
Best Practices for Resource Provisioning
Declaration Within the Cognitive Cloud Continuum

Sergio Moreschini
Tampere University, University of Oulu

Tampere, Finland
sergio.moreschini@tuni.fi

Michele Albano
Aalborg University
Aalborg, Denmark

mialb@cs.aau.dk

David Hästbacka
Tampere University
Tampere, Finland

david.hastbacka@tuni.fi

Abstract—The evolution of cloud computing, driven by ad-
vances in mobile, edge technologies, and AI, has led to the
development of the Cognitive Cloud Continuum (COCLCON).
However, this paradigm introduces new challenges in managing
and optimizing computing resources across a heterogeneous
environment. This paper explores best practices for declaring
resources within COCLCON, with a focus on efficient resource
allocation and transparently declaring available resources by de-
vices. In this study, we undertook a non-holistic literature review
to identify current technologies used to specify requirements and
to determine current gaps in best practices. The main outcome
of our work is a proposed schema for Resource Provisioning
Declaration, which will allow for increased knowledge related to
the available devices and resources within the COCLCON.

Index Terms—Kubernetes, Ontology, Serverless, Resources

I. INTRODUCTION

Since its inception, cloud computing has been a valuable op-
tion for those in need of large amounts of computing resources
and flexibility. Nevertheless, recent developments in mobile
and edge device development, as well as advances in artificial
intelligence (AI), have led to a shift to a more decentralized
model, resulting in reduced latency in accessing information.
Consequently the concept of cloud computing has evolved into
the Cloud Continuum [1]. Ideally, we would like the devices to
be capable ”of sensing the environment, learning from it, and
opportunistically and dynamically adapt the computational
load as well as their outcome” [2]. A cloud system satisfying
these requirements is defined as Cognitive Cloud, and by
extension applying this concept within the Cloud Continuum
results in the Cognitive Cloud Continuum (COCLCON). In the
COCLCON, it is crucial to have knowledge of the available
resources of each constituent device at all times, therefore,
these devices should openly declare the resources available
for sharing.

This study aims to identify and refine current best practices
for declaring the available resources within the Cognitive
Cloud Continuum. Due to page constraints, this review pro-
vides a concise and focused examination of the relevant litera-
ture, rather than a comprehensive analysis. The contribution of
the work is the identification of different approaches for the
definition of resource requirements for the main tools used
to build the environment, and the gap created by them. As
a result, we also proposed a scheme for the declaration of
resource provisioning.

The rest of this work introduces background information
regarding the cognitive cloud continuum (Section II), then
presents the research questions targeted by the paper and
our research methodology (Section III). Later on, existing
specification schema discovered during the research process
are presented (Section IV), our proposed schema for resource
declaration is presented and discussed (Section V), and con-
clusions are drawn on the topic at hand (Section VI).

II. BACKGROUND AND RELATED WORKS

A. Challenges in the COCLCON

The COCLCON paradigm offers new ways to manage com-
puting resources by allowing for computational load sharing
among devices, both horizontally (edge-to-edge) and vertically
(edge-to-fog or edge-to-cloud). It is challenging to optimize
resource use in these diverse environments, especially with
the rise of serverless computing [3].

Efficiency for both infrastructure use and energy consump-
tion are two critical points for systems which need to be always
ready for computation [4]. An example of critical system is
stream reasoning where devices are continuously processing
and analyzing data streams in real-time at the edge of the
network [5]. In this scenario we can and must apply resource
declarations to virtual devices in simulations, which will en-
hance computational efficiency when applied to real devices in
the COCLCON by considering factors like energy availability
and transmission rates. Resource declaration methods must be
fully defined, independently of sniffers. This is essential for
exploiting the capabilities of the COCLCON and enabling
real-time conditioning offloading, based on external factors
such as available energy, average transmission rate and load
trends [6].

B. Similarities with the Semantic web

The definition of resource requirements in a complex
edge-cloud continuum faces significant challenges in terms
of expressiveness and computational complexity in order to
match performance requirements with available resources.
This problem is a reflection of historical challenges in systems
engineering, in particular those that were encountered in the
development of the semantic web [7], whose goal was to
enable distributed, interoperable data by associating metadata
with data and creating a general, machine-readable ontology.



Similarly, COCLCON requires a a strategic methodology
for resource description to achieve interoperable computing
resource sharing across vendors and industries [8].

A key difference is that COCLCON resources can pro-
vide computational power to facilitate their own matching
processes, whereas the Semantic Web relied on third-party
computational power to process metadata [7]. Thus, mod-
ern approaches must move from a centralized orchestration
schema to distributed intelligence or, to use a modern term, to
advance towards a COCLCON.

C. Limitations of a Centralized Orchestration

While centralized orchestration brings control and simplic-
ity to the management of distributed computing environments,
it comes with a number of drawbacks. Specifically, when
comparing this approach to offloading, there are 4 issues that
have a negative impact on the performance of centralized
orchestration: Flexibility, Latency, Resource Efficiency, and
Scalability [9].

In terms of flexibility, offloading is the clear winner over
centralized orchestration within the COCLCON. Its dynamic
and adaptive nature makes it the superior choice. About
latency, being able to adapt to changing conditions becomes
meaningless without the ability to respond in real time. As
the use of resources has a significant impact on QoS. The
existing literature on resource optimization for orchestration
proposes several algorithms [10]. However, even with this
method, resources may remain unoptimized because some
devices may still remain available while others are overloaded.
At last, as the orchestrator is the main responsible for com-
munication management and resource allocation. Overloading
the orchestrator will lead to latency, poor resource allocation,
and a reduction in QoS.

D. The dichotomy between Open Source and Proprietary
Solutions

In the development of a computing environment, the de-
cision on the type of resources to be used is of crucial
importance. Because of its flexibility, interoperability, and
accessibility, open source software (OSS) is the preferred
choice for real-world resources. Driven by community in-
novation, OSS offers a high degree of customization and
hybrid solution capabilities while reducing costs, especially
for smaller organizations.

Conversely, due to their advantages, virtual environments
often rely on proprietary solutions. Cloud providers offer
robust customer support, reliability, advanced functionality
and enhanced security, which makes them ideal for projects
requiring industry standards and regulations. These benefits
ensure a comprehensive and supported solution throughout
the project lifecycle, justifying the costs associated with cloud
services [11].

III. RESEARCH METHOD

The goal of this work is to identify and extend current
best practices for establishing resource declaration within

the Cognitive Cloud Continuum. We defined the following
Research Questions:

• RQ1: What are the different technologies used to specify
requirements within the Cognitive Cloud Continuum?
In this RQ we aim at understanding what are the current
resource provision declaration methods for different tools
independently of their nature of being an open source or
a proprietary solution.

• RQ2: Which gaps emerge in regards to current best
practices?
The purpose of this RQ is to investigate any uncovered
areas after understanding the current state of the resource
provisioning statement.

To answer the research questions, due to the limited amount
of valuable results, we performed a non-holistic literature
review. The main aim was to impartially summarize and
classify the information collected to catalogue the different
best practices for resource declaration within the COCLCON
and in particular for edge devices. The original research string
”resource specific” languages methods led to a plethora of
results using Google (i.e. 5.300.000 results within 0.37 seconds
on February 20th 2024). A similar search on Medium and
Stack Overflow yielded similar results. We did an initial con-
vergence check, which failed, so the search string was refined
to get more relevant results, achieving different keywords. At
first with the inclusion of the word yaml, results related to
Azure and Kubernetes began to appear.

For this reason a new search with the keywords yaml edge
resources has been performed. This specific search has pointed
to at least one page for all the main Proprietary Solutions
(Azure, Google Cloud Platform and AWS CloudFormation)
but also to pages related to Kubernetes. The results are
presented and discussed in Section IV-A

IV. ANALYSIS OF THE RESULTS

The performed research showed that different platforms rely
on similar templates, but the specific declarations differ for
each.

A. RQ1. What are the different technologies used to specify
requirements within the Cognitive Cloud Continuum?

When focusing on the different technologies used to specify
requirements it is important to understand how different tools
accept specific resource provisioning declaration.

AWS CloudFormation templates, written in YAML or
JSON, consist of 10 parts [12]. These parts range from version
and description to resources and outputs. The resource section
includes an ID, type, and properties. The key advantage of this
template approach is its customizability. This allows users to
add custom resources if the default types are insufficient. This
flexibility makes CloudFormation highly adaptable to specific
needs [13].

Microsoft Azure uses the management service, Azure Re-
source Manager (ARM), which implements Infrastructure as
Code (IaC) through ARM templates [14]. These JSON-based
templates define infrastructure and configuration and convert



to REST API operations during deployment. ARM templates
ensure repeatable results with declarative syntax and manage
resource orchestration, including parallel deployments where
possible. Azure’s new language, Bicep, simplifies writing
resource declarations, but ultimately, Bicep code is converted
to ARM templates for deployment.

Google Cloud Platform (GCP) organises resources in a
clear and logical hierarchy [15]. This allows the user to
manage ownership, attach points, and inheritance. The top of
the hierarchy usually consists of the organisation, followed by
projects and folders. To automate hierarchical infrastructure
of GCP, the external tool Cloudify is the best option [16].
Cloudify provisions and manages cloud resources across dif-
ferent orchestration domains. It is possible to create custom
resources by utilising workarounds such as the Kubernetes
Operator Config Connector, which facilitates resource man-
agement through Kubernetes [17].

Kubernetes is an open-source platform that automates the
operational processes associated with containerized applica-
tions, including the deployment, scaling, and orchestration of
these applications across clusters of containers. Operations are
mainly executed via a command-line interface using APIs [18].
The OpenAPI specification defines the resources required by
containers, allowing for the specification of the CPU and
memory needs of individual containers. Custom resources
can be declared using the Kubernetes device plugin frame-
work, such as specifying an NVIDIA GPU requirement with
nvidia.com/gpu.

It is also important to mention that well-known Infrastruc-
ture as Code frameworks like TOSCA and DOML, which
are primarily designed for managing cloud infrastructure and
virtualized resources, are now focusing on IoT/Edge/Fog en-
vironments to explore new opportunities 1.

Within this group of tools Kubernetes is the one showing
the highest level of customization and due to its open source
nature it is also the one that is mostly used for what concerns
offloading and orchestration. For this reason our focus will be
placed on this tool.

B. RQ2. Which gaps emerge in regards to current best prac-
tices?

The non-holistic literature review reveals a significant gap:
while it is possible to define and limit the resources available
at a given time, there is no unified schema for devices to define
their available resources at a given point in time universally,
particularly when involving energy utilization within the CO-
CLCON.

As an example, Kubernetes does not inherently support en-
ergy consumption management, necessitating indirect methods
to achieve this goal. One viable approach is to use device plu-
gins, similar to those used for GPU resource declarations [19],
to provide information on their current energy levels and
usage patterns, including the available battery capacity and

1OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) TC

current consumption. Such data may then be employed by
the device to conduct a comprehensive analysis of completed
tasks. This analysis may provide a framework within which to
contextualize future tasks and to make informed predictions
regarding the potential outcomes of these future tasks.

To this aim, it should be possible to connect directly to
devices and receive a statement with all the necessary infor-
mation, including the computational power, available support,
available energy, and an estimation of when it will become
available if it is currently engaged in another process.

V. DISCUSSION

To our knowledge, no other work has focused on the
importance of declaring resources in the edge layer of the CO-
CLCON. In environments where edge devices are independent
and willing to join networks, it is important to protect their
privacy, as well as reduce network traffic, by reducing the use
of sniffer tools.

The importance of defining an appropriate resource decla-
ration system within COCLCON is highlighted by the results
presented in the previous section. According to this, the main
goal of such a declaration system is to optimize the use of
computing resources and to allow the partitioning of tasks in
a trigger- and action-oriented way.

A similar concept is provided by serverless computing
which is defined as a software architecture where the ap-
plications are decomposed into events and functions and the
platform seamlessly hosts and executes the environment [20].
The exposure of available resources allows applications to
scale efficiently and to predict costs in a pay-as-you-go model.
The application of this approach to COCLCON can optimize
the use of real-world resources by understanding the minimum
or recommended number of devices needed, providing not
only resource efficiency (i.e. Resources-as-a-continuum) but
also devices efficiency (i.e. Devices-as-a-continuum) [21].

An example is a set of devices running Federated Learn-
ing algorithms [22]. In this collaborative approach, multiple
clients work together on machine learning tasks, coordinated
by a central server, while maintaining data privacy through
decentralization. Devices train locally on their data and send
models to a central server for aggregation. The aggregated
model is then sent back to the devices to continue learning.
Such framework is therefore possible only by making use of
an architecture which could be supported by all the devices
within the environment. All the available devices within this
framework would deploy a similar yet unique version of a
system previously trained on fog devices within the same
COCLCON.

Following, we should expect that different devices within
a specific environment should provide, when requested, a
declarative log with some specific information related to their
available resources.

A. The Proposed Schema
We therefore propose that different elements within the

COCLCON should be able of generating a Resource Pro-
visioning Declaration. This resource declaration should be



generated both as a YAML file or JSON file and composed of
specific and well known fields. An example of the proposed
structure is described in Listing 1 as a YAML file.

apiVersion: v1
kind: Edge
metadata:
name: EdgeDeviceName

spec:
containers:
- name: my-container

image: myimage:latest
resources:

specs:
cpu: "x"
memory: "x"
energy: "x"
gpu-vendor.example/example-gpu: "x"

available:
cpu: "x"
memory: "x"
energy: "x"
gpu-vendor.example/example-gpu: "x"
nextUpdate: "x" #in seconds

Listing 1: YAML file for Resource Provisioning Declaration

The ontology is a fundamental component of the CO-
CLCON framework, serving as a conduit for the provision
of information about the devices that comprise it. This in-
formation is made available without the need for the use
of specialized software, such as sniffer tools. The proposed
ontology focuses on resource provision declaration on two
different perspectives: what it can be available and what is
available right now. This viewpoint is also reinforced by the
ability to determine the timing of the next significant update
in the resource declaration.

VI. CONCLUSION

In this paper, we propose a schema for the declaration
of available resources for all devices in the Cognitive Cloud
Continuum, from edge devices to cloud platforms. We started
with a holistic literature review to identify the current resource
declaration, which led to answering the two main research
questions identified: What are the different technologies in use
for requirements specification, and what are the current best
practices?

In the first case, we found that various platforms use
templates that are similar but not identical. Moreover, open
source tools such as Kubernetes allow to customize missing
resource through device plugin frameworks. In the second
case, we realized that there are still some gaps which needs to
be address. The most important of these is, in the context of
the Cognitive Cloud Continuum, energy declaration. For these
reasons, the Cognitive Cloud Continuum has been compared to
serverless architectures and a schema for resource provisioning
declaration has been proposed.

ACKNOWLEDGMENT

This work is funded by the IndustryX and 6GSoft projects
(Business Finland), and by the Villum Investigator Project
”S4OS: Scalable analysis and Synthesis of Safe, Small, Secure
and Optimal Strategies for Cyber-Physical Systems”.

REFERENCES

[1] S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hästbacka, and D. Taibi,
“Cloud continuum: The definition,” IEEE Access, vol. 10, pp. 131 876–
131 886, 2022.

[2] S. Moreschini, F. Pecorelli, X. Li, S. Naz, M. Albano, D. Hästbacka, and
D. Taibi, “Cognitive cloud: the definition,” in International Symposium
on Distributed Computing and Artificial Intelligence. Springer, 2022,
pp. 219–229.

[3] K. Govindarajan and A. D. Tienne, “Resource management in serverless
computing - review, research challenges, and prospects,” in 2023 12th
International Conference on Advanced Computing (ICoAC), 2023, pp.
1–5.

[4] S. Baneshi, A.-L. Varbanescu, A. Pathania, B. Akesson, and A. Pimentel,
“Estimating the energy consumption of applications in the computing
continuum with ifogsim,” in International Conference on High Perfor-
mance Computing. Springer, 2023, pp. 234–249.

[5] D. Dell’Aglio, E. Della Valle, F. van Harmelen, and A. Bernstein,
“Stream reasoning: A survey and outlook,” Data Science, vol. 1, no.
1-2, pp. 59–83, 2017.

[6] K. Sheshadri and J. Lakshmi, “Qos aware faas for heterogeneous edge-
cloud continuum,” in 2022 IEEE 15th International Conference on
Cloud Computing (CLOUD). IEEE, 2022, pp. 70–80.

[7] A. Rhayem, M. B. A. Mhiri, and F. Gargouri, “Semantic web technolo-
gies for the internet of things: Systematic literature review,” Internet of
Things, vol. 11, p. 100206, 2020.

[8] TerminusDB, “The semantic web is dead – long live the semantic web!”
https://terminusdb.com/blog/the-semantic-web-is-dead/, 2022.

[9] A. Megargel, C. M. Poskitt, and V. Shankararaman, “Microservices
orchestration vs. choreography: A decision framework,” in 2021 IEEE
25th International Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 2021, pp. 134–141.

[10] A. Droob, D. Morratz, F. L. Jakobsen, J. Carstensen, M. Mathiesen,
R. Bohnstedt, M. Albano, S. Moreschini, and D. Taibi, “Fault tolerant
horizontal computation offloading,” in 2023 IEEE International Con-
ference on Edge Computing and Communications (EDGE), 2023, pp.
177–182.

[11] E. Truyen, D. Van Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen,
“A comprehensive feature comparison study of open-source container
orchestration frameworks,” Applied Sciences, vol. 9, no. 5, p. 931, 2019.

[12] A. CloudFormation, “Template anatomy,” https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/template-anatomy.html, 2024.

[13] ——, “Custom resources,” https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/template-custom-resources.
html, 2024.

[14] M. Learn, “What are arm templates?” https://learn.microsoft.com/en-us/
azure/azure-resource-manager/templates/overview, 2023.

[15] G. C. Platform, “Resource hierarchy,” https://cloud.google.com/
resource-manager/docs/cloud-platform-resource-hierarchy, 2023.

[16] C. Platformm, “Cloudify,” https://cloudify.co, 2022.
[17] G. C. Platform, “Config connector overview,” https://cloud.google.com/

config-connector/docs/overview, 2024.
[18] T. K. Authors, “Kubernetes api,” https://kubernetes.io/docs/concepts/

overview/kubernetes-api/#openapi-v3, 2024.
[19] ——, “Schedule gpus,” https://kubernetes.io/docs/tasks/manage-gpus/

scheduling-gpus/, January 2024.
[20] A. P. Rajan, “A review on serverless architectures-function as a service

(faas) in cloud computing,” TELKOMNIKA (Telecommunication Com-
puting Electronics and Control), vol. 18, no. 1, pp. 530–537, 2020.

[21] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
internet of things: a primer,” Digital Communications and Networks,
vol. 4, no. 2, pp. 77–86, 2018.

[22] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

https://terminusdb.com/blog/the-semantic-web-is-dead/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy
https://cloudify.co
https://cloud.google.com/config-connector/docs/overview
https://cloud.google.com/config-connector/docs/overview
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#openapi-v3
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#openapi-v3
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

	Introduction
	Background and Related Works
	Challenges in the COCLCON
	Similarities with the Semantic web
	Limitations of a Centralized Orchestration
	The dichotomy between Open Source and Proprietary Solutions

	Research Method
	Analysis of the Results
	RQ1. What are the different technologies used to specify requirements within the Cognitive Cloud Continuum?
	RQ2. Which gaps emerge in regards to current best practices?

	Discussion
	The Proposed Schema

	Conclusion
	References

