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Abstract—This work proposes a new method of simulating
dose reduction in digital breast tomosynthesis (DBT), starting
from a clinical image acquired with a standard radiation dose. It
considers both signal-dependent quantum and signal-independent
electronic noise. Furthermore, the method accounts for pixel
crosstalk, which causes the noise to be frequency-dependent, thus
increasing the simulation accuracy. For an objective assessment,
simulated and real images were compared in terms of noise
standard deviation, signal-to-noise ratio (SNR) and normalized
noise power spectrum (NNPS). A two-alternative forced-choice (2-
AFC) study investigated the similarity between the noise strength
of low-dose simulated and real images. Six experienced medical
physics specialists participated on the study, with a total of 2,160
readings. Objective assessment showed no relevant trends with
the simulated noise. The relative error in the standard deviation
of the simulated noise was less than 2% for every projection
angle. The relative error of the SNR was less than 1.5%, and
the NNPS of the simulated images had errors less than 2.5%.
The 2-AFC human observer experiment yielded no statistically
significant difference (p=0.84) in the perceived noise strength
between simulated and real images. Furthermore, the observer
study also allowed the estimation of a dose difference at which
the observer perceived a just-noticeable difference (JND) in noise
levels. The estimated JND value indicated that a change of 17%
in the current-time product was sufficient to cause a noticeable
difference in noise levels. The observed high accuracy, along with
the flexible calibration, make this method an attractive tool for
clinical image-based simulations of dose reduction.

Index Terms—Electronic noise, digital breast tomosynthesis,
dose reduction, quantum noise.

I. INTRODUCTION

D IGITAL breast tomosynthesis (DBT) is rapidly emerging
as a major clinical tool for breast cancer screening. In

DBT, a set of radiographic projections is acquired within a
limited angular range around the breast. The projections are
then reconstructed into a 3D volume made up of tomographic
slices of the breast. The 3D visualization of the breast anatomy
reduces tissue overlap if compared to conventional mammog-
raphy, thus increasing the sensitivity and specificity of cancer
detection [1]–[3].
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As DBT is still being developed, the optimization of radi-
ation dose is an open issue [4], [5]. The International Basic
Safety Standards for Protection against Ionizing Radiation and
for the Safety of Radiation Sources defines that diagnostic
exposures of patients must “be the minimum necessary to
achieve the required diagnostic objective” [6]. The literature
presents a variety of approaches to achieve dose savings while
maintaining the desired image quality. Some examples are the
optimization of acquisition protocols [7], [8], the application
of post-processing filters to low-dose projections [9], the
development of iterative reconstruction methods [10], [11].

To validate these studies and enforce the minimum dose
requirement, it is desirable to have a set of clinical images
acquired from the same patient at different radiation doses.
However, the availability of such images is extremely limited,
since it requires the repeated exposure of patients to x-rays.

One common approach to overcome this limitation is to
perform simulations of dose reduction through the injection of
quantum noise in clinical images acquired with the standard
radiation dose [12]–[14]. In fact, many of the studies regarding
the optimization of radiation dose for radiographic imaging
systems were conducted using simulated images [15], [16].

X-ray imaging commonly involves signal-dependent noise
models where the variance of the noise is expressed as a
function of the noise-free signal. Since the noise-free signal is
not usually available, some methods simulate signal-dependent
noise by approximating, in the definition of the variance, the
noise-free signal by the noisy one [12]–[14]. This approxi-
mation can be rather coarse, mainly at a reduced count-rate
regime [17].

In previous work, we proposed a method of simulating
dose reduction in full-field digital mammography (FFDM)
images, based on noise injection in a variance-stabilized range
[17], [18]. It has the advantage that no previous knowledge
of the noise-free signal is needed, avoiding errors due to
approximation. However, although it is a precise method for
the simulation of 2D digital mammography, it has some
constraints that limited the performance of the method to
digital breast tomosynthesis (DBT) images [19]: the noise was
modeled exclusively as white Poisson noise, that is, it does not
consider the spatial correlation between pixels of acquisition
system (detector crosstalk) and also does not consider the
electronic noise of the equipment. Moreover, the method needs
two sets of calibration images: one with the same radiographic
factors of the original clinical image (standard dose) and other
with the radiographic factors of the simulated low-dose image,
which is a challenge for clinical applicability.
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Because individual DBT projections are acquired at sub-
stantially lower radiation levels, the overall signal at each
projection is lower. In a reduced count-rate regime, the ad-
ditive electronic noise plays an important role and has to
be considered in the noise model [20], [21]. Furthermore,
approximations of the noise-free signal, commonly applied
for the simulation of signal-dependent noise, become coarse
at lower counting regimes and thus limits the performance of
the simulation methods.

Thus, this work proposes a new method of simulating dose
reduction in DBT. It considers both quantum and electronic
noise sources, the noise spatial correlation, and eliminates
approximations of the noise-free signal. The method also has
high clinical practicality, since the number of calibration im-
ages is reduced. Moreover, we present an extensive validation
of the algorithm through objective measurements and human
observer experiments. Although the present work focuses on
the validation of the simulation method to DBT images, the
algorithm can be explored in other imaging modalities that
present similar noise properties.

II. PRELIMINARIES

A. DBT imaging system

In a DBT system, the breast is compressed and kept station-
ary while the x-ray tube moves around it in a limited angular
range. During the movement, a series of raw projections are
acquired. The raw projections go through a reconstruction
process to generate slices parallel to the detector, known
as reconstructed slices. The slices are then transmitted to a
diagnostic workstation to be assessed by a radiologist [20].

The proposed simulation method performs mathematical
operations on the raw projections, acquired with a standard
radiation dose, to simulate lower-dose acquisitions. After the
simulation is performed, the simulated projections must be
reconstructed to generate lower-dose reconstructed slices.

B. Problem formulation

Let zin(i, j) be observed pixels at positions (i, j) of a DBT
raw projection image. We model the input variable zin as

zin(i, j) = y(i, j) + τ + s(y(i, j)) ξ (i, j) , (1)

where y > 0 is the (unknown) noise-free signal, proportional
to the energy of the x-rays reaching the detector, τ > 0 is the
signal intensity offset, ξ is signal-independent random noise
with zero mean and unit variance, and s is a function of y

that defines the standard deviation of the overall noise. At
each pixel, the expectation and variance of zin are modeled as

E {zin(i, j) |y(i, j)} = y(i, j) + τ , (2)

s2(y(i, j)) = var {zin(i, j) |y(i, j)} = y(i, j) λin(i, j) + σ2
E , (3)

where λin is the linear coefficient of the noise variance
function, which can be attributed to the quantum efficiency
and gain in the image formation, and σ2

E is the variance
of the signal-independent portion of the noise. The above
model (2)-(3) can also be used, in practice, in the presence
of spatial correlation caused by pixel crosstalk at the detector,

as discussed in Appendix A. The ratio between y and s(y)
gives the pixelwise signal-to-noise ratio (SNR) of zin. For a
given current and kVp, shorter exposure time means lower
radiation dose, hence smaller y and consequently lower SNR.

Our goal is to obtain from zin a new set of noisier observa-
tions zout that simulate a lower-dose acquisition and fulfill the
following conditions:

E {zout(i, j) |y(i, j)} = γy(i, j) + τ, (4)

var {zout(i, j) |y(i, j)} = γy(i, j) λin(i, j) + σ2
E, (5)

where 0 < γ < 1 is the dose reduction factor that we wish to
simulate.

III. METHOD

The proposed method consists of five steps: linearization, in-
jection of quantum noise, signal scaling, injection of electronic
noise, and injection of signal offset. The method requires a
set of raw clinical DBT projections and a set of raw uniform
projections acquired with the same radiographic factors as the
clinical DBT, which henceforth are named calibration projec-
tions. The five-step algorithm is applied to each raw projection
of the clinical DBT, using the respective raw projection of the
calibration image. The calibration image is required for the
estimation of parameters. Fig. 1 shows an overview of the
complete pipeline.

A. Estimation of parameters

For the correct application of the dose-reduction simulation
pipeline, it is important to correctly estimate the noise and
signal parameters τ, σ2

E, and λin.
1) Pixel offset τ: The National Health Service Breast

Screening Program (NHSBSP) [22] has developed a practical
method of calculating the pixel offset, which we applied in this
work. Another alternative method of estimating pixel offset is
by acquiring a dark-field image [23].

2) Variance of the electronic noise σ2
E: The variance σ2

E
can be estimated using noise parameter estimation algorithms
[24]–[26]. For this purpose, we use software [25], available
for download [27]. The software can estimate the standard
deviation of the additive portion of signal-dependent noise
provided that the pixel gain is constant through the field. To
enable this, we selected a rectangular region of interest (ROI)
with a short span along the anterior-posterior direction and
much longer span along the orthogonal direction, located near
the chest wall. Using this elongated ROI, we take advantage of
the fact that the pixel gain varies more slowly in the orthogonal
direction than in the anterior-posterior direction, due to the flat-
field correction commonly used in commercial DBT systems.
The estimation of σ2

E is performed using raw projections from
the input DBT clinical images.

3) Linear coefficient λin of the noise variance function:
The ideal way of obtaining λin would be by accessing the
calibration data of the clinical unit used to acquire the DBT
projections. However, this information is not easily available
and thus λin has to be estimated from the acquired images.
We estimate λin using the calibration image given as input,
acquired at the same radiographic factor as the original image.
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Fig. 1. Overview of the proposed dose-reduction simulation pipeline. Reconstruction methods can be applied to zout, generating
lower-dose tomosynthesis slices. The capital letters in parentheses refer to the corresponding subsections within Section III.

The estimation can be performed using a simple derivation of
the standard deviation model presented in (2) and (3):

λin(i, j) =
σ̂2(i, j) − σ2

E

µ̂(i, j) − τ
, (6)

where µ̂(i, j) and σ̂2(i, j) are, respectively, the local mean and
local variance estimated from the calibration image. Values of
τ, σ2

E, and λin for the system used in our experimental results
are given in Section IV.

B. Offset subtraction

To scale the intensity of the clinical image correctly, the
method requires a linear relationship between the expectation
of the observed signal zin and the underlying signal y. Thus,
we define the linearized signal z` (i, j) as

z` (i, j) = zin(i, j) − τ. (7)

C. Injection of quantum noise

In previous work, we proposed an operator capable of
injecting signal-dependent quantum noise through a variance-
stabilizing transformation (VST) [17], [18], [28]. We have
implemented the method to simulate dose reduction in FFDM
images [18], and optimized the operator to maintain high
performance even for applications with limited count rate [17].

In the current work we propose the injection of quantum
noise through a nonlinear operator Φ. In DBT images, the
electronic portion of the noise represents a relevant part of
the image degradation, thus the operator must be adequate for
signal-dependent noise models with affine variance like (3).
The operator changes the variance of the combination of input
noise and of the injected noise so as to yield the desired signal-
dependent quantum noise for the reduced-dose output. It does
not require previous knowledge of the shape of the distribution
ξ or of the noise-free signal y(i, j), therefore decreasing bias
due to approximations, as shown in [17]. Considering the
linearized DBT signal z` (i, j), we define the operator Φ as

zq(i, j) = Φ
[
z` (i, j)

]
=
λin(i, j)

4
*
,

x2(i, j) −
σ2

A

2
+
-
, (8)

where σA =
√

(1/γ) − 1 and x(i, j) is obtained by applying a
root transformation to z` (i, j), followed by addition of signal-
independent Gaussian noise with variance σ2

A:

x(i, j) = 2

√
z` (i, j)
λin(i, j)

−
σ2

A

8
+ σAη(i, j) , (9)

η being Gaussian noise with zero mean and unit variance,
η(i, j)∼N (0, 1). The mean and variance of zq are

E
{
zq(i, j) |y(i, j)

}
= y(i, j) , (10)

var
{
zq(i, j) |y(i, j)

}
=

y(i, j) λin(i, j)
γ

+ σ2
E. (11)

The variable zq(i, j), modulo multiplication by the dose
reduction factor γ, has quantum noise with the target linear
scaling λout. In Appendix B we provide a method to obtain
the operator Φ and discuss its properties.

D. Scaling

The next step is to scale the overall signal of the DBT image.
Because the input signal was linearized previously, this can be
done by multiplying zq(i, j) by the dose reduction factor γ:

zs(i, j) = γzq(i, j) . (12)

Both the mean and variance of zs(i, j) match those in (4)-
(5), but only limited to the terms linear on y(i, j). Hence,
further adjustments are necessary to account for the electronic
additive noise and offset.

E. Injection of electronic noise

After the above scaling, the variance of the additive elec-
tronic noise is also scaled to lower values. Thus, to fulfill (5),
extra signal-independent noise is added to achieve the variance
σ2

E of the electronic noise found in a clinical acquisition:

zE(i, j) = zs(i, j) + σνν(i, j) , (13)

where σν =
√
σ2

E
(
1−γ2) and ν is zero-mean Gaussian noise

with unit variance, ν(i, j)∼N (0, 1). The variance of zE is

var
{
zE(i, j) |y(i, j)

}
= γy(i, j) λin(i, j) + σ2

E . (14)

The variable zE(i, j) achieves the target signal-dependent
variance (5). Note that both noise injection steps (8) and (13)
are pointwise and therefore it is irrelevant towards (4) and (5)
whether the random variables z` or x are spatially uncorrelated
or not. In fact, in our work, the injected noises η and ν are
both spatially correlated to simulate the detector crosstalk, as
detailed in Section III.G. The final adjustment addresses the
target expectation.

F. Offset addition

Finally, the offset τ subtracted from the signal in the
linearization step is added back to the signal:

zout(i, j) = zE(i, j) + τ . (15)

In this way, we attain both (4) and (5) exactly.
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Fig. 2. Exemplary simulation using a 1D piecewise affine signal. The top row shows the input signal zin (1) with parameters
λin = 3, σE = 3, τ = 30 (left), the transformed signal x used internally by the operator Φ (9) (center) and the output signal
zout obtained at the end of the proposed pipeline for a dose reduction factor γ = 0.5 (right). The kernel KN is Gaussian with
standard deviation 0.5. The four plots to the left show the expectation, variance and noise power spectrum for the input zin
computed from a MonteCarlo experiment with 106 realizations and compare these statistics with the analytical expressions in
(2), (3) and (17). The four plots to the right visualize the same statistics for the output zout and compare them with (4), (5),
and (18), demonstrating accurate achievement of the design goals.

G. Detector crosstalk
In this work, we also consider the detector crosstalk, which

causes the noise spectrum to be frequency-dependent (i.e.
colored noise). This phenomenon is modeled through the
power spectral density (PSD) Ψ of the noise. In practice,
we compute Ψ from the calibration image through Fourier
measurements over a running window as

Ψ =
1
M

M∑
k=1

|F {I(ik, jk ) − S(ik, jk ) }|
2, (16)

where I(ik, jk ) and S(ik, jk ) are, respectively, the noisy calibration
image and the local estimate of the noise-free image, over
a window centered at (ik, jk ). The window selection and
estimation S are detailed in Section IV. As we work with
a single calibration image, we make a simplifying assumption
that a unique PSD describes the correlation within the quantum
noise as well as the correlation within electronic noise; we
discuss this assumption further in Section VI.

Based on (3) and (5) (see also Appendix A), the noise PSD
for zin and zout can be modeled as

Ψzin = |F {KN}|
2‖yλin + σ

2
E‖1 , (17)

Ψzout = |F {KN}|
2‖γyλin + σ

2
E‖1 , (18)

where KN is a convolution kernel that relates to Ψ as

KN = K ‖K ‖−1
2 , K = F −1

{√
Ψ

}
. (19)

Hence, given a standard-dose image zin subject to (2), (3)
and (17), our goal is to simulate a reduced dose-image zout that
satisfies (4), (5), and (18). To this end, we generate correlated
noises η (9) and ν (13) by convolving independent and
identically distributed (IID) standard Gaussian white noises
ωη and ων against KN:

η = KN ∗ ωη , ν = KN ∗ ων , (20)

where * denotes the convolution operation. Because KN has
unit `2 norm, both η and ν inherit the unit pointwise variance
of ωη and ων .

Note that, being nonlinear, the operator Φ (8) may distort the
correlation model of η when transforming the injected noise
into quantum noise. However, in practice such distortions are
not significant for the conditions described in this work.

H. Exemplary simulation

Before demonstrating the proposed approach on real DBT
imagery, we illustrate it over a simulated 1D signal, as shown
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in Fig. 2. This serves both as a validation of the procedure and
as more direct visualization. Note that the shape of the quantile
regions visualizes the signal-dependent variance of the signal
zin and zout, whereas in x it is practically homoskedastic.

IV. EXPERIMENTAL SETUP

All images used in this work were acquired using a Selenia
Dimensions (Hologic, Bedford, MA) DBT unit at the Hospital
of the University of Pennsylvania. The system is equipped
with an amorphous selenium (a-Se) detector layer that has a
thickness of 200 µm and pixel pitch of 140 µm. A total of 15
projections were acquired within an angular range of 15◦.

The pixel offset τ was calculated using the protocol de-
scribed by the NHSBPS [22], and a collection of central
projections of uniform images acquired at four current-time
products (60, 52, 42, and 30 mAs). The estimated τ for our
experiments was 42.

The standard deviation σE of the electronic noise was
estimated from an exposure of the anthropomorphic breast
phantom in automatic exposure control mode (AEC), 31 kVp ,
tungsten target, aluminum filter and 60 mAs, using a
7 mm × 105 mm ROI positioned close to the chest wall of
and the methodology [25]. The estimated σE was 2.31.

Previous work on the same machine model found similar
values of τ and σE [29]. Note that we used the same
estimates of τ and σE for every experiment, as they do not
change significantly over the dose levels considered in our
experiments.

The parameters KN and λin may change with the system
calibration, and were thus estimated from calibration images
acquired at the same radiographic factor as the input DBT
used in the individual experiments; this is further specified
in Sections IV.A and IV.B. Moreover, each projection angle
requires a separate estimate of KN and λin.

The convolution kernel KN was estimated using a 64 × 64
running window with 50% overlap taken from the calibration
projections according to (16) and (19). For the experiments,
S is given as the mean value of I over the window. Fig. 3a
shows one example of the estimated normalized kernel KN.

The scaling factor λin was estimated using a 63 × 63 fully
overlapping sliding window taken from the calibration images,
and the relation defined by (6). Fig. 3b shows one example of
the estimated map of local λin values at the central projection.
Noteworthy, the parameter presented more relevant changes on
the anterior-posterior (A-P) than on the orthogonal direction,
as previously described in Section III.

A. Objective analysis

To assess the performance of the proposed method, objective
metrics were calculated from uniform images. The uniform
background allows for easy estimation of the signal and noise
features.

The set of uniform images was obtained using a 4 cm
poly methyl methacrylate (PMMA) block commonly used
for flat-fielding the mammography system. The radiographic
factors were manually set to 31 kVp , tungsten target and
aluminum filter and the current-time product was reduced

(a) (b)

Fig. 3. Example of estimated parameters from the central
projection of a calibration image acquired with 60 mAs,
and 31 kVp . (a) Convolution kernel KN (standard deviation
0.3). (b) Linear coefficient λin of the signal-dependent noise.
Labels: P (posterior), A (anterior).

from 60 mAs to 52 mAs, 42 mAs and 30 mAs, to achieve
reduced dose images. Two acquisitions were performed at each
configuration, resulting in eight sets of 15 projections each.

The fidelity of the simulated images was investigated by
comparing simulated images and real images acquired at
the simulated radiation level. The comparison was done in
terms of standard deviation, SNR, and normalized noise power
spectrum (NNPS). First, the local standard deviation of the
noise was estimated inside a fully overlapping 63 × 63 sliding
window. The average relative error Eσ was calculated as

Eσ =
100%

M

M∑
k=1

σR(ik, jk ) − σS(ik, jk )
σR(ik, jk )

, (21)

where σR(ik, jk ) and σS(ik, jk ) are the local noise standard
deviations of the real and simulated images, respectively,
estimated from a window centered at the pixel (ik, jk ), and
M is the total number of windows.

Next, the SNR was estimated as the ratio between the signal
mean and local standard deviation of the noise using the same
window configuration mentioned above. The average relative
error was calculated using the same approach as (21).

The last objective analysis used the NNPS [23], [30].
The NNPS was calculated for each projection using non-
overlapping 64×64 pixels windows, taken from the central
portion of the uniform images. The reported NNPS is the
average of the spectra calculated for each window. The average
relative error was calculated using (21).

Dependency on the calibration: Additional experiments
were conducted to investigate the influence of the calibration
images on the simulation performance. Ideally, the calibration
image should be acquired with the same radiographic factors
as the clinical image given as input, and using a PMMA
block with attenuation similar to the breast, to enable the
assumptions of the noise and signal models (1). Obtaining a
wide range of calibration images can be clinically challenging,
so we investigated the impact of using non-ideal calibration
images as input for the simulation method.

The experiment was set as follows: uniform images were
acquired using a 4 cm PMMA block at 31 kVp , with 60 mAs
and 30 mAs. The proposed simulation method was applied
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(a) (b)

Fig. 4. Anthropomorphic breast phantom used for the human
observer studies. (a) Photograph of the phantom. (b) Sample
of the central slice.

to the 60 mAs image, simulating 30 mAs images, using a
range of calibration images as input. The calibration images
were acquired using combinations of 2 cm, 4 cm, and 6 cm
PMMA blocks acquired with 40 mAs, 60 mAs, and 80 mAs.
The method was evaluated in terms of average relative error
of the standard deviation and NNPS, as defined by (21).

B. Human observer study

Inspired by Massoumzadeh et al. [31], a two-alternative
forced-choice (2-AFC) study was conducted to confirm the
equivalence in noise strength between simulated and real
low-dose images in terms of human perception. The human
observer study was conducted using images of a 3D anthro-
pomorphic physical breast phantom, prototyped by CIRS, Inc.
(Reston, VA) under license from the University of Pennsylva-
nia [32]. The phantom consists of six slabs, each containing
simulated anatomical structures manufactured using tissue
mimicking materials, based upon a realization of the com-
panion breast software phantom [33]. The physical phantom
simulates a 450 ml breast, compressed to 5 cm, with 17%
volumetric breast density (excluding the skin). Fig. 4 shows
a photograph of the anthropomorphic breast phantom and an
example of a DBT reconstructed central slice.

Real and simulated projections were reconstructed using a
commercially available system (Briona Standard v4.0, Real
Time Tomography, Villanova, PA). Reconstructed slices were
evaluated using a RadiForce GS320 monitor (Eizo, Japan),
with 3 MP resolution. The human observation study was
conducted in a dark room appropriately prepared for this
purpose, at the Hospital of the University of Pennsylvania.
The readings were performed in one session per reader.

The observer study was organized as follows: five sets of
projections were acquired using the anthropomorphic physical
phantom at the radiographic factors given by the AEC (31 kVp ,
tungsten target, aluminum filter and 60 mAs). The current-
time product was then manually set to 30 mAs and the other

five sets of projections were acquired. Using the standard-
dose image (60 mAs), sets of projections were simulated at
30 mAs, 36 mAs, 42 mAs, 48 mAs, 54 mAs, and 59 mAs.
Calibration projections, required by the simulation method,
were acquired using the same radiographic factors as the AEC
(31 kVp , tungsten target, aluminum filter and 60 mAs), and a
uniform block of PMMA with 4 cm. A collection of four ROIs
at nine different depths was selected from each realization and
each dose, resulting in one set of 180 real ROIs, and six sets
of 180 simulated ROIs, one set at each current-time exposure
mentioned above (30 mAs - 59 mAs).

Each observer was presented with 360 pairs of ROIs,
extracted from the exact same location in the phantom. One
image of the pair was a real acquisition at 30 mAs, while the
other image was its simulated counterpart. Sixty simulated
images were taken from the pool of 59 mAs, another sixty
were taken from the pool of 54 mAs, and so on. The sequence
of simulated images at different mAs was randomized prior to
presenting them to the observer. The observer was asked to
select the image that contained less noise. Observers were
allowed to zoom and pan, the position of the observer in
relation to the monitor was free, and no window or level tools
were allowed.

Software developed for this work automatically recorded
the observers’ choices and time of decision. If the observer
was incapable of perceiving any differences in noise levels,
we expected that the simulated image would be chosen ran-
domly 50% of the time. As the difference between noise
levels increases, the percentage of correct selection should
also increase, reaching 100% when differences are obvious.
Ideally, we expect to achieve 50% of correct selection when
the simulated exposure time matches the real exposure time
(30 mAs in our experiment).

The 2-AFC study can also help to identify the just-
noticeable difference (JND) noise for DBT images. In this
context, the JND represents how much the current-time prod-
uct has to be increased (or decreased) before human observers
start to perceive a difference in noise levels. The JND point is
defined at an accuracy of 75%, which is the midway between
complete guessing (50%) and easily noticeable difference
(100%) among simulated and real images. This information
can also be used as a target for accuracy levels of noise
simulation algorithms.

V. RESULTS

The algorithm was validated using our MATLAB implemen-
tation. The method reported linear complexity, with approxi-
mately 2 Mpixel/s on a 3.40 GHz Intel Core i7-2600K CPU.
Considering the size of the images simulated in this work
(∼3MP), the method simulates one DBT projection every 1.73
(± 0.09) seconds. The clinical unit used in this study acquires
15 projections per exam, thus a new full case is generated
every 26 seconds.

A. Objective analysis

The standard deviation of the noise found at simulated
and real acquisitions are presented in Fig. 5a and Fig. 5d.
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Fig. 5a shows the local standard deviation of the noise at the
central projection as a function of the distance to chest wall.
Due to the flat-field calibration, the standard deviation of the
noise increased as the distance to the chest wall increases, as
expected [34]. Furthermore, the simulated values presented a
good match visually with the real values. Fig. 5d shows the
average error of the standard deviation of the simulated noise
for different projections. Error bars represent the standard
deviation of the error normalized by the square root of the
number of samples. The average relative error was smaller
than 2% for each projection angle.

The SNR calculated from simulated and real images are
presented in Fig. 5b and Fig. 5e. Fig. 5b shows the local
SNR at the central projection as a function of the distance
to chest wall. As expected, when the noise standard deviation
increased, the SNR decreased. Fig. 5e shows the average error
of the SNR of the simulated and real images at different
projections and doses. The error bars represent the standard
deviation of the error normalized by the square root of the
number of samples. The relative average error was smaller
than 1% for all the projections.

The NNPS of the simulated and real acquisitions are pre-
sented in Fig. 5c and Fig. 5f. Fig. 5c shows the NNPS of
the central projection for each simulated reduction. Fig. 5f
shows the average error between the NNPS of the simulated
and real images. Note that the proposed method was capable
of accurately simulating the frequency-dependency of the
noise. Error bars represent the standard deviation of the error
normalized by the square root of the number of samples.
The relative average error is smaller than 2.5% for all the
projections.

Fig. 6 illustrates the importance of the spatial correlation
considered in our noise model. The graph shows the NNPS
calculated for a simulated image assuming that KN is a dirac
delta (i.e. without spatial correlation). The NNPS of a simu-
lated image assuming spatial correlation is shown, estimating
KN using (16) and (19). Also shown is the NNPS of an actual
acquisition at the simulated dose.

Dependency on calibration: To investigate the robustness
of the proposed method to changes in the calibration image,
the average relative error of the noise standard deviation and
NNPS of the simulated images were analyzed at a range of
beam qualities and PMMA thicknesses used for the calibration
image; Fig. 7 shows the results. Fig. 7a shows the average
relative error between the standard deviation of real and
simulated noise. As expected, calibration images acquired
at radiographic factors similar to the standard-dose image
(60 mAs, 31 kVp, 4 cm) reported lower errors. Changes in
mAs and thickness compensated each other, as seen at 80 mAs,
31 kVp, 6 cm. Fig. 7b shows the average relative error between
the NNPS of real and simulated images. Again, the lowest
error occurred when the calibration image was acquired at
radiographic factors close to the standard-dose input image,
and for a thickness similar to the patient’s breast.

B. Human observer studies
The observer study allowed a subjective validation of the

method. Fig. 8 (top row) shows a magnified ROI taken from

TABLE I. Characteristics of the observers of the 2-AFC study

Observer 1 2 3 4 5 6
Experience (years) 20 5 9 1 5 16
Avg. reading time (s/pair) 12 8 12 6 8 11

raw projections of a real acquisition at 60 mAs (AEC), a
simulated image at 30 mAs, and a real acquisition at 30 mAs.
The difference in noise levels between 60 mAs and 30 mAs
can be appreciated visually. Fig. 8 (bottom row) shows the
residual noise for each ROI from Fig. 8 (top row). The residual
noise was estimated by subtracting an approximation of the
noise-free signal from one of the realizations. The noise-free
approximation was obtained by averaging all five realizations
of the phantom acquired at the same radiographic factors.
Note that the differences in terms of the residual noise of
the real 60 mAs and simulated 30 mAs (left and center) were
easily noticeable, while simulated 30 mAs and real 30 mAs
(center and right) were not discernible, indicating the good
performance of the proposed method. Fig. 9 shows a magnified
ROI taken from reconstructed slices acquired with 60 mAs,
simulated 30 mAs starting from 60 mAs, and acquired with
30 mAs. Note that the differences in noise levels can be easily
perceived when analyzing Figs. 9 (a) and (b). Meanwhile, no
differences in noise levels can be seen in Figs. 9 (b) and (c),
indicating the good performance of the simulation method.

A total of six medical physics specialists participated on
the 2-AFC experiment to validate the noise levels in simulated
images. Table I provides an overview of the observers’ expe-
rience in the medical physics field, and the average reading
time per image pair.

The frequency of correct selection – which we define as
the selection of simulated images – and the average time of
decision are shown in Fig. 10, as a function of the relative
increase in the current time product.

The first important finding from Fig. 10a is the frequency
of correct selection at which the current-time product of
simulated and real images were a perfect match (0% increase).
For an ideal test (infinite samples) and an ideal simulation
method, the desired frequency would be 50%. Our experiment
reported a frequency of 47% [38% 60%], where the brackets
represent the 95% confidence interval (C.I.). As the 2-AFC
task respects a binomial distribution, the theoretical 95% C.I.
for random selection with the used number of trials for each
observer (N=60) can be easily calculated, and is equal to [33%
63%]. Note that the correct selection rate of each observer falls
within the theoretical interval.

Additionally, a hypothesis test was performed to investigate
if the frequency of correct selection at 0% mAs increment
is statistically different from random selection (50%). As the
selection frequency follows a Binomial distribution, the arcsin
transformation was first applied to the data. A Shapiro-Wilk
test [35] confirmed the normality of the transformed distri-
bution (p = 0.34). As the hypothesis cannot be rejected at
a significance level of 95% (p = 0.84), the t-test suggests
that the noise strength of simulated and real images are not
discernably different by the human observers.

Fig. 10b shows an expected, but interesting trend in the
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(a) Standard deviation of the total noise. (b) Signal-to-noise ratio (SNR). (c) Normalized noise power spectrum.

(d) Error of the simulated standard deviation. (e) Error of the simulated SNR. (f) Error of the simulated NNPS.

Fig. 5. Top row: objective metrics calculated at the central projection. Bottom row: average relative error between simulated
and measured metrics. The bars represent the standardized errors.

Fig. 6. Comparison of the simulated NNPS assuming no spatial
correlation of the noise (w/o KN), using the complete pipeline
(w/ KN), and the goal (real acquisition).

reading time. As the simulated and real images got more
similar, the difficulty of choosing the correct image increased,
causing the observer to spend more time trying to find the
image containing less noise.

VI. DISCUSSION AND CONCLUSION

An accurate method for simulating dose reduction of DBT
images was proposed in this work. It is a useful tool for studies
of image quality, human perception and radiation dose when
used in combination with DBT clinical images.

The work presented several innovations in relation to our
previous methods [17]–[19]. The noise model accounts for flat-
field corrections, electronic noise, and spatial correlation of
the noise. Signal-dependent quantum noise was added though

a novel operator developed for this purpose. Furthermore,
the use of only one calibration image adds to the clinical
practicality of the method.

Detailed descriptions of the method, materials and vali-
dation were provided. The work also presents experimental
techniques, proposed by other authors, for estimating the
parameters used in the simulation process. This is important as
the parameter estimation plays a crucial role in the simulation
method.

To ensure the clinical practicality of the method, the pixel
crosstalk was modeled as a single convolution kernel KN
applied to both noise sources. This approximation can only
be made under the assumption that the noise color, i.e. the
slope of the NNPS curve, does not report relevant changes
with dose. As a result, the spectrum of the simulated noise
may report errors when simulating dose reduction on highly-
correlated systems. Furthermore, the error of the NNPS may
increase when the method is used to simulate very low doses.

Extensive validation was conducted to ensure the accuracy
of the proposed method. Objective measurements were calcu-
lated on uniform images, where the estimation of signal and
noise properties are straightforward. The standard deviation
of the noise from simulated and real low-dose images were
compared in Fig. 5a and Fig. 5d. The results provide evidence
that the simulation method was capable of adding noise with
the correct standard deviation, even considering the flat field
correction, which is made evident by the increase in noise
standard deviation for pixels far from the chest wall. No trend
is observed when the projection angle of the acquisition is
varied, indicating that the method performs well for oblique
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(a)

(b)

Fig. 7. Average relative error for a range of calibration images.
(a) Error of the standard deviation of the simulated noise. (b)
Error of the normalized noise power spectrum.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Visual comparison between real and simulated projec-
tions. Raw magnified ROI (top row) and residual noise (bottom
row) from acquisition with 60 mAs (a,d), simulation of 30
mAs starting from 60 mAs (b,e), acquisition with 30 mAs
(c,f).

acquisition angles.
The second objective metric was the signal-to-noise ratio,

presented in Fig 5b and Fig. 5e. As the noise standard devia-
tion provides a good match, the SNR is an important indication
that not only noise was simulated correctly, but also the scaling
of the image signal. As expected, SNR drops farther from the
chest wall, due to the higher standard deviation of the noise.

(a) (b) (c)

Fig. 9. Visual comparison between reconstructed slices from
real and simulated projections. Magnified ROI from acquisi-
tion with 60 mAs (a), simulation of 30 mAs starting from 60
mAs (b), acquisition with 30 mAs (c).

(a)

(b)

Fig. 10. Results from 2-AFC study. (a) Frequency of correct
selection as a function of relative increment in mAs. (b) Time
of decision as a function of relative increment in mAs.

The results presented in Fig. 5c and Fig. 5f shows that the
spatial correlation, or pixel crosstalk, was simulated correctly
in the low-dose images. The normalized noise power spectrum
presented a good match with real low-dose acquisitions. Again,
no trend can be seen as a function of the projection angle.
Note that the correct simulation of the spatial correlation of
the noise is crucial for the appropriate performance of readers
when analysing simulated images. As spatially correlated noise
presents some granularity, it represents an extra challenge to
the image interpretation.

As the simulation method depends on a calibration image,
we dedicated one section of this work to investigate how the
use of non-ideal calibration images impacts the accuracy of
the simulation method. The results indicate that it is possible
to simulate dose reduction for a 4 cm case acquired at 60 mAs,
using calibration images of phantoms from 2 cm to 6 cm
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and with current-time product from 40 mAs to 80 mAs. The
various combinations of these phantom thickness and current-
time products yields errors lower than 6% in terms of standard
deviation and 10% in terms of NNPS. We believe that these
errors are acceptable, as previous work on CT [31], and
photography [36] indicate that differences between 15% and
25% on the noise are not easily noticeable by human observers.
Therefore, the proposed method is extremely flexible for
clinical use, as a limited set of calibration images could be
used to simulate dose reduction on an entire population.

The final validation was performed using a 3D anthropo-
morphic breast phantom and a 2-AFC observer study. As seen
in Fig. 10, readers were not able to notice differences in the
noise strength of simulated and real low-dose images, as the
selection accuracy was close to random (50%). A Student’s
t-test was conducted and no statistical differences were found
between the perception of noise strength from simulated and
real images. Furthermore, Fig. 10 shows that the readers are
good at detecting changes in noise levels - a relative increase
of 20% in dose was enough to cause the correct selection rate
to go from approx. 50% (guessing) to approx. 80%.

After the method was validated and the results indicated
that the simulation was accurately performed, Fig. 10 can
be interpreted to obtain a second important finding - the
JND point. The JND value reported by this study was 17%,
which falls within the range reported by others (15% - 25%)
[31], [36]. While we no not claim that the dose for DBT
examinations can be reduced without affecting the diagnostic
outcome, in this study observers were not able to discern
a 17% dose difference. The task of detection and lesion
characterization were not considered in this work and would
require a separate study.

In conclusion, we have proposed and validated a full
pipeline capable of simulating dose reduction in DBT images.
It considers both quantum and electronic noise and the spatial
correlation of the pixels. We believe that the accuracy, along
with the computational efficiency and flexibility of calibration
make this method an attractive tool for clinical image-based
simulations of dose reduction.

APPENDIX A. SPATIALLY CORRELATED
SIGNAL-DEPENDENT NOISE

Let zu denote the hypothetical signal measured by the
detector if there were no crosstalk. The mean, variance, and
PSD can be formalized as

E {zu |yu} = yu + τu ,

var {zu |yu} = λuyu + σ
2
u ,

Ψzu = ‖λuyu + σ
2
u ‖1 ,

where the noise corrupting zu is spatially uncorrelated hence
white (i.e. flat PSD). By modeling the effect of the detector
crosstalk as the convolution of zu with a kernel Ku ≥ 0, we
have

E {zu~Ku |yu} = yu~Ku + τu‖Ku‖1,

var {zu~Ku |yu} = λuyu~K2
u + σ

2
u ‖Ku‖

2
2, (22)

Ψzu~Ku = |F {Ku}|
2‖λuyu + σ

2
u ‖1 ,

Let the observations (1) originate from this process and set

y = yu~Ku , τ = τu‖Ku‖1 ,

zin = zu~Ku , λin = λu
‖Ku‖

2
2

‖Ku‖1
, σ2

E = σ
2
u ‖Ku‖

2
2 .

These substitutions trivially yield (1), (2), and (17), with
KN=Ku‖Ku‖

−1
2 . We can then analyze the discrepancy between

λiny = λinyu ~Ku from (3) and λuyu ~K2
u = λin

‖Ku ‖1
‖Ku ‖

2
2
yu ~K2

u

from (22). In particular, by taking the Maclaurin series of
yu(t0− ·) at an arbitrary location t0 and using 1D formalism
[37], [

λinyu~Ku
]
(t0) = λin

∑
t

yu(t0 − t) Ku(t) =

= λin

∑
t

+∞∑
k=0

∂kyu(t0) tk

(−1)k k!
Ku(t) =

= λin

+∞∑
k=0

∂kyu(t0)

(−1)k k!

∑
t

tkKu(t) , (23)

[
λuyu~K2

u

]
(t0) = λin

‖Ku‖1

‖Ku‖
2
2

∑
t

yu(t0 − t) K2
u (t) =

= λin
‖Ku‖1

‖Ku‖
2
2

+∞∑
k=0

∂kyu(t0)

(−1)k k!

∑
t

tkK2
u (t) . (24)

Comparing the k-th summand in (23) with the corresponding
summand in (24) we observe the following: the first summands
(i.e. k = 0) coincide; if Ku is even symmetric, then the sum-
mands are zero for every odd k thanks to the odd symmetry of
tk . The above expressions generalize immediately to the 2D
and higher-dimensional cases using the corresponding multi-
index form of the Maclaurin series. Thus, the approximation

var{zu~Ku |yu} = λuyu~K2
u + σ

2
E ≈ λinyu~Ku + σ

2
E

is especially accurate when yu is smooth, when Ku is symmet-
ric, and in general when Ku has a small support, due to the
properties of the Lagrange reminder. Hence, as zin = zu~Ku
and y = yu~Ku, we can approximate

var{zin |yu} ≈ λiny + σ
2
E .

The conditioning upon yu can be thus replaced by the point-
wise conditioning upon y, leading to (3). Careful inspection of
the plots of var{zin |y} in Fig. 2 confirms the goodness of this
approximation in the practice and its negligible impact to the
accuracy of the final result, even for crosstalk kernels wider
than that characteristic of the hardware in our experiments.

APPENDIX B. OPERATOR Φ

In this appendix we demonstrate how the operator Φ was
obtained, starting from a noisy input z` ≥ 0, such that:

z` = y(θ) + s(θ) ξθ, ξθ ∼ Ξθ, (25)

where θ ∈ Θ ⊆ R is the (unknown) parameter conditioning the
system, y(θ) = E{z` |θ} ≥ 0, s(θ) = std{z` |θ} ≥ 0, ξθ , and Ξθ
are, respectively, the conditional expectation, the conditional
standard deviation, conditional standardized error, and the
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standardized conditional distribution of z` . We represent Ξθ
through its generalized probability density function pθ ,

prob (ξθ ≤ τ) =
∫ τ

−∞

pθ (ζ ) dζ . (26)

Note that we can always identify θ with y, without loss of
generality, as long as y(θ) is an invertible mapping of θ.

We consider a generic noise-injection operator Φ of the form

Φ(z` ) =
1
c1

*
,

x2

4
− c2 −

σ2
A

4
+
-
,

where x is obtained by applying a root transformation f to z`
followed by the addition of Gaussian noise,

x = f (z` ) + n = 2
√

c1z` + c2 + σAη, η (·) ∼ N (0, 1) .

Throughout our analysis, we assume c1 , 0, c2 ∈ R, and
c1z`+c2 ≥0 1. We are interested in the case σA>0, for which
Φ(z` ) , z` .

We treat
{
x2���θ

}
as a mixture distribution with mixture

components
{
x2���ξθ = ζ

}
and mixture density pθ (ζ ), ζ ∈ R.

According to this mixture model, we have

E {Φ [z`]|θ} =
1

4c1

[ ∫
R

m(ζ ) pθ (ζ ) dζ − 4c2 − σ
2
A

]
, (27)

var {Φ [z`]|θ} =
1

16c2
1

[ ∫
R

(
m2(ζ ) + ς2(ζ )

)
pθ (ζ ) dζ

−

(∫
R

m(ζ ) pθ (ζ ) dζ
)2 ]

, (28)

where m (ζ ) and ς2 (ζ ) are respectively the mean and variance
of

{
x2���ξθ = ζ

}
, and

∫
R m(ζ ) pθ (ζ ) dζ = E

{
x2���θ

}
.

For any given value of z` , the conditional distribution of x
is a normal centered at f (z` ):

{x |z` } ∼ N
(
2
√

c1z` + c2, σ
2
A

)
.

Hence, {
xσ−1

A
���z`

}
∼ N

(
2σ−1

A
√

c1z` + c2, 1
)
.

Therefore, for any given value of z` , x2σ−2
A follows a non-

central χ2 distribution with 1 degree of freedom and non-
centrality parameter µ2=E2{xσ−1

A
��z`

}
. The conditional expec-

tation and variance are thus

E
{
x2σ−2

A
���z`

}
= 1 + µ2 = 1 + 4 (c1z` + c2)σ−2

A ,

var
{
x2σ−2

A
���z`

}
= 2 + 4µ2 = 2 + 16 (c1z` + c2)σ−2

A .

Consequently,

E
{
x2���ξθ = ζ

}
= m(ζ ) = σ2

A + 4
[
c1 (y(θ) + s(θ) ζ ) + c2

]
,

(29)

var
{
x2���ξθ = ζ

}
= ς2(ζ ) = 2σ4

A+16σ2
A

[
c1(y(θ)+s(θ) ζ )+c2

]
.

(30)

1In practice, negative samples can be replaced by 0, defining f (z` ) =
2
√

max {0, c1z` + c2 }. This non-negative clipping may lead to some im-
precision if the proportion of negative samples is significant, e.g., if
prob

(
ξθ ≤

−1
s (θ )

(
c2
c1
+ y (θ)

))
> 0.05.

Substituting (29) into (27) yields

E{Φ(z` ) |θ} = y(θ)+s(θ)
∫
R
ζpθ (ζ ) dζ = y(θ) = E{z` |θ} , (31)

where the last identity follows from ξθ being a standardized
error, thus

∫
R ζpθ (ζ ) dζ = E{ξθ |θ} = 0. Eq. (31) means that

Φ operates an exact unbiased injection of noise. Note that this
is valid regardless of the particular choice of c1, c2, and σA.

Next, we substitute (29) and (30) into (28). Simplifications
lead to

var {Φ [z`]|θ} = s2(θ) +
σ4

A

8c2
1
+
σ2

Ac2

c2
1
+
σ2

Ay(θ)
c1

, (32)

where, in order to deduce
∫
R ζ

2pθ (ζ ) dζ = var {ξθ |θ} = 1, we
again leverage the fact that ξθ is a standardized error.

It is important to note that (31) and (32) are valid for
arbitrary conditional standard deviation s(θ) and standardized
conditional distribution Ξθ of z` .

For the specific case of a z` as in (7), we have an affine
variance s2(θ) = λiny(θ) + σ2

E, with λin>0 and σ2
E ∈R; thus

var {Φ [z`]|θ} = *
,
λin +

σ2
A

c1
+
-
y(θ) + σ2

E +
σ4

A

8c2
1
+
σ2

Ac2

c2
1
. (33)

Therefore, to obtain a signal-dependent target variance where
only the linear portion of the variance function is modified,
we have

var {Φ [z`]|θ} = λouty(θ) + σ2
E , (34)

with λout > λin, it suffices to set

c1 =
σ2

A

λout − λin
, c2 = −

σ2
A

8
. (35)

In particular, for the observations (1)–(3) and goals described
by (4) and (5), we have λout=λin/γ, σA=

√
(1/γ) − 1.

The application described in this work has observations with
a signal intensity offset τ. The variable z` considers that such
offset has been removed, as done in Section III-B. Further-
more, all the above derivations involve pointwise operations
and thus they hold also when the noise η is spatially correlated
(i.e. frequency-dependent); only its variance and Gaussian
distribution matter. To simulate the spatial correlation due to
detector crosstalk, η is obtained by convolving white Gaussian
noise against a kernel KN (20). Neither the variance nor the
Gaussianity of η are affected by this operation.

ACKNOWLEDGMENT

The authors would like to thank Real Time Tomography
for providing the reconstruction software, Ms. Kristen Lau for
her support during the acquisition of images, and the team
of medical physicists who volunteered for participating in
the 2-AFC experiment. ADAM is a member of the scientific
advisory board, and a shareholder of RTT.



12

REFERENCES

[1] C. I. Lee, M. Cevik, O. Alagoz, B. L. Sprague, A. N. Tosteson, D. L.
Miglioretti, K. Kerlikowske, N. K. Stout, J. G. Jarvik, S. D. Ramsey
et al., “Comparative effectiveness of combined digital mammography
and tomosynthesis screening for women with dense breasts,” Radiology,
vol. 274, no. 3, pp. 772–780, 2014.

[2] F. J. Gilbert, L. Tucker, M. G. Gillan, P. Willsher, J. Cooke, K. A. Dun-
can, M. J. Michell, H. M. Dobson, Y. Y. Lim, T. Suaris et al., “Accuracy
of digital breast tomosynthesis for depicting breast cancer subgroups in
a UK retrospective reading study (TOMMY trial),” Radiology, vol. 277,
no. 3, pp. 697–706, 2015.

[3] R. G. Roth, A. D. Maidment, S. P. Weinstein, S. O. Roth, and
E. F. Conant, “Digital breast tomosynthesis: lessons learned from early
clinical implementation,” Radiographics, vol. 34, no. 4, pp. E89–E102,
2014.

[4] S. S. J. Feng and I. Sechopoulos, “Clinical digital breast tomosynthesis
system: dosimetric characterization,” Radiology, vol. 263, no. 1, pp. 35–
42, 2012.

[5] T. Svahn, N. Houssami, I. Sechopoulos, and S. Mattsson, “Review of
radiation dose estimates in digital breast tomosynthesis relative to those
in two-view full-field digital mammography,” The Breast, vol. 24, no. 2,
pp. 93–99, 2015.

[6] International Atomic Energy Agency, “Appendix II: Medical exposure,”
in International Basic Safety Standards for Protection against Ionizing
Radiation and for the Safety of Radiation Sources, 1996, pp. 45–56.

[7] I. Sechopoulos and C. Ghetti, “Optimization of the acquisition geometry
in digital tomosynthesis of the breast,” Med. Phys., vol. 36, no. 4, pp.
1199–1207, 2009.

[8] H. Machida, T. Yuhara, T. Mori, E. Ueno, Y. Moribe, and J. M. Sabol,
“Optimizing parameters for flat-panel detector digital tomosynthesis,”
RadioGraphics, vol. 30, no. 2, pp. 549–562, 2010, pMID: 20228334.
[Online]. Available: http://dx.doi.org/10.1148/rg.302095097

[9] L. R. Borges, P. R. Bakic, A. Foi, A. D. A. Maidment, and M. A. C.
Vieira, “Pipeline for effective denoising of digital mammography and
digital breast tomosynthesis,” in Proc. SPIE Medical Imaging 2017:
Physics of Medical Imaging, vol. 10132, no. 1013206, 2017. [Online].
Available: http://dx.doi.org/10.1117/12.2255058

[10] T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of
reconstruction algorithms for breast tomosynthesis,” Med. Phys., vol. 31,
no. 9, pp. 2636–2647, 2004.

[11] E. Y. Sidky, X. Pan, I. S. Reiser, R. M. Nishikawa, R. H. Moore,
and D. B. Kopans, “Enhanced imaging of microcalcifications in digi-
tal breast tomosynthesis through improved image-reconstruction algo-
rithms,” Med. Phys., vol. 36, no. 11, pp. 4920–4932, 2009.

[12] A. Svalkvist and M. Båth, “Simulation of dose reduction in
tomosynthesis,” Med. Phys., vol. 37, no. 1, pp. 258–269, 2010.
[Online]. Available: http://dx.doi.org/10.1118/1.3273064

[13] A. Mackenzie, D. R. Dance, A. Workman, M. Yip, K. Wells, and K. C.
Young, “Conversion of mammographic images to appear with the noise
and sharpness characteristics of a different detector and x-ray system,”
Med. Phys., vol. 39, no. 5, pp. 2721–2734, 2012.

[14] A. Mackenzie, D. R. Dance, O. Diaz, and K. C. Young, “Image
simulation and a model of noise power spectra across a range of
mammographic beam qualities,” Med. Phys., vol. 41, no. 12, p. 121901,
2014.

[15] E. Samei, R. S. Saunders Jr, J. A. Baker, and D. M. Delong, “Digital
mammography: Effects of reduced radiation dose on diagnostic perfor-
mance 1,” Radiology, vol. 243, no. 2, pp. 396–404, 2007.

[16] R. S. Saunders, J. A. Baker, D. M. Delong, J. P. Johnson, and E. Samei,
“Does image quality matter? Impact of resolution and noise on mammo-
graphic task performance,” Med. Phys., vol. 34, no. 10, pp. 3971–3981,
2007.

[17] L. R. Borges, M. A. da Costa Vieira, and A. Foi, “Unbiased injection of
signal-dependent noise in variance-stabilized range,” IEEE Signal Proc.
Let., vol. 23, no. 10, pp. 1494–1498, Oct 2016.

[18] L. R. Borges, H. C. de Oliveira, P. F. Nunes, P. R. Bakic, A. D.
Maidment, and M. A. Vieira, “Method for simulating dose reduction in
digital mammography using the Anscombe transformation,” Med. Phys.,
vol. 43, no. 6, pp. 2704–2714, 2016.

[19] L. R. Borges, I. Guerrero, P. R. Bakic, A. D. Maidment, H. Schiabel,
and M. A. Vieira, “Simulation of dose reduction in digital breast
tomosynthesis,” in International Workshop on Digital Mammography.
Springer, 2016, pp. 343–350.

[20] I. Sechopoulos, “A review of breast tomosynthesis. Part I. The image
acquisition process,” Med. Phys., vol. 40, no. 1, p. 014301, 2013.

[21] S. Vedantham, A. Karellas, G. R. Vijayaraghavan, and D. B. Kopans,
“Digital breast tomosynthesis: state of the art,” Radiology, vol. 277,
no. 3, pp. 663–684, 2015.

[22] N. H. Marshall, “Calculation of quantitative image quality parameters,”
NHSBSP Equipment Report 0902, 2009.

[23] I. Cunningham, “Applied linear-system theory,” in Handbook of Medical
Imaging: Physics and Psychophysics, R. Van Metter, J. Beutel, and
H. Kundel, Eds. SPIE, 2000, pp. 79–155.

[24] J. Lee and K. Hoppel, “Noise modeling and estimation of remotely-
sensed images,” in 1989 IEEE Int. Geoscience and Remote Sensing
Symposium (IGARSS’89), vol. 2, 1989, pp. 1005–1008.

[25] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw-
data,” IEEE T. Image Process., vol. 17, no. 10, pp. 1737–1754, 2008.

[26] N. Acito, M. Diani, and G. Corsini, “Signal-dependent noise modeling
and model parameter estimation in hyperspectral images,” IEEE T
Geosci. Remote, vol. 49, no. 8, pp. 2957–2971, 2011.

[27] A. Foi. (2016) Signal-dependent noise modeling, estimation, and
removal for digital sensors. [Online]. Available: www.cs.tut.fi/~foi/
sensornoise

[28] F. J. Anscombe, “The transformation of Poisson, binomial and negative-
binomial data,” Biometrika, vol. 35, no. 3/4, pp. 246–254, 1948.

[29] K. Young and J. Oduko, “Technical evaluation of the Hologic Selenia
full-field digital mammography system with a tungsten tube,” NHS
Cancer Screening Programmes, 2008.

[30] J. T. Dobbins III, “Image quality metrics for digital systems,” in Hand-
book of Medical Imaging: Physics and Psychophysics, R. Van Metter,
J. Beutel, and H. Kundel, Eds. SPIE, 2000, pp. 79–155.

[31] P. Massoumzadeh, S. Don, C. F. Hildebolt, K. T. Bae, and B. R. Whiting,
“Validation of CT dose-reduction simulation,” Med. Phys., vol. 36, no. 1,
pp. 174–189, 2009.

[32] L. Cockmartin, P. R. Bakic, H. Bosmans, A. D. Maidment, H. Gall,
M. Zerhouni, and N. W. Marshall, “Power spectrum analysis of an
anthropomorphic breast phantom compared to patient data in 2D digital
mammography and breast tomosynthesis,” in International Workshop on
Digital Mammography. Springer, 2014, pp. 423–429.

[33] D. D. Pokrajac, A. D. Maidment, and P. R. Bakic, “Optimized generation
of high resolution breast anthropomorphic software phantoms,” Med.
Phys., vol. 39, no. 4, pp. 2290–2302, 2012.

[34] M. Yaffe, “Digital mammography,” in Handbook of Medical Imaging:
Physics and Psychophysics, R. Van Metter, J. Beutel, and H. Kundel,
Eds. SPIE, 2000, pp. 329–372.

[35] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[36] D. Zwick and D. L. Brothers, “RMS granularity: Determination of just
noticeable differences,” Photogr. Sci. Eng., vol. 19, no. 4, pp. 235–238,
1975.

[37] L. Azzari and A. Foi, “Variance stabilization in Poisson image de-
blurring,” in Proc. 2017 IEEE Int. Sym. Biomedical Imaging (ISBI),
Melbourne, Australia, 2017.

http://dx.doi.org/10.1148/rg.302095097
http://dx.doi.org/10.1117/12.2255058
http://dx.doi.org/10.1118/1.3273064
www.cs.tut.fi/~foi/sensornoise
www.cs.tut.fi/~foi/sensornoise

	Introduction
	Preliminaries
	DBT imaging system
	Problem formulation

	Method
	Estimation of parameters
	Pixel offset tau
	Variance of the electronic noise sigmaE2
	Linear coefficient lambdao of the noise variance function

	Offset subtraction
	Injection of quantum noise
	Scaling
	Injection of electronic noise
	Offset addition
	Detector crosstalk
	Exemplary simulation

	Experimental setup
	Objective analysis
	Human observer study

	Results
	Objective analysis
	Human observer studies

	Discussion and Conclusion
	Spatially correlated signal-dependent noise
	Operator Phi
	References


