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Motivated by electronic transport in graphenelike structures, we study the diffusion of a classical point
particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard
disks in the conventional periodic Lorentz gas are replaced by soft repulsive scatterers. A thorough
computational analysis yields both normal and anomalous (super)diffusion with an extreme sensitivity on
model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose
existence is characterized by tonguelike structures in parameter space. These results hold even for small
softness, showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials,
where we find an entirely different type of diffusion.
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The rise of newmicromanipulation techniques,molecular
nanodevices, and nanotechnologies has fueled the scientific
interest in small systems [1–4]. These are objects composed
of small numbers of particles far from the thermodynamic
limit, which exhibit only a few relevant degrees of freedom
[4]. Their microscopic equations of motion are typically
highly nonlinear, yielding fluctuations with macroscopic
statistical properties reminiscent of interacting many-
particle systems. Small systems can thus serve as a labo-
ratory for understanding the emergence of irreversibility and
complexity from chaotic dynamics [5,6]. They become
especially interesting under nonequilibrium conditions,
where they exhibit macroscopic transport phenomena like
diffusion. By combining nonlinear dynamics with non-
equilibrium statistical physics, the origin of macroscopic
transport from microscopic chaos in small systems was
explained by formulas expressing transport coefficients in
terms of dynamical systems quantities [7–10]. Similarly
irreversible entropy production was found to emerge from
fractal measures [7,8] and fractal attractors [10–12]. These
results paved the way for fundamental concepts like the
chaotic hypothesis generalizing Boltzmann’s ergodic
hypothesis [13] and fluctuation theorems generalizing the
second law of thermodynamics [4,8,9,14].
Classical transport in small systems has a quantum

mechanical analog as electronic transport in solid-state
nanodevices [15]. Recently growing interest has been
attracted by periodic nanosystems such as artificial gra-
phene [16] fabricated in semiconductor heterostructures
[17–19] or on metallic surfaces [20,21]. In the latter case,
the electrons are confined to a honeycomb geometry by CO
molecules positioned with a scanning tunneling micro-
scope in a triangular configuration. This system exhibits the

properties of graphene, but in a setup that is tunable
regarding, e.g., the electronic density, lattice constant,
geometry, and the coupling with the environment.
Interestingly, the topology of “molecular graphene” as

described above is exactly the same as one of the most
paradigmatic models in dynamical systems theory, the
periodic Lorentz gas [7–9,22–24]. They mimic the motion
of classical electrons in metals. They consist of a point
particle scattering elastically with fixed hard spheres
distributed either randomly or periodically in space.
Originally they were devised to reproduce Drude’s theory
from microscopic dynamics [22]. In ground-breaking
mathematical works, Lorentz gases were shown to exhibit
chaos and well-behaved transport properties [25,26], fol-
lowed by understanding diffusion in computer simulations
combined with stochastic theory [27–29]. Lorentz gases
thus became standard models to explain the interplay
between chaos and transport: highlights were a proof of
Ohm’s law from first principles [30], the analytical and
numerical calculation of Lyapunov exponents [7,8,12] and
fractal attractors [12], as well as developing a chaotic
scattering theory of transport [7]. The growing interest in
graphenelike systems now brings direct technological
relevance to investigate classical diffusion in soft Lorentz
gases equipped with more realistic potentials.
The conventional two-dimensional periodic Lorentz gas

is a Hamiltonian particle billiard in which a point particle of
mass m performs free flights with constant velocity v
between elastic collisions at hard disks of radius r0. The
centers of these disks form the nodes of a triangular lattice
with lattice spacing 2r0 þ w, where w denotes the smallest
distance between two nearby disks. Here, following pre-
vious studies on artificial graphene [31], we introduce a soft

PHYSICAL REVIEW LETTERS 122, 064102 (2019)

0031-9007=19=122(6)=064102(5) 064102-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.064102&domain=pdf&date_stamp=2019-02-14
https://doi.org/10.1103/PhysRevLett.122.064102
https://doi.org/10.1103/PhysRevLett.122.064102
https://doi.org/10.1103/PhysRevLett.122.064102
https://doi.org/10.1103/PhysRevLett.122.064102


Lorentz gas, where the hard disks are replaced by Fermi
potentials,

VðrÞ ¼ 1

1þ expððjrj − roÞ=σÞ
; ð1Þ

with σ determining the softness of the potential; see Fig. 1.
Related models have been used to reproduce experimental
results on the magnetoresistance of electrons in semicon-
ductor antidot lattices [32–36]. In the following we set
m ¼ r0 ¼ 1 by keeping the total energy constant, E ¼ 1=2.
We thus have two control parameters, σ and theminimal gap
sizew between two nearby potentials for the given energyE.
Making σ smaller, we approach the hard scatterer limit of
the conventional Lorentz gas. A crucial question is to
which extent chaotic diffusion in the hard Lorentz gas
[7–9,22–24,30] is robust by softening the potential, i.e.,
for more realistic models. In this Letter we show that even a
slight softening introduces substantial additional complex-
ity leading to entirely new transport properties.
Our key quantity is the diffusion coefficient

D ¼ lim
t→∞

h½rðtÞ − rð0Þ�2i
4t

; ð2Þ

where the numerator denotes the mean square displacement
(MSD) for the position rðtÞ of a particle at time t.
The angular brackets hold for an ensemble average over
initial conditions. If the MSD grows linearly in time, the
above limit exists and the system exhibits normal diffusion.
If the MSD grows faster than linear in time this limit
diverges, and the system displays superdiffusion [37].
Technical details of the simulations carried out with the
Bill2D software package [38] are explained in Sec. I of our
Supplemental Material [39], which includes Ref. [40].

Figure 2 depicts the diffusion coefficient D as a function
of the gap size w between the scattering centers for a
slightly softened (main part) and the hard (inset) Lorentz
gas. While for the hard scatterers DðwÞ is monotonically
increasing and looks rather smooth, in the soft modelD is a
nonmonotonic, highly complicated function of w. This
suggests that the diffusive properties must have changed
profoundly. The diffusion coefficient for the hard Lorentz
gas has been analyzed in detail in previous literature
(cf. Sec. III A in the Supplemental Material [39], which
includes Refs. [41–48]). Here we first explore whether
there is any simple diffusion law for the soft model
revealing an at least on average monotonic increase of
DðwÞ by ignoring any fine structure. We find that a
Boltzmann-type random walk approximation works well
to understand the coarse functional form of DðwÞ [49]. For
this we assume that diffusion is governed by “flights” of
length lc during time intervals τc after which a particle
experiences a “collision.” We define a collision as an event
where a particle hits the contour line of a scatterer at
E ¼ 1=2 in the triangular unit cell A displayed in Fig. 1. By
assuming in the spirit of Boltzmann’s molecular chaos
hypothesis that all collisions are uncorrelated, the diffusion
coefficient can be approximated as DBðwÞ ¼ l2

cðwÞ=
½4τcðwÞ�. In Sec. II of the Supplemental Material [39]
we derive an analytical formula for DB as well as an
improved numerical version DB;num. The results are shown
as a pair of lines in Fig. 2: both yield an approximately
linear increase of D for larger w, which matches well to the
coarse functional form of the simulation results. For smaller
w our analytical approximation does not reproduce the

FIG. 1. The soft Lorentz gas: A point particle moves in a plane
of partially overlapping Fermi potentials (inset) whose centers are
situated on a triangular lattice (main figure). The dotted lines are
contour lines, w denotes the minimal distance between adjacent
potentials for total energy E ¼ 1=2, and A defines a triangular
unit cell. The inset shows Fermi potentials along the dashed
(blue) line in the main part for different values of the softness
parameter σ defined in Eq. (1).

FIG. 2. Diffusion coefficient D as a function of the gap size w.
The (blue) wiggled line shows simulation results forDðwÞ Eq. (2)
in a slightly softened potential [σ ¼ 0.05 in Eq. (1)]. The thick
(orange) line represents the corresponding analytical random
walk approximation DB, the thin (red) line the numerical DB;num

as explained in the text. The labeled numbers 3(a) to 3(d) refer to
the periodic orbits depicted in Fig. 3. Gray columns indicate
parameter intervals in which DðwÞ does not exist. The inset
displays DðwÞ obtained from simulations for the conventional
hard Lorentz gas [49].
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onset of diffusion correctly while our improved numerical
version captures it at least qualitatively well.
We now focus on the pronounced irregular fine structure

ofDðwÞ in the soft system, which is in sharp contrast to the
diffusion coefficient of the hard disk model. Irregular
diffusion coefficients have been reported for parameter-
dependent deterministic diffusion in much simpler chaotic
dynamical systems, such as one-dimensional maps
[50–53], the standard map [54,55], and particle billiards
[49,56–58]. To our knowledge this is the first time that a
diffusive fine structure has been unambiguously revealed in
quite a realistic soft Hamiltonian system. For the hard
Lorentz gas irregularities in DðwÞ also exist but are
extremely tiny [49,59], hence barely visibly in Fig. 2. A
second crucial difference is that our softened model gen-
erates an intricate set of superdiffusive parameter regions in
which DðwÞ does not exist. The hard Lorentz gas displays
only superdiffusion for all parameters w > w∞ after a
specific geometric transition at w∞ ≃ 0.3094 [60,61] by
exhibiting superdiffusion that is different from the softmodel
as discussed in Sec. III A of the Supplemental Material [39].
The origin of the anomalous diffusion as well as of the

irregularities in DðwÞ of the soft Lorentz gas can be
understood in terms of periodic orbits [52,53,59,62,63],
as is explained by Fig. 3. It shows orbits both in position
space and insets of corresponding Poincaré surfaces of
section at four specific parameter values of w: Figs. 3(a)
and 3(b) refer to quasiballistically propagating periodic
orbits while 3(c) and 3(d) represent localized ones. These
periodic orbits exhibit different structures due to different
types of scattering, as is reflected in the corresponding
Poincaré surfaces of section. The variables ðx; sin θÞ for the
latter are defined on the boundary where a particle leaves
the unit cell A in Fig. 1. Here x represents the position of the
particle in a gap, sin θ is the angle between its velocity
vector and the normal to the boundary. These islands of
periodicity are typically extremely small and very difficult
to detect in the whole phase space. By matching the
parameter values of w for these periodic orbits to the
structure ofDðwÞ in Fig. 2, we see that the two propagating
orbits correspond to two superdiffusive regions while the
two localized orbits identify (approximately) two local
minima in the curve. While localized orbits only slightly
suppress normal diffusion without making it anomalous
[50,59,64], islands of periodicity in phase space, also
called accelerator modes [54,55], generate superdiffusion
[37,65–67]. A more detailed analysis yields that all these
periodic orbits are topologically extremely unstable under
parameter variation: they exhibit complicated bifurcation
scenarios that eventually destroy any superdiffusive win-
dow leading to parameter regions of normal diffusion before
new bifurcations create new superdiffusive windows [68].
Periodic orbits thus form the backbone to understand the

complicated structure of the parameter-dependent diffusion
coefficient in Fig. 2. We now explore them in the full

parameter space ðw; σÞ. For each point in ðw; σÞ, the
numerical discovery of a localized periodic orbit or a
quasiballistic trajectory is marked in Fig. 4 as a blue or
a red dot, respectively. Interestingly, our chart reveals a very

FIG. 3. Periodic orbits and islands of periodicity in phase space
at different parameter values w corresponding to Fig. 2. Shown in
position space are characteristic periodic orbits for (a) w ¼ 0.234,
(b) w ¼ 0.31, (c) w ¼ 0.46, (d) w ¼ 0.18. (a) and (b) feature
quasiballistically propagating orbits yielding superdiffusive
parameter regions in Fig. 2 while (c) and (d) generate local
minima in DðwÞ. The insets display associated islands of
periodicity in the Poincaré surface of section phase space
ðx; sin θÞ as defined in the text.

FIG. 4. Regions of periodic orbits in the parameter space of
gap size w and potential softness parameter σ. Blue dots represent
localized periodic orbits like (c) and (d) in Fig. 3, while red
dots correspond to quasiballistic orbits like 3(a) and 3(b) therein.
The black horizontal line at σ ¼ 0.05 yields a cut through the
parameter space corresponding to the diffusion coefficient DðwÞ
in Fig. 2.
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regular topological structure underlying the seemingly
totally irregular curve of DðwÞ in Fig. 2, which lives on
the horizontal black line at σ ¼ 0.05 in Fig. 4. We see that
all periodic orbits form regular “tongues” in parameter
space which, however, we could not fit with simple
functional forms like exponential, stretched exponential,
or power laws. Whenever a tongue crosses the horizontal
black line at σ ¼ 0.05 we have a local extremum in the
DðwÞ curve of Fig. 2. Further details of this connection are
described in Ref. [68]. In Sec. III B of [39] we explore the
impact of these tongues on the diffusion coefficient under
variation of σ. Therein we see that on a coarse scale DðwÞ
of the hard Lorentz gas is approached continuously by
decreasing σ, interrupted by superdiffusive regions due to
quasiballistic tongues. This scenario is in line with a
mathematical theory on the existence of elliptic islands
in the phase space of closed, nondiffusive billiards that are
softened [69,70]. In these references the authors conjecture
that islands are dense with respect to Lebesgue measure in
parameter space for small σ. If this holds true, one expects
DðwÞ to be an irregular curve on arbitrarily fine scales with
fractal properties [9,50,51,59,64].
In summary, we have studied diffusion under parameter

variation in a soft Lorentz gas, which we put forward as
a model for electronic transport in artificial graphene.
We have found that the normal diffusion observed in the
paradigmatic Lorentz gas with hard scatterers is not robust
when softening them: instead, the type of diffusion
immediately changes dramatically, generating an entirely
different diffusion coefficient. This raises doubts about a
universal applicability of the standard Lorentz gas for
describing transport in realistic systems. In the soft
Lorentz gas the diffusion coefficient turns out to be a
highly irregular function under the variation of control
parameters with regions exhibiting superdiffusion. This is
explained in terms of periodic orbits that are topologically
unstable under parameter variation while exhibiting very
regular structures in parameter space. Analogous results
hold for varying the energy E as a parameter [68], which
experimentally corresponds to changing the temperature of
the system. Note that, in superdiffusive parameter regions,
ergodicity is broken; hence, for single particle experiments
there will be a dependence on initial conditions [54,55]. In
real systems with thermal noise we expect these super-
diffusive regions, ergodicity breaking and irregularities on
fine scales to disappear; however, larger irregularities
should persist under noise [56,71]. Our results suggest
to construct a more rigorous theory for calculating the
diffusion coefficient curve in Fig. 2 from first principles,
possibly based on generating partitions [72], which will be
an extremely difficult task [9,63]. A second crucial chal-
lenge is to test for the diffusion coefficient of Fig. 2 in
experiments.
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