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Abstract—Pervasive computing calls for ultra-low-power de-
vices to extend the battery life enough to enable usability in every-
day life. Especially in devices involving programmable processors,
the energy consumption of integrated memories often plays a
critical role. Consequently, contemporary memory technologies
focus more on the energy-efficiency aspects with new custom
CMOS SRAM cells with tailored energy consumption profiles
constantly being proposed.

This paper proposes a method that exploits such contempo-
rary low power SRAM memories that are energy optimized for
storing a certain logic value to improve the energy-efficiency of
instruction fetching, a major energy overhead in programmable
designs. The method utilizes a low overhead xor-masking ap-
proach combined with statistical program analysis to produce
optimal masks to reduce the occurrence of the more energy
consuming bit values in the fetched instructions.

In comparison to the “bus invert” technique typically used
with similar SRAMs, the proposed method incurs minimal area
overhead while still reducing the total energy consumption of
an example LatticeMico32 core up to 5%. The improvement to
instruction memory energy consumption alone is up to 13% with
a set of benchmarks.

I. INTRODUCTION

With the emerging Internet of Things (IoT), more and more
devices are becoming wearable, intelligent and wireless. Hav-
ing small, usable devices that can process data, communicate
wirelessly and operate for extended periods of time without
external power source creates challenges for battery and pro-
cessor technologies. Improved intelligence in devices often
results in increased battery consumption due to the additional
required digital logic. Since limitations of the current battery
technologies inflict a hard upper bound on device usage time
without having an external power source available, low-power
and energy-efficient operation is an important requirement for
embedded devices.

While processing devices are getting smaller, the amount
of data being processed is growing, which makes power
consumption of memories a critical aspect in ultra-low-power
compute devices. It is not rare for on-chip memories to
be responsible for half of the power consumption in CPU-
based digital designs [1], [2]. In order to keep memories
up to speed with other components, new technologies such
as Spin-Transfer Torque RAM (STT-RAM) and Embedded

DRAM (eDRAM), are studied as possible replacements to
SRAM. However, these technologies are not yet mature, and
process challenges such as cost, durability, and variability
control must be overcome before they can be widely adopted.
Unlike SRAM, they are dedicated-process [3] technologies,
where significant modifications to the fabrication process need
to be performed.

According to ISSCC, SRAM is still the technology of
choice for fast on-chip memories and caches. However, also
within the space of SRAM designs there is room for optimiza-
tion. Traditional cell designs do not consider that instruction
and program data are often biased towards containing either
high or low logic values. If statistical information about the
data to be stored exists, memory cells can be designed in an
asymmetric fashion, so that they consume less power when
holding, reading or writing the more often occurring logic
value in that data, allowing reduction of the total energy
consumed. These asymmetric cells have been designed and
fabricated for memories and caches [4]–[7].

This paper takes under closer inspection the asymmetric
SRAM designed and fabricated by Mori et al. [6], where read-
ing the logical value one results in lower energy consumption
compared to the value zero. In order to reduce the total energy
consumption, the authors added a majority voting logic to
increase the amount of logical ones stored, and thus read from
their proposed memory.

In this paper we show that this type of asymmetric SRAMs
can be beneficially exploited also for program instruction
memories in statically scheduled processor cores by adding a
very small area hardware logic, and utilizing offline program
binary analysis. The paper is organized as follows. Section II
reviews previous methods for low-power instruction and data
encoding. Section III introduces the proposed method. It is
evaluated and compared to an existing low-power encoding in
Section IV. Section V concludes the paper.

II. RELATED WORK

Previous work on low-power encoding has mostly con-
centrated on instruction address bus power and program data
bus power reduction. The methods can be divided into static
and dynamic methods, depending of the time the encoding is
performed. Static encoding happens at program compile time,
and dynamic at runtime using additional hardware logic.



Bus-invert encoding [8] was introduced by Stan and
Burleson in 1995. They presented the encoding as a method
to lower off-chip data bus power consumption. Later work has
applied the encoding to segments of divided buses [9], [10]. In
the bus-invert method, data is dynamically re-encoded based
on the number of toggling bits between two consecutive data
words (also known as the Hamming distance). If the number of
toggling bits is more than half of the total bits, the data word
is inverted with a logical NOT operation. This is done using a
logic connected to the memory block, at the end of the bus. At
the other end of the bus, where the data is consumed (typically
a load-store unit or an instruction fetch), NOT is performed
again to restore the original word, in case indicated by an extra
control bit. The most apparent drawback of this technique is
the additional control bit that needs to be stored per each word
in the memory, and transferred to the consumers.

Petrov and Orailoglu [11] proposed a static method where
the instruction data bus was encoded with 16 possible data
transformation operations. The optimal set of transformations
were found by using an exhaustive search considering two
consecutive instruction words at a time. The encoded words
were stored in memory when loading the program in, and
the transformations to perform were communicated to the
processor decode unit either in the beginning of the program
or before application hot-spots, such as loops. This method
needs frequently executed loops to perform well, also the
reduction of toggled bits is better with small basic block sizes
in comparison to large ones. In terms of energy consumption,
the benefits from reduced successive word toggle activity can
be significant when applied to an off-chip DRAM, or when
the words are transferred via a long on-chip bus. However, the
effect of bit toggles in the case of mostly reading data from a
SRAM residing close to the consumer, a typical scenario with
on-chip instruction memories, is small. In addition, the energy
overhead of the additional decoding logic to implement the 16
transformations was omitted from the analysis.

Su et al. [12] used Gray coding and Cold scheduling to
reduce bit switching on the instruction address bus. Gray
coding exploits the fact that instructions are often fetched from
consecutive memory addresses. By reordering the instructions
in memory so that sequential addresses are located in Gray
coded addresses, the instruction address bus toggling can
be reduced. The authors combined Gray coding with Cold
scheduling, where the program compiler schedules instructions
using their relative energy costs to each other to minimize the
total energy.

Musoll et al. [13] introduced an encoding based on the
observation that usually programs operate on sets of same
addresses, or working zones, repeatedly at a time. Like in
Gray coding, this can reduce the address bus toggling. Working
zones are given identifiers and these along with address offsets
are sent to the instruction control logic to signal which working
zone to use. This method can be expensive logic-wise, since
the encoding and decoding algorithms are complex.

Benini et al. [14] analyzed instruction address traces to
create custom encoder and decoder logic for a given processor.
According to the authors, the method is generic and can
be applied to various processors. This method showed little
savings in the total energy when taking into account the energy
required by the additional encoding and decoding logic.

Regarding instruction memory power consumption opti-
mization, previous work mostly concentrates on the address
bus power reduction, and, in particular, minimizing its bit
switching activity. Many of the original methods focus on off-
chip data bus energy reduction and disregard the energy over-
head of the extra logic needed for encoding and decoding. In
contemporary compute devices, the instruction data bus energy
consumption might not be relevant due to instruction memories
or caches integrated close to the consumer, the instruction fetch
unit. On the other hand, in ultra-low-power designs, the energy
and area overhead of the additional encoding and decoding
logic required might be an important factor, since a complex
implementation of the method can reverse the achieved gains.

Unlike previous solutions, our proposed method is able to
utilize statistical analysis of the individual bit positions in in-
struction execution to produce an optimal, low-power encoding
during compile-time with minimal required additional dynamic
decoding logic.

III. PROPOSED METHOD

Most of the existing bus encoding algorithms concentrate
on instruction address bus and program data bus encoding.
They aim to reduce the bit switching activity on the buses,
whereas the proposed method maximizes the occurrence of one
logical value over the other. For the instruction address bus, the
existing approaches exploit the fact that instruction addresses
are often accessed in a sequential order, where techniques
such as Gray coding the addresses can help. The fetched
instruction data, on the other hand, is usually less sequential –
the individual bits do not typically correlate with the previously
fetched instruction word.

The proposed method we call xor-masking, uses statistical
information about instruction memory accesses for individual
programs to statically determine an optimal xor-mask to en-
code the instructions in each particular program to maximize
the appearance of the desired logical value. The method is
intended for designs in microcontroller or signal processing,
where no operating system is used. This allows simpler
handling of the xor-mask, since no dynamically linked code,
system calls or context switches are used.

This encoding logic was used dynamically by Mori et
al. [6] for general data. It resembles the original bus-invert
logic, where the inverting decision is based on the Hamming
distance between words.

The Hamming distance for two words of data can be
calculated by taking the logical XOR between the words,
and counting the ’1’ bits of the result. This is presented in
Fig. 1. Here the previous (top) word has been inverted and we
calculate the Hamming distance to the next word, including
the added bit. In this case, we would invert the next (bottom)
word, since the Hamming distance is greater than half of the
word length. Counting the bits can be done with majority
voters. Their implementation cost depends on the width of
the data, and the type of the voter [15]. The decoding is done
by XORing a given word with its added bit. For their SRAM,
Mori et al., modified the original bus-invert by not minimizing
the amount of toggles, but maximizing the amount of ’1’s.
This corresponds to calculating the Hamming distance with the
other word constantly being all ’1’s. This simplified the logic,
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Fig. 1. Calculating the Hamming distance for two words for bus-inverting.
Left-most bits are toggle bits. The two words are XORed and ’1’ bits in the
resulting word are counted to make the toggle decision.

since the previous instruction or data value was not compared
to the current one, thus saving a register and a logical XOR
between the words. In this paper, this method is referred to as
Majority Voter Encoding (MVE).

Encoding words for low power like this is not ideal,
when the SRAM is used as an instruction memory. Statistical
instruction analysis, such as in the proposed method, can
lead to better maximizing of the low read-energy logic values
in the memory. The analysis (see Fig. 3) starts by taking
the instruction memory bit image of the optimized program.
An instruction address trace with an unmodified instruction
memory image is produced by simulating the targeted program
using typical input data. Then, for each bit index, the total
amount of logical ’1’s and ’0’s is weighted according to
execution count is calculated. This process is illustrated in
Fig. 2. If the amount of ’0’s is greater than half of total bits in
the word, a ’1’ is assigned to that index of a xor-mask that is
applied to the instruction word. That is, all the bits in that index
will be inverted in the memory. The xor-mask is created for
each application separately. For the memory examined in this
paper, logic ’1’ reads are preferred for low energy. However,
the method can equally efficiently be applied to cases, where
logic ’0’ is the less energy consuming alternative.

Like the static instruction transformation of Petrov and
Orailoglu [11], the proposed method conveys application-
specific information to the processor. In our case, this in-
formation is reduced to a mere xor-mask, which is used to
decode the encoded words during the instruction fetch stage.
Fig. 4 depicts the logic required. Decoding the words is done
by performing a logical XOR between the mask word and
each encoded word. In addition to incurring extremely little
additional logic, this allows easy implementation of the method
to existing architectures.

The update of the XOR mask can be integrated with the
program image, so that after reset the first instruction address
holds the xor-mask. This is fetched and treated as a mask word
which is stored to the mask register. After this, the succeeding

11001101
10101110
11001101
11001101
11001101
01100011
11461141

00110010

Fig. 2. Forming the xor-mask for an example instruction word trace. If the
total amount of ’0’s for a given bit index is more than half (here three) of
total bits for that index, it is xor-masked with a ’1’.
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Fig. 3. Flow of the proposed encoding method. Stages and files for the
proposed method are in bold italics.

words are treated normally as instructions. For even easier inte-
gration with program compilers, the mask word and a jump to
reset address can be placed to the last addresses in instruction
memory to avoid relocating the program instructions. For real
world applications, program code for the static analysis should
be weighted realistically and simulated with a typical input. If
the simulated execution does not match a realistic scenario, the
resulting suboptimal mask could cause an increase in energy
consumption.

The decoding logic overhead in the proposed method is
very low. Moreover, encoding the words incurs no additional
hardware logic, since the encoding is performed offline as a
final pass over the instruction bit image.

As a side effect of an encoding that aims to maximize one
logical value over another, the proposed method often reduces
bit toggling between successive instruction words. In case of a
multi-level instruction memory hierarchy, the reduced toggling
can save additional energy since off-chip buses can consume
considerable amounts of energy.

IV. EVALUATION

Xor-masking was implemented on LatticeMico32 proces-
sor [16]. LatticeMico32 is a RISC architecture with an open
licensing agreement and freely available RTL source code.
Detailed specifications of the evaluated processor are listed in
Table III .The evaluation platform was a minimal setup, where
instruction and data memories were scaled to be large enough
to accommodate all of the individual bechmark program in-
structions and data at a time. The benchmark programs were
chosen to represent typical applications in microcontrollers in
low-power scenarios. The benchmarks are listed in Table IV.
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Fig. 4. Implementation of the decoding logic. First word after reset is read in
as a new mask. Mask is active, if first bit in instruction is logic ’1’. Instructions
are decoded by XORing them with the mask.



TABLE I. ENERGY CONSUMPTION.

Benchmark Original MVE Proposed
(pJ) ∆(%) ∆(%)

adpcm 178 000 -53.0 -57.2
aes 103 000 -54.5 -57.6
blowfish 1 751 000 -57.1 -61.2
coremark 1 071 000 -56.7 -59.3
matrix 664 000 -55.3 -63.1
fir 1 000 -62.9 -67.3
gsm 56 000 -56.0 -59.9
jpeg 5 967 000 -55.2 -58.4
lms 2 000 -55.2 -63.1
mips 51 000 -54.7 -57.9
sha 1 459 000 -54.6 -61.5

TABLE II. BIT SWITCHING ACTIVITY.

Benchmark Original MVE Proposed
∆(%) ∆(%)

adpcm 789 000 -3.2 -6.4
aes 480 000 -13.9 -13.6
blowfish 6 773 000 -7.6 -7.8
coremark 5 771 000 -16.9 -16.3
matrix 3 283 000 -8.7 -8.8
fir 9 000 -48.7 -50.0
gsm 291 000 -20.7 -21.1
jpeg 28 492 000 -12.2 -13.1
lsm 12 000 -36.3 -36.5
mips 239 000 -10.8 -11.8
sha 5 971 000 -2.6 -5.4
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Fig. 5. Write energy consumption [6] for the referred SRAM.

The energy consumption was evaluated by calculating
energy costs for reading a single ’1’ and ’0’ based on the
previously published measurements for the original SRAM [6].
In the original 64kB SRAM, for a 16-bit word, energy con-
sumption for reading all ’0’s and reading all ’1’s was 1440
fJ/cycle and 148.5 fJ/cycle, respectively. Dividing these by
16 yielded 90.00 fJ/cycle and 9.28 fJ/cycle for the cost of
reading a single ’1’ bit and a ’0’ bit, respectively. Next,
instruction address traces for the benchmark programs were
produced from Modelsim simulations. Using the calculated
read energies, instruction traces and instruction memory bit
images encoded according to each of the two methods, the
total SRAM energy consumption for each benchmark program
was calculated. These are presented in Table I.

Considering the write energy consumption is relevant for
processors with an instruction cache. Cache misses translate
to writing cache lines. The difference in energy reduction for
writing all ’0’s and all ’1’s to the referred SRAM, compared
to a regular SRAM, was reported as negligible, 1%. This is
illustrated in Fig. 5. The proposed method does not affect the
time of replacing cache lines compared to the referred method.
In this sense, write energy evaluation is not interesting, since
the difference between the proposed method and the referred
one is not significant.

If both the instruction memory and the instruction cache
are implemented with the referred SRAM technology, the total
energy reduction depends on the combined energy consump-
tion of the two. In this case, the decoding logic would be
implemented after the instruction cache.

In the case of the proposed method, the numbers also
include the energy consumed by the majority logic proposed
with the referred SRAM technology. In our case, this majority

logic is not used and instead, the decoding logic would be
implemented in the instruction fetch unit. This overhead is
present in our energy numbers for the proposed method. The
improvement in energy consumption of our proposed method
compared to the referred method would, therefore, be better
than the results presented in this paper. However, this overhead
is difficult to estimate, since the authors did not report the
majority logic energy consumption individually, but rather the
overall SRAM’s. Moreover, the majority logic relies on a pull-
down network and a sense amplifier, However, regardless of
this overhead, our proposed method still achieves lower energy
consumption in all 11 benchmark programs.

Energy comparison normalized to MVE for the benchmark
programs is presented in Fig. 8. As is expected, the energy
consumption depends on the dynamic instruction mix in each
of the benchmarks. The more there are instructions resembling
each other on the bit level, the more the proposed method can
save energy. The worst case is when the occurrence of ’1’
and ’0’ at each bit position is exactly the same. In this case,
inverting the bit index results in no savings in energy.

The energy overhead of the added logic is small compared
to the overall energy, on average 1.0% of the SRAM energy.
The best energy reduction, 13.3%, was achieved in matrix
benchmark and the lowest reduction, 1.5%, in coremark.
On average, the reduction was 6.2%. To estimate the CPU
total energy consumption, the described LatticeMico32 was
synthesized on a 28nm ASIC standard cell technology. The
instruction memory consumed 37.7% of the total energy
after synthesis for this particular implementation. Using this
number, the effect on the total CPU energy was calculated.
This is presented in Fig. 6. The largest total energy reduction,
24.8%, was achieved with fir. In matrix, total CPU energy
consumption was 5.0% less compared to MVE. On average,
this reduction was 2.4%.

TABLE III. LATTICEMICO32 FEATURES.

Clock frequency 18.2MHz
Instruction set architecture RISC
Instruction width 32 bits
Instruction memory On-chip SRAM, 32kB
Data memory On-chip SRAM, 400kB

Dedicated hardware

Hardware multiply unit
Hardware divide unit

Pipelined barrel shifter

TABLE IV. BENCHMARK PROGRAMS.

Suite Programs
CHStone [17] adpcm, aes, blowfish, gsm, jpeg, mips, sha
DSPStone [18] matrix
Coremark [19] coremark
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Fig. 6. Comparison of total CPU energy for MVE and the proposed method.
Normalized to the level of CPU with unencoded data in SRAM.
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Fig. 7. Normalized energy consumption for benchmark programs, each basic
block with individual mask. The energy overhead of mask updating is not
considered.

The reduction in bit switching activity is compared to
the original instruction words and the majority-voter-encoded
words. This is presented in Table II. Both of the encoding
methods add a toggle bit to the unencoded words, increasing
the total amount of bits read. The proposed method reduces
the bit switching activity in all but two benchmark programs
compared to the MVE. The reductions are small and in the
best case 3.3%. In a realistic implementation in an ultra-low-
power IoT device, off-chip memory would be unlikely to be
used for storing instructions and the effect in energy reduction
for an on-chip bus would be negligible.

To evaluate the possible energy reduction from using
multiple masks, basic blocks for the benchmark programs were
formed from the instruction traces. A xor-mask was computed
for each basic block. Then, energy consumption was again
calculated using the numbers for the referred SRAM. The
results are presented in Fig. 7. The numbers do not include
the energy overhead from mask updating. The results seem
encouraging, and suggest that further investigation could be
beneficial, since theoretically, up to 74% reduction could be
achieved (in coremark benchmark).

V. CONCLUSIONS

Energy consumption of on-chip and off-chip memories
offers optimization opportunities in pervasive compute devices.
In this paper, a novel statistical method, xor-masking was
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Fig. 8. Proposed method’s instruction memory energy consumption for
benchmark programs, normalized to the corresponding consumptions with
MVE.

proposed to reduce the instruction fetch energy consumption
in asymmetric SRAM technologies. The proposed method was
evaluated on LatticeMico32 RISC soft-core with 11 benchmark
programs.

Including the energy overhead of the decoding logic, the
proposed method consumes up to 13% less energy compared
to the state-of-the-art majority voter encoding on the same
SRAM. The total CPU energy reduction is up to 5% compared
to majority voter encoding. The energy consumption with
the proposed method was smaller in all benchmark programs
compared to the majority-voter-encoding. In addition, the
proposed method reduces instruction data bus toggling up to
3.3% compared to the referred method.

Initial evaluation of using multiple xor-masks per program
suggest further possibilities for energy reduction. Future work
involves researching the use of multiple masks for a given
program. This involves at least investigating the granularity of
the masking (basic block/instruction level), number of masks
and mask updating strategies for maximal energy reduction.
Careful consideration of the mask updating overhead is re-
quired.
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