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A B S T R A C T

Ternary Al�Mg�Si alloys have been modelled based on a multi-scale approach that spans across atomistic
and mesoscale models and uses theoretically determined parameters. First, a cluster expansion model for
total energy has been trained for atomistic configurations (FCC lattice) based on the data from density func-
tional simulations of electronic structure. Free energy curves as a function of solute (Mg, Si) concentrations
and disorder have been obtained by using this parameterisation together with meta-dynamics Monte Carlo
sampling. In addition, free energy data, surface tensions as well as strain energy using the linear elasticity
theory have been collected to be combined for a mesoscale phase-field model. The application of this
approach shows that the formation of a layered MgSi phase, with (100) planes, is a particularly stable solute
aggregation motif within the Al host matrix. Moreover, the phase-field model demonstrates that the pre-
ferred shape of the MgSi precipitates is needle-like (in FCC), and they can act as precursors for the important
and well-known b00-type precipitates which are formed by translating one Mg column by a 1/2 lattice vector.
The results provide theoretical evidence that the solute aggregation into needle-like MgSi domains (precipi-
tates) is an inherent property of Al-Mg-Si alloys, and that it takes place even without the presence of vacan-
cies which is a precondition for the eventual formation b00 precipitates.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Aluminium alloys have important applications in a variety of
industries [1,2]. Alloys with numerous combinations of solute ele-
ments are commercially available today, and among these Al�Mg�Si
(6xxx-series) is a particularly popular alloy system due to its benefi-
cial mechanical properties [3,4]. For the 6xxx-series, the main func-
tion of the solute elements is to strengthen the material by forming
meta-stable needle-like precipitates. The manufacturing process
starts at high temperatures (below the melting point) with a super-
saturated solid solution. The material is then rapidly cooled down to
room temperature to obtain a starting structure for ageing treatment
with well-dispersed solute atoms and vacancies. During ageing, the
quenched material is heated by a few hundred degrees (e.g. up to
195BC) within an extended period of time to enable the solute species
to diffuse and form precipitates, being assisted by the presence of
vacancies. While the precipitate phases of this alloy system have
been investigated thoroughly experimentally, there is a timely need
for theoretical multi-scale models to study and understand their for-
mation mechanisms in detail.

In this work, we report simulations of Al�Mg�Si alloys and their
thermodynamics by using the cluster expansion (CE) formalism [5]
where the parameters have been trained by fitting configurational
energy data from density functional theory (DFT) simulations. The CE
method has emerged as a valuable tool for identifying stable phases
[6�8] and studying nucleation mechanisms in crystalline alloys
[9�11]. Although alternative computational methods such as neural
network potentials [12] exist for Al�Mg�Si, the CE method is applied
as it typically requires less training data. Hence, for systems that are
well described by a lattice model, CE is a more efficient choice. Here,
the nucleation process towards the needle-like b00-precipitate is of
particularly high interest due to its strengthening effect within the Al
host material [13]. During the thermal ageing process, solute atoms
diffuse and form Guinier�Preston (GP) zones, which further develop
to the bespoke precipitates. The GP zones often have a crystal struc-
ture that matches that of the host material (here, FCC). Hence, lattice-
based methods, such as CE in combination with Monte Carlo (MC),
are well suited to study GP zone formation.

Long-range elastic fields will become present as GP zones form in
the host material because of a latticemismatch between the two phases.
While DFT-trained CE is ideal for capturing short-range interactions

http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2020.05.050&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:david.kleiven@ntnu.no
mailto:jaakko.akola@ntnu.no
https://doi.org/10.1016/j.actamat.2020.05.050
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.actamat.2020.05.050
https://doi.org/10.1016/j.actamat.2020.05.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat


124 D. Kleiven and J. Akola / Acta Materialia 195 (2020) 123�131
(atomic configurations), the long-ranged nature of the elastic fields is
hard to incorporate as this would require DFT calculations of very large
atomic models. An alternative approach is to apply phase-field methods
where elastic fields can be accounted for in a straightforward manner
[14�18]. Here, we combine DFT, CE-MC and phase-field methods in a
multi-scale approach, thereby utilising the strengths of the three
approaches at different length scales. We use DFT for computing config-
urational, interfacial and elastic energies, CE-MC to simulate local free
energy densities, and then we add this information together with the
strain effects from the linear elasticity theory to a phase-field model. As
a result of the phase-field simulations, we demonstrate the formation of
needle-like precipitates in mesoscale and show that their formation is
an inherent property of the material that can take place even without
the presence of vacancies (experimental condition). We remark that the
whole model development chain starts from first-principles as the
underlying parameters have been computed via DFT.
Fig. 2. Hierarchical overview of the methods used to study Al�Mg�Si alloys. The pro-
cess starts from DFT calculations, and the results are propagated through several layers
until the final phase-field model is obtained.
2. Theory

In the cluster expansion (CE) formalism, the total energy of an
atomic configuration is expanded in a set of correlation functions
[5,19]. Each cluster type contributes by an effective cluster interaction
(ECI) to the total energy of an atomic configuration. A selection of clus-
ters is shown in Fig. 1. Mathematically, the total energy is described by

EðsÞ ¼
X
cf

X
d

V ðdÞ
cf h

Y
i2 cf

fdi ðsiÞ i ; ð1Þ

where cf denotes a set of sites in a many-body cluster, d is a set of
decoration numbers and V ðdÞ

cf is the effective cluster interaction, fdi is
a single site basis function and si is an occupation variable that is
unique for each atomic species. The average (⟨���⟩) is taken over all
clusters that are mutually symmetrically equivalent.

For the ternary Al�Mg�Si system, we use the basis functions

f0 ¼ 1

f1 ¼
ffiffiffi
3
2

r
si

f2 ¼
ffiffiffi
3
2

r
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i �

2
3

� � ð2Þ

The occupation variable si takes the values f�1;0;1g if site i is occu-
pied by Al, Mg or Si, respectively. The ECI values are determined from
fits to the training data, obtained by DFT calculations of Al-Mg-Si
structures. In the present study, all clusters up to 4 atoms and a maxi-
mum diameter of 5A

�
were included. To avoid overfitting, a sparse

energy model was constructed using L1 regularised fits [20].
The rest of the theory section is organised as follows: First, we

explain the Monte Carlo sampling strategy that we employ to obtain
free energy data. After that, we discuss aspects of the phase-fieldmodel-
ling, and finally, we explain the link between DFT, free energy from MC
sampling and gradient coefficients needed for the phase-field model. An
overview of the entire multi-scale method hierarchy is shown in Fig. 2.

2.1. Monte Carlo sampling

The parameterised energy model in Eq. (1) can be evaluated for an
arbitrary configuration efficiently, and is thus well-suited for Monte
Fig. 1. Selected examples of clusters with the corresponding effective cluster interac-
tion (ECI) values included.
Carlo sampling. Consequently, configurational thermodynamics of
the ternary Al�Mg�Si system can be explored across a large compo-
sition range at various temperatures. The free energy of the system is
of particular interest, as it determines stable phases. Monte Carlo cal-
culations can be performed either at a fixed concentration or at a
fixed chemical potential. In the latter case, the concentrations of the
atomic species may vary while the overall number of atoms is fixed.
The chemical potentials are subtracted from ECI corresponding to the
singlet terms V ðkÞ

singlet !V ðkÞ
singlet�mk;wheremk is the chemical potential

associated with the basis function k.
The free energy as a function of composition and chemical poten-

tials is easily obtained by performing MC calculations in one of the
two ensembles above. However, it is also interesting to apply meta-
dynamics MC sampling to obtain free energies as a function of arbi-
trary collective variables [21]. The free energy G as a function of a
general collective variable Q* is defined as

e�bGðQ
�Þ ¼

X
s

d
�
QðsÞ�Q �

�
e�bEðsÞ; ð3Þ

where b ¼ 1=kBT is the Boltzmann factor, Q(s) is the value of the col-
lective variable for a micro-state given by the occupation variables s.
The effect of the delta function is to suppress contributions from con-
figurations that do not have the correct value for the collective vari-
able. To map out the free energy landscape as a function of Q*, the
MC sampler needs to visit high energy regions. This is achieved by
adding a bias potential V(Q*) to the energy, thus EðsÞ! EðsÞ þ VðQ �Þ.
By altering V(Q*), configurations with high energies (large E(s)) can
become favourable during the course of the simulation, and there-
fore, visited by the MC sampler.

By multiplying by exp (bG(Q*)) on both sides in Eq. (3) leads to

1 ¼
X
s

d
�
QðsÞ�Q�

�
e
�b
�
EðsÞ�GðQ�Þ

�
; ð4Þ

where the factor exp (bG(Q*)) can be taken inside the summation due
to the delta function. The unknown free energy G(Q*) acts as a bias
potential as explained above. As the sum in Eq. (4) is equal to one for
all Q*, all values of Q* are equally likely. Hence, if one can find a bias
potential such that all values Q* occur with equal probability, one
knows that this bias potential corresponds to the sought free energy
G(Q*). In practice, we iteratively determine this bias potential. We
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first partition the domain of possible Q* values into bins and start
with an initial guess for V(Q*); here we simply use a constant value.
During the sampling, we maintain two histograms, one that tracks
how many times a particular bin has been visited and one that repre-
sents V(Q*). We generate a random trial move which is either
accepted or rejected, according to the Metropolis acceptance criteria.
After the move, the current configuration will have a value Q1 (if the
move was rejected this is the same as the value before the move).
The bin corresponding to Q1 in the histogram of visits is incremented
by a value 1. Similarly, the bin in the histogram representing V is
incremented by a modification factor f. This process continues until
the histogram of visits is flat. Here, we adopt the convention that a
histogram is considered flat when the minimum value is greater or
equal to 80% of the mean value. When the histogram of visits is flat,
we erase it and start a new iteration with a smaller modification fac-
tor f. Note that in the second iteration we start from the previous esti-
mate of V(Q*). Here, we started with f ¼ 1 and reduced it stepwise by
a factor 10 until it was 10�4 in the last run.

The above procedure allows us to investigate the stability of an
ordered phase as a function of the degree of disorder. We are mainly
interested in the layered MgSi phase and therefore define the degree
of disorder via the normalised diffraction intensity of a reflection that
is characteristic for the layers

Sk ¼
���� h 1

N

XN
i¼1

dMgðrÞeiqk ¢ r i
���� ð5Þ

where qk is the reciprocal vector corresponding to a characteristic
layering direction, N is the number of atoms and dMg(r) is a function
that is 1 if the symbol at position r in the MC cell is Mg and 0 other-
wise. For a FCC phase with (100) planes, each Mg layer is separated
by a distance a ¼ 4:05A

�
. By choosing qk ¼ ð2p=a;0;0Þ; Sk becomes a

measure of the thermal averaged degree of layering. Since we nor-
malise by the overall number of atoms, Sk is equal to 0.5 for the per-
fectly ordered MgSi phase and approaches zero as the phase gets
disordered.
2.2. Phase-field modelling

Phase-field methods have been successfully used to describe a
large variety of nucleation processes [14,15,22]. In the following, we
describe the necessary model needed to study a two-phase mixture,
namely MgSi nuclei in an Al host material.

The total free energy of the composite is modelled by the sum of
three terms

Gtot ¼ Gbulk þ Gsurf þ Gel; ð6Þ
where Gbulk is the bulk free energy, Gsurf is the interfacial energy
between the different phases and Gel is the elastic energy due to mis-
fit strain which originates from the different stress-free lattice
parameters for Al and MgSi. The misfit strain � is defined via

CMgSi ¼ PCAl

� ¼ 1
2

PTP�I
� 	

;
ð7Þ

where C represents a matrix where each column is a cell vector, P is a
matrix that transforms the stress free unit cell of Al into the one of
MgSi and I is the identify matrix.

Therefore, strain fields will be present in the vicinity of a precipi-
tate. The energy associated with the strain fields is an additional
energy cost that affects the precipitation process.

The two first terms in (6) are given by

Gbulk þ Gsurf ¼
Z
V
d3r gðc; hkf gÞ þ ajr cj2 þ

X
ijk

bij
@hk

@xi

@hk

@xj

0
@

1
A; ð8Þ
where c is the concentration of MgSi, hk is an order parameter that
measures the orientation of the MgSi phase, g(c,{hk}) is the free
energy density and a and bij are gradient coefficients. The sum over
all indices i, j and k runs from one to three. The energy associated
with the formation of interfaces is captured by the gradient coeffi-
cients, which further can be obtained from the surface tension [23].
We model the misfit strain energy by using the homogeneous elastic
modulus approximation [24].

In the present work, we wish to study several properties of the Al-
MgSi system. First, to capture the diffusion of the initial phase separa-
tion, we define a current j ¼�Mrm; where m is given by the partial
derivative of the free energy gwith respect to the MgSi concentration
c. Then we set the local rate of change of the concentration equal to
the negative divergence of the current. The resulting differential
equation is the Cahn�Hilliard equation [23]

@c
@t

¼ Mr 2 @g
@c

�2ar 2c
� �

; ð9Þ

where M is the mobility. The second type of property we want to
study by continuum models is the effect of strain fields and surface
tensions after a GP zone is formed. Here, we add a set of auxiliary
fields {hk} and incorporate the effect of surface tensions in the auxil-
iary fields

@c
@t

¼ Mr 2 @g
@c

; ð10Þ
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@t
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@hk
�2

X
ij

bij
@2hk
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þ dGel

dhk
þ λ

dh
dhk

0
@

1
A; ð11Þ

where M and L are mobilities. Furthermore, we select L such that M=L
Dx ¼ 1; where Dx is the spatial discretization. The term λh0(hk) in the
last equation originates from a volume constraint imposed by a
Lagrange multiplier

Lðλ;hkÞ ¼ λ
Z
V
d3rhðhkÞ�Vprec

� �
; ð12Þ

hðhkÞ ¼
1; hk�1

3h2
k�2h3

k ; 0<hk <1

0;hk�0

8><
>: ð13Þ

where h(hk) is a smooth interpolating function whose integral repre-
sents the volume of the precipitate Vprec. λ is a time-dependent
Lagrange multiplier that is determined such that the volume aver-
aged value of hk is constant [25,26].

We now proceed to describe how the free energies entering the
aforementioned phase-field equations is parameterised. While
parameterising the functions needed for Eqs. (10) and (11) we follow
the former studies closely [15,22]

gðc;h1;h2Þ ¼ pðcÞ þ Aðc�c0Þ
P

k h
2
k þ p4ðfhkgÞ þ p6ðfhkgÞ;

p4ðfhkgÞ ¼ B
P

k h
4
k þ D

P
k6¼l h

2
kh

2
l

p6ðfhkgÞ ¼ C
P

k h
6
k þ E

P
k 6¼l h

2
kh

4
l

ð14Þ

where p(c) is a polynomial (see Appendix A).
First, it should be noted that the equilibrium value for hk can be

found by requiring that the derivatives with respect to hk of g(c, h1,
h2, h3) are zero. Hence, there are three equilibria ðh1;h2;h3Þ ¼ ð0;0;0
Þ; ðheq;0;0Þ; (0, heq, 0) and (0, 0, heq), depending on the concentration
c. The equilibrium value for h is given by

heqðcÞ ¼ §

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� B
3C

§
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B
3C

� �2

�Aðc�c0Þ
3C

svuut
: ð15Þ

By carrying out the simulations to calculate the free energy as a
function of concentration (Q ¼ c in Eq. (3)) and assuming that the
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order parameters are slaved by the concentration, we can fit the
function g(c, heq, 0, 0). This allows us to determine the parame-
ters A, B, C, c0 and p(c). The remaining coefficients D and E are fit-
ted to the free energy curve as a function of varying degree of
layering (Q ¼ Sk in Eq. (3)). However, a direct fit to the data may
lead to a nonphysical model with meta-stable phases with more
than one of the order parameters ({hk}) different from zero. Conse-
quently, the coefficients D and E have to obey certain constraints.
First, since we know that there are minima on each h-axis, the low-
est order cross-terms have to be positive (D � 0). Secondly, we
apply the requirement that for any concentration c the free energy
curve should be monotonically increasing along the line h1 ¼ h2. By
differentiating Eq. (14) with respect to h1 this requirement is
expressed by the in-equality

Aðc�c0Þ þ 4Bh2
1 þ 4Dh2

1 þ 6Ch4
1 þ 6Eh4

1�0 ð16Þ
We now proceed to formulate a set of linear constraints on the coeffi-
cients D and E which can easily be applied to a fitting algorithm. First,
when h1 is large the quartic terms will dominate and the constraint
reduces to E��C. For small values of h1, the quadratic term domi-
nates and the most strict constraint is D��B�mincfAðc�c0Þg; where
the last term should be minimised over all concentrations c 2 [0, c0].
If A is negative, the result of the minimisation is c ¼ c0; and for posi-
tive A it is c ¼ 0.

To complete the phase-field description of the Al-MgSi system,
the gradient coefficients need to be determined. We limit ourselves
to the case where bij is diagonal. Furthermore, the system we study
has only two distinct surfaces. Consequently, we choose a ¼ 0. This
leaves us with two unknown gradient coefficients, b11 and b22. Fol-
lowing Cahn [23], the gradient coefficients are related to the interfa-
cial energy g by

g ¼
Z x1

x0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDgðxÞ

q
; ð17Þ

where x is an arbitrary field variable characterising the free
energy and k their corresponding gradient coefficient. Dg(x) is
the surface formation energy, x0 and x1 are the values for the
integration variables on each side of the dividing surface, respec-
tively. For the two unknowns, b11 and b22 two interfacial ener-
gies are needed. We select an interface between Al and MgSi
where the layer normal is parallel to the interface and another
one where it is perpendicular. We integrate along the order
parameter h, and let the concentration vary according to
@g=@c ¼ 0. The concentration thus becomes a function of the order
parameter

g ? ¼
Z heq

0
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11Dg

�
cðhÞ;h

�r
; ð18Þ

g k ¼
Z heq

0
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22Dg

�
cðhÞ;h

�r
; : ð19Þ

During the initial coarsening process, we do not take into account the
effect of strain fields and surface anisotropy. It is thus sufficient to
solve Eq. (9) and the free energy entering is obtained by a direct poly-
nomial fit to the free energy as a function of concentration. The gradi-
ent coefficient a is obtained by a slight modification of Eq. (19) where
we take the interfacial energy to be the average of g ? and gk.

Equipped with a parameterised phase-field model from CE and
DFT, quantitative information of the size distribution can be obtained
by tracing the radially averaged Fourier transformed correlation func-
tion

Fðr; tÞ ¼ R
d3r0cðrþ r0; tÞcðr0; tÞ

Pðk; tÞ ¼ R
dVF Fðr; tÞf g; ð20Þ
where k and dV are the radius and the solid angle in reciprocal space,
respectively. There are several ways of identifying one characteristic
length scale at time t, but here we use the definition

LðtÞ ¼ 2pR 1
0 dkk3Pðk; tÞ : ð21Þ
3. Computational methods

The cluster expansion model was fitted to 288 DFT calculations
obtained with the GPAW program [27,28] in-plane wave mode using
an energy cutoff at 600 eV and a k-point density of 5.4A

� �3. We relaxed
the internal atomic positions and the cell sides in all cases, and we did
not remove any structures from the training set, independent of the
magnitude of the relaxations. We obtained a leave-one-out cross-val-
idation score of 15 meV/atom by including clusters up to four atoms
and fourth nearest neighbours in the cluster pool. The CE calculations
were carried out with the CLEASE package [29] using a training set
with cell sizes up to 64 atoms.

Our fitting procedure for mapping MC free energy curves to the
functional form (14) was carried out as follows. First, we calculated p
(c), A, B and C by a direct fitting to the free energy curve. During this
stage, hk are assumed to take their equilibrium value. The model has
a clear interpretation only when one of the auxiliary variables hk is
different from zero. Therefore, the remaining constants D and E, were
chosen such that the free energy minima were located at ðh1;h2;h3Þ
¼ ðheq;0;0Þ; ð0;heq;0Þ and (0, 0, heq).

The phase-field calculations used the Mesoscale Microstructure
Simulation Project (MMSP) as the computational engine [30]. In this
work, we studied Al�Mg�Si with two phase-field calculations. First,
we studied the initial phase segregation through the Cahn-Hilliard
model. The effect of interface anisotropy and strain fields was then
studied by coupling a set of auxiliary fields to the model.
4. Results

The formation energy from DFT as a function of Mg concentration
is shown in Fig. 3 and it shows stable phases at 0.25 (AlMgSi2), 0.5
(MgSi) and 0.75 (Mg3Si). The predictions of the same data set from
the fitted CE model are included as open squares in the figure. The sil-
icon concentration is restricted to remain less than 0.5 throughout
the data set. At Mg concentrations close to 0.5, the CE model predicts
the formation energy of MgSi to be slightly lower than the DFT refer-
ence. Furthermore, our CE model shows some deviation in predicting
the formation energy of the AlMgSi2 structure. However, we are pri-
marily interested in the free energy landscape near pure Al and the
vicinity of the MgSi phase.

The free energy of the Al2�2xMgxSix system as a function of concen-
tration and temperature was calculated by MC sampling and is
shown in Fig. 4. The curves represent the difference in free energy
relative to the value of pure Al. In all cases, local minima representing
stable phases are seen at both low concentrations (Al phase) and
high concentrations (MgSi). As the temperature is increased, the bar-
rier separating the two phases decreases and eventually the two min-
ima coalesce and the systems enter in a random phase. The solid lines
in the corresponding phase diagram in Fig. 4(b) are found by locating
the concentrations at which the free energies in the two phases have
a common tangent. The shaded areas represent pure phases where
the minority species are dispersed within the host material. The spi-
nodal lines are obtained by locating inflection points on the free
energy curves.

The free energy cost associated with introducing layering defects
in the MgSi phase was calculated via meta-dynamics MC sampling,
where the order parameter in Eq. (5) was used as the collective



Fig. 3. (a) Formation energy from DFT calculations (circles) and CE predictions of the
same structures (squares). (b) Distribution of the DFT training points on the ternary
map. The formation energy is represented by colors, which are obtained via interpola-
tion with respect to the DFT points. Note that the number of points in (b) appears
fewer than in (a) because the training set includes several configurations for each con-
centration. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Free energy cost associated with introducing defects in the layered MgSi phase.
The normalised diffraction intensity is given by Eq. (5). The solid lines represents MC
calculations at 600K, 700K and 800K, respectively.
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variable. Fig. 5 shows the free energy curves at 600 K, 700 K and
800 K. As the simulation cell is half-filled with Mg atoms, the order
parameter Sk in Eq. (5) is equal to 0.5 for a perfectly layered structure.
Fig. 4. (a) Free energy curves at four temperatures for the Al2�2xMgxSix system. The common
sponding phase diagram.
At lower values, the MgSi phase exhibits its characteristic layered
structure with defects, as illustrated by the inset geometries. We
observe that the free energy cost associated with introducing layer-
ing defects decreases with increasing temperature. At sufficiently
high temperatures the layered phase will no longer be stable, and the
minimum near h ¼ 0:5 vanishes. From the magnitude of the free
energy at 600 K, we conclude that observing Si atom defects in the
Mg layer and vice versa is unlikely.

The interfacial energies gk and g ? are displayed in Fig. 6 and they
were obtained from the slope point of a linear fit to DFT slab calcula-
tions of different layer thicknesses [31]. The lowest interfacial energy
is obtained for the case where the Al facing Mg and Si layers are alter-
nating. We note that since periodic boundary conditions were used,
g ? represents the average value for Al-Mg and Al-Si interfaces.

The initial phase separation process was modelled by the single
Cahn�Hilliard Eq. (9) without the auxiliary fields in Eq. (11). The free
energy input was a 10th order polynomial fitted to the free energy at
600 K in Fig. 4. The simulation cell was initialised by a random con-
centration field. The evolution of the radial averaged Fourier trans-
form of the concentration pair correlation function (Eq. (20)) is
shown in Fig. 7(a). In the beginning, a wide range of spatial frequen-
cies are present, but as the system evolves towards equilibrium the
lower frequencies get an increasingly strong signal. Except for a short
time at the very beginning of the coarsening process, the mean spa-
tial frequency (Fig. 7b) follows a power law for all concentrations,
with a dynamic exponent of�0:24; which is very close to�1

4. These
findings are consistent with previous studies of the Cahn�Hilliard
tangent and the concentration of the inflection points are shown as examples. (b) Corre-



Fig. 6. Calculated DFT interface energies for the two surfaces shown where the normal
vector to the Mg�Si planes is normal and parallel to the interface, respectively. The
interface energy is extracted from the slope of the curve 2Ag , where A is the surface
area.

Fig. 8. Scaled Fourier transformed correlation function at different times.

Table 1
Non-zero components (Mandel notation) of
the elastic tensor of the Al and MgSi phases.

Component Value (GPa) Phase

C11 = C22 ¼ C33 100 Al
C12 ¼ C13 ¼ C23 60 Al
C44 ¼ C55 ¼ C66 67 Al
C11 ¼ C33 75 MgSi
C22 121 MgSi
C12 ¼ C32 46 MgSi
C21 ¼ C23 34 MgSi
C13 ¼ C31 53 MgSi
C44 ¼ C55 ¼ C66 30 MgSi
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equation when interface-diffusion controls the coarsening dynamics
[32]. In Appendix C, we show that the dynamical exponent remains
unchanged if one includes anisotropy in the surface tensions. The
characteristic size L, given by the inverse of the average spatial fre-
quency, therefore evolves as L» ffiffi

t4
p

. An illustration of the spontane-
ous phase separation process at 80% Al is shown in Fig. 7(c).

Further, if the coarsening is in the scaling regime, all curves P(k, t)
at different times and spatial frequencies should collapse onto the
same curve if plotted appropriately. We expect the function L(t)3P(kL
(t) to overlap for different times (Fig. 8) where P is defined in Eq. (20).
Using the characteristic length scale derived from the average spatial
frequency, we indeed confirm that the distribution of length scales
exhibits scaling behaviour when the Cahn�Hilliard equation is
solved based on the free energy curve showed in Fig. 4(a).

The misfit strain of the layered MgSi phase when embedded in an
Al host was found from DFT calculations to be �xx ¼ �zz ¼ 0:044; �yy ¼
�0:028; �xy ¼ �yz ¼ 3� 10�4 and �xz ¼ 8:6� 10�4. The plane normal
vector was oriented along the y-axis, leading to the MgSi structure
being stretched in the direction normal to the layers while experienc-
ing in-plane compression. The elements of the elastic tensors in Man-
del notation are given in GPa in Table 1.

The effect of strain fields due to the lattice mismatch between
MgSi and Al within the homogeneous modulus approximation is
shown in Fig. 9. We consider two limiting orientations where the
base circle of the cylinder lies in the MgSi planes (cut 1) or perpendic-
ular (cut 2). Interestingly, the dependence on the aspect ratio is
Fig. 7. (a) Radially averaged Fourier transformed concentration field at dimensionless times
solute concentrations and (c) Visualisation of the coarsening process. The colors are included
reader is referred to the web version of this article.)
rather different. In cut 1, the strain energy decreases with increasing
aspect ratio, meaning that needle-like inclusions have a lower strain
energy. For cut 2 the situation is opposite, such that plate-like inclu-
sions yield the lowest strain energy. Further, we note that the mini-
mum strain energy for cut 2 is marginally lower than that of the
needle-like inclusion for cut 1.

The effect of surface energetics and strain energies was studied by
employing a phase-field model based on the 700 K-curve in Fig. 4.
We investigated the time evolution of several MgSi domains as
shown in Fig. 10. Initially, 20 precipitates were randomly distributed
with the constraint that they should be at least 4.5 nm apart. The size
of the precipitates were 4.5nm £ 4.5nm, leading to an Al concentra-
tion of » 92%. The initially square-like precipitates evolve towards
needle-shaped objects. Furthermore, the number of precipitates
decreases favouring large precipitates. The coarsening occurs via two
15, 113, 770 and 3900. (b) Time evolution of the average spatial frequency at various
for visual clarity. (For interpretation of the references to color in this figure legend, the



Fig. 9. Strain energy of the MgSi phase included in an Al host matrix within the homo-
geneous modulus approximation. The aspect ratio L/R, shown in the upper left inset,
increases along the abscissa. The upper right inset shows the cut direction at which the
volume of the MgSi phase is cut and inserted into the Al host. Perp. elongation refers to
elongation along the normal vector of the planes and in-plane elongation refers to elon-
gation parallel to the planes. Illustrations of the atomic arrangements at four limiting
points (A, B, C, and D) are shown at the bottom.
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mechanisms. First, we observe Ostwald ripening [33] where the
smallest precipitates dissolve and the atoms diffuse to larger ones.
Secondly, precipitates coalesce when they meet while having the
same layering direction.

5. Discussion

We have shown above that by a systematic investigation of the
energy costs of a layered MgSi phase within an aluminium host, the
preferred domain shape can be predicted. First, the free energy cost
associated with the configurational disorder in the layered MgSi
phase was studied (Fig. 5). At temperatures lower than 700 K, the
energy cost associated with layering defects is substantial. Hence, we
conclude that defects within the MgSi phase at the temperatures of
interest are highly unlikely. This observation justifies the major sim-
plification where we only consider interface energies and elastic
energies of the perfectly ordered MgSi phase.

The surface energies were obtained by considering two distinct
faces; one where a layer with only one atom type is interfacing the
host, and one where alternating layers of the two species comprise
an interface with the host. We find that the energy associated with
an interface of only one species is approximately twice as high as the
energy of forming a surface with alternating layers. Thus, by only
Fig. 10. Phase-field calculation of the time evolution of MgSi precipitates.
considering interface energies, the MgSi precipitate prefers to
increase the surface area for alternating layers.

The elastic strain energies of MgSi are minimised for a plate-like
shape (Fig. 9). However, the strain energy of a needle with alternating
layers is only marginally larger than that of the platelet. For small GP
zones, interfacial energies will dominate the strain energies. Hence,
GP zones that are slightly elongated along the atomic plane normal
have the lowest energy. As the GP zones grow, the elastic energy will
become increasingly important. However, the MgSi domain is already
elongated along the plane normals, which results in a high energy
barrier associated with a transition into a plate-like shape. In con-
trast, the GP zone can continue to grow as a needle without any bar-
rier. The result is that the MgSi GP zones become needle-shaped.

In the following, we proceed to estimate the impact of the differ-
ent energy terms in the phase-field models. From Fig. 4, we find that
the energy of a solid solution is several hundred times the thermal
energy (kT). Consequently, in the early stages, there is a strong ther-
modynamical force that drives the system towards a phase-separated
mixture. When a domain of MgSi has formed, the other energy terms
become important. The strain energy scales linearly with the volume
of the domain, while the interfacial energies increases linearly with
the surface area of the domain. A typical size at which these two
terms are of the same order of magnitude is obtained by considering
a spherical shaped domain. From Fig. 9 we see that the strain energy
for a spherical precipitate is approximately Eelast � 0.5 meV/A

� 3. The
average surface tension is g �50 mJ/m2 � 3meV/A

� 2. The size at which
strain energy is equal to the interfacial energy is a measure of the size
at which strain energies start to dominate. For a spherical particle,
the critical radius is rc ¼ 3g=DEelast ¼ 1:8nm.

Interestingly, plate-like GP zones have experimentally been
observed by Matsuda et al. [34], who proposed that the GP zones of
the MgSi phase are platelets of diameter 30 nm and thickness of
2.5 nm. The atomic planes within the observed structure are charac-
terised by each element being surrounded by four sites of the oppo-
site kind, shown as plate B in Fig. 9. We note that the GP zone
observed by Matsuda et al. is the one that has the lowest elastic
energy. Further, Matsuda et al. proposed a growth mechanism where
multiple GP zones aggregate and form a needle-shaped domain.
Based on our multi-scale calculations, we conclude that the plate-like
GP zones can be observed because of the small elastic fields associ-
ated with them. Moreover, the observed tendency to aggregate into
needle-like GP zones can be explained by a combination of forming
favourable interfaces within the Al host and the low elastic energies
connected to a needle-like GP zone. In conclusion, MgSi domains
tend to develop towards structure D in Fig. 9.

For high strength aluminium alloys, the formation of b00 precipi-
tates is crucial. The b00-eye [3], characterised by one Mg atom being
shifted by 1/2 lattice parameter, is a precursor to the fully developed
b00 precipitate (see Appendix B). The translation of an entire Mg col-
umn seems geometrically unnatural for any other domain shapes
than needles. In this work, we have established that the shape of the
MgSi FCC phase is indeed needle-like. Consequently, a growth mech-
anism where the MgSi FCC phase is a precursor of the b00 precipitate
is feasible.

In summary, our calculations suggest the following initial steps of
the b00 precipitation process. First, Mg and Si form small and slightly
elongated atomic clusters caused by interfacial energies. As the clus-
ters grow, a combination of surface energetics and strain energetics
leads to needle-shaped domains. Geometrically, this is a feasible state
for promoting continued vacancy-assisted transitions into pre-b00 and
finally to larger b00 precipitates.

6. Conclusion

We have developed a multi-scale modelling approach (DFT, MC,
phase-field) for investigating the formation of MgSi precipitates in



Fig. A.11. Free energy resulting from the parameterised expression g(c, h1, h2), when
h2 ¼ 0.

Fig. B.12. Left: MgSi FCC phase characterised by alternating layers of Mg and Si. Right:
b00-eyes where some Mg atoms are shifted into the Si layers.
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the FCC Al host matrix. At the atomistic scale, we have trained a clus-
ter expansion model based on DFT calculation of benchmark struc-
tures to obtain a fitted expression for configurational energy. The CE
model is coupled with Monte Carlo calculations, where we identify
that the layered MgSi phase is particularly stable. Further, the inter-
face energetics of Al-MgSi and elastic properties have been calculated
via DFT. Finally, we have incorporated all the information from atom-
istic simulation (DFT, MC) in a mesoscale phase-field model.

The simulations of many small precipitates (Fig. 10) show a ten-
dency to form elongated domains. Moreover, we find that precipi-
tates grow by two distinct mechanisms; Ostwald ripening and
coalescence of precipitates with equal layering orientation. The
observation that MgSi domains on the FCC lattice tend to be needle-
like demonstrates that this phase is a natural precursor for the impor-
tant b00 precipitate which is also known to be needle-like.

In this work, we made at least two approximations that will serve
as starting points for future work. First, we did not take into account
the fact that Mg and Si diffuse at different rates. Incorporating differ-
ent mobilities of the two species can help to understand the early
composition evolution of the precipitates. On a longer time scale,
misfit strains will also depend on the composition. Consequently,
both small amounts of Al and slightly different Mg/Si ratio can affect
the elastic energies. Thus, extending the models presented here to
take into account composition-dependent misfit strains will poten-
tially give new insight into the compositional evolution of precipi-
tates in aluminium alloys.

Finally, we note that all parameters apart from the kinetic param-
eters (such as mobilities) were obtained from first-principles data.
The atomic mechanisms for the diffusion process, including the role
of vacancies, require kinetic Monte Carlo simulations and will be a
topic of future work.
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Appendix A. Phase-field model coefficients

The explicit form of the polynomial in Eqs. (10) and (11) is

gðc;h1;h2Þ ¼ 1:57c2�0:09c�0:08
�4:16cðh2

1 þ h2
2Þ þ 3:77ðh2

1 þ h2
2Þ

�8:29ðh4
1 þ h4

2�h2
1h

2
2�h6

1�h6
2Þ

�2:76ðh2
1h

4
2 þ h4

1h
2
2Þ

Fig. A.11 shows the form of this function in the (c, h1)-plane. It dis-
plays two local minima, one at pure Al and one for layered MgSi,
which coincide with the atomistic results in Figs. 4 and 5.
Fig. C.13. Evolution of the same initial concentration distribution at different values of
the global anisotropy coefficient k.
Appendix B. Misfit strain of b00-eye

The transition from the MgSi FCC phase to the b00-eye, consists of
one column of Mg atoms moving into the Si layer. The resulting misfit
strain is
�� ¼
6:3� 10�2 0 3� 10�7

0 �6:8� 10�5 0
3� 10�7 0 6:3� 10�2

2
64

3
75: ðB:1Þ

Most notably there is almost no strain in the direction orthogonal
to the plane. Consequently, the needle-shaped MgSi FCC phase can



Fig. C.14. Time evolution of the characteristic length scale for different values of the
global anisotropy parameter k.
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further lower the energy by shifting one column of Mg atoms into the
Si layer as seen in Fig. B.12.

Appendix C. CH equation with a global anisotropy

In the discussion on the initial separation process, we made the
approximation of neglecting anisotropy in the surface tension. Here, we
explore the effect of this approximation by showing that the growth
law is unaltered under a global anisotropy. We consider the equation

@c
@t

¼ Mr 2 @g
@c

�2ax
@2c
@x2

�2ay
@2c
@y2

� �
ðC:1Þ

By introducing a global anisotropy function k ¼ 1�ay=ax Eq. (C.1)
becomes

@c
@t

¼ Mr 2 @g
@c

�2ax r 2c�2kax
@2c
@y2

� �
: ðC:2Þ

We note that (C.2) is equal to Eq. (9) apart from the last term. We per-
formed a series of calculations for k ¼ 0;0:5 and 0.9 (Fig. C.13) and
calculated the time evolution of the characteristic length scale L(t).

When k ¼ 0:5 the phases being formed are only slightly elongated
along one axis. Only in the extreme case of k ¼ 0:9 we observe a
strong elongation of the structure. Thus, the global anisotropy has
only a rather weak effect on the calculated growth rate (Fig. C.14).

By studying the solution of the Cahn�Hilliard equation under a
global anisotropy, we see that the exact shape of the formed phases
has a marginal effect on the dynamic exponents. This observation
suggests that anisotropy in the surface tensions has a negligible effect
in the early stages of the phase separation process.
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