal way to integrate these algorithms

into the VeRyPy GUI. It suggested creating a configuration file for the algorithms and

using that file to populate the algorithm selection menu. It also suggested changes to

the server.py and scripts.js files. I applied all the changes as they seemed good.

However, after refreshing the web page, I noticed that the algorithm selection menu was

44

empty. I restarted the server, but the same issue persisted. I described the situation in

Copilot chat, and it suggested some debugging steps, but they did not resolve the issue.

I attached the scripts.js and newly created algorithms.json files as context, and

Copilot suggested concrete debugging steps, such as checking the folder structure and

the network tab in Google Chrome DevTools.

In the network tab, I found that no request was being made to get the algorithms.json
file, which I explained to Copilot. It suggested ensuring that the server is configured to

serve static files. I added the server.py file as context and asked it to check if any

modifications were needed. Copilot generated code for the server.py file, but it did not

include the necessary changes. I copied and pasted the code into the server.py file and

restarted the server, but the same error persisted. Unable to fix the issue, I reverted the

changes and asked Copilot to add the algorithm selection as <select> elements directly

to the HTML file.

I tested the GUI and encountered a problem when clicking the ’solve’ button. I copied and

pasted the error into Copilot, and it generated some code for the server.py file to fix the

issue. However, I noticed that it extracted some old parameters from the request, which

had been changed earlier during this iteration, but Copilot did not notice this. I asked Copi-

lot to update the parameters and provided the code with the updated parameter names.

Additionally, I noticed that some previous suggestions from Copilot for the scripts.js
file had removed the event listener of the ’Upload file (.vrp)’ button. This change was not

updated for me because it was stored in my cache, even though it was not present in the

code. Once I noticed this, I disabled the cache and refreshed the web page, and now

I had the newest changes. I attached the scripts.js and server.py files to Copilot

and asked it to add this functionality back into the code. Then, I asked Copilot to change

location to distance matrix in server.py to avoid misinterpretations.

There were some issues when the server returned the contents of the parsed .vrp
file that were not present previously. I asked Copilot to fix this, and it suggested some

changes. After two attempts, I was able to resolve the issue. I asked Copilot to display

the distance matrix exactly as it is formatted in the .vrp file in the GUI, and this was suc-

cessful on the first attempt. After I fixed the caching issue, I asked Copilot to generate a

feature for reading or parsing algorithms from the algorithms.json file and to populate

the algorithm selection element in index.html with this algorithm data. This time, I was

able to get it working on the first attempt since the Google Chrome cache was disabled.

I tested the GUI and noticed that there was an error regarding updating an HTML element

that did not exist. This change originated from modifying the code using the ’Review using

Copilot’ feature. I removed this code manually because it was much faster than writing a

prompt and waiting for Copilot to remove it.

45

Another error occurred when solving the VRP using the selected algorithm in the

server.py file. This error is likely due to how .vrp files are formatted in the GUI be-

fore being passed to the server. I asked Copilot to create separate input fields for the

distance matrix and customer demands instead of grouping them into one <textarea>
element.

I noticed that the GUI currently formats the .vrp file two times. I wanted to change the

logic so that it only reads the .vrp file once, right before solving the VRP. I asked Copilot

to refactor this. Copilot generated code for the server.py file, but trying to solve the

VRP resulted in an error with list indexes being tuples instead of integers or slices. I

asked Copilot to solve this, but the error persisted. Then, I added the provided example

usage of the .vrp parser function as context and asked Copilot to follow this example.

Copilot still did not follow the example line by line, even though it was very short, and it

still generated some extra code for it. I removed the extra code lines so that it looked just

like the example.

The code generated using Copilot tried to access the .vrp file and also some other fields

from the GUI. I asked Copilot to only use the .vrp file to make debugging easier. Now,

the errors disappeared, but I was still unable to see the solution in the server logs. It

seems as if the server does not read the selected algorithm function correctly. I asked

Copilot to add the Parallel Savings algorithm to the algorithms.json configuration file,

as it was also used in the example. However, I was still unable to see any logs of the

solution.

I noticed that Copilot kept suggesting the same change, which I had rejected multiple

times. This change can be seen in Figure 5.12 below. I rejected this change again.

Figure 5.12. A code change GitHub Copilot kept suggesting multiple times.

Copilot suggested some changes in debugging the algorithm module import part. I ap-

plied the changes and restarted the server. Now, I was able to see the logs of the solution

in the server.py terminal when selecting the Parallel Savings algorithm. I tested this

with the other algorithms, but I got a module import error in the server terminal. I noticed

that this algorithm does not exist in VeRyPy (at least not with this name). I attached the

VeRyPy codebase and the algorithms.json config file as context and asked Copilot

to add only the existing algorithms to this JSON file, which can be imported as modules.

Table 5.1 contains notes on which algorithms I was able to run successfully on the first

attempt after applying Copilot’s initial code suggestion.

46

Heuristic Algorithm Execution

Nearest Neighbour Success

Parallel Savings Success

Simulated Annealing Failure

Sequential Savings Success

Paessens Savings Success

Gillett-Millet Sweep Failure

Wren-Holiday Sweep Failure

Tyagi Nearest Neighbour Failure

Route First, Cluster Second Failure

Petal VRP Failure

Matching VRP Failure

CMT Two Phase Failure

Table 5.1. Heuristic algorithms and their execution success rate applying Copilot’s initial
code suggestion.

I found that the reason why these failing algorithms could not be imported was re-

lated to the naming. For example, the Gillet Miller Sweep algorithm should be called

gillet miller init instead of gillet miller sweep init, which was used in the

server.py file. I asked Copilot what would be the best way to fix this, this prompt

and the partial response can be seen in Figure 5.13. Copilot suggested adding import

path and function name attributes to the algorithms.json file and reading them in the

server.py file, which was an okay approach for this kind of situation without having to

hard code anything. I noticed that Copilot added the import path and function name to

only about half of the algorithms, so I asked Copilot to add them to the remaining algo-

rithms.

47

Figure 5.13. Prompt for importing heuristic algorithms and a partial response.

I tested the GUI again and was able to import the rest of the algorithms successfully.

However, there were import errors in two algorithms (Petal VRP and Matching VRP): Error

importing algorithm module: No module named ’gurobipy’, which made sense because

these algorithms used the Gurobi library to solve VRPs. This was something that was

not specified by me in the prompt, and Copilot did not take this kind of import issue into

account during code generation. Additionally, two algorithms (Gillet Miller Sweep and

Wren Holliday Sweep) required a ’points’ parameter, unlike the rest of the algorithms,

causing an error when they were selected and used for solving VRPs through the GUI.

As I was testing the GUI, I noticed that the ’reset’ button was not working properly. I also

found an error in the scripts.js file, as it had an event listener for adding the location

manually, which had been removed by Copilot previously. I removed this line manually,

and now the ’reset’ button worked properly.

48

I noticed the metrics used in the solve from data dict.py file, such as elapsed t
and K. I wanted to use the same metrics in the server while solving VRPs because metrics

will need to be calculated and displayed in one of the user stories. I added the codebase,

solve from data dict.py, algorithms.json, and server.py as context and asked

Copilot to calculate the same metrics. Copilot added the changes to the server.py file,

and I restarted the server. There was an error while importing some of VeRyPy’s helper

functions, as Copilot tried to import them from the wrong path. I asked Copilot to correct

this, and it did. However, I got a new error related to how Copilot tried to serialize the

solution data to JSON in the server. I asked it to fix this, and it used another method for

sending the solution data as a response, which worked.

I found that the sweep algorithms require a ’points’ parameter. I asked Copilot to update

the parameters for each algorithm in the algorithms.json config file while attaching

the codebase as context. I applied these changes. Then I asked Copilot to use these

parameters for the selected algorithm in the server.py file. The changes looked good,

so I applied them, but I noticed that Copilot tried using an attribute of the VRP parser

function which did not exist (node coords), as shown in Figure 5.14 below. I modified

this code line manually because it was faster than explaining this to Copilot and waiting

for it to generate a fix. I restarted the server, tested the GUI, and now I was able to use

the sweep algorithms correctly as well.

Figure 5.14. A code snippet generated by GitHub Copilot.

I tested solving the E-n51-k5.vrp file with every algorithm. I was able to solve it success-

fully with most of the algorithms, except for GAP VRP, Petal VRP, and Matching VRP, as

they required Gurobi to be installed, which I did not have on my machine. The algorithm

solution logs in the server terminal are displayed in Figure 5.15 on the next page.

49

Figure 5.15. Algorithm solution logs in server.py terminal.

I looked at the GUI and noticed that the naming of the distance matrix should actually be

coordinates. I highlighted this part of the code in index.html and used the ’Modify using

Copilot’ feature to change the naming to coordinates and applied the change. I also had

to update this change in the scripts.js file since Copilot did not do this automatically.

I noticed a function for calculating the VRP solution’s feasibility in the cvrp ops.py file. I

attached this file and the server.py file as context for Copilot and asked it to use this in

server.py. I restarted server.py and noticed that Copilot had once again overwritten

the points attribute, so I had to manually revert this line.

While I was testing to solve the VRP provided in the E-n51-k5.vrp file, I noticed that the

sweep algorithms took a few seconds to solve the VRP. From my frontend development

background, I know that it is always a good idea to display loading indicators to the user

while heavy calculations are being done. I asked Copilot to change the text of the ’solve’

button to ’solving...’ while the VRP is being solved, and also to disable all input fields

during the solving process and enable them after the VRP has been solved. The prompt

and the beginning of the response can be seen in Figure 5.16 on the next page. I applied

the code and had to restart the server to update the changes in the scripts.js file to get

it to work. Now, the GUI is more user-friendly, as it displays the loading indicator during

the solve process.

50

Figure 5.16. Prompt for improving the VeRyPy GUI usability and a partial response.

51

I also found that it would be good to disable the hover effects while the VRPs are be-

ing solved. I asked Copilot to do this, and it suggested a few lines of changes to the

scripts.js file using a custom CSS class for disabling the hover effects. It also gen-

erated the CSS class, but it did not specify to which file it should be added. Copilot

was unable to find the styles.css file, even when it was in the same directory as the

scripts.js file. I opened the styles.css file and applied the newly generated CSS

class there, restarted the server, and I was able to see the changes correctly.

Before moving on to the next iteration, I wanted to restore the input fields for adding new

coordinates, which Copilot had previously removed. I reviewed the E-n51-k5.vrp syntax

and noticed that the number of coordinates matches the number of customer demands.

I asked Jussi Rasku about this, and he confirmed that the number of customer demands

must be equal to the number of coordinates. I had overlooked this rule in the previous

iteration.

Next, I asked Copilot to generate input fields for manually adding coordinates and cus-

tomer demands to the GUI. I provided the scripts.js and index.html files as context.

In my prompt, I requested the generation of the input elements first, with error handling to

be addressed in the next step. I also specified where these input fields should be placed

in the GUI. After applying the changes, I noticed that the new input fields were larger

than expected and took up a lot of space in the GUI. Additionally, the current design and

implementation made it difficult to edit the already entered coordinates and customer de-

mands. I then wrote a prompt to revert the changes (removing the manual coordinate and

customer demands input fields) and to make the <textarea> elements editable, as this

would make modifying the existing data easier.

I applied the changes to the index.html file and also made modifications to the

scripts.js file, but there were actually no changes made to the scripts.js file. I

wrote a new prompt asking Copilot to specifically remove the previously added code re-

lated to the manual coordinates and customer demands fields, and this time it worked.

Then, I asked Copilot to implement error handling that checks if the number of rows in the

coordinates and customer demands <textarea> elements are the same before attempt-

ing to solve the VRP. After applying the code and testing the GUI, it worked as expected.

I am now quite satisfied with the GUI, and the current version can be seen in Figure 5.17.

52

Figure 5.17. Current state of the VeRyPy GUI.

I found more VRP examples in .vrp format from a public repository on GitHub [96].

I thought it would be useful to test the GUI with other .vrp formatted files. I down-

loaded a few .vrp files and imported them into the GUI one by one for testing. I dis-

covered that the .vrp files with the EDGE WEIGHT TYPE set to EXPLICIT contained the

EDGE WEIGHT SECTION attribute instead of the NODE COORDS SECTION attribute, which

is currently used in the GUI to display the coordinates of the uploaded .vrp file.

I thought it would be better to use the already implemented get algorithms func-

tion from VeRyPy to import all algorithms into the GUI, instead of relying on the sep-

arate algorithms.json config file that was previously generated. I asked Copilot to

make this change and provided the relevant files as context: (init py), index.html,

server.py, and algorithms.json. Copilot suggested creating a new endpoint in the

server to fetch all algorithms and then retrieving this data when the DOM is loaded. I

started the server and tested the GUI, and I was able to see the algorithms in the selec-

tion element.

However, when I tried solving the E-n51-k5.vrp, I encountered an error in the server

terminal related to the algorithm function parameters. I explained the situation and pasted

the error message into Copilot chat. I initially thought the fix would only require changes

in the server.py file, but Copilot generated a full index.html file and scripts.js file

53

as well. This led to a response limit error, which is shown in Figure 5.18, and the response

was never completed.

Figure 5.18. GitHub Copilot response limit error.

I rephrased the prompt so that Copilot would only modify the server.py file. After apply-

ing the changes, I noticed that Copilot once again suggested an unnecessary modification

to how the coordinate points are retrieved from the parsed problem variable. I discarded

the change to this line and added a comment to indicate that this variable should not

be modified, hoping Copilot would understand this in future code generations. I also ob-

served that the example file always used the same parameters for calling each algorithm,

so I wrote a prompt to implement this approach in server.py as well.

The generated code looked good, so I applied it. However, I noticed that Copilot had

again changed how the coordinate points were retrieved, despite my comment to avoid

modifying this variable. I discarded this change once more and tested the GUI. To my

surprise, the algorithm population in the HTML element was not working. Upon further

inspection, I found that Copilot had removed the endpoint it had just generated in the

server.py file. I wrote a prompt to reintroduce this endpoint and added both the server

and scripts.js files as context. After applying the changes and restarting the server,

everything worked again, and I was able to solve the VRP using the selected algorithms.

Copilot had used the algorithm name to populate the algorithm element in the HTML

DOM, but I wanted it to use the algorithm description instead, as it was easier to read.

I highlighted this part in server.py and used the ’Modify using Copilot’ feature to make

the change. Copilot added a new description attribute when fetching all algorithms.

I then moved to scripts.js and manually modified a line from algorithm.name to

algorithm.description. After restarting the server and testing the GUI, the changes

were applied correctly. I deleted the previously generated algorithms.json configura-

tion file since it was no longer needed and committed the changes. The updated algorithm

selection menu can be seen in Figure 5.19.

54

Figure 5.19. Heuristic algorithm selection menu in the VeRyPy GUI.

All algorithms can use the following parameters: ’L’, ’single’, and ’minimize K’. I wrote a

prompt for Copilot to add these parameters to the GUI and provided the index.html,

scripts.js, and server.py files as context. The current state of the GUI with these

new algorithm parameter input fields can be seen in Figure 5.20 on the next page.

55

Figure 5.20. VeRyPy GUI with algorithm parameter input fields.

I noticed that Copilot reverted the small change for the algorithm description attribute,

which was done in the previous prompt’s output. I discarded this change but applied the

other suggested changes. This suggestion can be seen in Figure 5.21 below.

Figure 5.21. A code suggestion by GitHub Copilot.

I tested the GUI, and it seemed to work, but no logging was added for the newly generated

parameters. I asked Copilot to generate logging, but it began adding input fields in the

index.html and scripts.js files, which were unrelated to the prompt (Figure 5.22).

I discarded the changes and rewrote the prompt to specify that logging should only be

added to server.py. However, Copilot generated the same output again. I then modified

my prompt to: Add logging to all parameters in the server.py file and do not modify other

files. This time, Copilot understood and added the logging without touching other files.

The task could have been done much faster manually.

56

Figure 5.22. An example of misinterpretation by GitHub Copilot.

Next, I wanted to move the labels and input elements for the single and minimize K
parameters, which are used in heuristic algorithms, to the same row in the GUI. First, I

highlighted these elements in index.html and used the ’Modify using Copilot’ feature. It

generated some inline CSS, but it did not change anything, most likely because the CSS

in styles.css may override the inline CSS. I attached index.html and styles.css as

context and asked Copilot to make the adjustments. I applied the changes to index.html
and styles.css, but it did not move these fields to the same row, and Copilot also

moved them to a separate location, which was not mentioned in the prompt. I undid these

changes by pressing Ctrl + Z and decided to come back to this later.

Each algorithm uses a capacity constraint limit (C) as a parameter, which has been set to

None so far. I wrote a prompt to add a new input field for this value and use it when calling

the algorithm functions. I applied the changes to index.html and scripts.js files, but

I noticed that applying the changes took a little more time than before (approximately 15

seconds). I had hit the response length limit again when Copilot was generating code

for the server.py file, so I wrote a new prompt asking it to modify just the server.py
file and add the vehicle capacity constraint there. However, I noticed that I had already

implemented the vehicle capacity constraint in the code previously, but it was under a

different variable name (capacity instead of C), so I undid the changes using Ctrl + Z.

57

I wanted to revisit the idea of moving the input checkboxes for single iteration and min-

imizing the number of routes options in the GUI next to each other instead of being on

separate rows. I highlighted them and used the ’Modify using Copilot’ feature to instruct

moving them next to each other. Copilot quickly generated some inline CSS, and it worked

as I expected. I noticed that there was some margin at the bottom of the label elements

due to the rule set in styles.css for label elements. I overrode this by manually adding

inline CSS to these two label elements, setting the bottom margin to 0. I refreshed the

page, and now the position of these elements looked good.

While I was testing the GUI, I noticed that the server called the algorithm functions with the

initial capacity, which was retrieved from the uploaded .vrp file. So, when I changed the

vehicle capacity value in the GUI, the change was not passed to the algorithm function. I

looked at the code and fixed it manually because it was faster than describing the situation

to Copilot and waiting for it to generate and apply the code. I tested the GUI and now the

changes in vehicle capacity were successfully reflected in the algorithm function calls.

Before completing the action phase of this iteration, I wanted to fine-tune the GUI slightly

by removing some margin and adding a gap between the statistics and visualization ele-

ments. I attached styles.css and index.html as context to Copilot chat and wrote a

prompt regarding this. I applied the generated code, restarted the server, and it looked

okay, but there was still some margin under the h2 elements. Additionally, Copilot added

a blue background for the card headers, which I had not mentioned in the prompt. I de-

cided to fix these manually, as it was faster than using Copilot. The current GUI version

after iteration 3 can be seen in Figure 5.23 on the next page.

58

Figure 5.23. VeRyPy GUI after iteration 3.

5.3.3 Analysis

At the beginning of this iteration, Copilot struggled to recognize the existing architecture

of the VeRyPy GUI. When prompted to refactor the .vrp file parsing logic, it suggested

creating a separate api.py file using Flask, even though the server.py file already con-

tained the necessary endpoint logic. While I was able to identify this issue and correct the

approach, a less experienced developer might have accepted Copilot’s suggestion, lead-

ing to unnecessary complexity and a deviation from the project’s requirements. Although

Copilot can generate functional solutions, they do not always align with the intended de-

sign unless explicitly mentioned in the prompt.

Another major issue I encountered was browser caching, which prevented certain

changes from appearing in the GUI. Copilot did not detect the issue or offer meaning-

ful debugging steps. This was expected, as Copilot seems to operate solely on source

code and lacks visibility into runtime behavior, browser settings, and other environmental

factors. This limitation highlights a key drawback of AI-powered coding tools: they cannot

directly observe the rendered output or the full development environment.

59

Clear and precise prompts played a crucial role in this iteration. Adding relevant code files

as context significantly improved Copilot’s responses and helped maintain consistency.

While it is possible to provide the entire codebase as context, I found that selectively

including only the relevant files was sufficient. Although Copilot automatically attaches

the currently open file as context, I had to manually attach other relevant files for each

prompt.

In some cases, it was faster to make small edits manually rather than waiting for Copilot

to generate these changes. Copilot also occasionally reverted manually implemented

changes between prompts, even when they were unrelated to the newly generated code.

Additionally, it failed to remove obsolete code in situations where it introduced an updated

version of a function, such as the event listener for inputting the customer locations. This

behavior of reverting prior modifications suggests that Copilot lacks either some part of

the context or an understanding of which parts of the code have become redundant.

5.3.4 Conclusion

During iteration 3, the existing heuristic algorithms of VeRyPy were integrated into the

GUI. Users can now select from any of the implemented algorithms to solve VRPs. The

solution and routes are currently visible only in the server logs, but they will be displayed

in the GUI in the next iteration.

60

5.4 Iteration 4: Solution Visualization, Metrics, and Export Options

The goal of iteration 4 is to generate the VRP solution visualization and display it in the

GUI. This iteration also includes displaying the solution metrics within the GUI. Addition-

ally, functionality for exporting the visualization and metrics is implemented during this

iteration.

5.4.1 Planning

Refer to Iteration 4: Solution Visualization, Metrics, and Export Options in Appendix B for

the iteration 4 plan including the user stories and features implemented in this iteration.

First, I will display the solution metrics in the VeRyPy GUI. Currently, the metrics are

shown in the server logs, so I need to push them to the frontend and update the corre-

sponding DOM elements. I expect this part of the iteration to be relatively straightforward

since the metrics are already present in the server logs, but the GUI needs to be updated

to reflect the solution metrics.

After the solution metrics are updated in the GUI, I will proceed with generating the solu-

tion visualizer. I expect this to be somewhat time-consuming and will likely require some

iteration and fine-tuning with Copilot. While Copilot may suggest a visualizer library for

this task, it should be achievable without relying on any external packages.

Once the visualizer is complete, I will implement functionality for exporting the solution

metrics and visualization. I anticipate this to be straightforward for Copilot to generate, as

the data is already present in the DOM.

5.4.2 Action

At the beginning of the action phase of this iteration, I wrote a prompt outlining the plan

for the iteration and attached the codebase as context. I anticipate that Copilot will lose

this context after a certain number of prompts and code generations. This prompt and the

partial response can be seen in Figure 5.24 on the next page.

61

Figure 5.24. Prompt for displaying VRP solution metrics in the GUI and a partial re-
sponse.

62

The code suggestion for displaying the metrics in the GUI seemed good. I applied the

changes to server.py, but it took over a minute to apply. The file size of server.py
decreased from 187 rows to 157 rows as Copilot removed some of the logging. Applying

changes to the index.html file (about 100 rows) was much faster. However, when ap-

plying the code to the scripts.js file (currently 232 rows), I received an error: Failed

to apply code block. I clicked ’apply code’ again, and after approximately 2 minutes, the

changes went through. After applying them, I restarted the server and tested the GUI. The

metrics were displayed correctly in the GUI after solving the E-n51-k5.vrp, as shown in

Figure 5.25.

Figure 5.25. Initial version of displaying VRP solution metrics in the VeRyPy GUI.

Copilot had rounded the elapsed solution time to 2 decimal places, but I changed it man-

ually to 4 decimal places. I also removed the alert that appeared after solving the VRP

and changed ’Statistics’ to ’Solution Metrics’ in the index.html file. After restarting the

server, these small changes were updated.

I added the logging of the parameters and solution back to server.py manually. I noticed

that the number of routes was always one for some reason. Upon reviewing the logs, I

found that capacity was always set to None. I examined scripts.js and discovered that

63

Copilot had altered the capacity parameter in the data object before sending the POST
request to the server. I fixed this manually.

The function responsible for calculating the feasibility of the solution returns an array

of three boolean values: the first boolean is the covering feasibility, the second is the

capacity feasibility, and the last is the route cost feasibility. I wrote a prompt explaining

this to Copilot and attached the scripts.js and index.html files, as these were the

only files needing modification in this case. Applying the code to index.html was fast,

but applying the code to scripts.js took almost 3 minutes. After applying the changes

and restarting the server, I tested the GUI, and Copilot had added these feasibility metrics

separately, as requested in my prompt. However, I noticed that Copilot had also reverted

some code lines that I had manually changed or deleted after the last code generation. I

reverted these changes manually.

I noticed that solving a VRP using different algorithms and settings did not reset the

metrics while the VRP was being solved. This was not ideal in terms of usability, as the

GUI displayed metrics from solving a VRP using previous settings and only updated them

after the VRP had been solved. I wrote a prompt asking Copilot to change the metric

values to empty while solving the VRP. I applied the changes to scripts.js, and it

worked well, although it took some time for Copilot to finish the code generation. I decided

to edit the empty values to three dots because I thought it looked better in the GUI. I also

changed the initial values of the metrics from ’N/A’ to ’-’ as a personal preference. The

current VeRyPy GUI with the feasibility metrics can be seen in Figure 5.26 on the next

page.

64

Figure 5.26. Feasibility metrics added to the solution metrics element in the GUI.

Now that the metrics are added to the GUI, I moved on to generating the visualization as

mentioned in the planning phase of this iteration. I wrote a prompt to Copilot asking for

ideas on how the solution visualization could be implemented. This prompt can be seen

in Figure 5.27 on the next page.

65

Figure 5.27. Prompt for generating the VRP solution visualization and a partial response.

66

Copilot suggested creating a canvas HTML element for the visualization, which I ex-

pected. Copilot generated code for the index.html and scripts.js files but not for

the server.py file. I wrote another prompt asking Copilot to modify the server to work

with this solution and attached it as context. I applied the changes to server.py and

scripts.js and tested the GUI. I encountered an error related to reading data in the

map, but the GUI still produced the visualization, which looked great. The initial visualiza-

tion can be seen in Figure 5.28 below.

Figure 5.28. Initial VRP solution visualization in the VeRyPy GUI.

The current implementation in server.py performs some text formatting for the route to

display it more conveniently in the server logs. I asked GitHub Copilot to remove the text

formatting, as it was likely causing errors when drawing the visualization, and the routes

array should be used instead. After applying this change, the error related to reading

data in the map disappeared. However, I noticed that some routes were drawn in yellow,

and light colors are not ideal for usability due to the white background. I highlighted the

drawSolution function in scripts.js and used the ’Modify using Copilot’ feature to

avoid using light colors when drawing the visualization.

67

I also wanted to display the route cost in the visualization. I wrote a prompt in Copilot chat

about this and attached the code files that were currently open in the editor (scripts.js,

index.html, and server.py) as context. This prompt and the partial response can be

seen in Figure 5.29 below. I applied the code but noticed that Copilot had reverted the

small changes I had made manually between this prompt and the previous one.

Figure 5.29. Prompt for adding route cost to the VRP solution and a partial response.

68

However, applying the modified code to scripts.js broke the visualization functionality,

which was working previously. The current GUI is presented in Figure 5.30 below. I also

encountered an error while solving the E-n51-k5.vrp file.

Figure 5.30. Error in the solution visualization in the VeRyPy GUI.

I asked Copilot to fix the visualization and copied the error message into the Copilot chat.

Copilot suggested checking if the distance matrix exists in the server.py file. It did not

exist, as Copilot had not modified the server.py file during the previous prompt. I ap-

plied the code, restarted the server, and encountered another error because the distance

matrix is a NumPy array, which is not JSON serializable. I copied and pasted this error

to Copilot and applied the generated code to both the server.py and scripts.js files.

Now, it was working properly, but the route costs were placed at the same location in the

visualization, making them impossible to read.

I wrote a prompt asking Copilot to display the route costs in a table and attached the

index.html, scripts.js, and server.py files as context. I applied the code first to the

index.html file and then to the scripts.js file. After restarting the server and testing

69

the GUI, Copilot had added a card element for the route costs below the visualization,

and the route costs were correctly populated in the table. The table lacked CSS styling,

so I asked Copilot to create some CSS for it to improve its appearance. After applying the

CSS, the route costs table looked great, as shown in Figure 5.31.

Figure 5.31. Added an element for route costs to the VeRyPy GUI.

Next, I asked Copilot to display the route data in the route costs table instead of showing

only the route number. Copilot suggested adding a new column to the route costs table

to display the details of each route. I applied the code, and the route details were now

correctly shown in the route costs element, as illustrated in Figure 5.32.

70

Figure 5.32. Added route details to the route costs element in the VeRyPy GUI.

I wrote a prompt where I compiled several small changes that I had previously made

between prompts but which Copilot had reverted. My observation was that Copilot some-

times overlooks manual edits or those made using the ’Modify using Copilot’ or ’Review

using Copilot’ features. I applied the generated code, which successfully addressed most

of the minor changes I had listed. However, Copilot did not detect the removal of certain

alert messages, so I manually copied and pasted the updated scripts.js file. After do-

ing this, I noticed that some existing event listeners were missing—likely due to reaching

the GPT-4o output limit. I reverted the pasted changes by pressing Ctrl + Z.

I also wanted to display the route utilization rate for each route in the GUI. I wrote a

prompt describing this feature and applied the code Copilot generated to the index.html
and scripts.js files. Copilot created a function in scripts.js to calculate utilization

rates using customer demands. However, since customer demands were not previously

returned from server.py, the calculation failed. I wrote another prompt asking Copilot

to fix this, likely by modifying server.py, and after applying the code, the error was

resolved—but the GUI showed NaN for every utilization rate.

To debug, I added manual logging and discovered that the calculation relied on a capacity

attribute from the server response, which was missing. I prompted Copilot to include this

attribute in the response data object in server.py. This time, Copilot did not revert the

manual logging I had added earlier. After applying the changes and restarting the server,

the route utilization rates were calculated and displayed correctly in the GUI.

Next, I wanted to display the corresponding colors from the visualization alongside the

route names in the Route Metrics table to help users more easily associate each ta-

ble entry with its respective visualized route. I applied the generated changes to the

71

scripts.js file, tested the GUI, and was satisfied with the outcome. I also renamed the

’Route Costs’ card element to ’Route Metrics’ in the index.html file, as the element now

includes more than just cost information. The updated GUI is shown in Figure 5.33 below.

Figure 5.33. Improved solution visualization and route metrics in the VeRyPy GUI.

Now I am quite happy with the visualization and metrics parts of the GUI so I will move

to generating the exporting functionality for them. I wrote a prompt for Copilot about

what would be the best way to add the export functionality to the GUI without having

to install any external dependencies. Copilot generated code where new export buttons

were added to the index.html file as well as corresponding functions in scripts.js
file. I applied the changes and tested the GUI. Exporting the visualization as an image

(.png) was working perfectly, but exporting the metrics as .csv resulted in an empty .csv
file with just the table headers from the route metrics table. I described this situation to

Copilot and asked it to fix them.

I applied the changes, but nothing was changed in the scripts.js file. I wrote a prompt

asking Copilot to check how the route metrics are stored in the table and modify the

exportMetrics function based on that. I applied the code which had a minor change in

exportMetrics function but it still did not work. I added logging manually and found that

72

the issue is related to how the CSV content is being encoded. I described the situation to

Copilot and applied the changes and now exporting the metrics as CSV worked correctly.

I extended the exportMetrics function to include overall solution metrics such as total

distance (cost) and computational time. After applying the generated code, I verified that

the export function worked correctly. To improve clarity and traceability, I then modified

the default filename of the exported metrics file to include the selected algorithm and

the local timestamp. This change required a few rounds of prompt refinement. The final

contents of the exported metrics file are shown in Figure 5.34 below.

Figure 5.34. Solution metrics exported as a JSON file.

73

Lastly, I wanted to move the ’Route Metrics’ into the same card element as the Solution
Metrics to create a more unified layout. I also wanted to reposition the export buttons

into the header section to improve visibility and accessibility. I wrote a prompt asking

Copilot to make these changes without affecting any other part of the GUI, but Copi-

lot repeatedly removed the visualization element from index.html. After encountering

this issue multiple times, I decided to make the necessary adjustments manually in the

index.html and styles.css files. The current state of the VeRyPy GUI after iteration

4 can be seen in Figure 5.35 below.

Figure 5.35. VeRyPy GUI after iteration 4.

5.4.3 Analysis

One of the key observations of iteration 4 was that Copilot’s ability to generate code

efficiently depended heavily on the size of the modified files. Applying changes to smaller

files such as index.html was quick, but modifying larger files like scripts.js and

74

server.py sometimes took several minutes. The context window of GPT-4o, as well as

the overall service load of the API, are likely the most significant factors affecting Copilot’s

performance. This raised concerns about Copilot’s scalability, particularly when working

with larger or more complex codebases.

Furthermore, Copilot frequently reverted manual changes when generating new code, in-

dicating a lack of persistent memory between prompts. It also struggled to maintain an

accurate understanding of the evolving state of the VeRyPy GUI across multiple itera-

tions. To address these limitations, I had to carefully review Copilot’s output and manually

reapply lost changes, slowing down the AI-powered development process.

When implementing the VRP solution visualization, Copilot suggested using an HTML

<canvas> element, which worked well for this task. However, it failed to account for

some usability aspects, such as color contrast and the readability of the route visualiza-

tion. Initially, the colors included light shades that blended into the white background of

the VeRyPy GUI. I had to manually adjust these colors and provide additional prompts

to improve visibility. This demonstrated a broader limitation of AI-generated code, where

Copilot sometimes lacked awareness of certain accessibility and usability principles. Sim-

ilarly, while Copilot successfully generated a table for displaying route metrics, the table

initially had no styling. Even though Copilot managed the functional aspects well, I still

had to refine the aesthetics and user experience to make the interface more intuitive.

Maintaining consistency across different parts of the application was another challenge.

When generating code for route utilization rates, Copilot failed to recognize that the server

response lacked the necessary data. This caused errors, which I identified manually and

described in prompts to Copilot for fixing. Additionally, JSON serialization errors arose

because Copilot did not account for the fact that the server response included a NumPy

array, which is not automatically JSON serializable. Since this issue was not specified

in my prompt, Copilot did not anticipate it. Although Copilot generated code relatively

quickly most of the time during this iteration, it did not seem to validate whether those

changes would integrate smoothly into the GUI. As a result, I spent some time debugging

and refining the AI-generated code.

Implementing the solution export feature further emphasized the necessity of manual

testing and validation. Copilot successfully generated the function for exporting the visu-

alization, but exporting metrics as a CSV file initially failed due to encoding issues. Since

Copilot could not independently detect or resolve this issue, I tested and debugged it

manually. Additionally, Copilot removed the visualization component when modifying the

layout. This reinforced the importance of carefully reviewing AI-generated code.

75

5.4.4 Conclusion

Iteration 4 revolved around implementing the VRP solution visualization, solution metrics,

and export options features for the VeRyPy GUI. In most cases, Copilot was able to pro-

vide valuable assistance, which significantly reduced the amount of code that needed to

be written manually. It generated code with good structure, but sometimes the code did

not function as intended. On the other hand, Copilot struggled with maintaining consis-

tency across this and previous iterations, likely due to the limited context window of Copilot

and/or GPT-4o. The frequent need for manual corrections indicates that, while Copilot is

a powerful tool, it is not yet capable of fully replacing human oversight in constructing a

working GUI.

76

5.5 Iteration 5: Improved Problem Input

Iteration 5 focuses on improving the problem input section of the VeRyPy GUI. The initial

version of this section was generated in Iteration 2 and fine-tuned during Iteration 3. In

this iteration, the usability of the problem input section is improved so that users no longer

have to manually add indexes for coordinates and customer demands, as these will now

be managed automatically. This enhances the usability of the VeRyPy GUI and reduces

the likelihood of users encountering errors while entering or modifying their problem.

Another improvement to the problem input section is the ability to enter coordinates in ge-

ographical format using longitude and latitude. This could be implemented using a toggle

button or a dropdown menu, which would default to Cartesian coordinates. The user can

then switch between the two input formats as needed. Additionally, since VeRyPy sup-

ports reading and solving .tsp-formatted files, support for importing such files will also

be added to the GUI during this iteration.

At the end of this iteration, users should be able to input details about their problem more

easily, either manually, by uploading a .vrp or .tsp-formatted file, or by modifying the

content of an uploaded file. Users should also have the option to input coordinates in

longitude and latitude. Lastly, input validation will be improved.

5.5.1 Planning

Refer to Iteration 5: Improved Problem Input in Appendix B for the iteration 5 plan includ-

ing the user stories and features implemented in this iteration.

The plan is to first improve the existing coordinate inputs and the input fields for customer

demand so that the indexes are automatically managed in the code. This likely requires

changes only to the scripts.js file, as it is responsible for the frontend functionality. In

other words, the indexes for coordinates and customer demands will still exist but will be

hidden in the GUI and inaccessible to the user.

After the indexes are hidden and managed successfully, I will test the GUI by inputting

problem details manually. I expect there may be some errors, as the GUI has primarily

been tested by uploading the E-n51-k5.vrp file rather than inputting the VRP details

manually.

Finally, I will guide Copilot to generate the functionality for toggling between regular coor-

dinates and geographical coordinates using longitude and latitude. The GUI will require

new input fields for this functionality, as well as event listeners for these fields. This should

be easy to add to the existing scripts.js file, but it may require some modifications to

the event listener of the ’solve’ button.

77

The changes and improvements to be generated in this iteration are not complex and

should be straightforward to implement. However, I expect that Copilot may attempt to

revert some unnecessary changes, as observed during the previous iterations, and it may

generate code that could break the GUI. For these reasons, I must review each change

carefully and discard any unnecessary or code-breaking modifications.

5.5.2 Action

I created a new chat for this iteration and copied the first paragraph of the planning chapter

into the Copilot chat as a prompt. Copilot suggested updating the drawSolution function

as well as the event listeners to process indexes automatically. I applied the code to the

scripts.js file and tested the GUI by uploading the previously used E-n51-k5.vrp file

from VeRyPy.

I noticed that the indexes were correctly hidden from the GUI, but changes made to the

coordinates or customer demands manually in the input fields were not reflected in the

solution and resulted in errors. The reason for this is that the current implementation

assumes that the user has uploaded a .vrp file, as the server uses it to calculate the

distance matrix and points. I wrote a prompt about this, and Copilot generated code for

the scripts.js and server.py files.

I applied these changes, restarted the server, and tested the GUI. I input some random

VRP data and encountered a new error while running the algorithm, which I had not

seen before. I copied and pasted this error message into Copilot, and it generated new

changes, which I applied. However, I encountered a different error, which I copied and

pasted into the Copilot chat. After testing the GUI, I found that the solution worked when

there was one or two coordinate pairs, but it did not work when there were more pairs.

I thought about the best way to solve this problem. I wanted Copilot to generate a tem-

porary .vrp file using the provided parameters (contents of the input fields) from the

frontend. I attached the relevant files as context and wrote a prompt regarding this, which

is presented in Figure 5.36 on the next page.

78

Figure 5.36. Prompt for generating a function to create a temporary .vrp file and a partial
response.

Copilot suggested new code for a function that generates a temporary .vrp file using

parameters from the HTTP request sent by the frontend (specifically scripts.js). I

79

applied these changes and restarted the server. After testing the GUI, I found that it was

working correctly when adding coordinates and customer demands manually, and I did

not encounter the previously mentioned errors. However, if the user uploads a .vrp file

and then modifies the coordinates or customer demands, these changes are not reflected

in the solution.

I explained this situation to Copilot and asked it to fix the issue by always generating

a temporary .vrp file on the server. Copilot generated changes to the server.py
and scripts.js files, but I encountered a response length limit error when generat-

ing changes to the scripts.js file. I applied the changes to server.py and wrote a

new prompt to remove any redundant code in the scripts.js file. After applying the

changes to scripts.js and testing the GUI, I noticed that Copilot had used the ’os’

module in server.py but had not imported it. I wrote a prompt about this, applied the

code, and the GUI started working better. I was able to upload a .vrp file, change coor-

dinates and customer demands, and these changes were now considered when running

the algorithm. I was also able to input a problem manually.

Next, I wrote a prompt about allowing users to upload also .tsp formatted files and

attached the index.html file as context. After testing the upload of a .tsp file, I noticed

an error in server.py. However, this error was not displayed in the frontend. I wrote

a prompt about this, and once again encountered the response length limit error while

generating code for the scripts.js file. I applied the code generated for the server.py
file, but it did not include any changes. I wrote a new prompt to update the event listener

of the ’solve’ button to display error messages from the server. Copilot generated code

only for the event listener of the ’solve’ button in the scripts.js file, which was much

faster and more efficient since there was no need to modify other functions. After testing

the GUI, I found that errors occurring on the server were now properly displayed in the

frontend.

I tested the GUI with a .tsp file and noticed that it did not include capacity or customer de-

mands. I examined the cvrp io.read TSPLIB CVRP function and realized that capacity

or customer demands may be null, and therefore not mandatory parameters to solve a

VRP. I described this to Copilot, and it adjusted the create temp vrp file function in

the server.py file. I then wrote a new prompt asking Copilot to adapt these changes to

the scripts.js file as well. I encountered the same error again, and I pasted the error

message into the Copilot chat.

I debugged the code in server.py by adding some logging in the run endpoint, where

the solution was calculated. I found that the error might be in the read TSPLIB CVRP
function. I asked Copilot to add some logging to the create temp vrp file function

so that I could preview how the temporary .vrp file was being formatted. I noticed that

there were three NaN rows in the NODE COORD SECTION, and these were also reflected in

80

the coordinates input field in the GUI. I described this to Copilot and applied the changes

to the scripts.js file. After testing the GUI, I noticed that it no longer populated the

capacity and customer demand fields from the E-n51-k5.vrp file. I undid the changes

by pressing Ctrl + Z.

I wrote a prompt to populate the capacity and customer demand input fields if they are

included in the uploaded .vrp or .tsp file. I applied the changes and noticed in the

server logs that the fields were populated correctly in the frontend, but the customer

demands were passed as an array of null values to the server. I described this issue to

Copilot and applied new changes to the scripts.js file. However, I noticed that Copilot

had removed the colors from the route names in the route table, changed the algorithm

selection to use the algorithm value instead of the description, and altered some of the

logging lines. Copilot had also reverted the change I made earlier during this iteration

regarding removing the indexes in the coordinates and customer demand fields.

I wrote a prompt to remove the indexes from the coordinates and customer demand fields,

as well as to use the algorithm description in the algorithm selection element. I applied

the code, and it fixed the indexes and algorithm names. However, I encountered an error

regarding indexes on the server while generating the temporary .vrp file based on the

parameters from the frontend.

When I was applying the changes to the server.py file, I noticed a misunderstanding.

Copilot assumed that the coordinates and customer demands included the index in the

array (for example, coordinates like [30, 40] were assumed to be [1, 30, 40]). However,

this was not the case, as Copilot had updated how the indexes were managed in the

frontend. I described this issue and asked Copilot to adjust the server.py file. I applied

the code, and now the solution was working properly again, except that the route table no

longer included any of the details for each route.

I decided to simply copy the drawSolution function from the VeRyPy-GUI repository

and replace the current version with it, as it had been working perfectly fine before. Af-

ter testing the GUI, I noticed that Copilot had also reverted the exportMetrics and

exportVisualization functions to their initial versions, which had been modified dur-

ing the previous iteration. I copied these functions from the VeRyPy-GUI repository and

used them to replace the corresponding functions in the scripts.js file.

The GUI now supports uploading both .tsp and .vrp files. Since these file types use

different edge weight types, the GUI must account for these differences when generating

temporary .vrp or .tsp files. I described this situation and asked Copilot to first modify

the scripts.js file, as I knew it would hit the response length limit if Copilot tried to

modify both the scripts.js and server.py files in the same output. I applied the

changes carefully, as Copilot tried to revert the changes I had just manually reverted.

Copilot also assumed that I had HTML elements for storing the edge weight type and

81

type attributes in the index.html file, which I did not have. I explained this, and Copilot

generated the corresponding HTML elements for the index.html file.

Now that Copilot had generated changes to the scripts.js file to extract and pass

the edge weight type from the uploaded .vrp or .tsp file, I moved on to adapting this

change in the server.py file. The prompt I used and the partial response are displayed

in Figure 5.37 on the next page.

82

Figure 5.37. Prompt for modifying the create temp vrp file function and a partial
response.

83

I applied the changes and noticed that there were still some issues when running algo-

rithms using data from uploaded .tsp files. To guide Copilot in the right direction, I added

some logging and discovered that the server returned null in the ’points’ attribute when a

.tsp file was uploaded in the GUI. I remembered seeing a function in the VeRyPy.py file

that was used to generate missing points if needed. Instead of describing the situation

to Copilot, I copied and pasted this function call into server.py as it was quicker, given

that it was only a few lines of code. I restarted the server and tested the GUI, and now

the visualization worked for an uploaded .tsp file. However, there was an error when

generating the route table, which appeared in Google Chrome DevTools console window,

as shown in Figure 5.38 below.

Figure 5.38. Error displayed in Google Chrome DevTools when calculating utilization rate
for routes.

I added some logging to the calculateUtilizationRate function in scripts.js and

found that customer demands and capacity were null in the example .tsp file I had used

to test the GUI. To fix this, I used the ’Modify using Copilot’ feature as I did not want to risk

describing this specific change in Copilot chat, since it might revert some of the changes

I made. Copilot typically generates the entire code file, even if the change is relevant

to just one function. I accepted the small change, tested the GUI, and now it was fully

working with the uploaded .tsp file. The current state of the VeRyPy GUI, including the

TSP visualization, is shown in Figure 5.39.

84

Figure 5.39. VeRyPy GUI and visualization for solving a TSP.

I tested inputting a VRP manually without uploading any files and encountered an error.

Upon checking the server logs, I discovered that the temporary .vrp file had no values

for the type and edge weight type, as these fields are initially null unless the user uploads

a .vrp or .tsp file. To fix this, I added default values for these fields in the index.html
file. Now, if the user has not uploaded any files and inputs a VRP manually, the edge

weight type will default to EUC 2D and the type will default to CVRP. I implemented this fix

manually by adding the appropriate value properties to these input fields in index.html.

After testing the GUI, it is now able to solve a manually inputted VRP.

Next, I wanted to make the type and edge weight type input fields visible in the GUI. I

attached the index.html and scripts.js files as context and wrote a prompt for this

modification. I applied the code to the index.html file, but Copilot hit the response length

limit while generating code for the scripts.js file. I copied and pasted the previous

prompt, but this time I asked Copilot to only modify the scripts.js file. However, Copilot

still generated changes for the index.html file as well. Upon reviewing the changes, I

realized there was no need to modify the scripts.js file, as it already contained the

necessary logic to pass the edge weight type and type parameters to the server.

85

I wanted to update the validation logic. If the type is TSP, then there should not be

capacity or customer demand values. If the type is CVRP, then the number of coordinates

and customer demands must match. I wrote a prompt about this and asked Copilot

to only modify the event listener of the ’solve’ button, as shown in Figure 5.40 below.

However, Copilot still regenerated the index.html file and attempted to generate the

entire scripts.js file, even though the changes were needed in just one function. As a

result, Copilot hit the response length limit again.

Figure 5.40. Prompt for improving TSP and CVRP validation and a partial response.

86

I was able to solve the response length limit issue by highlighting the event listener func-

tion of the ’solve’ button and using the ’Modify using Copilot’ feature to make changes to

only the highlighted code. Copilot added an if-else code block that displayed differ-

ent alerts based on which problem type was selected in the GUI. I applied the code and

tested the GUI, and now it displays the alerts accordingly.

Next, I wanted to add functionality to the frontend where the GUI only displays the rele-

vant input fields based on the selected problem type. In other words, the capacity and

customer demand input fields should be hidden if the user selects ’TSP’ as the problem

type, as they are not used for TSPs. I wrote a prompt, and Copilot was able to generate

an output without hitting the response limit. However, it made some small unnecessary

changes which I had to discard. One of these changes can be seen in the image below.

Copilot also attempted to remove some of the validation done before sending the VRP

parameters to the server, which I had to decline. Additionally, Copilot tried to revert some

random changes I had made many prompts ago, such as the algorithm naming.

I reviewed each change carefully instead of just accepting them, and had to discard a

couple of small but unnecessary changes, such as the one displayed in Figure 5.41. After

testing the GUI, I confirmed that it was now correctly displaying and hiding the necessary

elements based on the selected problem type.

Figure 5.41. An example of an unnecessary code change suggested by GitHub Copilot.

I wanted to improve the folder structure of the code files related to the GUI. I wrote a

prompt about this, and Copilot suggested creating separate folders for the frontend and

backend, as well as additional folders for JavaScript files, CSS files, and other assets

within the frontend folder. However, I believe it is sufficient to keep all frontend-related

files in a single ’frontend’ folder without further subdividing them into separate folders.

Copilot did not create these folders for me but provided a clear folder structure, which can

be seen in Figure 5.42 on the next page.

87

Figure 5.42. Improved folder structure suggestion by GitHub Copilot.

I manually created the ’frontend’ and ’backend’ folders and moved the server.py file to the

backend folder, along with the rest of the GUI files to the frontend folder. I then asked

Copilot to update the paths in the server.py file to match the new folder structure. I ex-

pected a simple one-line change related to how the server reads the index.html file, but

Copilot generated several changes that would have reverted some of the recent modifi-

cations I had made in the server.py file, so I had to discard them. After testing the GUI,

I discovered that the server could not locate the index.html file in the frontend folder. I

wrote a few debugging prompts and, after a couple of attempts and some manual fixes, I

was able to resolve the import issues in the server.

88

I wanted to update the placeholder text for the coordinates input element based on the

selected problem type. If ’TSP’ is selected, the coordinates should be inputted in lati-

tude/longitude format; otherwise, they should be in x/y format. I wrote a prompt for this,

and Copilot generated code for the relevant event listeners, which was great since it only

modified the necessary parts of the scripts.js file instead of regenerating the whole file.

After applying the changes and testing the GUI, I noticed that the placeholder text was not

updating according to the selected problem type. I realized it was a caching issue. Once

I restarted the server and refreshed the website, the placeholders updated correctly.

I wanted to add additional validation for the coordinates and customer demands input

fields to ensure they contain numbers in each row. I wrote a prompt for this, and Copilot

generated code for only the relevant part of the scripts.js file. It added two simple for
loops to check that each row of these input fields contained numbers. However, I noticed

that Copilot created new variables for validating coordinates and customer demands in-

stead of using the existing variables, which made the code harder to read.

I wrote a prompt asking Copilot to improve this and remove the duplicate variables. While

applying the changes, I found that Copilot had removed the coordinates property from

the POST request parameters, which would break the GUI functionality. It also reverted

some changes I had made manually, so I discarded all of Copilot’s changes. In the end,

I decided to clean up the variable names manually, as it was quicker and easier than

making further adjustments.

I thought it would be a good idea to add a new example VRP to the GUI, as this would

enhance both its usability and user experience. I asked Copilot to generate a new

example.vrp file with 12 random coordinates. The output is shown in Figure 5.43 on

the next page.

89

Figure 5.43. Contents of the example.vrp file generated by GitHub Copilot.

Next, I wrote a prompt to create a new button in the GUI. Clicking this button should load

the example.vrp file and populate the input fields with its content. Copilot successfully

generated the new button with the label ’Use Example VRP’ in the index.html file, as

well as the event listener in the scripts.js file. I applied the code and tested the GUI;

clicking the ’Use Example VRP’ button correctly populated the input fields. I moved the

90

’Use Example VRP’ button to the top of the problem input section manually.

I wanted to add another button for using an example TSP, so I asked Copilot to generate

an example .tsp file using random geographical coordinates. I created the file manually

and pasted the generated content into it. Then, I wrote a prompt asking Copilot to add a

new button for using the generated example.tsp file, placing it next to the ’Use Example

VRP’ button. I applied the code to the index.html file and noticed that Copilot did not

revert the manual change I had made to the position of the ’Use Example VRP’ button. I

tested the GUI, and clicking the newly generated ’Use Example TSP’ button successfully

solved the example.tsp on the first attempt.

It would be useful if the GUI had an input field for changing the depot node. Currently,

the first coordinate pair is used as the depot, and it is hardcoded in the server.py file. I

wrote a prompt about this request in the Copilot chat and attached the index.html and

scripts.js files as context. I did not attach the server.py file yet because I anticipated

that Copilot would likely hit the response length limit.

As I was reviewing the changes in the scripts.js file, I noticed that Copilot had reverted

the change in the naming of the coordinates attribute in the POST request, as shown in

Figure 5.44. This change was made several prompts ago. Copilot had added useful vali-

dation for the depot node input field. In the end, I discarded these changes and manually

copied the new lines into the scripts.js file.

Figure 5.44. An example of a code change that GitHub Copilot attempted to revert.

91

Next, I wrote a prompt to incorporate the depot node parameter in server.py and at-

tached the file to the chat. Copilot reverted multiple changes, which I discarded, and I

only accepted the modification to use the depot node parameter. I tested the GUI, and

changing the depot node successfully affected the solution and the visualization as ex-

pected.

However, Copilot had not modified the event listeners for the VRP and TSP examples, nor

for the file upload element, although this was not mentioned in my prompt. I asked Copilot

to integrate the new depot node input field into the relevant event listeners. After applying

the code and testing the GUI, I noticed that the depot node was always -1 instead of 1
when importing a .vrp file. I explained this issue to Copilot, and it suggested a simple

fix, which resolved the problem. The current state of the VeRyPy GUI is displayed in

Figure 5.45 below.

Figure 5.45. VeRyPy GUI after iteration 5.

92

5.5.3 Analysis

One of the key architectural decisions in this iteration was to always generate a temporary

.vrp file based on the input parameters, regardless of whether the user uploaded a

file or entered data manually. While this approach ensured that all modifications were

consistently applied before solving the problem, it also introduced potential inefficiencies.

For example, if the user had not changed any parameters after uploading a .vrp file,

regenerating it became redundant. However, generating a temporary .vrp file could

prove beneficial in future iterations, particularly if there is a need to export the inputted

problems as .vrp files.

A recurring challenge was Copilot’s tendency to revert previous changes, particularly in

larger files like scripts.js. As the lines of code increased with each iteration, Copilot

sometimes seemed to lose track of prior modifications, resulting in unintentional resets of

certain UI elements, such as the route name color and the algorithm dropdown logic. This

behavior highlights the observation that Copilot’s internal context tracking may degrade

as the file size grows or changes occur too frequently, making it difficult for Copilot to

maintain a stable understanding of the evolving codebase.

Another issue emerged when Copilot modified the frontend logic for handling coordinate

and customer demand indexes without adjusting the corresponding server logic. This

type of issue also occurred in earlier iterations. It caused errors when solving VRPs,

as the server still expected the old data structure. Ideally, Copilot would detect depen-

dencies between modified components and maintain consistency across the application.

However, this likely exceeds the context or response length limit. As a result, Copilot’s

inability to manage these dependencies increased the cognitive load, as debugging and

modifications still relied heavily on manual oversight and validation.

Copilot’s tendency to modify unrelated parts of the VeRyPy GUI complicated develop-

ment. A notable example was the drawSolution function, which initially worked as ex-

pected but was unexpectedly altered by Copilot. While AI-generated modifications some-

times improved code efficiency, they also introduced breaking changes. When attempting

to revert the function using Copilot, the generated version did not fully restore its previous

logic. Ultimately, the most reliable solution was to manually copy and paste the original

function from the VeRyPy GUI repository.

Given Copilot’s tendency to occasionally introduce unexpected errors, I often found myself

debugging code manually rather than relying on Copilot’s debugging assistance. While

Copilot could be useful in diagnosing specific issues when provided with error logs, its

lack of contextual awareness across the entire GUI made it risky to use for direct debug-

ging. Fixes in one area often led to unintended modifications elsewhere, highlighting the

limitations of relying on Copilot for comprehensive troubleshooting.

93

Another significant limitation encountered during this iteration was the response length

limit, which occurred when generating modifications for larger files (server.py and

scripts.js). These files contained a total of 700 to 800 lines of code. Based on to-

ken calculations [97], 100 lines of Python code correspond to approximately 1000 tokens,

while 100 lines of JavaScript is roughly 700 tokens. Although the GUI source files should

fit well within the GPT-4o model’s context window, the primary constraint regarding the

response length limit issue appears to be the model’s output limit, which is a maximum of

16,384 output tokens.

To mitigate issues related to the response length limit, several strategies can be em-

ployed. One approach is to separate stable event listeners and utility functions into ded-

icated files, reducing the likelihood that Copilot will regenerate unnecessary code. For

example, each event listener function could be placed in its own file, and these files could

then be consolidated into a single import. Another option is to explicitly specify which

function or event listener needs modification in the prompt. While this sometimes pre-

vents Copilot from generating full files, it is not entirely reliable, as Copilot often generates

the entire file regardless of the prompt’s specification. The most effective method appears

to be using Copilot’s ’Modify using Copilot’ feature to highlight and edit only specific sec-

tions of code. This results in faster output generation and avoids unnecessary file-wide

changes, but it sacrifices access to context outside the highlighted section, and modifi-

cations are not saved in the Copilot chat logs. Additionally, this approach requires the

developer to have a strong understanding of the codebase in order to select the appropri-

ate section for modification.

5.5.4 Conclusion

Iteration 5 enhanced the usability of the Problem Input section of the VeRyPy GUI. The

indexes for the ’Customer Demands’ and ’Coordinates’ input fields are now managed

automatically in the code, rather than within the input elements. A new utility function was

also created in the backend to generate a temporary .vrp file, ensuring that changes

made in the input fields, specifically those related to customer locations and demands,

are reflected in the VRP used for the calculation. Additionally, support for reading .tsp
formatted files was added to the GUI, along with further validation for the input fields.

Overall, this iteration reinforced key insights into AI-assisted development. Copilot’s diffi-

culty in maintaining an accurate context and handling larger modifications across multiple

components, such as the scripts.js and server.py files, heightened the need for

manual debugging and verification. Response length limits were also a challenge, often

requiring prompts to be rewritten to avoid unnecessary AI-generated changes.

94

At the end of this action research, the generated lines of code in the VeRyPy-GUI reposi-

tory were calculated using cloc [93], which can be seen in Figure 5.46 below. It is impor-

tant to note that most of the code lines was sourced from the GitHub Copilot chat logs,

which were exported as JSON files after each iteration. If these JSON chat logs are ex-

cluded, the total number of code lines is 14 129. Therefore, a total of 1105 lines of code

for the VeRyPy GUI was generated using GitHub Copilot and OpenAI’s GPT-4o model in

this action research.

Figure 5.46. Breakdown of VeRyPy lines of code at the end of this action research.

If the GitHub Copilot chat logs are excluded, a total of 4 different source files were pro-

duced during the VeRyPy GUI generation process. Information about the VeRyPy GUI

source files generated in this action research is presented in Table 5.2 below.

Filename Description Lines of Code

server.py Backend logic of the VeRyPy GUI 161

index.html Layout and elements of the VeRyPy GUI 141

scripts.js Interactive functionality of the VeRyPy GUI 610

styles.css Styling of the VeRyPy GUI 193

Table 5.2. Source files of the VeRyPy GUI generated in this action research.

95

6. FINDINGS

One of the strengths of leveraging LLMs in VeRyPy GUI development was their ability

to generate low-level code, such as functions for parsing data with specific syntax or

creating simple utility functions. However, when working with codebases where code is

split across multiple files and directories, the accuracy of code generation decreased. A

significant amount of time was spent debugging the generated code, manually copying

and pasting error messages to GitHub Copilot, and writing prompts to fix these issues.

Although Copilot was aware of the source code files in the codebase, it did not have ac-

cess to the entire development environment, including the Google Chrome web browser

the researcher used for testing the GUI. As a result, Copilot had no understanding of what

was rendered in the GUI or how different buttons and inputs behaved. Consequently, the

researcher had to describe the GUI’s behavior in prompts to achieve more accurate re-

sults, which in turn added significant time to the overall development process.

Initially, generating features for the VeRyPy GUI was quick, but the process slowed as the

lines of code increased. Applying the generated code to the source files sometimes took

a significant amount of time and was done after every code generation. While manually

copying and pasting the generated code directly into the source files was faster, it was

not recommended, as it obscured which lines had changed, making troubleshooting more

difficult. A considerable amount of time was spent waiting for Copilot to generate code

and apply it to the source files.

Copilot excelled at generating clear and easy-to-understand labels, placeholders, as well

as function and variable names. This improved code readability and saved the researcher

time by eliminating the need to manually come up with descriptive names. Clear labels

and placeholders also improved the overall usability of the GUI, making it easier for users

to understand what type of data should be entered into each input field.

On some occasions, Copilot generated code that was not relevant or specified by the

researcher in the prompt. Another recurring issue was that Copilot reverted code changes

that the researcher had made manually between prompts. Additionally, newly generated

code sometimes overwrote previously generated code. This issue persisted even when

the researcher added comments to specific lines instructing Copilot not to modify them.

It took some time for Copilot to update the context, which helped reduce some of the

96

reverting. However, this issue increased the cognitive load on the researcher, who had to

carefully review each change and assess whether it could break parts of the GUI.

An interesting finding was that Copilot retained context best after some time had passed

since the last code generation or modification. For example, continuing the GUI develop-

ment after a break often yielded good results in terms of capturing the current context.

However, when Copilot was used frequently within a short time period between prompts,

it sometimes lost context from the last few minutes or even longer. This is likely because

Copilot does not update its context quickly enough when changes occur too frequently. It

seems that if Copilot is unable to access the current context, it may revert back to an older

context, which would explain this behavior. Regardless, this made the GUI development

process feel like taking two steps forward and one step back, as every once in a while

Copilot attempted to revert unnecessary changes while simultaneously implementing and

improving the GUI features.

Although Copilot was helpful for troubleshooting and debugging, it was sometimes faster

and easier to make edits and resolve issues manually. Explaining problems to Copilot

always carried the risk of ambiguous prompts, which could lead it in the wrong direction.

Toward the end of the GUI development, relying on Copilot became less practical, as it

often risked breaking parts of the GUI, reverting to an outdated context, or reaching the

context window or the response length limit. Unit tests could have helped mitigate this by

verifying that earlier features still worked after adding new code.

The prompts written by the researcher were concise but also short and little time was

spent refining them. This could be one reason why some unwanted results and issues

occasionally appeared in the AI-generated code. Spending more time writing detailed

prompts might have prevented some of these issues. On the other hand, AI is still prone

to errors, and writing detailed prompts can take considerable time, which can add up over

the course of development.

Being familiar with best practices in software development, having technical knowledge

and a clear vision for how certain features should be implemented proved to be highly

beneficial. Relying solely on AI often led to questionable design choices and generated

code that was difficult to maintain. For example, during the early stages of the GUI devel-

opment, Copilot suggested mixing different technologies, such as combining Flask with

an HTTP server in the backend, even though the backend had already been implemented

using an HTTP server. This would have resulted in a poor design choice and unneces-

sary complexity, and the researcher had to address the situation and guide Copilot back

on track. However, these kinds of changes are likely to go unnoticed by less technical

developers, especially if they do not carefully review the AI-generated code.

97

7. DISCUSSION

The contributions of this research are twofold. First, the VeRyPy GUI was developed

as the main artifact of the action research conducted in this thesis. This also includes

documentation and analysis of the GUI development process, as well as a discussion

of the findings in relation to the related work. The second contribution is a proposal for

a more autonomous UI code generation process using LLMs, which emerged from the

findings and experiences gathered during the action research. This proposal is described

later in this chapter.

Evaluation of the VeRyPy GUI and Future Improvements

To evaluate the VeRyPy GUI produced during the action research iterations, it can be

compared to other scientific UIs used to solve VRPs, which were presented earlier in the

background chapter on page 16. One of the key differences between the VeRyPy GUI

and the other scientific UIs is the ability to select between different heuristic algorithms

implemented in VeRyPy. Users can test different algorithms and settings to solve VRPs

and see the solution metrics and visualization in the GUI. The VeRyPy GUI also provides

a way to export the solution metrics and visualization for further research which was not

possible in the other UIs.

In order to remain within the scope of this thesis, some potential improvements to the

VeRyPy GUI were excluded. For instance, it would be useful to have a real-world map in

the GUI where the user could select or input locations using addresses and street names,

and VeRyPy would calculate routes visiting each location while following the actual streets

and roads. Because this feature would be relatively complex and large, it would be listed

as an epic, which could then be divided into smaller user stories. Furthermore, this feature

would be especially useful for users working in logistics, such as planning optimal routes

for delivering goods to customers.

Some options could also be applied to the vehicles used in calculations related to the

real-world map feature. For instance, vehicles could be marked as a car, bike, or a person

walking, and these options would be respected while calculating the solution. Additionally,

there are some algorithm-specific parameters, so adding input fields for these could be a

good improvement.

98

A feature for playing back the visualization in stages could also be valuable. This could

help users gain a better understanding of how the routes were calculated and how the

algorithms work in detail. This feature could be especially useful for users focused on

developing algorithms.

Finally, the usability of the input fields could be improved in the future. For instance, the

coordinates and customer demands could be added using separate input fields instead of

editing them in the textarea elements. Also, some info elements could be added to guide

the user throughout the GUI as well as descriptions and information of the algorithms.

Factors Influencing the Results

There are several factors that influenced the results of this action research. First, the

researcher’s knowledge and skills had a direct effect on how AI was used to generate

code for the VeRyPy GUI. For example, writing prompts, reviewing the generated code,

testing the GUI, and how the encountered bugs and issues were described in prompts

affected the direction of the code generations.

Another factor affecting the results was the selected AI tools and LLMs. There are numer-

ous LLMs available from different companies, and comparing them closely would have

been outside the scope of this research. There is ongoing debate about which model

delivers the most accurate results, but it is difficult to compare models unless they are

used with the same prompts in the same context and conditions. Also, the versions of the

AI tools used in this action research affected the experiences, as some of the recurring

issues, such as reverting changes, losing context, and occasionally slow code generation

speed, may have been fixed in other versions.

Additionally, some AI copilots have been marketed and promoted more heavily than oth-

ers, making it even more difficult to objectively evaluate the models. For instance, Cursor

is currently the fastest growing software as a service (SaaS) company to go from $1M to

$100M annual recurring revenue in 12 months [98, 99], and it seems to be rapidly gaining

mind-share as one of the the leading AI-powered code editors. It will be interesting to

see which AI copilot and LLM ultimately becomes the most favored among developers,

though there will likely always be some variation in preferences.

It is also important to acknowledge that since the researcher was both using AI tools to

generate the VeRyPy GUI and documenting the workflow, some aspects of the process

may not have been fully captured in the documentation presented in the results chapter.

Some passing thoughts, observations and certain interactions with AI such as additional

prompts, quick manual fixes or debugging steps may not be explicitly recorded. This

happened especially in the early iterations, but the documentation detail increased as

the researcher became more familiar with the research process. However, all chat con-

99

versations between the researcher and GitHub Copilot are documented and available in

the VeRyPy-GUI repository [94] under the path verypy/gui/copilot chat logs [100]. These

logs provide a comprehensive record of the prompts used as well as the AI-generated

responses throughout the VeRyPy GUI development.

Connection to Related Work

As Pandey et al. [56] mentioned in their study, the biggest issue with using GitHub Copilot

lies in generating code for unique business logic and distributing code to multiple files. Al-

though most of the unique business logic had already been implemented in VeRyPy (such

as functions for different heuristic algorithms), AI struggled a little in dividing functional-

ity into multiple files. It was up to the researcher in this AR to guide Copilot to split the

code into multiple files. Also, sometimes AI-generated code included import statements

of incorrect directories even when the researcher provided them as context.

Bajcetic, Draskovic, and Bojic [63] found in their research that AI-generated code pro-

vided a good starting point, and it covered most of the defined scenarios. This was also

confirmed in this action research and while the AI-generated code contained some bugs

and issues, it worked for the most part. Using AI was most effective in the beginning,

for example, the VeRyPy GUI design generated using Vercel V0 AI tool fulfilled most of

the requirements, and it did not require that much iteration or fine-tuning. As Bajcetic,

Draskovic, and Bojic [63] also mentioned in their paper, a more robust process is needed

to better utilize AI, especially for larger and more complicated systems.

Bilgram and Laarmann [57] and Mastropaolo et al. [58] mentioned the importance of

defining tasks, descriptions, and requirements clearly. This was also something the re-

searcher in this AR found while using AI tools to generate code. Ambiguous requirements

and prompts produced unwanted results such as code which did not work quite as ex-

pected. Having clear requirements and specifications is always important but it is worth

noting that AI does not eliminate the need for clear requirements.

Barke, James, and Polikarpova [62] defined two interaction modes that developers use

when working with AI copilots: acceleration and exploration. While exploration mode

was used by the researcher in this AR in the beginning of the action research to gen-

erate the initial iteration plan and user stories, acceleration mode was used extensively

throughout the GUI code generation process. The researcher always had an idea of what

to implement next based on the iteration plan and observations made during the itera-

tions. Barke, James, and Polikarpova [62] also mentioned that developers tend to discard

AI-generated code quickly while in acceleration mode and this was also something the

researcher experienced. One reason for discarding code was that the researcher could

usually quickly determine whether the generated code would cause issues or if it was of

suboptimal quality.

100

Liang, Yang, and Myers [60] mentioned that one of the biggest usability issues in AI-

powered code generation was that developers are likely to give up on using generated

code if it does not perform the desired action. This was also reflected in the researcher’s

experience in this AR when they repeatedly discarded AI-generated code and in some

cases gave up on using Copilot to generate code for simple tasks. Also, the researcher

preferred to debug code manually as Copilot was sometimes slow to generate responses

and it tends to suggest more generic solutions. Debugging more complex applications

with multiple source files was challenging for Copilot due to the limited context window

and API rate limits.

Proposal for Autonomous AI-powered UI Code Generation Process

Based on the results and findings of this action research, leveraging AI and LLMs in UI

code development is not yet a fully automated process as it still requires considerable

manual instruction, validation, and correction. Furthermore, while it is possible to con-

struct a working software directly within AI-powered platforms, it is challenging to integrate

code generation with an existing codebase without relying on manual copy and paste. Al-

though AI can be applied at various stages of software development, its usage remains

fragmented, resulting in an unorganized and inefficient process. This chapter explores a

potential approach to integrating AI into software development, specifically focusing on a

more autonomous UI code generation process.

First, it is important to highlight those aspects of AI-powered software development which

require the most manual work. Based on the results and findings of this action research,

these manual aspects are writing prompts, describing the desired functionalities, review-

ing changes, and testing the system after applying changes. Automating these aspects

and establishing a cycle for implementing new features incrementally could, in theory,

lead to a more autonomous process for utilizing AI in software development.

Building on the findings of this action research, Figure 7.1 presents a proposal for a more

autonomous approach to AI-powered UI code generation. This process is structured into

two iterative cycles: the specification cycle and the implementation cycle. The process

begins in the specification cycle by collecting the system’s specification and requirements

from the user, which are then converted into user stories. These user stories are then

transformed into features, organized, and added to a Product Backlog, following agile

project management practices. These user stories and features are presented to the

user, where they can accept or reject them. The specification cycle will continue until the

user accepts or confirms the user stories and features for the system. In other words, this

validation aspect requires some manual work where the user provides the requirements

and reviews the user stories and features generated by AI. Once the user accepts the

user stories and features, the process enters the implementation cycle.

101

Figure 7.1. Proposal for an autonomous AI-powered UI code generation process.

The implementation cycle begins by checking if the Product Backlog contains any features

generated earlier in the specification cycle. If there are features to be implemented, a

feature is selected from the backlog for implementation. Before generating any code, tests

are generated against the selected feature, which will be used to validate the generated

code autonomously. The context would be updated and accessed in the background

whenever new changes or code are applied to the system. After new code is applied,

102

tests are run to ensure it does not break any previously working features and to verify that

the tests associated with the currently implemented feature will pass. If any tests fail, the

error logs are used as input for generating code that addresses the issues to eventually

pass all test. When the tests pass, the user story or requirement corresponding to the

implemented feature will be validated or marked as completed. Using LLMs to validate

features linked to user stories was also discussed by Kolthoff et al. [65] in their paper.

The last step of the implementation cycle is to check if the Product Backlog is empty. If

there are no more features left to be implemented, the process will exit the implemen-

tation cycle and return to the specification cycle to check if the user is satisfied with the

implemented features. If the user is not satisfied and has improvement ideas or the re-

quirements have changed, the specification cycle will continue so that the user can write

prompts for refining, modifying, or adding features and requirements. The whole process

will end when the user is satisfied with the software.

The core idea of the implementation cycle is to use practices of test-driven development

(TDD). In TDD, the emphasis is on writing tests for a feature first and then implementing

code until these tests are passed. Using LLMs to generate both code and tests was also

studied by Fakhoury et al. [64] in their paper, yielding great results, such as improved

code generation accuracy, less cognitive load on the developer, and using tests to ensure

that the code does what the developer intended. Integrating TDD with code generation

would be important to eliminate a significant portion of the manual testing and validation

typically done by the developer against AI-generated code.

One of the key limitations of using LLMs in code generation currently is their inability to

manage large contexts and occasionally losing some parts of the context. To address

this issue, some kind of module would be needed to keep track of the context in the

background. This context module could, for example, construct a UML diagram based

on the working directory and source files, which is provided to the necessary modules

automatically alongside every prompt. Rasheed et al. [13] also envisioned the creation of

UML diagrams as a step in the AI-powered code generation process in their recent paper.

The biggest limitation of this kind of context management is the limited context windows

of LLMs. However, given that the context windows of LLMs have been increasing rapidly,

it is likely that this issue may be resolved as models evolve.

Some risks and drawbacks can be identified in this process. The biggest risk is that

AI could hallucinate, generate inaccurate, impossible, or irrelevant tests, and potentially

enter endless loops while attempting to modify the code until it passes the tests. How-

ever, some kind of automatic validation and testing should be included to create more

autonomous and robust processes. Additionally, the context management module func-

tions properly only if the LLM’s context window is large enough to track the context of the

entire codebase, even as changes occur frequently.

103

Specialized AI agents could be used in the different modules of this process. For example,

one AI agent could generate user stories based on the specification and requirements

provided by the user, while another agent would take over to generate features based

on these user stories. Additionally, one agent could be responsible for generating tests,

while another agent keeps track of the current context and provides it to the other agents

in the background.

The idea of using AI agents and dividing the software development process into modules

was also discussed by Rasheed et al. [13] and Liu et al. [30] in their papers. Although

designing systems that revolve around AI agents has recently gained a lot of attention,

their application in software engineering has been studied as far back as the late 1970s

[101]. Furthermore, in 2000, Jennings [102] proposed the following hypothesis: As well

as being suitable for designing and building complex systems, the agent-oriented ap-

proach will succeed as a mainstream software engineering paradigm. With the recent

rapid developments in AI copilots and LLMs, we are now closer than ever to designing

and implementing fully autonomous AI agents as part of software engineering processes.

104

8. CONCLUSION

In this thesis, AI tools were studied and used to evaluate their suitability in software en-

gineering for generating user interface (UI) code. A graphical user interface (GUI) was

generated for VeRyPy, a Python library, as part of the action research component of this

thesis to gain insights into the practical use and current limitations of AI tools focused on

UI development. Various features for the VeRyPy GUI were implemented using GitHub

Copilot and OpenAI’s GPT-4o model over five iterations, while following the requirements,

user stories, and iteration plan for the GUI. The workflow and experience were docu-

mented in detail in the results chapter, and the generated code, as well as the Copilot

chat logs, are available in the VeRyPy-GUI repository [94]. The VeRyPy GUI was imple-

mented as a small-scale web application, with the backend generated in Python and the

frontend in HTML, CSS, and JavaScript.

AI tools, such as GitHub Copilot and Vercel V0, were most efficient in the early stages of

the VeRyPy GUI development. However, as the codebase grew larger, integrating new

code with existing code became increasingly slow, and new code generations would often

hit the response length limit of GitHub Copilot and OpenAI’s GPT-4o model. Furthermore,

the context was sometimes not updated fast enough, resulting in generated code that

would revert previously working features and introduce unnecessary modifications. This

led to considerable time spent troubleshooting, manually copying and pasting errors, and

writing prompts to GitHub Copilot. Due to the limited context window of LLMs, manual

intervention and careful review of each change were necessary, as the AI tools often

overlooked earlier prompts and requirements or introduced modifications that could break

existing features.

Although using LLMs and AI tools significantly accelerated the GUI development process,

they did not remove the need for continuous iteration, testing, and validation. In addition

to these aspects, requirements engineering continues to be an essential part of soft-

ware development. If the system requirements or prompts are unclear, LLMs are likely to

produce unwanted results, much like developers would. These aspects seem to remain

fundamental in software development regardless of whether AI is utilized or not.

While the context limitations of LLMs became noticeable as more features were added to

the VeRyPy GUI, recent data suggests that the context windows of LLMs are expanding

105

fast. It is expected that, in the near future, even larger codebases will fit within these con-

text windows, which could greatly accelerate AI-powered software development. How-

ever, human involvement remains essential, along with knowledge of best practices in

software engineering, to fully leverage AI’s potential in software development.

The findings of this research sparked the idea for a more autonomous approach to gener-

ating UI code using LLMs, which was presented in Figure 7.1 on page 101. This process

would follow the principles of test-driven development, where AI is used to generate user

stories and features based on the requirements provided by the user. Corresponding

tests would then be generated for these features before generating the implementation

code. These tests would be executed whenever new code is applied to the codebase

with the context being updated in the background. Once all tests pass, the user story

or requirement corresponding to the implemented feature is marked as completed. This

cycle would repeat until all features have been implemented.

I hope this thesis will be valuable to software engineers and researchers interested in the

role of AI in software development, specifically in UI code generation. It is exciting to see

how AI tools and LLMs will evolve and be integrated into software engineering processes

in the near future.

106

REFERENCES

[1] Abdulaziz Aldoseri, Khalifa N. Al-Khalifa, and Abdel Magid Hamouda. “AI-Powered

Innovation in Digital Transformation: Key Pillars and Industry Impact”. In: Sustain-

ability 16.5 (2024). ISSN: 2071-1050. DOI: 10.3390/su16051790. URL: https://ww

w.mdpi.com/2071-1050/16/5/1790.

[2] David Mhlanga. “Industry 4.0 in Finance: The Impact of Artificial Intelligence (AI)

on Digital Financial Inclusion”. In: International Journal of Financial Studies 8.3

(2020), p. 45.

[3] Li Yang et al. “Artificial Intelligence and Robotics Technology in the Hospitality

Industry: Current Applications and Future Trends”. In: Digital Transformation in

Business and Society. Springer International Publishing, 2019, pp. 211–228. ISBN:

9783030082765.

[4] Sook Fern Yeo et al. “Investigating the impact of AI-powered technologies on In-

stagrammers’ purchase decisions in digitalization era–A study of the fashion and

apparel industry”. In: Technological Forecasting and Social Change 177 (2022),

p. 121551.

[5] Shakked Noy and Whitney Zhang. “Experimental evidence on the productivity ef-

fects of generative artificial intelligence”. In: Science (American Association for the

Advancement of Science) 381.6654 (2023), pp. 187–192. ISSN: 0036-8075.

[6] Klint Finley. How developers spend the time they save thanks to AI coding tools.

Published by GitHub Blog. Nov. 14, 2024. URL: https://github.blog/ai-and-ml/gen

erative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools

(visited on 02/23/2025).

[7] Thomas Kwa et al. Measuring AI Ability to Complete Long Tasks. 2025. arXiv:

2503.14499 [cs.AI]. URL: https://arxiv.org/abs/2503.14499.

[8] Jussi Rasku. VeRyPy. Dec. 2, 2023. URL: https : / / github . com / yorak / VeRyPy

(visited on 10/28/2024).

[9] GPT-Lab. GPT-Lab. 2025. URL: https://gpt-lab.eu/ (visited on 01/04/2025).

[10] Ken Schwaber. Agile Project Management with Scrum. 1st edition. Safari tech

books online. Microsoft Press, 2009. ISBN: 9780735636002.

[11] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile

Toolkit. Agile Software Development Series. Addison-Wesley Professional, 2003.

ISBN: 9780321150783.

[12] Ian Sommerville. Software engineering. Tenth edition. Always learning. Pearson,

2016. ISBN: 978-1-292-09614-8.

https://doi.org/10.3390/su16051790
https://www.mdpi.com/2071-1050/16/5/1790
https://www.mdpi.com/2071-1050/16/5/1790
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2503.14499
https://github.com/yorak/VeRyPy
https://gpt-lab.eu/

107

[13] Zeeshan Rasheed et al. TimeLess: A Vision for the Next Generation of Software

Development. 2024. arXiv: 2411.08507 [cs.SE]. URL: https://arxiv.org/abs/2411

.08507.

[14] Mike Cohn. User Stories Applied: For Agile Software Development. Addison-

Wesley Professional, 2004.

[15] Ahmed Seffah and Eduard Metzker. “The obstacles and myths of usability and

software engineering”. In: Commun. ACM 47 (2004), pp. 71–76. DOI: 10.1145/10

35134.1035136.

[16] Behnam Faghih, Mohammad Azadehfar, and Seraj Katebi. User Interface Design

for E-Learning Software. 2014. arXiv: 1401.6365 [cs.CY]. URL: https://arxiv.org

/abs/1401.6365.

[17] GeeksforGeeks. Qualities of Good User Interface Design. Aug. 22, 2022. URL:

https://www.geeksforgeeks.org/qualities-of-good-user-interface-design/ (visited

on 03/13/2025).

[18] Tutorials Point. Software User Interface Design. 2025. URL: https://www.tutorials

point.com/software_engineering/software_user_interface_design.htm (visited on

03/13/2025).

[19] Jakob Nielsen. “Iterative user-interface design”. In: Computer 26.11 (1993),

pp. 32–41.

[20] Brad A. Myers and Mary Beth Rosson. “Survey on user interface programming”.

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems. CHI ’92. Association for Computing Machinery, 1992, pp. 195–202. ISBN:

0897915135. DOI: 10.1145/142750.142789.

[21] Gerald L. Lohse and Peter Spiller. “Internet retail store design: How the user in-

terface influences traffic and sales”. In: Journal of Computer-Mediated Communi-

cation 5.2 (1999), JCMC522.

[22] MAT Pratama and AT Cahyadi. “Effect of User Interface and User Experience on

Application Sales”. In: IOP Conference Series: Materials Science and Engineer-

ing. Vol. 879. 1. IOP Publishing. 2020, p. 012133.

[23] Microsoft. Visual Studio IntelliCode. 2024. URL: https://visualstudio.microsoft.com

/services/intellicode/ (visited on 11/12/2024).

[24] JetBrains. PyCharm. 2024. URL: https://www.jetbrains.com/pycharm/features/ai/

(visited on 11/12/2024).

[25] Cursor. Cursor. 2024. URL: https://www.cursor.com/ (visited on 11/12/2024).

[26] Figma. Figma. 2024. URL: https://www.figma.com/ai/ (visited on 11/12/2024).

[27] Quanjun Zhang et al. A Survey on Large Language Models for Software Engineer-

ing. 2024. arXiv: 2312.15223 [cs.SE]. URL: https://arxiv.org/abs/2312.15223.

[28] Xinyi Hou et al. “Large Language Models for Software Engineering: A Systematic

Literature Review”. In: ACM Transactions on Software Engineering and Methodol-

ogy 33.8 (2024). ISSN: 1049-331X. DOI: 10.1145/3695988.

https://arxiv.org/abs/2411.08507
https://arxiv.org/abs/2411.08507
https://arxiv.org/abs/2411.08507
https://doi.org/10.1145/1035134.1035136
https://doi.org/10.1145/1035134.1035136
https://arxiv.org/abs/1401.6365
https://arxiv.org/abs/1401.6365
https://arxiv.org/abs/1401.6365
https://www.geeksforgeeks.org/qualities-of-good-user-interface-design/
https://www.tutorialspoint.com/software_engineering/software_user_interface_design.htm
https://www.tutorialspoint.com/software_engineering/software_user_interface_design.htm
https://doi.org/10.1145/142750.142789
https://visualstudio.microsoft.com/services/intellicode/
https://visualstudio.microsoft.com/services/intellicode/
https://www.jetbrains.com/pycharm/features/ai/
https://www.cursor.com/
https://www.figma.com/ai/
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2312.15223
https://doi.org/10.1145/3695988

108

[29] Angela Fan et al. “Large Language Models for Software Engineering: Survey and

Open Problems”. In: 2023 IEEE/ACM International Conference on Software En-

gineering: Future of Software Engineering (ICSE-FoSE). 2023, pp. 31–53. DOI:

10.1109/ICSE-FoSE59343.2023.00008.

[30] Junwei Liu et al. Large Language Model-Based Agents for Software Engineering:

A Survey. 2024. arXiv: 2409.02977 [cs.SE]. URL: https://arxiv.org/abs/2409.029

77.

[31] Perplexity. Context Window Limitations of LLMs. July 15, 2024. URL: https://ww

w.perplexity.ai/page/context-window-limitations-of-FKpx7M_ITz2rKXLFG1kNiQ

(visited on 12/21/2024).

[32] Dave Bergmann. What is a context window? Published by IBM. Nov. 7, 2024. URL:

https://www.ibm.com/think/topics/context-window (visited on 12/21/2024).

[33] GitHub. Prompt engineering for Copilot Chat. GitHub Copilot documentation.

2024. URL: https: / /docs.github.com/en/copilot /using- github- copilot /prompt- e

ngineering-for-github-copilot (visited on 12/11/2024).

[34] Google AI. Long context. Gemini API documentation. Apr. 24, 2025. URL: https://a

i.google.dev/gemini-api/docs/long-context (visited on 05/02/2025).

[35] Anthropic. Claude 3.7 Sonnet. Anthropic. 2025. URL: https://www.anthropic.com

/claude/sonnet (visited on 04/29/2025).

[36] OpenAI. o3-mini. OpenAI o3-mini documentation. OpenAI. 2025. URL: https://plat

form.openai.com/docs/models/o3-mini (visited on 04/29/2025).

[37] OpenAI. What are tokens and how to count them? 2025. URL: https://help.opena

i.com/en/articles/4936856-what-are-tokens-and-how-to-count-them (visited on

03/03/2025).

[38] Alec Radford et al. Improving Language Understanding by Generative Pre-

Training. 2018.

[39] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:

OpenAI blog 1.8 (2019), p. 9.

[40] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in

Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran

Associates, Inc., 2020, pp. 1877–1901. URL: https://proceedings.neurips.cc/pape

r_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[41] Cheng-Ping Hsieh et al. RULER: What’s the Real Context Size of Your Long-

Context Language Models? 2024. arXiv: 2404.06654 [cs.CL]. URL: https://arxiv

.org/abs/2404.06654 (visited on 03/26/2025).

[42] Valentina Alto. Building LLM Powered Applications: Create Intelligent Apps and

Agents with Large Language Models. First edition. Expert insight. Packt Publish-

ing Ltd., 2024. ISBN: 1-83546-263-4.

[43] DeepSeek-AI et al. DeepSeek-V3 Technical Report. 2025. arXiv: 2412 . 19437

[cs.CL]. URL: https://arxiv.org/abs/2412.19437 (visited on 03/18/2025).

https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2409.02977
https://www.perplexity.ai/page/context-window-limitations-of-FKpx7M_ITz2rKXLFG1kNiQ
https://www.perplexity.ai/page/context-window-limitations-of-FKpx7M_ITz2rKXLFG1kNiQ
https://www.ibm.com/think/topics/context-window
https://docs.github.com/en/copilot/using-github-copilot/prompt-engineering-for-github-copilot
https://docs.github.com/en/copilot/using-github-copilot/prompt-engineering-for-github-copilot
https://ai.google.dev/gemini-api/docs/long-context
https://ai.google.dev/gemini-api/docs/long-context
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/o3-mini
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

109

[44] Chuan Li. OpenAI’s GPT-3 Language Model: A Technical Overview. Published by

Lambda. Lambda. June 3, 2020. URL: https://lambda.ai/blog/demystifying-gpt-3

(visited on 04/29/2025).

[45] Iliya Valchanov. How Much Did It Cost to Train GPT-4? Let’s Break It Down. Pub-

lished by Team-GPT. July 12, 2024. URL: https://team-gpt.com/blog/how-much-di

d-it-cost-to-train-gpt-4/ (visited on 03/18/2025).

[46] Will Knight. OpenAI’s CEO Says the Age of Giant AI Models Is Already Over.

Published by WIRED. Apr. 17, 2023. URL: https : / /www.wired.com/story /open

ai - ceo- sam- altman- the- age- of - giant - ai - models- is- already- over/ (visited on

03/18/2025).

[47] Laura Funderburk. automate-tech-post. June 7, 2023. URL: https://github.com/lfu

nderburk/automate-tech-post (visited on 04/24/2025).

[48] Iqra Rai. 6 ChatGPT Plugins to Improve Your Digital Marketing. Published by

SocialBu. 2024. URL: https : / / socialbu . com / blog / chatgpt - plugins (visited on

04/29/2025).

[49] Compose AI. Compose AI. 2025. URL: https : / / www . compose . ai/ (visited on

04/29/2025).

[50] Meghashyam Thiruveedula. Revolutionizing Invoice Processing: Leveraging LLMs

for Effortless Extraction. Published on Medium. Feb. 29, 2024. URL: https://megh

ashyamthiruveedula.medium.com/revolutionizing-invoice-processing-leveraging-

llms-for-effortless-extraction-6b8a0ba48897 (visited on 04/24/2025).

[51] SAP. What is an AI Copilot? July 2, 2024. URL: https://www.sap.com/resources/w

hat-is-ai-copilot (visited on 04/29/2025).

[52] Kylie Robison. Inside the launch — and future — of ChatGPT. Published by The

Verge. Dec. 12, 2024. URL: https://www.theverge.com/2024/12/12/24318650/cha

tgpt-openai-history-two-year-anniversary (visited on 12/16/2024).

[53] GitHub. GitHub Copilot Extension for Visual Studio Code. Available on the Visual

Studio Code Marketplace. Microsoft. May 1, 2025. URL: https://marketplace.visua

lstudio.com/items?itemName=GitHub.copilot (visited on 05/02/2025).

[54] GitHub. GitHub Copilot. 2024. URL: https://github.com/features/copilot (visited on

11/19/2024).

[55] James Prather et al. ““It’s Weird That it Knows What I Want”: Usability and Interac-

tions with Copilot for Novice Programmers”. In: ACM Transactions on Computer-

Human Interaction 31.1 (2023), pp. 1–31.

[56] Ruchika Pandey et al. Transforming Software Development: Evaluating the Ef-

ficiency and Challenges of GitHub Copilot in Real-World Projects. 2024. arXiv:

2406.17910 [cs.SE]. URL: https://arxiv.org/abs/2406.17910.

[57] Volker Bilgram and Felix Laarmann. “Accelerating Innovation with Generative AI:

AI-augmented Digital Prototyping and Innovation Methods”. In: IEEE engineering

management review 51.2 (2023), pp. 1–5. ISSN: 0360-8581.

https://lambda.ai/blog/demystifying-gpt-3
https://team-gpt.com/blog/how-much-did-it-cost-to-train-gpt-4/
https://team-gpt.com/blog/how-much-did-it-cost-to-train-gpt-4/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://github.com/lfunderburk/automate-tech-post
https://github.com/lfunderburk/automate-tech-post
https://socialbu.com/blog/chatgpt-plugins
https://www.compose.ai/
https://meghashyamthiruveedula.medium.com/revolutionizing-invoice-processing-leveraging-llms-for-effortless-extraction-6b8a0ba48897
https://meghashyamthiruveedula.medium.com/revolutionizing-invoice-processing-leveraging-llms-for-effortless-extraction-6b8a0ba48897
https://meghashyamthiruveedula.medium.com/revolutionizing-invoice-processing-leveraging-llms-for-effortless-extraction-6b8a0ba48897
https://www.sap.com/resources/what-is-ai-copilot
https://www.sap.com/resources/what-is-ai-copilot
https://www.theverge.com/2024/12/12/24318650/chatgpt-openai-history-two-year-anniversary
https://www.theverge.com/2024/12/12/24318650/chatgpt-openai-history-two-year-anniversary
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://github.com/features/copilot
https://arxiv.org/abs/2406.17910
https://arxiv.org/abs/2406.17910

110

[58] Antonio Mastropaolo et al. On the Robustness of Code Generation Techniques:

An Empirical Study on GitHub Copilot. 2023. arXiv: 2302.00438 [cs.SE]. URL:

https://arxiv.org/abs/2302.00438.

[59] Fang Liu et al. Exploring and Evaluating Hallucinations in LLM-Powered Code

Generation. 2024. arXiv: 2404.00971 [cs.SE]. URL: https://arxiv.org/abs/2404.0

0971 (visited on 03/18/2025).

[60] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. A Large-Scale Survey on

the Usability of AI Programming Assistants: Successes and Challenges. 2023.

arXiv: 2303.17125 [cs.SE]. URL: https://arxiv.org/abs/2303.17125 (visited on

03/19/2025).

[61] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. In-IDE Code Generation

from Natural Language: Promise and Challenges. 2021. arXiv: 2101 . 11149

[cs.SE]. URL: https://arxiv.org/abs/2101.11149 (visited on 03/19/2025).

[62] Shraddha Barke, Michael B. James, and Nadia Polikarpova. “Grounded Copilot:

How Programmers Interact with Code-Generating Models”. In: Proceedings of the

ACM on Programming Languages 7.OOPSLA1 (2023). DOI: 10.1145/3586030.

[63] Lenka Bajcetic, Drazen Draskovic, and Dragan Bojic. “Implementation of Graphi-

cal User Interface using Virtual Assistants based on LLMs”. In: 2023 31st Telecom-

munications Forum (TELFOR). IEEE, 2023, pp. 1–4. ISBN: 9798350303131.

[64] Sarah Fakhoury et al. “LLM-Based Test-Driven Interactive Code Generation: User

Study and Empirical Evaluation”. In: IEEE transactions on software engineering

50.9 (2024), pp. 2254–2268. ISSN: 0098-5589. (Visited on 03/19/2025).

[65] Kristian Kolthoff et al. “Interlinking User Stories and GUI Prototyping: A Semi-

Automatic LLM-Based Approach”. In: 2024 IEEE 32nd International Requirements

Engineering Conference (RE). IEEE, 2024, pp. 380–388. ISBN: 9798350395112.

[66] Fangwen Mu et al. “ClarifyGPT: A Framework for Enhancing LLM-Based Code

Generation via Requirements Clarification”. In: Proceedings of the ACM on soft-

ware engineering 1.FSE (2024), pp. 2332–2354. ISSN: 2994-970X.

[67] Jason Wu et al. UICoder: Finetuning Large Language Models to Generate User

Interface Code through Automated Feedback. 2024. arXiv: 2406.07739 [cs.CL].

URL: https://arxiv.org/abs/2406.07739.

[68] Shanchao Liang et al. WAFFLE: Multi-Modal Model for Automated Front-End De-

velopment. 2024. arXiv: 2410.18362 [cs.SE]. URL: https://arxiv.org/abs/2410.18

362.

[69] Yuxuan Wan et al. Automatically Generating UI Code from Screenshot: A Divide-

and-Conquer-Based Approach. 2024. arXiv: 2406.16386 [cs.SE]. URL: https://a

rxiv.org/abs/2406.16386.

[70] Ramesh Sharda et al. The Vehicle Routing Problem: Latest Advances and New

Challenges. 1. Aufl. Vol. 43. Operations Research/Computer Science Interfaces.

Springer-Verlag, 2008. ISBN: 0387777776.

https://arxiv.org/abs/2302.00438
https://arxiv.org/abs/2302.00438
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2303.17125
https://arxiv.org/abs/2303.17125
https://arxiv.org/abs/2101.11149
https://arxiv.org/abs/2101.11149
https://arxiv.org/abs/2101.11149
https://doi.org/10.1145/3586030
https://arxiv.org/abs/2406.07739
https://arxiv.org/abs/2406.07739
https://arxiv.org/abs/2410.18362
https://arxiv.org/abs/2410.18362
https://arxiv.org/abs/2410.18362
https://arxiv.org/abs/2406.16386
https://arxiv.org/abs/2406.16386
https://arxiv.org/abs/2406.16386

111

[71] Grigorios D. Konstantakopoulos, Sotiris P. Gayialis, and Evripidis P. Kechagias.

“Vehicle routing problem and related algorithms for logistics distribution: a litera-

ture review and classification”. In: Operational research 22.3 (2022), pp. 2033–

2062. ISSN: 1109-2858.

[72] Toth Paolo and Vigo Daniele. Vehicle Routing: Problems, Methods, and Applica-

tions, Second Edition. Second edition. MOS-SIAM series on optimization. Society

for Industrial and Applied Mathematics (SIAM), 2014. ISBN: 9781611973587.

[73] G. Clarke and J. W. Wright. “Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points”. In: Operations research 12.4 (1964), pp. 568–581.

ISSN: 0030-364X. DOI: https://doi.org/10.1287/opre.12.4.568.

[74] Stefan Schröder. jsprit. 2024. URL: https://jsprit.github.io/ (visited on 10/28/2024).

[75] Romain Montagné and David Torres Sanchez. VRPy. 2020. URL: https://vrpy.rea

dthedocs.io/en/latest/index.html (visited on 10/28/2024).

[76] Google. Google OR-Tools. 2024. URL: https://developers.google.com/optimization

(visited on 10/28/2024).

[77] Gurobi Optimization. Gurobi Optimization. 2024. URL: https:/ /www.gurobi.com/

(visited on 10/29/2024).

[78] IBM. IBM ILOG CPLEX Optimization Studio. 2024. URL: https://www.ibm.com/pro

ducts/ilog-cplex-optimization-studio (visited on 10/28/2024).

[79] Lan Peng and Chase Murray. VeRoViz: A Vehicle Routing Visualization Toolkit.

2020. URL: https://ssrn.com/abstract=3746037 (visited on 03/03/2025).

[80] Vroom. vroom-frontend. Mar. 19, 2021. URL: https://github.com/VROOM-Project

/vroom-frontend (visited on 03/03/2025).

[81] Claes. Wohlin et al. Experimentation in Software Engineering. 1st ed. 2012.

Springer Berlin Heidelberg, 2012. ISBN: 3-642-29044-2.

[82] Roel J. Wieringa. Design Science Methodology for Information Systems and Soft-

ware Engineering. 2014 edition. Springer Nature, 2014. ISBN: 9783662438398.

[83] Allen S. Lee and Ned Kock. “Action is an Artifact: What Action Research and

Design Science Offer to Each Other”. In: Information Systems Action Research.

Integrated Series in Information Systems. Springer US, 2007, pp. 43–60. ISBN:

9780387360591.

[84] Jean McNiff and Ebscohost . Action research : principles and practice. 3rd ed.

Routledge, 2013. ISBN: 978-1-136-28375-8.

[85] Ernest T Stringer and Alfredo Ortiz Aragón. Action research. Sage publications,

2020.

[86] OpenAI. ChatGPT. 2024. URL: https://chatgpt.com/ (visited on 11/11/2024).

[87] Vercel. v0 by Vercel. 2024. URL: https://v0.dev/ (visited on 12/21/2024).

[88] Galileo AI. Galileo AI. 2024. URL: https://www.usegalileo.ai/explore (visited on

12/08/2024).

https://doi.org/https://doi.org/10.1287/opre.12.4.568
https://jsprit.github.io/
https://vrpy.readthedocs.io/en/latest/index.html
https://vrpy.readthedocs.io/en/latest/index.html
https://developers.google.com/optimization
https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://ssrn.com/abstract=3746037
https://github.com/VROOM-Project/vroom-frontend
https://github.com/VROOM-Project/vroom-frontend
https://chatgpt.com/
https://v0.dev/
https://www.usegalileo.ai/explore

112

[89] Burke Holland. Announcing a free GitHub Copilot for VS Code. Published by Vi-

sual Studio Code. Dec. 18, 2024. URL: https://code.visualstudio.com/blogs/2024

/12/18/free-github-copilot (visited on 12/20/2024).

[90] GitHub. Announcing 150M developers and a new free tier for GitHub Copilot in VS

Code. Published by GitHub Blog. Dec. 18, 2024. URL: https://github.blog/news-in

sights/product-news/github-copilot-in-vscode-free/ (visited on 12/20/2024).

[91] Jussi Rasku. “Toward Automatic Customization of Vehicle Routing Systems”. PhD

thesis. University of Jyväskylä, 2019. URL: http://urn.fi/URN:ISBN:978-951-39-78

26-6 (visited on 03/03/2025).

[92] Amelia Wattenberger. Visualizing a Codebase. Published by GitHub Next. 2025.

URL: https://githubnext.com/projects/repo-visualization/ (visited on 04/02/2025).

[93] Al Danial. cloc. Version 2.04. Jan. 31, 2025. URL: https://github.com/AlDanial/cloc

(visited on 03/14/2025).

[94] Kristian Skogberg. VeRyPy-GUI. Feb. 27, 2025. URL: https://github.com/kristians

kogberg/VeRyPy-GUI (visited on 02/27/2025).

[95] Kristian Skogberg. VeRyPy GUI design conversation on V0 by Vercel. 2024. URL:

https://v0.dev/chat/vrp-solver-ui-design-KE6eNECon3e?b=b_3Bq9bKRdINX

(visited on 12/22/2024).

[96] Pawel Drozdowski. TSPLib.Net. URL: https://github.com/pdrozdowski/TSPLib.Net

/tree/master (visited on 02/25/2025).

[97] Zhu Liang. Code to Tokens Conversion: A Developer’s Guide. Published by 16x

Prompt. June 18, 2024. URL: https://prompt.16x.engineer/blog/code-to-tokens-co

nversion (visited on 03/19/2025).

[98] Chris Dunlop. Cursor went from 1–100m ARR in 12 months: the fastest SAAS to

achieve this. Published on Medium. Feb. 8, 2025. URL: https://medium.com/strate

gy-decoded/cursor-went-from-1-100m-arr-in-12-months-the-fastest-saas-to-ach

ieve-this-19d811c4f0bb (visited on 03/24/2025).

[99] Upasana Banerjee. Anysphere’s AI-code Editor Cursor Fastest to Reach $100M

ARR in 12 Months. Published by AIM Research. Mar. 13, 2025. URL: https://aimr

esearch.co/market-industry/anyspheres-ai-code-editor-cursor-fastest-to-reach-1

00m-arr-in-12-months (visited on 03/24/2025).

[100] Kristian Skogberg. VeRyPy GUI Chat Logs with GitHub Copilot. Feb. 27, 2025.

URL: https://github.com/kristianskogberg/VeRyPy-GUI/tree/master/verypy/gui/co

pilot_chat_logs (visited on 03/23/2025).

[101] Hyacinth S. Nwana. “Software Agents: An Overview”. In: The Knowledge Engi-

neering Review 11.3 (1996), pp. 205–244. DOI: 10.1017/S026988890000789X.

[102] Nicholas R. Jennings. “On agent-based software engineering”. In: Artificial intelli-

gence 117.2 (2000), pp. 277–296. ISSN: 0004-3702.

https://code.visualstudio.com/blogs/2024/12/18/free-github-copilot
https://code.visualstudio.com/blogs/2024/12/18/free-github-copilot
https://github.blog/news-insights/product-news/github-copilot-in-vscode-free/
https://github.blog/news-insights/product-news/github-copilot-in-vscode-free/
http://urn.fi/URN:ISBN:978-951-39-7826-6
http://urn.fi/URN:ISBN:978-951-39-7826-6
https://githubnext.com/projects/repo-visualization/
https://github.com/AlDanial/cloc
https://github.com/kristianskogberg/VeRyPy-GUI
https://github.com/kristianskogberg/VeRyPy-GUI
https://v0.dev/chat/vrp-solver-ui-design-KE6eNECon3e?b=b_3Bq9bKRdINX
https://github.com/pdrozdowski/TSPLib.Net/tree/master
https://github.com/pdrozdowski/TSPLib.Net/tree/master
https://prompt.16x.engineer/blog/code-to-tokens-conversion
https://prompt.16x.engineer/blog/code-to-tokens-conversion
https://medium.com/strategy-decoded/cursor-went-from-1-100m-arr-in-12-months-the-fastest-saas-to-achieve-this-19d811c4f0bb
https://medium.com/strategy-decoded/cursor-went-from-1-100m-arr-in-12-months-the-fastest-saas-to-achieve-this-19d811c4f0bb
https://medium.com/strategy-decoded/cursor-went-from-1-100m-arr-in-12-months-the-fastest-saas-to-achieve-this-19d811c4f0bb
https://aimresearch.co/market-industry/anyspheres-ai-code-editor-cursor-fastest-to-reach-100m-arr-in-12-months
https://aimresearch.co/market-industry/anyspheres-ai-code-editor-cursor-fastest-to-reach-100m-arr-in-12-months
https://aimresearch.co/market-industry/anyspheres-ai-code-editor-cursor-fastest-to-reach-100m-arr-in-12-months
https://github.com/kristianskogberg/VeRyPy-GUI/tree/master/verypy/gui/copilot_chat_logs
https://github.com/kristianskogberg/VeRyPy-GUI/tree/master/verypy/gui/copilot_chat_logs
https://doi.org/10.1017/S026988890000789X

113

APPENDIX A: FEATURES AND USER STORIES OF THE

VERYPY GUI

Table A.1. Features and user stories of the VeRyPy GUI.

ID Feature User Story

1 Problem Input As a Dispatcher, I want to input customer locations

via a form, file upload (e.g. VRP or TSP), or a combi-

nation of these methods, so that I can quickly set up

the problem.

2 Problem Input As a Dispatcher, I want to set constraints (e.g. vehi-

cle capacity and customer demands), so that realistic

limitations are respected.

3 Problem Input As a Dispatcher, I want the system to validate the in-

put data, so that I don’t encounter errors during solv-

ing.

4 Algorithm

Selection

As an Algorithm Developer, I want to select from mul-

tiple heuristic algorithms implemented in VeRyPy, so

that I can test and compare different VRP-solving

methods.

5 Algorithm

Selection

As an Algorithm Developer, I want to set parameters

for the selected algorithms (e.g. use single iteration

and minimize number of routes), so that I can experi-

ment with their behavior.

6 Solution Metrics As an Algorithm Developer, I want to see metrics for

the solution (e.g. execution time, total distance, and

number of routes) alongside the visualization, so that

I can assess the quality of the solution.

Continued on next page...

114

ID Feature User Story

7 Solution Metrics As an Algorithm Developer, I want to compare the so-

lutions generated by different algorithms, so that I can

evaluate their effectiveness.

8 Solution Metrics As a Dispatcher, I want to view detailed route sum-

maries (e.g. sequence of stops), so that I can analyze

the results further.

9 Solution

Visualization

As a Dispatcher, I want to view the generated routes

on a canvas, so that I can visually interpret the solu-

tion.

10 Solution

Visualization

As a Dispatcher, I want each route to be displayed

in a distinct color, so that I can differentiate between

them.

11 Export Solution As a Dispatcher, I want to export the solution met-

rics and visualization in a commonly used format (e.g.

JSON and PNG), so that I can share it with others or

use it in other tools.

115

APPENDIX B: ITERATION PLAN FOR THE VERYPY GUI

B.1 Iteration 1: GUI Design

Generate a GUI design for the VeRyPy library. The GUI should follow a minimalistic and

intuitive design, while including all necessary input fields for solving VRPs. Additionally,

the GUI should provide placeholders for displaying solution visualization and metrics.

User Stories

Because this iteration focuses on designing the GUI for VeRyPy, no user stories will be

implemented.

Definition of Done

A completed GUI design that includes all necessary input fields for VRPs, such as

adding customer locations, specifying vehicle capacity, and selecting a heuristic

algorithm. The design will be integrated with the existing VeRyPy codebase in the next

iteration.

B.2 Iteration 2: Basic GUI and Problem Input

Establish the foundation for the VeRyPy GUI by implementing the GUI design in code

and integrating it with the existing VeRyPy codebase. The GUI implementation should

minimize external dependencies to maintain modularity and align with the architectural

design of VeRyPy. Selecting an appropriate implementation method is essential as the

next iterations will build upon this foundation. This iteration should also introduce

interactive functionalities that allow users to input details about their VRP, along with

basic input validation.

User Stories

User stories that are planned to be implemented in this iteration are shown in Table B.1

below.

116

Table B.1. User stories planned for implementation in iteration 2.

User Story ID Feature

1 Problem Input

2 Problem Input

3 Problem Input

Definition of Done

Users can interact with the GUI to input details about their VRP (e.g., customer locations

and vehicle capacity) either by uploading a .vrp file or by entering the data directly into

the input fields. The GUI also allows users to preview information about their problem

before execution. Input validation is implemented to ensure that errors are detected and

addressed before running the algorithm. Support for algorithm selection and execution

will be added in the next iteration.

B.3 Iteration 3: Algorithm Selection and Execution

Integrate the existing heuristic algorithms from the VeRyPy codebase into the VeRyPy

GUI. The GUI should dynamically retrieve these algorithms and present them as

selectable options, allowing users to choose their preferred algorithm for solving VRPs.

This iteration also includes the functionality to solve VRPs using the selected algorithm.

User Stories

User stories that are planned to be implemented in this iteration are shown in Table B.2

below.

Table B.2. User stories planned for implementation in iteration 3.

User Story ID Feature

4 Algorithm Selection

5 Algorithm Selection

Definition of Done

Users can choose from all the heuristic algorithms implemented in VeRyPy. The GUI

computes a solution for the VRP based on the selected algorithm and the parameters

entered by the user. The solution will be displayed in the GUI in the next iteration.

117

B.4 Iteration 4: Solution Visualization, Metrics, and Export Options

Display the solution, metrics, and a visualization of the solution in the VeRyPy GUI.

Users should also be able to export the solution data, including calculated routes,

metrics, and visualization, in commonly used file formats such as JSON and PNG.

User Stories

User stories that are planned to be implemented in this iteration are shown in Table B.3

below.

Table B.3. User stories planned for implementation in iteration 4.

User Story ID Feature

6 Solution Metrics

7 Solution Metrics

8 Solution Metrics

9 Solution Visualization

10 Solution Visualization

11 Export Solution

Definition of Done

Users can view the VRP solution, including the calculated routes and key metrics (such

as computation time and solution feasibility), visually in the GUI. Users can also export

the solution and metrics to their machine.

B.5 Iteration 5: Improved Problem Input

Improve the problem input section of the VeRyPy GUI to enhance usability. Users should

be able to enter coordinates and customer demands without needing to specify an index.

The option to input the problem in .tsp format should also be available, along with the

choice to enter coordinates as regular numerical values or in geographical format using

longitude and latitude. Finally, the GUI must be thoroughly tested to ensure it functions

correctly when users manually input problem details, upload a file, or use a combination

of both methods.

User Stories

User stories that are planned to be implemented in this iteration are shown in Table B.4

below.

118

Table B.4. User stories planned for implementation in iteration 5.

User Story ID Feature

1 Problem Input

2 Problem Input

3 Problem Input

Definition of Done

Users can input coordinates and customer demands without the need to manually

provide indexes. They can also upload a file in either .vrp or .tsp format. Users can

select either VRP (specifically the CVRP variant) or TSP as their problem type. The GUI

should also solve problems whether they are entered by uploading a file, manually, or

through a combination of these methods. Additionally, the GUI dynamically displays

relevant input fields and hides irrelevant ones based on the selected problem type (VRP

or TSP).

	Introduction
	Background
	Software Engineering Process
	Requirements Engineering
	User Interface Design
	Artificial Intelligence in Software Development
	Large Language Models
	AI Copilots
	Related Work

	The Vehicle Routing Problem
	Solving VRPs using Heuristics
	Tools for Solving VRPs
	Scientific User Interfaces for Solving VRPs

	Methods
	Action Research
	Selected AI Tools

	System Under Study
	VeRyPy Overview
	VeRyPy GUI Requirements and Features
	User Stories and Iteration Planning

	Results
	Iteration 1: GUI Design
	Planning
	Action
	Analysis
	Conclusion

	Iteration 2: Basic GUI and Problem Input
	Planning
	Action
	Analysis
	Conclusion

	Iteration 3: Algorithm Selection and Execution
	Planning
	Action
	Analysis
	Conclusion

	Iteration 4: Solution Visualization, Metrics, and Export Options
	Planning
	Action
	Analysis
	Conclusion

	Iteration 5: Improved Problem Input
	Planning
	Action
	Analysis
	Conclusion

	Findings
	Discussion
	Conclusion
	References
	Features and User Stories of the VeRyPy GUI
	Iteration Plan for the VeRyPy GUI
	Iteration 1: GUI Design
	Iteration 2: Basic GUI and Problem Input
	Iteration 3: Algorithm Selection and Execution
	Iteration 4: Solution Visualization, Metrics, and Export Options
	Iteration 5: Improved Problem Input

