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Abstract

In this paper, we investigate Dual-Primal Isogeometric Tearing and Intercon-
necting (IETI-DP) methods for conforming Galerkin discretizations on multi-
patch computational domains with inexact subdomain solvers. Recently, the
authors have proven a condition number estimate for a IETI-DP solver that is
explicit, among other parameters, in the grid size and the spline degree. The
analysis assumes that the local subproblems are solved exactly, e.g., using a
direct solver. In the present paper, we change the method in order to allow
inexact solvers for the local subproblems, namely solvers based on the fast di-
agonalization method. This gives a faster overall solver, maintaining the same
explicit condition number bound.

1 Introduction

We are interested in a fast solver for linear systems that are obtained from the dis-
cretization of boundary value problems using Isogeometric Analysis (IgA; [5]) schemes.
We consider computational domains that are composed of multiple non-overlapping
patches, for which FETI-DP type algorithms are a canonical choice. Adaptations of
FETI-DP, introduced in [2], have already been made to IgA, see, e.g., [7, 3]. This
approach is sometimes called Dual-Primal Isogeometric Tearing and Interconnecting
(IETI-DP) method. Recently, a convergence analysis for IETI-DP methods that is
explicit in the grid sizes, the patch diameters, the spline degree and other parameters
like the smoothness of the splines within the patches or the number of patches was
carried out for a conforming Galerkin IgA discretization, see [10]. There, the authors
considered a Schur complement IETI-DP method, where the subdomain problems are
solved with sparse direct solvers. In case of large subdomain problems, direct solvers
slow down the overall algorithm and require a lot of memory resources. The saddle
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point formulation of IETI-DP allows the use of inexact local solvers. The successful
use of inexact solvers for FETI-DP has already been demonstrated in [4, 6]. In this
paper, we use the fast diagonalization (FD) method introduced in [9] to construct
solvers for the local subproblems. We show that the inexact IETI-DP version satisfies
the same condition number bound as the IETI-DP solver from [10].

The structure of the paper is as follows. Section 2 is devoted to the introduction of
the model problem and the IETI-DP solver. In Section 3, we give a condition number
estimate of the preconditioned system. Numerical results are presented in Section 4.

2 Model problem and its solution

Let Ω ⊂ R2 be an open and bounded Lipschitz domain with boundary ∂Ω and
f ∈ L2(Ω) be a given source function. We consider the following model problem:
Find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ H1
0 (Ω). (1)

We assume that Ω is composed of K non-overlapping patches Ω(k) that are parame-
terized with geometry mappings

Gk : Ω̂ := (0, 1)d → Ω(k) := Gk(Ω̂),

where any two patches with non-empty intersection share either a common vertex or
a common edge, cf. [10, Ass. 2]. Additionally, we assume that the number of patches
sharing a vertex is uniformly bounded, cf. [10, Ass. 3]. Moreover, we assume that
there is a constant CG such that

∥∇Gk∥L∞(Ω̂) ≤ CGHk and ∥(∇Gk)
−1∥L∞(Ω̂) ≤ CGH−1

k , (2)

where Hk := diam(Ω(k)) is the patch size, see [10, Ass. 1]. The local discretization

spaces on the parameter domain Ω̂ are tensor-product B-splines spaces of degree p
with bases obtained using the Cox-de Boor formula. We assume that these spaces are
based on quasi-uniform grids with sizes ĥk, see [10, Ass. 4]. The local discretization
spaces on the physical patches Ω(k) are obtained by the pull-back principle. The
quantity hk := Hkĥk measures the grid size on the physical domain. We assume that
the geometry mappings as well as the discretizations agree on all interfaces between
patches, cf. [10, Ass. 5]. So, we are able to set up a fully matching discretization with
the function space

V = {v ∈ H1
0 (Ω) : v ◦Gk is a B-spline function} ∩ C(Ω).

The corresponding discrete problem is obtained by restricting the variational prob-
lem (1) to this space.



In the following, we introduce the IETI-DP solver. The patches from the definition of
the computational domain provide a canonical choice of substructures which we use to
set up the solver. By assembling the variational problem (1) on the patches separately,
we obtain yet uncoupled local systems

A(k)u(k) = f (k) for k = 1, . . . , K,

where A(k) is the local stiffness matrix and f (k) is the local source vector.

Following the DP approach, we need to select a set of primal degrees of freedom. We
restrict ourselves to choosing the function values at the corners of the patches as primal
degrees of freedom, see [10, Alg. A]. By splitting of the degrees of freedom into the
corner values (index C) and the remaining degrees of freedom (index ∆), we obtain

A(k) =

(
A

(k)
CC A

(k)
C∆

A
(k)
∆C A

(k)
∆∆

)
, u(k) =

(
u
(k)
C

u
(k)
∆

)
, f (k) =

(
f (k)

C

f (k)

∆

)
. (3)

As local spaces, we choose the patch-local functions where the corner values vanish,
so the still uncoupled local systems are

A
(k)
∆∆u

(k)
∆∆ = f (k)

∆∆
for k = 1, . . . , K. (4)

Moreover, we need a primal space spanned by energy minimizing basis functions that
form a nodal basis for the primal degrees of freedom. This basis is represented by the
matrix Ψ(k) that is characterized by the linear system(

A(k) (C(k))⊤

C(k)

)
︸ ︷︷ ︸

=: Ã(k)

(
Ψ(k)

∆(k)

)
=

(
0

R
(k)
c

)
, (5)

where C(k) = (C
(k)
C , C

(k)
∆ ) = (I, 0) is a matrix that represents the evaluation of the

primal degrees of freedom and R
(k)
c is a binary local-to-global mapping that identifies

the local ordering of the primal degrees of freedom and their global ordering. We
compute Ψ(k) by solving (5) using a MINRES solver, preconditioned with

P̃ (k) =

(
(Â

(k)
M )−1

(C(k)(Â
(k)
M )−1C(k))−1

)
,

where
Â

(k)
M := Â(k) + γkM̂

(k)e
(k)
h (e

(k)
h )⊤M̂ (k),

Â(k) is the stiffness matrix on the parameter domain (obtained from discretizing
∫
Ω̂
∇û·

∇v̂ dx), M̂ (k) is the analogously defined mass matrix and e
(k)
h represents the constant

function with value 1. We choose γk = 1 if Ω(k) does not contribute to the Dirichlet
boundary ∂Ω and γk = 0 otherwise. The application of (Â

(k)
M )−1 is realized with the



fast diagonalization (FD) method, see [9]. After the computation of all matrices Ψ(k),
we obtain the global primal basis representation matrix Ψ by canonical mappings.

To ensure continuity, we introduce jump matrices B(k), where the condition∑K
k=1B

(k)u(k) = 0 holds if and only if the basis functions are continuous between the
patches (except the continuity at the corners), in the usual way, see [10, Section 3]. The

matrices B
(k)
∆ are obtained from B(k) again by eliminating the entries corresponding

to the primal degrees of freedom.

The overall IETI-DP saddle point system is obtained by coupling the local systems (4)
and the primal system using the jump matrices and reads as follows:

A
(1)
∆∆ (B

(1)
∆ )⊤

. . .
...

A
(K)
∆∆ (B

(K)
∆ )⊤

AΠ B⊤
Π

B
(1)
∆ · · · B

(K)
∆ BΠ 0




u
(1)
∆
...

u
(K)
∆

uΠ

λ

 =


f (1)

∆
...

f (K)

∆

f
Π

0

 , (6)

where

AΠ :=
K∑
k=1

(Ψ(k))⊤A(k)Ψ(k), f
Π
:= Ψ⊤f and BΠ :=

K∑
k=1

B(k)Ψ(k).

We solve (6) with a MINRES solver, preconditioned with

P := diag (P,A−1
Π , M̂sD), (7)

where P := diag (P (1), · · · , P (K)) and P (k) := Q(k)(Â
(k)
M )−1(Q(k))⊤ and

Q(k) := (A−1
∆∆A∆C , I) is the A(k)-orthogonal projection from the local function space

into the space of functions with vanishing corner values; its entries can be extracted
from Ψ(k) = (I,−((A

(k)
∆∆)

−1A
(k)
∆C)

⊤)⊤Rc. The matrix Â
(k)
M is defined as above and

realized using the FD method. A−1
Π is realized using a direct solver. For the setup

of the inexact scaled Dirichlet preconditioner M̂sD, we define analogously to (3) a
splitting into basis functions vanishing at the interfaces (index I) and remaining basis
functions (index Γ). Then, we define

M̂sD := BΓD
−1ŜD−1B⊤

Γ ,

where Ŝ := diag(Ŝ(1), . . . , Ŝ(K)) with Ŝ(k) := Â
(k)
ΓΓ − Â

(k)
ΓI (Â

(k)
II )

−1Â
(k)
IΓ . The diagonal

matrix D is based on the principle of multiplicity scaling, cf. [10]. The application of

(Â
(k)
II )

−1 is also realized using the FD method.



3 Analysis of the method

3.1 Analysis of the main iteration

First, we show that the chosen preconditioners for the local problems are optimal up
to constants.

Lemma 3.1. The preconditioner P (k) = Q(k)(Â
(k)
M )−1(Q(k))⊤ is spectrally equivalent

to the matrix (A
(k)
∆∆)

−1, i.e., P (k) ≂ (A
(k)
∆∆)

−1.

Proof. We show the equivalent statement A
(k)
∆∆P

(k)A
(k)
∆∆ ≂ A

(k)
∆∆. Since we assume (2),

[10, Lemma 4.13] yields A(k) ≂ Â(k). From this observation, the desired result follows
immediately if ∂Ω(k)∩∂Ω ̸= ∅. For the case ∂Ω(k)∩∂Ω = ∅, we define eh be the vector
representing the constant function with value 1. Due to the definitions of P (k), the
A(k)-orthogonal projection Q(k), we get using the norm equivalence, [10, Lemma 4.13],
that

A
(k)
∆∆P

(k)A
(k)
∆∆ = A

(k)
∆∆Q

(k)(Â(k) + M̂ (k)ehe
⊤
h M̂

(k))−1(Q(k))⊤A
(k)
∆∆

=
(
A

(k)
∆C A

(k)
∆∆

)
(Â(k) + M̂ (k)ehe

⊤
h M̂

(k))−1

(
A

(k)
C∆

A
(k)
∆∆

)

≂
(
0 I

)
A(k)(A(k) +X)−1A(k)

(
0
I

)
=
(
0 I

)
A(k)

(
0
I

)
︸ ︷︷ ︸

= A
(k)
∆∆

−
(
0 I

)
A(k)(A(k) +X)−1X

(
0
I

)
,

where X := H−4
k M (k)ehe

⊤
hM

(k) and M (k) is the mass matrix on the physical patch.
From (A(k) + X)eh = 0 + H−4

k M (k)ehe
⊤
hM

(k)eh = |Ω(k)|H−4
k M (k)eh we obtain (A(k) +

X)−1M (k)eh = |Ω(k)|−1H4
keh. In total, we obtain

A
(k)
∆∆P

(k)A
(k)
∆∆ ≂ A

(k)
∆∆ − |Ω(k)|−1H4

k

(
0 I

)
A(k)eh︸ ︷︷ ︸
= 0

e⊤hM
(k)

(
0
I

)
,

which finishes the proof.

Let B∆ := (B
(1)
∆ , . . . , B

(K)
∆ ). Using algebraic reformulations and Lemma 3.1, it follows

that the approximate Schur complement matrix F̂ = B∆PB⊤
∆+BΠA

−1
Π B⊤

Π is spectrally
equivalent to the IETI-DP matrix F from [10].

An analogous statements holds for the scaled Dirichlet preconditioner
MsD = BΓD

−1SD−1B⊤
Γ and M̂sD = BΓD

−1ŜD−1B⊤
Γ by using the fact that Ŝ(k) and

S(k) represent discrete harmonic extensions, i.e., the extensions that minimize the



energy norm and the norm equivalence, [10, Lemma 4.13], again applicable because
of (2).

The following theorem shows that the use of our proposed preconditioner P does not
degrade the qualitative behavior of the condition number estimate from [10, Theorem
4.1] for the overall system.

Theorem 3.2. Under the presented assumptions, the condition number of the sys-
tem (6) preconditioned with (7) is bounded by

C p

(
1 + log p+ max

k=1,...,K
log

Hk

hk

)2

,

where the constant C only depends on the constant CG, the quasi-uniformity constant
(see [10, Ass. 4]) and the maximum number of patches sharing a vertex (see [10,
Ass. 3]).

Proof. All constants in this theorem are positive and only depend on the abovemen-
tioned constants. Using [8, Theorem 22] and [10, Theorem 4.1], we have

σ(MsDF ) ⊆

[
1, p

(
1 + log p+ max

k=1,...,K
log

Hk

hk

)2

σ1

]

for some constant σ1. Using the equivalences F ≂ F̂ and MsD ≂ M̂sD, we obtain

σ(M̂sDF̂ ) ⊆

[
σ2, p

(
1 + log p+ max

k=1,...,K
log

Hk

hk

)2

σ2

]
(8)

for constants σ2 and σ2. Using Lemma 3.1, we get

σ(PA∆∆) ⊆ [σ3, σ3], (9)

where A∆∆ := diag (A
(1)
∆∆, . . . , A

(K)
∆∆), with some constants σ3 and σ3. The theorem of

Brezzi, cf. [1], in combination with (8) and (9) concludes the proof.

3.2 Analysis of the system for the primal basis

In this subsection, we show a condition number result that guarantees that the local
MINRES solvers required to obtain the local bases Ψ(k) can be realized with a com-
putational cost that does not exceed the complexity of the main iteration. First, we
need to show an auxiliary lemma.

Lemma 3.3. Let û be a B-spline function of degree p over a quasi uniform grid on Ω̂
with grid size Ω̂ and assume that û(0) = 0. Then,(∫

Ω̂

û(x)dx

)2

≲

(
1 + log p+ log

1

ĥ

)
|û|2

H1(Ω̂)
.



Proof. We decompose û = û0 + c such that
∫
Ω̂
û0(x) dx = 0 and c =

∫
Ω̂
û(x) dx ∈ R.

[10, Lemma 4.14] yields

|û0(0)|2 ≲
(
1 + log p+ log

1

ĥ

)
∥û0∥2H1(Ω̂)

.

Using Poincaré’s inequality, we obtain

|û0(0)|2 ≲
(
1 + log p+ log

1

ĥ

)
|û0|2H1(Ω̂)

=

(
1 + log p+ log

1

ĥ

)
|û|2

H1(Ω̂)
.

û(0) = 0 implies |û0(0)| = |c| = |
∫
Ω̂
û(x) dx|, which finishes the proof.

Theorem 3.4. For k = 1, . . . , K, the condition number of P̃ (k)Ã(k) is bounded by

C

(
1 + log p+ log

Hk

hk

)
,

where the constant C only depends on the constant CG and the quasi-uniformity con-
stant (see [10, Ass. 4]).

Proof. We prove this equivalence by showing that the assumptions of Brezzi’s theo-
rem [1] are satisfied. By the norm equivalence [10, Lemma 4.13], we obtain A(k) ≂ Â(k).

In the kernel of C(k), we use Lemma 3.3 to obtain the equivalence A(k) ≂ Â(k) ≂ Â
(k)
M .

This kernel coercivity and the boundedness assumptions on A(k) are satisfied. The
remaining inf-sup and boundedness conditions are trivially fulfilled due to the use of
a Schur complement preconditioner. Hence, the statement of the theorem follows.

4 Numerical results

In this section, we show numerical results of the proposed inexact IETI-DP method for
the computational domains as given in Fig. 1. The first domain is a quarter annulus
consisting of 32 patches and the second one is the Yeti-footprint decomposed into 84
patches.

We consider the model problem

−∆u(x, y) = 2π2 sin(πx) sin(πy) for (x, y) ∈ Ω

with homogeneous Dirichlet boundary conditions. Within each patch, we use B-splines
of degree p and maximum smoothness Cp−1. The coarsest discretization space (r = 0)
is the space of patchwise global polynomials, only the more rectangular patches of the
Yeti-footprint have one inner knot on each of the longer sides of the patches. The
subsequent refinements r = 1, 2, . . . are obtained via uniform refinement steps.



Figure 1: Computational domains; Quarter annulus (left); Yeti-footprint (right)

All numerical experiments have been carried out using the C++ library G+Smo1, the
CPU times have been recorded on the Radon12 Cluster in Linz.

We compare three different IETI-DP solvers: the proposed solver as introduced in
Section 2 (=MFD), a IETI-DP solver for the saddle point system (6) without the
primal degrees of freedom eliminated with direct solvers for the local subproblems
(=MLU), and the Schur complement based approach as introduced in [10] (=CGLU).
We use MINRES as outer solver in the cases MFD and MLU and conjugate gradient as
outer solver for the case CGLU. For MLU and CGLU, we use sparse direct LU solvers
from the Pardiso project3 for the local subproblems and for computing the bases Ψ(k).
We start all numerical experiments with zero initial guess and stop the iterations if
the ℓ2-norm of the residual vector is reduced by a factor of 10−6 compared to the
ℓ2-norm of the right-hand side vector. For MFD, the primal bases Ψ(k) are solved with
MINRES up to an accuracy of 10−8.

In the Tables 1 and 2, we present the timings of the algorithms on the quarter an-
nulus domain. The time required for computing the primal basis Ψ is indicated with
the same letter. The accumulated setup and application times of the different local
preconditioners for all patches K are indicated by ΘS and ΘA, respectively. Moreover,
we present the overall solving times and the number of iterations (it.) required by the
main Krylov space solver.

We observe that the solving and total times required by MFD are three to five times
smaller compared to the other methods MLU and CGLU. MFD is much faster than

1https://github.com/gismo/gismo
2https://www.ricam.oeaw.ac.at/hpc/
3https://www.pardiso-project.org/

https://github.com/gismo/gismo
https://www.ricam.oeaw.ac.at/hpc/
https://www.pardiso-project.org/
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Figure 2: Solving times for p = 5 (left) and r = 7 (right); MFD (blue lines); MLU
(red lines); CGLU (green lines); Quarter annulus
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Figure 3: Solving times for p = 3 (left) and r = 6 (right); MFD (blue lines); MLU
(red lines); CGLU (green lines); Yeti-footprint

the other methods despite the fact that the required number of iterations are up to
approximately six times larger. One disadvantage of MFD is the computation of the
primal basis Ψ. The tables show a larger computation time when using MFD. This is
a weakness of the classical preconditioned MINRES method when applied to problems
with multiple right-hand sides. In general, we have to solve systems with four right-
hand sides to compute Ψ(k). Moreover, we see that the setup and application of the
FD based preconditioner is much faster compared to the factorization of the matrices
Ã(k) and the application of these factorizations. Table 2 shows another advantage of
the MFD method. Since its memory footprint is smaller, it also provides a solution
vector to the considered linear system for the refinement level r = 8. The plots in
Fig. 2 visualize solving times of the IETI-DP solvers on the quarter annulus domain.
We mark the performance of MFD with blue lines and triangles, MLU with red lines
and squares and the performance of CGLU is indicated with green lines and crosses.
In both graphs, we observe that MFD is the fastest algorithm. In the left plot, we see



r Ψ ΘS ΘA solving total it.

MFD 6 1.2 0.1 0.4 4.2 5.5 71

MLU 0.8 7.6 21.2 43.0 51.4 37

CGLU 0.8 7.6 9.5 17.0 15.4 15

MFD 7 8.0 0.3 4.9 25.0 33.3 80

MLU 4.0 42.3 106.4 216.0 262.3 39

CGLU 4.0 42.3 45.4 81.0 127.3 15

MFD 8 35.5 2.0 26.9 126.3 163.8 88

MLU 18.1 243.6 503.8 1015.0 1276.7 41

CGLU 18.0 242.1 225.3 412.0 672.1 17

Table 1: Alg. A; p = 5; timings in sec.; Quarter annulus

r Ψ ΘS ΘA solving total it.

MFD 6 2.5 0.2 0.5 8.2 10.9 76

MLU 1.2 17.9 33.8 72.0 91.1 39

CGLU 1.2 17.8 14.4 26.0 45.0 15

MFD 7 15.1 0.4 5.4 41.0 56.5 84

MLU 5.8 105.0 163.3 343.0 453.8 41

CGLU 5.8 105.0 73.8 134.0 244.8 17

MFD 8 60.1 2.3 29.9 200.0 262.4 94

MLU OoM

CGLU OoM

Table 2: Alg. A; p = 8; timings in sec.; Quarter annulus

that for spline degree p = 5, the solving times increase rather linearly with respect
to the number of unknowns. Moreover, the left graph shows that MFD computes
the solution for the linear system even for refinement level r = 9 (≈ 8.5Mdofs). In
the right graph, we present the solving times with respect to the spline degree for
refinement level r = 7. The solving times for the three IETI-DP solvers increase about
linearly with the spline degree.

The plots in Fig. 3 show solving times of the IETI-DP solvers on the Yeti-footprint. We
marked the performance of the different IETI-DP solvers as above in the experiments
on the quarter annulus. The plot on the left shows the increase of the solving time
with respect to the refinement level with polynomial degree p = 3 and the plot on the
right shows the increase of the solving time with respect to the polynomial degree,
where we have fixed the refinement level to r = 6. As for the quarter annulus, we
see that MFD is superior compared to MLU and CGLU also on the Yeti-footprint
with respect to the solving times and the smaller memory footprint of MFD allows
us to consider larger problems. In both plots, we observe similar growth rates of the
solving time for all three solvers as in Fig. 2. In the Tables 3 and 4, we present and
compare the required timings for the polynomial degrees p = 3 and p = 7 for different



r Ψ ΘS ΘA solving total it.

MFD 5 0.7 0.1 0.8 6.8 7.6 213

MLU 0.3 2.3 9.4 19.0 21.6 45

CGLU 0.3 2.3 4.5 8.0 10.6 20

MFD 6 3.4 0.2 5.0 31.0 34.6 242

MLU 1.2 10.5 49.6 100.0 111.7 51

CGLU 1.2 10.4 23.1 42.0 53.6 22

MFD 7 21.8 1.2 52.7 212.0 235.0 274

MLU 6.8 50.3 295.2 600.5 657.6 55

CGLU 6.8 50.1 126.1 234.0 290.9 22

Table 3: Alg. A; p = 3; timings in sec.; Yeti-footprint

r Ψ ΘS ΘA solving total it.

MFD 5 2.2 0.2 1.2 20.0 22.4 249

MLU 0.6 10.5 23.5 48.0 59.1 51

CGLU 0.6 10.4 10.9 19.0 30.0 22

MFD 6 9.5 0.4 5.9 79.0 88.9 282

MLU 3.0 44.8 140.5 286.0 333.8 57

CGLU 3.0 44.8 60.6 111.0 158.8 23

MFD 7 54.2 1.5 63.2 414.0 469.7 309

MLU 14.1 265.3 739.1 1521.0 1800.4 61

CGLU 13.8 261.7 304.4 570.0 845.5 25

Table 4: Alg. A; p = 7; timings in sec.; Yeti-footprint

refinement levels for the Yeti-footprint.

To conclude, we presented a fast IETI-DP method which allows the incorporation
of inexact solvers for the local subproblems while maintaining the condition number
bound as established in [10]. It is beneficial both because of its smaller memory
footprint and its faster convergence for the model problems.
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