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Abstract—Remote ship pilotage, smart fairway navigation,
autonomous maritime transport and smart maritime logistics
present new challenges to the maritime industry. One of the
challenges is increasing dependency on reliable network con-
nectivity that can range from low priority entertainment com-
munications to high priority safety critical communications.
Traffic prioritization is needed at the open sea, where ships
typically resort to expensive satellite connectivity that incurs long
latency and narrow bandwidth. Near the coastline, ships can
switch to 5G-based communications with low latency and high
bandwidth, and possibly even utilize low-latency edge computing
capabilities. Our contribution in this paper is a cloud-based
networking testbed that supports network traffic shaping to
emulate satellite and 5G-based communications between an edge
cloud located onboard a ship and another edge cloud located
onboard another ship or at the shore under traffic loss scenarios.
Potential use-cases for our work include emulation of peer-to-peer
communications (i.e., ship-to-ship or ship-to-shore) and mesh
networking. The system can also be used as a basis for real-
time ship networking, for instance, as building block for traffic
prioritization in Kubernetes-based edge clouds.

Index Terms—maritime; networking; 5G; satellite; Kuber-
netes; edge cloud

I. INTRODUCTION

Maritime industry is slowly being digitalized due to new
emerging use cases. For example, remote ship pilotage could
be common in near future, especially when a ship arrives at
or leaves the harbor. In such a case, the harbor pilot does
not have to physically board the ship but could rather operate
the ship remotely. Of course, a natural extension to this are
completely autonomous ships, for which, the biggest obstacles
are still perhaps related to maritime laws that do not allow yet
unmanned ships. As another use case, smart fairway navigation
could be used, for instance, for increasing ship safety to avoid
collisions using sensor fusion but also to optimize the speed of
ships to avoid congestion at harbors. Finally, transport logistics
chains can be optimized according to the ship arrival at harbor,
and to minimize the ship turnaround time.

One critical factor in all of the maritime digitalization use
cases is network connectivity. At the open sea, satellite con-
nectivity is the main option but it is typically avoided because
it can be rather expensive. Ships usually utilize terrestial

cellular connnectivity at the proximity of a harbor. The two
different connectivity types have very different characteristics.
For example, 5G connectivity offers high bandwidth and low
latency as shown in table I. In contrast, satellite connectivity
typically is quite the opposite as shown in table II, and
thus may even require traffic classification and prioritization.
Similarly to satellite networking, ship mesh networking may
also incur long latency, and is not yet commonplace.

To digitalize ships and harbors for automated or remote pi-
lotage, some IT infrastructure needs to be placed both onboard
the ships and at harbors. We envision that such infrastructure
consists of edge cloud infrastructure that can be seamlessly
connected together at the infrastructure level rather than using
some narrow APIs for remote monitoring and control. This
way, a ship can utilize directly the computational resources
of the harbor or remote control center, for example, to enable
AI-assisted or completely AI-operated docking sequence of
the ship.

In this paper, we emulate ship-to-ship or ship-to-shore edge
cloud networking to understand how it behaves under wireless
conditions. Contrary to datacenter internal or even datacenter-
to-datacenter networking scenarios, we also consider packet
loss scenarios occurring due to wireless connectivity. We
mostly focus on emulating of different network profiles with
cloud external tools but we also provide some insight to cloud
internal tools. As Kubernetes is the industrial de facto stan-
dard, we are also utilizing it to provide the cloud infrastructure
in our experiments. Our benchmarks are limited throughput
measurements because latency is not usually the main issue
with slowly moving ships.

City Operator Download
(Mbps)

Upload
(Mbps)

Latency
(ms)

Cardiff Vodafone 181.96 17.74 20
Cardiff EE 168.47 18.27 32
Edinburgh EE 168.97 11.47 42
London O2 127.98 8.00 26

Table I
5G PERFORMANCE IN UK CAPITAL CITIES (ADAPTED FROM [1])



Provider Download
(Mbps)

Upload (Mbps) Latency (ms)

Starlink 97.23 13.89 45
HughesNet 19.73 2.43 724
Viasat 18.13 3.38 630

Table II
SATELLITE INTERNET PERFORMANCE IN THE US (ADAPTED FROM [2])

II. RELATED WORK

We utilize three alternative network solutions for Kubernetes
in this paper. We have earlier benchmarked and compared two
of them, Network Service Mesh (NSM) and Calico, in high
speed networking scenarios in multi-cluster environment [3].
The mentioned publication describes multi-cloud networking
in NSM in more detail, and will not be covered in this
paper because we utilize NSM based connectivity here as a
simple bitpipe. Others [4] have compared Calico and Cilium
in multi-cluster environments. Compared to the prior art, our
contribution involves benchmarking Kubernetes networking in
packet loss and traffic shaping scenarios.

Federated Kubernetes (KubeFed) allows joining multiple
Kubernetes clusters into a single logical cluster. KubeFed
supports only starting and terminating of Linux containers in
different Kubernetes clusters but it does not support network
connectivity between the containers across cluster boundaries.
For this, cross-cluster network connectivity solutions, such
as NSM or Cilium, are required for Kubernetes. We have
qualitatively analyzed some of these cross-cluster solutions in
our earlier work [3]. KubeFed is not analyzed further in this
paper because the focus will be on cross-cluster networking.

Kidston et al [5] model and simulate ship networking for
traffic engineering purposes in a naval scenario where ships
communicate either directly with each other over radio or
over a satellite link, relayed by a command center. The traffic
engineering consists of monitoring health of the maritime
network, traffic prioritization into different quality of service
classes using Differential Services, and adaptive routing to
switch into a more suitable communication link. Our work
differs from their work because we are emulating wireless
network with wired but the rest of the infrastructure in our
work is "real", whereas their work is based on simulations. We
also provide insight into Kubernetes networking and 5G traffic
emulation. Our work complements their original and solid
work, and we believe that combining their traffic classification
ideas with the modern traffic shapers we have experimented
with would be a good match.

Dummynet is a link emulator found natively in FreeBSD
and macOS [6]. It allows shaping of network traffic by feeding
packets through ”pipes” for which bandwidth parameters can
be set. Parameters such as bandwidth, delay and Packet Loss
Rate (PLR) together can be used to emulate different types of
link conditions combined with packet scheduling and queue
management. Packets can be driven through multiple pipes
with dynamic rulesets based on, e.g., source, destination and
random probabilities. Alternative link emulation and traffic

shaping tools for Linux are Traffic Control (TC) and Netem [7]
and the Extended Berkeley Packet Filter (eBPF) [8].

There also has been some research on TCP performance
over satellite links that discusses some potential issues relating
to e.g. TCP’s slow start mechanism, link asymmetries and
congestion avoidance [9]. Henderson et. al also discovered
that Geostationary satellite (GEO) -based connections are not
as good performing as Low Earth Orbit (LEO)-based ones due
the high Round Trip Time (RTT). Our measurements should
also confirm this even without emulating the whole satellite
system.

III. TEST ENVIRONMENT

The test environment consists of three different Kubernetes
(version 1.21.8) clusters running on Ubuntu 20.04.3 LTS. Two
of the clusters are virtualized on top of SmartOS (Release
20220421T000508Z) hypervisors and one is running on "bare
metal" on a set of four physical Intel Atom-based servers. One
additional server is located between the physical cluster and
the virtualized ones, and the server acts as a link emulator.
NSM based connectivity is set up automatically prior to
measurements, so NSM v0.2 acts as a VXLAN based bitpipe
from the viewpoint of measurements. On both Kubernetes and
host side, Maximum Transmission Unit (MTU) is lowered
from 1500 to 1440 due to the extra overhead in VXLAN tunnel
headers.

A. Virtual Machines

The virtual machines are running inside an illumos zone,
which is a jail-like 1lightweight virtualization technology
inherited from SUN Solaris[10], on top of type-2 hypervisor
called ”bhyve”[11] on the SmartOS servers. The Kubernetes
clusters are deployed on two separate physical SmartOS
servers and consist of four virtual machine nodes each. The
servers are not dedicated only to this project and thus also
include unrelated virtual machines that consume the total
resources available. The version of Ubuntu in use is the
20.04.3 LTS that was first installed from the official Joyent
provided ubuntu-certified-18.04 image as a bhyve VM and
then upgraded to the 20.04.3 LTS version. We opt to use bhyve
instead of KVM as bhyve is the better supported Hardware
Virtual Machine (HVM) system on the illumos platform.

B. Physical Machines

The physical machines are fully dedicated to run the Ku-
bernetes clusters and are installed on of Ubuntu 20.04.3 LTS
as well. Furthermore, each of the bare metal Atom servers
are identical in hardware configuration running on Intel Atom
C3558 CPU with 64 Gigabytes of RAM.

C. Network Setup

The network between the SmartOS hypervisors is con-
structed via 10 Gigabit trunks with 10 Gigabit routing on
them 1. The networking inside the hypervisors uses the illumos
Crossbow network virtualization, another technology inherited

1https://www.usenix.org/system/files/login/articles/1085-mckusick.pdf



from SUN Solaris[12], that provides fully virtualized network
stacks to each of the VMs. The uplink connection between the
SmartOS hypervisors and the link emulator is a one gigabit
connection. Furthermore, the downlink connection from the
link emulator to the Atom server is one gigabit. The final piece
of the network setup is the use of NSM as the Kubernetes
network plugin through which all our emulated traffic flows.
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1GbeVirtual Cluster 1
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Figure 1. Network Setup

D. Link emulator

The link Emulator is a physical desktop computer running
FreeBSD 13.0-RELEASE-p11. The server itself has Intel Core
i7-6700 CPU with 32 Gigabytes of memory. The network
connection to the Atom cluster and to upstream is established
via quad port Intel PRO/1000 Gigabit Network Interface
Card (NIC). Network emulation is performed by FreeBSD’s
integrated ipfw with dummynet[6] set up as a bridge on the
quad port NIC. The dummynet has also been set up with two
different pipes for tuning the downlink and uplink parameters
independently.

E. Kubernetes Internal Traffic Shaper

Our experimentation with Kubernetes internal tools are
tested in a different environment than in the previous sections.
While the previous test cases utilize NSM framework, it does
not yet support for traffic shaping. However, two other popular
network plugins for Kubernetes, Calico and Cilium, do have
bandwidth shaping capabilities. We benchmark Calico 3.23.2
and Cilium 1.11.6. Contrary to the other benchmarks, we
utilize only a single Kubernetes cluster, due to the inter-cluster
communication issues with Calico. The cluster consists of one
master node and two worker nodes, each running in their
separate VMs, based on KVM virtualization and operated in
an OpenStack environment (Pike release).

IV. THROUGHPUT MEASUREMENTS

For the measurements we opt to emulate two different
scenarios. In the first scenario, the ship is at or near a port
with fast 5G connection. In the second scenario, the ship is

underway and must utilize satellite connectivity. In addition
to link bandwidth we also emulate scenarios where the link
quality is deteriorated. The deterioration of the link is achieved
by varying dummynet PLR value between 0 and 0.1 in 0.01
increments. The PLR is a floating-point value between 0 and
1 where 0 is 0% and 1 is 100% packet loss. In addition, the
network setup is also designed to some extent emulate a ship-
to-shore (or ship-to-ship) communications where the physical
cluster acts a ship connected to the cluster running on the VMs
acting as the datacenter at the shore.

The measurements are conducted with iperf3 as the packet
source, connecting from NSM3-1 client to destination server
running on the NSM1-1 VM. The iperf measurement is taken
with 20 second interval and total measurement time of 60
seconds per service data rate (or bandwidth in iperf terms) for
each of the PLR values. The command line parameters used
in the measurement are shown in listing 1.

Listing 1. benchmarking script
f o r b i t r a t e in 10K 100K 500K 1000K 1500K 2000K
do

i p e r f 3 − i 20 − t 60 −b \ ${ b i t r a t e } −c \ ${
s e r v e r i p } − f k

s l e e p 5
done

The measurement is conducted utilizing NSM based con-
nectivity both on the Ubuntu host machine as well as on
the Kubernetes node. The host measurement is used as a
baseline to evaluate the impact of Kubernetes networking on
the throughput performance.

A. Service Data Rates

Maritime Radio Communications Plan (MRCP) developed
by International Association of Marine Aids to Navigation and
Lighthouse Authorities (IALA) classifies maritime services
into three different categories [13]:

• Safety Services (e.g. Radar, GMDSS, LiDAR, SAR)
• Operational Services (e.g. Weather, Chart Updates, Ship

reporting)
• Commercial Services (e.g. Cargo Telemetry, VoIP, Info-

tainment)
Out of these data services the ones we have selected to

emulate are demonstrated in table III.

Service Data Rate
GMDSS 10 Kbps
Radar/AIS 100 Kbps
Infotainment 1500 Kbps
LIDAR 2000 Kbps

Table III
BANDWIDTH USED BY DATA SERVICE

In addition to listed service data rates we have conducted
measurements for 1000 Kbps and 500 Kbps to investigate
more precisely the breaking point where bandwidth limitations
have adverse effects on the link quality.

For the link emulation two 5G links were selected based on
values measured by others [14], [15]. The values are rounded



to an even number and round trip latencies are divided by two
to provide the same value for both uplink and downlink.

As for maritime satellite providers, the testbed environ-
ment is configured to emulate a GEO satellite network. The
bandwidth for the first link and a typical delay for such
network are taken from other sources [16], [17] respectively.
For the second satellite link, Ookla measurements are utilized
as the reference value (Table II). According to the mentioned
references, Table IV summarizes the parameters selected for
the dummynet.

Service Uplink (Mbps) Downlink
(Mbps)

Latency
up/down
(ms)

Satellite #1 5 30 125/125
Satellite #2 3 18 315/315
5G #1 88 535 6/6
5G #2 29 592 13/13

Table IV
DUMMYNET LINK PARAMETERS

B. 5G Link

From the measurements, negligible decays are observed
regarding 10 Kbps, 100 Kbps and 500 Kbps data rates even at
the highest packet loss value related to the selected dummynet
link parameters. Due to this observation we omit them from
the final figures.

Comparing baselines of the two 5G links to their respective
NSM measurements also demonstrates that there is not much
added overhead from Kubernetes and NSM as shown in, e.g.,
5G #1 baseline (Figure 2) and NSM measurement (Figure 3).
As 5G #1 is lower latency link we notice fairly consistent
throughput until around 0.07 PLR when the link quality starts
to decay.
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Figure 2. Baseline Measurement for 5G #1

0

500

1000

1500

2000

2500

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

iperf1000Kbps iperf1500Kbps iperf2000Kbps
PacketLossRate

Th
ro
ug
hp
ut

Figure 3. Throughput Decay on NSM 5G #1

The effect of higher latency can be noticeably observed on
both the 5G #2 baseline (Figure 4) and NSM (Figure 5) results.
The throughput decay already begins at PLR 0.03 and, as with
5G #1, it is the highest service data rate that decays the most. It
is also noticeable that from PLR 0.06 onward the decay on all
of the service data rates seems to be fairly similar, especially
on the NSM side.
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Figure 4. Baseline Measurement for 5G #2
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Figure 5. Throughput Decay on NSM 5G #2

C. Satellite Link

Different from the 5G measurement results, the satellite
links also demonstrate decay at the 500 Kbps service data
rate (e.g. Figures 6 and 8), thus this data rate is also taken
into consideration. Similar to the 5G results, the 10 Kbps and



100 Kbps results remain quite even up to the highest measured
packet loss value, thus they are omitted from the figures.
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Figure 6. Baseline Measurement for Satellite #1
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Figure 7. Throughput decay on NSM Satellite #1

Comparing the results of the satellite measurements we once
again notice no significant difference between the baseline host
measurement and NSM on Kubernetes (i.e., in Figures 8 and
9). However, comparing the result to both 5G ones there is
already significant decay in link quality already starting from
PLR value 0.01. Furthermore, it can be observed that the links
converge a lot earlier, around PLR 0.03/0.04 unlike with 5G
measurements where the throughput was kept up for a longer
time.
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Figure 8. Baseline Measurement for Satellite #2
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Figure 9. Throughput decay on NSM Satellite #2

As we already noticed between the 5G measurements
(Figures 3 and 5), the effect of higher latency causes fairly
dramatic decay on the throughput. This is even more evident
on the emulated satellites (Figure 7 and 9) as we specifically
emulated GEO satellite links that come with very high RTTs,
250ms and 630ms, in our case, because GEO satellites still
remain dominant in maritime scenarios.

In addition, it can be said that the effect of the available
upload and download bandwidth is not as critical in our
scenarios as our current traffic profiles are only using up to
2Mbit/s throughput.

D. Kubernetes Internal Traffic Shaping Measurements

In addition to the Kubernetes external traffic shaping mech-
anism described in previous sections, we have also briefly
experimented with two existing Kubernetes internal traffic
shapers. In particular, these traffic shapers could be utilized
for adapting traffic from Kubernetes-based cloud and edge
environments to available link characteristics, for example,
to prioritize certain traffic when link capacity is limited or
expensive. We discovered two alternatives for Kubernetes,
Calico and Cilium network plugins, that can support traffic
shaping.

Calico supports bandwidth management using the Kuber-
netes experimental bandwidth plugin 2 based on Linux traffic
control (TC), whereas Cilium 3 is based on Linux eBPF. Calico
allows setting bandwidth limits to both inbound and outbound
traffic for a pod, whereas Cilium supports only outbound
direction. Of the these two, only Cilium supports inter-cluster
connectivity out-of-the-box.

In the experiments, we ran iperf3 between two pods located
on different worker nodes, and we capped the maximum
bandwidth of the traffic between the pods to 10 Mbit/s because
we observed that Calico did not function reliably with lower
values than this. The advantage of Calico was the ability
to control both inbound and outbound bandwidth cap for
a single pod. A disadvantage was that Calico ignored both
inbound and outbound bandwidth limits for the first 5-7 TCP
connections, during which Calico stabilized slowly and then

2https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/

3https://docs.cilium.io/en/v1.9/gettingstarted/bandwidth-manager/



started to respect the bandwidth cap (with standard deviation
in the range of 0.8 - 1.4 for the outbound direction). On the
other hand, Cilium only allowed to set the bandwidth cap
for outbound direction for a single pod. For outbound traffic,
Cilium exceeded the bandwidth cap by 2.6 Mbit/s only for the
first TCP connection, and the standard deviation was ranging
between 0.5 - 3.1 Mbit/s. The results are shown in Figure 10.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
bi

t/s

Test run

Calico Cilium

Figure 10. Egress bandwidth shaping in Calico and Cilium

V. CONCLUSION AND FUTURE WORK

In this paper we presented a cloud based networking testbed
that supports network traffic shaping to emulate satellite and
5G-based connectivity under traffic loss scenarios between
a Kubernetes based edge cloud located onboard a ship and
another edge cloud located onboard another ship or at the
shore. Based on our experiments, we discovered that the
utilized Kubernetes network plugin, Network Service Mesh,
does not add significant overhead to the links when compared
to non-Kubernetes traffic with the ship traffic profiles that
we experimented with. It appears that increase in latency
correlates negatively with throughput in the case of TCP; only
the lowest TCP based traffic classes of 10Kbps and 100Kpbs
were resilient enough to persist the whole spectrum of packet
loss rates with only minor decay.

As future work, we should stress test the testbed and record
CPU usage, and conduct more experiments with different
traffic patterns, such as with bursty traffic. To support real
edge networks in ships, traffic originating from many different,
parallel data services should also be considered which leads
into traffic prioritization questions. Hence, we would also like
to extend our link emulator to support traffic engineering at the
level of individual streams. However, traffic characterization at
a session level might be an issue as many modern applications
encrypt their traffic nowadays. As a solution, the traffic could
either be characterized by the application itself running in the
edge cluster, for example, using Differentiated Services, or by
the underlying Kubernetes platform since it can be made aware
what types of applications it is running. For the latter case, we
discovered some problems and limitations in the experimented
Kubernetes network plugins. More work is required to allow
for changing the bandwidth limits more dynamically, and to
automatically profile and prioritize ship networking traffic.
Finally, we also believe our testbed and the benchmarking

results could be used to emulate network connectivity of digital
twins of ships.
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