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Abstract—Edge computing is considered vital to IoT evolution,
enabling the timely execution of various computational tasks for
constrained devices utilizing external resources. The conventional
host-based network architectures become a bottleneck for further
development of edge computing, primarily when serving latency-
sensitive applications. Further, existing approaches do not exploit
complex data correlations in the network layer for optimization.
This paper demonstrates that Named Data Networking (NDN)
has the potential to enable efficient support for mobile users
offloading their time-sensitive computing tasks to edge servers.
For this purpose, the NDN protocol was enhanced with a server
selection procedure, capable of adjusting for the varying resource
availability on edge servers. The results of the experiments show
clear support for using NDN in these scenarios, with individual
gains coming not just from Interest aggregation and caching,
which are NDN features, but also from dynamic server selection.

Index Terms—ICN, NDN, edge computing, Future Internet

I. INTRODUCTION

The ubiquitous proliferation of TCP/IP networking solu-
tions over the last few decades has gradually led to the
existing Internet architecture. This architecture, while still
capable of supporting modern applications, faces significant
challenges from emerging services and applications that are
more distributed and should operate in a dynamically changing
environment. As a result, recently, there have been several
initiatives aimed at rethinking the foundation of network
design principles. Although this trend is accompanied by the
industrys inherent inertia for improvement, there is growing
evidence that a plethora of emerging services and use-cases
may benefit from these new networking approaches.

The Named Data Networking (NDN) paradigm promotes
the idea of constructing the future internet around the data
rather than hosts [1]. In the NDN framework, data is requested
by sending interests, which effectively eliminates the need for
hostname resolution. Moreover, NDN supports the aggregation
of interests, allowing for better efficiency of network resource
utilization in case the requested content overlaps. Finally, NDN
natively allows for local caching of requested data, which
improves tolerance to link failures and topology changing.

Conventionally, NDN is considered to replace the function-
ality of the network and transport layers. However, NDN may

also enhance the performance at the service layer, especially
for services associated with dynamically changing resources
and demands. In particular, NDN may be applied to dynamic
service deployment at the edge, where service designers face a
complex trade-off between application requirements, resource
capabilities, and the inherently dynamic network topology [2].
Initial studies in this topic have shown that NDN technologies
hold the potential for orchestrating computation and efficient
re-use of previously computed results [3]. However, those
works are lacking efficient solutions for dynamic server se-
lection, and do not elaborate on the numerical gains enabled
by NDN technology for the dynamic service provisioning.

In this paper, augmented computing at the edge is enabled
using NDN for mobile wireless access networks. Particularly,
it is considered that mobile users offload compute tasks to
the edge, with dynamic server selection based on their current
load. The developed solution does not interfere with default
NDN functionality but complements it with a service discovery
procedure. The main contributions of this paper are as follows:

o An augmented computing paradigm that can seamlessly
increase the computing capabilities available on a mobile
device by using third-party resources (e.g., edge or cloud
servers) over NDN;

e A service discovery procedure to enhance the NDN pro-
tocol that allows receiving offers (multiple Data packets)
from different service providers back to a single service
request (Interest packet) broadcasted to the network;

o A method for delegated edge server selection over NDN.

The remainder of the paper is organized as follows: moti-
vation and a use-case description are provided in Section II.
Further, in Section III, the improvements made to the NDN
protocol and a proposed method for edge server selection are
described. In Section IV, computer simulations are presented
and discussed; conclusions are drawn in Section V.

II. MOTIVATION

A. The Considered Use-Case: Dynamic Compute Service

This work considers a dynamic compute service, where each
computing task is defined by data that needs to be processed
and software used for the processing of the data. For example,



a compute task for 3D rendering may be composed of photos
of an object (data) and the software required for processing
these photos. Each mobile device has a queue of computing
tasks to be performed. Assuming that the complexity of each
task in the queue is known, the user device can be capable of
estimating when the CPU will begin processing each of the
tasks.

Further, it is assumed that a remote computing infrastructure
(edge or cloud) is available for mobile devices to use. A
user/mobile device opportunistically offloads some tasks from
its queue to a remote server. If the results are delivered back
before the processing of that task is scheduled in the user
device, the task is considered as accomplished and is removed
from the queue. This target time, Tp, is referred to as the
requested service accomplishing time.

The rationale in considering NDN for this use-case relies
on the common assumption that computing requests issued
by users are likely to be correlated [3]. For example, in
the VANET scenario, cars are reacting to a situation (e.g.,
congestion or an accident on the road) using the same data
(e.g., data disseminating from the vehicle that first detected
the accident) with only a limited number of software options
for processing that data. Thus, users requesting the same pro-
cessing operations over the same data may potentially benefit
from NDN capabilities coming from interest aggregation and
caching. These gains increase with higher similarity among
user requests. However, compared to previous studies, here
we demonstrate that NDN can enhance performance not only
via exploiting similarities of the requested services but also
via handling the dynamism of available resources (e.g., CPU
load at edge servers).

B. Challenges of Edge Computing

Edge computing is growing exponentially through the in-
crease of sensors, data, and computing being performed at the
edge. In many emerging dynamic edge compute applications,
low latency is needed even in the face of changing network
structures, varying wireless links, and resources in the pres-
ence of mobility. Additionally, time-sensitive analysis entails
constructing the right services dynamically with the right data
in real-time. In such situations, it is entirely possible that the
source of the data or the destination (the best place to perform
the compute) may not be known a priori. Further, existing IP-
based solutions do not have any awareness of the network
layer to exploit similarities in data or compute requests. Since
emerging edge applications can have a rich correlation in
compute requests and data (as discussed in the Section II-A),
name-based networking solutions allow the exploitation of
these correlations resulting in the more efficient solution.

Recent works in using NDN for computing, focus on placing
functions in the network, and executing them [4]. Named
Function Networking (NFN) uses ICN naming to specify the
compute function to be performed (code) and data to be
processed [5]. In addition to enabling a remote procedure
call (RPC), NFN includes methods for fetching results that
exist somewhere in the network. RICE [6], further extended

NFN functionality with consumer authentication and autho-
rization, enhanced service parameter passing mechanism, and
accommodating non-trivial (nested) computations. RPC func-
tionalities, with the focus on the edge and fog computing, are
extended in NFaaS [7]. If the first compute server that receives
the request does not have enough resources (e.g., CPU) to
execute the task, it forwards the request to a neighboring node.
Such an approach provides opportunistic accomplishment of
the compute task but does not guarantee either the best server
selection or the satisfaction of time constraints for latency-
sensitive services.

The server selection procedure represents a significant chal-
lenge for edge and fog computing [8]. Compute resources
available at the edge servers often change rapidly, and this
should be taken into account when selecting a server for
offloading a computing task. Proactive approaches (e.g., NLSR
[routing]), which rely on periodic updates of the network state,
are not suitable for dynamic environments due to high signal-
ing overhead. At the same time, reactive approaches introduce
additional latency and may not address the demand for latency-
sensitive applications. In [9], the authors proposed to collect
offers from computing-capable nodes when fetching data to
be processed. This approach introduces minimal overhead for
the selection procedure (in terms of both selection time and
signaling) and guarantees the best server selection among
those located between a consumer and the location of the data.
However, this approach does not consider servers that are in
other directions and can provide better offers.

In this work, addressing the challenge of dynamic server
selection at the edge for serving latency-sensitive computing
requests is the focus.

III. DYNAMIC SERVER SELECTION IN NDN
A. Leveraging Multiple Responses

In NDN, an interest packet is sent to request a specific
piece of data identified by its name. Nodes that have the
requested content reply with a data packet. However, only the
first data packet received by intermediary nodes is relayed
back to the node that sent the interest packet. This efficiently
reduces the network load when delivering data. On the other
hand, enabling the delivery of multiple data packets per one
interest also can be justified for specific scenarios such as
when a user wants to receive offers from multiple service
providers. Modifying the paradigm of “one data packet per
interest” to enable dynamic compute server selection on the
edge for compute-related names is explored in this paper.

To enable multiple data packets per one interest, a “Dis-
cover” type of interest packet is introduced. To achieve this, a
specially allocated keyword is used, which can be embedded
into the namespace. For example, a namespace may start
with a keyword prefix such as “/discover/service/”. In other
words, certain predefined and known keywords are reserved
to obtain multiple data packets in response to a single interest
packet. Per this design, the reserved keywords cannot be
assigned as the root of any other namespace. Moreover, it
is also targeted as a healthy balance between overhead in the



network and diversity gain related to server selection. This is
achieved by limiting the number of Data packets relayed by
intermediary nodes based on both a timer and the number
of times the Data packet has been forwarded downstream.
Every service discovery interest contains the desired number
of responses the consumer wants to receive back along with
the “InterestLifetime” field. These two elements are used to
decide when the entry for this interest can be removed from
the Pending Interest Table (PIT).

To prevent stale entries in the PIT table, routers along the
path of the “Discover” packet compare these parameters with
their own policies. If the parameters are policy-compliant, the
parameters can be applied to the appropriate PIT entry. Oth-
erwise, the number of responses can be decreased by a router
according to its internal policy. Once the “InterestLifetime”
times out, the PIT entry will be deleted if no responses have
been received. When the data comes back, and the associated
PIT entry has not yet expired, the forwarder will satisfy the
interest by sending the data packet downstream and decreasing
the counter by one. Once the counter reaches zero, implying
that the number of the packets sent back reached the requested
number of responses, its associated PIT entry is marked as
expired and deleted.

B. Server Selection by Node Delegation

In a wireless access environment, especially in the unli-
censed spectrum, the interference and high mobility of users
may lead to performance degradation of the considered dy-
namic compute service. To alleviate the problem of server
selection, it is proposed to use a delegated node in the
wired part of the network on behalf of a mobile user. Such
an approach allows for shifting the signaling overhead of
the selection procedure from the wireless links to the more
reliable wired infrastructure. Additionally, it reduces the risk
of interruptions during the selection procedure and enhances
stability. The procedure for server selection is presented in
Fig. 1.

The procedure starts with a request (Interest) for a service
sent by a mobile user (1). The Interest includes details of the
requested service inserted in the namespace. The namespace of
the Interest (1) starts with a keyword specifying that delegated
server selection is demanded. After receiving the Interest, a
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Fig. 1. Server selection by a delegated node.

node capable of delegated server selection sends ‘“Discover”
type of Interest packets (2.1, 2.2) to the network and waits for
offers from available servers. Servers receiving the “Discover”
interest packet, reply back with the cost offer (3.1, 3.2). The
offer may include the expected computation time, the price for
the service, server identifier, and any other relevant metrics.
Note that the delegated node may receive multiple offers from
servers for the same Interest, as described in Section III-A.

It is worth noting that Servers may not have the data or
software needed for the requested computation. Thus, when
making an offer, a server should estimate and take into account
the time and costs required for acquiring the data and software
specified in the request. Such estimation can be actively made
by sending a request to the origins, or passively relying on
the information in routing or forwarding information bases
(RIB or FIB, respectively). The pros and cons of these two
approaches are outside of the scope of this paper.

Upon reception of the first offer, the delegated node activates
a decision timer. Before the timer expires, the delegated node
may receive offers from multiple servers. After the decision
timer expires, the delegated node sends the “final” Interest (4)
to the server that provided the best offer. The “final” Interest
contains a server identifier in the namespace, thus only the
selected server may reply for such Interest. It is worth noting
that the “final” Interest can be sent even if the timer has not
expired; for instance if the predefined number of offers have
been received. The mobile user provides information about the
demanded number of offers from servers and decision timer
duration as part of the Interest in (1). The “final” Interest
received by a server is considered as a confirmation that this
server was selected for performing the task. Once computing
is done by the server, it replies to the “final” Interest with
a data packet(s) containing the results (5). Having received
the results of the computation, the delegated node optionally
stores it in its cache for future reuse and delivers the data to
the user (6).

It is worth noting that the proposed procedure is meant for
latency-sensitive applications (i.e., fast computations requiring
a result delivery time much lower than one second). If the
proposed method is used for long-time computations, the
lifetime of Interests (1) and (4) should be adjusted accordingly.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To assess the performance of NDN for augmented com-
puting applications, a highway scenario is considered where
mobile users move along and utilize a cloud and edge servers
for offloading computation tasks. To assess the response of the
system, light and congested traffic conditions are modelled.
The light traffic conditions assume the mean density of traffic
is about 10 vehicles per kilometer, and the average velocity of
40 m/s. The congested traffic conditions imply the density of
40 vehicles per kilometer, and velocity set to 10 m/s.

Connectivity is enabled by wireless small cells deployed
along the road. To conduct the performance evaluation, NDN
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community simulator (ndnSIM) [10] was extended with the
features described in Section III.

Cloud-centric (Fig. 2) and edge-centric (Fig. 3) deployments
were tested. These deployments rely on unlicensed wireless
technologies and do not assume the availability of any han-
dover procedure typically available in cellular networks (e.g.,
5G). This is exceptionally challenging for latency-sensitive
applications due to the potential loss of packets in the wireless
interface.

TABLE I

PARAMETERS FOR SIMULATION ASSESSMENT
Parameter Value
Number of runs for each combination of parameters 100
Number of users in light traffic conditions, N per km 10
Number of users in congested traffic conditions, N per km 40
Velocity of users in light traffic conditions, Vm/s 40
Velocity of users in congested traffic conditions, Vm/s 10
NDN application types cbr, zipf
IP application type UDP
Cache size, number of compute results 0, 20
Cache type LRU
Computation results freshness, ms 1000
Compute time distribution, ms U [10;100]
Decision time for server selection, ms 6
Mean RTT between a user and a cloud, ms 100
Mean RTT between a user and edge servers, ms [3;6]

It is assumed that services requested by mobile users
may overlap, which means that users may request the same
processing operations over the same data. This assumption is
motivated by a typical highway scenario where autonomous
vehicles react to an event (e.g., traffic accident or chang-
ing road conditions), utilizing standard processing algorithms
(types of software). Two types of applications, “cbr” and
“zipf”, are used. In the former case, the simulation setup
reflects users requesting the same services (using the same
software to process the event).

In the case of the “zipf” application, it is modelled a situa-
tion where users may utilize different software for processing
the data limiting the total number of software options to
100. Moreover, some applications/services are more popular
than others, with the popularity distributed according to the
ZipfMandelbrot law. In this case, mobile users may request
different processing services when reacting to road events.
However, the requests may still overlap due to the popularity
of some software. In both applications, the freshness of data is
limited to one second. This means that data processing results
are treated as expired after one second and deleted from cache
(when caching is enabled).

The performance metric used is the success rate of com-
puting request accomplished on time. This metric integrates
both latency and reliability in a single bundle providing
comprehensive insights on the system behavior. The main
simulation parameters are summarized in Table L.

B. The Effect of Interest Aggregation

In the first set of experiments, an IP-based solution was
characterized, assuming a user device offloads computation
tasks to the cloud over the User Datagram Protocol (UDP).
The UDP is a typical choice for latency-sensitive applications
similar to the considered in this work (described in Section
II-A).
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In addition to the IP-based deployment, an IP cloud service
combined with the NDN-based access is considered. In this
deployment, the access points and the router in Fig. 2 operate
over NDN, while the cloud server operate over IP. The router
serves as a gateway between the NDN and IP networks. Such
a combination, supplemented with disabled caching, allows
characterizing the benefits of Interest aggregation provided by
NDN. The results are presented in Fig. 4.

The homogeneous IP stack reaches about 50% of suc-
cessfully accomplished computing requests within the first
300 ms, for both light and congested traffic conditions. This
implies that the challenges of high mobility associated with
the light traffic conditions have almost the same contribution
to the losses as the increased interference and network load
in a congested traffic case. Moreover, note that the interest
aggregation feature available in NDN technology allows for
a notable increase in the share of the computing requests
accomplished on time for both zipf and cbr applications. The
superior performance showed by NDN can be explained not
only by its interest aggregation but also due to the overhead of
resolving host addresses in IP-based deployment. Additionally,
the improvements for the congested road traffic scenario
outperform those for the light traffic conditions because of
the higher overlap in the services requested by mobile users.
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Fig. 5. Comparison of the edge and cloud deployments (caching disabled)
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C. The Effect of Server Selection

The gains of the edge computing with dynamic server selec-
tion is evaluated in this subsection. For this set of experiments,
the deployment used is illustrated in Fig. 3. In this scenario,
routers R1 and R2 perform server selection on behalf of mobile
users, following the methodology described in Section III.

The results presented in Fig. 5 compare the performance
of the NDN-based edge and the cloud-centric deployments.
The edge-centric scenario provides significantly lower service
accomplishing time, and rapid growth of the served computing
requests. The reason for this effect is not only the reduced
latency between mobile users and computing servers but also
the overall increase in the number of available computing
resources. Having three servers, it is more likely that a faster
option is available for each of the compute requests.

When servers are hosted at the edge, the effect of interest
aggregation is reduced compared to a cloud-centric deploy-
ment. In the case of edge deployment, interests from three
access points (of the same area) are aggregated, while in the
case of cloud-centric implementation, aggregation covers all
the access points (i.e., six access points). This effect results in a
slightly higher number of served compute requests in the con-
gested scenario (Fig. 5(b)). In the free road scenario, reduced
service time allows for a reduction of losses caused by high
mobility, resulting in a higher number of the request served
within 300 ms as compared to the cloud-centric scenario, even
with reduced efficiency of interest aggregation (Fig. 5(a)).
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To better highlight the effect of server selection on the edge,
deployments with a different number of servers were simulated
(Fig. 6). The results of the experiments show that a higher
number of servers with the same compute time distribution
results in lower mean computation time per request, which
in turn, leads to a higher share of the computing services
accomplished within a shorter time. These results confirm
that the proposed method can balance the load on the servers
dynamically, depending on their current availability.

D. The Effect of Caching

The final set of experiments present the performance im-
provements to the edge scenario due to caching. Caching is
enabled in both routers (R1, R2) and all access points. The
cache allows for the storage of at most 20 results for no
more than 1000 ms as specified in Table 1. The considered
deployment is shown in Fig. 3 and the comparison between
cache enabled and cache disabled for the edge scenario is
shown in Fig. 7.

It is observed that caching allows for significant improve-
ment in the fraction of service requests completed in time for
“cbr” traffic pattern. The “cbr” users request the same service
within the 1000 ms (inter-request time for the used frequency
of interest). Provided that freshness of the computation results
is set to 1000 ms, the Interests for the same service from
other users will be satisfied with the results from the cache,

where it was stored after the first request. Differently, in the
case of “zipf” application, vehicles may react to the same
event (data) using different software. As a result, only a
limited number of requests overlap in time, reducing the gains
of caching. Therefore, for latency-sensitive applications, the
effect of caching is limited to very specific use-cases.

V. CONCLUSIONS

Addressing the augmented computing paradigm, in this
paper, a novel method for dynamic computing over NDN
is proposed and evaluated. The benefits of using NDN for
augmented computing were demonstrated using NDN in wire-
less access networks. The simulation results show the benefits
achieved by each of the considered NDN features indepen-
dently (interest aggregation and caching) and by the dynamic
server selection method.

The gains of interest aggregation and caching are very
application-specific and may improve the performance by
several magnitudes if the services requested by users sig-
nificantly overlap in time. In contrast, the proposed server
selection method allows for balancing the load among servers,
regardless of overlap in service requests.

In summary, this research has shown that NDN-based
solutions may successfully handle the dynamics of resource
availability on the edge providing notable benefits for compute
services.
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