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Abstract

Laser-induced breakdown spectroscopy (LIBS) is a selective and robust atomic emis-

sion spectroscopy method where a high intensity laser pulse thermally dissociates and

excites a minute quantity of the sample material. In LIBS, all elements can be mea-

sured simultaneously which makes it useful in applications where fast multicomponent

analysis is required. Trace element analysis technology based on LIBS was developed

in this Thesis for monitoring of dissolved impurities in water. The concentrations of

dissolved elements in industrial process water and e�uent are measured for process

steering and for emission management. At the moment, the chemical analysis of wa-

ter is mainly done by manual sampling and laboratory analysis. Online measurement

technology would contribute to the economical use of water, chemicals and energy in

the process industry and further the safety of liquid emissions.

Two novel methods for improving the sensitivity of LIBS of dissolved elements were

introduced in this Thesis. In the presented techniques, aerosol particles generated from

the sample solution are analyzed individually with LIBS. The main bene�ts of single

particle LIBS are the high preconcentration of the sample and the absence of the liquid

matrix which suppresses the LIBS signal. In the �rst instrumentation, the particle

travels along a narrow carrier gas 
ow and its presence in the small sampling volume

is determined by an optical sensor. In the second presented technique, the generated

droplet is trapped in three dimensions using electrodynamic balance (EDB) technology

and the residual particle is analyzed after the complete drying of the droplet. A

detailed characterization of LIBS of precisely trapped particles was also conducted in

this Thesis. Clear improvement with respect to reproducibility and sensitivity was

achieved in this work compared with the direct LIBS analysis of water. The limits

of detection for the constructed EDB-LIBS system were at 50 �g/l level for several

transition metals and are among the lowest values obtained with LIBS based trace

element analysis. The 
exible requirements for the LIBS laser pulse energy and the

speed of operation improve the applicability of the aerosol based sample preparation

to the monitoring of industrial and natural waters. Moreover, the concurrent detection

of dissolved elements and microbiological contamination of water was demonstrated

by the combination of laser-induced 
uorescence and single particle LIBS.
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Chapter 1
Introduction

W
ater resources have links to the state of the environment, the standard of living

and political con
icts. Over the last decades, the global consumption of water

has increased at the rate double of population growth. The climate change feeds the

readily uneven distribution of fresh water on the planet. In 2012, 2.5 billion people

were concerned by the shortage of clean water and over 1.2 billion people were living

in the areas of physical water scarcity.1

While the obvious consequences of drought { di�culties in food production and limited

access to safe drinking water, hygiene and sanitation services { are the most acute,

the negative impacts on the economical growth sustain the regional water scarcity.

Water is needed in almost every process industry including energy production, min-

ing, metal and oil re�ning, paper and pulp industry. Water transports substances or

kinetic energy within a process. It is used for cooling, as a raw material or as a solvent

in industrial scale chemical reactions. In water treatment plants, pure water is the

�nal product. In the traditional "take-make-consume and dispose" economy, water


ows through the process and the portion that is not evaporated becomes waste water

containing suspended matter, heavy metals, other chemicals or microbes. By adopting

the principles of circular economy and sustainable development2 in process industry

and in the water resources engineering, the price of waste and pure water management

could be brought down and the energy and raw material e�ciency could be improved.3

1



Introduction

In practical terms, these principles mean process optimization by solutions like recir-

culated process water cycles to cut down the water intake, optimizing the chemicals

addition to the process and smart waste water treatment and monitoring systems.

Measurement of various element concentrations in water is one of the most common

procedures for process steering. Concentration levels are used for ensuring the proper

function of the process, for end-product quality control and for regulatory waste water

monitoring. In the process optimization, measurement data should be generated and

utilized in real-time. This is possible by implementing the modern ICT combined with

water sensor technology in process automation systems. Although numerous online

sensors are already on the market for many properties of water such as pH, turbidity or

conductivity, a sensitive and cost-e�ective technology for the detection of wide range

of dissolved elements is still missing. The current elemental analysis of water is most

often performed manually in a laboratory by stoichiometric or spectroscopic analysis

whereupon the time between the sample collection and the result-based action is too

long for real-time process control or emission alert system.

Optical measurement technology is based on the interaction between light and matter.

If an optical access to the object is provided, almost every physical property can be

measured either directly or indirectly using light or a portion of the electromagnetic

radiation that range from infrared through ultraviolet. Nowadays optical sensors are

found everywhere in industry4, transportation5, defense6, health care7 and house-

holds8. Laser spectroscopy is a branch of modern optical measurement technology

where the amount and frequency of the light emitted or absorbed by the sample is

analyzed and the method involves one or several lasers. Typical measurement task

for laser spectroscopy is to reveal the amount of certain substance in a sample mate-

rial. In the chemical analysis of water, the bene�ts of in situ optical measurements in

comparison with traditional laboratory methods are typically the absence of sampling,

the measurement speed and frequency, sensitivity, selectivity, compact sensor size and

chemical-free measurement.

1.1 Aim and Scope of This Work

The objective of this work was to develop laser spectroscopy -based technology for

the detection of small metal concentrations in water. The technology was initially

2



1.1 Aim and Scope of This Work

purposed in mining sites to monitor the safety of the water released to the surrounding

water systems and to detect metal concentrations, mainly nickel, in the recirculated

process water streams. Part of the research was carried out in projects funded by

Tekes { the Finnish Funding Agency for Innovation, mining companies and companies

providing technology solutions for mines. The requirement for the lowest detectable

concentrations was 0.1 mg/l or 0.1 ppm, and it was determined by the environmental

permits conceded in Finland, the law of Finland9,10, the European Union directives11

and organizational recommendations12.

The list of potential target applications was later expanded to cover other facilities

where the measurement of dissolved elements due to process control, water safety and

environmental monitoring is a mandatory practice. In many cases, moving on from

conventional laboratory analysis towards online measurement would save resources

and environment. Industrial waste waters commonly include trace amounts of heavy

metals whose health hazards are well-known13. The source of metal discharges can be,

for example, the cooling water or water from the enrichment and coating processes in

metal production plants, the preparation of the crude oil in the oil re�ning or use of

aluminum sulfate as retention aid in paper industry. In Finland, the facilities typically

have their own water treatment plant that removes metals from the waste water to the

level allowed in their environmental permit. Communal waste water treatment plants

need to remove phosphorus from the received water. Removal is done by precipitating

the phosphorus with soluble iron or aluminum salt. The dosing of the salt in the water

under puri�cation is controlled by measurements of the phosphorus levels. Secondly,

waterworks treating waste waters from process industry require information about

increased metal concentrations in the received water in order to prevent the metals

from ending up in the sludge which is a by-product of the water treatment facilities14.

Concentrations of oxygen, silicon and metals in the coolant circuit in thermal power

plants can reveal early corrosion, the forming of depositions in the turbine or leaks

in the heat exchanger between the primary circuit and a district heating network.

Measurements are also required in closed system �sh farming plants and many other

branches of food industry as well as in the furthering of drinking water safety in the

areas su�ering water scarcity. The list of elements of interest in the above examples

varies between applications and the required detection limits are between 0.1 �g/l and

10 mg/l.

Laser-induced breakdown spectroscopy (LIBS)15 was studied as the analytical tech-
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Introduction

nique owing to its capability to measure the majority of elements rapidly with good

selectivity. LIBS is a type of atomic emission spectroscopy which involves focusing a

high intensity laser pulse on the surface or inside of the sample material. The leading

edge of the pulse evaporates and ionizes a minute quantity of the sample. Optical

power is converted to the kinetic energy of emerged electrons which leads to a rapid

growth of free electron density at the laser focal point and further absorption of the

pulse trailing edge. As the vapor heats up molecules will be dissociated and a signif-

icant portion of atoms and ions are thermally excited to upper energy states. After

the laser pulse, ions and electrons recombine and the characteristic spectra of sample

material atoms are observed due to radiative relaxation while the originated plasma

cloud expands and cools down.

The major drawback of using LIBS is the insensitivity in direct measuring of liquid

samples such as water streams due to numerous random processes that disrupt the

signal formation. Thus, LIBS could not be used as a sole measurement technology.

Combining optics and aerosol technology novel techniques were developed to circum-

vent the interfering processes and so to increase the sensitivity of LIBS analysis of

water. This Thesis introduces two methods that perform a real-time sample prepara-

tion procedure by preconcentrating water droplets generated from the original sample

and bringing the particles to the laser beam in a controlled way. The methodology

led the research group to study the LIBS analysis of single particles which have links

to other environmental research �elds such as monitoring of atmospheric aerosols or

industrial particle emissions. Besides elements, the developed technology enabled the

detection of microbiological contamination in water which may increase the usability

of the method in the online water quality control. This Thesis presents the novel

measuring instruments and the main results of the research.

1.2 Structure of the Thesis

This Thesis consists of eight chapters that outline the background of the topic, the

applied methods and obtained results. Chapter 2 describes the physical principles

relevant in understanding how the signal from di�erent elements forms in a LIBS

measurement. Chapter 3 reviews the technologies currently utilized in the detection

of elements in water and brie
y describes their principle of measurement. Chapter 4
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1.2 Structure of the Thesis

discusses the challenges of LIBS measurement of water and the approaches developed

to enhance the LIBS sensitivity. The concept of single droplet sampling and precon-

centration is introduced at the end of Chapter 4. The instrumentations built in this

work for measuring elements in aqueous solutions using LIBS with aerosol-assisted

preconcentration is presented in Chapter 5. Chapter 6 discusses the factors a�ecting

the LIBS signal from a single precisely controlled aerosol particle and the optimiza-

tion of the measurement parameters for water measurement. The applicability of the

developed method to the qualitative trace element analysis of process and waste wa-

ter samples is presented in Chapter 7. Detection of microbes in water by combining

the information from LIBS and laser-induced 
uorescence (LIF) measurement from

the same micrometer scale particle is also described in Chapter 7. The work is sum-

marized and the next development steps towards the online analysis applications are

discussed in Chapter 8.

The research done within the framework of this Thesis is compiled in four peer-

reviewed publications that are included in the appendices. Paper 1 concerns �rst

of the two experimental instrumentations introduced in this work for LIBS analysis

of water. Papers 2 and 3 covers the operation and characterization of the second

measurement setup, respectively. Paper 4 deals with the addition of laser-induced


uorescence to the instrumentation presented in Paper 2 and application to microbe

measurements. Short descriptions of the publication topics are described below.

Paper 1

An evaporative preconcentration method where trace metals are dopants on the

surface of hollow 5 �m NaCl particles is introduced. The particles are concen-

trated and directed to a narrow sheath air 
ow. Individual particles trigger

the LIBS analysis with the aid of a scattering detector. The use of sodium as

an internal standard for improving the accuracy of the quantitative measure-

ment is discussed and the detection limits for zinc and lead are provided. The

measurement of LIBS signal as a function of pulse energy give a good reference

for Paper 3 where the dependency is discussed in the case of precisely trapped

particles.

Paper 2

LIBS of electrodynamically trapped NaCl particles is introduced and the appli-
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cability of the scheme to the measurement of trace elements in water is demon-

strated. As in Paper 1, the trace metals are present in the salt particles as

additives. The operation of the experimental setup is described in detail. The

excellent repeatability of the LIBS signal with low pulse energy is presented and

the detection limits for nickel, lead and zinc are calculated.

Paper 3

The paper includes a description of the experiments done for studying of the

factors a�ecting the elemental analysis of single precisely trapped droplets and

dry particles using LIBS. Scattering-based feedback loop was build to control

the trapping parameters in the scheme presented in Paper 2. The automatic

adjustment of the parameters removes the requirement of adding salt in the

analyzed water as done in the two previous papers and enables the three dimen-

sional trapping of the droplet already in the drying phase. In Paper 3, LIBS

signal dependency on the degree of evaporation of the droplet is presented and

the in
uence of micrometer scale displacements in the position of the particle on

the signal is quanti�ed. Furthermore, the optimal applied laser 
uence in the

detection of elements in a �nite sample mass is determined.

Paper 4

Identi�cation of microbial particles in water based on their 
uorescence proper-

ties and single-shot LIBS signal from potassium, sodium, calcium is introduced.

LIF and single-shot LIBS spectra were recorded from single fungal spores and

bacterial aggregates. The data analysis for detecting di�erences in the signals

from di�erent species is presented.

1.3 Author’s Contribution

This Thesis summarizes the Author’s research work during the years between 2012

and 2016. The Author’s role in each of the four publications is presented in the

following chapters. Group work and collaboration were naturally involved in all of the

publications.

6



1.3 Author’s Contribution

Paper 1

The Author modi�ed the existing 
uorescence measurement setup to be used

in LIBS, planned and carried out all the measurements, designed the signal

processing procedure and did the data analysis and most of the reporting.

Paper 2

The Author contributed considerably in the designing and building of the mea-

surement system consisting of the measurement chamber and the optical setup

around the chamber and designed and built the system automation. Also, the

Author performed most of the measurements for the manuscript, processed the

data, and wrote the manuscript.

Paper 3

The Author planned the measurements and did the required modi�cations to

the instrumentation and to the automation program. The Author had the full

responsibility for the measurements and data analysis and did most of the re-

porting.

Paper 4

The Author contributed equally to this work with the �rst author of the publi-

cation. The Author designed and modi�ed the optical setup to include the LIF

functionality and processed the raw measurement data. The Author also took

part in the laboratory measurements and reporting.
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Chapter 2
Laser-Induced Breakdown

Spectroscopy

P
rinciples of laser-induced breakdown spectroscopy (LIBS) relevant in analysis

of water and aerosols are presented in this Chapter. The discussion on plasma

formation in air and measurement time scales in LIBS applies to the measurements

with nanosecond-scale laser pulse durations. Also, the fundamentals of atomic energy

structure and the origins of atomic spectra in a hot vapor are discussed in brief. Other

measurement techniques for dissolved elements in water are presented in Chapter 3.

2.1 Atomic emission spectroscopy

The electrons in an atom have arranged into atom orbitals in a way that the lowest

Coulombic potential energy is achieved and the rule of Pauli exclusion principle is

not violated. The ground con�guration of the lighter atoms can be deduced using

the standard form of the periodic table of elements whereas more rigorous inspection

is required for heavier elements. Each con�guration describing the arrangement of

the electrons in atom orbitals gives rise to one or more electronic energy states of an

atom because of coupling between the total orbital angular momentum L and total

9



Laser-Induced Breakdown Spectroscopy

spin angular momentum S of the electrons. Figure 2.1 shows a Grotrian diagram

of the ground state and the �rst excited states of Pb atom. The con�guration of the

electrons in un�lled orbitals is shown in the bottom row. The columns above represent

the distribution of the energy levels arising from each con�guration. They are labeled
2S+1LJ where L = 0, 1, 2, 3, ... correspond to letters S, P, D, F, ... respectively.

The negative values of the energy of each state in Figure 2.1 describe how �rmly the

outer electron is bound to the atom, and the �rst ionization energy Eion;0 is the work

required to remove an electron from an atom in its ground state. The energies in a

Grotrian diagram are often expressed with relation to the ground state the energy of

which is set as zero.16
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Figure 2.1 Levels of Pb atom and the transitions observed in this work.

The excited states of an atom or an ion in a high temperature vapor or plasma can be

described as an atom or ion where one valence electron has been promoted to a higher

atom orbital. The intensity of an observed optical spectral line corresponding the

transition from state k to state i depends on the transition moment Rki, the amount

of atoms in the state k, and the opacity of the hot vapor. The latter two parameters

are discussed in the next section. A photon of emitted light has an energy that equals

the energy di�erence of the states

Ek � Ei = h�ki =
hc

�ki
; (2.1)

where Ek and Ei are the energies of the upper and lower state, h is the Planck
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2.2 Laser-induced plasma

constant and �ki and �ki are the frequency and the wavelength of the observed light,

respectively. Atomic spectra databases17,18 list the wavelengths of optical emission

lines for most elements. Also, information about the spectral intensities is given to

help in the recognition of unknown lines or in the modeling of the emission spectrum.

Typically the reciprocal of the upper state lifetime i.e. the Einstein coe�cient Aki is

given instead of Rki,

Aki / jRkij2 =

����Z  �k� id�

����2 : (2.2)

In Equation 2.2, � is the electric dipole moment operator, � is a volume element, and

jRkij2 is called the transition probability. If Rki = 0, the transition is said to be

forbidden and the quantum numbers characterizing the wave functions  k and  i do

not ful�ll the relations called the selection rules16 which are not presented here. Even

though a transition is forbidden as an electric dipole transition, it can be observed as a

magnetic dipole or electric quadrupole radiation but these emission lines are typically

weak. The arrows in Figure 2.1 show the Pb transitions measured in this work. The

most persistent being the transition between states 6p7s 3Po1 ! 6p2 3P2.19

2.2 Laser-induced plasma

In air, the laser irradiance about 100 GW/cm2 obtained by focusing a pulsed laser

beam will lead to a rapid growth of free electron density and signi�cant absorption of

the laser pulse. In the mechanism, called the breakdown of the material, the initial free

electrons in the focal volume can be produced by multiphoton ionization or natural

background radiation. The free electrons in the �eld of an atom or an ion gain kinetic

energy from the laser via the process of inverse bremsstrahlung. Collision between a

fast electron and an atom produces two electrons and the electron density ne grows

in a cascaded manner. Photoionization is an important process in the increase of the

electron density at UV laser wavelengths. If the threshold of about ne > 1013 cm�3

is exceeded, the laser pulse absorption becomes strong enough for the formation of

plasma which is characterized by electron densities above 1016 cm�3 and temperatures

above 5000 K. The latter part of the laser pulse feeds energy to the plasma. Therefore,

the plasma expansion is not homogeneous but fastest in the direction opposite to the

propagation of the laser pulse, and after the pulse the plasma possesses elongated

form.20
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Laser-Induced Breakdown Spectroscopy

In an ideal plasma state of complete thermal equilibrium (CTE), the plasma is optically

thick over a wide wavelength range, it is governed by a single temperature T , the

thermal energy loss due to convection, conduction and di�usion is negligible, and the

plasma is spatially homogeneous. Then the following conditions hold: 1) The plasma

radiates as a blackbody the intensity of which follows the Planck radiation law. 2) All

the species in the plasma have a Maxwellian velocity distribution. 3) Thermal energy

or collisions are responsible for the excitation of the species. The number density nk

of each species in an excited state k follows the Boltzmann distribution

nk = nr
gk

Zr(T )
exp

�
� Ek
kBT

�
; (2.3)

where nr is the total number density of the species, gk is the degeneracy of the state

k, Zr(T ) is the partition function of the species and kB is the Boltzmann constant. 4)

Ionization is due to collisions and the number density ratio nr+1=nr, where r is the

ionization stage (r = 0 for atoms), is described by the Saha equation

nr+1

nr
=

2Zr+1(T )

Zr(T )

(2�mekBT )3=2

neh3
exp

�
�Eion;r � �Eion;r

kBT

�
; (2.4)

where me is the electron mass, Eion;r is the ionization energy of the species and �Eion;r

its depression due to charged particles in the plasma.21

The plasma formed in a LIBS experiment is optically thin and gives out its energy

by radiation. It also su�ers from other energy losses. Therefore the continuum emis-

sion from the plasma is much weaker than the blackbody emission corresponding the

plasma temperature. However, the conditions 2)-4) are valid in the regions where

collisional processes govern the species ionization and excitation rather than radiative

processes and where the temperature, electron density and heat conductivity gradi-

ents are su�ciently weak. This local thermal equilibrium (LTE) approximation holds

typically in the center of the plasma where the electron density is the highest. In

case of deviations from LTE, the above equations can still be used for describing how

di�erent components are distributed in the plasma if T is replaced by temperatures

speci�c for each process. In the Boltzmann equation, T is replaced by the excitation

temperature Texc and in the Saha equation by the electron or ionization tempera-

ture Te; Ti. Also, the species velocities can still have Maxwellian distribution but the

kinetic temperatures vary for the species of di�erent mass.21,22
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2.3 Plasma radiation

2.3 Plasma radiation

The radiation from cooling plasma can be categorized into three classes depending

on the formation mechanism. These mechanisms are illustrated in Figure 2.2. The

free-bound and the free-free mechanisms contribute to the continuous background

spectrum that extends from the deep-UV to the infrared whereas the bound-bound

transitions produce the optical line spectrum.

bound-bound
(excitation/relaxation)

free-free
(bremsstrahlung)

free-bound
(recombination)

ionic
levels

atomic
levels

en
er

gy

Eion

Figure 2.2 Free and bound electrons and classi�cation of transitions.

The free-bound continuum is more prominent in the shorter wavelengths of the spec-

trum. In a radiative recombination between an electron e and the ionX+, the resultant

atom or ion remains in an excited state X�

X+ + e! X� + h� and

h� = Eion � �Eion � Ek +
1

2
mev

2
e ;

(2.5)

where the last term is the kinetic energy of the electron. The recombination can

also occur non-radiatively in the process of three-body recombination where a part of

the neutralization energy is given to a third particle, usually to another electron. The
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Laser-Induced Breakdown Spectroscopy

free-free radiation or bremsstrahlung arise when free electrons lose part of their kinetic

energy in the interaction with positive ions and neutral atoms. The total background

emission spectrum can be formed by summing up the contributions from the free-

bound and the free-free radiation. At wavelengths shorter than about 500 nm, the

resulting spectral volumetric emission coe�cient for total continuous emission varies

with the wavelength and has a sawtooth form due to the recombination. At longer

wavelengths, the emission is practically independent of frequency until the plasma

becomes optically thick at several micrometer wavelength and starts to radiate as

a blackbody. The exact spectral shape of the background varies according to the

concentration of each chemical species, the plasma temperature and electron density.21

Bound-bound transitions occur between discrete energy states. Electronic transitions

in an atom or an ion are typically the most prominent in a LIBS spectrum but also

molecular band systems are detected. The observed spectrum of lines at frequencies

or wavelengths given by Equation 2.1 generate the desired LIBS signal. On the other

hand, characteristic emission from the sample matrix or ambient air contribute to the

background. For example, several nitrogen atomic lines as well as strong bands of

N+
2 and CN near 390 nm originate from standard air and distract the measurement

of certain elements. In thermal equilibrium, the volumetric emission coe�cient �ki

corresponding atomic (nr = n0) line emission from state k to state i is given by

�ki =
1

4�

hc

�
Akin0

gk
Z0(T )

exp

�
� Ek
kBT

�
: (2.6)

Equation 2.6 can be used for determining the plasma temperature. One possibility is

to measure intensity ratios between the atomic spectral lines of the same element and

which are insensitive to self-absorption. The ratio is substituted into the rearranged

form of Equation 2.6

� := ln

 
I0

�(�0)A
00
kig
00
k�
0

I00

�(�00)A
0
kig
0
k�
00

!
=

1

kBT
(E00k � E0k) ; (2.7)

where I is the intensity of a spectral line in detector speci�c units, �(�) is the quantum

e�ciency of the detection system at the spectral line wavelength, and the superscripts
0 and 00 refer to di�erent transitions. In Figure 2.3, the left hand side of Equation 2.7

is plotted as a function of (E00k � E0k) for four di�erent lines measured in two separate

measurements. The plasma temperature can be estimated from the slope 1=(kBT ) of

the �tted line.
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a

Figure 2.3 Boltzmann plots formed from measurement data of two separate measurements.
The slopes indicate temperatures near 9000 K.

2.4 Line broadening

The dominant line broadening mechanisms in a LIBS spectrum are Stark, Doppler and

instrumental broadening. At the early phase of plasma evolution, spectral lines are

pressure broadened due to charged particles in a process of Stark broadening. Electric

micro�elds generated by charged particles surrounding the atom produce a small shift

in the position of atom’s electron cloud with respect to the positive nucleus. The

polarization causes splitting of the electronic levels and results in line broadening with

a Lorentzian line pro�le. For hydrogenic atoms and ions, the splitting is symmetric

with respect to unperturbed levels and the shift of one frequency component increases

linearly with the external electric �eld. The theory of line broadening is the most

accurate for hydrogen � line23 and it is often used for estimating the electron density

in the plasma. The relation can be written as

��Stark =

�
ne

C(ne; T )

�2=3

: (2.8)

In Equation 2.8, ��Stark is the full width at half maximum (FWHM) of the spectral

line and C is a parameter tabulated in the literature24. Other atoms and ions undergo

quadratic Stark e�ect which splits the energy levels asymmetrically. In the resulting
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spectrum, the line center has been shifted towards longer wavelengths and the line

pro�le has an asymmetric shape.

After a few microseconds from the laser pulse, the electron density has diminished

and the spectral line pro�les approach the Gaussian line shape caused by Doppler

broadening. Due to Brownian motion, each radiating atom has a di�erent velocity

component along the line-of-sight of the observer which leads to a corresponding shift

in the detected frequency described by the Doppler e�ect. The resulting FWHM

linewidth is given by

��Doppler = 7:16� 10�7g1=2K�1=2mol�1=2
p
T=M�ki; (2.9)

where M is the molar mass of the atoms.

The degree and shape of instrumental broadening depend on the detection con�g-

uration and must be measured separately. When working far from the di�raction

limited maximum resolution of a spectral apparatus, the instrumental broadening can

be estimated from the bandpass

��instr = dslitRLD = dslit
d cos �m
fm

; (2.10)

where RLD is the reciprocal linear dispersion of the grating, d is the grating constant,

�m is the di�raction angle, f is the spectrometer focal length and m is the di�raction

order. In spectrographs, dslit is either the diameter of the entrance slit or two times

the detector pixel size depending on which one is the largest. When two or more line

broadening mechanisms have comparable e�ect the resulting line pro�le is a convolu-

tion of the lineshapes. In case of Lorentzian and Doppler pro�les the overall function

is then described by a Voigt function.

The assumption of optically thin plasma does not hold for spectral lines corresponding

transitions from a low lying upper state to the ground state. With these wavelengths,

plasma signi�cantly absorbs its own emission and results further line broadening. In

the early phase of plasma evolution, the temperature and the electron density are

much lower near the boundaries of the plasma than in the center region. The broad

line emission formed in the hotter regions therefore experiences self-absorption at

wavelengths near the line center when it penetrates the colder boundary layer. The

resulting line pro�le has a dip in the center as seen in Figure 2.4 and the phenomenon

16



2.5 Signal retrieval and calibration

is called self-reversal.
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Figure 2.4 Time evolution of sodium D-lines at 589.0 nm and 589.6 nm wavelengths. Spectra
measured from 5 � m NaCl particles in a sheath air 
ow using 400 ns ICCD gate width and
variable gate delay. The self-reversal is clearly observed at short gate delay times of < 2 � s
with respect to the initial laser pulse.

2.5 Signal retrieval and calibration

Because of non-selective excitation, LIBS is most often utilized in applications where

several elements need to be measured at one step. The simultaneous detection of

multiple elements is done using a spectrometer with a row or camera detector. The

signal is retrieved from the recorded spectrum by calculating the peak height or area.

In the case of interference by neighboring lines, signal calculations may involve the

�tting of a modeled signal to the measured spectrum. A background removal algo-

rithm is typically used prior to peak height evaluation. The algorithm �ts a curve to

the background and subtracts it from the recorded spectrum. In this work, noise is

de�ned as three times the background standard deviation at the wavelength of the

analyte spectral line. The signal or signal-to-noise ratio (SNR) response to analyte

concentration can be linear within several orders of magnitude if a line not prone to

self-absorption is selected as the analytic line. Figure 2.5 presents the determination
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of the signal and the species concentration in the case of zinc in water solution. The

limit of detection (LOD) presented in Figure 2.5 b) is one the most common �gures-

of-merit for LIBS analysis. LOD is the concentration when the signal equals the noise

i.e. SNR is unity. Mainly due to deviations from the equilibrium conditions, the LIBS
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Figure 2.5 a) LIBS signal from zinc in aqueous solution using the instrumentation of Paper
3. b) Linear calibration curve of zinc and the retrieval of concentration. [Paper 1]

theory does not predict satisfactorily the observed signal and the quantitative analysis

is best performed with calibration curves measured separately for each element. The

calibration curves can be a�ected by sample composition because of matrix e�ects

which mean variation of plasma electron density and temperature as a function of

sample composition when analyte concentration is �xed. It also means variation in

the analyte atom and ion number density due to the inhomogeneous vaporization of

the sample. By sensitivity of the method it is usually meant the slope of a calibration

line.

Randomness is always related to the LIBS signal formation leading to signal 
uctuation

between successive laser pulses.25 Therefore, LIBS signal is typically an average value

of several pulses and the relative standard deviation (RSD) or the ratio of standard

deviation and the average signal, is used to describe the signal repeatability. The


uctuation can be diminished by the e�orts of maintaining the excitation conditions

unchanged or by signal processing techniques. Signal correction factors can be formed,

for example, by measuring the laser pulse energy or plasma temperature from each

pulse. Normalization can also be performed with the aid of internal standard which is

an element whose concentration is known to remain constant in the sample. Figure 2.6

shows a calibration curve from the same data as in Figure 2.5 b) but the zinc signal
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2.5 Signal retrieval and calibration

is divided by the signal from added sodium. After the normalization, the reliability

of the measurement improved as indicated by the better correspondence between the

linear �t and the data points.
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Figure 2.6 Zn/Na line intensity ratio calibration curve. Na 475.2 nm line was used for
normalization. [Paper 1]

In this work, the plasma emission lifetime ranges from a few microseconds to tens of

microseconds depending on the excitation pulse energy. At early times from the initial

laser pulse, the LIBS spectrum is dominated by the intense background emission which

decays faster than the line emission from the analyte atoms. The lines are also more

easily resolved when the temperature and the electron density have lowered from their

initial values as described in Section 2.4. The recording of LIBS spectrum is therefore

often performed with a gateable detector to optimize the LIBS signal. The optimum

delay with respect to the laser pulse and opening of the detector gate as well as the time

the gate is kept open is transition speci�c. However, in a multicomponent analysis,

single settings are typically used for all transitions, for simplicity.
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Chapter 3
Measurement techniques for

dissolved elements

T
his chapter lists instrumental techniques currently used in the quantitative anal-

ysis of dissolved elements. Most of the reviewed methods have been existing for

decades and some are still under an active research. Methods can be divided into pure

laboratory techniques and techniques possible to adapt for online measurements. Be-

sides laser-induced breakdown spectroscopy (LIBS), other plasma spectroscopic meth-

ods, X-ray 
uorescence, anodic stripping voltammetry, and ion chromatography are

the only techniques that can measure a wide range of elements without an assembly

of single parameter sensors or the need for element speci�c changes in the instrumen-

tation. Application of LIBS to water samples is discussed in Chapter 4.

3.1 Current online analyzer technologies

Electroanalytical methods detect the trace elements by measuring the voltage or

current in a sample cell. Two of the most common techniques are described here. An

ion-selective electrode (ISE) contains a �lling solution and a thin glass or crystalline

membrane that allows the passage of speci�c ions. The potential of ISE depends
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on the concentration di�erence of the speci�c ion between the solution where it has

been dipped and the �lling solution according to Nernst equation.26 A concentration

analyzer based on ISE has a separate electrode for each measured ion, a reference elec-

trode of known potential and a potentiometer that measures the voltage between the

ISEs and the reference electrode. A familiar example of such analyzer is the pH meter

measuring the hydrogen ion concentration. Anodic stripping voltammetry (ASV)27 is

the most established method in the detection of metal ions in aqueous solutions. It in-

volves a few minute preconcentration stage during which negative potential is applied

to a working electrode to reduce the metal ionic species from the solution onto the

electrode. At the second stage, the potential is raised continuously or stepwise and

the current between the working electrode and an auxiliary electrode is monitored.

Oxidation of the metal species back to the solution occurs selectively at di�erent po-

tential values which is observed as current peaks when the potential is scanned. The

peak height is proportional to the concentration of the analyte in the original sample.

The most common material for the working electrode is mercury although bismuth28,

carbon and gold29,30 electrodes have shown to be a good low toxicity alternatives for

some trace metals. Both ISE and ASV can detect ppb-level trace element concentra-

tions and have a linear response to the analyte concentration when the concentration

is very low. They are susceptible to interference due to the presence of other metals

in the solution and to the changes of pH. In ASV, a bu�er solution is used to en-

sure the proper oxidation state of the metals and to remove the potentially interfering

compounds. The bu�er solution also dilutes the sample in order to extend the dy-

namic range. The online measurement systems based on ASV are typically large �xed

equipment. Electroanalytical devices require weekly maintenance due to analysis cell

cleaning, calibration and replacing of the electrodes and used chemicals.

X-ray 
uorescence (XRF)31,32 is based on the removal of an inner electron from

the K or L shell of an atom by primary X-ray radiation and a subsequent emission of

secondary X-rays or 
uorescence due to a relaxation where an outer electron is trans-

ferred to �ll up the empty vacancy. In an energy dispersive analysis, the characteristic


uorescence spectrum of an analyte atom is recorded by a single photon detector. The

charge produced by each X-ray photon in the semiconductor material of the detector is

proportional to the photon energy, and the number of counts of the given energy pho-

tons is proportional to the concentration of the analyte in the sample. By averaging

the signal over several minutes the current XRF analyzers can detect most elements

in water at 1 ppm-10 ppb level33,34 excluding the lighter atoms. The X-ray photons
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3.1 Current online analyzer technologies

emitted by elements lighter than silicon have low energy and the signal they produce

is therefore typically too weak to be detected. The air between the sample and the

detector also attenuates soft X-rays and, with light elements, the X-ray yield is low

due to a competing nonradiative process of Auger electron ejection. The handling of

XRF device requires precautions as it uses a source of penetrating ionizing radiation.

Biosensors cover many types of small size experimental analyzers where the inter-

action between the analyte and a bioreceptor element causes a physical signal, for

example, optical, electrical or mechanical changes that can be detected by a secondary

detector.35 Currently, there is no established biosensor method for analyzing dissolved

elements. The bioreceptor can be a cell antibody, nucleic acid35, enzyme proteins36 or

an entire cell37 and it is ion or molecule speci�c. In optical biosensors, the receptors

are attached to the surface of a waveguide - typically a �ber core, planar waveguide

or a prism. The optical �eld interacts with the receptors via evanescent �eld that

propagates outside the waveguide. In the case where the surface plasmon resonance

phenomenon is utilized38,39 to concentrate the evanescent �eld on the space occupied

by the receptors, they cover the surface of a thin metal, usually gold, nanostructure

between the waveguide and the water. The typical attenuated total re
ection setting

is shown in Figure 3.1. The binding of a speci�c metal ion to the bioreceptor changes

prism

Au layer

sample
flow bioreceptors

detector

analyte

Figure 3.1 Typical attenuated total re
ection con�guration of plasmon enhanced biosensors.
The gold and biosensor layers are not in scale.

its dipole moment and consequently the absorption, re
ectivity, scattering or 
uores-

cence properties of the receptors. The changes are observed by measuring the angle

or the spectrum of the re
ected light or spectrum of the light emitted or scattered by

the bioreceptors. Optical biosensors have been reported being highly sensitive even

down to ppt-level but have a very restricted dynamic range38. Other obstacles to

their use in monitoring industrial waters are the interference due to multiple ions,
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the pH-dependency36 of the quantitative analysis and the need for chemicals to re-

generate the biosensor surface. In electrical biosensors, the sensitivity and selectivity

of the conventional electroanalytical methods have been improved by attaching the

bioreceptors to the working electrode surface. Mechanical biosensors convert, for ex-

ample, the intensity of acoustic waves or change in the receptor mass40 into analyte

concentration.

Spectrophotometry is a common technology in elemental analyzers that measure

process and waste waters39. It measures absorption at certain wavelengths when light

travels through a sample cell or cuvette. Bare atomic ions in a solution absorb light

poorly in the visible or infrared regions and analysis in the UV region is unselective.

Therefore a reagent is added in excess to the cuvette in order to form a colorful

complex ion solution41{43 and the method is alternatively called colorimetry. Also a

bu�er solution must be added to set the pH at the level where the complex formation

is complete. A typical arrangement consists of a LED emitting at the wavelength

speci�c to the complex ion under analysis and two detectors that measure the light

intensity before and after the cuvette. The absorbance has a linear response to the

analyte ion concentration according to Beer-Lambert law if interference due to other

ions43 is negligible. For each element, a separate cell, reagents and a light source are

needed, and the technique is typically utilized in the analysis of a one speci�c ion. In

spectrophotometric titration, the change in the absorption is monitored as the reagent

is added to the water sample. The departure from the linear behavior indicates the

equivalence point of the titration and the analyte concentration is calculated from the

amount of added reagent.

Ion chromatography (IC) is an established method in water analysis39. It is used,

inter alia, in the semiconductor industry to detect 0.1 ppb level impurity concentrations

in deionized water. In addition to elemental ions, it can be used for the detection of

charged organic and inorganic molecules. In IC, the sample is introduced into an ion

separator column { a tube that has been �lled with charged resin, for example modi�ed

polystyrene resin. The sample is transported through the column by a solvent or

eluent such as hydrochloric acid. The drift velocity through the column is di�erent for

di�erent ions in the sample and depends on ion charge and size as well as instrument

speci�c factors like the eluent pH and 
ow rate. After the chromatography column, the

eluent solution containing the separated ions is next conveyed to an eluent suppressor

followed by a conductivity detector. The detector measures the solution conductivity
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as a function of retention time in the ion separator column. The conductivity has a

peak whenever speci�c ions from the original sample passes through the measurement

point. Typical measurement lasts about 15 min. The purpose of the eluent suppressor

is to replace the eluent with a solution such as water that has a low conductivity and

thus to improve the SNR of the ionic peaks. The conversion is performed using ion

exchange membranes.

In capillary electrophoresis (CE) the sample is introduced to a submillimeter capil-

laries �lled with an electrolyte solution.39 The source end of the capillary is submerged

in a container containing an anode and the destination end has a cathode. The ions

separate due to their di�erent electrophoretic mobility in a static electric �eld. The

detection of the separated ions can be performed electroanalytically or optically by col-

orimetric absorption measurement and, after chemically adding a 
uorescence marker,

with laser-induced 
uorescence. Detection limits at 10 ppb level have been achieved

for dissolved metals with experimental instrumentations.44 In a laboratory, CE can

be combined with mass spectrometry for achieving very low detection limits.

3.2 Laboratory atomic spectroscopy

In inductively coupled plasma optical/atomic emission spectrometry (ICP-

OES/ICP-AES)45 argon is injected through a coil. A radio frequency current 
owing

in the coil generates a time-varying magnetic �eld and a discharge arc typically from

a Tesla coil is used to create the �rst charge carriers in the initially nonconducting

argon. After the plasma ignition, the magnetic �eld induces current loops inside the

conducting plasma medium and thus supplies power to the discharge. Stable plasma

having the temperature near 9 000 K is sustained due to the collisions of charged

particles and argon atoms. The aerosolized sample is injected directly to plasma

whereupon the constituents are dissociated and the trace element atoms are repeatedly

excited, relaxed, ionized and recombined. Light emission from the plasma is directed

to a spectrometer in order to detect the trace element speci�c wavelengths. Multiple

atomic emission spectroscopy methods similar to ICP-OES/ICP-AES exist and di�er

only in their way of producing the plasma.21,46 These are, for example, capacitively

coupled plasma, DC or AC current arcs, microwave discharges and heating vapors in a

high temperature furnace. LIBS is also closely related to these technologies although,
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in LIBS, the plasma is transient and lasts only a few microseconds. Besides observing

the emission, plasma can be used only for atomization and the constituent atoms

can be extracted into a mass spectrometry as in inductively coupled plasma mass

spectrometry (ICP-MS). ICP techniques are highly sensitive and selective but, for the

present, intended only for laboratory use due to the sample preparation procedure as

well as size and price of the instrument.

Atomic absorption spectroscopy (AAS) involves atomizing the sample in the tem-

perature between 1700-3300 K and a consequent absorption measurement.39,45 Most

common AAS technology is the 
ame AAS where the sample is nebulized into a 
ame.

The light source is typically a hollow cathode lamp that emits a line spectrum of the

atoms one aims to measure from the sample. Flame AAS requires constant calibra-

tion and the detection limits of metals lie in the ppm range. The sensitivity can be

improved by using di�erent atomizers, as in graphite furnace AAS (GF-AAS) at the

expense of extra sample preparation and measurement time.
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Chapter 4
Laser-Induced Breakdown

Spectroscopy of dissolved trace

elements

L
aser-induced breakdown spectroscopy (LIBS) is an appealing technology for online

and in situ monitoring of process and waste water streams and the state of the

environment. It is selective for a wide range of elements and the straightforward

analysis is free of chemicals. Unfortunately, LIBS is far from an ideal technique for

the analysis of water and its use in these important applications has not become a

common practice. This chapter reviews the challenges and the previous approaches of

LIBS of aqueous samples and presents the advantages of performing the LIBS analysis

from a dry particle generated from a droplet of the sample solution.

4.1 Elemental analysis of liquids using LIBS

The reported LIBS detection limits for dissolved transition metals have remained above

ppm-level when the analysis has been performed directly from water without any sam-
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ple preparation47{49 and are thus worse than what is obtained using ICP or electro-

analytical techniques. The mechanisms that disrupt the LIBS analysis of aqueous

media are described in several studies concerning biotissue ablation, especially the

eye surgery research50{52 and in more recent laser-induced breakdown literature53,54.

When plasma forms inside liquid, it cools down quickly compared with laser-induced

plasma in air. The energy supplied by the laser pulse is consumed by the vaporization

of the liquid, the conduction of heat to the liquid and mechanical work involved in for-

mation of shockwaves and a cavitation bubble of water vapor about the plasma.50 The

high plasma pressure50 inside the expanding bubble causes pressure and Stark broad-

ening which, together with short-lived emission55, weaken the amplitude and broaden

the linewidth of analyte spectral lines. If the laser is focused on the liquid surface,

plasma can be formed in air. However, the rippling of the liquid surface changes the

mass vaporized from the sample and deteriorates the reproducibility. Plasma expan-

sion also creates splashes and aerosols above the surface that scatter the light of the

subsequent laser pulse and are likely to contaminate optical components. Collection

of analyte emission is distracted in both methods due to bubbles and aerosols, and

part of the emission is quenched by chemical reactions between water vapor and ana-

lyte atoms and ions. The following paragraphs list the various techniques and sample

preparation procedures that have been used to circumvent some of the problems in

LIBS of aqueous solutions.

Depositing the sample on solid surface or sample pelletizing transforms the

measurement virtually to the analysis of solids. The sensitivity depends on the capa-

bility to accumulate the sample to the analyzed surface that can be a �lter paper56,57,

a graphite disk58, a wooden slice59, an electrochemical electrode60 or an ion exchange

membrane61. The drawbacks are the compromise between the sensitivity and time

required for the sample preparation and possible inhomogeneous distribution of trace

elements on the surface. Compressing a dried sample into a pellet has also been

reported62 as well as the analysis of a frozen water sample63.

Analysis of 
owing liquid is a fast and low-cost sample preparation method for

improving the liquid surface analysis. If the water layer is thin enough like in the

cases of jets in air or thin planar streams on an inert surface, the vaporized sample

amount is determined by the laser focus spot size and can be held constant. The

reproducibility is further increased due to the absence of aerosols and splashes if the

whole sampled material is vaporized. Reported detection limits for di�erent elements

28



4.1 Elemental analysis of liquids using LIBS

vary in the range of 0.1 ppm and 100 ppm for measurements in water47,64,65 and in

engine oils66.

UV excitation wavelengths from an excimer laser such as ArF, XeCl or KrF lasers

have been reported producing cooler plasma with similar electron density as longer,

more traditional laser wavelengths. The UV photon energy is adequate for the pho-

toionization of most elements and the two-photon photoionization of water which

increase the electron density. On the other hand, plasma does not e�ciently absorb

UV wavelengths and does not get heated by the absorption of the trailing edge of the

laser pulse. As a result, the LIBS spectrum shows the analyte emission lines over a

weak continuum emission.67,68 Obtained detection limits have been near 1 ppb for

alkali and alkali earth metals and 300 ppb for Pb65,69.

Generation of aerosols by nebulizer and focusing the LIBS laser to the liquid

aerosol cloud is a robust technique for attaining detection limits on the order of 0.1 ppm

for some trace metals in the original solution70,71. Although the sample preparation

method reduces the analyte species concentration in the focal volume, the signal is

more than compensated by allowing the plasma to form in gaseous medium. Analysis

is performed using laser pulse energies greater than 100 mJ as a signi�cant portion of

the energy is consumed for vaporizing the droplets within the plasma.

Single droplet sampling is possible using a piezoelectric or thermal single droplet

generator to inject one droplet on demand or a train of droplets towards the LIBS

focal volume. Single droplet vaporizing can be based on statistical probability when

the generator is producing droplets at certain frequency72,73 or the droplet generation

can be synchronized with the excitation laser74. Also, the approaching droplet may

trigger the laser with the aid of a scattering based sensor75. The droplet diameters

from the piezoelectric generators are typically between 40-100 �m and the sample

consumption is naturally much less compared with analysis of nebulized liquid aerosol.

The reported detection limits are similar to the analysis of droplet clouds.

Double pulse con�guration has been used to lengthen the duration of line emission

from the plasma in several studies. It can be applied to the surface, bulk, jet76 or

aerosol analysis con�gurations. With the second laser pulse, the liquid analysis can

be transformed into an analysis of water vapor.77 Signi�cant enhancement factors

compared with single pulse excitation have been presented for example in papers by

Nakamura et al.78, Cremers et al.49 and Sca�di et al.79.
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Laser-Induced Breakdown Spectroscopy of dissolved trace elements

4.2 Preconcentration by droplet evaporation and sam-

pling considerations

Laser-induced breakdown spectroscopy is applicable to dry aerosol analysis. Drying

small droplets generated from trace metal solutions have been used for calibration and

proof-of-concept demonstrations in several studies concerning monitoring of pollution

particulates mainly from waste and coal combustion80{86. Similar rapid liquid-to-solid

matrix conversion can also be utilized in the LIBS analysis of water. The bene�ts are:

1. Removal of water increases the mass concentration of the analyte atoms in the

droplets by a factor of 106 � c�1
tot where ctot is the total mass concentration of

the impurities in water in the units of ppm.

2. Absence of all the water-related factors suppressing the LIBS signal.

3. Possibility to use laser pulse energies signi�cantly lower than in the direct anal-

ysis of water or droplet clouds.

The third point enables recording the emission with a better signal-to-noise ratio and

it is an important feature when the technology is transferred to industrial use.

In order to achieve sub-ppm detection limits for trace elements in the original solution

with acceptable measurement time, the aerosol must be sampled e�ciently and repro-

ducibly. Even slight changes in the sampled aerosol mass a�ect the analyte emission in

the plasma87. The number of particles sampled by a single laser pulse is determined by

the number concentration of particles in the focal volume and the plasma volume. If

high particle concentrations are used, the relative deviation in the amount of sampled

particles is small and the plasma takes an ensemble average over the aerosol size dis-

tribution. On the other hand, concentrating particles inside a measurement chamber

creates contamination related issues and slows down the measurement response time.

Also, the high sample mass content in the plasma can lead to incomplete vaporiza-

tion, matrix e�ects and overall plasma cooling. Another extreme to �x the sampled

mass is to vaporize a single particle of a monodisperse aerosol with each laser pulse

whereupon the vaporized analyte mass per each pulse is very small. For example, the

detection of 10 ppb trace element concentration in water corresponds detection of only

5 fg in a 100 �m droplet. By increasing the initial droplet size, more analyte atoms
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4.2 Preconcentration by droplet evaporation and sampling considerations

can be brought to LIBS focal volume but to maximize the method’s capability for

quantitative analysis, the dry particle size should remain below the threshold for the

vaporization and atomization of the whole particle82,88 with the laser pulse energy in

use. In the study by Carranza and Hahn89, the upper size limit was determined from

the point where the silicon LIBS signal response to silica particle size deviates from

the linear behavior.

The size of the residual dry particles formed from water droplets that contain dissolved

salt as impurities can be estimated using the equation90

dp;dry =
dp0

100

�
ctot

�w
�s

�1=3

. (4.1)

In Equation 4.1, dp;dry is the equivalent spherical diameter of the residual particle, dp0

is the initial droplet diameter and �w and �s are the density of the aqueous solution and

the mean density of the ionic impurities, respectively. After drying, droplets of initial

diameter in a range of 10{100 �m generated from water containing, for example, NaCl

between 100{2000 ppm forms particles having diameter between 400 nm and 10 �m.

Any soluble salt can be added in excess to the sample solution prior to dropletizing

for the purpose of �xing the particle size, increasing the aerosol monodispersity or to

be used as an internal standard in the signal processing. In this work, NaCl was used

as an additive in Papers 1 & 2 whereas no additive chemicals were required in the

instrumentation of Papers 3 & 4.

In single particle measurements, a control or detection of the particle position is re-

quired as the hitting accuracy to a single particle or the sampling rate is less than

1%91 by merely focusing the LIBS beam to an aerosol 
ow. Also, several single parti-

cle spectra would need to be recorded to average out the e�ects caused by 
uctuation

in the particle position92 within the plasma. The number of averaged spectra can be

reduced signi�cantly if the particle location is precisely controlled i.e. the particle is

trapped.
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Chapter 5
Elemental analysis of single aerosol

particles

R
epeatable aerosol-based sampling and preconcentration of liquids for laser-induced

breakdown spectroscopy (LIBS) starts from the generation of a monodisperse

droplet or droplets which are representative samples of the water volume under anal-

ysis. The droplets are dried, and the solid residual particles containing the trace

elements are introduced repeatably to LIBS focal volume. The latter part requires

control of single particles that can be realized via external electric, magnetic93,94 or

optical �elds95{97. The applied forces can also be mechanical such as acoustic98,99 and

aerodynamic forces. Analysis can be performed to moving particles which are known

to pass a certain point at a certain moment of time, or a particle can be trapped in

all three dimensions for a long period. This chapter describes the instrumentation

for LIBS analysis of single-particles that were designed and used within this work.

The discussion therefore concentrates on particle manipulation by electric �elds and

aerodynamic focusing by sheath air.
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Elemental analysis of single aerosol particles

5.1 Sheath air focusing

Narrow particle streams with a small divergence angle can be obtained using a nozzle

having two coaxial ori�ces as depicted in Figure 5.1. The particles travel along the

sample 
ow from the inner ori�ce and are surrounded by a greater sheath air 
ow

from the outer ori�ce. If there is no mixing between the slower sample 
ow and the

faster sheath 
ow, the sample 
ow will be pressed towards the center axis of the nozzle

and a narrow particle beam is formed in the downstream.100{103 Using the sheath air

focusing, the particle beam diameters of only tens of micrometers can be achieved for

micrometer-size particles without the risk for ori�ce clogging. LIBS of aerodynamic

focused particles has been previously reported in Refs. 104{106. In Ref. 104, Park et

al. used also aerodynamic lenses which consist of consecutive 
ow contractions and

enlargements to focus the particles100,107.

sheath
flow

sample
flow

Figure 5.1 Principle of sheath air nozzle.

The experimental setup used in Paper 1 is shown in Figure 5.2. It was modi�ed

from the bioaerosol 
uorescence measurement system reported in Refs. 108{110. The

initial 60 �m droplets are generated using an ink jet aerosol generator (IJAG) with an

adjustable rate of approximately 3000 droplets/s. Before pouring the aqueous sample

to IJAG cartridge, sodium chloride was added to the sample. The water is evaporated

from the aerosol in a vertical tubular oven at 150 �C and a silica gel tube prevents

the condensation of the water back on the particles. NaCl concentration of 600 ppm

produces spherical and hollow dry particles of 5 �m in diameter with a monodisperse

size distribution (Figure 5.3). The trace elements are present in the NaCl particles

as impurities. After a balancing chamber, particles travel through a virtual impactor

which concentrates the number density of the monodisperse particles by a factor of
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5.1 Sheath air focusing

Figure 5.2 Single particle LIBS instrumentation of Paper 1.
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Figure 5.3 a) Size distribution of NaCl particles. b) Scanning electron microscope image of
NaCl particle that has been adapted from publication by Putkiranta et al. 110

10 to 100 particles/cm3. The sample 
ow enters the measurement chamber from the

sheath air nozzle having an outer diameter of 300 �m and passes through a beam
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Elemental analysis of single aerosol particles

from a 650 nm continuous wave (CW) diode laser seen in Figure 5.4. The laser light

scattered by a particle is detected by a photomultiplier tube (PMT) which sends a

trigger signal to an actively Q-switched 10 Hz Nd:YAG laser. After a delay of 209 �s,

the laser emits a 5 ns LIBS excitation pulse. During that time the same particle

traveling at speed of 10 m/s has moved from the position of the CW beam to a focal

point of a parabolic mirror. The excitation pulse hits the particle at this focal point

and the plasma emission is collected using the parabolic mirror and focused into a

spectrometer.

photo-
multiplier
tube

parabolic mirror

plane mirror

lens

beam dump

sheath air
nozzle

aerosol
outlet

CW trigger beam

LIBS excitation
pulse

aerosol
particle

scattered light

trigger
signal

spectrum analysis
aerosol in

aerosol out

Figure 5.4 Schematic of measurement chamber. [Paper 1]

The diameter of the aerosol 
ow is approximately 100 �m which is about twice the

size of the excitation laser focal spot. The particle concentration ensures the existence

of a single particle in the vicinity of the focus within the majority of the laser duty

cycles. Due to uncertainties in the sampling, especially in the precise horizontal and

vertical position of the particle with respect to focal spot at the time of the plasma

initiation, the LIBS signal 
uctuates from pulse to pulse. Typically 400 single-shot

spectra are collected and averaged per one LIBS measurement. About half of the

recorded spectra are good enough to proceed to the averaging phase i.e. the sampling

rate is 50%. Spectra corresponding insu�cient hits are recognized and rejected by

an algorithm that inspects the intensity of Na lines. Thus, the data acquisition lasts

about 40 s and consumes about 14 �l of the sample solution whereas the response

time of the system to the changes in the trace element concentration of the solution
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5.2 Electrodynamic levitation

in the IJAG cartridge is about 3 min. The signal processing program uses the stable

sodium matrix also as an internal standard for correcting the 
uctuating signal values

and thus improving the quantitative analysis. In addition, Na lines are utilized in the

wavelength calibration. The proportion of the successful spectra to the total number

of recorded spectra could be improved from the 50% value by achieving even narrower

aerosol 
ow after the sheath air nozzle. Another option is to increase the sensitivity of

the triggering system towards particles traveling along the center axis of the 
ow for

example by focusing the 650 nm CW laser beam. The �rst option, although technically

more challenging, is preferred since it will also reduce the measurement time and the

sample consumption.

A linear response between Zn concentration and LIBS signal was found up to 100 ppm

level. The detection limits for Zn and Pb were estimated as 0.3 ppm and 0.1 ppm,

respectively, using laser pulse energy of 14 mJ. At the detection limit, each particle

contains 34 fg of zinc and 12 fg of lead. Due to constant sheath air 
ow through the

chamber, no contamination was noticed on the optical components after the measure-

ments.

5.2 Electrodynamic levitation

The electric trapping or levitation of particles have origins in Millikan’s electrostatic

balance and his experiment for measuring the charge of an electron in 1909111. While

developing a new mass spectrometer in 1953, Paul and Steinwedel112,113 found that

ions could be stably trapped in a space surrounded by four hyperbolic electrodes which

were connected to a sinusoidal AC voltage source. This quadrupole ion trap known as

the �rst electrodynamic balance (EDB), did not enable an optical access to the trapped

particle. In 1960, M�uller found that only a single toroid with an AC potential can

trap microparticles114. Since M�uller, various electrode con�gurations115 have been

designed which possess the trade-o� between the optical accessibility and stability of

the particle in the trap. To date, the EDB has been a tool in many aerosol studies

concerning the measurements of mass and charge, studies of chemical reactions, com-

bustion research, Mie theory and many others.115 EDB-assisted spectroscopic analyses

of single particles have been performed by means of IR absorption116, Raman117,118,

and fuorescence spectroscopies119,120. Study of plasma properties after a laser-induced
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Elemental analysis of single aerosol particles

breakdown of a single LiH particle levitated in vacuum using the EDB con�guration

of Wuerker et al.121 was reported by Haught and Polk in 1966122. In addition to Pa-

pers 2-4, LIBS experiment on electrodynamic levitating particle has been reported in

a 2013 PhD thesis123. A LIBS analysis of an electrostatically levitated aerosol cloud

has also been demonstrated by Dutouquet et al. by using an RF discharge cell124.

A coaxial cylinder electrode geometry �rst presented in Ref. 118 provides a stable

trap with good visibility to the particle and was therefore selected in the EDB-LIBS

instrumentation. A drawing of the electrodes and the hexagonal measurement chamber

built in this work are seen in Figure 5.5. The outer cylinders are grounded whereas

�u�A�C�,�u�p�p�e�r

�u�A�C�,�l�o�w�e�r

�U�D�C

�2 �1

�2�z�=�8�0�4

�8

�2

�a�) �b�)

�c�)

Figure 5.5 a) Cross-section view of the measurement chamber with top cover lifted up-
wards. The pulsed (violet arrow) and the CW (green arrow) laser beams enter the chamber
horizontally through one of the chamber windows. The plasma emission is collected from an-
other window at 60� angle from the laser beam axis. b) Electrode structure and connection
diagram. c) Droplet levitating between the electrodes; ready to be analyzed [Paper 2].

a high-voltage AC potential is applied to the inner electrodes. Single droplets 74 �m

in diameter are generated one at a time from a piezoelectric droplet generator that

points perpendicularly to the center axis of the chamber. The droplet is charged by
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5.2 Electrodynamic levitation

an aperture disk in front of the generator ori�ce. The trajectory of the droplet is

adjusted to reach the space between the inner cylinders by controlling the waveform

that drives the piezo. Between the electrodes, the charged droplet starts to oscillate

at the AC �eld frequency. The di�erential equation of motion is formed according to

Newton’s second law by summing up all the forces acting on the liquid particle. These

are the frictional force due to ambient gas given by the Stokes law, electric force due

to high voltage AC �eld and due to small DC voltage between the lower and the upper

electrode, gravitation, and any external force such as laser radiation pressure.

� 3��dp
dr

dt
+ qEAC(r; t) + qEDC(r) +mpg + Fext = m

d2r

dt2
; (5.1)

where dp and q are the size and the charge of the droplet or a dry particle and � is

the gas viscosity. In the cylindrical EDB con�guration, the forces in the horizontal

directions are negligible. If the initial velocity of the droplet is correctly adjusted, the

droplet gets quickly trapped in the xy-plane. It is therefore adequate to inspect the

movement only in the vertical (z) direction and Equation 5.1 can be written in terms

of dimensionless parameters Z = z=z0 where 2z0 is the distance between the inner

electrodes, and � = !ACt=2
125,

d2Z

d�2
+ �

dZ

d�
+ 2�Z cos(2�) = �: (5.2)

The control of the trapping is most conveniently done by the adjustment of the AC

voltage angular frequency (!AC) and amplitude (ûAC), and the DC voltage (UDC).

For the drag parameter �, �eld strength parameter � and for the parameter � which

determines the amplitude and the midpoint of the oscillation, the following propor-

tionalities hold

� / 1

d2
p!AC

; � / ûAC
!2
ACUDC;0

; and � /
UDC =UDC; 0 � 1

!2
AC

: (5.3)

The equation has a stable solution, meaning the droplet does not escape, for certain

(�; �) points shown in Figure 5.6. The stable solution is an equilibrium point at

the center point of the electrodes if � = 0 which happens when the DC potential

di�erence causes a force that compensates the gravitation and the external forces.

Then UDC = UDC;0 where UDC;0 satis�es the equation

qC0
UDC;0

2z0
= mpg � Fext;z; (5.4)
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Figure 5.6 Part of the (�; � ) pairs 125 that result in successful trapping of the particle. The
drying of the droplet is compensated by an increase in the AC frequency and decrease in the
DC o�set.

where C0 is a geometrical constant. After the ejection from the generator, the mass

of the droplet reduces by evaporation and the droplet diameter decreases towards the

dry particle size. To prevent the increase in � to drive the solution of Equation 5.2

unstable, the EDB parameters must be adjusted during the drying process. In the

instrumentation of this work, the e�ect caused by the reduction in the particle size

is compensated by increasing the AC frequency fAC = !AC=2� linearly from the

initial value of 50-200 Hz to a �nal value of 1.6-1.9 kHz and by decreasing the DC

voltage UDC exponentially from 15-25 V to a value jUDC j < 1 V. The amplitude of

the AC potential ûAC is kept at 950 V. The rate which the AC frequency is raised

depends on the relative humidity (RH) inside the chamber and weakly on the total

impurity concentration in the analyzed water. The applied electrode potentials during

the droplet trapping starting from the droplet generation at t=0 can be written as

uAC;upper = ûAC sin(!ACt)� UDC ;
uAC;lower = ûAC sin(!ACt);

(5.5)

where

!AC =

8<:!AC;i(dp0) 0 � t < t1

S!(RH; ctot)(t� t1) + !AC;i(dp0) t1 � t < t2
: (5.6)

In Equation 5.6, t1 is a short delay between the droplet generation and the start of

the frequency increase and t2 is the time which the frequency reaches the levitation
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5.2 Electrodynamic levitation

frequency maximum of the experimental setup, about 1.9 kHz. The LIBS excitation

laser pulse is triggered after the desired droplet drying time set by the user ttrigger

has elapsed. After the laser pulse, the AC frequency is decreased gradually to the

initial value. The time parameters of the setup and the control of the AC frequency

are illustrated in Figure 5.7. ttrap shown in Figure 5.7 is the time the droplet settles at

the trapping point. If the triggering time has been preset to be less than the settling

time, the laser pulse is triggered right after the movement of the particle has stopped.

Di�erent time parameters in Figure 5.7 are summarized in Table 5.1.

In the instrumentation of Paper 3, t1 and ttrap are determined automatically by

inspecting the scattering signal from the drying droplet between the electrodes. The

liquid particle scatter light from a CW laser and the scattered light is detected by a

PMT or a low-cost photodiode which can be located behind a bandpass �lter designed

for the laser wavelength. Figure 5.7 a) shows the scattering signal using an inexpensive

3.5 mW 650 nm diode laser and a silicon photodiode. Furthermore, if the initial droplet

does not get trapped or the droplet escapes the trap during the drying phase, it will

be detected from the scattering signal and the program will iterate the slope S! and

the initial frequency !AC;i until successful trapping is achieved.
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Figure 5.7 a) Example of scattering signal from the droplet and time parameters used for
automatic operation of the system. Parameters are reset and a new droplet is generated by a
subprogram starting at point R. b) Adjustment of AC frequency and DC voltage during one
operational cycle corresponding the measurement in a).
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Table 5.1. Summary of di�erent time parameters. The chronological order of the times
depend on the user de�ned settings and the ambient conditions and may be di�erent than
presented here.

Time parameter Description

t = 0 Droplet is generated

t1 Generated droplet �rst hits the illuminating laser beam

and AC frequency starts to rise

( � 
ight time from droplet generator to electrodes)

t2 Maximum AC frequency is reached

ttrap Droplet settled at focal point

ttrigger Trigger signal sent to laser

tc:dry Water in the droplet completely evaporated

If the relative variation in the water impurity concentration is small, for example due

to additive salt, and the droplet is always completely dried, UDC does not need to be

adjusted at all during the drying. This was done in the experimental setup of Paper 2,

where NaCl was used as the additive. In Paper 3, the LIBS analysis was performed to

additive-free droplets at di�erent evaporation stages using a DC voltage adjustment.

The goal of the adjustment is to satisfy the condition UDC = UDC;0 throughout the

process of drying to keep the droplet in focus. The DC voltage changes according to

the function

UDC =

8>>>><>>>>:
UDC;i(dp0) 0 � t < t1

UDC;i(dp0)� exp
h t� t1
tc:dry(RH;T1; ctot)� t1

ln (UDC;i(dp0)� UDC;f (dp0; ctot) + 1)
i

+ 1

t1 � t � tc:dry
; (5.7)

where the subindices i and f refer to the initial and �nal values. Due to a small

external force that is lifting the dry particle, UDC;i has typically a di�erent sign than

UDC;f i.e. the force due to DC �eld points downwards after a complete drying. tc:dry

is the time of the complete drying of the droplet. If the user de�ned drying time is

longer than tc:dry, the DC potential remains at UDC;f until ttrigger has elapsed. In

ambient temperature T1 and relative humidity RH = S � 100%, the complete drying

time for micrometer sized droplets of pure water can be estimated using the relation90

tc:dry =
R�wd

2
p0

8DvMw

�
pd
Td
� p1

T1

� ; (5.8)
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where the temperature of the droplet Td and the partial pressures of water vapor on

the surface of the droplet pd and far away from the droplet p1 are

Td = T1 +
(6:65K + 0:345(T1 � 273:15K) + 0:0031K�1(T1 � 273:15K)2)(S � 1)

1 + (0:082 + 0:00782K�1(T1 � 273:15K))S
;

(5.9)

pd = ps(Td); p1 = Sps(T1); and ps(T ) = exp

�
16:7� 4060K

T � 37K

�
kPa: (5.10)

In Equation 5.8, R, Mw and Dv are the molar gas constant, molar mass of water,

and the di�usion coe�cient of water vapor, respectively. Figure 5.8 represents how

the relative humidity changes the theoretical evaporation curves of a 74 �m droplet at

20�C temperature. UDC;i and UDC;f are preset parameters. UDC;i a�ects the trapping
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Figure 5.8 Theoretical droplet size as function of time spent in the trap for di�erent RH
values. The equivalent spherical diameter of the dry residual particle formed from a 74 � m
droplet typically remains below 10 � m when ctot � 5 g/l.

e�ciency and the trapping time ttrap whereas UDC;f a�ects the exact trapping position

after complete drying. Due to the 1=!2
AC dependency of �, the trapping point of the

particle does not vary signi�cantly as a function of droplet size when the AC frequency

is high. A small o�set from the condition of Equation 5.4 is therefore allowed and the

system works without an active control of the UDC;f . In the experimental setup of

Paper 3, the long term standard deviation of the dry particle trapping points in the

vertical direction was less than 4 �m.
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In the EDB-LIBS measurements, the laser pulse is triggered only in the operational

cycles where the particle trapping was successful and after successful trapping the

laser will hit the particle every time. Hence, the particle sampling rate is 100%. Fur-

thermore, the same amount of liquid is sampled by each pulse and all the recorded

spectra are suitable for the �nal signal processing. The relative standard deviation of

the emission line heights in single-shot spectra is about 15%. The signal can therefore

be measured with less than 4% uncertainty after an averaging of only 20 single-shots.

The combined data acquisition and processing time for 20 spectra in dry indoor con-

ditions having RH about 25% lasts about 3 min and the total measurement time is

similar to the sheath air focusing system. However, the sample consumption in the

EDB-LIBS method is three orders of magnitude smaller. Also, the obtained limits of

detection for Zn, Pb, and Ni in Paper 2 were at 50 ppb level and are clearly better

compared with the sheath air system which collects the plasma emission from over

35 times greater solid angle. 10-20 ppb level detection limits were further measured

for Al, Mn, and Fe. Also, the persistent resonance lines of Na, K and Ca were es-

timated to yield signi�cantly better limits of detection than what was achieved for

transition metals. Increasing the amount of collected photons is considered the most

convenient way to further improve the sensitivity of the current instrumentation. It

can be realized by bringing a higher numerical aperture collection lens closer to the

trapping point or guiding the emission to the spectrometer through several ports of

the chamber. Because the position of the particle is precisely de�ned, the excitation

laser pulse can be focused tightly on the particle. This gives an additional bene�t of

achieving a high laser 
uence using compact size and cost-e�ective lasers which pulse

energies are often limited to a value less than 10 mJ.
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Chapter 6
Characterization of measurement

parameters

C
haracterization of the key factors that in
uence the laser-induced breakdown

spectroscopy (LIBS) signal from precisely controlled single droplets and dry par-

ticles was done in Paper 3. These are the degree of drying of the droplet, the dis-

placement between the particle and the focal spot, the excitation pulse energy and

the ICCD gate delay. The objective of the study was to further the sensitivity of the

EDB-LIBS principle and account for the di�erences in performance and in used mea-

surement parameters between this work and earlier LIBS literature. The main results

reviewed in this Chapter can be applied to LIBS analysis of any precisely controlled

micrometer sized aerosol particles regardless of trapping technique or aerosol origin.

6.1 Pulse energy in single particle measurements

Aerosols have been shown to act as seeds for the plasma formation in gas20,126. Thus,

the LIBS analysis of a single particle can even be performed using laser irradiance

that is below the threshold irradiance for the breakdown in the ambient gas. The

recorded spectrum shows trace element emission from transitions associated with a
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Characterization of measurement parameters

low upper state energy Ek and a high Einstein coe�cient Aki on top of a weak thermal

background. Yet, using low laser pulse energies the particle can be incompletely

vaporized which impairs the measurement reproducibility and detection of weaker

transitions is prevented by the insu�cient plasma temperature. Raising the pulse

energy a�ects the LIBS signal through many processes:

Degree of sample atomization. The number of analyte atoms in the plasma can

be increased up to the level where the whole particle, i.e. the maximum sample mass

available, is vaporized. The laser pulse energy required for the complete vaporization

depends on the particle size. This energy is 2{4 orders of magnitude greater than the

energy needed to break the salt particle into its constituent atoms in consideration of

the energies to accomplish the phase changes and to break down the ionic bonds.

Population of atoms in an excited state k grows �rst according to Equation 2.3

due to raise in the plasma temperature. The pulse energy where the occupation

probability saturates depends on the magnitude of Ek of the speci�c transition and

the temperature dependency of the atomic partition function Z(T ) of the element.

Ionization of the atoms reduces the analyte atom density in the plasma. The degree

of ionization depends on the ionization energy of the atom and grows when the plasma

temperature rises according to Equation 2.4.

Scattering of the emitting atoms. Typically, the whole plasma cannot be imaged

with the spectrograph due to spectral resolution considerations. In Paper 3, the size

of the vapor emitting the line emission of Pb was found to increase when the pulse

energy was raised or when the gate delay was extended. Due to the expansion, a

smaller portion of the emission can be collected with the narrow �eld-of-view of the

spectrograph.

In Paper 3, the application of the moderate laser pulse energies of the order of 10 mJ

in the single particle analysis was investigated. The laser beam was tightly focused on a

3 �m particle to improve the coupling of the optical energy to the particle dissociation.

The LIBS SNR was found to be strongly dependent on the selection of the pulse energy

and the gate delay. Pulse energy around 6 mJ with a gate delay of 1 �s was considered

optimal in the detection of Pb at 405.8 nm wavelength in terms of SNR and pulse-to-

pulse repeatability. At the optimum, the average irradiance was over 250 GW/cm2.

The result was also found to apply to other transitions having lower or comparable

46



6.1 Pulse energy in single particle measurements

upper state energy to that of Pb (Ek = 4:4 eV). On the other hand, the SNR of Zn

481.1 nm spectral line which has clearly higher Ek of 6.7 eV, was found to improve

when the irradiance was raised to 450 GW/cm2 using the �xed 1 �s delay. In this

work, the LIBS signal saturated at signi�cantly lower pulse energies than used in the

single particle studies found in the literature95,127 where pulse energies even above

250 mJ have been found to improve the signal. The di�erences are due to di�erent

focusing and plasma imaging optics, the used laser wavelength, particle size and the

sampling stability of the particle.

Modeling can be used for selecting the optimal LIBS measurement parameters such

as laser pulse energy for di�erent analyte species. The dependencies of the processes

N
or

m
al

iz
ed

 L
IB

S
 P

B
R

2000 4000 6000
Fluence [J/cm  ]2

0 5 10 15 20
Pulse energy [mJ]

Zn

Mg

Pb

Ni

Fe

Al

Mn

Ca

6.65

5.95

4.38

3.54

3.33

3.14

3.08

2.93

E
[eV]

k

Cd 7.38

l
[nm]

361.1

481.1

383.8

405.8

352.5

372.0

396.2

403.1

422.7

Sn 4.87326.2

measured
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Characterization of measurement parameters

listed above on pulse energy were evaluated computationally with the exception of the

analyte vaporization degree which was treated as constant. Their combined e�ect on

LIBS signal was estimated for several elements commonly monitored in process and

waste water streams. Peak-to-background ratio (PBR) that behaves in the similar way

as SNR, versus pulse energy is presented for ten elements in Figure 6.1. The curves

have been normalized and shifted vertically for clarity and apply to the detection time

window of 1 �s gate delay and 20 �s gate width. The selected transitions are considered

the most persistent within the operating wavelength range of the spectrograph used

in this work. Comparison between the measured and calculated values is shown for

Pb, Al and Ca.

For calculating the curves in Figure 6.1 assumption of local thermal equilibrium (LTE)

was made and the peak intensities were estimated using the equilibrium equations

listed in Sections 2.2 and 2.3. The equations require information about the plasma

temperature T and electron density ne as a function of pulse energy. They were

determined separately at pulse energies greater than about 4 mJ from the relative in-

tensities of calcium ionic line at 393.4 nm and atomic line at 422.7 nm and the width

of hydrogen � line at 486.1 nm using the Equation 2.8, respectively. The dependencies

are shown in Figure 6.2. The total number density of the analyte species �rnr was

estimated by imaging the plasma size and by assuming a uniform distribution of the

analyte species within the plasma. The plasma vertical diameter was found to increase

linearly from 0.6 mm to 1.5 mm between the pulse energies of 4 mJ and 20 mJ. Nearly

linear growth of the plasma diameter was also reported in Ref. 86. The number of

spontaneous emission photons incident on the ICCD photocathode was calculated for

each transition using the Equation 2.6, and taking into account the solid angle for light

collection, the slit width and the e�ciencies of the optical components between the

particle trapping point and the ICCD. The conversion factors for photoelectrons per

photocathode input photon and analog-to-digital converter (ADC) counts per pho-

toelectron for di�erent gain settings are given in the ICCD camera test data sheet

provided by the manufacturer. In PBR estimations, the evolution of the background

when the pulse energy is raised was measured for each wavelength due to its complex

shape especially at near-UV wavelengths. After the signal conversions, both the spec-

tral line and the measured background intensities have the units of ADC counts, and

the peak-to-background ratio can be formed.
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uence of preconcentration
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Figure 6.2 a) Plasma electron density as function of laser pulse energy. The electron density
given by Equation 2.8 was used in the PBR calculations. The electron density given by
Konjevi�c’s formula in Ref. 128 is shown for comparison. The inset shows the H-� line at
6.1 mJ and 16.8 mJ pulse energies. The H-� line was measured from laboratory air by
averaging 300 spectra. b) Plasma kB T in the units of eV versus laser pulse energy. Measured
from the relative intensities of Ca lines.

6.2 In
uence of preconcentration

The capability to highly preconcentrate the trace elements in the sampled water vol-

ume is the main idea behind the approach taken in the instruments of this work. In

previous LIBS measurements of droplets71,72, the signal has been found to enhance

when smaller droplets are generated possibly due to more complete atomization of

the sample. In the single droplet evaporation approach, the size of the initial droplet

and the sampled analyte mass remain constant and only the amount of water is re-

duced. The experimental EDB-LIBS setup allows the investigation of the e�ect of

the water content in the drying particle up to the formation of a dry residual particle
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Characterization of measurement parameters

and thus the evaluation of the actual importance of the complete droplet drying. The

measurement requires the DC voltage adjustment function to have carefully selected

parameters in order to drive the droplet to the LIBS focal volume quickly after its

ejection. The measurements were performed in the relative humidity of 25% where

the time for complete evaporation for 74 �m water droplet is about 6 s. The bene�t of

preconcentration is obvious by looking at Figure 6.3 where the signal shows enhance-

ment throughout the drying period. The signal remains constant at the saturation

level even after signi�cantly longer trapping times than presented in Figure 6.3.
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Figure 6.3 LIBS signal from 1 ppm Al and 1 ppm Mn as function of drying time. The insets
show 30� m� 30� m CMOS camera images of the particle at 1 s and 6 s after the droplet
launch. [Paper 3]

6.3 Exact position of single particle

Several studies have reported major LIBS signal variation when the position of the

particle shifts tens or hundreds of micrometers with respect to the focal point of

the exciting laser74,75,92,95,129,130. Also, using similar particles, lower detection limits

were found when the particle was precisely trapped in Paper 2 instead of moving

along about 100 �m wide air 
ow in Paper 1. For large displacements, the particle

position is near the plasma boundary where the temperature is lower. As a result, the

atomization is incomplete and the emission may remain localized during the detection
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6.3 Exact position of single particle

time window131,132. Localization 
uctuates the signal because the detector �eld-of-

view contains only a thin slice of the plasma volume instead of the whole plasma. The

e�ect can be mitigated by using higher pulse energy and a longer gate delay time133

so that the analyte atoms have enough time to di�use to the overall plasma volume.

In Paper 3, the e�ect of particle position was studied in the low pulse energy regime,

and the particle was shifted only a few micrometers by adjusting the DC voltage

between the upper and the lower EDB electrode. The image of the particle was

held in the middle of the spectrometer slit in order to have a constant light coupling

e�ciency at each position. The analyte line emission was found to remain stable

when the position of the 5.5 �m particle was moved within the 19 �m focal spot

diameter as shown in Figure 6.4. The 
uctuation of the signal within the laser focal
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Figure 6.4 LIBS signal from Pb and signal RSD as function of particle position. Particle
displacement versus bias voltage between upper and lower electrodes is shown in the inset.
[Paper 3]

area is systematic and expected to arise from a non-Gaussian transverse intensity

distribution containing local hot spots. When the particle lies about 20 �m outside

the beam path, the emission intensity is at a signi�cantly lower level and the shot-to-

shot 
uctuation is evidently higher. Having a particle in the beam path increases the

absorption of the laser pulse by lowering the breakdown threshold of the ambient gas

as discussed earlier. When using low laser pulse energies, the earlier breakdown may
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Characterization of measurement parameters

have signi�cant e�ect on the plasma temperature and electron density134, and hence

the degree of analyte atomization and excitation.
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Chapter 7
Applications

T
he applicability of the LIBS methodologies introduced in this work to the trace

element analysis of industrial waters was demonstrated by measuring water sam-

ples collected from di�erent mining areas and a municipal wastewater treatment plant.

The qualitative results obtained with EDB-LIBS system are discussed in the follow-

ing section. The concentration of microbes also a�ects the water quality. The initial

experiments of detecting microbial particles in water by combining laser-induced 
u-

orescence (LIF) and LIBS are presented in detail in Paper 4 and the principle is

reviewed in this Chapter.

7.1 Multicomponent analysis

Water samples were collected from mines producing gold, nickel, zinc and copper ores

and from a large municipal waste water treatment plant having the population equiv-

alent (PE) number about 500 000. The samples were taken either from the middle of

the water treatment process or from the stream of the treated e�uent that is 
owing to

the nearby lake. Part of the samples were provided with a reference measurement data.

The reference measurements were carried out according to standardized measurement

procedures using ICP-OES (ISO 11885), ICP-MS (ISO 17294) and spectrophotometry
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(Finnish Standards Association SFS 3026 and SFS 3028).

The LIBS spectra were recorded using �xed ICCD settings, a 1200 grooves/mm ruled

grating, and by scanning the central wavelength over the spectral regions of interest.

Figures 7.1 and 7.2 show three examples of the measured spectra and demonstrate

the trace element detection procedure. Figure 7.1 a) presents a single-shot spectrum

from a minewater sample around the center wavelength of 362 nm. The peak identi-

�cation was done with the aid of LIBS spectrum modeling software135 that uses the

spectral data from NIST ASD database17. The computed LIBS spectra of the ele-

ments producing the strongest peaks in Figure 7.1 a) are superimposed in Figure 7.1

c). The modeled signal is a sum of the separate elemental spectra. The correspon-
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7.1 Multicomponent analysis

dence between the background subtracted spectrum and the modeled spectrum can

be quanti�ed by a correlation calculation. Laser pulse energy of 6 mJ was used in

the measurements to optimize the SNR for lines of most metals. As expected of the

results presented in Chapter 6, the SNR of zinc increased from 20 to 49 when the pulse

energy was raised from 6 mJ to 10 mJ. The corresponding average spectra are shown

in Figure 7.1 b). Figure 7.1 d) shows the computed spectra corresponding lines in b).

The water sample taken downstream of the municipal treatment plant was reasonably

free from trace elements apart from Ca, Na, Mg and K. Figure 7.2 shows the detection

of copper the concentration of which in the puri�ed water was only 20 ppb according

to the reference measurement.
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Figure 7.2 Determination of copper from municipal waste water treatment plant sample.
The lines of Na and Ca interfere with the detection of Zn.

Table 7.1 shows the reference results of the two example samples and indicates if the

particular element has been detected in the EDB-LIBS measurements. The paren-

theses denote that the identi�cation has been based on one spectral line only and

therefore has a higher uncertainty. The marking n.a. in the middle column signi�es

that the element has not been analyzed in the reference measurement but its spectral

lines were clearly detected from the EDB-LIBS spectra. The persistent lines of As and

P fall outside the operating wavelength range, 320 nm { 850 nm, of the spectrograph

used throughout this work. The amount of solid matter that is sampled in the EDB-

LIBS and in the reference analyses may di�er and hence a�ect the comparability of
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Table 7.1. Reference results and detectability in the EDB-LIBS. n.a.=not analyzed.

Element Concentration [mg/l] Detected

Minewater sample

Al 12 X

As 0.0048 -

Ca 28 X

Cd 0.030 (X)

Co 0.17 (X)

Cr n.a. X

Fe 7.6 X

Mg 35 X

Mn 18 X

Na 1.8 X

Ni 5.0 X

U 0.036 -

Zn 13.4 X

Municipal water treatment plant sample

Al 0.13 X

C n.a. X

Ca 110 X

Cd <0.0003 -

Co <0.005 -

Cr <0.005 -

Cu 0.020 X

Fe 0.1 X

K n.a. X

Mg n.a. X

Mn 0.039 -

Na n.a. X

Ni 0.013 -

P 0.03 -

Pb 0.00053 -

Si 4.0 X

Zn 0.038 -
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7.2 Detection of microbiological contamination

the results. In the EDB-LIBS instrumentation, a solid matter removing �lter before

the droplet generator removes particulates bigger than 10 �m in diameter. In the case

of municipal water treatment plant, the reference measurement sample was taken from

the same location but on a di�erent day.

7.2 Detection of microbiological contamination

Besides the concentration of trace elements, the amount and species of microbes in

puri�ed water indicate the waste water treatment plant e�ciency or safety of drinking

water. Microbial content is commonly analyzed in a laboratory although biological

pollutants can be partially monitored by many indirect online methods such as tur-

bidity, total organic carbon (TOC) or UV-absorbance analyzers. LIBS, as such, is not

suitable for the detection of molecules of biological origin due to its destructive nature.

Paper 4 demonstrates the �rst measurements where microbial particles, bacteria and

fungal spores, inside the sampled water droplet are detected by a hyphenated tech-

nique that performs a laser-induced 
uorescence (LIF) analysis to the particle before

the LIBS analysis. Information from the LIF and LIBS signals is possible to utilize in

the observation of the microbiological contamination of water.

The fundamental di�erence between LIBS and LIF is the pumping process to the

upper energy state. While LIBS is based on thermal excitation, in LIF the molecules

are excited optically. Microbial particles contain a large number of organic compounds

such as amino acids, 
avins and cofactors109,110 that, due to their fused ring structures,

strongly absorb light in the UV and visible wavelength regions. In the absorption of a

photon, the molecule excites to a vibrational level of an upper electronic state. Owing

to the molecular complexity and the solid sample matrix, the vibrational states of the

biomolecules form a quasicontinuum as illustrated with the gray area in Figure 7.3.

Because there are no restrictions in the change of vibrational quantum number, the

upper electronic states are possible to excite with a broad wavelength range. After

10�10{10�7 s from the absorption, part of the molecules relax back to their ground

electronic level S0 by spontaneous emission or 
uorescence. The transition occurs

from the lowest vibrational level of the electronic state S1 to the vibrational levels

of the ground state. Because the excitation occurs from the ground vibrational level

of S0, the energy of the 
uorescence photons cannot be higher than the excitation
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Figure 7.3 Potential energy curves for ground and excited electronic states of diatomic
molecule and generation of 
uorescence. The horizontal lines and shaded areas correspond
the vibrational states. The relaxation to the lowest vibrational state of S1 is very fast and
occurs in 10� 12 {10� 10 s after absorption. The potential energy of the states of complex
biomolecules is a multidimensional hypersurface.

photon energy. Due to the limited resolution of the imaging system, the 
uorescence

spectrum is similarly broad and its intensity distribution is proportional to the Franck-

Condon factors16 between the lowest vibrational state of S1 and the vibrational states

of S0. In common biological 
uorophores, 10%{30%136,137 of the absorbed photons

will result in an emission of a 
uorescence photon and the rest of the molecules undergo

a nonradiative relaxation to their ground electronic state.

The microbial particle or particles are trapped when water suspension containing the

spores of bacteria or fungus is injected to the EDB-LIBS system. In the instrumenta-

tion of Paper 4, a 450 nJ LIF excitation laser pulse is produced from the same 355 nm

laser as the LIBS pulse by two window re
ections as depicted in Figure 7.4. A single-

shot LIF spectrum is adequate for the detection of 
uorescence from a single fungal

spore or a few bacteria in the droplet residual but several spectra can be averaged to

improve the resolution of spectral details. Figure 7.5 shows the average LIF spectra

of three species and a single-shot spectrum from a single P.b. spore. Most inorganic
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Figure 7.4 Switching between LIBS and LIF excitation pulses. The arrow thickness describes
the pulse energy (not in scale). In LIBS, the shutter (S) is in the OFF position. The
355 nm bandpass interference �lter (IF) is used for removing 532 nm radiation from the laser
pulse. EM measures the reference pulse energy of both LIF and LIBS pulses. W=Window,
M=Mirror.

impurities in water are not 
uorescent when exposed to 355 nm laser light which is

essential for the discrimination between microbiological and other type of contami-

nation of water by LIF. In other words, the emission of light of longer wavelengths
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Figure 7.5 Fluorescence signal from bacterial and fungal spores. a) Average spectrum of 20
pulses. b) Single shot spectrum from P.b. spore. [Paper 4]
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was detected only when at least one microbial particle was trapped in the EDB. The

LIF pulse can be applied 10-20 times onto the same microbial particle before the 
u-

orescence signal starts to attenuate. The shape of the recorded 
uorescence spectrum

is corrected by extracting the e�ect of the imaging optics. The 
uorescence spectra

are cut from the short wavelength side due to a long-pass �lter used for blocking the

scattering of the excitation laser pulse. The LIBS elemental analysis is performed for

the same particle that was analyzed with LIF in the previous step. After the LIF anal-

ysis, the shutter in Figure 7.4 is opened and the spectrograph settings are adjusted

to increase the resolution of the following LIBS analysis and to decrease the thermal

background. The particle is waiting in the trap while the settings are changed.

In Paper 4, di�erences in the single-shot LIBS spectra between the spores of di�er-

ent species were found when they were suspended in pure water. LIBS signals from

two fungal spore species (Aspergillus versicolor, A.v. and Penicillium brevicompactum,

P.b.) and from one bacteria species (Bacillus aureus, B.a.) were recorded. The inves-

tigated elements were Na, Ca and K which have strong LIBS signals and are, together

with O, C, H, N, P, and S, the most common elements in microbes. Furthermore, they

are not present in standard air where the plasma forms in the experiment. Figure 7.6

shows four examples of single-shot LIBS spectra from trapped microbes. Clearly

stronger Na emission was observed from P.b. fungal spores than from the A.v. spores

as shown in Figure 7.6 a). According to a calibration measurement, the mass of cal-

cium in the aggregate of about 20 bacterial spores was about 2 pg whereas almost no
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Figure 7.6 Single shot LIBS spectra from single fungal spores and bacterial aggregate. a)
Di�erence in sodium signal between A.v. and P.b. fungal spores. b) Bacteria emit strong
calcium lines whereas the calcium content of fungal spores is near the system detection limit.
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7.2 Detection of microbiological contamination

calcium was found in the fungal spores (Figure 7.6 b). Based on the di�erences in

Na, Ca and K signals, the three species can be discriminated in pure water. However,

impurities in the authentic waste and drinking water set a major challenge in the

identi�cation of microbes as the droplet samples both the microbe and the dissolved

elements. The preconcentration is important also in LIF measurements because higher


uorescence cross sections have been reported for bacteria in dry aerosol particles in

comparison with bacteria in suspension109. In monitoring of industrial and municipal

water, the sensitive online LIF measurement could act as an initial trigger for a more

speci�c and slower laboratory measurement and would be more selective than the cur-

rent UV-absorbance meters. The degree of microbiological contamination could also

be determined via the amount of sampled droplets that contain a 
uorescent particle

within a �xed time frame. On the other hand, the LIF-LIBS based identi�cation of

the microbial particles could be utilized in other �elds besides water quality measure-

ments. Indeed, the presented methodology can have applications in the monitoring of

indoor and outdoor aerosols when particles can be collected from the ambient air and

injected to the EDB chamber.
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Chapter 8
Summary

L
aser-induced breakdown spectroscopy (LIBS) for the elemental analysis of

water was studied in this Thesis. LIBS is a fast and selective technique that

can detect practically all elements from a sample. The obstacle to its use in online

water monitoring is the poor sensitivity when LIBS is applied directly to aqueous

samples. As discussed at the beginning of the Thesis, real-time monitoring of dissolved

metals and other elements could be used in process diagnostics in several areas of

industry. Environmental monitoring and furthering the safety of the domestic water

are naturally important applications. This research was initiated by the measurement

needs of mining industry where the general requirement for the limit of detection is

0.1 mg/l for many elements.

An overview of the physical principles responsible for signal formation in a LIBS ex-

periment was presented in Chapter 2 and the most common instrumental methods for

the chemical analysis of water were reviewed in Chapter 3. The problems encountered

in the LIBS analysis of liquid samples and the previous approaches to avoid these ef-

fects were discussed in Chapter 4. Two new techniques for more sensitive LIBS based

elemental analysis were introduced in this work. In the techniques, fast liquid-to-solid

matrix conversion is carried out by drying the droplets of the sample solution as pre-

sented at the end of Chapter 4. The formed aerosol particles that consist of the trace

elements in water, are individually analyzed with LIBS. How to introduce the parti-
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cles in a reproducible manner to the LIBS focal volume, is described in Chapter 5.

The instrumentation where the particles travel along a narrow sheath air 
ow and the

moment they arrive at the laser beam focal point is determined by a scattering sensor,

is discussed in more detail in Paper 1. Paper 2 presents the EDB-LIBS method that

was developed within the framework of this thesis. In the EDB-LIBS, the particle is

precisely trapped in all dimensions by an electric �eld before the hit of the vaporizing

laser pulse. The characteristics of LIBS analysis of precisely trapped particles were

further studied in Paper 3. The results validated the importance of the exact position

of the particle and the su�cient drying of the original droplet. Optimal laser pulse en-

ergy with respect to LIBS signal-to-noise ratio was also found for each detection time

windows. Additional modeling results were presented in Chapter 6 which estimated

the value of optimal pulse energy for the selected transitions of di�erent elements.

In the analysis of laboratory-made trace metal solutions, the fast sample prepara-

tion methods introduced in this work were found to enhance the sensitivity of the

laser-induced breakdown spectroscopy (LIBS) measurement of trace elements com-

pared with the direct analysis of water. Comparison between the limits of detection

obtained in this work with the values found in various LIBS studies is presented in

Table 8.1. The achieved detection limits are among the best that have been obtained

for the listed metals in Table 8.1 with other LIBS sample preparation methods. The

laser pulse energies required in the approach presented in this work are relatively

low compared with previous LIBS studies of dissolved elements and may further its

transfer to commercial applications. The performance of the EDB-LIBS technique

was also demonstrated by the qualitative measurements of industrial water samples

where several elements were detected simultaneously. Due to the stable signal between

excitation pulses, a spectrum from a single laser pulse was typically adequate for the

recognition of a speci�c peak. According to reference results shown in Chapter 7, the

lowest detected concentrations were at the level of 20 �g/l. The detection limits are

already su�cient for most process and waste water monitoring applications, albeit the

limits could be improved by generating and trapping larger droplets and by increas-

ing the solid angle for plasma emission collection. The bene�ts of the technique with

relation to existing trace element analyzer technologies are the applicability to a wide

range of elements, the speed of detection and the chemical free analysis.

Calibration measurements in order to produce quantitative results as well as the con-

struction of an online analyzer are the obvious next developments in this research.
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Table 8.1. Comparison of limits of detection (LOD) of this work with other results

Element LOD, this work [ppm] LOD, other LIBS studies [ppm] (Approach)

Al 0.01 33 (single droplets, double pulse73)

18 (water surface47)

5.2 (single droplets72)

0.01 (water evaporated on graphite58)

Mn 0.02 10 (water surface47)

7.2 (single droplets72)

0.08 (double pulse, inside liquid138)

Ni 0.06 18 (water surface139)

0.31 (preconcentration into polymer membrane61)

0.01 (water evaporated on graphite58)

Pb 0.06 20 (sample pelletizing62)

12.5 (plasma formation inside liquid140)

2 (water evaporated on graphite58)

1.1 (preconcentration into polymer membrane61)

0.3 (vertical jet, excimer laser69)

0.075 (water evaporated on �lter paper141)

0.06 (vertical jet, 200 mJ pulse energy142)

Zn 0.05 21 (sample pelletizing62)

1 (water evaporated on graphite58)

0.85 (preconcentration into polymer membrane61)

Compact spectrographs and pulsed laser sources currently available enable the mea-

surement technology to be encapsulated in an easily movable casing. Although the

performance of a miniaturized EDB-LIBS prototype remains to be shown, the tech-

nology has aroused curiosity in process industry and above all, in the �elds of water

treatment and metal re�ning.

The measurement scheme where laser-induced 
uorescence (LIF) measurement is com-

bined with LIBS to detect the microbiological contamination of water was discussed in

Paper 4 and in Chapter 7. The EDB instrumentation also enables studies with other

optical measurement technologies such as Raman spectroscopy. Hyphenated methods

can be especially useful in the research of atmospheric or room air aerosols where,

for example, the online recognition of pathogenic microbes may be possible. The

transformation of the EDB-LIBS water measurement instrumentation to an aerosol
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analyzer can be realized by replacing the droplet generator with a technical solution

that collects the particles from air and, after charging, guides them between the EDB

electrodes.

66



References

[1] WWAP (United Nations World Water Assessment Programme), \The united nations
world water development report 2015: Water for a sustainable world," (2015).

[2] S. Sauv�e, S. Bernard, and P. Sloan, \Environmental sciences, sustainable development
and circular economy: Alternative concepts for trans-disciplinary research," Environ-
mental Development (2015).

[3] W.-W. Li, H.-Q. Yu, and B. E. Rittmann, \Reuse water pollutants," Nature 528, 29{31
(2015).

[4] R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun,
V. Sturm, J. Makowe, and C. Gehlen, \Laser-induced breakdown spectroscopy expands
into industrial applications," Spectrochimica Acta Part B: Atomic Spectroscopy 93, 41
{ 51 (2014).

[5] M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and
T. Manzur, \Stand-o� detection of solid targets with di�use re
ection spectroscopy
using a high-power mid-infrared supercontinuum source," Applied Optics 51, 2794{
2807 (2012).

[6] C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr, A. W. Miziolek, J. Rose,
R. A. Walters, and A. I. Whitehouse, \Test of a stand-o� laser-induced breakdown
spectroscopy sensor for the detection of explosive residues on solid surfaces," Journal
of Analytical Atomic Spectrometry 21, 55{60 (2006).

[7] S. Hanf, T. B�og�ozi, R. Keiner, T. Frosch, and J. Popp, \Fast and highly sensitive �ber-
enhanced raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care
diagnosis of malabsorption disorders in exhaled human breath," Analytical Chemistry
87, 982{988 (2015).

[8] A. Hangauer, J. Chen, R. Strzoda, M. Fleischer, and M.-C. Amann, \Performance of a
�re detector based on a compact laser spectroscopic carbon monoxide sensor," Optics
Express 22, 13680{13690 (2014).

[9] \Government decree on substances dangerous and harmful to the

67



aquatic environment 1022/2006," (last accessed: 27-Oct-2015).
http://www.�nlex.�/en/laki/kaannokset/2006/en20061022.pdf .

[10] \Government decree on urban waste water treatment 888/2006," (last accessed: 27-
Oct-2015). http://www.�nlex.�/en/laki/kaannokset/2006/en20060888.pdf .

[11] \Directive 2008/105/ec of the European Parliament and
of the Council," (last accessed: 27-Oct-2015). http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0084:0097:en:PDF.

[12] Helsinki Comission (HELCOM), Baltic Marine Environment Protection
Commission, \Recommendation 23/11: requirements for discharging of
waste water from the chemical industry," (last accessed: 27-Oct-2015).
http://helcom.�/recommendations/rec%2023-11.pdf .

[13] J. O. Nriagu and J. M. Pacyna, \Quantitative assessment of worldwide contamination
of air, water and soils by trace metals," Nature 333, 134{139 (1988).

[14] G. Carletti, F. Fatone, D. Bolzonella, and F. Cecchi, \Occurrence and fate of heavy
metals in large wastewater treatment plants treating municipal and industrial wastew-
aters," Water Science and Technology 57 (2008).

[15] T. Loree and L. Radziemski, \Laser-induced breakdown spectroscopy: Time-integrated
applications," Plasma Chemistry and Plasma Processing 1, 271{279 (1981).

[16] J. M. Hollas, Modern Spectroscopy (John Wiley & Sons, 2004), 4th ed.

[17] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team (2014),
\Nist atomic spectra database (version 5.2))," (last accessed: 26-Oct-2015).
http://www.nist.gov/pml/data/asd.cfm .

[18] P. L. Smith, C. Heise, J. R. Esmond, and R. L. Kurucz, \Atomic spectral
line database," (last accessed: 26-Oct-2015). http://www.pmp.uni-hannover.de/cgi-
bin/ssi/test/kurucz/sekur.html .

[19] D. R. Wood and K. L. Andrew, \Arc spectrum of lead," Journal of the Optical Society
of America 58, 818{828 (1968).

[20] D. W. Hahn and U. Panne, \LIBS for aerosol analysis," in \Laser-Induced Breakdown
Spectroscopy," , J. Singh and S. Thakur, eds. (Elsevier, 2007), pp. 381{417.

[21] M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Ap-
plications, Volume 1 (Plenum Press, 1994).

[22] G. Cristoforetti, E. Tognoni, and L. Gizzi, \Thermodynamic equilibrium states in laser-
induced plasmas: From the general case to laser-induced breakdown spectroscopy plas-
mas," Spectrochimica Acta Part B: Atomic Spectroscopy 90, 1 { 22 (2013).

[23] J. Cooper, \Plasma spectroscopy," Reports on Progress in Physics 29, 35 (1966).

[24] H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

[25] E. Tognoni and G. Cristoforetti, \Signal and noise in laser induced breakdown spec-
troscopy: An introductory review," Optics & Laser Technology 79, 164 { 172 (2016).



[26] S. S. Zumdahl, Chemical Principles (Houghton Mi�in, 2003), 5th ed. Chap. 11.

[27] J. Herovsky, Practical Polarography; an Introduction for Chemistry Students (Academic
Press, 1968).

[28] J. Wang, J. Lu, S. B. Hocevar, P. A. M. Farias, and B. Ogorevc, \Bismuth-coated
carbon electrodes for anodic stripping voltammetry," Analytical Chemistry 72, 3218{
3222 (2000).

[29] J. Wang, N. Foster, S. Armalis, D. Larson, A. Zirino, and K. Olsen, \Remote stripping
electrode for in situ monitoring of labile copper in the marine environment," Analytica
Chimica Acta 310, 223 { 231 (1995).

[30] J. Wang and B. Tian, \Mercury-free disposable lead sensors based on potentiometric
stripping analysis of gold-coated screen-printed electrodes," Analytical Chemistry 65,
1529{1532 (1993).

[31] X. Hou and B. T. Jones, \Field instrumentation in atomic spectroscopy," Microchemical
Journal 66, 115 { 145 (2000).

[32] F. Melquiades and C. Appoloni, \Application of XRF and �eld portable XRF for
environmental analysis," Journal of Radioanalytical and Nuclear Chemistry 262, 533{
541 (2004).

[33] Hobr�e Instruments, \The metorex C100 technology," (last accessed: 3-Nov-2015).
http://hobre.com/products/metorex-c100-on-line-elemental-analysis .

[34] American Micro Detection System, \Rex dissolved metals analysis instrument," (last
accessed: 3-Nov-2015). http://amdsinc.com .

[35] M. Marazuela and M. Moreno-Bondi, \Fiber-optic biosensors - an overview," Analytical
and Bioanalytical Chemistry 372, 664{682 (2002).

[36] S. Haron and A. K. Ray, \Optical biodetection of cadmium and lead ions in water,"
Medical Engineering & Physics 28, 978{981 (2006).

[37] I. Karube and K. Nakanishi, \Immobilized cells used for detection and analysis," Cur-
rent Opinion in Biotechnology 5, 54{59 (1994).

[38] C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, \Monitoring the presence
of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,"
Scienti�c Reports 3, 1{6 (2013).

[39] D. Harris, Quantitative Chemical Analysis (Freeman, New York, 2010), 8th ed.

[40] J. L. Arlett, E. B. Myers, and M. L. Roukes, \Comparative advantages of mechanical
biosensors," Nature Nanotechnology 6, 203{215 (2011).

[41] L. L. Stookey, \Ferrozine|a new spectrophotometric reagent for iron," Analytical
Chemistry 42, 779{781 (1970).

[42] W. Morrison, \A fast, simple and reliable method for the microdetermination of phos-
phorus in biological materials," Analytical Biochemistry 7, 218 { 224 (1964).

[43] J. Murphy and J. Riley, \A modi�ed single solution method for the determination of



phosphate in natural waters," Analytica Chimica Acta 27, 31 { 36 (1962).

[44] M. Macka and P. R. Haddad, \Determination of metal ions by capillary electrophoresis,"
Electrophoresis 18, 2482{2501 (1997).

[45] H. H. Willard, L. L. Merrit, J. A. Dean, and F. A. Settle, Instrumental Methods of
Analysis (Wadsworth, Inc., 1988), 7th ed.

[46] A. Montaser and D. W. Golightly, eds., Inductively Coupled Plasmas in Analytical
Atomic Spectrometry (VCH Publishers, Inc., 1987).

[47] O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Lika, H. H. Telle, and
J. Young, \Application of laser-induced breakdown spectroscopy to in situ analysis of
liquid samples," Optical Engineering 39, 2248 (2000).

[48] P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, \Quantitative elemental determi-
nation in water and oil by laser induced breakdown spectroscopy," Analytica Chimica
Acta 429, 269 { 278 (2001).

[49] D. A. Cremers, L. J. Radziemski, and T. R. Loree, \Spectrochemical analysis of liquids
using the laser spark," Applied Spectroscopy 38, 721{729 (1984).

[50] P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, \Laser-induced breakdown in
aqueous media," Progress in Quantum Electronics 21, 155{248 (1997).

[51] V. Golovlyov and V. Letokhov, \Laser ablation of absorbing liquids," Applied Physics
B: Lasers and Optics 57, 417{423 (1993).

[52] R. Esenaliev, A. Karabutov, N. Podymova, and V. Letokhov, \Laser ablation of aqueous
solutions with spatially homogeneous and heterogeneous absorption," Applied Physics
B: Lasers and Optics 59, 73{81 (1994).

[53] V. Lazic and S. Jovi�cevi�c, \Laser induced breakdown spectroscopy inside liquids: Pro-
cesses and analytical aspects," Spectrochimica Acta Part B: Atomic Spectroscopy 101,
288 { 311 (2014).

[54] A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando,
A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, \Laser ablation of graphite in
water in a range of pressure from 1 to 146 atm using single and double pulse techniques
for the production of carbon nanostructures," The Journal of Physical Chemistry C
115, 5123{5130 (2011).

[55] C. Haisch, J. Liermann, U. Panne, and R. Niessner, \Characterization of colloidal
particles by laser-induced plasma spectroscopy (LIPS)," Analytica Chimica Acta 346,
23 { 35 (1997).

[56] M. Gondal and T. Hussain, \Determination of poisonous metals in wastewater collected
from paint manufacturing plant using laser-induced breakdown spectroscopy," Talanta
71, 73{80 (2007).

[57] A. Sarkar, D. Alamelu, and S. K. Aggarwal, \Determination of thorium and uranium
in solution by laser-induced breakdown spectrometry," Applied Optics 47, G58{G64
(2008).



[58] R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, \Trace metal
detection by laser-induced breakdown spectroscopy," Applied Spectroscopy 53, 1226{
1236 (1999).

[59] Z. Chen, H. Li, M. Liu, and R. Li, \Fast and sensitive trace metal analysis in aque-
ous solutions by laser-induced breakdown spectroscopy using wood slice substrates,"
Spectrochimica Acta Part B: Atomic Spectroscopy 63, 64 { 68 (2008).

[60] M. Pardede, H. Kurniawan, M. O. Tjia, K. Ikezawa, T. Maruyama, and K. Kagawa,
\Spectrochemical analysis of metal elements electrodeposited from water samples by
laser-induced shock wave plasma spectroscopy," Applied Spectroscopy 55, 1229{1236
(2001).

[61] N. E. Schmidt and S. R. Goode, \Analysis of aqueous solutions by laser-induced break-
down spectroscopy of ion exchange membranes," Applied Spectroscopy 56, 370{374
(2002).

[62] D. D��az Pace, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, \Analysis of heavy
metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix
conversion," Spectrochimica Acta Part B: Atomic Spectroscopy 61, 929{933 (2006).

[63] J. C�aceres, J. T. L�opez, H. Telle, and A. G. Ure~na, \Quantitative analysis of trace
metal ions in ice using laser-induced breakdown spectroscopy," Spectrochimica Acta
Part B: Atomic Spectroscopy 56, 831 { 838 (2001).

[64] Y. Ito, O. Ueki, and S. Nakamura, \Determination of colloidal iron in water by laser-
induced breakdown spectroscopy," Analytica Chimica Acta 299, 401{405 (1995).

[65] W. F. Ho, C. W. Ng, and N. H. Cheung, \Spectrochemical analysis of liquids using
laser-induced plasma emissions: E�ects of laser wavelength," Applied Spectroscopy 51,
87{91 (1997).

[66] P. Yaroshchyk, R. J. Morrison, D. Body, and B. L. Chadwick, \Quantitative deter-
mination of wear metals in engine oils using laser-induced breakdown spectroscopy: A
comparison between liquid jets and static liquids," Spectrochimica Acta Part B: Atomic
Spectroscopy 60, 986 { 992 (2005).

[67] C. W. Ng, W. F. Ho, and N. H. Cheung, \Spectrochemical analysis of liquids using
laser-induced plasma emissions: E�ects of laser wavelength on plasma properties,"
Applied Spectroscopy 51, 976{983 (1997).

[68] R. Nyga and W. Neu, \Double-pulse technique for optical emission spectroscopy of
ablation plasmas of samples in liquids," Optics Letters 18, 747{749 (1993).

[69] K. M. Lo and N. H. Cheung, \ArF laser-induced plasma spectroscopy for part-per-
billion analysis of metal ions in aqueous solutions," Applied Spectroscopy 56, 682{688
(2002).

[70] M. Essien, L. J. Radziemski, and J. Sneddon, \Detection of cadmium, lead and zinc
in aerosols by laser-induced breakdown spectrometry," Journal of Analytical Atomic
Spectrometry 3, 985{988 (1988).

[71] A. Kumar, F. Y. Yueh, T. Miller, and J. P. Singh, \Detection of trace elements in



liquids by laser-induced breakdown spectroscopy with a meinhard nebulizer," Applied
Optics 42, 6040{6046 (2003).

[72] H. A. Archontaki and S. R. Crouch, \Evaluation of an isolated droplet sample intro-
duction system for laser-induced breakdown spectroscopy," Applied Spectroscopy 42,
741{746 (1988).

[73] E. M. Cahoon and J. R. Almirall, \Quantitative analysis of liquids from aerosols and
microdrops using laser induced breakdown spectroscopy," Analytical Chemistry 84,
2239{2244 (2012).

[74] S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax,
\100% e�cient sub-nanoliter sample introduction in laser-induced breakdown spec-
troscopy and inductively coupled plasma spectrometry: Implications for ultralow sam-
ple volumes," Analytical Chemistry 82, 2568{2573 (2010).

[75] C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven,
E. Jantzen, A. Oest, and P. Koke, \Analysis of small droplets with a new detector for
liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim-
ica Acta Part B: Atomic Spectroscopy 60, 993{1001 (2005).

[76] A. Kumar, F. Y. Yueh, and J. P. Singh, \Double-pulse laser-induced breakdown spec-
troscopy with liquid jets of di�erent thicknesses," Applied Optics 42, 6047{6051 (2003).

[77] A. Casavola, A. D. Giacomo, M. Dell’Aglio, F. Taccogna, G. Colonna, O. D. Pascale,
and S. Longo, \Experimental investigation and modelling of double pulse laser induced
plasma spectroscopy under water," Spectrochimica Acta Part B: Atomic Spectroscopy
60, 975 { 985 (2005).

[78] S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.-i. Kaneko, \Determination of an iron
suspension in water by laser-induced breakdown spectroscopy with two sequential laser
pulses," Analytical Chemistry 68, 2981{2986 (1996).

[79] J. Sca�di, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and
S. M. Angel, \Dual-pulse laser-induced breakdown spectroscopy with combinations of
femtosecond and nanosecond laser pulses," Applied Optics 42, 6099{6106 (2003).

[80] D. W. Hahn, W. L. Flower, and K. R. Hencken, \Discrete particle detection and
metal emissions monitoring using laser-induced breakdown spectroscopy," Applied
Spectroscopy 51, 1836{1844 (1997).

[81] G. Gallou, J. B. Sirven, C. Dutouquet, O. L. Bihan, and E. Frejafon, \Aerosols analysis
by LIBS for monitoring of air pollution by industrial sources," Aerosol Science and
Technology 45, 918{926 (2011).

[82] D. K. Ottesen, J. C. F. Wang, and L. J. Radziemski, \Real-time laser spark spectroscopy
of particulates in combustion environments," Applied Spectroscopy 43, 967{976 (1989).

[83] D. K. Ottesen, L. L. Baxter, L. J. Radziemski, and J. F. Burrows, \Laser spark emission
spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition,"
Energy & Fuels 5, 304{312 (1991).

[84] D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnsen, and K. R. Hencken,



\Aerosol generation system for development and calibration of laser-induced breakdown
spectroscopy instrumentation," Review of Scienti�c Instruments 72, 3706{3713 (2001).

[85] G. Lithgow, A. Robinson, and S. Buckley, \Ambient measurements of metal-containing
PM2.5 in an urban environment using laser-induced breakdown spectroscopy," Atmo-
spheric Environment 38, 3319 { 3328 (2004).

[86] L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Ho�man, \Time-resolved
laser-induced breakdown spectrometry of aerosols," Analytical Chemistry 55, 1246{
1252 (1983).

[87] S. Groh, C. C. Garcia, A. Murtazin, V. Horvatic, and K. Niemax, \Local e�ects of at-
omizing analyte droplets on the plasma parameters of the inductively coupled plasma,"
Spectrochimica Acta Part B: Atomic Spectroscopy 64, 247{254 (2009).

[88] R. Neuhauser, U. Panne, R. Niessner, G. Petrucci, P. Cavalli, and N. Omenetto, \On-
line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited
atomic 
uorescence spectroscopy," Analytica Chimica Acta 346, 37 { 48 (1997).

[89] J. E. Carranza and D. W. Hahn, \Assessment of the upper particle size limit for quan-
titative analysis of aerosols using laser-induced breakdown spectroscopy," Analytical
Chemistry 74, 5450{5454 (2002).

[90] W. C. Hinds, Aerosol Technology (John Wiley & Sons, 1999), 2nd ed.

[91] D. W. Hahn, \Laser-induced breakdown spectroscopy for sizing and elemental analysis
of discrete aerosol particles," Applied Physics Letters 72, 2960{2962 (1998).

[92] G. Lithgow and S. Buckley, \In
uence of particle location within plasma and focal
volume on precision of single-particle laser-induced breakdown spectroscopy measure-
ments," Spectrochimica Acta Part B: Atomic Spectroscopy 60, 1060 { 1069 (2005).

[93] J. W. Beams, \Magnetic suspension for small rotors," Review of Scienti�c Instruments
21, 182{184 (1950).

[94] H. Lee, A. M. Purdon, and R. M. Westervelt, \Manipulation of biological cells using a
microelectromagnet matrix," Applied Physics Letters 85, 1063{1065 (2004).

[95] F. J. Fortes, A. Fern�andez-Bravo, and J. J. Laserna, \Chemical characterization of
single micro- and nano-particles by optical catapulting-optical trapping-laser-induced
breakdown spectroscopy," Spectrochimica Acta Part B: Atomic Spectroscopy 100, 78
{ 85 (2014).

[96] A. Ashkin, \Acceleration and trapping of particles by radiation pressure," Physical
Review Letters 24, 156{159 (1970).

[97] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, \Observation of a single-beam
gradient force optical trap for dielectric particles," Optics Letters 11, 288{290 (1986).

[98] L. V. King, \On the acoustic radiation pressure on spheres," Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 147, 212{240
(1934).

[99] N. A. Fuchs, The Mechanics of Aerosols (Pergamon, Oxford, 1964).



[100] P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, \Generating particle beams
of controlled dimensions and divergence: I. theory of particle motion in aerodynamic
lenses and nozzle expansions," Aerosol Science and Technology 22, 293{313 (1995).

[101] B. Dahneke and H. Flachsbart, \An aerosol beam spectrometer," Journal of Aerosol
Science 3, 345 { 349 (1972).

[102] A. Karimi, S. Yazdi, and A. M. Ardekani, \Hydrodynamic mechanisms of cell and
particle trapping in micro
uidics," Biomicro
uidics 7, 021501 (2013).

[103] O. Kievit, J. Marijnissen, P. Verheijen, and B. Scarlett, \Some improvements on the
particle beam generator," Journal of Aerosol Science 21, Supplement 1, S685 { S688
(1990).

[104] K. Park, G. Cho, and J.-h. Kwak, \Development of an aerosol focusing-laser induced
breakdown spectroscopy (aerosol focusing-LIBS) for determination of �ne and ultra�ne
metal aerosols," Aerosol Science and Technology 43, 375{386 (2009).

[105] D. Mukherjee, A. Rai, and M. Zachariah, \Quantitative laser-induced breakdown spec-
troscopy for aerosols via internal calibration: Application to the oxidative coating of
aluminum nanoparticles," Journal of Aerosol Science 37, 677 { 695 (2006).

[106] T. Tj�arnhage, P.-A. Gradmark, A. Larsson, A. Mohammed, L. Landstr�om, E. Sager-
fors, P. Jonsson, F. Kullander, and M. Andersson, \Development of a laser-induced
breakdown spectroscopy instrument for detection and classi�cation of single-particle
aerosols in real-time," Optics Communications 296, 106 { 108 (2013).

[107] X. Wang, F. E. Kruis, and P. H. McMurry, \Aerodynamic focusing of nanoparticles:
I. guidelines for designing aerodynamic lenses for nanoparticles," Aerosol Science and
Technology 39, 611{623 (2005).

[108] A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjam�aki, J. Ke-
skinen, and R. Hernberg, \Instrumentation for measuring 
uorescence cross sections
from airborne microsized particles," Applied Optics 47, 110{115 (2008).

[109] A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvaj�arvi, J. Toivo-
nen, M. Marjam�aki, J. Keskinen, and R. Hernberg, \Fluorescence cross sections of
bioaerosols and suspended biological agents," Applied Optics 48, 4320{4328 (2009).

[110] M. Putkiranta, A. Manninen, A. Rostedt, J. Saarela, T. Sorvaj�arvi, M. Marjam�aki,
R. Hernberg, and J. Keskinen, \Fluorescence properties of biochemicals in dry NaCl
composite aerosol particles and in solutions," Applied Physics B: Lasers and Optics 99,
841{851 (2010).

[111] R. A. Millikan, \A new modi�cation of the cloud method of determining the elementary
electrical charge and the most probable value of that charge," Philosophical Magazine
19, 209{228 (1910).

[112] W. Paul and H. Steinwedel, \Notizen: Ein neues massenspektrometer ohne magnet-
feld," Zeitschrift f�ur Naturforschung A 8, 448{450 (1953).

[113] W. Paul and H. Steinwedel, \Verfahren zur trennung bzw. zum getrennten nachweis
von ionen verschiedener spezi�scher ladung," German Patent DE944900 (1956).



[114] A. M�uller, \Theoretische untersuchungen �uber das verhalten geladener teilchen in sat-
telpunkten elektrischer wechselfelder," Annalen der Physik 461, 206{220 (1960).

[115] E. J. Davis, \A history of single aerosol particle levitation," Aerosol Science and Tech-
nology 26, 212{254 (1997).

[116] G. S. Grader, S. Arnold, R. C. Flagan, and J. H. Seinfeld, \Fourier transform infrared
spectroscopy of a single aerosol particle," The Journal of Chemical Physics 86, 5897{
5903 (1987).

[117] K. Fung and I. Tang, \Raman spectra of singly suspended supersaturated ammonium
bisulfate droplets," Chemical Physics Letters 147, 509 { 513 (1988).

[118] C. Heinisch, J. B. Wills, J. P. Reid, T. Tschudi, and C. Tropea, \Temperature measure-
ment of single evaporating water droplets in a nitrogen 
ow using spontaneous raman
scattering," Physical Chemistry Chemical Physics 11, 9720{9728 (2009).

[119] S. Arnold and L. M. Folan, \Fluorescence spectrometer for a single electrodynamically
levitated microparticle," Review of Scienti�c Instruments 57, 2250{2253 (1986).

[120] T. L. Ward, S. Zhang, T. Allen, and E. J. Davis, \Photochemical polymerization of
acrylamide aerosol particles," Journal of Colloid and Interface Science 118, 343 { 355
(1987).

[121] R. Wuerker, H. Goldenberg, and R. Langmuir, \Electrodynamic containment of charged
particles by three phase voltages," Journal of Applied Physics 30 (1959).

[122] A. F. Haught and D. H. Polk, \High-temperature plasmas produced by laser beam
irradiation of single solid particles," Physics of Fluids (1958-1988) 9, 2047{2056 (1966).

[123] R. Warren, \Laser induced breakdown spectroscopy on suspended particulate matter in
an electrodynamic balance: Interaction processes and analytical considerations," Ph.D.
thesis, University of Florida (2013).

[124] C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, \Determination
of the elemental composition of micrometric and submicrometric particles levitating in
a low pressure radio-frequency plasma discharge using laser-induced breakdown spec-
troscopy," Spectrochimica Acta Part B: Atomic Spectroscopy 83-84, 14{20 (2013).

[125] E. J. Davis, \Electrodynamic levitation of particles," in \Aerosol Measurement - Prin-
ciples, Techniques, and Applications," , P. A. Baron and K. Willeke, eds. (John Wiley
& Sons, 2001), pp. 603{625, 2nd ed.

[126] D. E. Lencioni, \Laser-induced air breakdown for 1.06-� m radiation," Applied Physics
Letters 25, 15{17 (1974).

[127] J. Carranza and D. Hahn, \Sampling statistics and considerations for single-shot analy-
sis using laser-induced breakdown spectroscopy," Spectrochimica Acta Part B: Atomic
Spectroscopy 57, 779 { 790 (2002).

[128] N. Konjevi�c, M. Ivkovi�c, and N. Sakan, \Hydrogen balmer lines for low electron number
density plasma diagnostics," Spectrochimica Acta Part B: Atomic Spectroscopy 76, 16
{ 26 (2012).



[129] G. A. Lithgow and S. G. Buckley, \E�ects of focal volume and spatial inhomogeneity
on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements,"
Applied Physics Letters 87, { (2005).

[130] E. S. Simpson, G. A. Lithgow, and S. G. Buckley, \Three-dimensional distribution
of signal from single monodisperse aerosol particles in a laser induced plasma: Initial
measurements," Spectrochimica Acta Part B: Atomic Spectroscopy 62, 1460 { 1465
(2007).

[131] P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, \Study of analyte dissocia-
tion and di�usion in laser-induced plasmas: implications for laser-induced breakdown
spectroscopy," Journal of Analytical Atomic Spectrometry 25, 1921{1930 (2010).

[132] P. Diwakar, P. Jackson, and D. Hahn, \The e�ect of multi-component aerosol particles
on quantitative laser-induced breakdown spectroscopy: Consideration of localized ma-
trix e�ects," Spectrochimica Acta Part B: Atomic Spectroscopy 62, 1466{1474 (2007).

[133] V. Hohreiter and D. W. Hahn, \Plasma-particle interactions in a laser-induced plasma:
Implications for laser-induced breakdown spectroscopy," Analytical Chemistry 78,
1509{1514 (2006).

[134] C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K.
Chang, L. Woeste, and J.-P. Wolf, \White-light nanosource with directional emission,"
Physical Review Letters 89, 035002 (2002).

[135] V. Contreras, \Double-pulse and calibration-free laser-induced breakdown spectroscopy
(LIBS) on quantitative analysis," Ph.D. thesis, Centro de Investigaciones en �Optica
A.C. (2013).

[136] H. J. Lee, A. Laskin, J. Laskin, and S. A. Nizkorodov, \Excitation-emission spectra and

uorescence quantum yields for fresh and aged biogenic secondary organic aerosols,"
Environmental Science & Technology 47, 5763{5770 (2013).

[137] S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y.-L. Pan, J. Bottiger, B. V. Bronk,
S. Holler, and R. K. Chang, \Fluorescence from airborne microparticles: dependence
on size, concentration of 
uorophores, and illumination intensity," Applied Optics 40,
3005{3013 (2001).

[138] S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, \Detection of manganese in solu-
tion in cavitation bubbles using laser induced breakdown spectroscopy," Spectrochimica
Acta Part B: Atomic Spectroscopy 60, 1230 { 1235 (2005).

[139] L. M. Berman and P. J. Wolf, \Laser-induced breakdown spectroscopy of liquids: Aque-
ous solutions of nickel and chlorinated hydrocarbons," Applied Spectroscopy 52, 438{
443 (1998).

[140] R. Knopp, F. Scherbaum, and J. Kim, \Laser induced breakdown spectroscopy (LIBS)
as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius’
Journal of Analytical Chemistry 355, 16{20 (1996).

[141] Y. Lee, S.-W. Oh, and S.-H. Han, \Laser-induced breakdown spectroscopy (LIBS) of
heavy metal ions at the sub-parts per million level in water," Applied Spectroscopy 66,
1385{1396 (2012).



[142] Y. Feng, J. Yang, J. Fan, G. Yao, X. Ji, X. Zhang, X. Zheng, and Z. Cui, \Investigation
of laser-induced breakdown spectroscopy of a liquid jet," Applied Optics 49, C70{C74
(2010).





Appendices



80



P
1

Paper 1

Samu T. J�arvinen, Jaakko Saarela and Juha Toivonen

Detection of zinc and lead in water using evaporative preconcentration and

single-particle laser-induced breakdown spectroscopy.

Spectrochimica Acta Part B: Atomic Spectroscopy 86, 55 { 59 (2013).

doi: 10.1016/j.sab.2013.04.010

Reprinted with permission.

c
 2013 Elsevier B.V.

81



82



Detection of zinc and lead in water using evaporative preconcentration
and single-particle laser-induced breakdown spectroscopy

Samu T. Järvinen� , Jaakko Saarela, Juha Toivonen
Tampere University of Technology, Department of Physics, Optics laboratory P.O. Box 692, FI-33101 Tampere, Finland

a b s t r a c ta r t i c l e i n f o

Article history:
Received 21 November 2012
Accepted 23 April 2013
Available online 6 June 2013

Keywords:
Laser-induced breakdown spectroscopy
LIBS
Aerosol
Zinc
Lead

A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is
demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample
solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol
particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then trig-
gered with a scattering based particle detection system. Bene � ts are the highly increased metal concentration
in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure.
Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a
grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were
0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration
curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was
investigated.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ecotoxic metals, often referred as heavy metals, are harmful to
living organisms. Such metals as arsenic, lead, antimony, zinc and
cadmium can pollute underground waters if dumped onto the soil.
Industrial process and waste waters commonly include trace amounts
of heavy metals. Current monitoring of the industrial waters is based
on sampling and subsequent laboratory analysis. While being very
sensitive such process has a long delay between successive measure-
ments as well as between the sampling and completion of analytic
results [1] . Therefore they are not ideal for active monitoring and
cannot, for example, give early warnings of heavy metal leakages
that can lead to process disruptions and environmental accidents. In
order to obtain online information about metal concentrations in
industrial processes and sudden fault situations novel measurement
approaches are needed. For such real-time monitoring system of major
metal concentrations, the limit of detection (LOD) in the order of
0.1 mg/l or 0.1 ppm is often required [2] .

Laser-induced breakdown spectroscopy (LIBS) is able to perform a
simultaneous analysis of several elements with good selectivity. It
involves focusing a high intensity laser pulse or a pulse train on the
surface or inside of the sample material. The leading edge of the
pulse evaporates and ionizes a minute quantity of the sample. Optical
power is converted to the kinetic energy of emerged electrons which
leads to a rapid growth of free electron density at the focal point and

further absorption of the pulse trailing edge. The vapor heats up and
expands and more sample material is ablated. After the laser pulse,
ions and electrons recombine and the characteristic spectra of sample
material atoms are observed due to radiative relaxation while the
originated plasma cloud cools down [3] .

LIBS has been applied to liquid samples in order to detect metals
in several applications. Analysis of water solutions suffers from a
poor sensitivity and a high limit of detection due to short emission
lifetime and LIBS shock wave induced splashes when plasma forms
in the bulk liquid and on the surface, respectively [4,5] . In many
cases, the reproducibility of LIBS signal between successive pulses
has been improved by a double pulse con � guration [6,7] , sample
preparation such as collecting the sample to a � lter paper which is
analyzed after drying [8] or by focusing a laser pulse on � owing liquid
[9] . Some studies [10…12] describe LIBS measurement of aerosols gen-
erated from a sample solution via nebulizer and possible subsequent
water removal. Compared with focusing a laser beam on the center of
a polydisperse aerosol cloud, a single particle LIBS analysis of mono-
disperse aerosols has the advantage of maintaining the mass and
the elemental composition of the substance in the focal volume
uniform from pulse to pulse.

In this paper, we introduce a novel measurement scheme where
trace metals in the sample solution are rapidly preconcentrated inside
salt water droplets. When droplets dry off, metals remain in the shells
of the formed hollow NaCl aerosol particles and their mass concentra-
tion increases several orders of magnitude. The LIBS analysis is
performed from a single aerosol particle using moderate laser pulse
energy. Obtained LIBS spectrum shows emission lines of the metals
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superimposed over the sodium spectrum. The spectral lines of sodi-
um can be used for wavelength and intensity calibration. We demon-
strate the performance of the technique in the detection of zinc and
lead which both are metals of interest in monitoring the industrial
waste and process waters. They are also among the dif � cult metals
to detect on a ppm level using LIBS.

2. Experimental

Experiments were carried out using a setup which was based on
the LIF instrumentation used in references [13…15]. A water sample
with diluted sodium chloride is placed in an ink jet aerosol generator
(IJAG) and sprayed into a tubular oven. As the water from the
droplets evaporates off, spherical, hollow and monodisperse dry
NaCl aerosol particles are formed [15] where trace metals are present
as dopants. At the same time, metal concentration in the particle in-
creases a thousand fold as the water evaporates. The aerosol stream
is directed to a measurement chamber where a single aerosol particle
is detected by a scattering based sensor as shown in Fig. 1. The sensor
sends a trigger signal to a Nd:YAG laser (NT 342/1/UVE, Ekspla Ltd.).
The laser has 10 Hz repetition rate with 10 ms activation window of
the � ashlamp pumping the laser gain material. The trigger signal
must arrive within the activation window to cause the emission of a
frequency-tripled 355 nm laser pulse towards the detected particle.
The light emitted by the formed plasma cloud is collected using a 2 �
solid angle and dispersed with a Czerny …Turner spectrometer with
150 � m slit width. All the numerical results presented in this article
were obtained using a 1200 g/mm grating whereas the shown broad-
band LIBS example spectra were recorded using a 300 g/mm grating.
Both gratings are blazed at 500 nm.

The water samples were prepared by diluting a solution of known
metal concentration in volumetric � asks. The chloride salts of zinc
and lead, ZnCl2 and PbCl2, were used as sources of metals. Sodium
chloride was added to the solution before inserting it into the IJAG.
The IJAG produces initial droplets of 60 � m in diameter into a vertical
tubular oven. After the oven and the following virtual impactor the
size of dry and monodisperse particles depends on the amount of
added NaCl [15] . The scattering signal intensity at the photomultiplier
tube and an effort to maintain the vaporized mass small determine
the suitable particle diameter. The used NaCl concentration of about
0.6 g/l in the sample solution produces particles 5 � m in diameter
with a size distribution having geometric standard deviation less than
1.10 [15] . Small, less than 10% changes in NaCl concentration don't
affect the size distribution. The sample � ow through the measurement
chamber was 60 cm 3/min and the particle concentration inside the
chamber was adjusted by the IJAG drive electronics. The droplet gener-
ation frequency of approximately 3000 droplets/s resulted in a particle

concentration of about 100 particles/cm 3 which ensured a trigger signal
and thus a recorded LIBS spectrum within the majority of the activation
windows of the UV laser pulse. On the other hand, the concentration of
aerosol particles in the carrier gas � ow was suf � ciently low in order to
have a small probability of having extra particles in the focal volume.
A vertical gas jet from a 300 � m inlet nozzle carries the aerosols in the
center axis of the jet with the velocity of about 10 m/s. The jet passes
through a focal point of an Al-coated parabolic mirror. The LIBS excita-
tion UV laser pulse hits a targeted single particle at this focal point.
The beam of the UV laser pulses was 3 mm in diameter before a focus-
ing lens (LA4158, Thorlabs Inc.) placed in front of the measurement
chamber entry. The focal length of the lens was 250 mm and the conse-
quent beam diameter at the focus was about 40 � m. The pulse energy
was varied in the range of 3 …35 mJ. The temporal FWHM width of the
laser pulse was 5 ns and the resulting irradiance at the focal point was
50…600 GW/cm 2. Filtered air having RH of approximately 20% is used
as a carrier gas through the equipment. It also acts as sheath air
preventing the deposition of metals or particle fragments onto the
surface of the measurement chamber. After tens of hours of LIBS exper-
iments no signi � cant contamination in the measurement chamber
optics was noticed.

The plasma emission spectrum is recorded with an ICCD camera
(4 Quik E, Stanford Computer Optics Inc.). LIBS signal-to-noise ratio
(SNR) was investigated with different delay and exposure times of
the ICCD. The optimal detection time window producing the highest
SNR for certain pulse energy was found to be, not only element speci � c,
but also emission line and sample composition speci � c. While a
time-resolved measurement improves the sensitivity of the LIBS mea-
surement, the experimental device of this study uses a � xed detection
time window that was chosen in a way the device would be suitable
for diverse sample solutions. The � xed time window has an exposure
time of 400 ns and a 400 ns delay time between the plasma initiation
and emission detection.

The outcome of a single pulse from the ICCD camera is a TIFF
image � le having 573 × 733 pixels. For a single LIBS measurement,
200 successful images were collected. Due to a small � uctuation in
the horizontal location of the particles in the aerosol jet, about 50%
of all the recorded images didn't proceed to the signal processing.
Thus, the data acquisition lasted about 40 s during which 4000
aerosol particles had passed the focal point and single-shot spectra
of about 400 particles had recorded. For producing 4000 dry particles
in the measurement chamber � ow the IJAG had generated about
120,000 droplets corresponding a consumed sample solution volume
of 14 � l. Images where the pulse had gone past the aerosol particle or
the hit had been inadequate for forming hot plasma were detected
and omitted by observing the intensity of atomic Na lines. Images
with a successful single particle hit were converted into numerical
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Fig. 1. Schematic of measurement chamber. Scattered light from a particle triggers an UV laser pulse that hits the particle at the focal point of a parabolic mi rror.
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data pixel matrices and averaged. A dark background was subtracted
from the averaged pixel matrix and the � nal LIBS spectrum was
formed by summing up the rows of the averaged pixel matrix. The
LIBS spectrum was obtained within 3 min after pouring the sample
solution to the IJAG.

A LIBS spectrum is composed of several spectral components. In
our measurements, the strongest components were the sodium spec-
trum and the spectra of induced Zn and Pb. The strong emission lines
of chlorine lie outside the operating wavelength range of the spectro-
graph. The spectral lines of atomic sodium with their spectroscopic
parameters are well listed in NIST Atomic Spectra Database [16] .
Signal processing program uses their location for calibrating the
wavelength axis of the LIBS spectrum. Spectral lines of the metal
atoms are then recognized using NIST database. The electron temper-
ature Te of laser-induced plasma was estimated from emission line
intensity ratios using the Boltzmann plot method [3] with the as-
sumed existence of local thermodynamic equilibrium (LTE) in the
plasma. By using Zn emission lines at 335 nm, 472 nm and 481 nm,
the calculated electron temperature in our single-particle measure-
ments using 14 mJ pulse energy was about 5000 K on average.

3. Results and discussion

Superimposed LIBS spectra between 400 nm and 490 nm from
zinc and lead measurements using 300 g/mm grating and 14 mJ
pulse energy are shown in Fig. 2. Strong calcium spectral line at
423 nm is due to water hardness. The typical calcium concentration
of tap water in Finnish city area is about 20 mg/l.

The effect of LIBS excitation pulse energy on the intensity of the
481 nm Zn spectral line, corresponding a transition 4s5s 3S1 � 4s4p
3P2

0 [17] , was studied and the dependency is presented in Fig. 3.
Maximum error in the obtained signal due to instability in the laser
pulse energy measurement is indicated with vertical error bars on
top of each measurement point. The noise � oor is the standard
deviation of the background signal multiplied by the factor of three.
After the threshold energy of about 7 mJ the background subtracted
Zn peak intensity increases linearly. The LIBS signal, however, was
found to plummet with pulse energies larger than approximately
32 mJ as the difference between the emission peak intensity and
the thermal continuum background decreases in the used detection
time window.

The LIBS signal calibration curve for zinc was determined using
14 mJ excitation laser pulses to point out the technique's capability
to perform LIBS analysis with low pulse energies. The 14 mJ pulse
energy was chosen on a basis of being roughly twice the threshold
value. Fig. 4a shows the linear behavior of the Zn 481 nm spectral
line signal-to-noise ratio as a function of Zn concentration. The limit

of detection for zinc, 0.3 ppm obtained from the calibration curve, is
at the level required in the industrial online measurement of water.

Assuming that the sample itself doesn't contain considerable
amount of sodium, its concentration in the focal volume remains con-
stant in our technique. Thus, it can be used as an internal standard [3] .
The Zn and Na line intensity ratio in Fig. 4b has a linear dependency
on metal concentration like the zinc emission line SNR but it is less
affected to the � uctuation in excitation conditions. This can be seen
as better correspondence between the linear � t and measured data
points in Fig. 4b than in a. A smaller error in quantitative measure-
ment is therefore achieved by using the de � ned Zn/Na-ratio calibra-
tion curve. The intensity ratio calibration curve was derived using
the Zn line at 481 nm and Na line at 475 nm.

The strongest lead emission line in the spectrograph operating
wavelength region is 406 nm peak arising from a transition 6p7s
3P1

0 � 6p2 3P2 [18] . Its signal-to-noise ratio using 1200 g/mm grating
is 88 when the lead concentration in the original solution is 10 ppm.
Assuming that the SNR has a linear dependency on lead concentra-
tion, as in the case of zinc, the limit of detection can be calculated
from these two parameters. Eq. (1) [19] de� nes the 3� b detection
limit as

LOD¼
3� b

� S
c ¼

c
SNR

; ð1Þ

where � b is the standard deviation of the background, � Sis the inten-
sity difference between emission peak and background level intensi-
ties and c is the concentration of the measured sample. It yields an
estimated LOD of 0.1 ppm for Pb using 14 mJ pulse energy.

When comparing our results with those studies that have reported
the limit of detection for Zn and Pb in terms of mass in aqueous solution,
our limits of detection appear to be of the same order or smaller using
signi� cantly lower laser pulse energy. For example, Schmidt and
Goode [20] reported 0.85 ppm LOD for zinc and 1.1 ppm LOD for lead
using an ion exchange membrane for collecting the trace metal ions
and 80 mJ pulse energy. In another study reported by Díaz Pace et al.
[21] the liquid sample was dried and compressed into CaO pellets. The
obtained detection limits were 21 ppm and 20 ppm for zinc and lead
respectively with 160 mJ pulse energy. Lo and Cheung [22] were able
to achieve 0.3 ppm detection limit for lead without a liquid-to-solid
matrix conversion by focusing a 193 nm 14.4 mJ ArF laser pulse on a
vertical � ow of aqueous solution containing 0.8 M HCl. It is also appro-
priate to compare our results with those aerosol studies which have
determined the LIBS limit of detection in terms of the smallest detected
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trace metal mass in each particle. Expressed in this way, the obtained
limits of detection for Zn and Pb are 500 � g/g and 180 � g/g respectively
or equivalently each aerosol particle contains 34 fg of zinc and 12 fg of
lead at the limit of detection. Hahn and Lunden [23] demonstrated the
detection of Ca and Mg down to the mass of 3 fg in single aerosol parti-
cles using 400 mJ pulse energy. Yet, the comparison of these results is
not straightforward due to the different spectral properties of the alkali
earth metals and Zn and Pb. Most papers concerning LIBS analysis of
aerosol particles express their limit of detection in terms of aerosol
mass concentration. These include studies by Fisher et al. [24] and
Neuhauser et al. [25] who measured lead in aerosols down to the
mass concentration of 190 � g/m 3 and 155 � g/m 3 respectively. The
limits of detection for zinc and lead in our monodisperse NaCl aerosols
with the used particle concentration are 3.4 � g/m 3 and 1.2 � g/m 3.
However, in our measurement scheme, particle concentration is an
adjustable parameter and decreasing it only extends the duration of
the measurement.

Important factors for good LIBS limits of detection for Zn and Pb
in water using only 14 mJ pulse energy are the high degree
preconcentration and the scheme where a small amount of sample
material can be reproducibly brought to focal volume. Increasing
the laser pulse energy, LIBS signal from a single hit can be further
improved as presented in Fig. 3. Alternatively, the irradiance at the
focal point could be increased by focusing the beam using a large nu-
merical aperture lens. Due to the dimensions of our measurement
chamber, the beam diameter at the focus is currently much larger
than the NaCl aerosols and most of the laser power goes past the
particle without contributing to the particle breakdown. On the
other hand, a small diameter focus might lengthen the duration of
collecting successful spectra if the beam diameter is about the same
size as the horizontal � uctuation of the aerosol particles within the
carrier gas jet.

In conclusion, we presented a novel LIBS-based instrumentation
for determining trace metals in water and applied it to the detection
of zinc and lead. Both are among the most common heavy metals
monitored in industrial facilities. Naturally, the technique is applica-
ble to the detection of other metals as well. Our device introduces
metals in the sample solution as dopants of dry and monodisperse
NaCl aerosol particles to focal volume. Calibrated LIBS spectrum is
obtained in 3 min after pouring the solution under examination in
the sample holder. Linear dependence was found between the LIBS
signal and exciting laser pulse energy. Using low pulse energy of
14 mJ and generalized delay and exposure time parameters we
achieved 0.3 ppm detection limit for zinc and 0.1 ppm detection
limit for lead. We also demonstrated the use of sodium as an internal
standard in quantitative zinc measurement. The Zn/Na line calibra-
tion curve can be used if the intrinsic sodium concentration of the

sample is low. The presented methodology allows the development
of a sensitive monitoring device for heavy metals in industrial waters.
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We report the development of a unique laser-induced breakdown spectroscopy (LIBS) based method for the
trace metal analysis of water. The method is further applied to the analysis of aqueous samples containing
known concentrations of nickel, lead and zinc. Effects that reduce the sensitivity of the LIBS analysis of aqueous
samples were avoided in the presented technology by performing the LIBS analysis from a single dried salt par-
ticle which was levitated in an electric � eld. The salt is added to the water sample prior to analysis. A single-
droplet generator injects a droplet of the solution to the measurement chamber. The droplet is trapped using
electrodynamic balance technology and metals are highly concentrated as the water from the droplet rapidly
evaporates without a need for additional heating. The resultant solid 7 � m particle is levitated with a high spatial
stability in the LIBS focal volume. The constant mass and position of the particle enable the high reproducibility of
the LIBS signal. The limits of detection in the original solution were recorded low 60 ppb, 60 ppb, and 50 ppb for
nickel, lead, and zinc, respectively using low, 14 mJ excitation pulse energy. The methodology is applicable to the
online monitoring of industrial waters due to the achieved sensitivity and robust instrumentation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the mining industry, a great amount of water is needed in many
stages of ore preparation. Part of this water is evaporated in the process,
part is recycled to the process and part is disposed to the surrounding
water system after puri � cation. Malfunction in the ore preparation or
in the puri � cation processes results in changes in the metal concentra-
tions of the process water and in the surroundings of the mine. By the
online measurements of the metal concentrations, these processes
could be controlled and the puri � cation could be monitored in a short
time-scale. Despite the bene� ts, real-time analysis of heavy metal con-
tent in water at concentrations below 100 ppb remains a seldom used
technology in minimizing environmental risks and optimizing enrich-
ment processes. Typical requirements for the online detector of dis-
solved metals are applicability to a wide range of different metals with
good selectivity, a data acquisition period limited to the maximum of
a few minutes, and a low risk of sample contamination. The detector
should achieve the limits of detection (LOD) lower than the current reg-
ulatory levels of 0.05 …2 mg/l or ppm [1] . Established � eld measurement
technologies generally also ful � ll the requirements of movability, low
power consumption and long maintenance interval. Several technolo-
gies are used for the detection of dissolved metals in laboratory, such

as atomic absorption spectroscopy (AAS) with different atomizers, in-
ductively coupled plasma optical emission spectrometry (ICP …OES) or
mass spectrometry (ICP…MS), X-ray � uorescence (XRF) spectrometry,
anodic stripping voltammetry (ASV) and variety of biosensors [2,3] .
The obstacles to their use in online measurement applications are typi-
cally the price, size and sample preparation procedure of the devices or
the need for harmful reagents. Also, the pH-dependent operation, poor
durability or insensitivity to light metals limits their suitability for water
monitoring at mining sites.

Laser-induced breakdown spectroscopy (LIBS) [4] ful � lls many of
the desired requirements. However, numerous random processes dis-
rupt the shot-to-shot repeatability of LIBS of water streams. The shock
wave created liquid aerosol particles above the water surface scatter
and absorb the plasma emitted light and the sequential laser pulse in
the analysis of the surface. The liquid particles and splashes are also like-
ly to contaminate the optical components. When plasma is created in
the bulk liquid, quenching and pressure broadening occur inside the
bubble produced by the expanding plasma, weakening and broadening
the emission lines. In addition, the plasma shielding inhibits the trailing
edge of the laser pulse to heat the focal volume [5] thus lowering the
plasma temperature. The formed bubbles and cavitation bubble oscilla-
tions [5] may also interfere with the collection of plasma emitted light.
To outweigh these effects, the use of the wavelengths of an excimer
laser [6] or a double pulse con � guration [7,8] has been demonstrated.
A more suitable approach for a � eld device is the generation of aerosols
from the sample solution that has been proposed for the fast sample
preparation procedure for the LIBS analysis of liquid samples [9] . The
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measurement is conducted by analyzing the aerosol-rich air [9,10] or by
focusing the pulse on a single aerosol particle [11,12] . Typically, plasma
created in the center of a nebulized droplet cloud interacts with greater
sample mass compared with the single-particle measurements, and a
signi� cant portion of the supplied energy is consumed to vaporize and
dissociate the water from the droplets. Excitation pulse energies above
100 mJ are generally used for compensating the resulting overall plasma
cooling and for decreasing the effects of the sample chemical composi-
tion on the plasma parameters. The factors interfering the LIBS signal
can be mitigated with lower � uence in the single-particle measurement
scheme. In addition, the analyte mass can be maintained nearly con-
stant inside the plasma from pulse to pulse if monodisperse particles
and a stable sample injection system is used and if the particles are
small enough to undergo a complete vaporization and atomization.
The challenge in the single-particle measurement is to introduce the
micrometer-scale particles in a reproducible manner to the LIBS plasma.
Even slight variations in the particle location will affect the time the an-
alyte atoms equilibrate with the overall plasma by diffusion [13] and
thus the LIBS signal.

Cahoon and Almirall [14] reported better LIBS detection limits for
dissolved Sr, Mg, Ba, and Al from a nebulizer generated aerosol than
from a single droplet. However, in their study, the repeatability of
the droplet vaporization was dependent only on the stable 250 Hz
continuous-mode operation of the similar piezoelectric single-droplet
generator as used in the present study. As there can be a small variation
in the droplet trajectory and velocity after the generator as well as jitter
in the generation frequency, the sensitivity and precision of the single-
droplet measurement is deteriorated by the � uctuating position of the
droplet. A similar approach with the addition of triggering the droplet
generator by the laser � ashlamp was applied in the paper by Groh
et al. [15]. They reported a � uctuation in the single-shot signal from dis-
solved Ca and Au due to the droplet being far from the center of the air-
plasma and used a simultaneous hydrogen � line monitoring to con � rm
the presence of droplets in the plasma. Using a droplet generator in a
continuous mode, also Janzen et al. [16] reported a signi � cant signal de-
cline when the droplet lies a few micrometers away from the optimal
position. To overcome the � uctuation, they applied a diode laser based
droplet detection system to trigger the exciting laser when the lateral
displacement of the droplet was within a few micrometers.

In the papers by Cahoon and Almirall, Groh et al. and Janzen et al. the
analyzed droplet diameters varied in the range of 40 …100 � m and pulse
energies between 60 mJ and 315 mJ. By further decreasing the amount
of water that causes perturbations in the plasma parameters, the shot-
to-shot repeatability of the LIBS signal could be improved [17] . An advis-
able method would be to decrease the size of an initially large droplet by
evaporating the water and then to analyze the concentrated residual
using relatively low LIBS excitation pulse energy. Such system requires
a control or trapping of the droplet after injection by the single-
droplet generator. Precise control of about 80 � m droplets by optical
tweezers [18,19] requires a high power CW laser whereas the electrody-
namic balance (EDB) technology [20,21] where a charged particle is
levitated very precisely in one position by an electric � eld, offers more
robust and low-cost solution. Previously, a LIBS analysis of an electro-
statically levitated aerosol cloud was demonstrated by Dutouquet
et al. by using an RF discharge cell [22] .

We propose a preconcentration method for the LIBS analysis of
water solutions that converts a drop of the sample solution into a single
dry aerosol particle within a few seconds. The hollow particle that con-
sists of trace metals in a NaCl matrix is trapped to the focal point of the
exciting laser using the EDB technology. The constant mass and location
of the sample material enable � xed excitation conditions for LIBS mea-
surement and thus decrease the amount of averaged pulses that are re-
quired for a low detection limit. Moreover, the laser beam can be
focused on a stationary 7 � m particle using a high numerical aperture
lens to obtain high � uence with moderate pulse energy. The sample
preparation system doesn't involve expensive components and has no

moving parts. The stable NaCl-matrix can be utilized in the signal pro-
cessing procedure for wavelength calibration. In this study, the aqueous
solutions of nickel, lead and zinc, the essential heavy metals in Finnish
mine waters, were analyzed using the EDB …LIBS technique. The novel
measurement principle was found to have potential for a compact and
sensitive online monitoring method of industrial waters.

2. Experimental

The measurement chamber is a vertically positioned hexagonal cyl-
inder made of aluminum. The hexagonal cylinder has a side length of
50 mm and it has a one inch threaded through hole on every vertical
face. The EDB electrodes, shown schematically in the leftmost picture
of Fig. 1, consist of upper and lower pairs of round coaxial cylinders
made of brass. The inner diameters of the cylinders are 8 mm and
2 mm and their respective thicknesses are 2 mm and 1 mm. The geom-
etry and dimensions of the electrodes are the same as used by Heinisch
et al. in reference [23] . The electrodes have been attached to top and
bottom plates of the measurement chamber so that the cylindrical elec-
trodes are aligned along the central axis of the measurement chamber
and the vertical distance between the upper and the lower inner elec-
trodes is 8 mm.

The outer electrodes are grounded and in contact with the measure-
ment chamber walls whereas a high AC potential is applied to the inner
electrodes which are insulated from the rest of the chamber by te � on.
Between the upper and the lower electrodes, the resulting electric
� eld is nonzero everywhere else but at the center of the trap [23]
which equals the center point of the measurement chamber. The differ-
ential equation of motion of a charged particle brought in the vicinity of
the EDB trap is presented, for example, in reference [21] with a graphical
representation of the EDB parameters that result in a stable system. In
the stable region, the AC � eld frequency and amplitude are selected
suitably with relation to the size and mass of the particle, the geometry
of the electrodes, and the ambient conditions of the measurement
chamber. Consequently, the particle begins to oscillate vertically be-
tween the electrode pairs at the frequency of the AC � eld and experi-
ences a time-average force towards the center of the trap. Moreover,
with large particles, a weak 0 …2 V DC voltage must be applied between
the upper and the lower inner electrodes to cancel out the effect of grav-
itation. When a charged droplet of water is launched towards the EDB
trap in typical indoor conditions with relative humidity of 20 …80%, it
starts to evaporate immediately. The decrease in the droplet mass
makes the system unstable, and the oscillations will not attenuate but
intensify violently until the droplet escapes the trap. The decrease in
the droplet mass caused by the evaporation can be compensated with
an increase in the AC � eld frequency or decrease in the AC � eld ampli-
tude, and the system can be returned to the stable region. The levitation
procedure is therefore automated using a LabVIEW program, a DAQ
card (USB-6363, NI Corp.) and two high voltage ampli � ers (2210,
TReK Inc.) that are used to increase the AC frequency from its initial
value of 80 …150 Hz to the � nal value of 1.1 …1.3 kHz as the droplet
dries. The peak-to-peak value of the AC voltage between inner and
outer electrodes is about 1.9 kV. Sodium chloride was dissolved in the
water before pouring it to the sample container of the EDB …LIBS setup
to prevent the complete extinction of the sample material due to the
evaporation. After the water has evaporated, the salt forms a hollow
spherical particle where the trace metals for analysis are present as ad-
ditives [12,24] . The size of the dry salt particle depends on the size of the
initial droplet and the salt concentration, and it can be adjusted in the
range of 1…20 � m. With the applied NaCl concentration of 0.6 g/l, the
evaporation increases the mass concentration of the trace metals by a
factor of about 1600. The particle settling takes about 10 s from the
droplet generation after which all the water has evaporated and the
control program has stopped tuning the AC frequency. After stabiliza-
tion to the center point of the chamber, the position of the particle can
be adjusted some tens of micrometers in the vertical direction by the

10 S.T. Järvinen et al. / Spectrochimica Acta Part B 99 (2014) 9–14

92



DC voltage. However, shifting the particle away from the point where
the AC � eld is zero induces vibrations to the position of the particle.

Single droplets are produced one at a time with a piezoelectric de-
mand mode ink-jet device and the generation of droplets is controlled
by the LabVIEW program. The sample solution is injected to the droplet
generator from its container via a plastic hose. The hose has a solid mat-
ter removing � lter to prevent the droplet generator from clogging. The
droplet generator is mounted in a custom made socket which can be
fastened to one of the chamber through holes whereupon the generator
points perpendicularly towards the central axis of the chamber and to
the center of the trap. For successful trapping, the droplet momentum
provided by the piezo element, must be adjusted accurately. The diam-
eter of the droplet generator ori � ce, and the shape and amplitude of the
voltage pulse supplied to the piezo element determine the exact size
and initial velocity of the formed single droplet. In this study, a droplet
generator having a 40 � m ori � ce (MJ-AB-01-40-6MX, MicroFab Tech-
nologies Inc.) and a bipolar waveform [25] having the amplitude of
about 30 V were used. The formed droplets and dry salt particles had
diameters of 74 � m and 7 � m, respectively. In the droplet generator
mounting socket, the droplets were given a positive charge of about
5 × 10 6 unit charges using a steel washer having a � 1.9 kV potential
placed in front of the droplet generator output nozzle. As the droplet
diameter decreases, the repulsion of the charges in the droplet will
outweigh the surface tension leading to several exceedings of the
Rayleigh limit. The resulting Rayleigh jets where the droplet shoots
the extra charges away are clearly visible as the rapid deformations
of the droplet during the last 1 s of the drying. The loss of mass in
this process is negligible according to the papers by Duft et al. [26]
and Smith et al. [27].

The LIBS measurement was excited with 14 mJ and 355 nm laser
pulse from a Nd:YAG laser (NT 342/1/UVE, Ekspla Ltd.). An aspheric
lens with a 30 mm focal length (84339, Edmund Optics Ltd.) was used
to focus the 6 mm beam to the center of the trap where the beam
waist diameter and peak irradiance were about 10 � m and 4 TW/cm 2.
The particle is illuminated with the other laser beam from a 10 mW
and 532 nm CW laser module (CW532-010 F, Roithner Lasertechnik
GmbH). Fig. 2represents the beam paths and the detector con � guration
of the EDB…LIBS setup. The scattering signal from the particle is detected
by a CMOS camera and it is used for observing the size, the position, and
the state of motion of the particle. The optics in front of the CMOS cam-
era consists of a camera lens (MVL50M23, Thorlabs Inc.) and a 532 nm
laser line bandpass � lter. The plasma emission is collected using a
25 mm diameter and 50 mm focal length UV …VIS coated achromatic
doublet lens (65976, Edmund Optics Ltd.). Another doublet having a
100 mm focal length (65979, Edmund Optics Ltd.) is used for focusing
the light into a Czerny …Turner spectrometer (250is, Bruker Corp.). The

dispersed light is recorded using an ICCD camera (4 Quik E, Stanford
Computer Optics Inc.).

The TIFF image� les from the ICCD camera software are fed to a sig-
nal processing program that converts the images to 566 × 733 pixel ma-
trices, subtracts the dark background and sums up all the active rows of
the pixel matrix. To improve the precision and the detection limit, LIBS
spectra from several consecutive particles can be collected and aver-
aged. Due to the good signal repeatability discussed in the next section,
all the recorded spectra are included in the average spectrum. The spec-
tra presented in this study, are either single-shot signals or the signal
averages of 30 consecutive excitation pulses. For 30 pulses, the data ac-
quisition and signal processing takes in total about 5.5 min. The custom
signal processing program also performs the wavelength calibration
which is based on the known emission wavelengths of sodium and
trace metal atoms obtained from the NIST Atomic Spectra Database
[28] . The measurement chamber was � ushed with compressed air be-
tween the measurements to prevent contamination. The gas inlet and
outlet ports are located on the top and bottom plates at the central
axis of the chamber. During the measurement, the air � ow is blocked
to prevent any external forces affecting the trapped particle.

3. Results and discussion

The EDB…LIBS measurement scheme was demonstrated by analyz-
ing solutions containing nickel, lead and zinc. Each three solution had
a trace metal concentration of 5 ppm. Fig. 3 shows the spectra of the
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Fig. 1. Left: top and section views of EDB electrodes showing dimensions and connection diagram. Middle: designed EDB …LIBS measurement chamber photographed oblique without top
plate. Right: trapped particle levitating between EDB electrodes. The photo is taken through a chamber window.
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Fig. 2. Schematic of EDB…LIBS setup. Solid lines represent the 355 nm excitation beam and
the illuminating 532 nm CW laser. Dashed lines show the collection angles of plasma
emission and the scattering of the green laser. A photograph of an ejected droplet and
the droplet generator ori � ce is shown in the inset.
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trace metals plotted on top of the corresponding background spectrum
consisting of signals from a pure sodium chloride particle and the ambi-
ent air. All the spectra are an average of 30 consecutive laser pulses, thus
only 6.3 nl has been consumed to obtain each spectrum. The small offset
at the baseline levels of the trace metal and background spectra has
been removed by the signal processing program. The intensi � er gate
was opened when the signal from the ambient air was almost extinct.
The gate width was selected by visually inspecting the signal from the
trace metals in question. Thus, the LIBS spectrum recording delay time
with respect to the incident laser pulse was wavelength region speci � c
whereas the exposure time was trace metal speci � c. No multicompo-
nent samples were measured in this study. In the nickel measurements,
the delay was set to 7 � s; it was 2.5 � s for lead and 3 � s for zinc. Temporal
gate widths were 16 � s for nickel and 9 � s for lead and zinc. For lead, the
probed peak was at the 406 nm wavelength and it consists of emission

lines that correspond to transitions 6p7s 3P1
o � 6p2 3P2 and 6p6d 3D1

o �
6p2 1D2 [29] . In case of zinc, the corresponding wavelength and transi-
tion are 481 nm and 4s5s 3S1 � 4s4p 3P2

o [30] . Nickel has several strong
spectral lines between 337 nm and 362 nm of which the peak at 352 nm
originating from the transition 3d 94p 3P2

o � 3d94s 3D3 [31] had the
highest SNR. The source of calcium was the impurities in the used sodi-
um chloride chemical. The observed CN B 2� + � X2� + band system in
the lead measurements was visible even without a particle in the mea-
surement chamber and thus it most probably originates from the forma-
tion of CN radicals from the indoor air carbon and nitrogen [32] .

The initial droplet size distribution was inspected by photographing
the droplet directly after the droplet generator ori � ce using a CMOS
camera (DCC1645C, Thorlabs Inc.) and about 5 � s � ash from a xenon
� ashlamp (L7684, Hamamatsu K.K.). The average droplet diameter of
107 photographed droplets was 73.6 � m with a standard deviation of
0.8 � m. One of the photographs showing the initial droplet in front of
the generator ori � ce is presented in the inset of Fig. 2. Inside the mea-
surement chamber, the � uctuation in the position of the trapped dry
particle was measured by imaging the particle using a CMOS camera
with an exposure of 370 � s. The center coordinate of the particle in
the images was determined by means of a 2D Gaussian � t. The standard
deviations of the particle centroid in the vertical and horizontal direc-
tions were found to be less than 1.5 � m. Moreover, all particles were
trapped in the very same position due to the equal size and charge of
the initial droplets and the geometry of the electrodes. Because one
droplet is a representative sample of the water volume under analysis
and the plasma formation conditions can be kept static, the interpulse
repeatability of the signal during the measurement was found to be
very good. Single-shot spectra of 15 consecutive pulses from the nickel
measurements are shown in Fig. 4. The relative standard deviation
(RSD) of single-shot nickel signals, calculated using the 352 nm peak
and 30 laser pulses, was 14% and it was possible to determine the
metal concentration even using a single-shot spectrum. The mean of
the estimated single-shot detection limits of nickel in the sample solu-
tion was about 470 ppb with 14% RSD. The small � uctuation in the signal
was mainly due to the slight variations in the dry particle size and posi-
tion. Only a weak correlation between the signal level and the � uctuat-
ing laser pulse energy was observed indicating the laser pulse energy
was substantially over the complete vaporization threshold of the dry
particle. The time-averaged plasma excitation temperature during the
detection time window of each 30 single-shots was estimated using
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the Boltzmann plot method and the suitable emission lines of nickel be-
tween 338 nm and 362 nm. The excitation temperature was found to be
5400 K on average with a standard deviation of 730 K.

Earlier, we have shown that the trace metal analysis from monodis-
perse sodium chloride particles yields a linear calibration curve [12] . Be-
cause the standard error of the mean of 30 signals is only 2.6%, we can
estimate the limits of detection of the EDB …LIBS technique with a
good certainty using simply the averaged signal obtained from the
5 ppm solution. The calculated 3 � b detection limits [33] for nickel and
lead were 60 ppb in the original solution and 50 ppb for zinc. At the de-
tection limit, each dry particle contains 12.5 fg of nickel and lead and
10.5 fg of zinc. The achieved detection limits were found to be the low-
est values that have been obtained for dissolved nickel, lead and zinc
using a LIBS-based water analysis system having pulse energy less
than 20 mJ. In the calculations, the standard deviation of the back-
ground at the spectral bandwidth of the metal emission lines was ob-
tained from the background spectrum. Before calculating the LOD, a
baseline removal has been performed to the trace metal peak and the
corresponding background at the peak bandwidth. In the baseline re-
moval, the background level curve is formed by making a spline � t to
the measured background spectrum. The obtained curve is then
subtracted from the trace metal and background spectra. Compared
with our previous approach, the limits of detection obtained using the
EDB…LIBS method were clearly lower despite the signi � cantly smaller
solid angle for plasma emission collection; only 2.8% of the angle used
in reference [12] . The EDB…LIBS technique also consumes less energy
due to the absence of the oven for water evaporation.

In the present study, the added sodium chloride is primarily used for
controlling the diameter of the dry particle to be trapped and atomized.
Utilizing the added salt also for calibrating the signal intensity could fur-
ther stabilize the signal [12] on conditions that the amount of salt is kept
constant and the emission peaks of the internal standard element are
not affected by changes in the sample composition. Sodium has been
shown to cause matrix effects at the early stage of plasma due to the
much lower boiling point than the trace metals [34] . As sodium chloride
could be replaced by any soluble salt, matrix effects could potentially be
avoided by choosing a salt of a transition metal having similar thermo-
dynamic properties than the analyte elements. On the other hand, due
to the precise position of the particle, the direct laser beam …particle in-
teraction can be equally signi � cant as the plasma…particle interaction in
the plasma formation. Then, adding a salt, for example potassium io-
dide, having an absorption and a multiphoton absorption cross sections
at 355 nm [35,36] greater than those of sodium chloride, could enhance
the coupling between the laser pulse and the plasma.

4. Conclusions

A sensitive LIBS-based approach to the real-time elemental analysis
of water samples was presented. In the presented methodology, a
charged droplet of the sample solution containing added sodium chlo-
ride is trapped using an electric � eld. The LIBS analysis is performed
from the consequential dry particle that levitates very precisely at the
focal point of the light collecting optics. The method utilizes a solid ma-
trix, a high preconcentration and a repeatable interpulse signal in the
LIBS analysis of water and it is applicable to the detection of at least all
the heavy metals of paramount environmental importance. In this
study, we analyzed the aqueous solutions of nickel, lead and zinc. The
estimated limits of detection, 60 ppb for nickel and lead and 50 ppb
for zinc, were remarkably good, despite the low laser pulse energy of
14 mJ used in this work. The EDB…LIBS technique enables the engineer-
ing of a robust instrumentation for � eld applications that provides fast
trace metal detection down to 50 ppb level using a low cost and com-
pact excitation source. This study opens up new possibilities for online
monitoring of water in harsh environments with lower costs associated
with manufacture and maintenance.

Acknowledgments

This research is � nancially supported by Tekes „ the Finnish Funding
Agency for Innovation (grant number 40035/12), Metso Automation
Oy, Outotec Oyj, Talvivaara Mining Company Plc and Ima Engineering
Ltd Oy. Authors also acknowledge Professor Jonathan P. Reid and his re-
search group in the University of Bristol, UK for the assistance in the EDB
technology. S.T.J. acknowledges the support from the Graduate School
of Modern Optics and Photonics in Finland. S.S. acknowledges the sup-
port from the doctoral school of TUT.

References

[1] Helsinki Comission (HELCOM), Baltic Marine Environment Protection Commission,
Recommendation 23/11: Requirements for Discharging of Waste Water From the
Chemical Industry, URL http://helcom. � /Recommendations/Rec%2023-11.pdf (last
accessed: 6-Oct-2013).

[2] I. Karube, K. Nakanishi, Immobilized cells used for detection and analysis, Curr. Opin.
Biotechnol. 5 (1994) 54 …59.

[3] S. Haron, A.K. Ray, Optical biodetection of cadmium and lead ions in water, Med.
Eng. Phys. 28 (2006) 978…981.

[4] R.S. Adrain, J. Watson, Laser microspectral analysis: a review of principles and appli-
cations, J. Phys. D. Appl. Phys. 17 (1984) 1915…1940.

[5] P.K. Kennedy, D.X. Hammer, B.A. Rockwell, Laser-induced breakdown in aqueous
media, Prog. Quantum Electron. 21 (1997) 155 …248.

[6] K.M. Lo, N.H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion
analysis of metal ions in aqueous solutions, Appl. Spectrosc. 56 (2002) 682 …688.

[7] A. De Giacomo, M. Dell'Aglio, F. Colao, R. Fantoni, Double pulse laser produced plas-
ma on metallic target in seawater: basic aspects and analytical approach,
Spectrochim. Acta Part B 59 (2004) 1431 …1438.

[8] S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K.-i. Kaneko, Determination of an iron sus-
pension in water by laser-induced breakdown spectroscopy with two sequential
laser pulses, Anal. Chem. 68 (1996) 2981 …2986.

[9] M. Essien, L.J. Radziemski, J. Sneddon,Detection of cadmium, lead and zinc in
aerosols by laser-induced breakdown spectrometry, J. Anal. At. Spectrom. 3 (1988)
985…988.

[10] A. Kumar, F.Y. Yueh, T. Miller, J.P. Singh, Detection of trace elements in liquids by
laser-induced breakdown spectroscopy with a Meinhard nebulizer, Appl. Opt. 42
(2003) 6040 …6046.

[11] H.A. Archontaki, S.R. Crouch, Evaluation of an isolated droplet sample introduction
system for laser-induced breakdown spectroscopy, Appl. Spectrosc. 42 (1988)
741…746.

[12] S.T. Järvinen, J. Saarela, J. Toivonen, Detection of zinc and lead in water using evap-
orative preconcentration and single-particle laser-induced breakdown spectrosco-
py, Spectrochim. Acta Part B 86 (2013) 55 …59.

[13] P.K. Diwakar, S. Groh, K. Niemax, D.W. Hahn, Study of analyte dissociation and dif-
fusion in laser-induced plasmas: implications for laser-induced breakdown spec-
troscopy, J. Anal. At. Spectrom. 25 (2010) 1921 …1930.

[14] E.M. Cahoon, J.R. Almirall, Quantitative analysis of liquids from aerosols and
microdrops using laser induced breakdown spectroscopy, Anal. Chem. 84 (2012)
2239…2244.

[15] S. Groh, P.K. Diwakar, C.C. Garcia, A. Murtazin, D.W. Hahn, K. Niemax, 100% ef� cient
sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and
inductively coupled plasma spectrometry: implications for ultralow sample vol-
umes, Anal. Chem. 82 (2010) 2568 …2573.

[16] C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen,
A. Oest, P. Koke, Analysis of small droplets with a new detector for liquid chroma-
tography based on laser-induced breakdown spectroscopy, Spectrochim. Acta Part
B 60 (2005) 993 …1001.

[17] S. Groh, C.C. Garcia, A. Murtazin, V. Horvatic, K. Niemax, Local effects of atomizing
analyte droplets on the plasma parameters of the inductively coupled plasma,
Spectrochim. Acta Part B 64 (2009) 247 …254.

[18] A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev.
Lett. 24 (1970) 156 …159.

[19] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradi-
ent force optical trap for dielectric particles, Opt. Lett. 11 (1986) 288 …290.

[20] W. Li, E.J. Davis, Measurement of the thermophoretic force by electrodynamic levi-
tation: microspheres in air, J. Aerosol Sci. 26 (1995) 1063 …1083.

[21] E.J. Davis, Electrodynamic levitation of particles, in: P.A. Baron, K. Willeke (Eds.),
Aerosol measurement „ principles, techniques, and applications, 2nd ed., Electrody-
namic Levitation of ParticlesJohn Wiley & Sons, 2001, pp. 603 …625, (chap.).

[22] C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, L. Boufendi, Determination of the
elemental composition of micrometric and submicrometric particles levitating in a
low pressure radio-frequency plasma discharge using laser-induced breakdown
spectroscopy, Spectrochim. Acta Part B 83…84 (2013) 14 …20.

[23] C. Heinisch, J.B. Wills, J.P. Reid, T. Tschudi, C. Tropea, Temperature measurement of
single evaporating water droplets in a nitrogen � ow using spontaneous Raman scat-
tering, Phys. Chem. Chem. Phys. 11 (2009) 9720…9728.

[24] M. Putkiranta, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajrvi, M. Marjamki, R.
Hernberg, J. Keskinen, Fluorescence properties of biochemicals in dry NaCl
composite aerosol particles and in solutions, Appl. Phys. B Lasers Opt. 99 (2010)
841…851.

13S.T. Järvinen et al. / Spectrochimica Acta Part B 99 (2014) 9–14

P
2

95



[25] MicroFab Technologies Inc., Drive waveform effects on ink-jet device performance,
Technote 99-03, 1999.

[26] D. Duft, T. Achtzehn, R. Muller, B.A. Huber, T. Leisner, Coulomb � ssion: Rayleigh jets
from levitated microdroplets, Nature 421 (2003) 128-128.

[27] J.N. Smith, R.C. Flagan, J.L. Beauchamp, Droplet evaporation and discharge dynamics
in electrospray ionization, J. Phys. Chem. A 106 (2002) 9957 …9967.

[28] Y. Ralchenko, A. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database
(Version 5.1), 2013. (last accessed: 22-Nov-2013).

[29] D.R. Wood, K.L. Andrew, Arc spectrum of lead, J. Opt. Soc. Am. 58 (1968) 818…828.
[30] D. Gullberg, U. Litzén, Accurately measured wavelengths of Zn I and Zn II lines of as-

trophysical interest, Phys. Scr. 61 (2000) 652 …656.
[31] M.C.E. Huber, R.J. Sandeman, Oscillator strengths of ultraviolet NI I lines from hook-

method and absorption measurements in a furnace, Astron. Astrophys. 86 (1980)
95…104.

[32] S. Abdelli-Messaci, T. Kerdja, A. Bendib, S. Malek, CN emission spectroscopy study of
carbon plasma in nitrogen environment, Spectrochim. Acta Part B 60 (2005) 955… 959.

[33] Analytical chemistry division (IUPAC), nomenclature, symbols, units and their usage
in spectrochemical analysis-II. Data interpretation, Spectrochim. Acta Part B 33
(1978) 241 …245.

[34] P. Diwakar, P. Jackson, D. Hahn, The effect of multi-component aerosol particles on
quantitative laser-induced breakdown spectroscopy: consideration of localized ma-
trix effects, Spectrochim. Acta Part B 62 (2007) 1466 …1474.

[35] P. Davidovits, D.C. Brodhead, Ultraviolet absorption cross sections for the alkali ha-
lide vapors, J. Chem. Phys. 46 (1967) 2968…2973.

[36] I.M. Catalano, A. Cingolani, A. Minafra, Multiphoton transitions in ionic crystals,
Phys. Rev. B 5 (1972) 1629…1632.

14 S.T. Järvinen et al. / Spectrochimica Acta Part B 99 (2014) 9–14

96



P
3

Paper 3

Samu T. J�arvinen and Juha Toivonen

Analysis of single mass-regulated particles in precisely controlled trap using

laser-induced breakdown spectroscopy.

Optics Express 24(2), 1314 { 1323 (2016).

doi: 10.1364/OE.24.001314

Reprinted with permission.

c
 2016 The Optical Society

97



98



Analysis of single mass-regulated
particles in precisely controlled trap

using laser-induced breakdown
spectroscopy

Samu T. Järvinen� and Juha Toivonen
Tampere University of Technology (TUT), Department of Physics, Optics Laboratory, P.O. Box

692, FI-33101 Tampere, Finland
� samu.jarvinen@tut.Þ

Abstract: We report the inßuence of water content, droplet displacement
and laser ßuence on the laser-induced breakdown spectroscopy (LIBS)
signal of precisely controlled single droplets. For the Þrst time in single par-
ticle LIBS scheme, the degree of evaporation of an additive-free droplet was
followed and the position of the residual particle was adjusted at micrometer
resolution using electrodynamic trapping. The results show signal intensiÞ-
cation throughout the 6 s period of the complete evaporation of the droplet
into a dry residual particle. The analyte line emission remained stable
when the particle was moved within the focal spot area and almost tenfold
compared with situation where the particle lies 15µm outside the laser
beam path. Combination of low, about 6 mJ, excitation laser pulse energy
and short, about 1µs detection delay time was found to be the optimal in the
detection of most metals. The presented Þndings will pave the way for more
sensitive and reproducible single particle elemental analysis exploited in the
real-time monitoring of water, atmospheric aerosols or industrial emissions.

© 2016 Optical Society of America

OCIS codes: (300.6365) Spectroscopy, laser induced breakdown; (350.4990) Particles;
(010.7340) Water; (280.1545) Chemical analysis; (350.5400) Plasmas.
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1. Introduction

Measurement of elements in single aerosol particles, especially in small droplets, could pro-
vide new insight into several processes in the Þelds of research and industry. Applications can
be found, for example, in cloud formation research, in analysis of very low sample volumes
in bioanalytics, in monitoring of emissions [1], and in the characterization of microbes [2] and
nanoparticles [3]. Laser-induced breakdown spectroscopy (LIBS) is a technique for a fast ele-
mental analysis of the solids, liquids and gases and mixtures of these such as aerosols and can
thus be utilized in single particle measurements. One of the major possibilities of single parti-
cle LIBS measurements is to perform a sensitive online analysis of liquids with nanoliter-range
sample consumption as several processes suppress the signal in the direct LIBS analysis of liq-
uid samples [4,5]. The technique could be utilized in process and waste water control in metal
production and power industry facilities, and in water treatment plants. LIBS analysis of water
solutions by single droplet sampling has been previously presented in the papers by Janzen et
al. [6], Groh et al. [7], Cahoon and Almirall [8] and J¬arvinen et al. [9, 10]. In [9] and [10], we
presented a single particle LIBS methodology where the individual droplet is dried after gen-
eration and the residual particle containing the concentrated trace elements and additive salt is
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introduced to the LIBS plasma.
Many referred applications require a measurement of a femtogram-level trace element mass

per each particle. In the analysis of water by single droplet sampling, 1 ppb concentration
limit of detection corresponds detection of only 0.5 fg in a 100µm droplet. Such sensitivity
is believed to be attainable for a real-time LIBS system if the measurement conditions are
optimized and the pulse-to-pulse signal ßuctuations minimized. Based on previous studies [3,
6, 11], the LIBS signal from a single droplet or a single dry particle is affected by the particle
location and size at the moment of plasma initiation, and the applied laser ßuence. However,
the exact dependency and importance of these factors are not studied for precisely controlled
particles and for low laser pulse energies of 1-20 mJ. The term ÕparticleÕ is used throughout
this article to describe either a liquid droplet, a completely dry aerosol particle formed from
the droplet by drying or a droplet which is at the stage of fast drying and between these two
extremes.

The location of the aerosol particle with respect to the focal point of the laser affects the time
the analyte atoms diffuse and equilibrate to the plasma and the location of the mass transfer
origin [12Ð14]. Thus, analyte emission has temporal and spatial variation, yet plasma emission
is typically collected only from a certain slice of the plasma volume to a spectrograph using a
Þxed detection time window. Using similar particles, a lower detection limit was found when
the particle was precisely trapped [9] instead of moving along a 100µm wide air ßow [10]. The
water content in the particle alters the size and composition of the single particle and affects
the diffusion rate and plasma temperature via the energy that is required for the vaporizing
and molecular dissociation of the particle [15]. InsufÞcient ßuence with relation to particle size
causes an incomplete vaporization of the particle and the elemental composition of the plasma
may differ from the original particle composition. It also reduces the linearity of the analyte
calibration curve [16]. On the other hand, unlike in the analysis of nebulized droplet clouds or
any bulk sample, increasing the ßuence signiÞcantly above the complete vaporization threshold
does not add analyte mass in the plasma but only increases the temperature of different species
and speeds up the expansion of the plasma.

In this study, LIBS signal from single particles was investigated when the water content and
the exact position of the particles were varied. Single water droplets containing the known
concentrations of Pb, Al, and Mn were trapped and levitated in the LIBS focal volume using
electrodynamic balance (EDB) [17] trap and the vertical position of the particles was adjusted
by an electrostatic force. The combination of LIBS and EDB has been previously presented
in [18] and [9]. Moreover, Dutouquet et al. [19] demonstrated the LIBS analysis of a particle
cloud levitating in a RF discharge cell. To our knowledge, this is the Þrst time the LIBS analysis
was done for single particles that were scanned across the focal spot of the laser beam with a
resolution of a few micrometers. The amount of water in the aerosol particle was controlled by
varying the drying time between the droplet generation and plasma initiation for monitoring the
LIBS signal dependency on the level of analyte preconcentration. Scattering from the particle
was used for determining the location and size of the particle and for the automatic operation
of the setup. Also, LIBS signal-to-noise ratio versus excitation laser ßuence was measured at
different ICCD gate delay times to estimate the optimal pulse energy and gating. The results
can be applied to LIBS analysis of any precisely controlled micrometer sized aerosol particles
regardless of trapping technique or aerosol origin. They provide means to improve the single
particle LIBS analysis with regard to sensitivity and reproducibility.

2. Experimental

Figure 1 represents the experimental EDB-LIBS setup schematically. The EDB-LIBS principle
and the used EDB electrode structure and the electric potentials are described in more detail
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in [9]. A piezoelectric droplet generator (MJ-AB-01-40-6MX, MicroFab Technologies Inc.)
followed by a washer having -500 V potential are used to inject a charged single droplet be-
tween pairs of EDB electrodes. The droplet generator produces monodisperse droplets of about
74 µm diameter. The cylindrical electrodes are aligned along the center axis of a hexagonal
measurement chamber. By controlling the electrode potentials the droplet can be trapped in the
electric Þeld and levitated with 1.5µm precision at the focus of LIBS excitation laser beam.
While levitating, the droplet dries into a dry residual particle in 3-10 s depending on the relative
humidity (RH) of the surrounding air. The analyte elements in the droplet are preconcentrated
due to the evaporation of the liquid matrix. The size of the residual particle depends on the total
impurity concentration of the sample solution, which was conveyed to the droplet generator.
Thus, each excitation laser pulse will sample almost equal trace element mass which is located
in a well deÞned and repeated position.

L2
L1

EM W

DM

IF1

IF2
CH

DG

FL

Spectro-
meter

ICCD

CMOS

PMT

HC
EL

P

H

Fig. 1. The EDB-LIBS conÞguration. L1=pulsed Nd:YAG, L2=532 nm CW
laser, DM=dichroic mirror, W=window, EM=energy meter, HC=hexagonal cham-
ber, EL=cylindrical electrodes, DG=droplet generator, CH=droplet charger,
IF1&2=interference Þlters, P=pinhole, FL=ßashlamp, H=liquid sample hose.

After ejection from the generator oriÞce, the droplet oscillates vertically between the elec-
trodes due to gravitational restoring force. The mass of the droplet is reduced by evaporation
and the particle automatically settles at the focal point after complete drying. However, to mea-
sure LIBS signal versus the preconcentration level, the particle had to be driven to the LIBS
focal point and the oscillation amplitude had to be suppressed before signiÞcant drying takes
place. The gravitation affecting the droplet can be compensated by upward pointing electric
force which is realized by applying a DC potential between upper and lower EDB electrodes.
Thus, during the drying process, the DC potential was reduced continuously according to exper-
imentally determined exponential function to settle the movement of the drying droplet already
after 1 s levitation. Scattering from the droplet is used to determine if the droplet is sufÞciently
settled to the trapping point as discussed further in the text.

The droplet trapping requires control over the AC Þeld frequency during the droplet drying.
The levitation can be performed for different sample solutions with Þxed device parameters if

102



the total impurity concentration in the droplets stays constant, and if the RH inside the chamber
doesnÕt change signiÞcantly. The former condition was previously realized by adding soluble
salt, such as NaCl, to the sample solution an amount that is much greater than the analyte con-
centration [9]. However, the added salt interferes with the detection of certain analyte emission
lines and have been shown to cause matrix effects [20]. In this study, the EDB-LIBS analysis
was done for the Þrst time without using additive chemicals in the droplet. As illustrated in
Fig. 1, the particle is illuminated using a 20 mW 532 nm CW laser module, and two aspheric
lenses and a pinhole collect scattered green light from a small volume around the center point
of the chamber. A PMT (H11706-01, Hamamatsu K.K.) detects the scattered light which pro-
vides feedback for the AC frequency adjustment algorithm. The PMT signal is also used for
determining when the particle has settled and ready to be analyzed. As the particle slows down
at the LIBS focal point, a 100 ms running average signal from the PMT Þrst rises steeply, then
decreases due to reduction in the droplet size, and then reaches a plateau level. After attaining
the plateau, that is above certain threshold level, particleÕs movement is considered stopped and
the system is ready to trig the LIBS excitation pulse. The trigger signal is sent to the pulse laser
right after the predetermined drying time from the droplet ejection has elapsed. The trigger
signal activates the function of the laser Q-switch and a pulse is emitted at the next operating
cycle of the 10 Hz laser. The scattering based trigger system also enables the measurements of
high purity liquid droplets that are analyzed before the complete drying.

1-15 mJ laser pulse having a temporal FWHM of 7.8 ns and FWHM diameter of 6 mm
from an actively Q-switched Nd:YAG (NT 342/1/UVE, Ekspla Ltd.) emitting at 355 nm is
focused on the trapped particle by a 30 mm focal length aspheric lens (84339, Edmund Optics
Ltd.). The diameter of the focal spot was measured to be 19µm. The plasma emitted light is
collected at 120� angle from the direction of the incoming laser pulse using a 50 mm focal
length and 25 mm diameter achromatic doublet lens (65976, Edmund Optics Ltd.). The light is
focused into a spectrometer with another doublet lens having a focal length of 100 mm (65979,
Edmund Optics Ltd.). An ICCD camera (DH340T-18U-E3, Andor Technology Plc.) is coupled
to the Czerny-Turner spectrometer (250is, Bruker Corp.) having a 1200 grooves/mm grating.
The slit of the spectrometer was set at 27µm which is two times the ICCD pixel width and
the theoretical maximum resolution of the system is 0.16 nm. The pixels in the 2048×512
CCD cell are vertically binned to speed up the signal processing program. Unless separately
emphasized in the Results and discussion section, the ICCD gate delay and width times were
1 µs and 20µs, respectively.

After the laser pulse and the following data acquisition, the whole procedure is repeated
starting with a generation of a new droplet. Depending on the desired degree of drying and
the RH, the period of single-shot measurements is 2 s at the shortest. Hence, the maximum
sampling rate is 30 particles/min or 6.4 nl/min. The RH can be lowered by ßushing the chamber
with compressed dry air or nitrogen. The droplet generation, trapping and laser pulse triggering
are automated using a DAQ card (USB-6363, NI Corp.) and LabVIEW software. The same
software controls also the xenon ßashlamp (L7684, Hamamatsu K.K.) and the CMOS camera
(DCC1645C, Thorlabs Inc.) seen in Fig. 1. They are used for taking 5µs exposure still images
and videos of the levitating particle. The water samples measured in this study, were prepared
by dissolving PbCl2 and the hydrous compounds of Al(NO3)3 and MnCl2 in deionized water
and diluting the solutions in volumetric ßasks. The water samples were found to contain trace
amounts of calcium due to impurities in the used chemicals and deionized water.
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3. Results and discussion

3.1. Effect of droplet evaporation stage

Figure 2 presents an example spectrum showing the response to Mn, Al and Pb. The LIBS
signal dependency on water content in the particle was measured by varying the time between
the droplet generation and the LIBS excitation laser pulse as described in the Experimental
section. The excitation pulse energy was maintained at 4 mJ and the signal was collected from
Al 396.2 nm and Mn 403.1 nm emission lines. The concentration of both trace metals was
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0.6 ppm of Pb using 4 mJ excitation laser pulse energy. The spectrum is an average of
20 single-shot spectra. The CN and N+
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Fig. 3. LIBS signal from Al and Mn as function of drying time. The insets show
30µm× 30µm CMOS camera images of the particle at 1 s and 6 s after the droplet launch.

1 ppm corresponding 0.2 pg of Al and Mn in each droplet. The RH of the air inside the chamber
was 25%. The results presented in Fig. 3 show a rise in the signal until drying time of about
6 s. After the rise, the signal settles at a saturation level which is assumed to correspond a
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situation where all the water has evaporated from the droplet. The time of complete drying,
6 s, agrees well with the theoretical drying time for 74µm water droplet in RH=25% air [21].
The signal remains constant at the saturation level even after signiÞcantly longer trapping times
than presented in Fig. 3. The main reasons for the signal reduction at short drying times are the
incomplete vaporization of the large droplet and the consumption of energy for phase transition.
They result in lower temperature plasma having a lower analyte species density compared with
the analysis of a completely dried particle. At longer drying times, the decreasing moisture
content in the particle increases the signal until complete drying. The relation between sample
moisture and LIBS signal was reported in a recent study by Chen et al. [22]. Large droplets are
more difÞcult to settle accurately at the focal point due to their mass and initial velocity. It was
not possible to settle the droplet faster in the focal volume than about 1 s which determined the
shortest investigated drying time.

3.2. Effect of micrometer displacements in the single particle position

The effect of micrometer-scale displacements between the analyzed particle and the focal point
of the excitation laser beam on the LIBS signal from Pb 405.8 nm emission line was investi-
gated using the ability to control the particle location in the EDB chamber. The dependency is
expected to be independent of the selected transition. The water sample contained 20 ppm of
Pb which corresponds 4 pg per droplet, and all the analyzed droplets were dried completely
into a dry residual particles. The LIBS excitation pulse energy was kept at 5 mJ which pro-
duced plasma in the chamber even without a particle in the trap. The vertical displacement of
the particle was determined from the still images using the ßashlamp and the CMOS camera.
The inset in Fig. 4 presents the vertical displacement of the centroid of a 5.5µm particle from
the excitation beam focus for each DC voltage values between the upper and lower electrodes.
The ordinate in the upper graph of Fig. 4 is an average LIBS signal of 20 single-shot spectra.
At each measurement point, the plasma emission was guided to the spectrometer with constant
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light collecting efÞciency. The signal remains stable while the particle lies in the interval which
has a width of approximately 1.5 times the focal spot diameter. After the offset of± 15 µm,
there is a sharp signal decrease setting the collected analyte emission at a level of less than
one seventh of the emission collected at the focus. These high-signal and low-signal levels are
assumed to correspond the region where the laser pulse can directly interact with the particle
and the region where plasma forms Þrst in air and then surrounds the particle by expansion.
In the latter, the analyte emission may be localized to a certain part of the plasma cloud [15].
The high signal was observed also when the particle was only partly located in the focal area.
When the particle is well located at the focal spot, the ßuctuation of the single-shot signals is
about 15%. The lower graph shows the relative standard deviation (RSD) of the averaged sig-
nal. It is obtained by dividing the standard deviation of the mean by the average signal of 20
single-shots. The RSD is less than 4% when the particle is located at the focus. Applying a DC
voltage different from the value that exactly cancels out the effect of gravitational force causes
the particle to vibrate slightly in the vertical direction. Thus, moving away from the focus in-
creases the deviation in the successive particle positions which also contributes to the rise in
signal RSD.

3.3. Pulse energy in single particle measurements

Effect of LIBS excitation laser ßuence was studied by varying the pulse energy between 1.5 mJ
and 15 mJ. Atomic lines are visible with pulse energies greater than 1.5 mJ which is labeled
as the threshold for the plasma generationEth in Fig. 5(a). At this ßuence, more than 50% of
the excitation pulses do not vaporize the 3µm residual particle but merely break it into small
fractions that are still visible in the CMOS camera screen. The fractions levitate between the
electrodes until they are removed by ßushing air through the chamber. When the pulse energy
is adequate to vaporize the particle in the trap, no fractions are observed and ßushing is not
required. Figure 5(a) shows the LIBS signal-to-noise ratio (SNR) of Pb 405.8 nm emission
line as a function of excitation pulse energy using 700 ns, 1µs and 5µs ICCD gate delay
times. In the measurement of SNR, the signal is the background subtracted peak height and
noise is deÞned as three times the standard deviation of the background. The emergence of
the background is considered the primary reason for decreasing SNR at higher pulse energy
values. Less important factors are the larger diameter of the emitting vapor, the higher degree
of ionization, and the temperature dependency of the electronic partition functionZ(T) of Pb
atom. The emitting vapor is more conÞned using a combination of short delay and low pulse
energy as shown in images 1-4 in Fig. 5(b). Thus, more analyte atoms are within the narrow
Þeld-of-view of the spectrometer which is considered the reason for higher SNR maximum at
short gate delays. Using a delay time less than 1µs can nevertheless be impractical due to the
high sensitiveness of the SNR to the changes of pulse energy. Short delay also requires pulse
energy to be nearEth and may cause signal ßuctuation through the incomplete vaporization of
the particle. The error bars in Fig. 5(a) present the standard deviation of the single-shot SNR
values. Similar dependence as seen in Fig. 5(a) was found for other atomic transitions having
the upper state energy less or comparable to 4.4 eV which is the upper state energy of the
probed Pb 6p7s3Po

1 � 6p2 3P2 transition [23]. The measured transitions include Al 396.2 nm,
Mn 403.1 nm, and Ca 422.7 nm lines. The requirement of higher plasma temperature and thus
higher pulse energy is expected when probing transitions involving signiÞcantly higher upper
energy states. For example, the SNR of the Zn 481.1 nm emission line having the upper state
energy of 6.7 eV [24] was found to increase 145% when the pulse energy was raised from 6 mJ
to 10 mJ.

The LIBS signal response to Pb mass was found to be linear in the concentration interval of
4Ð40 ppm Pb in the sample solution or equivalently 0.8Ð8 pg of Pb in each particle. The applied
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pulse energy was 6 mJ which was found to be optimal in the detection of Pb in 3µm particles.
If the trapped particle is notably larger, for example, due to a high water impurity concentration,
the signal saturates due to the incomplete vaporization of the particle mass. Higher pulse energy
is then required for the linear dependency. The change in the pulse energy will also affect the
value of the optimal gate delay according to Fig. 5(a). 40 ppm was the highest Pb concentration
measured in this study due to the poor solubility of the PbCl2 salt.

4. Conclusions

The LIBS signal dependency on the water content and the exact position of single particles was
quantiÞed. The measurements were carried out using an additive-free EDB-LIBS technique
which enables the control of the particle position and the liquid aerosol particle size while
holding other conditions Þxed. The key beneÞt in the single particle analysis of liquids is the
preconcentration of the trace elements as even a very small amount of water in the particle was
found to depress the LIBS signal. The signal from both investigated elements saturated after
6 s period of droplet evaporation. When the particle was scanned across the laser beam path,
the region of the high signal was observed where the particle could directly interact with the
LIBS excitation pulse. Increasing the excitation pulse energy signiÞcantly above the plasma
formation threshold energy is not advisable in a single particle LIBS scheme where the mass to
be vaporized is limited. In the detection of several trace metals in micrometer sized particles,
pulse energy around 6 mJ with gate delay of 1µs was considered optimal in terms of SNR
and pulse-to-pulse repeatability. However, the optimal pulse energy value also depends on the
plasma imaging area and laser focusing optics. Based on the obtained results, simultaneous
variation in the particle location and size and excitation pulse energy can ßuctuate the single
particle LIBS signal of successive pulses even orders of magnitude. On the other hand, for many
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analytical purposes, the information from a single-shot spectrum is sufÞciently accurate if the
three factors are optimized and stabilized. The current Þndings pave the way for enhanced LIBS
analysis for monitoring liquid and Þne particle emissions, for industrial process and quality
control and for atmospheric and biochemical research.
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ABSTRACT
Online characterization of fungal and bacterial spores is important in various applications due to
their health and climatic relevance. The aim of this study was to demonstrate the capability of the
combination of electro-dynamic balance assisted laser-induced breakdown spectroscopy (LIBS) and
laser-induced � uorescence (LIF) techniques for the online detection of single fungal spores
(Aspergillus versicolorand Penicillium brevicompactum) and bacteria (Bacillus aureus). The method
enabled sensitive and repeatable LIBS analysis of common elemental components (Ca, Na, and K)
from single microbial particles for the� rst time. Signi� cant differences in the concentrations of
these elements were observed between the species, e.g., bacterial spores had over three orders of
magnitude higher Ca concentration (2£ 10¡ 12 g/particle) compared to fungal spores (3–5 £ 10¡ 16

g/particle). The LIF analysis has previously been used to distinguish bioaerosols from other aerosols
due to their � uorescence ability. This study showed that combination of LIF and LIBS analysis is a
promising tool for identi� cation of different bioaerosol particle types.

EDITOR
Paul J. Ziemann

Introduction

Airborne microbial particles, such as fungal spores and
bacteria, can cause a wide range of health effects with
major public health impact, including infectious diseases,
acute toxic effects, and allergies (Douwes et al.2003).
Moisture in water-damaged buildings enables microbes
to grow, which may cause adverse health effects when
microbes are released into the indoor air. Outdoor
microbes can spread diseases and are health risk espe-
cially in urban environments where population is typi-
cally dense (Douwes et al.2003). Drinking water should
be free of pathogenic microbes, so it is important to con-
trol the microbial contents in drinking water before
delivery to the customers (WHO2004). Atmospheric
fungal spores and bacteria are involved in the hydrologi-
cal cycle on the Earth as they can act as cloud condensa-
tion nuclei and ice nuclei (Despr�es et al.2012). Clouds
have an important role in the Earth’s radiation balance,
so microbial aerosols may be important in the global cli-
mate change (IPCC2013).

As described above, online measurement of microbial
concentrations is useful for several applications. Tradi-
tional methods for determining the concentration of

airborne microbes, such as Andersen impactor and� lter
sampling, require a separate step for analysis before con-
centration can be determined. Furthermore, these meth-
ods have relatively low time resolution (Reponen et al.
2011). Laser-induced� uorescence (LIF) is a modern
technique for real-time bioaerosol detection (Hill et al.
1995; Kaye et al.2005; P€ohlker et al.2012). It is an effec-
tive method for detecting biological molecules such as
tryptophan, NAD(P)H, and� avins that are typically
present in microbial cells (Lakowicz2009). LIF enables
the differentiation of bioaerosols from other airborne
particles through their� uorescence ability (P€ohlker et al.
2012; Hill et al. 2013). Saari et al.(2013)demonstrated
that bacterial and fungal spores may be distinguished
from each other through their dissimilar� uorescence
spectra. However,� uorescence analysis may include
uncertainties due to interference by� uorescent non-
biological particles in the atmosphere.

Laser-induced breakdown spectroscopy (LIBS) is a
technique for a rapid elemental analysis of solid, liquid,
and gaseous samples. It can be used for measuring
elemental components in aerosol plumes or in a single
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aerosol particle (Hybl et al.2003, 2006; J€arvinen et al.
2014). Dutouquet et al.(2013)demonstrated LIBS analy-
sis on the particles injected in the radio-frequency
plasma discharge and trapped in levitation. They
reported that the use of such particle trap could improve
particle sampling, making organic particle analysis possi-
ble and even obtaining a better signal-to-noise ratio. For-
tes et al. (2014) reported spectral identi� cation of
individual micro- and nano-sized particles by the
sequential intervention of optical catapulting, optical
trapping, and LIBS having 30% relative standard devia-
tion of LIBS signal for the inspection of Ni microspheres.
LIBS also has been explored as a potential method
detecting fungal spores and bacteria based on the con-
centrations of Na, Ca, and K (Hybl et al.2003, 2006).
One of the challenges in the single particle LIBS analysis
is the control of particle location and hit rate (Hybl et al.
2006; Park et al.2009; Tj€arnhage et al.2013), but this
can be overcome by the use of the electro-dynamic bal-
ance (EDB) chamber (J€arvinen et al.2014).

In this study, we generated single, electrically charged,
fungal spores and bacteria particles and levitated them in
an EDB trap. The EDB enables accurate and repeatable
particle trapping position (Heinisch et al.2009; J€arvinen
et al.2014) and both LIF and LIBS spectra can be mea-
sured from the same particle. We used LIBS to quantify
the amount of Na, Ca, and K in single fungal spores and
bacteria particles. The combination of EDB, LIF, and
LIBS techniques enabled us to separate the different bio-
aerosol types from each other using an online measure-
ment concept.

Materials and methods

Experimental setup

The EDB chamber and the measurement setup are the
same as presented in our previous study (J€arvinen et al.
2014) with a few minor modi� cations.Figure 1repre-
sents the experimental setup of the EDB chamber cou-
pled with LIF and LIBS analysis. A piezoelectric single
droplet generator with a 40mm ori� ce (MJ-AB-01-40-
6MX, MicroFab Technologies Inc., Plano, TX, USA)
equipped with a high voltage (¡ 1.9 kV) charging plate
was used to introduce a single charged droplet (about 5
£ 106 positive unit charges per droplet) into the EDB
chamber. A bipolar waveform (MicroFab Technologies
Inc. 1999; Plano, TX, USA) having the amplitude of
about 30 V was used in the generator that formed drop-
lets with diameters of 74mm. The EDB electrodes were
used to trap and to keep the particle stable in the center
of the chamber. Geometry of the EDB electrodes was
similar to one reported by Heinisch et al.(2009). AC

voltage with 950 V amplitude was used in the inner elec-
trodes to generate the EDB. A small, 0–5 V, DC compo-
nent between the electrodes was used to compensate the
effect of gravitation. The decrease in the droplet mass
caused by the evaporation can be compensated with an
increase in the AC� eld frequency or decrease in the AC
� eld amplitude, and thus, the droplet can be returned to
the stable region. The AC frequency about 80–150 Hz
was used to trap the droplet and the frequency was
increased to the� nal value of 1.6–1.9 kHz as the droplet
dried. The particle was illuminated with CW laser beam
from a 10 mW and 532 nm laser module (CW532-010 F,
Roithner Lasertechnik GmbH, Vienna, Austria). The sta-
tionary particle was then observed on the CMOS camera
screen and the size of the dry residual particle or single
spore could be determined from the camera image. Dry
particle size distribution from the droplet generator was
also measured separately using an aerodynamic particle
sizer (APS; TSI Model 3021, TSI Inc, Shoreview, MN,
USA). Before the APS, the droplets were dried using a
heated tubular oven at the temperature of 100� C.

First, the LIF spectrum was recorded from a particle,
and after that, the destructive LIBS analysis was per-
formed to the same particle. The� uorescence was
excited with 355 nm and 7.8 ns pulse from an Nd:YAG
laser (NT 342/1/UVE, Ekspla Ltd., Vilnus, Lithuania).
An UV–VIS coated achromatic doublet lens (65976,
Edmund Optics Ltd., Barrington, NJ, USA) having a
numerical aperture of 0.24 was used to collect the� uo-
rescence. The collected light was focused into a Czerny–
Turner spectrometer (250is, Bruker Corp., Billerica, MA,
USA) with a 100 mm focal length achromatic doublet
(65979, Edmund Optics Ltd.). A 355 nm long-pass� lter
(LP02-355RE-25, Semrock Inc.) before the spectrometer

Figure 1.Left: Schematic electro-dynamic balance (EDB) con� gu-
ration for particle trapping. Right: Optical setup for laser-induced
� uorescence (LIF) and laser-induced breakdown spectroscopy
(LIBS) and droplet generation. Violet and green (solid) lines repre-
sent the 355 nm LIF/LIBS excitation beam and the illuminating
532 nm diode laser. Dashed lines show the collection angles of
plasma and� uorescence emission and the scattering of the
green laser. A long-pass (LP)� lter was used only in LIF
measurements.
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was used to block the scattering of the excitation beam.
The � uorescence spectrum was recorded with a 10 nm
resolution using a 2048£ 512 pixel ICCD camera
(DH340T-18U-E3, Andor Technology Ltd., Belfast, UK).
The operational wavelength range of the spectrometer–
ICCD camera combination is 320 nm–820 nm. In the
LIF measurements, the ICCD gate delay with relation to
the laser pulse was zero and the intensi� er gate was kept
open 80 ns after the LIF excitation laser pulse.

The LIBS analysis was excited after the LIF measure-
ment using the same pulsed Nd:YAG laser. Laser pulse
energy was 450 nJ in the LIF and 9 mJ in the LIBS analy-
sis, and the selection between the two pulse energy levels
was done by a switchable attenuator. An aspheric lens
having a 30 mm focal length (84339, Edmund Optics
Ltd.) focused the LIBS excitation beam to the center of
the trap where the beam waist diameter was 19mm. The
plasma emission was guided into the spectrometer using
the same components as in LIF. In the LIBS measure-
ments, the optical resolution of the spectral imaging sys-
tem was 0.2 nm and the ICCD gate delay and width were
1’ms and 20’ms, respectively. The LIF and LIBS measure-
ments were repeated 20 times for each type of test par-
ticles. About 1 min delay between the LIF and LIBS
measurements was determined by the manual adjust-
ment of the ICCD camera settings.

Test aerosols

Spores from two fungal species (Aspergillus versicolor
from Culture collection of the Institute for Health and
Welfare, Finland: HT31, andPenicillium brevicompac-
tum from American Type Cell Collection: ATCC 58606)
and one bacterial species (Bacillus aureus/licheniformis,
from State Scienti� c Center of The Russian Federation
Institute for Biomedical Problems) were used as test bio-
logical particles. The fungal strains are common in
indoor air worldwide (Hyv€arinen et al.2002; Reponen
et al.2012).

The fungi were� rst grown on agar plates. Malt extract
agar (ME) (LabM, Lancashire, UK) was used forA. versi-
color, whereas dichloran glycerol 18% agar (DG18)
(Merck, Darmstadt, Germany) was used forP. brevicom-
pactum.Inoculated agar plates were incubated at room
temperature (21§ 2� C) for two weeks. Fungal spores
were harvested from agar plates by applying glass beads
( ; D 425–600’mm; Sigma-Aldrich Co., Saint Louis, MO,
USA) to agar plates containing individual fungal cultures
and shaking them gently back and forth to get spores
attached to the beads. Thereafter, the beads were trans-
ferred to a tube containing 10 ml of de-ionized (DI) pure
water. The spores were suspended from the beads by
shaking the tube and decanting the spore suspension. The

concentration of the spore suspension was adjusted to
107 spores/ml using a hemacytometer (Fuchs-Rosenthal:
Hirschmann Laborger€ate, Eberstadt, Germany) resulting
in roughly a single spore in a droplet generated by the sin-
gle droplet generator. Typical particle size distribution of
the generated fungal spores (A. versicolor) measured by
aerodynamic particle sizer (APS Model 3321, TSI) after
drying is shown in Figure S1 in the online supplementary
information (SI). The measured mean particle size
(2.8’mm) is characteristic for singleA. versicolorspores
(Reponen et al.2001). This con� rms that single fungal
spores were analyzed with the EDB.

B. aureuswas� rst inoculated on typticase soy agar
(TSA) (Sigma-Aldrich Co., St. Louis, MO) for 24§ 2 h
at 37� C. Thereafter the colonies were harvested with an
inoculation loop (V D 0.4 ml, ; D 0.9’mm) into physio-
logical solution (phosphate buffer-0.05% Tween 20) and
then inoculated on potato agar (PA) (Thermo Scienti� c
Oxoid, Basingstoke, UK) and incubated for 48§ 2 h at
37� C. Incubation was continued under natural light at
room temperature (21§ 1� C) for � ve days. After the
seven days of incubation,B. aureussuspension was pre-
pared by applying 5 ml of sterile DI water to the sporu-
lating bacterial culture and gently scraping the culture
with an inoculation loop (V D 0.4 ml, ; D 0.9’mm) to
release the spores into suspension. The resultant suspen-
sion was decanted into 50 ml tubes and mixed well. The
well-mixed suspension was� ltered through a � lter
(Black ribbon, grade 589/1,; D 90 mm) to remove all
debris of growth media and possible agglomerates of bac-
terial colonies. The concentration of the suspension was
about 108 spores/ml. The volume of generated droplet
was 2£ 10¡ 7 ml, in which case the number of bacterial
spores per droplet was estimated to be 20.

Calibration of Na, Ca, and K

To calibrate LIBS signals to mass concentrations in the
system, pure NaCl, CaNO3, and KCl (purchased from
VWR International Oy, Helsinki, Finland) were dis-
solved in puri� ed DI water with varying concentrations
as discussed below, and particles with certain mass con-
centrations were fed into the EDB chamber. Na, Ca, and
K have strong emission lines within the bandwidth of
the spectrometer used in this work. They have been
reported acting as dominant compounds in LIBS spectra
of bacterial and fungal spores (Hybl et al.2003, 2006;
Singh and Rai2011) and the detection of Na, Ca, and K
is not interfered by the elements present in the ambient
air. In this study, we measured actual mass concentra-
tions of these elements in single spores. Pure DI water
was used as a reference particle material to estimate
background levels of LIBS signals.
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The calibration particles were produced from sample
solution containing 0.05–100 ppm of Na, 0.1–100 ppm
of Ca, and 0.05–100 ppm of K. The smallest measured
concentrations correspond to the analyzed mass of 11 fg,
21 fg, and 11 fg in each particle for Na, Ca, and K,
respectively. The detection limit of the signal was
restricted by electrical noise and laser pulse energy� uc-
tuations as well as by impurities in (DI) water. The cali-
bration curves for Na, Ca, and K are shown in Figure S2
in the SI. The extrapolated theoretical detection limit val-
ues were estimated from the intersection of the calibra-
tion curve and noise level at triple the standard deviation
of the background signal. The theoretical detection limits
based on the noise in the measurement system were
clearly well below ppb level for all the studied elements.
However, practical detection limits in this study were
limited by impurities in used DI water. These detection
limits were estimated by taking the intersection point
between the dashed DI water curve and the extrapolated
calibration curve in Figure S2 (see the SI), leading to 30
ppb, 1.5 ppb, and 0.4 ppb detection limits for Na, Ca,
and K, respectively.

Na, Ca, and K mass concentrations in single microbial
particles were calculated based on the LIBS signals and
calibration described above. We also used analysis of var-
iance method (one-way ANOVA followed by Student’st-
test) to calculate statistical signi� cant differences (p <
0.01) of concentrations between the species.

Results and discussion

LIBS spectra of fungal spores and bacteria

LIBS analysis was performed for single fungal spores and
bacterial spore aggregates. Typical single shot LIBS spec-
tra from bacterial spores (B. aureus, B.a.), fungal spores
(A. versicolor, A.v., andP. brevicompactum, P.b.), and DI
water particles are shown inFigure 2. Characteristic Na
lines (589.0 nm and 589.6 nm) were strong from all the
microbial particles as well as from the particles aerosol-
ized from DI water. Bacterial particles showed also high
peaks at characteristic Ca and K wavelengths (393.4 nm
and 396.8 nm for Ca, and 766.5 nm and 769.9 nm for
K), whereas A.v. and P.b. fungal spores exhibited clearly
weaker signals at these wavelengths. Mass concentrations
of Na, Ca, and K in the microbial particles and detection
limits are discussed below.

Farooq et al.(2014) reported LIBS spectroscopy of
bacteria samples on glass substrate and found a number
of elements (Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C,
H, and CN-band). However, the highest peaks were
observed for Ca and Na as shown also in this study. Glass
substrate may include impurities that can evaporate in

LIBS analysis and thus have effect on the LIBS spectrum.
This problem was avoided here as the plasma was
formed only from particle and from ambient air. In the
previous studies by Hybl et al.(2003, 2006), LIBS spec-
troscopy has been examined as a potential method for
detecting airborne single biological agents. Ca, Na, Mg,
and K were typical elements in the LIBS spectra for air-
borne bacterial and fungal spores, which is in line with
our results. Hybl et al.(2006)also showed that Na and K
signals decreased in single- and double-washed bacterial
samples.

Na, Ca, and K concentrations in microbial particles

The geometric means of 20 repeats and standard devia-
tions of the elemental concentrations (g/particle) are
shown inFigure 3. The limit of detection based on the
background from DI water is also shown in the� gure. B.
a. bacterial spores had over three orders of magnitude
higher Ca concentration (2£ 10¡ 12g/particle) compared
to the fungal spores (3–5 £ 10¡ 16 g/particle) that had
concentrations close to DI water (3£ 10¡ 16 g/particle).
It is well known that during sporulation bacterial spores
concentrate calcium dipicolinate (Gould and Hurst
1969), but this study con� rmed the previous observa-
tions that Ca is not abundant component in fungal
spores. Statistically signi� cant differences in Ca

Figure 2.Typical single shot LIBS spectra of bacterial (Bacillus
aureus, B.a.) and fungal spores (Aspergillus versicolor, A.v., and
Penicillium brevicompactum, P.b.) as well as background signals
from de-ionized water (DI). Characteristic peaks of Ca, Na, and K
are 393.4 nm, 589.0 nm, and 766.5 nm, respectively.
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concentrations were observed between bacterial and fun-
gal spores as well as between fungal species.

The highest Na concentration (2.3£ 10¡ 13 g/particle)
was in the P.b. fungal spores, whereas the Na content of
A.v. fungal spores and B.a. bacterial spores was 2.5£
10¡ 14 g/particle and 3.0£ 1014 g/particle, respectively.
The higher Na content in the P.b. particles may be due
to different surface structure of the spores (see Figure S3
in the SI). Statistically signi� cant differences in Na con-
centrations were observed between A.v. and P.b. spores
as well as between B.a. and P.b. Bacterial spores had
over one order of magnitude higher K concentration
(1.2£ 10¡ 13 g/particle) compared to fungal spores
(3–5 £ 10¡ 15 g/particle). Na and K concentrations were
well above the DI water background levels for all species.

The EDB-assisted method has earlier been shown
to have good repeatability for LIBS analysis of heavy
metals in water (J€arvinen et al.2014). In the current
study, good repeatability of LIBS analysis was also
shown for microbial suspensions, which is shown in
Figure 3wherein the standard deviations between the
repeats were relatively small. Due to the precise posi-
tioning of the trapped particle, the LIBS excitation
laser pulse can be focused tightly to obtain high irra-
diance on the microbe surface. Relatively low laser
pulse energy (9 mJ) was therefore used to generate
the plasma and vaporize the microbial particle. For
comparison, e.g., Hahn and Lunden(2000) used 400
mJ and Hybl et al.(2006) 50 mJ pulse energy for
aerosol particle analysis by LIBS. Lasers with low
pulse energy are typically more compact and applica-
ble in � eld use.

Recent LIBS study by Dixon and Hahn(2005)
reported that Ca was detectable in washed, singleBacillus
globigiispores, but other elements such as Na and K were
not detectable at the single-spore level. In this study, we
demonstrated EDB-assisted LIBS analysis of single fun-
gal spores having typical 2.8’mm particle diameter (see
Figure S1 in the SI) and bacterial spore aggregates having
circa 20 spores per particle. Strong LIBS peak to back-
ground ratio (P/B-ratio) values of Na (3–31) and K (27–
55) were detected from single fungal spores. The results
indicate that the method enables very sensitive LIBS
analysis at single-spore level and the major limitation
factor was impurities of used DI water.

LIF spectra of microbial particles

Both the LIF and LIBS spectra were measured from the
same particle in our measurement system. The average
LIF spectra of 20 repeats recorded from fungal (A.v. and
P.b.) and bacterial spores (B.a.) are shown inFigure 4.
The � uorescence peak of bacteria was located at 440 nm
and � uorescence maximum of fungal spores located
around 400 nm. Clear difference can be seen between the
� uorescence spectra of fungal and bacterial spores.

Fluorescence spectra or� uorescence band (single or
multiple) intensity measurement can be utilized to dis-
criminate bioaerosols from other aerosols (P€ohlker et al.
2012; Pan 2015). Fluorescence-based online bioaerosol
instruments, such as BioScout, WIBS, and UV-APS,
have been used in various environments, but it is really

Figure 3.Geometric mean concentrations (g/particle) of elemen-
tal components for fungal (Aspergillus versicolor, A.v., andPenicil-
lium brevicompactum, P.b.) and bacterial (Bacillus aureus, B.a.)
spores. De-ionized (DI) water represents the limit of detection
based on the background from DI water. Error bars represent
geometric standard deviations of 20 repeats. Asterisks (*) repre-
sent statistically signi� cant difference (p < 0.01) between
species.

Figure 4.(a) Average� uorescence spectra of 20 repeats for fun-
gal (Aspergillus versicolor, A.v., andPenicillium brevicompactum,
P.b.) and bacterial spores (Bacillus aureus, B.a.). (b) A typical
single-shot� uorescence spectrum recorded from single fungal
P.b. spore.
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challenging to classify different types of bioaerosols with
these instruments (Gabey et al.2010; Huffman et al.
2010; Saari et al.2014). It should be noted that� uores-
cence analysis alone may include uncertainties due to
� uorescent non-biological artifacts in ambient air leading
to false counts of bioaerosols (P€ohlker et al.2012; Saari
et al.2013).

Identi� cation of microbial particles

Normalized Ca/Na and K/Na signals from single shot
LIBS spectra for fungal (A.v. and P.b.) and bacterial
spores (B.a.) are presented inFigure 5. The results show
that fungal spores are distinct from bacterial spores and
even fungal species, A.v. and P.b., are readily distinguish-
able. The� gure demonstrates that different bioaerosol
species can be classi� ed when normalized K/Na LIBS sig-
nal values are plotted in the function of normalized Ca/
Na LIBS signal values.

Previously it has been reported that real-time LIF
analysis enables classi� cation of bioaerosols from other
aerosols in atmosphere (Gabey et al.2010; Huffman
et al.2010; Pan2015). Our results show that combined
LIF and LIBS analysis is promising tool for online classi-
� cation of atmospheric bioaerosols. The present EDB-
assisted combined LIF and LIBS analysis method enabled
high sensitivity, repeatability, and classi� cation of differ-
ent types of bioaerosols generated from water suspen-
sion. The major limitation factor in the method was
impurities of used DI water in droplet generation. Sensi-
tivity of the method may be improved a lot when aerosol
particles are trapped and analyzed directly from ambient
air. Besides Ca, Na, and K, other elements can be
included in the data analysis to improve the

identi� cation accuracy if the corresponding spectral lines
are clearly resolved in a single-shot spectrum and their
intensity does not signi� cantly � uctuate between the
spores of the same species. The next step is to enhance
the method further for real-time identi� cation of differ-
ent types of ambient aerosols such as soot, mineral dust,
sea salt, fungal spores, bacteria, and pollen. The research
on these aerosols is important in atmosphere due to their
health and climatic relevance.

Conclusions

We successfully applied the EDB, LIF, and LIBS techni-
ques in order to characterize single fungal spores and
bacteria online. The EDB-assisted system enabled rela-
tively low laser pulse energy to break down the microbe
particles and highly sensitive and repeatable LIBS analy-
sis of common elemental components (Ca, Na and K) in
microbes. Statistically signi� cant differences in the ele-
mental concentrations were observed between the spe-
cies. Combination of LIF and LIBS is a potential
technique for online identi� cation of different types of
atmospheric aerosols or microbes in drinking water.
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