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Hybrid Fault-Tolerant and Attack-Resilient 

Cooperative Control in an Offshore Wind Farm 

Abstract—Modern wind farms promise increased capacity, 

sustainability, and efficiency through the integration of 

information technology with the existing wind energy technologies. 

However, this integration creates a new category of cyber-physical 

vulnerabilities stemming from physical faults and/or cyberattacks 

potentially leading to devastating physical impacts and 

catastrophic consequences. The large scale and high complexity of 

a wind farm, in addition to its growing connectivity, control 

functionality, and wind intermittency and variability make the 

task of cyber-physical protection particularly challenging. This 

paper introduces novel approaches for guaranteeing the safety, 

security, and reliability of a modern wind farm under 

simultaneous occurrence of faults and attacks using an advanced 

cyber-physical health monitoring scheme, defined as “intrusion 

detection and fault diagnosis system”, as well as fault-

tolerant/attack-resilient control strategies at different levels. The 

proposed fault-tolerant control strategy is based on adaptive 

model predictive control at turbine level, enhanced with a control 

reallocation mechanism at farm level. The attack-resilient control 

strategy is based on an automatic signal correction (ASC) 

technique that is applied at network operator level. The 

effectiveness of the suggested approaches is demonstrated using an 

offshore wind farm model under wind turbulences, measurement 

noises, and realistic physical fault and cyberattack scenarios. 

Index Terms—Attack-resilient control, control reallocation, 

cyberattack, fault diagnosis, fault-tolerant control, intrusion 

detection, model predictive control, wind turbines, wind farm.  

I. INTRODUCTION 

nergy service providers worldwide are facing grand 

challenges in meeting the demand of our society in a 

sustainable and reliable way. Since the last century, the global 

energy demand has increased significantly, which is expected to 

continue. With the foreseeable impact of our energy 

consumption on climate change, it is our responsibility to utilize 

energy more efficiently with a minimal environmental footprint. 

This collective goal is driving the global transformation from 

conventional energy sources of fossil fuels toward renewable 

energy sources such as wind. Forecasts predict that the 

penetration of distributed renewable energy resources such as 

wind farms (WFs) into the existing power grids will increase 

considerably in the future, leading to a more decentralized 

electric power infrastructure with numerous cyber-physical 

assets. On the flip side, this will increase the complexity of the 

power grid, which will require novel approaches to guarantee 

efficient, sustainable, reliable, safe, and secure operation. 

 With the acceleration of modern WFs development as 

connected cyber-physical systems (CPSs), protecting these 

integrated systems against possible physical faults and 

cyberattacks becomes critically important. The increasing 

complexity of WFs’ assets especially in offshore regions, harsh 

environmental loadings, and limited accessibility result in 

increasing rates of physical faults and failures that make cost-

effective and sustainable wind power generation a challenging 

problem [1]. Also, as wind energy capacity grows in the global 

power landscape, WFs facilities are becoming more and more 

vulnerable and at risk due to malicious cyberattacks. For 

instance, those cyberattacks targeting communication links or 

cyberattacks related to critical mechanisms in monitoring and 

control systems [2]. To address the mentioned challenges, 

effective approaches for fault detection and diagnosis (FDD) and 

fault-tolerant control (FTC) as well as intrusion detection and 

diagnosis (IDD) and attack-resilient control (ARC) are 

necessary to improve the safety and security of WFs [3-7]. 

 After reviewing technical literature and based on a recent 

comprehensive review papers in [5,6], it appears that most prior 

publications about health monitoring and fault accommodation 

in wind turbines (WTs) have investigated the applications of 

FDD and FTC at individual turbine level (not farm level). 

However, as will be discussed in this research study, it is easier 

to deal with some classes of faults (e.g., WT blade erosion and 

debris accumulation) at farm level. Table I lists the very few 

references in the technical literature which consider FDD and 

FTC at farm level. In addition, the design methodologies as well 

as main objectives of each reference are presented. In the case 

of power reduction due to blade erosion and debris 

accumulation, different FDD and FTC strategies based on multi-

WT cooperative frameworks are discussed [8,9]. The proposed 

strategies in [8,9] can only handle mild-level power-loss faults 

(about 3 percent loss of power) in WTs. It is worth mentioning 

that these strategies can handle physical faults in WFs with any 

arbitrary layout without requiring additional information about 

wind speed or direction. To extend the proposed research works 

in [8,9] into higher-level power-loss faults (i.e., more that 3 

percent), authors in [10] introduce a FTC strategy which is 

developed based on an integration between model reference  
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Table I Current Research on WFs FDD, FTC, IDD, and ARC 

Design Methodologies Targets and Objectives References 

Interval nonlinear parameter-varying parity equation Fault diagnosis of a WF [17] 

Adaptive FTC based on barrier Lyapunov function Active power control during “actuator fault” occurrence [18] 

Particle swarm optimization Accommodation of “generator fault” effects at WF level [19] 
PI controller, and optimization using the SDR-CGHBO algorithm FTC for Enhancing WF reliability and optimizing its performance [20] 

FTC based on fuzzy logic at WF level 
Accommodation of “mild power loss faults” under “WTs blades erosions and 

debris accumulation on the blades” 
[8,9] 

FTC based on adaptive control method at WT level and control 

reallocation mechanism at WF level 

Accommodation of “mild and severe power loss faults” under “erosion, debris 

accumulation on WT blades” 
[10] 

Multilayer FTC using a clustering approach  Accommodation of “mild and severe power loss faults” in large-scale WFs [1] 
Fuzzy dynamic modeling and fuzzy adaptive control IDD and ARC against attacks on “grid frequency” and “WFNO command” [7] 

Bayesian attack graph models Evaluation of “cyberattacks” on WF SCADA [15] 

Several preventative strategies such as physical security, network 
segmentation, and system hardening 

Mitigation of “cyberattack” for WFs [11] 

Observer-based fuzzy control scheme, using looped-Lyapunov 

functional and linear matrix inequality (LMI) 

ARC for a WF under “sub-synchronous interaction” and “cyberattacks (denial 

of service (DoS) and deception attacks)” 
[21] 

Model predictive controller (MPC) for voltage stability in WF ARC to mitigate the effects of “cyberattacks” on “actuators” and “sensors” [22] 

Observer with adaptive resilient torque controller ARC against “false data injection” on “rotor speed measurements” [23] 

Observer-based fuzzy control strategy ARC for WFs against “deception” and “DoS cyberattacks” [24] 

Table II Attack Surface Components in WFs and Their Associated Vulnerabilities 

Attack Surface Component Theoretical / Practical Threat Scenarios Use Cases 

Communication Networks 

Vulnerabilities in communication protocols and data 
encryption methods can lead to unauthorized access and 

data interception. Distributed Denial of Service (DDoS) 

attacks can disrupt communication links 

Cyberattacks on communication links, Unauthorized access, Data 
interception, Data tampering, Eavesdropping, Denial of Service 

(DoS) attacks, Manipulation and spoofing control signals 

Control Systems 
Weaknesses in control system security can allow attackers 

to manipulate control commands and spoof signals 

Unauthorized control, Data tampering, Data integrity attacks, 
Manipulation of control commands, Spoofing control signals, False 

sensor data 

Data Transmission 
Vulnerable data transmission can lead to data interception 
and tampering 

Intercepting data transmissions, Data tampering 

Physical Access Points 
Insufficient physical security can result in unauthorized 

access and equipment tampering 

Unauthorized access, Sabotage, Physical tampering, Theft of 

equipment 

WT Systems 
Weaknesses in WT systems can allow attackers to 
manipulate operations and sensor data 

Manipulation of WT operations, Unauthorized control, Data 
tampering, Data integrity attacks, False sensor data 

Supervisory Control and Data 

Acquisition (SCADA) 

Vulnerabilities in SCADA systems can lead to 

unauthorized access and data manipulation 

Cyberattacks on SCADA systems, Manipulation of SCADA data, 

Unauthorized access, Data tampering, Data integrity attacks 

adaptive control and control reallocation mechanism (CRM). As 

a result, in comparison with the proposed strategies in [8,9], the 

more recent study in [10] can tackle both mild and severe levels 

of physical faults caused by various intensities of debris 

accumulation. However, the major challenge facing the 

proposed strategy in [10] is its effective implementation for 

large-scale WFs. In fact, when dealing with large WFs, the 

proposed method in [10] will be computationally expensive due 

to the high number of modules which are required during the 

calculations. To overcome this problem, a clustering technique 

for large WFs is presented in [1] which can facilitate computer 

programming and improve the effective implementation of the 

FDD and FTC. 

Aside from FDD and FTC, the cybersecurity issues of WFs 

as well as investigating new technical solutions for these 

increasingly digitalized infrastructures have attracted more 

attention in recent years. Table II provides an overview of the 

attack surface components, their associated theoretical 

vulnerabilities, practical threat scenarios, and relevant use cases 

within the context of WF cybersecurity. Traditionally, the 

cybersecurity of WF’s distributed components has been carried 

out using standard computer security procedures with network 

and host-based cyber defense (e.g., authentication, data 

encryption, and firewalls, among others). Yet, it is no secret that 

highly skilled cyberattacks are still able to bypass these common 

security procedures and disrupt safe and secure operation of 

WFs by manipulating control commands and/or monitoring data 

[2,11]. Indeed, smart cyberattacks in WF’s facilities can target 

industrial control networks, like supervisory control and data 

acquisition (SCADA) system which is responsible for reliable 

connection of WTs to higher-level controller (i.e., WF network 

operator (WFNO)) [7,12,13]. The vulnerabilities of WF 

SCADA systems are recently studied in [12-15]. Despite the fact 

that the latest cybersecurity advancements help reduce the 

exposure of WFs to attacks, these strategies alone are not enough 

to fully guarantee the operation of WFs in an era of universal 

online threats. To address this challenging problem, continuous 

real-time IDD schemes and ARC strategies have been 

introduced recently to strengthen conventional defense 

technologies by detecting and diagnosing highly skilled 

cyberattacks (after their occurrence), and if possible, by 

responding to their malicious access using mitigation techniques 

[11,16,23,24]. A categorized list of references on WFs IDD and 

ARC with the design methodologies is also provided in Table I.  

As already discussed, almost all prior research efforts on 

WFs health monitoring, fault-tolerant, and attack-resilient 

control only focus on either physical faults or cyberattacks, not 

cooperatively but independently. The main objective of this 

study is to address simultaneously both faults and attacks in 

WFs. The motivation for simultaneously addressing both 

physical faults and cyberattacks is rooted in several critical 

considerations. First and foremost, the contemporary threat 

landscape faced by modern WFs is evolving rapidly, driven by 

their increased reliance on digital control and communication 
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systems. This interconnectedness has rendered WFs susceptible 

to a wide array of risks, including physical faults and 

cyberattacks. An integrated approach is adopted to provide a 

holistic solution to ensure the secure and reliable operation of 

WFs. Furthermore, the decision to address these two types of 

threats together is driven by a fundamental observation: both 

physical faults and cyberattacks can lead to a common and 

detrimental consequence—power loss within a WF. Practical 

scenarios illustrate that physical faults, such as those affecting 

WTs, can reduce power generation, while cyberattacks have the 

capacity to manipulate control signals, resulting in similar 

power losses. This similarity in outcomes can make it 

challenging to distinguish between the two based solely on their 

effects. Therefore, by integrating fault tolerance and attack 

resilience strategies, the approach effectively manages and 

mitigates power losses, regardless of their source, thus ensuring 

the continued safety, security, and reliability of WF operations. 

Moreover, it is essential to underscore that physical faults and 

cyberattacks are not isolated issues but can frequently intersect. 

For example, a cyberattack on a WF’s control system can 

trigger abnormal operations that mimic the effects of physical 

faults, such as power loss. Consequently, addressing both 

threats concurrently enables the development of a more robust 

and adaptive control system, capable of distinguishing genuine 

physical faults from cyberattack-induced anomalies. The 

proposed approach in this study seeks to fortify the resilience 

and adaptability of WF control systems by seamlessly 

integrating FDD with IDD mechanisms, culminating in the 

“intrusion detection and fault diagnosis (IDFD) system”. This 

integration empowers WFs to respond effectively to a broad 

spectrum of anomalies, ensuring consistent and secure power 

generation. Finally, real-world scenarios often witness the 

simultaneous occurrence of faults and attacks or their close 

succession. By addressing both challenges holistically, the 

approach is well-suited to confront real-world scenarios where 

these threats may overlap, offering robust protection against a 

backdrop of evolving and multifaceted threats. 

In summary, this study uses a cyberattack-complemented 

FDD, defined here as IDFD system integrated with FTC and 

ARC. In fact, it is possible to upgrade conventional FDD for 

defending against different types of attacks through appropriate 

modeling of physical consequences caused by successful and 

highly skilled attacks, which are usually stealthier and 

sometimes more catastrophic than physical faults. In more 

details, this novel strategy includes these major contributions: 

1. Comprehensive Approach to WF Anomalies: WFs are 

dynamic and vulnerable systems that face a dual threat 

of physical faults and cyberattacks. Devising strategies 

to address these challenges simultaneously is a complex 

problem. This paper introduces a pioneering approach 

by integrating intrusion detection and fault diagnosis 

with cooperative control strategies. It aims at bridging 

the gap between addressing physical faults and cyber 

threats, acknowledging the real-world complexity faced 

by WF operators. 

2. Intrusion Detection and Fault Diagnosis: This paper 

describes an IDFD system designed for real-time 

monitoring of a modern WF. The system aims to detect 

and identify both physical faults and cyberattacks on the 

WF. It uses novel algorithms and multiple estimators 

based on adaptive models and fuzzy logic to 

approximate the normal power values generated by 

WTs. This allows for a structured framework that 

focuses on specific physical faults (such as power loss) 

and cyberattacks (specifically targeting the WF’s 

reference power command signal). The IDFD system 

functions independently and provides information for 

fault accommodation and attack mitigation strategies, as 

well as cyber-physical monitoring. 

3. Cooperative Fault-Tolerant and Attack-Resilient 

Strategies: This paper also discusses the implementation 

of FTC and ARC strategies at different control levels in 

a WF. The purpose is to effectively handle physical 

faults in WTs and mitigate cyberattacks on the WFNO 

to ensure reliable integration with the external power 

grid. In the FTC design, an adaptive MPC (AMPC) is 

employed for each turbine, modifying the demanded 

active power signal received from the WF controller. 

Distributed AMPCs can handle mild-level power-loss 

faults at the WT level. To address severe-level power-

loss fault scenarios, a novel CRM strategy is 

implemented at the farm-level control, specifically in the 

WF controller. Additionally, the ARC strategy utilizes 

real-time information from the IDFD system. This 

information is utilized to activate an automatic signal 

correction (ASC) for attack mitigation purposes. 

To the best of the authors’ knowledge, this research study is 

the first of its kind in the field of cyber-physical protection in 

WFs. It focuses on simultaneously detecting, isolating, and 

identifying physical faults and cyberattacks, while also 

proposing cooperative strategies for fault accommodation and 

attack mitigation. Notably, the “plug-and-play” capability of 

the proposed solutions makes them more appealing to the wind 

industry compared to other approaches that require a complete 

replacement of the control system from the beginning. 

The paper’s remaining sections are structured as follows: 

Section II provides a description of the WF benchmark model. 

Section III focuses on modeling physical faults, specifically 

power loss at the turbine level, and the cyberattack, specifically 

data integrity at the WFNO. Section IV presents a detailed 

structure of the FTC and ARC strategies, including their major 

components. Section V presents and discusses the simulation 

results, while the final conclusions are drawn in Section VI. 

 

(a) 

 

(b) 

Fig. 1. WF benchmark: (a) considered layout, and (b) block diagram [10]. 

II. WIND FARM BENCHMARK 

This paper uses a nonlinear simulation benchmark model 

developed by SimWindFarm toolbox, which is designed as part 

of the “Aeolus FP7 Project” [25]. In this research study, a 

modern WF is represented by 𝑄  that includes 𝑁  WTs, 

mathematically: 𝑄 = {𝑞𝑖| 𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} and 𝑞𝑖 is the 𝑖th WT in 
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WF 𝑄 (i.e., ℕ is the set of natural numbers). The simulations are 

conducted in a WF with ten 5-MW offshore WTs with the layout 

and functional block diagram shown in Fig. 1. The benchmark 

comprises five major blocks as follows: network operator, WF 

controller, WTs, wind field, and grid meters. 

Network Operator Block or simply WFNO can work in 

different modes in the benchmark (i.e., absolute active power 

control, frequency regulation, delta mode, power rate limiter, 

and balance control) to determine the WF total demanded power 

𝑃𝐷  from WF 𝑄  (i.e., 𝑃𝐷 = ∑ 𝑃𝑑,𝑞𝑖 ,
𝑁
𝑖=1  where 𝑃𝑑,𝑞𝑖  denotes the 

WT 𝑞𝑖 demanded power) [25]. The WFNO in this paper works 

based on the frequency regulation mode, where a feedback 

signal from grid meters block (i.e., measured frequency  𝑓𝑚) is 

used to enable real-time active power control (APC). In this 

operational mode, the WF plays a role in grid frequency 

regulation by adjusting the generated power, either increasing or 

decreasing it as needed. As observed in Eqs. (1) and (2), the 

WFNO employs a dead-band proportional gain control which is 

a function of the frequency error 𝑓𝑒 to compute 𝑃𝐷 at time-step 

(𝑘 + 1). This control strategy regulates the frequency to any 

specified reference value 𝑓𝑟 [9]. 

𝑓𝑒(𝑘) = 𝑓𝑚(𝑘) − 𝑓𝑟  (1) 

𝑃𝐷(𝑘 + 1) = 

{
 
 
 
 

 
 
 
 
𝑃𝑚𝑖𝑛                                                                                              𝑓𝑒(𝑘) ≥ 𝑐

𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛
2

−
(𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)(𝑓𝑒(𝑘) − 𝑑)

2(𝑐 − 𝑑)
                𝑑 < 𝑓𝑒(𝑘) < 𝑐

𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛
2

                                                                  − 𝑑 ≤ 𝑓𝑒(𝑘) ≤ 𝑑

𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛
2

−
(𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)(𝑓𝑒(𝑘) + 𝑑)

2(𝑐 − 𝑑)
        − 𝑐 < 𝑓𝑒(𝑘) < −𝑑

𝑃𝑚𝑎𝑥                                                                                           𝑓𝑒(𝑘) ≤ −𝑐

 
(2) 

The predetermined constants 𝑐 and 𝑑 in Eq. (2) respectively 

denote the control-band and the dead-band values where 𝑐 > 𝑑. 

Also, 𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥  are defined as the minimum and maximum 

allowable limits for the WF total generated power, respectively.  

WF Controller Block is in fact the interface between WFNO 

and WTs. It computes an estimation of WF total available power 

𝑃𝐴  and sends it to WFNO. However, the main duty of this 

controller is active power distribution in which 𝑃𝐷  (which is 

received from WFNO) will be distributed among WTs according 

to the following equation: 

𝑃𝑑,𝑞𝑖(𝑘 + 1) = 𝑃𝐷(𝑘 + 1)
𝑃𝑎,𝑞𝑖(𝑘)

𝑃𝐴(𝑘)
    , 𝑞𝑖 ∈ 𝑄  (3) 

where 𝑞𝑖 denotes the 𝑖th WT in WF 𝑄, and 𝑃𝑑,𝑞𝑖(𝑘 + 1) denotes 

the demanded power from WT 𝑞𝑖 in the farm for the next time-

step. Moreover, 𝑃𝑎,𝑞𝑖(𝑘)  represents the estimated available 

power in WT 𝑞𝑖 (i.e., 𝑃𝐴 = ∑ 𝑃𝑎,𝑞𝑖
𝑁
𝑖=1 ) based on [25] as follows: 

𝑃𝑎,𝑞𝑖(𝑘) =
𝜋

2
𝜌𝑅2 𝑉𝑚𝑒𝑠,𝑞𝑖

3 (𝑘)𝐶𝑃,𝑚𝑎𝑥  (4) 

where 𝜌, 𝑅, 𝐶𝑃,𝑚𝑎𝑥, and 𝑉𝑚𝑒𝑠,𝑞𝑗(𝑘) are air density, rotor radius, 

maximum power coefficient, and the measured nacelle wind 

speed of WT 𝑞𝑖 in WF 𝑄, respectively.  

WTs Block simulates the real-life dynamics of 𝑁 WTs in WF 

𝑄 using the nonlinear dynamic models developed by the U.S. 

National Renewable Energy Laboratory (NREL) for an offshore 

5-MW WT [26]. The primary components of the WT model 

include Aerodynamics, Drive Train, Tower, Generator, Pitch 

Actuator, and WT Controller blocks, all of which are thoroughly 

described in [25]. These models are driven by wind profiles from 

the wind field block and power set-points from the WF 

controller. Each WT produces various outputs used by the WF 

controller and provides the thrust coefficient 𝐶𝑇 , which is 

utilized to calculate wake effects and wind profiles within the 

wind field block. In this benchmark, WTs generate active power 

outputs and measurement signals that are utilized by the WF 

controller. Each WT 𝑞𝑖 , governed by the WT control system, 

acts upon 𝑃𝑑,𝑞𝑖 obtained from Eq. (3). The WT control system 

uses blade pitch angle and generator torque controllers to 

calculate reference signals for blade-pitch angle 𝛽𝑟,𝑞𝑖 , and 

generator torque 𝜏𝑟,𝑞𝑖, respectively. 

 Wind Field Block in the benchmark utilizes an advanced 

wind field model, which includes both ambient and wake 

models, to accurately simulate the complex aerodynamic 

interactions between WTs in the WF. In more detail, this block 

takes inputs such as wind speed, turbulence, and field 

dimensions, and it uses the Veers algorithm to create a wind field 

spectrum following IEC 61400-1 standards [27]. 

Grid Meters Block estimates the frequency of grid based on 

the WF’s total generated power that is injected into the grid and 

the demanded power from electrical load at each time step. 

III. CONSIDERED PHYSICAL FAULTS AND CYBERATTACKS 

Due to their significant impact and consequences, this paper 

specifically examines power loss faults in WTs caused by blade 

erosion or debris accumulation on the blades due to dirt, ice, etc. 

Additionally, this study addresses data-integrity cyberattacks on 

the WFNO, which can be triggered by the compromise of the 

control command signal 𝑃𝐷, as shown in Fig. 2. 

A. Modeling of Power Loss Faults 

A decrease in power generation within a WF can occur due 

to various malfunctions. However, the most common faults that 

affect the rotor aerodynamics and cause a reduction in the 

generated output power are erosion and debris accumulation on 

the blades due to dirt, ice, etc. Specifically, the wind exerts an 

aerodynamic torque 𝜏𝑎𝑒𝑟,𝑞𝑖  on the rotor of WT 𝑞𝑖 , which is 

determined by Eq. (5). This equation takes into account the rotor 

angular speed 𝜔𝑟𝑜𝑡,𝑞𝑖, wind speed 𝑉𝑤,𝑞𝑖, and the swept area of 

the WT rotor 𝐴 [28]. 

𝜏𝑎𝑒𝑟,𝑞𝑖(𝑡) =
1

2𝜔𝑟𝑜𝑡,𝑞𝑖
(𝑡)
𝜌 𝐴 𝑉𝑤,𝑞𝑖

3 (𝑡) 𝐶𝑝(𝛽𝑞𝑖(𝑡), 𝜆𝑞𝑖(𝑡))  
(5) 

In Eq. (5), power coefficient 𝐶𝑝(𝛽𝑞𝑖 , 𝜆𝑞𝑖)  is a three-

dimensional nonlinear function of the tip-speed ratio 𝜆𝑞𝑖 and the 

blade pitch angle 𝛽𝑞𝑖 . The operating condition of a variable-

speed WT is determined by 𝜆𝑞𝑖 and 𝛽𝑞𝑖 , with the ideal operation 

occurring at the peak of the 𝐶𝑝  for maximum wind energy 

capture [29]. However, power loss faults such as erosion or 

debris accumulation on rotor blades can shift the WT’s 𝐶𝑝 

surface downward. As a result, the new peak of shifted 𝐶𝑝 

surface not only has a lower magnitude, but also different 

coordinates, resulting in lower energy capture by WT. 

In order to model the power loss faults that have been 

considered, the generated power from WT 𝑞𝑖 , which is 

represented by 𝑃𝑔,𝑞𝑖 , can be expressed as follows: 

𝑃𝑔,𝑞𝑖(𝑡) = 𝜂𝑔𝜂𝑚𝑃𝑎𝑒𝑟,𝑞𝑖(𝑡)  (6) 
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where 𝜂𝑔  and 𝜂𝑚  are the generator and transmission system 

efficiencies, respectively, and 𝑃𝑎𝑒𝑟,𝑞𝑖  is the rotor aerodynamic 

power defined by [28] as: 

𝑃𝑎𝑒𝑟,𝑞𝑖(𝑡) = 𝜏𝑎𝑒𝑟,𝑞𝑖(𝑡) 𝜔𝑟𝑜𝑡,𝑞𝑖(𝑡)  (7) 

By substituting Eq. (7) into Eq. (6) and using Eq. (5): 

𝑃𝑔,𝑞𝑖(𝑡) =
𝜂𝑔.𝜂𝑚

2
𝜌 𝐴 𝑉𝑤,𝑞𝑖

3 (𝑡) 𝐶𝑝(𝛽𝑞𝑖(𝑡), 𝜆𝑞𝑖(𝑡))  
(8) 

 The above equation shows a direct relationship 

between the generated power 𝑃𝑔,𝑞𝑖 and the power coefficient 𝐶𝑝, 

which can vary due to the effects of erosion or debris 

accumulation on blades, as explained earlier. Therefore, 

modeling the power loss faults can be accomplished by scaling 

the WT generated power. 

B. Modeling of Data-Integrity Cyberattacks 

Cyberattacks can be considered as fault-like events 

categorized as data-integrity cyberattacks. These attacks can 

have adverse impacts on a system, similar to physical faults, and 

necessitate measures to address them at the control-system level, 

such as through the use of ARC. However, cyberattacks often 

have stealthier consequences compared to common physical 

faults, posing challenges in their detection, identification, and 

mitigation. The stealth capability of cyberattacks enables 

attackers to cause significant damage, especially when they 

possess extensive knowledge about the targeted system. 

Therefore, it is crucial to effectively retrieve data to counteract 

the effects of data-integrity cyberattacks. 

To simulate data-integrity cyberattacks, various attack 

templates can be used, such as “scaling”, “ramp”, “pulse”, and 

“random” attacks. In the energy and power systems field, scaling 

and ramp attacks are more frequently observed, as they enable 

an intelligent attacker to quickly alter the system’s frequency. 

The attacker’s objective is often to decrease the grid frequency 

and activate under-frequency load shedding strategies [30,31]. 

This paper focuses specifically on the challenging ramp data-

integrity cyberattacks, in Eq. (9). The true measured data 𝑦(𝑡) 
or control command data is gradually manipulated over the 

period 𝑇  by adding a ramp function (𝛾𝑟𝑡)  that changes over 

time. This results in the compromised data being represented as 

𝑦𝑎𝑡𝑡(𝑡). 

𝑦𝑎𝑡𝑡(𝑡) = {
𝑦(𝑡)            𝑡 ∉ 𝑇

𝑦(𝑡) + 𝛾𝑟𝑡  𝑡 ∈ 𝑇
     ,    𝛾𝑟 ∈ ℝ  

(9) 

As illustrated in Fig. 2, the target of the attack in this study 

is the WFNO, which is responsible for generating the reference 

command signal 𝑃𝐷 that determines the entire WF’s operation. 

The attacker can manipulate the value of attack parameter {𝛾𝑟} ∈
ℝ to execute a stealthy and impactful attack without activating 

the traditional data-quality alarms in WFNO’s control center. 

The attackers must consider the following criteria: 

1. The value of 𝑃𝐷 , which represents the total required 

power output from the WF, should stay within the 

allowed limits for both its magnitude and rate. 

2. The frequency protection schemes should not be 

activated until the desired impact is fully achieved. 

IV. HYBRID COOPERATIVE FTC AND ARC DESIGN 

The general framework of the IDFD system with integrated 
FTC/ARC strategies is shown in Fig. 3. In comparison to Fig. 
1(b), the WF block diagram has been updated to include three 
additional blocks: the AMPC, IDFD, and ASC. Furthermore, the 
default WF controller has been enhanced to a fault-tolerant WF 
controller that uses the CRM. The combination of these blocks 
enables them to serve two primary objectives: firstly, to address 
the effects of power loss faults at both the WT and WF levels, 
with mild faults handled at the WT level and severe faults at the 
WF level. Secondly, they also help to mitigate the impact of data 
integrity attacks targeting the output of the WFNO. In the event 
of power loss faults, WTs with mild faults can still operate by 
adjusting the received signal 𝑃𝑑,𝑞𝑖  with AMPCs. However, 

severely faulty WTs require the reallocation of control signals 
𝑃𝑑,𝑞𝑖. The WF controller takes into account the available power 

from both healthy and mildly faulty WTs, generating additional 
power to compensate for those affected by severe power loss. As 
for data integrity cyberattacks, the IDFD provides information 
to the ASC unit, which then applies the appropriate signal 
correction to counteract the effects of the attack. The detailed 
structure of the blocks is illustrated in Fig. 4. 

A. Adaptive Model Predictive Controllers 

In the event of mild power loss faults, the AMPCs assume a 
pivotal role by passively accommodating these effects within the 
WTs. Notably, this is achieved without the requirement for 
explicit fault information. This proactive approach effectively 
eliminates the need for laborious and time-consuming fault 
detection and identification processes. Furthermore, it serves as 
a powerful means to mitigate potential uncertainties typically 

 
Fig. 2. WF schematic diagram under considered physical faults and cyberattacks (based on [7]). 
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associated with traditional FDD systems. In practice, mildly 
faulty WTs are generally capable of operating appropriately, 
although their reference powers may need to be adjusted or 
adapted based on the extent of power loss they are experiencing. 
The “AMPC controllers” block in Figures 3 and 4 includes 𝑁 
controllers, denoted as AMPC 1 to AMPC 𝑁, corresponding to 
the 𝑁 WTs in WF 𝑄. To explain further, if there is any reduction 
in the output power generated by WT 𝑞𝑖 due to a fault, this will 
create noticeable errors between the WT’s generated power 𝑃𝑔,𝑞𝑖 

and the demanded power 𝑃𝑑,𝑞𝑖 , representing the reference signal 

from the WF controller. These errors serve as crucial inputs for 
the AMPCs, allowing them to adjust the demanded power 

reference vector 𝑃𝑑 = {𝑃𝑑,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁}  computed by the 

WF controller. Importantly, the AMPCs do not interfere with the 
baseline controllers at either the WT level (i.e., blade pitch angle 
and generator torque controllers) or WF level (i.e., WF 
controller). Instead, they work in tandem with these controllers 
by modifying the input of demanded power in WTs based on the 
aforementioned errors. In other words, the AMPCs are adopted 

to adapt the reference demanded power vector (i.e., 𝑃̂𝑑), which 
is then transmitted to the WTs and the IDFD system. 

 

Fig. 3. Framework of the IDFD system with FTC/ARC integration. 

In order to effectively handle uncertainties and nonlinearities 

in WFs, this paper proposes the adoption of AMPCs. The 

technique involves initially designing a linear MPC for the 

nominal operating condition. During operation, an AMPC 

approach is employed to continuously update the prediction 

model by utilizing a linear parameter varying (LPV) system at 

each control interval. To achieve this, an offline 

implementation of an LPV system, consisting of multiple linear 

plant models, accurately captures the local dynamics of the 

plant under a wide range of operating conditions. The designed 

AMPCs utilizes the LPV system to update only the parameters 

of the model, thereby addressing uncertainties and 

nonlinearities in WFs effectively. 

The initial model is a sampled linear time-invariant (LTI) 

system that takes as inputs the manipulated variable (MV) 

signal 𝑢𝑐(𝑘) = 𝑃̂𝑑,𝑞𝑖  and vector 𝑢𝑣(𝑘) = [𝜏𝑟,𝑞𝑖 , 𝜔𝑔,𝑞𝑖]
𝑇

. Here, 

𝜏𝑟,𝑞𝑖  and 𝜔𝑔,𝑞𝑖  (that appropriately represent the dynamic of 

WT) respectively are the generator reference torque and 

generator angular speed for WT 𝑞𝑖. The model used as the basis 

is described as follows: 

{
𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑝,𝑚𝑣𝑢𝑐(𝑘) + 𝐵𝑝,𝑣𝑢𝑣(𝑘)

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘) + 𝐷𝑝,𝑚𝑣𝑢𝑐(𝑘) + 𝐷𝑝,𝑣𝑢𝑣(𝑘)
  (10) 

where 𝐴𝑝 , 𝐵𝑝,𝑚𝑣 , 𝐵𝑝,𝑣 , 𝐶𝑝 , 𝐷𝑝,𝑚𝑣 , and 𝐷𝑝,𝑣  are state-space 

matrices. Additionally, 𝑥𝑝(𝑘)  and 𝑦𝑝(𝑘)  are the state vector 

and the output (i.e., the estimation of WT generated power), 

respectively. Using a system identification procedure in [32], 

the model in Eq. (10) is linearized as a third order system. The 

general model can be expressed in terms of deviation from the 

nominal operating condition as follows: 

{
 
 

 
 𝑥𝑝(𝑘 + 1) = 𝑥̅𝑝(𝑘) + 𝐴(𝑘) (𝑥𝑝(𝑘) − 𝑥̅𝑝(𝑘))

+𝐵(𝑘)(𝑢𝑡(𝑘) − 𝑢̅𝑡(𝑘)) + ∆𝑥̅𝑝(𝑘)

𝑦𝑝(𝑘) = 𝑦̅𝑝(𝑘) + 𝐶(𝑘) (𝑥𝑝(𝑘) − 𝑥̅𝑝(𝑘))

+𝐷(𝑘)(𝑢𝑡(𝑘) − 𝑢̅𝑡(𝑘))

  (11) 

Here, 𝑢𝑡(𝑘) = [𝑢𝑐(𝑘) 𝑢𝑣(𝑘)]
𝑇  is the combined input vector.  

The matrices 𝐴(𝑘), 𝐵(𝑘), 𝐶(𝑘), and 𝐷(𝑘), and the  nominal 

conditions 𝑥̅𝑝(𝑘), ∆𝑥̅𝑝(𝑘), 𝑢̅𝑡(𝑘), and 𝑦̅𝑝(𝑘) are updated using 

the LPV system; and the output of prediction model (i.e., 

𝑦𝑝(𝑘) = 𝑃̂𝑔,𝑞𝑖) is sent to the IDFD to determine the health factor 

of each WT (i.e., 𝐻𝑓𝑞𝑖 in Section IV.B). 

Without loss of generality, the discrete affine form of the 
LPV system, whose dynamics vary as a function of scheduling 
parameter vector 𝑝, can be defined as follows [33]: 

{
 
 

 
 

𝑥𝑝(𝑡 + 𝛥𝑇) = 𝐴(𝑝)𝑥𝑝(𝑡) + 𝐵(𝑝)𝑢𝑡(𝑡)

+ (𝑥̅𝑝(𝑝) + ∆𝑥̅𝑝(𝑝) − 𝐴(𝑝)𝑥̅𝑝(𝑝) − 𝐵(𝑝)𝑢̅𝑡(𝑝))

𝑦𝑝(𝑡) = 𝐶(𝑝)𝑥𝑝(𝑡) + 𝐷(𝑝)𝑢𝑡(𝑡)

+ (𝑦̅𝑝(𝑝) − 𝐶(𝑝)𝑥̅𝑝(𝑝) − 𝐷(𝑝)𝑢̅𝑡(𝑝))

  (12) 

where 𝐴(𝑝) , 𝐵(𝑝) , 𝐶(𝑝)  and 𝐷(𝑝)  are matrices parametrized 
by 𝑝, and Δ𝑇 is the sampling time. Also, 𝑥̅𝑝(𝑝), ∆𝑥̅𝑝(𝑝), 𝑢̅𝑡(𝑝), 
and 𝑦̅𝑝(𝑝) are the offset values at a given parameter 𝑝. These 

matrices and offset values are used to update the mentioned 
parameters in the general prediction model in Eq. (11). The 
model in Eq. (12) is represented as an interpolated array of linear 
state-space models. Several points in the scheduling space are 
chosen (here, for each 𝑝 = (𝜏𝑟,𝑞𝑖 , 𝜔𝑔,𝑞𝑖)  a range of values is 

selected), and for each point, a linear approximation of WT 
dynamics is obtained. More details about the linear interpolation 
technique are available in [33]. Additionally, since the true states 
of the plant model are not accessible to the AMPC, a linear time-
varying Kalman filter (LTVKF) is implemented. 
 With the prediction model described in Eq. (11), the control 
action can be calculated by solving the quadratic programming 
(QP) problem shown below at each time step [34]: 

𝐽(𝑍𝑘) = ∑((𝑤𝑖+1
𝑦
[𝑦𝑝(𝑘 + 𝑖 + 1|𝑘) − 𝑟(𝑘 + 𝑖 + 1|𝑘)])

2

𝑝−1

𝑖=0

+ (𝑤𝑖
𝑢[𝑢𝑐(𝑘 + 𝑖|𝑘) − 𝑢𝑡𝑎𝑟𝑔𝑒𝑡(𝑘 + 𝑖|𝑘)])

2

+ (𝑤𝑖
𝛥𝑢[𝑢𝑐(𝑘 + 𝑖|𝑘) − 𝑢𝑐(𝑘 + 𝑖 − 1|𝑘)])

2
)

+ 𝜌𝜀𝜀𝑘
2 

(13) 

where 𝑘  and 𝑝  are the current time step and the prediction 
horizon, respectively. The AMPC constraints are bounded by: 

𝑦𝑝,𝑚𝑖𝑛(𝑖) − 𝜀𝑘𝑉𝑚𝑖𝑛
𝑦 (𝑖) ≤ 𝑦𝑝(𝑘 + 𝑖 + 1|𝑘)

≤ 𝑦𝑝,𝑚𝑎𝑥(𝑖) − 𝜀𝑘𝑉𝑚𝑎𝑥
𝑦 (𝑖) 

(14) 

𝑢𝑐,𝑚𝑖𝑛(𝑖) − 𝜀𝑘𝑉𝑚𝑖𝑛
𝑢 (𝑖) ≤ 𝑢𝑐(𝑘 + 𝑖|𝑘)

≤ 𝑢𝑐,𝑚𝑎𝑥(𝑖) − 𝜀𝑘𝑉𝑚𝑎𝑥
𝑢 (𝑖) 

(15) 

∆𝑢𝑐,𝑚𝑖𝑛(𝑖) − 𝜀𝑘𝑉𝑚𝑖𝑛
∆𝑢 (𝑖) ≤ ∆𝑢𝑐(𝑘 + 𝑖|𝑘)

≤ ∆𝑢𝑐,𝑚𝑎𝑥(𝑖) − 𝜀𝑘𝑉𝑚𝑎𝑥
∆𝑢 (𝑖) 

(16) 

∆𝑢𝑐(𝑘 + ℎ|𝑘) = 0 (17) 

𝜀𝑘 ≥ 0 (18) 

𝑷෡𝒅 = {𝑃̂𝑑,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑷𝒅 = {𝑃𝑑,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑷
𝒅
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𝑷෡𝒈 = {𝑃̂𝑔,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑯𝒇 = {𝐻𝑓𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑁: Number of WTs in WF       

𝑽𝒓𝒐𝒕 = {𝑉𝑟𝑜𝑡,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑪𝑻 = {𝐶𝑇,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 

𝑽𝒏𝒂𝒄 = {𝑉𝑛𝑎𝑐,𝑞𝑖|𝑖 ∈ ℕ, 𝑖 ≤ 𝑁} 
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Fig. 4. The detailed structure of hybrid cooperative FTC and ARC strategies with integration into IDFD system. 

Table III Parameters and Their Definitions 

𝑦𝑝(𝑘 + 𝑖 + 1|𝑘) 

Output predicted value at (𝑖 + 1)th prediction horizon 

step based on available information at time-step 𝑘 

(i.e., 𝑦𝑝 = 𝑃̂𝑔,𝑞𝑖) 

𝑟(𝑘 + 𝑖 + 1|𝑘) Reference value at (𝑖 + 1)th step (i.e., 𝑟 = 𝑃𝑑,𝑞𝑗) 

𝑢𝑡𝑎𝑟𝑔𝑒𝑡(𝑘 + 𝑖|𝑘) Target value for MV at the 𝑖th step 

𝑤𝑖+1
𝑦

 Tuning weight for output at the (𝑖 + 1)th step 

𝑤𝑖
𝑢 Tuning weight for MV at 𝑖th step 

𝑤𝑖
Δ𝑢 Tuning weight for MV movement at 𝑖th step 

𝜀𝑘 Slack variable for implementing soft constraints 

𝜌𝜀 Constraint violation penalty weight 

{𝑦𝑝,𝑚𝑖𝑛(𝑖), 𝑦𝑝,𝑚𝑎𝑥(𝑖)} Lower and the upper bounds for output at 𝑖th step 

{𝑢𝑐,𝑚𝑖𝑛(𝑖), 𝑢𝑐,𝑚𝑎𝑥(𝑖)} Lower and the upper bounds for MV at 𝑖th step 

{Δ𝑢𝑐,𝑚𝑖𝑛(𝑖), Δ𝑢𝑐,𝑚𝑎𝑥(𝑖)} 
Lower and the upper bounds for MV movement at 𝑖th 

step  

𝑉𝑚𝑖𝑛
𝑦

, 𝑉𝑚𝑎𝑥
𝑦

, 𝑉𝑚𝑖𝑛
𝑢 , 

𝑉𝑚𝑎𝑥
𝑢 , 𝑉𝑚𝑖𝑛

∆𝑢 , 𝑉𝑚𝑎𝑥
∆𝑢  

Non-negative elements that are identical to the 

weights in cost function but for constraint softening 

with respect to 𝑖 = 0,… , 𝑝 − 1, ℎ = 𝑚,… , 𝑝, the sequence of 

{∆𝑢𝑐(𝑘|𝑘), … , ∆𝑢𝑐(𝑘 − 1 +𝑚|𝑘)}, and 𝜀𝑘. It should be noted 

that 𝑚 is the control horizon. The QP decision is: 

𝑍𝑘
𝑇 = [∆𝑢𝑐(𝑘|𝑘)

𝑇 ∆𝑢𝑐(𝑘 + 1|𝑘)
𝑇 … ∆𝑢𝑐(𝑘 + 𝑚 − 1|𝑘)𝑇 𝜀𝑘] (19) 

Finally, the AMPC sets 𝑢𝑐(𝑘) = 𝑢𝑐(𝑘 − 1) + ∆𝑢𝑐
∗(𝑘|𝑘)  in 

which ∆𝑢𝑐
∗(𝑘|𝑘) represents the first element of the sequence. 

The QP is solved using the method presented in [35]. Other 

parameters used in Eqs. (13)-(19) are defined in Table III. 

B. IDFD System Design 

Fig. 5 depicts the parallel units of the IDFD system: power 

consistency monitoring (PCM), active power estimation (APE), 

and post-processing and decision-making (PPDM). 

PCM Unit: The PCM unit proposed in Algorithm 1 utilizes 

predictive models in AMPCs to monitor the real-time 

consistency of power generated by WTs. In more details, it 

addresses the physical faults by continuously monitoring the 

consistency of power production across all WTs. This enables 

the detection and identification of any inconsistencies in output 

powers, providing reliable information on faults. 

A highly effective approach for monitoring power 

consistency within a WF is to perform real-time monitoring of 

power output from each individual WT and from all other WTs 

in the farm. In Algorithm 1, Line 1 designates two arbitrary 

turbines within the farm as 𝑞𝑖  and 𝑞𝑗 , and this algorithm is 

applied to all 𝑞𝑖  and 𝑞𝑗within the WF. To accurately monitor 

power consistency between any two WTs 𝑞𝑖 and 𝑞𝑗 within WF 

𝑄, it is essential to consider not only their generated powers 

𝑃𝑔,𝑞𝑖  and 𝑃𝑔,𝑞𝑗 , but also their power reference signals 𝑃̂𝑑,𝑞𝑖 and 

𝑃̂𝑑,𝑞𝑗 [8]. In Algorithm 1, the generated powers from WTs 𝑞𝑖 

and 𝑞𝑗  are considered consistent when the values of 𝑃𝑔𝑖,𝑗  and 

𝑃̂𝑔𝑖,𝑗 are approximately equal (or when the residual 𝑟 in Line 1.4 

is almost zero). However, achieving perfect equality between 

these values is not always possible in practice due to 

measurement noises and possible uncertainties. To address this 

issue, a procedure for the inconsistency signature (Lines 1.8-

1.10) has been developed based on [1,8]. This procedure 

enables the calculation of an absolute inconsistency value 𝐼𝑖,𝑗 

between the two WTs. Finally, Algorithm 1 produces two 

outputs, 𝐼𝐷𝑖,𝑗  and 𝐼𝑀𝑖,𝑗 , which respectively indicate the 

occurrence and magnitude of any inconsistencies in the powers 

between WTs 𝑞𝑖  and 𝑞𝑗 . When power output is inconsistent 

between these WTs, the 𝐼𝐷𝑖,𝑗  and 𝐼𝑀𝑖,𝑗  signals provide 

information on the faulty WT as well as the estimated absolute 

value of power-loss, |∆𝑃̅̅ ̅̅ 𝑖,𝑗| (as shown in Lines 1.11-1.15). 

APE Unit: The APE unit employs Takagi-Sugeno (T-S) type 

dynamic fuzzy modeling technique, which is a widely used data-

driven fuzzy modeling and identification approach [36]. Using 

IDFD System 
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this method, the APE unit creates a model-based estimator that 

generates nominal estimates of the WF’s totally generated power 

𝑃̂𝐺. The estimator, in Fig. 5, uses carefully selected inputs (i.e., 

𝑃𝐷 and 𝑃̂𝐺) to represent the WF’s operating conditions. 

Algorithm 1 Power Consistency Monitoring (PCM) 

Inputs: {𝑷෡𝒈,𝒒𝒊(𝒌),𝑷𝒈,𝒒𝒊(𝒌),𝑷
෡
𝒅,𝒒𝒊
(𝒌) | 𝒊 ∈ ℕ, 𝒊 ≤ 𝑵} 

ℕ: natural numbers set. 

𝑵: number of WTs in a WF. 

𝒌: time-step. 

𝑷෡𝒈,𝒒𝒊(𝒌): AMPC 𝒊 predictive model output. 

𝑷𝒈,𝒒𝒊(𝒌): generated power of WT 𝒒𝒊. 

𝑷෡𝒅,𝒒𝒊(𝒌): manipulated variable (MV) from AMPC 𝒊. 

Outputs:  {𝑰𝑫𝒊,𝒋(𝒌), 𝑰𝑴𝒊,𝒋(𝒌)|  𝒊, 𝒋 ∈ ℕ, 𝒊 < 𝑵, 𝒊 < 𝒋 ≤ 𝑵} 

𝑰𝑫𝒊,𝒋(𝒌): inconsistency detection signal shows the “occurrence” of any 

inconsistency between the generated powers by WT 𝒒𝒊 and 𝒒𝒋. 

𝑰𝑴𝒊,𝒋(𝒌): inconsistency magnitude signal shows the “value” of any 

inconsistency between the generated powers by WT 𝒒𝒊 and 𝒒𝒋. 

Constants and Variables: 

{𝑰𝒊,𝒋(𝒌), 𝒓(𝒌), 𝑻𝒓, 𝑻𝟏(𝒌), 𝑻𝟐(𝒌), 𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌),𝑵𝒘} 

𝑰𝒊,𝒋(𝒌) ∈ {𝟎, 𝟏} : absolute inconsistency signal in which 0 means 

consistent and 1 inconsistent. 

𝒓(𝒌): residual used during procedure. 

𝑻𝒓: constant threshold for checking the residual. 

𝑻𝟏(𝒌): and 𝑻𝟐(𝒌) two variables used during the calculations. 

𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌): running mean of 𝜟𝑷𝒊,𝒋(𝒌). 

𝑵𝒘: length of the sliding window. 

1. for each  {𝒒𝒊, 𝒒𝒋|  𝒊, 𝒋 ∈ ℕ, 𝒊 < 𝑵, 𝒊 < 𝒋 ≤ 𝑵} do 

calculate the predicted, demanded, and generated power 

differences: 

1.1.    𝑷෡𝒈𝒊,𝒋(𝒌) = 𝑷෡𝒈,𝒒𝒊(𝒌) − 𝑷
෡
𝒈,𝒒𝒋(𝒌)  

1.2.    𝑷෡𝒅𝒊,𝒋(𝒌) = 𝑷
෡
𝒅,𝒒𝒊
(𝒌) − 𝑷෡𝒅,𝒒𝒋(𝒌) 

1.3.    𝑷𝒈𝒊,𝒋(𝒌) = 𝑷𝒈,𝒒𝒊(𝒌) − 𝑷𝒈,𝒒𝒋(𝒌) 

compute the residual: 

1.4.    𝒓(𝒌) = 𝑷𝒈𝒊,𝒋(𝒌) − 𝑷
෡
𝒈𝒊,𝒋
(𝒌) 

calculate the power difference between 𝑷𝒈𝒊,𝒋(𝒌) and 𝑷෡𝒅𝒊,𝒋(𝒌): 

1.5.    𝜟𝑷𝒊,𝒋(𝒌) = 𝑷𝒈𝒊,𝒋(𝒌) − 𝑷
෡
𝒅𝒊,𝒋
(𝒌) 

calculate the running mean of the power difference: 

1.6.    𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌) =
𝟏

𝑵𝒘
∑ 𝜟𝑷𝒊,𝒋(𝒍)
𝒌
𝒍=𝒌−𝑵𝒘+𝟏

 

>> Inconsistency Signature Post-Processing << 

1.7. if |𝒓(𝒌)| < 𝑻𝒓 then 

1.7.1. 𝑰𝒊,𝒋(𝒌) = 𝑻𝟏(𝒌) = 𝑻𝟐(𝒌) = 𝟎 

1.7.2. if 𝑰𝒊,𝒋(𝒌 − 𝟏) ≠ 𝟎 and 𝑻𝟐(𝒌 − 𝟏) < 𝑻𝒐𝒖𝒕 then 

1.7.3. 𝑰𝒊,𝒋(𝒌) = 𝟏 

1.7.4. 𝑻𝟏(𝒌) = 𝑻𝟏(𝒌 − 𝟏), 𝑻𝟐(𝒌) = 𝑻𝟐(𝒌 − 𝟏) + 𝟏 

1.7.5. end if 
1.8. else 

1.8.1. 𝑰𝒊,𝒋(𝒌) = 𝟏, 𝑻𝟏(𝒌) = 𝑻𝟏(𝒌 − 𝟏), 𝑻𝟐(𝒌) = 𝟎 

1.8.2. if 𝑰𝒊,𝒋(𝒌 − 𝟏) = 𝟎 and 𝑻𝟐(𝒌 − 𝟏) < 𝑻𝒊𝒏 then 

1.8.3. 𝑰𝒊,𝒋(𝒌) = 𝟎 

1.8.4. 𝑻𝟏(𝒌) = 𝑻𝟏(𝒌 − 𝟏) + 𝟏, 𝑻𝟐(𝒌) = 𝟎 

1.8.5. end if 

1.9. end if 
>> Inconsistency Analysis and Isolation Procedure << 

1.10. if 𝑰𝒊,𝒋(𝒌) = 𝟏 and 𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌) > 𝟎 then 

1.10.1. 𝑰𝑫𝒊,𝒋(𝒌) = 𝒋,   𝑰𝑴𝒊,𝒋(𝒌) = |𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌)| 

1.11. else if 𝑰𝒊,𝒋(𝒌) = 𝟏 and 𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌) < 𝟎 then 

1.11.1. 𝑰𝑫𝒊,𝒋(𝒌) = 𝒊,   𝑰𝑴𝒊,𝒋(𝒌) = |𝜟𝑷̅̅ ̅̅ 𝒊,𝒋(𝒌)| 

1.12. else 

1.12.1. 𝑰𝑫𝒊,𝒋(𝒌) = 𝟎,   𝑰𝑴𝒊,𝒋(𝒌) = 𝟎 

1.13. end if 

2. end for 

3. return  {𝑰𝑫𝒊,𝒋(𝒌), 𝑰𝑴𝒊,𝒋(𝒌)|  𝒊, 𝒋 ∈ ℕ, 𝒊 < 𝑵, 𝒊 < 𝒋 ≤ 𝑵} 

A nonlinear system with multiple inputs and a single output, 

represented by 𝑢 ∈ 𝑈 ⊂ ℝ𝑚 for 𝑚  inputs and  𝑦 ∈ 𝑌 ⊂ ℝ  for 

one output, can be mathematically described as a multi-input 

single-output (MISO) system, expressed by: 

𝑦(𝑘 + 1) = 𝐹(𝜙(𝑘)) + 𝜀 (20) 

𝜙(𝑘) = [𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1), 𝑢𝑖(𝑘), … , 𝑢𝑖(𝑘 − 𝑛𝑢,𝑖 + 1)]  

𝑖 = 1, 2, 3, … ,𝑚 
(21) 

where 𝐹  is a function that is used for approximation, while 𝜀 

represents the modeling error. Additionally, the integers 𝑛𝑢,𝑖 and 

𝑛𝑦 are related to the order of the system. 𝐹 can be obtained as: 

𝑅𝑢𝑙𝑒𝑗th(𝑗 = 1, 2, 3, … ,𝑀): 

𝑰𝒇 𝑦(𝑘) 𝑖𝑠 𝒜𝑗,1 𝒂𝒏𝒅…𝑦(𝑘 − 𝑛𝑦 + 1) 𝑖𝑠 𝒜𝑗,𝑛𝑦  𝒂𝒏𝒅  

𝑢1(𝑘) 𝑖𝑠 ℬ𝑗,1,1 𝒂𝒏𝒅…𝑢1(𝑘 − 𝑛𝑢,1 + 1) 𝑖𝑠 ℬ𝑗,1,𝑛𝑢,1  𝒂𝒏𝒅… 

𝑢𝑚(𝑘)𝑖𝑠 ℬ𝑗,𝑚,1 𝒂𝒏𝒅…𝑢𝑚(𝑘 − 𝑛𝑢,𝑚 + 1) 𝑖𝑠 ℬ𝑗,𝑚,𝑛𝑢,𝑚 𝒕𝒉𝒆𝒏 

𝑦̂𝑗(𝑘 + 1) =∑𝑎𝑗,𝑙  𝑦(𝑘 − 𝑙 + 1)

𝑛𝑦

𝑙=1

 

+∑ ∑ 𝑏𝑗,𝑖,𝑙  𝑢𝑖(𝑘 − 𝑙 + 1)
𝑛𝑢,𝑖
𝑙=1

𝑚
𝑖=1 + 𝑐𝑗  

(22) 

The antecedent membership functions are denoted by 𝒜 and 

ℬ, while the rule consequent part is represented by 𝑦̂𝑗, which is 

a linear function of parameters 𝑎 , 𝑏 , and  𝑐 . The rule 

contributions (i.e., 𝑦̂𝑗 with 𝑗 = 1,2, … ,𝑀) are combined using a 

weighted average in Eq. (23) to calculate the aggregated output 

of the model. Here, 𝜇𝑗 represents the membership function that 

indicates the degree to which the 𝑗th rule is satisfied. 

𝑦̂(𝑘 + 1) =
∑ 𝜇𝑗(𝝓(𝑘))𝑦̂𝑗(𝑘 + 1)
𝑀
𝑗=1

∑ 𝜇𝑗(𝝓(𝑘))
𝑀
𝑗=1

 (23) 

PPDM Unit: The first part of the PPDM unit described in 

Algorithm 2 is responsible for determining the health status of 

each WT, based on the relevant signals 𝐼𝐷𝑖,𝑗 . The decision is 

made by a simple logic, where if at least one of the signals 

detects a WT (i.e., 𝑞𝑖 or 𝑞𝑗 based on the value of 𝐼𝐷𝑖,𝑗)  as faulty, 

then that WT is considered faulty, and its power-loss (i.e., 𝒫̂𝑞𝑖  or 

𝒫̂𝑞𝑗 ) is estimated as the maximum power-loss using relevant 

𝐼𝑀𝑖,𝑗. As per the given information, the decision-making logic 

used by Algorithm 2 is based on three rules: 𝑅𝑢𝑙𝑒 1 for WT 𝑞1 

(Lines 2-3), 𝑅𝑢𝑙𝑒 𝑍 for any WT 𝑞𝑍  with (𝑍 ∈ ℕ and 1 < 𝑍 <
𝑁 ) (Lines 4-5), and 𝑅𝑢𝑙𝑒 𝑁  for WT  𝑞𝑁  (Lines 6-7). After 

applying the rules, the health factor 𝐻𝑓𝑞𝑖  for each WT is 

calculated using the equation in Line 8.1. In the second part of 

Algorithm 2, the residual signal 𝑟𝐷 is computed in Line 11, and 

a threshold test technique (described in Lines 12-19) is used to 

determine the value of 𝑃෨𝐷,𝑎, that is employed by the ASC. 

C. Fault-Tolerant WF Controller 

The fault-tolerant WF controller outlined in Algorithm 3 
dynamically adjusts its configuration based on the health factor 

 
Fig. 5. Intrusion detection and fault diagnosis (IDFD) system. 
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𝐻𝑓𝑞𝑖  of each WT. While the AMPCs at the WT level efficiently 

handle mild faults, severe faults in any WT result in a 
proportional decrease in the health factor. This decline in health 
factor acts as a trigger for the WF controller to initiate a 
reallocation of control signals 𝑃𝑑,𝑞𝑖 . Consequently, healthier 

WTs within the farm, equipped with unused power, increase 
their energy production to compensate for the severely faulty 
WTs. It is noteworthy that prior CRM strategies, as 
demonstrated in earlier works (e.g., [1] and [10]), employed 
binary health factors (i.e., 𝐻𝑓𝑞𝑖(𝑘) = {0,1} ) for switching 

between normal and reallocation modes. However, to eliminate 
issues associated with abrupt switching, Algorithm 3 adopts a 
continuous health factor approach (i.e., 𝐻𝑓𝑞𝑖(𝑘) ∈ [0,1] ), as 

generated by Algorithm 2 in Line 7.1. This ensures a smoother 
transition between control modes while optimizing WF 
performance. 

Algorithm 2 Post-Processing and Decision Making (PPDM) 

Inputs: { {𝑰𝑫𝒊,𝒋(𝒌), 𝑰𝑴𝒊,𝒋(𝒌)|  𝒊, 𝒋 ∈ ℕ, 𝒊 < 𝑵, 𝒊 < 𝒋 ≤ 𝑵}, 𝑷෡𝑮(𝒌), 𝑷𝑮(𝒌), 𝑷෡𝒅,𝒒𝒊(𝒌 − 𝟏)} 

𝑰𝑫𝒊,𝒋(𝒌): inconsistency detection from PCM unit. 

𝑰𝑴𝒊,𝒋(𝒌): inconsistency magnitude from PCM unit. 

𝑷෡𝑮(𝒌): generated power estimation from APE unit. 

𝑷𝑮(𝒌): actual WF total generated power. 

𝑷෡𝒅,𝒒𝒊(𝒌 − 𝟏): AMPC 𝒊 manipulated variable (MV) at time-step 𝒌 − 𝟏. 

Outputs: ቄ{𝑯𝒇𝒒𝒊(𝒌)|  𝒒𝒊 ∈ 𝑸}, 𝑷̃𝑫,𝒂(𝒌)ቅ 

𝑯𝒇𝒒𝒊(𝒌) ∈ [𝟎, 𝟏]: health factor of WT 𝒒𝒊 that will be used by WF 

controller for reallocation (i.e., CRM). 
𝑷̃𝑫,𝒂(𝒌): malicious (cyberattack) data estimates of 𝑷𝑫(𝒌) that will be 

used by ASC unit. 

Constants and Variables: {𝓟෡𝒒𝒊(𝒌),𝑸𝒇, 𝒓𝑫(𝒌), 𝑻𝑫, 𝑪𝒏} 

𝓟෡𝒒𝒊(𝒌): power loss in WT 𝒒𝒊. 

𝑸𝒇: set of faulty WTs in a WF. 

𝒓𝑫(𝒌): residual used during the calculations. 

𝑻𝑫: user-defined thresholds for 𝒓𝑫. 
𝑪𝒏: counter with zero initial value. 

>> Physical Faults Detection and Identification Procedure << 

1. if (𝑰𝑫𝟏,𝟐 = 𝟏) 𝒐𝒓 (𝑰𝑫𝟏,𝟑 = 𝟏) 𝒐𝒓…𝒐𝒓 (𝑰𝑫𝟏,𝑵 = 𝟏)  then 

1.1. 𝒒𝟏 ∈ 𝑸𝒇 

1.2. 𝓟෡𝒒𝟏(𝒌) = 𝒎𝒂𝒙{𝑰𝑴𝟏,𝟐, 𝑰𝑴𝟏,𝟑, 𝑰𝑴𝟏,𝟒,… , 𝑰𝑴𝟏,𝑵} 

2. end if 

3. for each  {𝒒𝒛 ∈ 𝑸|  𝒛 ∈ ℕ, 𝟏 < 𝒛 < 𝑵} do 

3.1. if 

(𝑰𝑫𝟏,𝒛 = 𝒛) 𝒐𝒓…𝒐𝒓 (𝑰𝑫𝒛−𝟏,𝒛 = 𝒛) 𝒐𝒓 (𝑰𝑫𝒛,𝒛+𝟏 = 𝒛) 𝒐𝒓…𝒐𝒓 (𝑰𝑫𝒛,𝑵 = 𝒛)  

then 

3.1.1. 𝒒𝒛 ∈ 𝑸𝒇 

3.1.2.  𝓟෡𝒒𝒛(𝒌) = 𝒎𝒂𝒙{𝑰𝑴𝟏,𝒛, … , 𝑰𝑴𝒛−𝟏,𝒛, 𝑰𝑴𝒛,𝒛+𝟏, … , 𝑰𝑴𝒛,𝑵} 

3.2. end if 
4. end for 

5. if (𝑰𝑫𝟏,𝑵 = 𝑵) 𝒐𝒓…  𝒐𝒓 (𝑰𝑫𝑵−𝟐,𝑵 = 𝑵) 𝒐𝒓 (𝑰𝑫𝑵−𝟏,𝑵 = 𝑵)  then 

5.1. 𝒒𝑵 ∈ 𝑸𝒇 

5.2. 𝓟෡𝒒𝑵(𝒌) = 𝒎𝒂𝒙{𝑰𝑴𝟏,𝑵, … , 𝑰𝑴𝑵−𝟐,𝑵, 𝑰𝑴𝑵−𝟏,𝑵} 

6. end if 

calculate the health factor: 

7. for each  𝒒𝒊 ∈ 𝑸 do 

7.1.    𝑯𝒇𝒒𝒊(𝒌) =
𝓟෡𝒒𝒊(𝒌)

𝑷෡𝒅,𝒒𝒊(𝒌−𝟏)
 

8. end for 
compute the residual: 

9. 𝒓𝑫(𝒌) = 𝑷𝑮(𝒌) + ∑ 𝓟෡𝒒𝒊(𝒌)
𝑵
𝒊=𝟏 − 𝑷෡𝑮(𝒌) 

>> Cyberattack Detection and Identification Procedure << 

10. if 𝒓𝑫(𝒌) ≤ 𝑻𝑫  then 

10.1. “No Cyberattack is Detected” and 𝑷̃𝑫,𝒂(𝒌) = 𝟎 

11. else “store 𝒓𝑫(𝒌) for the next 3 time-steps” 

12. end if 

13. for each 𝒋 ∈ ℕ, 𝒋 ≤ 𝟒 do 

13.1. if   𝒓𝑫(𝒌 + 𝒋 − 𝟏) > 𝑻𝑫 then 𝑪𝒏 = 𝑪𝒏 + 𝟏 

13.2. end if 

14. end for 

15. if   𝑪𝒏 = 𝟒 then 

15.1. “Cyberattack is Detected” and 𝑷̃𝑫,𝒂(𝒌) = 𝒓𝑫(𝒌) 
16. else 

16.1. “No Cyberattack is Detected” and 𝑷̃𝑫,𝒂(𝒌) = 𝟎 

17. end if 

18. return ቄ{𝑯𝒇𝒒𝒊(𝒌)|  𝒒𝒊 ∈ 𝑸}, 𝑷̃𝑫,𝒂(𝒌)ቅ 

Algorithm 3 Control Reallocation Mechanism (CRM) 

Inputs: {𝑷𝑫(𝒌),𝑷𝒈,𝒒𝒊(𝒌),𝑽𝒎𝒆𝒔,𝒒𝒊(𝒌) ,𝑯𝒇𝒒𝒊(𝒌)| 𝒊 ∈ ℕ, 𝒊 ≤ 𝑵} 

𝑷𝑫(𝒌): WF total demanded power. 

𝑷𝒈,𝒒𝒊(𝒌): generated power of WT 𝒒𝒊. 

𝑽𝒎𝒆𝒔,𝒒𝒊(𝒌): measured nacelle wind speed of WT 𝒒𝒊. 

𝑯𝒇𝒒𝒊(𝒌) ∈ [𝟎, 𝟏]: health factor for WT 𝒒𝒊 from IDFD system. 

Outputs: ቄ{𝑷𝒅,𝒒𝒊(𝒌 + 𝟏)|  𝒒𝒊 ∈ 𝑸}, 𝑷𝑨(𝒌)ቅ 

𝑸 = {𝒒𝒊| 𝒊 ∈ ℕ, 𝒊 ≤ 𝑵}: set of WTs in a WF. 

𝑷𝒅,𝒒𝒊(𝒌 + 𝟏): demanded power from WT 𝒒𝒊 for the next time-step. 

𝑷𝑨(𝒌): WF total available power that will be send to WFNO. 

Constants and Variables: 

{𝑷𝒓𝒂𝒕𝒆𝒅,𝒒𝒊, 𝝆, 𝑹, 𝑪𝑷𝒎𝒂𝒙, 𝑷𝒅,𝒒𝒊(𝒌),𝑷𝒂,𝒒𝒊(𝒌),𝑷𝒎,𝒒𝒊(𝒌),𝑷𝒖,𝒒𝒊(𝒌),𝑷𝑴(𝒌),𝑷𝑼(𝒌)} 

𝑷𝒓𝒂𝒕𝒆𝒅,𝒒𝒊: rated power of WT 𝒒𝒊. 

𝝆: air density. 

𝑹: rotor radius. 

𝑪𝑷𝒎𝒂𝒙: maximum power coefficient. 

𝑷𝒅,𝒒𝒊(𝒌): demanded power for WT 𝒒𝒊. 

𝑷𝒂,𝒒𝒊(𝒌): available power of WT 𝒒𝒊. 

𝑷𝒎,𝒒𝒊(𝒌): missed power of WT 𝒒𝒊. 

𝑷𝒖,𝒒𝒊(𝒌): unused power of WT 𝒒𝒊. 

𝑷𝑴(𝒌): WF total missed power. 

𝑷𝑼(𝒌): WF total unused available power. 

1. for each  𝒒𝒊 ∈ 𝑸 do 

calculate the available, missed, and unused power of each WT: 

1.1.   𝑷𝒂,𝒒𝒊(𝒌) = 𝒎𝒊𝒏 ቄ𝑷𝒓𝒂𝒕𝒆𝒅,𝒒𝒊,
𝝅

𝟐
𝝆𝑹𝟐𝑽𝒎𝒆𝒔,𝒒𝒊(𝒌)

𝟑𝑪𝑷𝒎𝒂𝒙ቅ  

1.2.    𝑷𝒎,𝒒𝒊(𝒌) = 𝑷𝒅,𝒒𝒊(𝒌) − 𝑷𝒈,𝒒𝒊(𝒌) 

1.3.    𝑷𝒖,𝒒𝒊(𝒌) = 𝑷𝒂,𝒒𝒊(𝒌) − 𝑷𝒈,𝒒𝒊(𝒌) 

2. end for 

calculate the total available, missed, and unused power in WF: 

3. 𝑷𝑨(𝒌) = ∑ 𝑷𝒂,𝒒𝒊(𝒌)
𝑵
𝒊=𝟏  

4. 𝑷𝑴(𝒌) = ∑ 𝑷𝒎,𝒒𝒊(𝒌)
𝑵
𝒊=𝟏  

5. 𝑷𝑼(𝒌) = ∑ 𝑷𝒖,𝒒𝒊(𝒌)
𝑵
𝒊=𝟏   

>> Control Reallocation Procedure << 

6. for each 𝒒𝒊 ∈ 𝑸 do 

6.1.  𝑷𝒅,𝒒𝒊(𝒌 + 𝟏) = (𝑷𝑫(𝒌)
𝑷𝒂,𝒒𝒊(𝒌)

𝑷𝑨(𝒌)
+ 𝑷𝑴(𝒌)

𝑷𝒖,𝒒𝒊(𝒌)

𝑷𝑼(𝒌)
) .𝑯𝒇𝒒𝒊(𝒌) 

7. end for 

8. return 𝑷𝑨(𝒌)  and {𝑷𝒅,𝒒𝒊(𝒌 + 𝟏)|  𝒒𝒊 ∈ 𝑸} 

D. ASC Strategy for Attack Mitigation 

The ARC unit receives data regarding potential cyberattacks 
from the IDFD system and executes signal correction procedures 

utilizing the data provided by 𝑃෨𝐷,𝑎 (as generated by Algorithm 

2). The ARC assesses the necessity of signal correction by 
examining the sign of the malicious data estimated by the IDFD 
and subsequently applies either signal addition or subtraction as 
required. In fact, the corrected demanded power signal 𝑃𝐷,𝑐𝑜𝑟 is 

determined as follows: 

𝑃𝐷,𝑐𝑜𝑟(𝑘) = 𝑃𝐷(𝑘) + 𝑃෨𝐷,𝑎 (24) 

This approach has a key advantage: it preserves the original 

settings of the baseline controllers. It means the control system 

stays secure, making changes only when absolutely necessary. 

As a result, the WFNO corrects its output only when it is  
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Table IV Controllers Structure and Deployment Overview 

AMPCs 

Design a linear MPC model for nominal operating conditions. 

During operation, employ an AMPC approach to update the model. 

Utilize an LPV for continuous model updates at each time step. 

Implement an offline LPV system with multiple linear plant models 

capturing local dynamics under various operating conditions. 

AMPCs use the LPV to dynamically update model parameters. 

Effective handling of uncertainties and nonlinearities in WF. 

Continuous estimation of generated power for each WT. 

Transmit power estimates to the IDFD system for determining the 

health factor of each WT. 

CRM 

AMPCs at the WT level handle mild faults, but severe faults trigger 

reallocation of control signals. 

Healthier WTs produce more power to compensate for severely 

faulty WTs. 

Uses continuous health factors, avoiding switching problems. 

Calculate available, missed, and unused power for WTs and WF. 

Update demanded power vector based on powers and health factors. 

ASC 

Receives information about cyberattacks from the IDFD system. 

Utilizes malicious data estimates for signal correction. 

Determines the necessity of signal correction based on the sign of 

malicious data estimated by the IDFD. 

Applies addition or subtraction of signals as required. 

crucial, ensuring the WF remains stable and secure. Table IV 

provides a comprehensive overview of the control structure and 

deployment process for AMPCs, CRM, and ASC. 

V. SIMULATION RESULTS 

To evaluate the effectiveness of the proposed fault-tolerant/ 

attack-resilient solutions, three scenarios have been conducted. 

Each scenario was simulated for 1,000 seconds under realistic 

wind conditions (mean wind speed of 15 m/s) using the WF 

benchmark described in Section II. It is worth noting that the 

selection of fault and attack parameters was a deliberate process 

aimed at creating realistic scenarios. Fault parameters were 

chosen based on their nature, while attack parameters were 

intentionally designed to challenge the detection capabilities of 

IDFD system due to the stealthiness and subtlety often 

associated with cyberattacks. This approach allowed the 

adaptability and effectiveness of the cooperative controllers and 

IDFD system to be evaluated under varying threat conditions, 

with a focus on highlighting the distinctions between faults and 

cyberattacks in WFs. Also, the timelines for faulty WTs and 

cyberattack in the considered scenarios are as follows: 

Mild Power Loss (≤ 𝟏𝟎%) (Scenarios 1, 2, and 3) 

T2 during [800,1000] s T3 during [450,1000] s 

T4 during [125,300] s T7 during [350,1000] s 

T8 during [100,1000] s T10 during [700,1000] s 

Severe Power Loss (> 𝟏𝟎%)  

(Scenarios 2 and 3) 

Data Integrity Cyberattack 

(Scenario 3) 

T1 during [200,1000] s 𝑃𝐷 during [350,1000] s 

A. Scenario 1: Physical Faults (Only Mild Power Loss) 

In the first scenario, where mild power loss faults occur in 
the mentioned WTs, the AMPCs, as discussed in Section IV.A, 
prove to be sufficient for accommodating the adverse effects of 
these faults in a passive manner, without requiring any 
intervention at the WT and WF level controllers. 

Figure 6 provides a visual representation of the generated 
power by the faulty WTs in comparison to normal (fault/attack-
free) operation, with and without the FTC. In Fig. 6, distinct 

lines are employed to depict various operational scenarios. 
Green lines represent normal (fault/attack-free) operation, red 
lines denote operation during physical faults in the absence of 
FTC, and blue lines represent operation during physical faults 
with FTC (specifically, AMPCs). Notably, the blue lines, which 
correspond to faulty operation with FTC, closely follow the 
green lines representing fault/attack-free operation. This visual 
evidence underscores the effectiveness of the proposed AMPCs 
in adeptly managing power loss, ensuring that the mildly faulty 
WT continues to generate power efficiently and reliably, even in 
challenging operational conditions. 

B. Scenario 2: Physical Faults (Mild and Severe Power Loss) 

In the second scenario, a severe fault in T1  leads to a 
complete loss of power generation, resulting in zero power 
output after 700 s. The designed FTC strategies, specifically the 
AMPCs and the CRM, are employed to address the effects of 
partial or total power loss. According to Algorithm 3, the CRM 
at the WF level is responsible for mitigating severe power loss 
faults, while the AMPCs at the WT level passively manage the 
impacts of mild-level faults. 

Figure 7 provides insight into several key WF 
characteristics, including the power responses of faulty WTs, 
grid frequency, total power generation within the farm, and the 
WFNO’s output. In this figure, the green, red, and blue lines 
mean the same as in Fig. 6, but the black lines are added which 
represent faulty operation with full FTC (both AMPCs and 
CRM). Figure 7(a) specifically illustrates the power generation 
responses of the faulty WTs. The overlapping black lines 
tracking the green ones highlight the effectiveness of the 
proposed solutions in efficiently managing and accommodating 
the impacts of physical faults in the WTs. Notably, slight 
discrepancies between the black and green lines between the 200 
s and 700 s in Fig. 7(a) stem from the severe power loss occurred 
in T1. It is worth noting that despite utilizing the same settings, 
such as wind profiles and electrical loads, for both scenarios, 
there are differences in power generation from the same WTs. 
These differences arise from variations in the value of 𝐻𝑓𝑞1  and 

the available unused power in T2  to T10 , which necessitate an 
increase in power demand from those WTs to compensate for 
the lost power in T1. 

In Fig. 7, other critical characteristics of the WF are also 
depicted to provide insights into its behavior under different 
conditions. These characteristics include the grid frequency 𝑓𝑚, 
the total power generated by the WF 𝑃𝐺 , and the total power 
demanded, which corresponds to the output of the WFNO 
denoted as 𝑃𝐷. Notably, the figure reveals the adverse impacts 
of a fault occurring in T1 , where severe power loss triggers 
noticeable deviations in both the grid frequency and WFNO’s 
output. These deviations underscore the adverse consequences 
of faults on the WF’s performance. However, by implementing 
the recommended FTC, as depicted by the black lines in Fig. 
7(b), the WF demonstrates a remarkable ability to mitigate the 
impacts of mild and severe faults at both the individual WT and 
entire WF levels. The slight variations observed in the black line 
of Fig. 7(c) are associated with moments when mild fault 
activities start or end, or during abrupt wind speed disturbances. 
Furthermore, Fig. 7(d) reveals a critical insight: the WF, when 
operating under faulty conditions without the benefit of FTC 
(illustrated by the red line), is required to supply a greater 
amount of power compared to when FTC strategies are 
employed. 
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Fig. 6. Power responses in the faulty WTs in Scenario 1. 

Note: In this figure, green lines represent normal (fault/attack-free) operation, red lines represent operation under physical faults without FTC, and blue lines 

represent operation under physical faults with FTC (AMPCs only). 

 

 

 

   

   

 (a)  

                        

     

                           (b) (c)                         (d) 

Fig. 7. WF characteristics in Scenario 2: (a) faulty WTs’ power responses, (b) frequency, (c) WF generated power, and (d) WFNO’s output. 

Note: In this figure, green lines represent normal (fault/attack-free) operation, red lines represent operation under physical faults without FTC, blue lines represent 

operation under physical faults with FTC (AMPCs only), and black lines represent operation under physical faults with full FTC (AMPCs and CRM). 

Grid Load 
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 (a)  

                       

   

                        (b) (c)                        (d) 

Fig. 8. WF characteristics in Scenario 3: (a) faulty WTs power responses, (b) frequency, (c) WF generated power, and (d) received total demanded power. 

Note: In this figure, green lines represent normal (fault/attack-free) operation, red lines represent operation under physical faults and cyberattack without FTC and 
ARC, blue lines represent operation under physical faults and cyberattack only with full FTC (AMPCs and CRM), and black lines represent operation under 

physical fault and cyberattack with full FTC and ARC (AMPCs, CRM, and ASC). 

Table V Simulation Results for Different Parameters 

 Mild Power Loss Severe Power Loss Attack Parameter (𝜸𝒓) RMSE 

(%) 

Attack Detection (𝒕𝒅[𝒔]) 

Scenario 1 

3% in T2, T3, T4, T7, T8, and T10 - - 0.221 - 

3% in T2, T3, T4, and 7% in T7, T8, and T10 - - 0.228 - 

7% in T2, T3, T4, T7, T8, and T10 - - 0.235 - 

Scenario 2 

3% in T2, T3, T4, T7, T8, and T10 100% in T1 - 0.283 - 

3% in T2, T3, T4, and 7% in T7, T8, and T10 70% in T1 - 0.279 - 

7% in T2, T3, T4, T7, T8, and T10 50% in T1 - 0.273 - 

Scenario 3 

3% in T2, T3, T4, T7, T8, and T10 100% in T1 −0.5 × 105 0.313 376 

3% in T2, T3, T4, and 7% in T7, T8, and T10 70% in T1 −0.7 × 105 0.308 364 

7% in T2, T3, T4, T7, T8, and T10 50% in T1 −0.9 × 105 0.316 358 
 

 

Additionally, the blue lines in Fig. 7 show faulty operation with 
only AMPCs. As anticipated, while the utilization of AMPCs 
contributes to an enhancement in grid frequency, it is not as 
effective as the combined use of full FTC (both AMPCs and 
CRM). 

C. Scenario 3: Both Physical Faults and Cyberattacks 

In the third scenario, in addition to the physical faults in 

Scenario 2, ramp attack template in Subsection III.B is used. The 

ramp attack can lead to severe damages if not detected and 

mitigated in a timely manner. Figure 8 shows some of the WF 

Grid Load 
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characteristics including faulty WTs power responses, grid 

frequency, WF total generated power, and received total 

demanded power. In this figure, green lines depict normal 

operation without any faults or attacks, red lines represent 

operation affected by faults and attacks in the absence of FTC 

and ARC, blue lines illustrate operation under the influence of 

faults and attacks with the full implementation of FTC, including 

AMPCs and CRM, and lastly, black lines indicate operation 

during faults and attacks with complete FTC and ARC 

integration, involving AMPCs, CRM, and ASC. In more detail, 

Fig. 8(a) shows the WTs’ generated powers under the cyber-

physical anomalies with and without FTC and ARC. As can be 

seen, in the absence of FTC and ARC, the generated powers in 

the WTs (i.e., the red lines) suddenly decrease after about 650 s. 

After this moment, the baseline APC is not sufficient anymore 

to control the system appropriately. This is caused by the 

absolute value of the frequency error 𝑓𝑒  in Eq. (1), which 

increases due to the cyberattack, and saturates 𝑃𝐷  at its 

maximum value 𝑃𝑚𝑎𝑥. It is worth noting that although the FTC 

slightly improves the WF operation under this scenario (see the 

blue lines), it is not able to completely mitigate the cyberattack 

impacts, and the saturation of 𝑃𝐷 happens again (this time after 

about 740 s). 

 As discussed in Section IV, the IDFD system provides 𝑃෨𝐷,𝑎 

(in addition to 𝐻𝑓𝑞𝑖) that is the online estimate of the attack-

related malicious data whenever an attack is detected. According 

to the obtained results, the IDFD system can effectively detect 

and identify the cyberattack within seconds after its occurrence 

(i.e., the attack is detected at 𝑡𝑑 = 376 s) and before the actual 

grid frequency hits the threshold value of 49.2 Hz at 572 s. From 

Fig. 8(b), it is observed that the responsive mitigation of 

cyberattacks using ASC is successful since the frequency is 

maintained near the normal operation case (see the black lines). 

Moreover, Figs. 8(c) and 8(d) illustrate the WF generated power 

𝑃𝐺  and corrected demanded power 𝑃𝐷,𝑐𝑜𝑟, respectively. 

 Finally, to demonstrate the effectiveness of the proposed 

cooperative controllers in the three mentioned scenarios, 

extensive simulation studies were conducted under various 

levels of physical faults and cyberattack parameters. The 

timelines for physical faults and cyberattack are considered the 

same as before. The results are presented in Table V. In this 

table, root-mean-squared-percentage error (RMSPE), with 

respect to WF generated power, is used to measure the 

performance difference between the proposed FTC and ARC 

under fault and/or attack conditions and the baseline controller 

during normal operation. Furthermore, the table displays the 

attack detection times from the IDFD system. As can be seen, all 

simulations clearly show the successful performance of the 

cooperative FTC and ARC (i.e., AMPCs, CRM, and ASC) in 

handling both the physical faults and cyberattacks.  

VI. CONCLUSIONS AND FUTURE WORKS 

To address the growing threat of cyberattacks in addition to 

physical faults against wind farms (WFs), this paper proposes a 

novel intrusion detection and fault diagnosis (IDFD) system 

along with a hybrid cooperative fault-tolerant control (FTC) and 

attack-resilient control (ARC) design. The IDFD system 

continuously monitors in real-time to detect and identify 

physical faults (i.e., power loss due to blade erosion or debris 

accumulation on wind turbine (WT) blades) and cyberattacks 

(i.e., data integrity attacks targeting the WF network operator 

(WFNO)). To handle the impacts of mild physical faults, 

adaptive model predictive controllers (AMPCs) are employed at 

the WT level. For severe physical faults, the FTC uses a control 

reallocation mechanism (CRM) at the WF level. Additionally, 

the ARC responsively addresses the impacts of detected 

cyberattacks on the safe and secure regulation of active power 

from the WF using an automatic signal correction (ASC) 

technique. All simulations based on an advanced WF benchmark 

demonstrate the effectiveness of the IDFD as well as the FTC 

and ARC, offering an efficient solution adaptable to a variety of 

physical faults and cyberattacks. 
Future research can expand upon this hybrid approach by 

addressing other common physical faults observed in WFs, such 
as issues like misaligned blades due to improper installation or 
variations in drivetrain damping. Additionally, researchers can 
investigate various types of cyberattacks, including those 
targeting control and monitoring systems at both the WF 
dispatch control and individual WT levels. Furthermore, future 
research directions can delve into the integration of these aspects 
to develop a more comprehensive WF management solution. 
This expanded approach would encompass the mitigation of 
mechanical damages and the consideration of broader impacts 
resulting from physical faults and/or cyberattacks. This holistic 
strategy holds the potential to significantly enhance the overall 
resilience and performance of WFs. 
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