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ABSTRACT

Kim Katainen: Visualizing large time series data in Blazor applications
Master of Science Thesis
Tampere University
Information technology
October 2024

The development of web-based applications has become increasingly common, and many tra-
ditional desktop applications are now being implemented as web applications in the browser. This
shift is supported by advancements in web technologies and standards, such as WebAssembly
and WebGL, which facilitate the creation of efficient and demanding applications.

This thesis examines the use of a WebAssembly-based software framework for performance-
critical web applications and the application of WebGL for leveraging the graphics processing unit
(GPU). The possibility to compiling code into WebAssembly has introduced multiple programming
languages alongside JavaScript for web development. Microsoft’s Blazor WebAssembly frame-
work, for instance, allows .NET applications to be executed in the browser, enabling application
development in C# with Blazor syntax in place of HTML.

The study focuses on real-time processing and visualization of large data sets in a web ap-
plication. An application is implemented to transfer time series data from a server to a Blazor
WebAssembly web application and visualize the data in a chart. The goal is to identify optimiza-
tion methods for handling large time-series data sets and to evaluate how well the application
meets real-time system requirements. The performance of the application is evaluated and tested
across various aspects, such as data transfer, processing, and rendering.

The results indicate that a Blazor WebAssembly application can visualize millions of data points
per second in real-time. The most critical optimizations involve data transfer from the server to the
browser, where choices such as data type selection and the use of a binary transfer protocol play
an important role. Additionally, applying "AOT Compilation," which compiles interpreted code di-
rectly into WebAssembly, enhances performance. Data processing in the web application proved
to be another critical area of research, where algorithm selection and data type choices contribute
significantly to optimization. Using WebGL for data rendering imposes minimal load on the appli-
cation compared to other aspects.

Keywords: Time series, real-time, Blazor, WebAssembly, WebGL, MessagePack, JSON

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Kim Katainen: Suuren määrän aikasarjadatan visualisointi Blazor-sovelluksissa
Diplomityö
Tampereen yliopisto
Tietotekniikka
Lokakuu 2024

Verkkopohjaisten sovellusten kehittäminen on yleistynyt, ja nykyisin monet perinteiset työpöy-
täsovellukset toteutetaan verkkosovelluksina selaimessa. Tämän kehityksen mahdollistaa web-
tekniikoiden ja standardien, kuten WebAssembly:n ja WebGL:n, kehittyminen, jotka tukevat tehok-
kaiden ja vaativien sovellusten luomista.

Tässä työssä tutkitaan WebAssembly-pohjaisen ohjlemointikehyksen hyödyntämistä suoritus-
kykykriittisissä verkkosovelluksissa ja WebGL käyttöä grafiikkasuorittimen hyödyntämiseksi. Oh-
jelmakoodin kääntäminen WebAssemblyksi mahdollistaa sen ajamisen selaimen virtuaaliympäris-
tössä, ja WebAssemblyn standardointi on tuonut JavaScriptin rinnalle useita muita ohjelmointikie-
liä verkkosovelluskehitykseen. Esimerkkinä Microsoftin Blazor WebAssembly -kehys, joka mah-
dollistaa .NET-ympäristön käytön selaimessa ajettavissa verkkosovelluksissa, tarjoaa mahdolli-
suuden ohjelmoida sovelluksia C#-kielellä ja käyttää Blazor-notaatiota HTML:n sijaan.

Tutkimuksen keskiössä on suuren datamäärän reaaliaikainen käsittely ja visualisointi verkko-
sovelluksessa. Työssä toteutetaan sovellus, joka siirtää aikasarjadataa palvelimelta selaimessa
toimivalle Blazor WebAssembly -sovellukselle, joka piirtää siitä kuvaajia. Tutkimuksen tavoittee-
na on löytää optimointikeinoja suuren aikasarjadatan käsittelyyn ja arvioida, kuinka hyvin sovellus
täyttää reaaliaikajärjestelmän vaatimukset. Sovelluksen suorituskykyä arvioidaan ja testataan eri
osa-alueilla, kuten datan siirrossa, prosessoinnissa ja piirtämisessä.

Tulokset osoittavat, että Blazor WebAssembly -sovellus kykenee visualisoimaan miljoonia da-
tapisteitä sekunnissa reaaliaikaisesti. Suurimmat optimointitarpeet liittyvät datan siirtoon palve-
limelta selaimelle, johon vaikuttavat muun muassa tietotyypin valinta ja binäärisen tiedonsiirto-
protokollan käyttö. Myös "AOT Compilation-optimoinnin käyttäminen, joka kääntää ohjelmakoo-
din suoraan WebAssemblyksi, parantaa suorituskykyä. Datan prosessointi verkkosovelluksessa
osoittautui toiseksi kriittisi osa-alueeksi, jonka optimointiin voidaa vaikuttaa algoritmivalinnoilla ja
tietotyyppien valinnalla. WebGL:n käyttö datan piirtämisessä ei kuormita sovellusta merkittävästi
verrattuna muihin osa-alueisiin.

Avainsanat: Aikasarja, reaaliaikaisuus, Blazor, WebAssembly, WebGL, MessagePack, JSON

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

More and more software applications are being developed in the web-environment. This

enables cross-platform development since a standardized browser can be installed on

almost any device with a GUI, from smart TV’s to cars. Many traditional desktop appli-

cations are being re-implemented as web applications and processing power is moved to

the cloud. This all leads to browsers implementing features that allow web applications to

perform tasks they were not traditionally designed to, such as access certain I/O devices.

Fulfilling the new demands does not come without challenges. The browser environment

still has a long way to come for certain applications to be able to run smoothly. This thesis

examines several approaches to achieve acceptable performance on a specific challeng-

ing use case.

Especially performance critical software have great challenges on the browser, despite

the continuous efforts to better the situation. The JavaScript-dominated browser envi-

ronment just is not there yet when it comes to executing heavy tasks, even though the

introduction of just-in-time compilation (JIT) in 2008 offered a great performance boost.

One of the biggest challenges is the restriction of one thread per browser tab, although

the standardized Web Worker API provides the possibility to start background threads.

The purpose of this thesis is to determine technical features to enhance visualizing large

amounts time series data real-time in a web browser. The study focuses around the

Microsofts new Blazor framework. In theory, the Web Assembly-powered Blazor should

be able to offer greater performance than JavaScript. Web Assembly offers a Assembly-

like statically typed lower level language run natively on the web. Other languages, such

as C++ can be compiled into Web Assembly. Naturally, this gives the programmer more

control and thus enables better optimization of code. Even though Blazor is not yet very

mature of a framework it could very well already perform better in the scope of this thesis’

application.

There are other benefits in choosing Blazor in addition to the potential performance.

Namely, one can write web applications without needing to learn JavaScript at all. Some

of the code base can be shared between the server and the frontend when both are

written in C# which Blazor uses. Blazor also has access to .NET and other third-party

libraries written in C#, which there are plenty of for every need.
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The thesis proceeds by explaining the theory behind time series and visualizing it in a

web browser in chapter 2. In chapter 3, technologies that relate to the work are exam-

ined. Chapter 4 explains the research process used to study the subject. The results are

discussed in chapter 5. Finally, a summary is given in chapter 6.
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2. VISUALIZING TIME SERIES

There are some general concepts to visualizing a time series on a computer screen. The

data representation of time series in a computers memory fits naturally into a simple array

of numbers, but there are still certain choices to be made regarding the data format.

2.1 Time series

A one dimensional list of measurements taken over time is called a time series [1]. These

data points are usually observed between a constant time interval, such as one measure-

ment per second. A time series can be continuous, but this thesis focuses on the discrete

case. Time series are heavily studied in science branches such as signal processing and

statistics.

Time series can be visualized using many different charts. In this thesis, time series is

plotted in a scatter chart. For each data point index on the x-axis, a dot representing

the value is drawn on the y-axis. In a line chart, a line is drawn drawn between each

data point. Depending on use case, it might be irrelevant to look at raw data of each

point in a time series. Instead, one might want to plot some trend in the data or use

simplified representation of the whole underlying data. One example is the candlestick

chart commonly used in financial markets.

This thesis focuses on displaying rolling time series data in a scatter chart without any

losses. An example of the sine wave data can be seen in figure 2.1. Different represen-

tations of analytical methods may be mentioned if they seem relevant.
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Figure 2.1. Example of 5 sine waves visualized visualized

2.2 Data model

In computing, there are many ways to store a time series. Most programming languages

offer an indexed array of values. When the values are numbers, the array is conceptually

already a time series. An array is stored in contiguous section of memory and provides

random access to any element. At the lowest level, an array is static and can not be

resized after creation. This is very well suitable when large data chunks of known length

are handled. When compared with other data structures such as linked lists, an array

also uses less memory. [2]

The choice of data point format can be crucial when handling a large amount of data. This

is emphasized when running software in a web browser where computing power is still

not on par with native desktop applications. Namely, there are two choices to be made;

the amount of precision needed and is there a need for floating point numbers. Generally

speaking, integer arithmetic is faster to compute. If the sole purpose is to graph data and

not execute any complex processing that would require floating point values, it is possible

to normalize decimal data into integer values and use them through the application. This

can boost the performance in various operations. Furthermore, if the resolution of data
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is known, the precision (and thus the memory footprint) can be downsized accordingly.

If there is no need for intense zooming, it should be noted that most computer screens

do not have that many vertical pixels. Even high-definition monitors can easily be repre-

sented with a 16 bit integers 65,536 resolution. The so called 8K monitor standard has

4,320 vertical pixels [3].

2.3 Downsampling

When drawing a plot of time series data, downsampling [4] can be used to create a

diminished representation of the original series by carefully choosing new data point for

each section of the original series. Visualizing the series on a computer screen, this

can greatly reduce the required processing power. If the original data count is large

compared to the amount of pixels available on computer screen the resulting image may

even be identical to original. In some cases downsampling can be used to easier read

the desired features in a chart. However, the chosen downsampling algorithm needs to

be precisely understood in order to leave the crucial information intact. This is because

every downsampling algorithm has cases where points of the original graph will be cut

off. It is important to note that we focus on downsampling for visual purpose, that is for

human interpretation. Downsampling is sometimes used in other cases, such as part of

signal a processing algorithm, which is an entirely different concept. [5] Downsampling for

visual representation should be conducted after all other processing to not alter the input

of other algorithms. This is to best represent the original (measurement) data, as some

visual downsampling methods can drastically and unpredictably alter other algorithms. [6]

In his doctoral thesis, Steinarsson introduces various downsampling algorithms for further

evaluation [6]. The algorithms are compared using three criteria: speed and scalability,

complexity and portability and correctness of the end result. The correctness value is

called elusive by Steinarsson. It is determined by conducting a survey where people

compare different types of line charts to their downsampled counterparts.

Given Steinarssons evalution criteria, the Largest Triangles Three Buckets (LTTB) was a

clear winner [6]. As an only candidate, it got the maximum amount of points on all three

categories. While being simple to understand and code, the resulting line chart looks

very similar to the original and requires only a little computing overhead compared to the

most simple algorithms examined. The LTTB algorithm is based on a cartography method

which is used to define the coastline drawn in a map (the Visvalingam–Whyatt algorithm)

[7]. The idea is to divide the original data evenly into desired amount of buckets, form

triangles between buckets and select the highest ranking point in each bucket to the

solution. LTTB takes two parameters, the original data and the amount of buckets (wanted

amount of data points in the result). The algorithm proceeds with three buckets at a time

from lowest index to the highest index (left to right on a typical line chart). On every
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iteration, a point is selected for the middle bucket. The first bucket uses the last selected

value while the third (next to be calculated) bucket uses the average of all the points in

the third bucket. The point is selected by iterating through all the values in the middle

bucket and selecting the one which forms the largest triangle between the neighbouring

buckets. The first and last buckets only contain one data point, the first and last point of

the original data. LTTB is described step-by-step in code listing 2.1.

f u n c t i o n LTTB( l i s t data , i n t e g e r amount_of_buckets ) :

l i s t r e s u l t := [ data [ 0 ] ]

remove f i r s t po i n t from data

i n t e g e r po in ts_ in_bucke t := ( leng th o f data − 2 )

/ amount_of_buckets

f o r 0 <= i n t e g e r i < amount_of_buckets :

/ / Loop through the equal s ized buckets

l i s t middle_bucket := s l i c e o f data from

( i * po in ts_ in_bucke t )

to ( ( i + 1) * po in ts_ in_bucke t )

l i s t t h i r d_bucke t := s l i c e o f data from

( ( i + 1) + po in ts_ in_bucke t )

to ( ( i + 2) * po in ts_ in_bucke t )

number f i r s t _ b u c k e t _ v a l u e := r e s u l t [ i ]

number th i rd_bucke t_va lue := average po in t i n th i r d_bucke t

r e s u l t [ i ] := 0

number highest_area := 0

i n t e g e r h ighest_area_index := data [ i * po in ts_ in_bucke t ]

f o r number po in t i n middle_bucket :

area := c a l c u l a t e are o f t r i a n g l e between po in t ,

th i rd_bucke t_va lue and f i r s t _ b u c k e t _ v a l u e

i f area > highest_area :

h ighest_area := area

highest_area_index := index of po i n t i n bucket

r e s u l t [ i +1] := middle_bucket [ h ighest_area_index ]

r e s u l t [ amount_of_buckets ] := l a s t po i n t o f data

r e t u r n r e s u l t

Listing 2.1. Largest Triangles Three Buckets (LTTB) algorithm

Due to the characteristics of LTTB, it does not smooth out sharp spikes of data, such as

taking simple averages would. This makes the result appear very similar to the original

data and it is great for detecting these peak points in a graph. It can also be a problem,

especially when there are very distant outliers, as these would be selected in the bucket.

This should be taken into consideration when selecting a downsampling algorithm.
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2.4 Real-time in web

In computer science, a system is considered to be real-time when it complies with given

real-time constraints. These constraints define the deadlines of each operation per-

formed. Missing a deadline does not always mean the system is not real-time, instead,

there are different levels of real-time constraints defined. A hard constraint can not be

missed without the whole system failing. A firm constraint allows occasional deadline

misses but the result is unusable after. After an operations soft constraint deadline has

expired, the result might still be useful but to a lesser degree. [8]

Due to the unpredictable nature of communication over a network, real-time in the context

of this thesis application realistically does not have very strict constraints. Even for simple

and light messaging, delays in messaging can range from a couple of milliseconds to

hundreds of milliseconds.

Consuming continuous real-time data with a web browser has been developed intensively

during the lifespan of internet. A couple of recognized patterns to develop these applica-

tions have emerged over the years. The combining factor between the patterns is that in

one way or another, they allow the server to send data to the client. This is uncharacter-

istic for the HTTP protocol that is used for most communication over the World Wide Web

(www). HTTP follows the client-server model which is asymmetric; client always initiates

communication (asking resources from the server) while the server waits for requests

and answers them. This is unsuitable for real-time communication, because continuously

polling the server can never match the performance of server pushing data to a client. Be-

sides the redundant messages sent to initialize a connection, client does not need to sent

any further requests to the server and all the metadata involved in typical communication

can be omitted. [9]

One method to implement real-time communication in web is called Long Polling [10].

The approach uses the standard HTTP protocol to initiate a long-lasting HTTP request

between the client and the server. This is achieved by the server keeping the HTTP

connection open and not responding immediately after a request. The server responds

only when new data is available. After the server has responded, the client opens a new

connection which the server keeps open until new data arrives.

Server Sent Events or SSE is another protocol developed over HTTP [11]. The protocol

is part of HTML standard and thus available for use in most browsers. Using SSE, the

server can send data to the browser but browser can not send data to server (half-duplex

communication).

WebSockets is a protocol that offers full-duplex communication over TCP. IETF standard-

ized the protocol in 2011 and it is nowadays available on every major browser through

an API called WebSockets. The protocol is built on TCP and is located on the same
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level as HTTP on the OSI model. A website can send an HTTP Upgrade header to open

WebSocket communication with the server. After this one message to start the com-

munication, there is no need for further requests by the client unlike in i.e Long Polling.

[12]
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3. EXAMINED TECHNOLOGIES

In the early days of World Wide Web, JavaScript scripting language was created to add

dynamic functionality to previously static web pages. For a while, JavaScript was the only

supported programming language in a browser. While JavaScript is still run on practically

every website, it is being slowly superseded in some of the most laborious computational

tasks [13]. The Assembly-like WebAssembly offers more control to a programmer and

thus leads to better optimization capabilities. This does not mean that JavaScript is getting

fully replaced by WebAssembly they can both exist in the same application. In modern

web applications, the way to transfer real-time data is using a protocol called WebSockets,

a lower-level protocol than HTTP built on TCP. To draw diagrams on a web page, there

exist practically three technologies. The more traditional bitmap graphic API called HTML

Canvas and the vector-based SVG graphics offer greatly lower performance than the

hardware-accelerated WebGL. [14]

3.1 Web applications

A web application refers to a piece of software run in a web browser’s virtual environment.

Installing a web browser, a user can run all sorts of web applications typically delivered

over the World Wide Web. The advantages of web applications over traditional desktop

applications include cross-platform support and no need for installation [15]. The same

code base works for every device, given some user interface modifications for different

screens. If the device on hand has a standardized web browser, it probably can run any

application without issue. The adaptation of a web app is effortless and safe when com-

pared to desktop applications. Not needing to install anything removes a step from the

process and removes the risk of installing something harmful. There can be security is-

sues within a web application, however, they exist only in the scope of the application as

it is run in the browser’s virtual environment. The security is an issue of the browser de-

veloper. Of course, when handling some sensitive data there are many things to consider

within an application, but it is not in the scope of this thesis.

The most used language on the web browser is JavaScript, standardized in the EC-

MAScript Language Specification [16]. It is an interpreted language developed based

on the functional paradigm and prototype-based object creation. Over the years, feature
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after feature has been added to JavaScript to make it a multi-paradigm language that has

many syntactic ways to perform a task [17]. This might be confusing for a programmer,

because many of these different ways to do things are just syntactically built to repre-

sent something other, such as another programming paradigm. For example, in modern

JavaScript classes can be built very similarly to C++ but the underlying prototype-based

implementation varies greatly. To really pinch the best performance out of JavaScript code

is not easy and requires vast knowledge of what is happening under the hood, especially

with the Just-In-Time (JIT) compiler. The JIT compiler is one of many optimizations that

was added to every major browser and provided huge performance boosts. A piece of

code that is run frequently (such as a loop) is compiled into machine code and not inter-

preted on every iteration. With proper optimization, JavaScript can be quite competent for

a dynamically typed and interpreted language. One of the biggest drawbacks that cannot

be overcome is the lack of multithreading. [17]

3.2 WebAssembly

WebAssembly (Wasm) is low-level programming language that is supposed to partly re-

place JavaScript in web application development. Wasm encodes into a compact binary

format is run in a stack-based virtual machine (VM) which makes it portable to different

machines. While it is designed with web browsers in mind, Wasm can be deployed on

other platforms using specific VMs. The purpose of Wasm is to provide near native perfor-

mance without sacrificing safety. The language itself can be compared to Assembly and

it maps closely to common native instruction set architectures (ISA) such as ARM and

x86. Akin to Assembly, Wasm mainly acts as a compilation target for other languages

and is designed with C/C++ in mind. Even with the introduction of WebAssembly, the

established JavaScript will still be the primary language of the web for a long time. Wasm

is designed work together with JavaScript through standardized APIs. [18]

Compiling other programming languages to JavaScript using source-to-source compilers

has existed before the introduction of WebAssembly. The widely popular Emscripten has

been developed since 2011 to compile Low-Level Virtual Machine (LLVM) code into a

subset of JavaScript called asm.js [19]. Languages such as C++ can be compiled into

LLVM and further to asm.js with Emscripten as demonstrated in figure 3.1. Following

the success of asm.js initial release, browser vendors started to optimize this subset of

JavaScript code to run at near native speeds. Projects such as Unity have used asm.js

to convert their existing code base into a performant web version [20]. Some vendors

such as Mozilla allow asm.js code to be even compiled ahead of time. This is possi-

ble because asm.js notation is constructed in manner in which types can be deduced

from, even though JavaScript isn’t statically typed. When asm.js is not supported by the

browser it is interpreted and executed as normal JavaScript does. Asm.js is now depre-
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Figure 3.1. Compiling C++ into asm.js

cated in favor of WebAssembly but Emscripten still lives as it can now compile C/C++ into

WebAssembly.

While asm.js is quite powerful there are some features where it immediately falls short

in favor of WebAssembly. Wasm has been part of the W3C standard since 2019 and

is developed collaboratively by all major browser vendors. The Wasm code is delivered

in a compact binary format, greatly reducing the byte size of applications which proves

significant when the code base is large. JavaScript counterparts can be even tens of

times larger. With that in mind, the binary format can be examined in a human read-

able text representation and debuggability in the browser has been a major design point.

WebAssembly applications are divided into modules that run on the same virtual envi-

ronment as JavaScript in browser. The compilation of WebAssembly modules, unlike

JavaScript decoding, can be parallelized to vastly reduce startup time of applications.

This has been successfully implemented by major browser engines such as Googles V8

and Mozillas SpiderMonkey [21] [22]. Direct memory access isn’t possible, instead each

Wasm module is given a large array of raw bytes which acts as linear access memory.

This is safe, because an untrusted module cannot access memory outside of the one

instance assigned to it. When run in a browsers JavaScript environment, however, it is

possible for JavaScript to access the WebAssembly modules memory, which allows for

fast data transfer from Wasm to JS.

All in all, WebAssembly is the emerging standard to replace the performance dependent

parts of web applications. There have been many successful ports of existing software

such as AutoCad into Web environment [23]. webAssembly is under constant develop-

ment and there are some key features missing that can drastically affect performance.

There is still no means to make DOM manipulations directly from Wasm, which means

all UI updates must be handled through the JavaScript API. Although a module can be

used with Web Workers, multithreading is still a work in progress for the developers. An-

other significant feature that is being developed is support for SIMD, which is a technology

present in modern CPUs to allow some operations to be run on multiple points of data at

the same time. These features will make adopting WebAssembly very attractive compar-

ing to JavaScript and it possible to run a lot heavier processing on the Web than before.
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3.3 Blazor WebAssembly

Blazor is part of Microsofts ASP.NET framework and it enables building UI components

with C#, HTML and CSS on the web. There are two existing technologies to deliver

Blazor-based applications called Blazor WebAssembly and Blazor Server. Both utilize

the same Blazor UI components yet they are not to be confused with one another when

it comes to the underlying technology stack. In Blazor Server, the C# code is compiled

into a JavaScript client on server side and sent to the users browser. This means that it

cannot be run with any server software, requiring UI modifications to always be computed

and communicated by a dedicated server through an open connection. Because such

connection needs to be kept open and even the UI updates are processed on the dedi-

cated server, this approach places a heavy CPU burden on the server side. This can be a

good thing if such server resources are available, but scaling a large application for many

users is difficult and requires good load balancing, While Blazor Server is not studied in

this thesis, it is important to note it’s existence and some results may be applicable. [24]

The WebAssembly version of Blazor brings the whole .NET environment to the browser by

compiling it into WebAssembly using another Microsoft’s open source framework, Mono.

When a Blazor Wasm application is first started, the .net runtime is downloaded in a

single Wasm module called dotnet.wasm and cached for further use. This means the

first startup takes much longer than subsequent runs and the whole environment is quite

heavy. Unlike Blazor Server, Blazor Wasm front-end applications are not dependent on

the underlying server software and can be deployed on their own as a single-page ap-

plication (SPA). The performance of Blazor WebAssembly has huge potential because

it runs on WebAssembly instead of JavaScript. It is, however, a very recent technology

that gets faster by every version. For example, ahead-of-time compilation was unavail-

able for user-written code before the release of .NET 6 in 2021. Before AOT compilation

Blazor Wasm applications were interpreted using the .NET Intermediate Language (IL)

interpreter [24]. This is a very significant feature regarding this thesis because large

amount of data requires a lot of CPU-intensive processing in the studied sample appli-

cation. AOT-compiled Blazor WebAssembly applications are larger than their IL-compiled

versions, trading load-time performance for runtime performance.

Using Blazor, developers do not need to learn JavaScript. In addition to .NET features,

third-party libraries are also available to use in the browser with Blazor WebAssembly.

This can be the language deciding factor especially in situations where there exists a

large codebase in C#. Some of the code base, such as the code that represents data

models, can be shared between the server application and the client application. Blazor

Wasm programs can also be built as PWAs (Progressive Web App) to make them appear

native, work offline and be downloadable to the host operation system.
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3.4 Data transfer

To continuously transfer a large amount of time series data from a server to a web client,

special notice must be given to the way the data is handled and transferred over the

network. Browsers use HTTP (Hypertext Transfer Protocol) to initially download the con-

tent of a web page and it can be used by the web application to make further requests.

This can be achieved by using the standardized XMLHTTPRequest (XHR) API that is

exposed by the web browser engine [25]zas. However, to conform real-time constraints

with large data, HTTP is not an efficient protocol. Being a stateless request-response

protocol, HTTP communication involves a lot of recurring overhead even when transfer-

ring frequent packages of data that is structured identically. For every new data packet,

the client application needs to send a new request to which the server responds with new

data. This is essentially half-duplex communication and every request needs to include

metadata describing the message because no state must be preserved on the server.

For real-time communication, there are APIs such as WebSockets to transfer data more

efficiently between the client and the server.

WebSockets is a WHATWG maintained standard that allows web applications to open a

persistent full-duplex communication over a TCP connection. It was introduced as the

WebSocket API by World Wide Web Consortium (W3C) in 2011 meaning it is mature and

implemented by every major browser. The client browser and the server can communi-

cate using the open WebSocket connection without the traditional overhead using HTTP.

A major benefit is seen when large amount of continuous data is streamed to the client by

the server. Rather than the client always asking for new data using the half-duplex HTTP,

the connected server can just send it right away without negotiation. [12]

SignalR is as a Microsoft’s open-source framework that abstracts various real-time pro-

tocols of the web behind a unified interface. The result is a (sometimes seemingly) open

connection between an end-users browser and the server, allowing the server to send

messages to the client. When available, SignalR defaults to the WebSockets protocol as

it is the standard to use on modern browsers. When WebSockets is not available, Server-

Sent Events or Long Polling strategies are used. Data is send over the connection using

text-based JSON data format, but communication can be optimized by serializing the

sent data in a binary format rather than JSON. Such format called MessagePack is built

into SignalR and offers much greater performance via smaller messages [26]. To enable

MessagePack protocol, Microsoft.AspNetCore.SignalR.Protocols.MessagePack must be

installed and initialized in the application. [27]
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3.5 Web Workers

While multithreading doesn’t yet exist in the context of web applications run on a web

browser, Web Workers are a way to spawn OS (operating system) level processes for

background processing. These Workers have limited access to APIs exposed by the

browser engine but they can perform some I/O and for example open a WebSockets

connection. DOM (Document Object Model) cannot be accessed from a Web Worker,

meaning that chances to the UI are not possible from a Worker process. Web Workers

live in a different context than to the piece of code that called it. One of the biggest turn-

offs in Web Workers as opposed to true multithreading is the fact that memory can’t be

shared and all data communicated between Worker processes must be copied. While

Wasm modules can be used in a Web Worker, the Web Workers API is not accessible

through Web Assembly and thus must be called from JavaScript code. Still, Web Workers

might be usable for fetching and preprocessing of time series data before visual repre-

sentation using in a chart. This might especially be through if the amount of data sent

from Web Worker to the main process can be drastically reduced. For example, this could

be achieved by examining the resolution of the computer screen in use and normalizing

the amount of data point accordingly. [28]

3.6 Rendering graphics on the browser

The three major ways to portray graphics on a website are the Canvas API, WebGL and

SVG (Scalable Vector Graphics). While WebGL is the newest and generally fastest of the

three, only SVG and Canvas are used by many popular third-party JavaScript libraries.

For example, the Apache ECharts library only uses WebGL as a plugin to draw 3D im-

ages, not 2D plots [29]. Modern browsers often use GPU acceleration with Canvas and

SVG but they were not originally designed for GPU and are more generic. The Canvas

API was originally introduced as part of the HTML5 specification to render 2D bitmap

graphics on the browser [30].

WebGL is a low-level 3D graphics API to deliver GPU-powered charts on the HTML5

Canvas element. It is based on the industry standard platform-independent graphics

library OpenGL ES (OpenGL Embedded Systems) [31]. WebGL 1.0 exposes the OpenGL

ES 2.0 feature set while the 2.0 version of WebGL exposes feature set of OpenGL ES 3.0.

The specification is very close to that of OpenGL ES, with some modifications regarding

garbage-collected languages such as JavaScript. WebGL 2.0 is the new recommendation

as it is now supported by major browsers [32]. The power of WebGL lies in closer control

to actual as opposed to Canvas and SVG.

Canvas rendering or frameworks such as ECharts provide a user-friendly API and pre-

built chart types, making it easier for developers to create interactive graphs whereas plain
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WebGL demands a deep understanding of computer graphics, making it less approach-

able for developers who are not graphics experts. While ECharts provides provides a

set of predefined options and themes, WebGL provides complete control over graphics

rendering. ECharts might sometimes use WebGL under the hood but it still introduces

some overhead due to its abstraction layer to support a wide range of chart types and

data sizes.
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4. RESEARCH PROCESS

Constructive research is conducted to determine technical features that enhance perfor-

mance graphing large data on the web [33]. To discover best practices for Blazor-based

time-series graphing, multiple small applications are developed to individually benchmark

various solutions discussed in this thesis. These applications test parts such as data

transfer protocol suitability for communicating the time-series data between front-end and

back-end. Using Microsofts Visual Studio, separate Blazor projects are created for each

test to ensure minimal overhead caused by unrelated code. Results are compared using

metrics described in this chapter. If not stated otherwise, each project is tested in publish

mode as described in section 4.2.4.

4.1 Test application

There are multiple test applications to test different parts of the underlying time series

visualizing application. The resulting target application that these tests could optimize

consists of two parts:

• Client, a Blazor WebAssembly application

• Server, a .NET application

The Client application receives time series data from the server, processes it and draws

a chart. The Server application generates (or in real world, gets from somewhere such

as an analog sensor) the time series data and sends it to the Client. The results of the

tests are gathered and analyzed using an automated testing program. The application

components are depicted in figure 4.1.

The tested Blazor WebAssembly applications can be separated in two groups, data trans-

fer applications and drawing applications. The functionality between apps in one group is

separated by only minor details that are under testing, such as the data type of numbers

used. Data transfer and drawing are the two major functionalities of the whole application

that are easily separated and tested separately. This makes tests within a group easily

comparable.
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Figure 4.1. Test application

4.1.1 Server

The code that generates the test data is located in a .NET Core project called Server.

This application is used by all the Blazor testing apps. It implements a SignalR Hub that

has multiple functions a Blazor application can call to generate data and fetch data. An

example streaming Hub method that generates sine waves floating point data can be

seen in code listing 4.1. By using .NET IAsyncEnumerable and yield return we create a

streaming hub that practically opens a persisting WebSocket TCP connection with calling

client program. It takes the amount of sine waves in one packet, amount of data points

per sine wave and the time delay between a new packet is sent to the client. This runs

until the connection is terminated (Blazor test application exits). It is important that the

Server project is compiled in release mode to minimize overhead of data creation.

p u b l i c async IAsyncEnumerable < L i s t < f l o a t [ ] > > SendStream (

i n t channelCount =1 ,

i n t batchSize=1_000_000 ,

i n t batchFrequencyMs=1000)

{

ITimeSer iesGenerator gen = new SineTimeSeriesGenerator ( ) ;

wh i le ( t r ue )

{

L i s t < f l o a t [ ] > data = gen . GetTimeSer iesLis t ( channelCount ,

batchSize ) ;
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awai t Task . Delay ( batchFrequencyMs ) ;

y i e l d r e t u r n data ;

}

}

Listing 4.1. SignalR Hub that creates sine wave data and streams it to the client applica-

tion

4.1.2 Client

The Blazor client application receives time series data from the server application and

draws it in a chart. Different tests use different Blazor client applications whenever the

tested functionality would require major changes in the application. This is achieved by

creating a new Blazor project in Visual Studio that contains only the part of the Client

application that is tested. This reduces the impact of unrelated features on the test.

All the data transfer tests use the Blazor client application called BlazorSignalR because

the differences between these tests are minimal. The biggest difference between the

client applications is the data type of the time series data. Along with other differences

between each test run the data type to be used is given to the application as a query

parameter in the HTTP requests URI. These parameters can be seen in code listing 4.2

The drawing tests use different Blazor client projects when the drawing method changes,

such as WebGL vs. ECharts. To run a test, the server application needs to be running

alongside of a test-specific Blazor client application. The client applications contain the

code that measure performance and is used by automated tests described in 4.1.3.

[ Parameter ]

[ SupplyParameterFromQuery (Name = " sampleRate " ) ]

p u b l i c i n t SampleRate { get ; se t ; } = 0 ;

[ Parameter ]

[ SupplyParameterFromQuery (Name = " batchFrequency " ) ]

p u b l i c i n t BatchFrequency { get ; se t ; } = 0 ;

[ Parameter ]

[ SupplyParameterFromQuery (Name = " channelCount " ) ]

p u b l i c i n t ChannelCount { get ; se t ; } = 0 ;

[ Parameter ]

[ SupplyParameterFromQuery (Name = " mesaurementCount " ) ]

p u b l i c i n t ? MeasurementCount { get ; se t ; } = 30;
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[ Parameter ]

[ SupplyParameterFromQuery (Name = " backendAddress " ) ]

p u b l i c s t r i n g BackendAddress { get ; se t ; } =

" h t t p : / / l o c a l h o s t :5000" ;

[ Parameter ]

[ SupplyParameterFromQuery (Name = " useMessagePack " ) ]

p u b l i c bool UseMessagePack { get ; se t ; } = t rue ;

[ Parameter ]

[ SupplyParameterFromQuery (Name = " dataType " ) ]

p u b l i c s t r i n g DataType { get ; se t ; } = " f l o a t " ;

Listing 4.2. Using query parameters in Blazor

The performance measuring of the data transfer applications can be examined in listing

4.3. The first line establishes a streaming connection with the SignalR hub of the server

application to start receiving the desired amount of time series data between desired time

intervals. The resulting C# IAsyncEnumerable is iterated using a foreach loop, which ex-

ecutes every time new data is transmitted and available in the client application. The time

period between receiving new data is saved using the perfLogger objects Start and Stop

functions. The MeasurementCount is delivered to the Client application as a parameter

and depicts the limit of how many performance measures to take. To automate the test

program, the resulting list of performance measures is saved in the browsers window

object by calling a JavaScript function from the Blazor application.

var stream = hubConnection . StreamAsync< L i s t < f l o a t [ ] > >( hub ,

ChannelCount ,

SampleRate ,

BatchFrequency ) ;

i n t i = 0 ;

awai t foreach ( var count i n stream )

{

i f ( i > 0)

{

per fLogger . Stop ( ) ;

}

per fLogger . S t a r t ( ) ;

++ i ;

i f ( i >MeasurementCount )
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{

break ;

}

}

awai t JS . InvokeVoidAsync ( " window . setDrawTimes " ,

per fLogger . GetLogs ( ) ) ;

Listing 4.3. Measuring time delay between receiving each data packet

4.1.3 Automation

While some features are tested manually, most test runs are automated using Python

and Selenium, an open-source tool to automate web browsers for regression testing [34].

The tests are located in the Tests.py file of a Visual Studio Python project called Tests.

The automation tests utilize in-built unittest library of Python to organize the tests and

run them. One example test can be inspected in listing 4.4. Before each of these test

functions, some initialization global tasks are performed. This includes the set up of

Selenium and publishing and running the Server application. The test is then run multiple

times using different parameters with Google Chrome and Mozilla Firefox browsers. The

first two lines of test_blazorsignalrint32 compile and run the BlazorSignalR Blazor client

project used in this test. The data type for all the test runs is 32-bit integer and the test

waits to receive 20 data packets from the server to the client. The test parameters are

passed to the Blazor client application with Selenium using the get_website_with_retry-

method. This starts the Client application and begins measuring the delay between each

received data packet in the Selenium-automated browser. The program waits in a loop to

finish receiving 20 transfer delay samples, at which point it gets the time delays from the

client and stores them in a csv file.

Results of automated tests are processed into different statistics and charts using Python

scripts. These scripts are located in the Tests Visual Studio project and they can be

run separately. The scripts traverse the results of the automated tests that are located

in csv files inside a directory. An open source data analyzation and manipulation tool

called Pandas is used to gather this data and conduct statistical analysis [35]. Every

performance test that measures time delays is analyzed by looking at resulting statistical

values such as mean, standard deviation and percentiles of delay times. These values are

presented in the thesis as tables in chapter 5. To further illustrate the data, performance

tests are charted using a Python library called matplotlib.

def t e s t _ b l a z o r s i g n a l r i n t 3 2 ( s e l f , useMessagePack , srate ,

chCount , batchFreq ) :

pub l i sh ( ’ BlazorSignalR ’ )

s e l f . c l i e n t = run_b lazo r_s igna l_ r ( )
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sampleCount = 20

dataType= " i n t "

i f s e l f . d r i v e r :

s e l f . ge t_webs i te_w i th_ re t r y (

f " h t t p : / / l o c a l h o s t :3000/? sampleRate ={ s ra te } " +

f "&channelCount ={ chCount }&dataType ={ dataType } " +

f "& batchFrequency ={ batchFreq }&useMessagePack=" +

f " { useMessagePack}&backendAddress =" +

f " h t t p : / / l o c a l h o s t :5000&mesaurementCount ={ sampleCount } " )

s leep ( sampleCount )

f o r i i n range ( 6 0 * 5 ) :

s leep ( 1 )

t r y :

r e s u l t = s e l f . d r i v e r

. execu te_sc r ip t ( " r e t u r n drawTimes ; " )

v = s e l f . ve rs ion ( )

s e l f . c r e a t e _ r e s u l t s ( r e s u l t , s ra te , chCount ,

v , dataType )

break

except :

# execu te_sc r ip t f a i l s i f

# the r e s u l t i s not ready

pass

Listing 4.4. Test function that tests the data transfer of 32-bit integer values

4.2 Tests

This section describes the tests of each feature in detail. Features might be tested with

multiple tests and test applications, such as both the data transfer test application and a

chart drawing test application. Results of the tests are discussed in chapter 5.

4.2.1 Data types

The Server application creates sine waves of three different data types: 32-bit floating-

point values, 32-bit integer values, and 16-bit integer values. The process of creating

16-bit integer (C# short) data points can be inspected in listing 4.5. The data points are

always stored in the fixed-size C# Array data structures as is not interesting to examine

the difference between the alternative C# Lists because they are always more efficient
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and dynamic sizing or dynamic data types never needed in the context of this thesis. The

amount of sine waves and amount of data points per wave are taken as parameters and

returned in a List of 16-bit integer arrays. In the tests these values are sent to the client

using SignalR. While the automation tests measure processing time of this data (data

transportation test) or chart drawing time of the data (drawing tests), values such as the

data size of each packet is inspected using browser tools.

p u b l i c L i s t <shor t [ ] > MakeSineDataListShort ( i n t channelCount ,

i n t sampleCount )

{

L i s t <shor t [ ] > data = new L i s t <shor t [ ] > { } ;

f o r ( i n t s = 0 ; s < channelCount ; s++)

{

data . Add (new shor t [ sampleCount ] ) ;

}

f o r ( i n t s = 0 ; s < sampleCount ; s++)

{

_s inePo in t += 0 .01 ;

f o r ( i n t c = 0 ; c < channelCount ; c++)

{

data [ c ] [ s ] = ( shor t ) ( Math . Sin ( _s inePo in t )

* sho r t . MaxValue ) ;

}

}

r e t u r n data ;

}

Listing 4.5. Creating 16-bit integer time series data in the Server application

The motivation behind using different data types arises from the possibility of normalizing

real-world time series floating-point data into integer values. Considering that a computer

screen has a fixed number of pixels, a less precise data type is often sufficient to visual-

ize the time series with no information lost. Rendering floating-point values directly in a

chart can be computationally intensive due to the complex calculations involved for each

data point. Converting them to integers simplifies calculations and reduces processing

overhead. Integer values also occupy less memory compared to floating-point values of

the same magnitude, leading to reduced memory usage during storage and data trans-

mission, thus enhancing overall efficiency.

The process of normalization involves several crucial steps. Initially, the scaling factor for

each data point is determined based on the data range. While this may become intricate
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with highly random or volatile data, for simplicity of the test, data is generated within the

range of -1 to 1. The scaling factor is decided based on the minimum and maximum

value of each data type. For fitting within a 16-bit integer, the scaling factor is set to

32,767. Subsequently, the original data is multiplied by this scaling factor and rounded to

the nearest integer as done in 4.5 using the equivalent C# short.MaxValue constant.

Ensuring optimal chart performance while maintaining accuracy is a paramount goal. The

drawing test is conducted using a chart window with dimensions of 1080 pixels in height

and 1920 pixels in width, making 16-bit integers sufficient for any data representation. In

real-world applications, However, functionalities such as chart zooming may necessitate

greater precision to prevent data loss when normalizing into integer values. This makes it

interesting to inspect also the larger 32-bit integers, as they would offer better capability

in such use case. A zooming feature isn’t implemented or considered any further in this

thesis’ tests.

4.2.2 MessagePack

The impact of the Binary MessagePack format on data transmission was initially tested

with a quick small-scale manual test program and then more comprehensively with the

automated testing program. These tests showed MessagePack to be significantly faster

than JSON. Because of the result MessagePack is used in all the other tests of this thesis

if not mentioned therwise.

The quick manual test between the SignalR default JSON data format as MessagePack

involved a simple application that receives 5 million floating-point data points in a list per

second. The application was implemented in JavaScript as well as plain Blazor. The

JavaScript application consisted of Blazor project that calls a JavaScript module which

handles communication with the Servers SignalR in similar manner as the plain Blazor

alternative. Google Chromes development console was used to examine numerical dif-

ferences between the two formats. The results can be seen in chapter 5.

An automated test case comprehensively examined the program with various amounts of

data on both Google Chrome and Mozilla Firefox browsers. Only the data transfer test

application was used because the result showed so sigificant performance upgrade over

JSON. The test involved receiving the same amount of data 20 times and measuring the

time difference between receiving the packets. This test was run 46 times with different

amounts time series of data on both Google Chrome and Mozillla Firefox. The data

ranges ranged from 10 thousand into 10 million floating-point time series data points.

From this data various statistical values such as average and error were observed. Code

listing 4.6 shows how MessagePack can be used with SignalR in Blazor WebAssembly

C# code. SignalR features are part of Microsofts Microsoft.AspNetCore.SignalR.Client

NuGet package.
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var b u i l d e r = new HubConnect ionBui lder ( )

. Wi thUr l ( BackendAddress + " / t ime −ser ies −hub " ) ;

i f ( UseMessagePack )

{

b u i l d e r . AddMessagePackProtocol ( ) ;

}

hubConnection = b u i l d e r . Bu i l d ( ) ;

awai t hubConnection . Star tAsync ( ) ;

Listing 4.6. Using MessagePack with SignalR

4.2.3 JS interop

JavaScript interoperability in Blazor (JS interop) provides a way to call JavaScript code

from Blazor C# code. At the time of writing this thesis, there is no way to call required Web

Apis straight from WebAssembly. This means that JS Interop is required to draw data on

the screen. JS Interop also offers plenty of mature JavaScript plotting libraries to be used

from Blazor. This introduces another source of overhead to the system. The question

emerges whether transferring a large amount of data from C# code to the JavaScript

using JS interop is feasible. [36]

There are different ways to transfer data between C# and JavaScript code in JS interop.

By default every piece of data is serialized and deserialized as a JSON string when ex-

changíng data between the two environments. The JSON serialization is unacceptable

with the large amount of data used in this thesis. There is also a possibility to transfer data

as an array of bytes. Still, this inyolves using special helper functions from Mono frame-

work. .NET 7 introduced new JS Interop features to pass data by sharing memory. This

is called [JSImport]/[JSExport] Interop and it enables fast interoperability using specific

supported data types. These data types include arrays of 64 bit floating point numbers

and arrays of 32-bit integers which will be tested in this thesis. [37]

JS Interoperability tests measure the time of a synchronous JavaScript call to execute.

This is illustrated in code snippet 4.7. At first, the imported JavaScript functions are

declared in a separate class. A function called "draw" exists in a JavaScript module

withing the application. In the tests, the function that takes doubles (64-bit floating point

values) is used with floating point data and the function that takes ints (32-bit integers) is

used with 32-bit and 16-bit integers. The average execution time of TestInterop.drawInt

and TestInterop.draw is measured separately for different data counts.

using System . Runtime . In te ropServ i ces . JavaScr ip t ;
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/ / Separate c lass t h a t dec lares the JavaScr ip t f u n c t i o n s

/ / imported i n t o Blazor

p u b l i c p a r t i a l c lass Tes t In te rop

{

[ JSImport ( " draw " , " jsmod " ) ]

i n t e r n a l s t a t i c p a r t i a l vo id draw ( double [ ] data ) ;

[ JSImport ( " draw " , " jsmod " ) ]

i n t e r n a l s t a t i c p a r t i a l vo id drawInt ( i n t [ ] data ) ;

}

. . .

/ / S t a r t measuring execut ion t ime

Tes t In te rop . drawInt ( g l S e r i e s I n t , sho r t . MaxValue ,

SampleRate . Value ) ;

/ / Stop measuring execut ion t ime

Listing 4.7. JavaScript interoperability in Blazor WebAssembly

4.2.4 Compilation options

Certain optimizations can be made during the compilation phase of Blazor WebAssem-

bly. Before .NET 6, only the Blazor Runtime was compiled into WebAssembly (.wasm)

while application code and third party libraries were compiled in intermediate language

(IL compiled in a .dll file). .NET 6 introduces the RunAOTCompilation option that en-

ables the libraries and application code to be compiled into WebAssembly code [38]. This

can introduce drastic performance benefits for certain CPU-heavy applications, although

raising the compilation time significantly.

The application is tested with and without the RunAOTCompilation option and results

are examined through the browsers developer console. This option is only available on

publish mode, so it cannot be used while debugging. We chosen to publish the project into

a local folder in the system and run it using a simple web server. Serve is selected for the

web server [39]. Serve is a npm package and the server is run on node.js. After publishing

the project and navigating to the published projects wwwroot folder in command line, the

project is run using the command serve. As a result of this test, running the application

proved to be significantly faster with AOT Compilation and it is used in every other test

including automated tests. The results can be examined in depth in section 5.4.
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4.2.5 Chart drawing tests

The Blazor client web application is responsible for drawing the chart of the time series

data provided by the Server application. This chapter describes the different Blazor test

applications used to examine an efficient way to draw the data.

WebGL

A simple, pure WebGL application is written to test the WebGL drawing method. The

application draws a point for each data point in the time series. This requires data ma-

nipulation to transform the time series data into the WebGL view. Data is received from

the server by the Blazor WebAssembly application, transformed, and passed through JS

Interop to the WebGL data buffer to be drawn on the screen. The time to transform the

data is measured separately from the time it takes to draw the data points.

/ / WebGL ver tex shader

a t t r i b u t e vec2 a_pos i t i on ;

uni form vec2 u_ reso lu t i on ;

vo id main ( ) {

/ / normal ize the p o s i t i o n between 0 and 1

vec2 normal ized = a_pos i t i on / u_ reso lu t i on ;

/ / normal ize between 0 and 2

vec2 normal ized2 = normal ized * 2 . 0 ;

/ / t r a n s i t i o n between −1 and 1

vec2 c l i p = normal ized2 − 1 . 0 ;

g l _ P o s i t i o n = vec4 ( c l i p , 0 , 1 ) ;

g l_Po in tS ize = 1 . 0 ;

}

. . .

/ / WebGL fragment shader

p r e c i s i o n mediump f l o a t ;

vo id main ( ) {

g l_FragColor = vec4 (1 , 0 , 0 .5 , 1 ) ;

}

Listing 4.8. Vertex and fragment shader sources of the WebGL application
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The source code for WebGL shaders can be examined in code listing 4.8. Without getting

too in-depth in WebGL, the vertex shader is executed for every time series data point.

Variable a_position will contain the x and y values of each data point and u_resolution

will contain the resolution of input data. Fragment shader declares the color of each data

point. The shader code is compiled and executed on the GPU.

jThe drawing function is described in code listing 4.9. The code contains a lot of WebGL-

specific initialization that is not interesting. The functionality can be described as follows:

1. bufferData takes the new data points as the second parameter

2. vertexAttribPointer describes the data format

3. uniform2f takes the u_resolution parameter of vertex shader in listing 4.8

4. drawArrays tells WebGL to draw a point for each 2 data points in the input data

The drawing performance is measured using WebGL:s EXT_disjoint_timer_query_webgl2

extension [40]. This measures the time it takes for the GPU to draw the data (execute the

shaders for each time series data point). Even though the WebGL function calls don’t

appear asynchronous in JavaScript the GPU execution is done in the background. This

execution time should not affect the perceived performance of the application if it stays

under a few hundred milliseconds.

g l . b indBu f fe r ( g l .ARRAY_BUFFER, p o s i t i o n B u f f e r ) ;

g l . bu f fe rData ( g l .ARRAY_BUFFER, new Float32Array ( data ) ,

g l .STATIC_DRAW ) ;

g l . enab leVer texA t t r i bA r ray ( p o s i t i o n A t t r i b u t e L o c a t i o n ) ;

g l . v e r t e x A t t r i b P o i n t e r (

p o s i t i o n A t t r i b u t e L o c a t i o n , 2 , g l .FLOAT, fa l se , 0 , 0 ) ;

g l . un i fo rm2f ( reso lu t ionUn i fo rmLoca t ion , dataCount , maxy ) ;

/ / Draw the po in t s

g l . c l ea rCo lo r (0 , 0 , 0 , . 9 ) / / se t c l ea r co l o r to b lack

g l . c l ea r ( g l .COLOR_BUFFER_BIT) / / c l ea r the screen

g l . drawArrays ( g l . POINTS, 0 , data . leng th / 2 ) ;

Listing 4.9. The WebGL draw function in JavaScript. This is called every second for new

data in Blazor via JS Interoperability

When the time series data is received from the server to the Blazor Client application it is

transformed before passing to WebGL. The function that transfers 16-bit integer data is

described in code listing 4.10. The time series data is received from server as a C# List

/ / Returns an ar ray o f 32− b i t i n t ege rs ( i n t ) because JS In te rop

/ / doesn ’ t suppor t 16− b i t i n t e g e r ( sho r t ) a r rays
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p r i v a t e i n t [ ] t ransformData ( L i s t <shor t [ ] > data )

{

/ / The r e s u l t i n g ar ray has a l l the t ime se r i es channels

/ / i n a row as we l l as added x−values f o r each data po in t

i n t [ ] r e s u l t = new i n t [ SeriesCount * SampleCount * 2 ] ;

/ / Current channel index used to help i n s e r t data

/ / i n the r i g h t place of the r e s u l t a r ray

i n t ch = 0;

foreach ( var se r i es i n data )

{

/ / Helper index o f the r e s u l t a r ray

i n t i = 0 ;

/ / F l a t t e n the two−dimensional data and x−ax is values

/ / i n t o one ar ray [ x_0 , y_0 , . . . x_n , y_n ]

f o r ( i n t x_value = 0; x_value < SampleCount ; ++ j )

{

/ / x−ax is value i s the index of a data po in t

/ / i n the o r i g i n a l a r ray

r e s u l t [ ch * SampleCount * 2 + i ++] = x_value ;

/ / The y−ax is values ( data po in t s ) are separated

/ / evenly h o r i z o n t a l l y i n the char t

r e s u l t [ ch * SampleCount * 2 + i ++] =

( se r i es [ j ] + shor t . MaxValue * ch ) / SeriesCount ;

}

ch += 1;

}

r e t u r n r e s u l t ;

}

Listing 4.10. The C# function that transforms received time series data into a format that

can be used by WebGL

of C# Arrays but our WebGL shader takes a one-dimensional array as a parameter. The

flattens the received data into one array by looping through the original data and adding

each series into a new array one after another. As can be seen in the function, the

resulting array size is twice as large as the amount of data. This is because the x-axis

values are also added for each data point. Because one time series in the received data

is a one-dimensional array of periodically measured data points the index of a data point

is used as the x-axis value in the chart. There can be many time series in the received

data and they are distributed evenly on the horizontal axis of the chart. The data in the
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tests uses the whole range of 16-bit integers so short.MaxValue is used in the calculation.

The execution time of this transformData function is measured for each data count used

in the automated tests.

Canvas

Most online charting libraries seem to use HTML5 canvas to draw the chart. Canvas

drawing is tested using one of these frameworks called Apache ECharts [29]. It is a

popular framework offering many features for data visualization. ECharts claims to sup-

port rendering millions of data points in real-time using a progressive rendering machine

called ZRender [41]. Canvas rendering of time series data is tested using the line chart

feature of ECharts. ECharts is a JavaScript library so it is tested by running the SignalR

communication and data rendering purely on the JavaScript side of the Blazor application.

Data is fed to the ECharts line chart as it arrives from the backend. The Performance is

measured by counting the time it takes for ECharts to draw one update to the chart by

using performance.now() function in JavaScript as seen in code listing 4.11. The options

parameter that is passed to the ECharts instance contains all the time series data as well

as information on how to render the chart. All unnecessary drawing features such as

animations and data point symbols are also disabled for maximum performance.

/ / Options has new t ime se r ies data i n s i d e

const updateChart = async ( op t ions ) => {

const s ta r tT ime = performance . now ( ) ;

/ / The char t i s an ECharts char t ins tance

char t . setOpt ion ( op t ions ) ;

/ / Save draw t imes to a l i s t

window . drawTimes . push ( performance . now ( ) − s ta r tT ime ) ;

}

Listing 4.11. Measuring delay of ECharts chart update operation
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5. RESULTS

This chapter reviews the results of tests described in chapter 4. Results are divided into

two subsections that are tested individually, those being the transportation of data be-

tween server application and client (browser) application and the process of getting the

data into a visual form in the client application. While a lot of the optimization methods

such as data format overlap between these two sections, they are the two logical compo-

nents that can be observed individually.

5.1 Data transportation between server and client

This section focuses on observing different ways of data transfer. All the tests measure

the between receiving one data package from the server and parsing it into an appropriate

data structure on the client application. Nothing is done with the data and it is dumped

upon receiving the next package.

While the functionality of the application remains the same between tests, the results

are observed using different representations as seen fit. Most include a chart and ta-

ble of data processing speeds and some tests are observed using features of the web

browser. The first subsection 5.1.1 focuses on the affect of the binary MessagePack pro-

tocol compared to JSON protocol. In this section, 32-bit floating point integers are used.

Subsection 5.1.3 focuses on the differences of the data types of measurement points,

testing the performance of differently sized integer and floating points. Subsection 5.1.2

further discusses the affect of sample rate (amount of data points per second).

5.1.1 MessagePack

The difference in SignalR communication between using the default plaintext JSON data

transfer format and MessagePack proved to be substantial. The tested UI application had

the sole purpose of SignalR communication with no other functionality besides receiv-

ing 5,000,000 32 bit floating-point numbers in a list per second. When using the default

JSON format and Google Chrome browser, the browser’s performance significantly de-

teriorated to the point of being nearly unusable, making it challenging to even examine

the development tab of Chrome. The SignalR (websocket) communication using JSON,
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Figure 5.1. Chrome developer console showing data packets of SignalR communication
using JSON in Blazor application

depicted in figure 5.1, suffered from this performance degradation. Conversely, when us-

ing MessagePack, as shown in figure 5.2, the issue of browser slowdown was notably

absent.

The contrast in data size between the two formats is noteworthy. While an individual

JSON message occupied 55.1 MB, a similar message in the MessagePack protocol

amounted to only 25 MB. This discrepancy in message size is crucial, especially when

handling extensive data transfers, as smaller message sizes result in reduced bandwidth

usage and quicker transmission times.

Examining the timestamps of the messages reveals another crucial aspect of the com-

parison. With JSON, there was a delay of some 15 seconds between each message

processed, which implies an accumulating 14-second delay per message. On the other

hand, MessagePack exhibited much shorter delays, with messages containing five mil-

lion data points arriving approximately every 1.3 seconds, resulting in a delay of around

300ms for each message. This near-real-time data update capability is a significant ad-

vantage of using MessagePack and on its own proves JSON format to be unusable with

large amounts of data. For this reason, the JSON data format is not further examined in

other

The test results strongly suggest that employing binary formats like MessagePack is es-

sential when handling substantial data transfers over SignalR connections. The efficiency

gained from using binary formats significantly improves performance, minimizes commu-

nication delays, and enhances the overall user experience compared to the default JSON

data transfer format.

The result of the SignalR communication using a pure JavaScript client implementation

can be seen in figure 5.3. As can be seen, the communication of 5 million data points
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Figure 5.2. Chrome developer console showing data packets of SignalR communication
using MessagePack in Blazor application

Figure 5.3. Chrome developer console showing data packets of SignalR communication
using MessagePack

is a little (about 100ms) faster here than in the Blazor case (figure 5.2). It is unclear if

this is an optimization issue or something fundamental between the two systems. This

should, however, not be an issue for the scope of this thesis as 5 million data points is

intentionally an oversized data amount to test this specific feature.

5.1.2 Data count

The effect of data count was inspected using different amounts of 32-bit floating point

data. The relationship between the amount of data and transmission delay seems to ex-

hibit a linear trend, as tested from 10 thousand data points per packet to 10 million data
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Figure 5.4. Data packet processing delay per packet size in Chrome and Firefox using
32 bit floating point values

Figure 5.5. Data packet processing delay per packet size in Chrome using 32 bit integer
values in JSON format
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count mean std min 25% 50% 75% max

1000000 10.55 7.308791 -5.0 7.75 11.5 16.25 20.0

2000000 32.65 10.048697 16.0 24.00 32.5 40.25 55.0

3000000 74.35 11.476635 53.0 64.50 78.0 82.25 91.0

4000000 113.20 8.703296 97.0 107.75 111.5 120.25 126.0

5000000 146.60 14.787619 118.0 136.75 144.5 159.00 167.0

6000000 194.15 12.587692 163.0 190.50 195.0 202.50 214.0

7000000 231.20 18.063047 187.0 221.75 234.5 244.50 259.0

8000000 273.05 15.363919 237.0 265.00 273.5 284.25 295.0

9000000 311.90 20.143956 265.0 296.75 314.0 327.75 339.0

10000000 361.20 20.844285 312.0 347.00 363.0 372.00 406.0

Table 5.1. Google Chrome processing times for 32-bit floating point MessagePack data
from 1 million to 10 million data points

points per packet. This distinction is evident in figure 5.4. Additionally, the graph under-

scores differences among browsers, with Firefox version 121.0.1 demonstrating notice-

ably faster data processing compared to Chrome version 120.0.6099.225. Interestingly,

the data transfer time between the browsers seems to be the same up until two million

data points. On both browsers, the linear rate of processing time growth speeds up at this

point with Google Chrome starting to slow down faster.

Statistical values for 32-bit floating point data using Google Chrome can be examined in

table 5.1. The average delay stays under 400 ms even for the largest data amount of

10 million points. For 2 million points the delay is still reasonable and similar to Mozilla

Firefox, the average delay being 32.65 ms. Beyond this point, the delay increased faster

but still linearly. The standard deviation increased to about 20 milliseconds across the

entire range of examination up to ten million data points, which is very good in terms of

reliability. Especially with larger data quantities, there were occasional deviations from

the average delay in data transfer. Thus, data transfer with large amounts of data does

not meet hard deadline requirements for real-time systems.

Mozilla Firefox showed better performance in data transfer time delays when using 32-bit

floating point data as seen in table 5.2. Even with 10 million data points the average delay

does not exceed 170 ms and with five million data points it is below 80 ms. There is a

noticeable fluctuation in processing times per packet as data count gets bigger. Even for

5 million data points, the maximum processing delay vas 104 ms while the minimum was

50 ms. The overall performance seems promising regarding the feasibility of handling

large amounts of data within the browser. The browser can receive large data when it is

encoded into a binary format.

The impact of data count was also tested for JSON data. The only difference between the
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count mean std min 25% 50% 75% max

1000000 26.75 19.973337 -43.0 26.00 31.5 35.00 54.0

2000000 21.55 4.718106 12.0 19.00 21.0 22.25 33.0

3000000 48.80 66.825460 -104.0 37.50 45.0 83.50 191.0

4000000 69.20 15.813385 50.0 56.75 66.5 78.50 104.0

5000000 78.20 18.905861 38.0 72.00 77.5 87.75 117.0

6000000 109.60 19.068850 82.0 101.00 109.5 117.50 157.0

7000000 109.95 26.202601 50.0 92.00 106.0 132.75 151.0

8000000 124.30 23.371373 96.0 108.00 114.5 139.25 180.0

9000000 137.00 30.463092 79.0 121.25 138.0 159.00 189.0

10000000 163.50 29.809041 117.0 138.75 168.0 178.50 237.0

Table 5.2. Mozilla Firefox processing times for 32-bit floating point MessagePack data
from 1 million to 10 million data points

count mean std min 25% 50% 75% max

10000 7.15 5.163383 1.0 3.0 5.0 10.50 17.0

25000 10.80 7.215480 -5.0 6.0 11.5 18.00 21.0

50000 12.70 6.113832 -2.0 11.0 14.0 16.25 24.0

100000 24.20 6.925164 7.0 19.0 26.5 28.75 34.0

150000 25.90 8.283783 13.0 19.5 26.0 33.50 40.0

200000 37.95 5.286278 28.0 34.0 37.0 42.25 47.0

250000 42.75 6.281761 29.0 39.5 43.5 47.50 53.0

500000 77.70 9.695903 60.0 71.0 77.5 84.50 95.0

750000 130.55 14.046820 109.0 124.5 129.0 133.25 168.0

1000000 187.55 15.247001 164.0 176.5 185.0 200.75 215.0

Table 5.3. Chrome processing times for 32-bit floating point JSON data up until 1 million
data points

other data count test application is the change of data format. Firefox did not handle over 3

million data points in a reasonable time so results are only shown for Google Chrome. The

trend of the results can be examined in figure 5.5. The delay grows to over 10 seconds

when dealing with over 10 million data points. Table 5.3 shows statistical values of data

transfer delays from 10 thousand data points to one million data points. The average delay

stayed under 200 ms when dealing with less than a million data points being 187.55 ms

at 1 million data points. Just like with MessagePack protocol, the rate of processing delay

growth accelerated at one point. This time the point was between 1.25 million and 1.5

million data point measurements. While real-time data transfer using JSON is feasible

with very low amount of data, it is not advised due to the large performance boost of

using a binary format.
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Figure 5.6. Data packet processing delay per packet size in Chrome and Firefox using
16-bit integer values

Transferring a large amount of data using SignalR communication with the MessagePack

protocol in a Blazor WebAssembly application proved to be relatively fast. It did not in-

troduce a bottleneck in the use case considered in this thesis. When creating real-world

applications, it is advisable to implement a mechanism that monitors delays and acts

accordingly. For example, in the drawing application of this thesis, one could skip a signif-

icantly delayed packet altogether and continue processing from the next packet to avoid

the accumulation of delays.

5.1.3 Data types

According to test results, the data type of a single data point in the time series list does

matter when transferring data from Server to Client. Smaller data types reduce the size

of delivered data packages and memory required of the program and result in overall

better performance. No significant difference between 32-bit floating point numbers and

32-bit integers is seen when 32-bit integers are normalized into the whole range that

a 32-bit integer can hold. If the integer values will fit in a smaller representation then

MessagePack will pack them smaller resulting in a potential performance boost. For

example, the number 5 stored in a 32-bit integer can be stored in an 8-bit integer as well.

The performance for 16-bit integer data type for Google Chrome and Mozilla Firefox can

be examined in figure 5.6. The processing delays scale linearly and stay under 130ms
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count mean std min 25% 50% 75% max

1000000 11.90 4.517801 5.0 8.00 11.0 16.00 20.0

2000000 22.95 6.219452 12.0 18.00 23.5 28.00 33.0

3000000 28.40 10.762508 7.0 21.25 28.0 37.00 44.0

4000000 59.15 9.275179 41.0 54.75 58.0 65.00 82.0

5000000 80.65 10.529532 65.0 71.50 83.5 90.25 97.0

6000000 100.70 12.732470 77.0 93.25 101.0 110.00 122.0

7000000 132.05 8.678315 119.0 126.50 133.5 136.50 149.0

8000000 156.00 16.651221 121.0 151.25 157.5 165.25 196.0

9000000 173.05 14.358108 143.0 165.50 174.5 183.25 194.0

10000000 198.00 15.231546 169.0 187.50 201.5 209.00 222.0

Table 5.4. Google Chrome processing times for 16-bit integer MessagePack data from 1
million data points to 10 million data points

count mean std min 25% 50% 75% max

1000000 10.15 4.847951 1.0 7.00 10.0 13.00 23.0

2000000 17.45 6.244787 5.0 12.75 17.5 20.25 28.0

3000000 25.90 6.734827 16.0 20.75 24.5 30.00 41.0

4000000 39.75 21.574534 14.0 24.75 31.0 52.75 92.0

5000000 52.75 15.018848 16.0 47.25 55.5 61.25 81.0

6000000 70.55 52.017684 -49.0 47.00 68.0 83.00 185.0

7000000 90.25 21.540354 43.0 75.00 93.5 103.25 128.0

8000000 98.70 20.178415 68.0 85.75 97.0 108.75 144.0

9000000 117.45 38.374162 68.0 97.75 108.5 127.25 254.0

10000000 118.95 18.291427 86.0 106.50 117.5 133.25 148.0

Table 5.5. Mozilla Firefox processing times for 16-bit integer MessagePack data from 1
million data points to 10 million data points

even for 10 million data points in Mozilla Firefox. Google Chrome slows down more as

package size rises but the delay between browsers is very similar before three million

data points. When only two million data points are transferred, the average processing

delay is under 25 ms for both browsers. The size of 5 million data point packages for this

data type is 15 MB according to Google Chromes developer console. This size is a lot

smaller than the 25MB size of 5 million 32-bit floating point numbers.

Statistical values can be examined for Google Chrome in table 5.4 and for Firefox in table

5.5. Firefox performs better here, performing better than 32-bit floating point values in

mean time delays and offering more predictable at least when dealing with under 5 million

data points. Measurement before one million data points are not shown in the tables but
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Figure 5.7. Data packet processing delay per packet size in Chrome and Firefox using
32 bit integer values for low amount of data

count mean std min 25% 50% 75% max

1000000 16.80 8.062911 2.0 11.50 18.5 21.00 31.0

2000000 30.00 9.514532 12.0 24.00 32.0 37.00 44.0

3000000 70.50 9.110434 53.0 65.00 71.0 76.25 90.0

4000000 112.20 9.676885 90.0 106.00 112.0 117.00 128.0

5000000 153.55 13.367183 113.0 147.75 155.0 162.00 174.0

6000000 195.35 14.452372 158.0 190.75 198.0 202.50 219.0

7000000 226.75 14.534442 198.0 216.50 230.5 234.75 251.0

8000000 270.20 15.295682 241.0 257.00 275.0 280.50 298.0

9000000 302.20 15.642722 283.0 290.00 298.0 315.00 344.0

10000000 340.80 18.025129 296.0 328.00 340.0 352.25 368.0

Table 5.6. Google Chrome processing times for 32-bit integer MessagePack data from 1
million data points to 10 million data points

mean time delay on both Google Chrome and Mozilla Firefox was under 10 ms in every

measurement.

As seen in figure 5.7 32-bit integers perform similarly to 32-bit floating point numbers

on Firefox in figure 5.4. As with floating point numbers, Google Chrome performs much

slower than Firefox with integers. If the values were not normalized into the whole preci-

sion scale of 32-bit integers, the transfer time delays would be smaller. This was verified

using the same test but removing normalization.
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count mean std min 25% 50% 75% max

1000000 10.75 7.580272 -1.0 5.00 9.5 16.50 25.0

2000000 29.20 7.105224 16.0 24.50 30.0 33.00 47.0

3000000 50.95 28.834327 -18.0 43.50 50.5 61.25 136.0

4000000 70.25 16.562084 38.0 65.75 68.5 77.50 106.0

5000000 80.25 12.485254 58.0 70.50 84.0 87.25 104.0

6000000 102.10 26.625868 28.0 89.75 108.0 115.50 144.0

7000000 105.95 24.665072 64.0 89.00 102.5 117.75 157.0

8000000 164.75 42.345540 111.0 141.25 158.0 176.00 308.0

9000000 177.90 43.079975 78.0 159.25 176.5 208.25 261.0

10000000 177.20 41.227993 87.0 156.75 179.5 190.50 280.0

Table 5.7. Firefox processing times for 32-bit integer MessagePack data from 1 million
data points to 10 million data points

The smaller 16-bit integer values performed better in data transfer compared to 32-bit

integer or 32-bit floating point values which performed similarly. It appears that only the

size of data format used matters when packing data in MessagePack format. If the whole

precision of 32-bit integers is not used, 32-bit integers can perform faster than 32-bit

floating points. This is due to MessagePacks in-build optimization that packs integers

with as little precision as needed.

5.2 Data drawing

This section introduces the results of data drawing tests. This tests includes the actual

drawing of data as well as all required relevant data preparation for drawing within the

client application.

5.3 JavaScript interoperability

Transferring data between Blazor WASM C# code and JavaScript is consumes a signif-

icant amount of processing time and is measured as described in chapter 4.2.3. The

[JSImport]/[JSExport] interoperability delays for 16-bit integers are shown in figure 5.9

and delays for 32-bit floating point numbers are shown in figure 5.8. The results for 32-bit

integers are not shown because they perform the same as 16-bit integers due to internal

implementation of [JSImport]/[JSExport] interoperability.

Integers performed better than floating point numbers as can be seen in the aforemen-

tioned figures. In both cases Mozilla Firefox was also faster than Google Chrome. The

time it takes to transfer time series data points scares linearly from 0 to 10 million data

points. The average delay for integers is approximately 25 ms with 10 million data points
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Figure 5.8. Data interop time delays per data count using 32-bit floating point time series
data

Figure 5.9. Data interop time delays per data count using 16-bit integer point time series
data
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while the same delay is double for floating point numbers.

5.3.1 ECharts

On Google Chrome, performance degraded with the choice of a larger data type. At 1

million data points, 16-bit integers performed the best with drawing delay measured at

101 ms. The delay was 112 ms and 124 with 32-bit integers and 32-bit floating point

numbers respectively. Chrome was still slower with 101 ms delay than Firefox with 76 ms

delay at 100 milliseconds. On Firefox, data type did not affect the drawing speed when

data count was under 1 million. The mean value of drawing time delays bested Chrome

being approximately 75 ms at 1 million data points. The results different data counts of

32-bit floating point numbers can be examined in table 5.8.

count mean std min 25% 50% 75% max

10000 5.65 2.183069 3.0 4.75 5.0 6.00 13.0

25000 7.25 2.173404 5.0 6.00 7.0 8.00 14.0

50000 9.35 2.158825 7.0 8.00 9.0 10.00 16.0

100000 13.75 2.359193 11.0 12.75 13.0 14.00 22.0

150000 19.95 2.282081 18.0 19.00 19.0 20.00 28.0

200000 25.75 4.423323 22.0 23.00 24.0 27.00 38.0

250000 29.50 4.310330 26.0 27.00 27.0 30.00 41.0

500000 48.65 4.923360 44.0 45.00 46.0 53.25 61.0

750000 62.65 5.603335 57.0 58.75 61.0 64.25 76.0

1000000 74.85 6.698586 69.0 71.00 72.0 74.75 89.0

Table 5.8. ECharts data drawing delays using 32-bit floats on Mozilla Firefox

It appears that optimizing the data type can be beneficial at least if the end users browser

environment is not strictly known. On Google Chrome, the data drawing performance is

heavily affected by the choice of data type. In the tests Firefox was faster than Chrome

always when data count is lower than two million data points. However, as can be seen

figure 5.11, Chrome beats Firefox with very large amounts of data if 16-bit integer data is

used. In these cases the data drawing delay using ECharts is hundreds of milliseconds

which begs choosing a faster drawing method for real-time applications.
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Figure 5.10. ECharts data drawing delay using 32 bit integers by data points per packet
for Chrome and Firefox

Figure 5.11. ECharts data drawing delay using 16 bit integers by data points per packet
for Chrome and Firefox
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Figure 5.12. ECharts data drawing delay using 32 bit floats by data points per packet for
Chrome and Firefox

5.3.2 WebGL

Data drawing was tested only on Google Chrome because the needed EXT_disjoint_timer

_query_webgl2 does not work on Firefox. The results of drawing 32-bit floating data are

presented in figure 5.13. Even with 10 million data points, the average data drawing delay

did not exceed 30 ms. The test was also conducted on 16-bit integers and 32-bit floating

point numbers yielding no difference in performance between the data types.
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Figure 5.13. WebGL drawing times per data count using 32-bit floating point time series
data

The data drawing measured by this test is executed on the GPU asynchronously and does

not affect the performance of other application parts. In other words, the actual WebGL

drawing operation does not affect the perceived performance.

The time series data needs to be transformed into a one-dimensional array before pass-

ing it to WebGL. This data processing time is measured for each data count up to 10

million data points. The result for 16-bit integer data can be examined in figure 5.14. The

processing time scales linearly with data. Firefox performs better than Chrome with well

under 200 ms delay at 10 million data points. On Chrome, the delay rises to almost 250

ms with 10 million data points. The performance of 32-bit floating point data can be seen

in figure 5.15 and it was similar to the performance of 32-bit integer data. Using 32-bit

numbers, the data processing delay rises linearly to be approximately 50 ms slower than

16-bit integer data.
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Figure 5.14. Blazor data processing times per data count using 16-bit integer time series
data

Figure 5.15. Blazor data processing times per data count using 32-bit floating point time
series data

5.4 Optimization methods

Ahead of time compilation was tested using the same simple SignalR MessagePack ap-

plication as in section 5.1.1. MessagePack data format was used while testing. When
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Figure 5.16. Chrome developer console showing data packets of SignalR communication
using MessagePack

running the application in debug mode without AOT Compilation, the performance is even

worse than using JSON data format with AOT Compilation. There is approximately 16

second delay when receiving the data packets with JIT compiled application code. This

can be seen in figure 5.16 and it can be directly compared to figure 5.2. As stated by Mi-

crosoft, CPU-heavy applications can receive a significant performance boost when com-

piling with the RunAOTCompilation flag and this is certainly the case when processing

large data in a Blazor application.
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