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Abstract. Computed tomography (CT) is an imaging modality producing 3D im-
ages from sets of 2D X-ray images taken around the object. The images are noisy
by nature, and segmentation of the 3D images is tedious. Also, detection of low
contrast objects may be difficult, if not impossible. Here, we propose an inde-
pendent component analysis (ICA) based method to process sets of 2D projection
images prior to 3D reconstruction to remove noise, and to enhance objects for
detection and segmentation. In this paper, a proof-of-concept is provided: the
proposed method was able to separate noise and image components, as well as to
make visible objects that were not observable in 3D images without processing.
We demonstrate our method in object separation with 2D slice image processing
simulations, and by enhancing a 3D image of a polymer sample taken with Xradia
MicroXCT-400. The method is applicable in any CT tomography for which a
number of project image sets with different contrasts can be taken, e.g., in multi-
spectral fashion.
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1 Introduction

In this paper, we propose to enhance 3D computed tomography [1] (CT) images by
independent component analysis (ICA) [2,3,4] based image processing. CT is an imag-
ing modality in which 3D images are produced by a computational reconstruction al-
gorithm from a set of normal 2D X-ray images taken at several angles around the object.
Here, in the context of tomography, we call 2D X-ray images projection images. The
number of projection images can vary from a few tens to thousands. In general, the
more there are projection images, the better the resulting 3D image can be. Normal CT
imaging considers usually objects of the size of the order of a human or organ, whereas
µCT imaging considers imaging at resolutions of the order of micrometers. All common
forms of CT are widely utilized in the image-based analysis of most any radiopaque
objects, for example, bio- and industrial materials and their defects, biomaterial com-
positions, soils, ceramics, and biological tissues and cell constructs.
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For CT 3D image reconstruction, good quality projection images are essential; they
should be as noiseless and artefact free as possible. As a signal processing rule of
thumb, noise and artefact reduction should be done as early as possible in the processing
chain to provide the subsequent processing steps as good quality data as possible. Also,
processing of 3D images would be computationally much more demanding than pro-
cessing 2D images. Thus, we propose to enhance 3D µCT images by ICA-based pre-
processing the projection images prior to 3D reconstruction.

In CT and X-ray contexts, ICA has previously been used, e.g., for X-ray coronary
digital subtraction angiography [5] and removing X-ray scatter [6]. In this paper, we
propose a general method to enhance any projection tomography images for which a
number of projection image sets with different contrasts is available. We demonstrate
the method by MATLAB (MathWorks, Natick, MA, USA) simulations, and by pro-
cessing multispectral µCT images of polymer samples. This serves as a proof-of-con-
cept of the proposed method.

2 Materials and Methods

2.1 Independent Component Analysis

The heart of ICA is to find independent source signals, i.e., the independent components
(ICs) making up the measured signals or recordings. The ICA mixing model [2] is

Yi = AiXi (1)

where the recordings in the rows of Yi are linear combinations of the ICs in the rows of
Xi with Ai being the mixing matrix and i (here, i = 1, …, 1600) is the index of the
tomographic projection angle. Numerical iterative algorithms exist to find a separation
matrix Bi = Ai

-1 so that the rows of Xi are mutually statistically independent (down to
an error tolerance) based on Yi. The ICs are found by Xi = BiYi. In the sequel, we omit
the index i when not referring to our particular application in which ICA is run a number
of times.

For ICA, three assumptions must be satisfied [2]: 1) ICs exist, 2) measurements are
linear combinations of the ICs (1), and 3) the ICs are non-Gaussian. Observing (1),
three ambiguities concerning the ICs are evident: 1) the signs, 2) the energies, and 3)
the order of appearance of the ICs in X are arbitrary. To see the ambiguities explicitly
written out, and examples of time signal processing using ICA, see [10].

The intrinsic properties of ICA include that at most as many ICs can be found as
there are measurements, and if there are more measurements than ICs, only at most the
true number of ICs can be found. ICA can be powerful in recovering minor source
signals and eliminating independent noise components. For full discussion, including
the description of the ICA algorithm we use here, FastICA [7], see [2]. In this proof-
of-concept paper, the choice of ICA algorithm is not important.

The main usages of ICA are 1) to find ICs carrying relevant source signals to utilize
them directly, 2) to reconstruct the measurements using only the ICs carrying infor-
mation of interest, or 3) to reconstruct the measurements omitting the ICs carrying noise
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or other undesired signal components. Here, we are concerned with the cases 2 and 3.
Zeroing the rows of X corresponding to the uninteresting or noise ICs to get X’, their
contributions are eliminated when the measurements are reconstructed as

Y’ = AX’. (2)

The measurements and ICs can be any sets of values, such as time signals or images,
satisfying the assumptions and (1). Relevant to this paper, note that (1) and nothing
above is concerned with the order of samples in the measurements; the corresponding
samples must only occur in the same locations in all the measurement vectors. I.e.,
image pixels can be arranged in the rows of X (1) in any order, as long as all the images
are converted to vectors with the same pixel order.

Principal component analysis (PCA) [2,9] uses the same mixing model (1), but PCA
has been devised from a different point of view: PCA finds uncorrelated components,
which in general cannot be associated with source signals. PCA can be powerful, e.g.,
in noise and dimension reduction tasks [2,9].

2.2 ICA Usage

All the projection images taken at the same angle with the different CT parameters were
collected in to one Yi (1), one image per row, and FastICA was executed. This was
done for each projection angle separately, i.e., FastICA was run 1600 times with dif-
ferent Yis. Thereafter, the independent component images (ICIs) of interest were found
in all Xi, and the projection images were reconstructed using (2) with the unwanted ICIs
zeroed in the Xi’s. For noise removal, the unwanted ICIs are the ones consisting of
(mostly) noise, and for image component separation, the unwanted ICIs can be all ICIs
but the ones carrying information from the desired object. 3D reconstruction was then
performed normally with the corresponding ICA-reconstructed and enhanced projec-
tion images Yi’. The entire process is illustrated in Fig. 1.

To comply with the ICA mixing model (1), the corresponding projection image pix-
els from the different imagings must carry X-ray attenuation due to the same material
volume. Thus, the phantom remained fixed in the device between the imagings.

For ICA, there should be regions in the sample, whose image contributions change
differently from those of the other regions with the changing imaging parameters. This
could result from 1) absorption spectrum differences between the materials, 2) accu-
mulation of contrast agent, 3) addition/removal of material, and/or 4) noise differences
between the imagings.
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Fig. 1. The steps of the proposed method: CT imaging is performed a number of times with
different imaging parameters. Next, ICA processing is applied to the projection images taken to
any one direction. Then, ICIs carrying desired information are selected, or ICIs carrying undesir-
able components zeroed. In this step, it is necessary to identify the ICIs corresponding to each
other between the different imaging directions, since the order of appearance of ICIs from ICA
is arbitrary; here is illustrated a case in which one ICI carrying similar undesirable information
is zeroed for every projection direction. Finally, projection images are ICA-reconstructed from
the selected ICIs (here, two for every projection direction). 3D image is reconstructed using the
ICA reconstructed projection images; this can be done using all or only select sets of the ICA
reconstructed projection images, as desired.

2.3 2D Simulations

To simulate CT image processing in a 2D case (Fig. 2), a human head model slice image
was obtained from the MATLAB function phantom using a simplified head model.
To simulate imagings with different CT settings, object intensities within the slice im-
ages were modified ad hoc for each simulated imaging (Fig. 2 Column B). The function
radon was used to generate 1D projections at 1600 directions equispaced around the
slice. Exemplary projections are shown in Fig. 2 Column A. Three tests were con-
ducted: with noiseless images (Fig. 2 Column B), images with slight but different noise
added to each mage (noisy originals not shown), and images with the same strong
Gaussian uniformly distributed noise added to every image (Fig. 2 Column E); this last
case is unnatural but illustrates the workings of ICA.

ICA was calculated over the sets of three projections, i.e., Yi (1) had three rows (e.g.,
the projections in Fig. 2 Column A, one projection per row). All projections Yi’ were
reconstructed using (2) with only one of IC at a time, i.e., Xi’ (2) had only one non-zero
row for each ICA reconstruction. This was done separately for each of the 1600 projec-
tion directions (c.f., Fig. 1). Finally, a slice image was reconstructed from each set of
1600 reconstructed projections. This was done separately with all three sets of ICA
reconstructed projections, resulting in three slice images (c.f., Fig. 2 columns C, D, and
F).
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2.4 µCT Imaging

We used Xradia MicroXCT-400 (Carl Zeiss Microscopy GmbH, Jena, Germany) with
a 4X objective resulting in the pixel size of 44.64 µm. For each 3D image, we acquired
1600 projection images at equispaced angles around the object. The images were
cropped to 271x401 to ease ICA processing for demonstration purposes. Four different
3D imageries were acquired: at 80 kV and 10 W, 80 kV and 6W, 40kV and 10 W, and
40 kV and 6W. The change in power affected the resulting noise variance, and the
change in voltage the photon energy resulting in different absorption characteristics.

2.5 The Phantom

The phantom (c.f., Fig. 3) consisted of a 1 ml syringe filled with water and four pol-
ylactic acid (PLA) and two acrylonitrile butadiene styrene (ABS) filaments. Both fila-
ments are common 3D printer materials. Some air bubbles persisted in the tube.

2.6 ICA of the µCT Projection Imagery

The real µCT 3D images were processed analogously to the 2D simulations. Each Yi

consisted of four projection images (c.f., Fig. 3 Column A), i = 1, …, 1600. Pixel values
of a 2D projection image entered in the rows of Yi from left to right and from top to
bottom. ICA was calculated for each Yi, and Yi’ was reconstructed with all but one ICIs
zeroed in each Xi’. 3D reconstruction was performed separately for all three sets of the
1600 ICA reconstructed projection images. Exemplary 2D slices perpendicular to the
imaging direction were extracted for illustration purposes (c.f., Fig. 3 Columns C and
D).

3 Results

3.1 Results of ICA Processing of the Simulated Slice Image

The simulation results are shown in Fig. 2. The noiseless original simulated head slices
are shown in Fig. 2 Column B, and their 1D projections (the rows of Yi (1)) in Column
A. The images reconstructed from ICA processed projections Yi’, with slight noise
added to the original images, are shown in Fig. 2 Column C. The corresponding results
for the noiseless originals are shown in Fig. 2 Column D. The extremely noisy original
simulated slices are shown in Fig. 2 Column E, and the corresponding ICA processed
reconstruction results in Fig. 2 Column F.

From Fig. 2 Columns C, D, and F, it is clear that ICA was able to enhance the round
region that could not be seen in the original images. In the noise free case (Fig. 2 Col-
umn D), this region was quite well separated in an ICs of its own, whereas in the slightly
noisy case (Fig. 2 Column C), the corresponding ICs contained contributions also from
object edge regions. In the very noisy case (Fig. 2 Columns E and F), the noise quite
completely overshadowed the two oval objects, which are probably still embedded in
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the last reconstructed slice image in Fig. 2 Column F. Still, the round object was nicely
separated.

According to our experimentation, the process is noise sensitive. Only low noise
levels could be tolerated to recover the round object (Fig. 2 Column C, middle image)
when the noise differed between the original images, as it would in reality. In case of
the same noise affecting every original image (Fig. 2 Column E), the noise was well
captured in one set of ICs (Fig. 2 Column F, bottom image) and could thus be removed,
whereas another set of ICs clearly carried the round object (Fig. 2 Column F, uppermost
image). The oval objects, however, were not observable; this was probably due to a
higher number of true ICs than available measurements.

Fig. 2. The simulations and ICA processing results. Column A: Exemplary 1D projections of the
original phantom images in Column B. Column C: Slice images reconstructed from ICA pro-
cessed slightly noisy projections of the slice images in Column B. Column D: Slice images re-
constructed from ICA processed noiseless projections of the slice images in Column B. Column
E: Highly noisy original phantom images (the same noise in each). Column F: Slice images re-
constructed from ICA processed projections of the slice images in Column E.

3.2 Results of ICA Processing of the 3D Phantom Projection Imagery

µCT 3D image processing results are shown in Fig. 3. An exemplary projection image
for each of the four imagings with different device settings is shown in Fig. 3 Column
A. The corresponding ICIs are shown in Fig. 3 Column B, where noise along with some
object features were nicely extracted into the two bottom ICIs, whereas the actual object
image information was captured mostly in the two uppermost ICIs.
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Fig. 3. µCT images and ICA processing results. Column A: Exemplary projection images taken
using the four sets of µCT imaging parameters. Column B: Reconstructed ICIs. Column C: Slices
of the 3D reconstructions from the raw imaging data. Column D: Slices of the 3D reconstructions
from the reconstructed ICIs. The images in Columns C and D have been brightened equally for
readability.

An exemplary horizontal slice of the 3D reconstructions of the phantom for the dif-
ferent device settings is shown in Fig. 3 Column C with the corresponding slice from
3D reconstructions made from the ICA reconstructed ICIs in Column D. Although the
slice images of the original 3D reconstructions (Fig. 3 Column C) are of quite low con-
trast and the filaments are not always observable, the contents of the phantom are vis-
ually detectable in the slice images produced with the proposed method (Fig. 3 Column
D).

After our ICA-based processing (Fig. 3 Column D), two different phantom materials
can be distinguished: in the uppermost image, four round objects are clearly observable,
whereas in the second image at least five round objects are observable (the object in the
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middle is obscured by the imaging artefact). From slice images reconstructed without
ICA processing (Fig. 3 Column C), the existence of two different materials cannot be
observed.

The slice of the two last 3D constructions in Fig. 3 Column D seem to carry mostly
noise; these noise components were eliminated from the other reconstructed 3D images.

4 Conclusions

We conclude that ICA processing of multispectral/multienergy X-ray tomography pro-
jection images is a potential tool for noise alleviation, object separation, and to distin-
guish materials in 3D CT reconstructions. However, to enable separation of more image
objects and to improve noise alleviation, more image sets with different CT parameters
should be available than used here. For object separation, low-noise CT imagery would
be preferable.

The proposed method is completely general, and we expect it to be beneficial in
several applications, including in enhancing complex biomedical and industrial im-
agery.
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