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In this research, the gap in calibration data has been addressed through rigorous
experimentation with synthetic data. The focus of the study is to predict camera
calibration and distortion parameters from a single image. Applications dependent
on 3D geometry, such as autonomous driving, robotics, and augmented reality, re-
quire calibrated cameras. Traditional calibration methods often require multiple
images of a calibration object, such as a chessboard pattern, captured from different
angles. However, most publicly available datasets do not include such images, which
hinders the accurate calibration of cameras, especially in diverse and uncontrolled
environments. This research focuses on the development of deep learning models
that have been trained on synthetic datasets generated using a simulation platform,
the AILiveSim. We have used AILiveSim’s simulator to generate considerable num-
ber of synthetic images with different Horizontal Field-Of-View (H-FOV) and lens
distortion parameters This large dataset was generated and used to train a Residual
Networks (ResNets) model to learn eight camera distortion and calibration param-
eters k1, k2, k3, p1, p2 from the Brown-Conrady model, the principal axes cx and cy
of the image and H-FOV). The ResNet architecture, known for its ability to handle
complex image-based tasks, is adapted for regression tasks. This involves modifying
the network’s output layers and loss functions to predict continuous values rather
than categorical labels.

Keywords: Camera calibration, distortion, synthetic data, deep learning, resid-
ual networks (ResNet), AILiveSim, horizontal field-of-view, principal point, Brown-
Conrady Model
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1 Introduction

Accurate camera calibration and distortion correction are crucial components in var-
ious computer vision applications, such as autonomous driving, augmented reality,
and robotic vision. These processes ensure that the visual data captured by cam-
eras is geometrically accurate and can be reliably used for subsequent analysis and
decision-making. The following sections elaborate on the importance of calibration
and distortion correction in these applications, highlight the challenges associated
with obtaining calibration data, and introduce the use of synthetic data to address
these challenges.

1.1 Importance of Camera Calibration and Distortion Cor-
rection

This section explores the significance of camera calibration and distortion correction,
particularly in applications that heavily rely on precise visual data interpretation.
These processes are fundamental in ensuring that technological systems such as
autonomous vehicles, augmented reality platforms, and robotic systems perform
optimally. The relevance of this discussion to our thesis lies in highlighting the
need for the advancements we’re proposing in machine learning models to enhance
camera parameter predictions.

• Autonomous Driving:

In autonomous driving, cameras are used to perceive the environment, detect
obstacles, and navigate roads. Accurate camera calibration ensures that the
visual data aligns with the real-world geometry, enabling precise measurements
of distances and object positions [33]. Distortion correction is essential to
prevent image artifacts that can lead to errors in object detection and lane
keeping. For instance, undistorted images help in maintaining the integrity of
lane markings, which are critical for the vehicle’s navigation system.

• Augmented Reality (AR):

In augmented reality, virtual objects are overlaid onto the real world as seen
through a camera. Accurate calibration ensures that these virtual objects
appear in the correct position and scale relative to the real-world environ-
ment [32]. Distortion correction is necessary to maintain the visual coherence
between the virtual and real elements, providing a seamless and immersive
user experience. Misalignment or distortion can break the illusion, reducing
the effectiveness of AR applications [32].
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• Robotic Vision:

Robots rely on cameras for tasks such as navigation, object manipulation,
and environment mapping. Calibration allows robots to accurately interpret
visual data and make precise movements. Distortion correction ensures that
the images used for navigation and object detection are free from distortions
that could mislead the robot. For example, in manufacturing, a robot might
need to pick up objects from a conveyor belt; accurate visual information is
crucial for the robot to identify and grasp objects correctly [2].

1.2 Challenges in Obtaining Calibration Data

One of the main challenges in camera calibration is the lack of readily available
calibration data in most datasets. Traditional calibration methods often require
multiple images of a calibration object, such as a chessboard pattern, captured
from different angles. These images are used to calculate the camera’s intrinsic
and extrinsic parameters. However, most publicly available datasets, such as those
used in autonomous driving or surveillance, do not include such calibration images.
This gap makes it difficult to calibrate cameras accurately, especially in diverse and
uncontrolled environments.

1.3 Using Synthetic Data to Address Calibration Challenges

This thesis addresses the gap in calibration data by exploring the use of synthetic
data to predict camera calibration and distortion parameters from a single image.
Synthetic data generation involves creating photorealistic images using rendering
engines or generative models. These images can simulate a wide range of environ-
ments and scenarios, making them ideal for training machine learning models.

In this research, the AILiveSim [18] platform is used to generate a large dataset
of synthetic images with known camera calibration and distortion parameters. This
dataset includes various Field-of-View (FOV) settings and distortion coefficients,
modeled on the Brown-Conrady distortion model, to provide a robust foundation
for training and testing.

1.4 Deep Learning Models for Parameter Estimation

The core of this thesis is the development of deep learning models to estimate cam-
era calibration and distortion parameters from synthetic images. The ResNet [14]
architecture, known for its ability to handle complex image-based tasks, is adapted
for regression tasks. This involves modifying the network’s output layers and loss
functions to predict continuous values rather than categorical labels.
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The only other deep learning model that performs a similar function is the Deep-
Calib model. DeepCalib [5] is designed to predict the calibration and distortion
parameters, focusing primarily on predicting the focal length and a distortion co-
efficient using a single image. However, there are several limitations and gaps in
the DeepCalib model. One notable difference is that DeepCalib uses the Unified
Spherical Model (USM), and the distortion parameter in USM is not the same as
the first-order radial distortion coefficient k1 in the Brown-Conrady model. Given
that most lenses are modeled by the Brown-Conrady model, our research focuses on
this more widely applicable approach.

Firstly, DeepCalib is predominantly trained on images captured with wide-angle
or fisheye lenses [5]. Consequently, its performance is optimized for such lenses and
may not generalize well to standard or narrow-angle lenses. This restriction limits
its applicability across diverse camera setups and imaging conditions, which is a
significant drawback for applications requiring versatile camera calibration solutions.

Secondly, DeepCalib’s [5] scope is limited to predicting only a few parameters,
specifically the focal length and K1. In contrast, many practical applications, partic-
ularly those involving 3D geometry such as autonomous driving and robotics, require
a comprehensive set of calibration and distortion parameters. Accurate calibration
in these fields necessitates a more extensive understanding of both the intrinsic and
extrinsic camera parameters, including tangential distortion coefficients p1 and p2,
higher-order radial distortion coefficients k2 and k3, the principal point coordinates
(cx, cy), and the Horizontal Field-of-View (H-FOV).

1.5 Methodology

The synthetic dataset is divided into training, validation, and testing subsets to
ensure comprehensive model evaluation. The models are trained to predict various
camera parameters, including the horizontal field of view (H-FOV) and the Brown-
Conrady distortion coefficients k1, k2, k3, p1, p2. Additionally, the principal point
coordinates are included as target outputs.

The training process involves data augmentation techniques to enhance the
model’s robustness to variations in image quality. Data augmentation refers to the
technique of creating additional data from the data that already exists [23]. This
process enhances the size and diversity of the dataset by applying various trans-
formations and modifications. It is commonly used in machine learning to improve
model performance by providing more varied and extensive training data. The mod-
els are then evaluated using the KITTI dataset, a widely-used real-world benchmark
that includes calibration information [19]. This evaluation assesses the models’ gen-
eralization capabilities and provides insights into the potential of synthetic data for
real-world applications.
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1.6 Research aim

This research seeks to address several fundamental questions that explore the po-
tential of using synthetic data and deep learning for predicting camera calibration
and distortion parameters. The main questions guiding this study include:

• Effectiveness of Single-Image Calibration: Can deep learning models
accurately predict camera calibration and distortion parameters from a single
image? This question investigates the precision with which these models can
derive meaningful calibration data from limited input, reflecting their utility
in practical scenarios.

• Impact of Variations in Distortion and Field-of-View: How do different
types of distortion and variations in the FOV affect the accuracy of the pre-
dicted camera parameters? This inquiry focuses on the model’s robustness and
its ability to adapt to diverse imaging conditions that might be encountered
in real-world applications.

• Adaptation of Deep Learning Architectures for Regression Tasks:
How can architectures like ResNet be modified to effectively perform regres-
sion tasks in estimating camera parameters, particularly with the challenge
of varying image geometries? This question investigates the technical adap-
tations necessary to transform classification-based deep learning models for
regression tasks that require handling images with different aspect ratios and
geometric properties. We explore the implementation of a custom batch sam-
pler that groups images of similar sizes together, facilitating efficient training
across diverse image dimensions. This adaptation is crucial for accommodat-
ing the variable geometrical characteristics of training data, enhancing the
model’s ability to generalize to real-world scenarios where camera images vary
widely in size and format.

• Generalization to Real-World Data: What methodologies enhance the
ability of models trained on synthetic data to generalize effectively when ap-
plied to real-world datasets such as KITTI? This explores strategies for bridg-
ing the gap between synthetic training environments and practical deployment
scenarios, ensuring that the models perform well on actual camera data.

These questions aim to validate the effectiveness of synthetic data and deep
learning in the field of camera calibration, offering a promising possibility for ad-
vancements in automated and precise camera calibration techniques.
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1.7 Contributions

This thesis makes several key contributions to the field of camera calibration and
distortion parameter estimation:

1. Generated datasets with known distortions: Using the AILiveSim’s sim-
ulator, a comprehensive dataset was generated containing over 1.49 million
images with varying horizontal field-of-view (H-FOV), distortion parameters,
and principal points. This dataset is unique in its scale and detailed labeling,
making it an invaluable resource for training deep learning models and test-
ing how camera and lens parameters affect performance of different types of
algorithms.

2. Innovative dataset generation methodology: The datasets were gener-
ated in a way that ensures the distortion models do not become unrealistic.
This was achieved by customizing the distortion parameters for each specific
H-FOV using a novel method that involved applying forward distortion mod-
els, re-projecting distorted points, and iteratively determining optimal values
using numerical root-finding techniques. This approach provided significant
insights into the relationship between H-FOV and distortion parameters, en-
suring varied and realistic images for robust model development.

3. Inclusion of image size in model training: The approach of feeding the
size (width, height) of the image into the fully connected layer of the deep
learning model has been shown to yield the best results thus far. This innova-
tion enhances the model’s ability to generalize across images of different sizes
and aspect ratios.

4. Development of a deep learning model for Brown-Conrady distor-
tion parameters: A novel deep learning model was created that predicts the
Brown-Conrady distortion parameters, the H-FOV, and the principal axis of
an image. This model uses the extensive synthetic dataset and demonstrates
significant improvements in parameter estimation accuracy.

1.8 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview of the
background knowledge relevant to camera models, calibration, distortion, synthetic
data, and deep learning. It also includes a brief discussion of relevant work. Chapter
3 describes the dataset and methodology used in this research. Chapter 4 presents
the results of the study. Finally, Chapter 5 draws the conclusions, discusses the
limitations, and proposes future work.
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2 Background Knowledge

This chapter lays the foundational knowledge necessary to understand the broader
context of this thesis, which investigates the prediction of camera calibration and
distortion parameters using deep learning and synthetic data. We begin by explor-
ing the concept and applications of synthetic data, particularly the process of its
generation and utilization to overcome the limitations of real-world data in train-
ing machine learning models. This discussion includes an examination of the latest
advancements in rendering technologies and generative models, as well as the chal-
lenges associated with synthetic data, such as domain adaptation and the pursuit of
photorealism. Following this, we dive into the specifics of the AILiveSim simulator, a
sophisticated platform for creating detailed simulations crucial for the development
and testing of AI systems. The section on deep learning algorithms for regression
highlights how these methods can be adapted for tasks involving continuous out-
comes, focusing on the modifications required for ResNet architectures to handle
regression effectively. A comprehensive overview of the KITTI dataset is given,
emphasizing its role as a crucial resource for validating the practicality of synthetic
training data in real-world scenarios. This chapter sets the stage for understand-
ing how synthetic data, coupled with advanced machine learning techniques, can
significantly enhance the field of camera calibration. Lastly, this chapter will also
discuss the DeepCalib [5] study in detail, examining its methodologies, findings,
and contributions to the field. The study focuses on deep learning approaches for
camera calibration, highlighting innovative techniques and results, and identifying
the specific gaps our research aims to fill.

2.1 Synthetic Data

The generation of synthetic visual data, primarily driven by advances in computer
graphics and generative models like Generative Adversarial Networks (GANs) [12],
has broad implications for training machine learning models, particularly in envi-
ronments where real data is scarce, privacy-sensitive, or hard to collect.

Synthetic data is commonly produced using rendering engines such as Unity or
Unreal Engine, which were initially developed for the video game and film indus-
tries [26]. These tools can create high-fidelity, photo-realistic images that simulate
complex lighting, textures, and physics interactions [17]. This capability is crucial
for generating varied datasets that closely resemble real-world conditions. Alter-
natively, generative models offer a different approach by learning to produce new
images that statistically resemble a training set of real images, thereby augmenting
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the volume and variety of data available for training purposes [4].
A notable application of synthetic data is in the field of autonomous driving,

where it is used to simulate rare or hazardous driving scenarios that are difficult to
capture but are essential for testing vehicle systems. Similarly, in medical imaging,
synthetic data helps overcome issues related to the privacy and rarity of certain
conditions, providing ample data for training diagnostic tools without compromising
patient confidentiality [15].

However, the use of synthetic data is not without challenges. The difference
of performance when models trained on synthetic data are applied to real-world
data, remains a significant hurdle. This issue has fuelled developments in domain
adaptation techniques and efforts to enhance the photorealism of synthetic images.
Domain adaptation involves modifying machine learning models to improve their
performance on a target domain (real-world data) when they are trained on a source
domain (synthetic data) [22]. The objective is to overcome the domain shift or
the differences between the training data and the data encountered in real-world
applications.

3D models have always been instrumental in enhancing the performance on real
images. Recently, these models have played a pivotal role in augmenting training
datasets. This augmentation helps mitigate the risk of overfitting, especially in
datasets with limited size. Notably, 3D models are utilized in tasks such as object
detection. A novel approach has been seen where synthetic data, derived exclu-
sively from 3D models, are used to train 2D object detectors. Such detectors are
tasked with predicting bounding boxes around objects within a scene. According to
recent findings [25], when a network is pretrained on the ImageNet dataset [8] and
subsequently fine-tuned with synthetic data from 3D models, it achieves superior
detection performance on the Pattern Analysis Statistical Modelling and Computa-
tional Learning (PASCAL) dataset [10] compared to training solely with a minimal
number of real labelled samples.

Recent studies have also explored the concept of domain randomization, where
synthetic images are varied along multiple features such as lighting, textures, and
camera angles to train models that can generalize better to new, unseen environ-
ments [30]. Additionally, augmentation techniques have been refined to introduce
realistic sensor effects into synthetic images, simulating the types of noise and dis-
tortion that occur in real sensor data [28].

Recent work has revealed the significant impact that elements within the image
formation and processing pipeline can have on the accuracy of learned representa-
tions in computer vision. For example, research [1] shows how variable illumination,
shutter speed, and gain can influence the effectiveness of well-known vision algo-
rithms. Similarly, another article [9] states that blur and noise can adversely affect
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collect data. One such method involves users mounting virtual cameras on simulated
vehicles and capturing images as these vehicles navigate through virtual environ-
ments. This process mirrors real-world data collection methods, such as those used
in the KITTI dataset, but within a controlled virtual setting. For example, a camera
can be virtually placed on a car, capturing images while the car moves through a
simulated city. This setup allows for the creation of comprehensive datasets that can
be used to train and validate computer vision algorithms under various conditions.

AILiveSim ensures that the generated synthetic data is highly realistic, provid-
ing a robust foundation for AI model development. The platform’s ability to control
and modify environmental parameters, lighting, weather conditions, and sensor con-
figurations further enhances its utility for creating diverse and high-quality datasets.
By adjusting these parameters, developers can simulate a wide range of scenarios,
ensuring that the AI models trained with this data are robust and adaptable to
different real-world conditions.

2.3 Deep Learning Algorithms for Regression

Regression is a crucial technique in statistics and machine learning that aims to
predict a continuous outcome based on one or more predictor variables, often called
independent variables. The primary objective of regression analysis is to uncover
the relationship between these predictors and the outcome variable [16]. Notably,
predictor variables can include complex data types such as images, which are repre-
sented by pixel values. These pixel values can be transformed into vectors to serve
as input variables. By associating these image vectors with specific parameters as
labels, a model can be trained to predict these parameters on new, unseen images.
The model identifies and leverages image features to make predictions, learning
relationships between the image characteristics and the parameters.

Due to the complicated nature of image data, more sophisticated models are often
required to avoid under-fitting. Neural networks, particularly deep learning models,
are adept at handling the complexities of image-based regression. Among these,
Residual Networks (ResNets) stands out in addressing the challenges of training
very deep neural networks. The concept of residual connections was first introduced
in ResNets. Residual connections are shortcuts that skip one or more layers and add
the output from an earlier layer to a later one, performing an identity mapping [14].
These connections help mitigate the vanishing gradient problem, where gradients
diminish as they pass through numerous layers during training. By enabling gradi-
ents to flow more freely across layers, residual connections facilitate the training of
deeper networks without the performance degradation typically observed as network
depth increases. This approach enhances the model’s ability to learn from large and
complex datasets without losing significant information through the depth of the
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network structure [27].

2.3.1 Residual Networks

ResNet34 is a light architecture comprising of 34 layers, making it particularly suit-
able for environments with limited computational power such as mobile devices and
embedded systems. ResNet34’s architecture includes fewer layers, which reduces
the computational load while maintaining sufficient depth to learn detailed features
necessary for accurate predictions [14]. This makes ResNet34 an excellent choice
for applications where both speed and accuracy are essential. Its ability to perform
complex visual recognition and estimation tasks with limited resources depicts its
utility in widespread real-world applications. The Figure 2.2 displays the ResNet34
architecture.
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problem. These changes can help in improving the convergence behavior of
the network.

To enhance the generalization of ResNet models for regression tasks, various
techniques like data augmentation, transfer learning, and regularization are useful.
Data augmentation increases the variety of training data by applying random but
plausible transformations to the images, aiding the model in adapting to new, un-
seen scenarios. Transfer learning leverages a model that has been pre-trained on a
comprehensive dataset, and then fine-tunes it on a more specialized dataset [35] .
This approach can boost the model’s ability to learn because it utilizes pre-trained
weights instead of starting from scratch with random or zero-initialized weights.
Pre-trained weights are beneficial as they enable the model to learn from a broad
array of previously seen images, thus enhancing its ability to generalize across differ-
ent datasets. By making these adaptations, ResNet can be effectively transformed
from a purely classification-oriented architecture to a versatile tool capable of han-
dling complex regression problems, providing deep insights from visual data across
various domains.

2.4 Camera Imaging Technology

This section delves into the details of camera imaging technology. We begin with
the classic pinhole camera model, which serves as a fundamental building block
for understanding how light translates into images. This model’s simplicity yet
profound impact on imaging concepts paves the way for exploring more complex
camera systems and the inherent distortions they encounter, such as those described
by the Brown-Conrady model. By examining these models, we establish a solid
foundation for understanding camera calibration processes, essential for achieving
precision in automated systems and driving further innovations in image processing.

2.4.1 Pinhole Camera Model

The concept of the pinhole camera emerged from the observation of natural phe-
nomena like the camera obscura. The camera obscura, or ”dark chamber” in Latin,
was an optical device consisting of a darkened room or box with a small hole or
lens on one side [29]. Through this aperture, an inverted image of the outside scene
would be projected onto a surface inside the chamber, such as a wall or table. This
principle was known since ancient times, with early mentions found in Chinese writ-
ings from as early as the 4th century BC and in the works of Greek philosopher
Aristotle around the 4th century BC.

Understanding the fundamentals of image formation is crucial for comprehending
the underlying principles of our actions. Specifically, it is important to understand
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2. Camera Coordinate System: This system is crucial because the image is cap-
tured using a camera. Unless the camera is placed at the World’s origin and
its axes are aligned with those of the World, the camera will have a different
coordinate system. To allow for the camera’s movement in 3D space while
capturing an image, the camera’s coordinates are translated and rotated with
respect to the World coordinates. This means that a point P in the World
coordinate system, represented by (Xw, Yw, Zw), is mapped to (Xc, Yc, Zc) in
the camera coordinate system [29].
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75 + t. (2.2)

Here, R and t signify rotation and translation, respectively. Since these rota-
tion and translation parameters combined are known as the extrinsic param-
eters, they are often represented in a specific way.
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Note that an extra dimension is included in the World coordinate system, con-
verting the Cartesian coordinates to homogeneous coordinates for simplicity
and ease of calculation.

3. Image Coordinate System: Once the point in the World is mapped to the cam-
era coordinate system, determining its location on the image plane is pivotal.
The distance between the optical center and the image plane is known as the
focal length [13]. To obtain the 2D points, we can follow certain formulas.

A generic form of the camera matrix, which includes the pixel skewness pa-
rameter, is as follows:

K =

2

64
fx γ cx

0 fy cy

0 0 1

3

75 , (2.4)

where:

• fx and fy are the focal lengths in the x and y directions, respectively.

• γ is the skew coefficient between the x and y axes.
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However, the expectation is that the pixels are square, so the skew coefficient
γ is typically zero, simplifying the camera matrix to the following form:

K =

2

64
f 0 cx

0 f cy

0 0 1

3

75 . (2.5)

This intrinsic matrix K contains the camera’s intrinsic parameters. Using this
matrix, we can convert the camera coordinates to image coordinates as follows:

x = f
Xc

Zc
+ cx,

y = f
Yc

Zc
+ cy,

(2.6)

where:

• x and y are the coordinates on the image plane.

• f is the focal length of the camera.

• Xc, Yc, and Zc are the coordinates in the camera coordinate system.

• cx and cy represent the principal point, the point on the image plane
where the optical axis of the camera intersects the image plane.

Alternatively, the same can be achieved through simple matrix multiplication:
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where:

• x0, y0, and z0 are the homogeneous coordinates on the image plane.

Image coordinates are usually represented by (u, v).
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where:

• u0, v0, and w0 are the homogeneous image coordinates.
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To obtain the final pixel coordinates:

u =
u0

w0 ,

v =
v0

w0 ,

(2.9)

where:

• u and v are the pixel coordinates in the image.

2.4.2 Brown-Conrady Distortion Model

The pinhole camera model is an effective tool for explaining camera mechanics. How-
ever, its limitations, including diminished light intake leading to darker images and
increased blurriness with a wider aperture, make its practical use rare. To circum-
vent these issues, lenses are employed, but they introduce their own complications,
including lens distortion. The Brown-Conrady distortion model accounts for these
imperfections through two primary types of distortions: radial and tangential [13].

Radial Distortion

Radial distortion occurs due to the bending of light rays by the lens, causing straight
lines to appear curved in the image. The radial distortion can be modeled using the
following equations:

xdistorted = xideal(1 + k1r2 + k2r4 + k3r6),

ydistorted = yideal(1 + k1r2 + k2r4 + k3r6),
(2.10)

where:

• xideal and yideal are the undistorted (ideal) coordinates.

• xdistorted and ydistorted are the distorted coordinates.

• r2 = x2
ideal + y2

ideal is the squared radial distance from the image center.

• r4 = (x2
ideal + y2

ideal)2 is the radial distance raised to the fourth power.

• r6 = (x2
ideal + y2

ideal)3 is the radial distance raised to the sixth power.

• k1, k2, and k3 are the radial distortion coefficients.

The first-order radial distortion k1, often referred to as barrel distortion when
positive or pincushion distortion when negative, accounts for most of the distortion
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precise image measurements are crucial.

2.5.1 Intrinsic and Extrinsic Parameters

Intrinsic parameters describe the internal characteristics of the camera, such as
the focal length, principal point, and the distortion coefficients. These parameters
are inherent to the camera’s design and construction. Specifically, the intrinsic
parameters include:

• Focal Length (f): The distance between the camera lens and the image
sensor when the camera is focused at infinity.

• Principal Point (cx, cy: The point on the image sensor where the optical
axis intersects the image plane, usually close to the center of the image.

• Distortion Coefficients (k1, k2, k3, p1, p2): Parameters that quantify the lens
distortions, including radial and tangential distortions.

Extrinsic parameters represent the camera’s position and orientation in the world
coordinate system. They define the transformation from 3D world coordinates to
the camera coordinate system and include:

• Rotation Matrix (R): Describes the orientation of the camera relative to
the world coordinate system.

• Translation Vector (t): Describes the position of the camera’s optical center
in the world coordinate system.

2.5.2 Calibration Techniques

There are several techniques utilized in camera calibration, each offering distinct
advantages and suited for various applications. Among the most widely recognized
and frequently employed methods are checkerboard pattern calibration, direct linear
transformation (DLT), and Zhang’s method.

Checkerboard Pattern Calibration

This method involves capturing multiple images of a known calibration pattern,
such as a checkerboard, from different angles. The corners of the checkerboard
squares serve as key feature points, which can be accurately detected and used
to estimate the camera parameters [20]. This technique is widely used due to its
simplicity and effectiveness in providing accurate calibration results. However, a
significant drawback of this method is that most datasets do not include images
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of a checkerboard for calibration purposes. Consequently, to calculate the intrinsic
and extrinsic parameters, the same camera must be used to capture images of a
checkerboard in various positions and orientations.

Direct Linear Transformation (DLT)

The Direct Linear Transformation (DLT) is a mathematical approach that uses
corresponding points between the 3D world coordinates and the 2D image coor-
dinates [21]. By solving a set of linear equations, DLT estimates the camera pa-
rameters. This method is useful for initial parameter estimation but may require
refinement using non-linear optimization techniques to achieve higher accuracy. A
notable drawback of DLT is its sensitivity to noise and inaccuracies in the point
correspondences, which can lead to significant errors in the estimated parameters if
the input data is not precise. Additionally, most public datasets in computer vision
do not include the necessary 3D-2D correspondences, limiting the direct application
of DLT to such datasets.

Zhang’s Method

Zhang’s method is an enhancement over basic checkerboard calibration and lever-
ages advanced optimization algorithms to refine the parameter estimates [34]. This
method involves capturing multiple images of a planar calibration pattern (such as
a checkerboard) from different orientations. Unlike basic checkerboard calibration,
Zhang’s method uses these images to compute both the intrinsic and extrinsic pa-
rameters by minimizing the reprojection error through iterative optimization. This
iterative refinement step allows Zhang’s method to achieve higher robustness and
accuracy compared to the basic checkerboard method [34]. However, similar to the
checkerboard pattern calibration method, a significant drawback is that most public
datasets do not include images of a checkerboard for calibration purposes. There-
fore, to utilize Zhang’s method, the same camera must be used to capture images
of a checkerboard in various positions and orientations.

2.6 KITTI Dataset

The KITTI dataset is one of the most widely used datasets for evaluating the per-
formance of computer vision algorithms, particularly in the field of autonomous
driving. It provides a rich collection of real-world data captured from various sen-
sors, including cameras and LiDAR, mounted on a vehicle driving through different
environments. This comprehensive dataset is instrumental for tasks such as 3D
reconstruction, object detection, and navigation [19].
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2.6.5 DeepCalib

Similar to our work, a notable study titled ”DeepCalib: A Deep Learning Approach
for Automatic Intrinsic Calibration of Wide Field-of-View Cameras” has addressed
the challenge of camera calibration using a deep learning approach [5]. Calibration of
wide FOV cameras, essential for applications such as 3D reconstruction, augmented
reality, and camera motion estimation, has traditionally involved cumbersome meth-
ods requiring multiple images of calibration patterns, manual interactions, or image
sequences. Existing methods also often assume the presence of lines or require spe-
cific scene structures.

DeepCalib introduces a fully automatic method that overcomes these limitations
by using a deep convolutional neural network (CNN) to estimate intrinsic camera
parameters (focal length and distortion) from a single image of a general scene [5].
This approach leverages a vast collection of omnidirectional images from the internet
to create a large-scale dataset. The dataset includes millions of wide FOV images
with varied intrinsic parameters, enabling the training of a CNN using the Inception-
V3 architecture.

The DeepCalib method eliminates the need for specific calibration targets, mul-
tiple images, or specific scene structures, making it versatile and efficient. The key
aspects of this study include the automatic generation of a large-scale dataset from
internet-sourced panoramas and the use of the unified spherical model for calibra-
tion, which simplifies the distortion representation to a single parameter.

The study rigorously validates the method through experiments, demonstrating
its robustness and accuracy in estimating focal length and distortion parameters.
The results show that DeepCalib achieves high accuracy and is competitive with
traditional calibration toolboxes, especially in scenarios where traditional methods
are not feasible [5].

The gap in DeepCalib’s approach is that it only works with images from wide
FOV cameras that follow the spherical unit model. The Unified Spherical Model
(USM) uses the geometry of a sphere to represent and analyze complex, multidi-
mensional interactions. It is especially useful for wide-angled images, like those from
fisheye lenses or panoramic shots, because it can handle the broad field of view these
images capture [7]. However, this makes the USM less versatile for other types of
images. Most commonly used cameras do not fall into this category and are in-
stead modeled by the Brown-Conrady model. The Brown-Conrady model is more
broadly usable because it corrects lens distortions in flat images regardless of the
lens type [31]. This means it works well with a wide range of lenses, not just fisheye
or wide-angle lenses. Therefore, while the USM is great for specific wide-angle sce-
narios, the Brown-Conrady model is more practical and versatile for general imaging
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tasks.
Another difference between DeepCalib’s approach and the approach taken in

this research is that the distortion parameter used in the USM is not the same as
k1 used in the Brown-Conrady model. The distortion parameters are fundamentally
different and, therefore, not directly comparable. This discrepancy means that the
outputs produced by a DeepCalib model will be entirely different from those of a
model trained using the Brown-Conrady parameters on the same test set.

Additionally, DeepCalib’s training and testing images are sourced from the same
dataset of omnidirectional images, which can potentially limit the model’s generaliz-
ability to other types of images. Our research addresses these limitations by focusing
on cameras that follow the Brown-Conrady model. We estimate parameters specific
to this model and ensure robustness by training on one dataset and testing on a
completely different dataset. This methodology prevents overfitting to a single data
source and enhances the robustness and applicability of our findings across diverse
imaging conditions.

By utilizing separate datasets for training and testing, our approach mitigates
the risk of dataset-specific biases and validates the model’s performance in varied
real-world scenarios. This comprehensive evaluation strategy ensures that our model
is versatile and reliable for a broader range of imaging tasks beyond the narrow scope
addressed by DeepCalib.
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3 Dataset and Methodology

Data is fundamental in training machine learning models, as it directly impacts
their effectiveness and functionality. Often, researchers can access standardized
datasets or gather their own data, but sometimes the necessary data might not be
available. In such scenarios, synthetic data can be a viable alternative, although its
appropriateness largely depends on the application domain.

For example, tasks that involve geometric predictions, such as determining the
field of view in an image or identifying the cause of image distortion, can be effec-
tively handled with synthetic data. The major reason is that these tasks do not
require detailed recognition of varying object features, which can differ significantly
between real and synthetic images.

Conversely, synthetic data might not be as effective for applications requiring
high fidelity to real-world details, such as facial recognition. This is because creating
a synthetic image that accurately matches the complex features of a real face can
be quite challenging. However, synthetic data is quite beneficial for geometric tasks
within the same context, such as predicting the direction of a person’s gaze, which
involves simpler, more definable geometric parameters.

This research utilized AILiveSim to generate synthetic datasets aimed at explor-
ing camera parameters. This approach highlights the potential of synthetic data to
provide valuable insights in fields where obtaining real data is difficult or impossible.

3.1 Camera Parameter Data Generation

The Camera Parameter Search (CPS) dataset represents a pioneering effort in the
field of computer vision and camera calibration, featuring an extensive collection
of 1,495,000 images specifically designed to facilitate the analysis of intrinsic and
extrinsic camera parameters. This dataset was generated using AILiveSim, a so-
phisticated simulation platform that replicates real-world camera behavior within a
controlled virtual environment.

To create the CPS dataset, a total of 13 unique sets of images were initially
produced, each comprising 10,000 images. These sets were distinct in their FOV
specifications, which varied from 30 to 150 degrees in 10-degree increments. The
choice of a virtual city scene for the backdrop of these images was strategic, as
urban landscapes are rich in straight lines—found in buildings, roads, and other
infrastructure—which are ideal for observing and analyzing the effects of optical
distortion.

The simulation setup involved mounting a virtual camera on a car, much like the
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methodology employed in real-world data collection initiatives such as the KITTI
dataset, where multiple cameras were fixed to a car that traversed the city. This
approach not only simulates a dynamic observation point but also adds a layer of
realism to the data, providing varied perspectives and angles as the vehicle moves
through the city.

AILiveSim’s capabilities allow for precise manipulations of camera settings, which
were exploited to explore a wide range of camera calibrations. Initially, images were
captured without any distortion to establish a baseline. Following this, each of the
13 image sets was processed to incorporate five different sets of distortion param-
eters. These parameters were modeled on the Brown-Conrady distortion model,
which includes coefficients k1, k2, k3 (radial distortion coefficients) and p1, p2 (tan-
gential distortion coefficients). Additionally, the principal axes, which typically lie
at the image center, were intentionally shifted in the x and y directions across dif-
ferent image sets. These shifts were incorporated as parameters for the model to
learn and predict, enhancing its ability to handle variations in camera alignment.

The organization of the CPS dataset is precise, with each folder grouping images
that share identical intrinsic and extrinsic camera parameters. In the undistorted
subsets, the distortion coefficients were set to zero, reflecting a scenario with no
optical distortion and a centrally located principal axis. This structured approach
ensures that each subset of images presents a consistent set of calibration parameters,
thereby simplifying the process of algorithm development and testing.

In the initial phase of the CPS data collection process, images with different
H-FOV including 90°, 100°, 110°, 120°, 130°, 140°, and 150° were generated. These
images were then modified by applying a consistent range of first-order radial distor-
tions (k1), from -0.2 to 0.2. This allowed us to observe the baseline effects of radial
distortion across various field-of-view settings. An example is provided in Figure
3.1, depicting an image with a 90° H-FOV and 0.1 first-order radial distortion (k1).
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2. Applying distortion through a forward distortion model to the reference point,
effectively simulating the impact of different k1-values.

3. Re-projecting the distorted point onto the image plane using the intrinsic
camera matrix (K-matrix) to observe the direct effects of distortion on the image
geometry.

4. Utilizing the bisection method, a numerical root-finding technique, to itera-
tively determine the optimal k1 value for each H-FOV setting.

Our approach provided significant insights into the relationship between H-FOV
and k1. Each H-FOV setting exhibited unique characteristics and sensitivities to
distortion, underscoring the necessity for tailored distortion parameters. The sys-
tematic adjustment and evaluation of distortion parameters enabled us to establish
a range of k1 values optimally suited for each specific FOV.

However, the scope of our study extends beyond merely assessing first-order
radial distortions and the H-FOV. It encompasses additional distortion parameters
such as k2, k3, p1, p2 from the Brown-Conrady model, as well as the principal axes
cx and cy of the images. To address the complexities introduced by these factors, we
devised a comprehensive strategy for applying reasonable distortions to the images,
ensuring that all relevant parameters are considered to achieve the desired accuracy
and realism in the modified visuals.

Each distortion parameter was selected randomly and its appropriate value for
a specific FOV was determined using the root-finding technique. This approach
involved sequentially determining the optimal value for each distortion parameter.
A complete set of these parameters was then generated for each group of images,
thereby tailoring the distortion effects to specific imaging conditions. Additionally,
adjustments to the image’s principal axis were made by shifting the image hori-
zontally and vertically. This shifting, coupled with the application of distortion
parameters, often resulted in the appearance of black pixels at the image corners
due to areas falling outside the camera’s adjusted FOV.

While the presence of black pixels is not a critical issue, it was important to
prevent the model from associating these pixels with any specific parameters. To
address this, the images were scaled to retain only the features within the original
FOV. This scaling process inadvertently altered the original FOV settings, which
was then used in the label file for accuracy. The provided figures illustrate these
modifications: figure 3.6 shows the effect of applying random distortion parameters
to an image with a 100° FOV, and Figure 3.5 shows how shifts in the principal axis
influence an otherwise undistorted image. These examples underscore the balance
between distortion parameters, image shifting, and scaling needed to achieve realistic
and accurate imaging outcomes.
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• CPSdataset version 3: Used for CPSmodel versions 6 and 7, this dataset
encompassed all images from version 2 and additionally included another batch
of images with size 1392x512 pixels. Notably, this dataset contained images
with two different aspect ratios, providing a more comprehensive training set.
There are 780,000 images with resolution 1920x1080 pixels and 715,000 images
with resolution 1392x512 pixels. In total, there are 1,495,000 images in this
dataset.

These datasets facilitated the training of models with varying complexities and
requirements, allowing for a thorough exploration of camera parameter prediction
and optimization tasks. The inclusion of multiple datasets with differing characteris-
tics enabled a more robust evaluation of model performance across various scenarios.

3.2 Model Development

In this section, we focus on the development and training of the Camera Parameter
Search (CPS) model, which employs the advanced ResNet50 architecture tailored for
regression tasks. This model is engineered to accurately predict camera parameters
critical for understanding geometric distortions in images. We detail the model’s
design, including its preprocessing protocols and architecture adjustments, which
are aimed at handling the unique demands of camera calibration. Additionally, we
outline the comprehensive training procedures implemented to optimize the model’s
performance using a vast dataset, ensuring it is robust and effective for real-world
applications.

3.2.1 Camera Parameter Search Model

The CPS model was developed using the ResNet50 architecture, renowned for its
effectiveness in various vision-based tasks, especially in regression challenges. This
model was specifically modified to estimate continuous camera parameters, critical
for understanding the geometric distortions in images. These parameters include
the H-FOV and the Brown-Conrady model’s distortion coefficients—namely, the
radial distortion coefficients (k1, k2, k3) and the tangential distortion coefficients
(p1, p2). Additionally, adjustments in the image’s principal axes in both the x and
y directions were also included as target outputs. In total, the model was designed
to predict these eight distinct parameters, which collectively define each image in
the dataset.

In terms of preprocessing, the model protocol involved resizing the images to a
uniform scale and normalizing them to standardize the input data. Considering the
focus on geometric properties of images, the color information within the RGB chan-
nels was deemed extraneous. Consequently, the images were converted to grayscale
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before being input into the model. This reduction not only streamlines the learn-
ing process by eliminating unnecessary features but also emphasizes the geometric
distortions which are the primary focus of the model.

Furthermore, the data augmentation techniques employed were carefully chosen
to avoid any geometric transformations like rotations or scaling that could poten-
tially alter the intrinsic parameters the model aims to learn. Instead, non-geometric
augmentations such as Gaussian blur and motion blur were applied. These augmen-
tations help enhance the model’s robustness to variations in image quality without
affecting the geometric integrity of the data. The architecture modifications for this
task involved replacing the ResNet50’s standard final layers, typically set up for
classification tasks, with fully connected layers designed to output the eight specific
camera parameters. Additionally, a regression head layer was incorporated into the
network architecture to efficiently process and output these continuous variables.
This tailored configuration ensures that the model learns to accurately predict cam-
era parameters.

3.3 Training Procedure

This section provides a detailed overview of the training procedure used for the CPS
models. We will discuss the dataset division, loss functions, optimizers, and train-
ing methodologies employed across different model versions. This comprehensive
approach ensures the models are robust, accurate, and capable of generalizing well
to new data.

3.3.1 Training the Camera Parameter Search Model

The CPS dataset, which contains 780,000 images, is divided into three segments:
training, validation, and testing. These are split into ratios of 70% for training, 15%
for validation, and 15% for testing. This setup ensures there is plenty of data for
comprehensive training while still providing enough images for effective validation
and fair testing.

The Mean Squared Error (MSE) loss function is used during training, which is
ideal for regression tasks as it measures the average of the squares of the differences
between predicted and actual values, aiming to minimize these errors. Additionally,
cosine similarity is utilized to gauge how closely the predicted outputs align with
the true labels, providing a measure of similarity in the model’s output space.

The training employs the AdamW optimizer, known for its effective computation
and minimal memory usage. AdamW, an improved version of Adam, incorporates
weight decay to reduce overfitting, thus enhancing generalization performance. The
learning rate starts at a standard value but is adjusted as training progresses through
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more epochs. This adjustment is key to ensuring the model learns efficiently.
Specifically, a step learning rate scheduler (StepLR) was used for the first six

models, while a multi-step learning rate scheduler (MultiStepLR) was employed for
the version 7 model. The choice of StepLR and MultiStepLR was based on their
ability to reduce the learning rate at predefined steps or epochs, helping to fine-tune
the learning process as the model approaches convergence.

From models up to version 0.5, images with a single aspect ratio were used.
Starting from version 0.6, two different types of images were introduced: one with
a resolution of 1920x1080 and another with 1392x512 pixels. To manage these
variations, a batch-sampler was employed for versions 0.6 and 0.7, ensuring that
each batch contained images of the same dimension. This approach prevents the
model from learning biases related to image size discrepancies.

In model version 0.7, an additional feature was included in the final feature
vector: the normalized size of the image. This modification allows the model to
learn the relationship between the size of the image and the geometric features,
thereby improving its predictive accuracy for the camera parameters.

Hyperparameters play a crucial role in the training process. The initial learning
rate, batch size, and weight decay are carefully selected and adjusted to optimize
the training. For instance, the learning rate is initially set to a standard value
but adjusted using the learning rate schedulers mentioned earlier. This dynamic
adjustment is crucial; if the learning rate is too high, it can cause fluctuations in the
validation loss, indicating that the model is not learning effectively. Conversely, if it
is too low, the model might take too long to converge or get stuck in local minima.

The batch size is also an important hyperparameter, impacting the stability
and speed of the training process. A larger batch size can provide a more stable
estimate of the gradient, but it requires more memory and computational resources.
Weight decay is another critical hyperparameter, helping to regularize the model by
penalizing large weights, thereby reducing the risk of overfitting.

After each epoch, a validation process is conducted where both MSE and cosine
similarity are recalculated on the validation set. This frequent assessment helps in
fine-tuning the model by providing insights into its performance, allowing for timely
adjustments to the training approach or model parameters. This step is crucial for
enhancing the model’s accuracy and ensuring it performs well on new, unseen data.
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4 Results and Discussion

A rigorous scientific methodology was followed to develop the latest iteration of our
camera parameter extraction model, ensuring that the process was systematic rather
than based on hit-and-miss experimentation. Six different models were trained on
varying datasets, each systematically evaluated on a test set separated during the
training phase. The models underwent robust testing with different transformations
applied to the test set. Finally, a real test set from the KITTI dataset was used to
evaluate the models’ performance in practical scenarios. Each model’s performance
was carefully analyzed, leading to insights about their strengths and weaknesses,
which informed subsequent model training to address any identified gaps.

4.1 Camera Parameter Extraction V0.1

The first Camera Parameter Extraction V0.1 model was designed to predict camera
parameters from input images using the ResNet50 architecture. This model was
trained over 50 epochs on gray-scale images with a resolution of 480x270 pixels.
The original images, which were 1920x1080 pixels, were scaled down by a factor of
four. The primary objective of this model was to output the H-FOV in degrees and
the k1 radial distortion parameter, following the Brown-Conrady model.

The model’s performance was rigorously evaluated through the application of
various image transformations, including Gaussian blur, motion blur, random gamma
correction, and ISO noise. The loss values for these transformations ranged from
0.57 to 0.71, demonstrating the model’s robustness against such alterations. The
training dataset for this model comprised 70,000 images, with H-FOV values ranging
from 90 to 150 degrees.

Figure 4.1 illustrate the training and validation loss curves for this model, show-
casing its continued improvement.
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provided the feature layer with crucial information about the image’s dimensions. By
incorporating these normalized dimensions, the model gained a more comprehensive
understanding of the aspect ratio’s impact on the parameter values.

This enhancement enabled the model to learn and understand the relationship
between aspect ratios and parameter values more effectively, resulting in improved
predictive accuracy and generalization capabilities across diverse image datasets.
The results obtained from model v0.7 were significantly more accurate, demon-
strating a significant advancement over all previous models. This approach led to
a substantial boost in performance, making the predictions more reliable and the
model more robust in handling various image aspect ratios.

In conclusion, the comprehensive evaluation on the KITTI dataset has provided
valuable insights into the model’s strengths and weaknesses, guiding us to make
targeted improvements. These include adjusting the H-FOV range in the training
data, expanding the predicted parameters, and addressing aspect ratio differences.
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5 Conclusions

In this thesis, we explored the use of deep learning models for predicting cam-
era calibration and distortion parameters from a single image using synthetic data
to overcome the challenges associated with obtaining real-world calibration data.
Throughout our research, we observed a progressive decrease in the average loss
across model versions from v0.1 to v0.7. The lowest loss was achieved with version
0.7, where we introduced a modification to the ResNet architecture by including the
image size in the final feature vector. This enhancement allowed the model to bet-
ter attribute image dimensions with parametric predictions, significantly improving
accuracy.

5.1 Research Questions Addressed

1. Can deep learning models accurately predict camera calibration and
distortion parameters from a single image?

Yes, our research demonstrated that a single image provides a substantial
amount of information for accurately predicting calibration parameters. The
models consistently produced reliable estimates, validating the hypothesis that
deep learning can effectively handle this task.

2. How do different types of distortion and variations in the FOV affect
the accuracy of the predicted camera parameters?

We found a clear relationship between FOV and image distortions. Specifi-
cally, as the FOV increases, even minor distortions (e.g., k1 > 0.2) can severely
degrade image quality, leading to inaccurate parameter predictions. This high-
lights the necessity for careful consideration of FOV in calibration models.

3. How can architectures like ResNet be modified to effectively per-
form regression tasks in estimating camera parameters, particularly
with the challenge of varying image geometries?

Our research revealed that adapting ResNet architectures by incorporating
batch samplers for images of varying sizes without resizing, and adding fea-
tures such as normalized image dimensions, significantly improves the model’s
performance in regression tasks. This strategy not only preserves the crucial
geometric information but also facilitates a comprehensive understanding of
the image’s structure, which is particularly beneficial for tasks that are sensi-
tive to the image’s shape and size. It’s important to note that CNNs inherently
do not focus on the geometric aspects of an image. The convolutional filters
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in CNNs are designed to extract features from within the pixels, rather than
understanding the spatial relationships or geometries of the image. By feed-
ing the image dimensions into the fully connected layer, we provide the model
with additional contextual information that helps it understand and utilize
the inherent geometric properties better.

4. What methodologies enhance the ability of models trained on syn-
thetic data to generalize effectively when applied to real-world datasets
such as KITTI?

We demonstrated that generating synthetic data with characteristics similar
to real-world datasets, such as aspect ratio and intrinsic parameters, helps
models generalize better. Using synthetic data to mimic the KITTI dataset, we
showed that models could learn the relationship between camera parameters
and image geometry, facilitating accurate predictions on real-world data.

5.2 Limitations

Despite the promising results, several limitations were encountered:

1. Data Availability: There are limited publicly available datasets with com-
prehensive calibration information, which restricts opportunities for thorough
validation and testing. The lack of diverse real-world datasets makes it difficult
to fully evaluate the generalization capabilities of the models.

2. Computational Resources: Training large datasets spanning over two ter-
abytes requires massive computational resources. Currently, using a 4090
GPU, training takes several days, making hyper-parameter tuning a time-
consuming process. The need for extensive computational power not only
limits the speed at which experiments can be conducted but also increases
the cost and complexity of the research. This resource-intensive nature of
training deep learning models poses significant challenges for scalability and
accessibility.

3. Resource Allocation: While the research benefited significantly from the
resources available, having more dedicated resources force the camera param-
eter search project would have accelerated the process and allowed for more
extensive experimentation. Nonetheless, the work achieved demonstrates sub-
stantial progress and lays a strong foundation for future developments.

5.3 Future Work

There are several promising directions that this work can go in and those are briefly
mentioned in the future work below:
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1. Incorporating Additional Image Information: Adding more details about
the image, such as pixel clustering and edge information (e.g., using a Sobel
filter), could further enhance the model’s ability to learn geometric features.
Incorporating additional contextual information can help the model capture
intricate patterns and relationships within the image, leading to more accurate
predictions of camera parameters.

2. Graph-Based Models: Integrating graph-based models to capture the rela-
tionships between pixels could provide additional context, improving parame-
ter predictions. Graph neural networks (GNNs) can effectively model spatial
relationships and interactions between pixels, allowing the model to leverage
structural information. This approach can improve the model’s ability to un-
derstand complex geometries and spatial dependencies within the image.

3. Expanding Aspect Ratios: Training models on datasets with a wider va-
riety of aspect ratios could improve generalization to new, unseen geometries.
This would enable models to perform better across different scenarios and cam-
era setups. Incorporating multiple aspect ratios in the training process can
enhance the model’s robustness and versatility, making accurate parameter
predictions regardless of the image’s dimensions.

4. Efficient Training Techniques: Exploring efficient training techniques,
such as knowledge distillation or model compression, can reduce the com-
putational burden and accelerate the training process. These techniques aim
to transfer knowledge from a large, complex model to a smaller, more efficient
one without significant loss of performance, enabling faster experimentation
and deployment.

By addressing these limitations and exploring these future directions, we can
continue to improve the accuracy and robustness of deep learning models for camera
calibration and distortion correction, ultimately advancing the field of computer
vision and its applications.
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