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ABSTRACT

Availability of audio-visual datasets and increase of computa-
tional resources have made possible the use of deep learning tech-
niques that exploit the relationship between audio and video. In
this paper, we present an approach that makes use of pretrained
models for object detection to label audio clips based on objects
that are expected to make sound. The study consists of perform-
ing object detection for four target classes belonging to vehicle
category and training sound classifiers in supervised way using
the resulting labels. We conclude that object detection is a useful
alternative for labeling audio-visual material for audio classifica-
tion, with substantial improvements in different datasets. Results
show that even for data provided with reference audio labels, la-
beling through video object detection can identify additional, non-
annotated acoustic events, thus improving the quality of the labels
in existing datasets. This promotes exploitation of video content not
only as an alternative, but also to complement the available label in-
formation.

Index Terms— sound event classification, deep neural net-
works, object-based labels.

1. INTRODUCTION

Audio classification tasks have increased in popularity in recent
years, due to applicability of methods for acoustic monitoring [1],
environment monitoring [2], or emotion recognition [3] along with
others. The analysis of acoustic scenes aims at recognizing differ-
ent types of information in the environment, for example vehicles
in urban scenes. The diversity of acoustic information in everyday
environments increases the complexity of such task.

Deep learning methods allow obtaining high performance on
classification tasks. Among the challenges that the traditional su-
pervised learning scenario must overcome, one is data availabil-
ity for training robust models. Supervised methods rely on the la-
beled data to train models effectively. These methods require accu-
rate labelling, meaning that when incorrect labels are present in the
training data, the learning process is compromised, leading to sub-
optimal performance of the model and reducing its generalization
capabilities [4]. Proper data curation, label verification, and quality
control mechanisms are essential to mitigate the impact of incorrect
labels and ensure the training of robust models.

The release of AudioSet [5] has been a milestone for the au-
dio datasets. It contains 527 sound classes from over 5000 hours
of audio recordings collected from YouTube videos, provided as
annotations for 10-second long clips. Following AudioSet, more
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datasets providing video and audio modalities have been published,
e.g. MAVD-traffic [6] and TAU Urban Audio-Visual Scenes 2021
[7] datasets. While these are the main audio-visual datasets used
in audio research, there is a much larger number of such datasets
that are used in image/video research. Audio-visual datasets pro-
vide a rich source of information that combines auditory and visual
modalities, offering valuable insights into the correlation and com-
plementarity between audio and visual cues.

The task of annotating sound events within such datasets is
time-consuming and expensive. As a result, the majority of audio-
visual datasets are primarily annotated for visual content; some
datasets have information on acoustic scene, while the annotation
of sound events remains limited to a smaller subset. For example
in EPIC-SOUNDS [8], the authors collected a large scale dataset of
audio annotations as an extension of the original EPIC-KITCHEN
dataset [9], which is originally aimed at computer vision research.

In this work we propose to investigate if labels derived through
object detection methods based on the video modality are suitable
for audio classification. Generally, the information in the audio and
visual modalities is highly correlated, and sound-producing objects
may be visible in the video, even though this is not guaranteed,
for example in poor light conditions or in the presence of obstruc-
tions. We investigate how well YOLO (You Only Look Once) ob-
ject detector [10] can be used to provide labels for audio content
to ultimately train an audio classification model. Experiments per-
formed on three different datasets show that even though the labels
inferred based on objects are not fully corresponding to the audio
ground truth, they provide a sufficient supervision signal for train-
ing a sound event classification system.

The rest of the paper is organized as follows: Section 2 in-
troduces the approach used for obtaining the object-based labels
and how they are used for audio classification purposes; Section
3 presents the datasets used in the experiments and introduces the
classification system; it also includes an analysis of the results and
discusses the comparison of the object-based labels with the refer-
ence audio labels; finally, Section 4 presents the conclusions and
future work.

2. OBJECT-BASED AUDIO CLASSIFICATION

Figure 1 illustrates the workflow followed in this study. To obtain
labels for the audio content, object detection using YOLO [10] is
performed on video frames from the video clip. The pretrained
model OpenL3 [11] is used to perform feature extraction and to
obtain the embeddings for the corresponding aucio clip. The labels
and the embeddings are used as input to the audio classification
model. The target labels are the labels obtained from the object-
detection model, and the input data are the embeddings from the
pretrained OpenL3 model. The acoustic model is then trained using
this information for classifying the selected target sounds.
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Figure 1: Proposed approach; Object detection is applied to frames
of the video, and the resulting output labels are used in training the
audio classification system.

2.1. Object detection framework

Object detection is a popular research task in computer vision. It
involves localization of target objects into bounding boxes and clas-
sification of those objects. Object detectors can be classified into
two categories: single-stage or two-stage object detectors, depend-
ing on the method used to locate and classify objects. YOLO falls
under the category of single-stage detector that carries out object
localization and classification in the same run [12].

YOLO architecture is based on multiple CNN layers followed
by fully connected layers. It predicts bounding boxes and class
probabilities simultaneously, making it efficient for real-time de-
tection. In [10], the authors showed that YOLO was able to score
57.9% mean average precision on the PASCAL VOC 2012 test set
on 20 labelled classes, and generalized better than other detectors
when tested for person detection in two artwork datasets. In our
study, we used a pretrained version of YOLOV5[13] capable of
recognizing 80 classes to perform detection of four vehicle-related
classes within the video data.

2.2. Audio classification framework

Because the scope of this work is to investigate feasibility of la-
beling audio through video, for the audio classification model em-
ployed in our study uses an existing architectures rather than design-
ing and optimizing one for the task. We use embeddings from the
pretrained L3-Net [14] implemented in OpenL3 [11] as a backbone,
and three dense linear layers of 512, 128 and 4 neurons stacked upon
each other; the network uses ReLU as an activation function for the
first two dense layers and sigmoid activation function for the output
layer to perform multi-label classification.

2.3. Datasets and baseline system

We use three different audio-visual datasets, namely: AudioSet [5],
the MAVD dataset in Urban environments [15] and a subset of TAU
Urban Audio-Visual Scenes 2021 Development Dataset [7]. In this
work we use four target sound classes: Bus, Car, Motorcycle and
Truck, which can all be found in these three datasets.

From AudioSet, a subset of 121.8 hours of data was selected
based on the target classes. A 70/30 ratio is used to partition this
subset into training and test set. The labels provided in AudioSet
are used as ground truth in our comparative experiments. As docu-
mented in [16], some clips in AudioSet may have incorrect or miss-
ing labels. This is due to the annotation process which included
a verification step for the candidate labels [5]; in this process the
labels were manually verified, but no new labels were added. In
general, AudioSet has a highly imbalanced class distribution which
is prominent also in the subset used in our experiments, with the
majority of the data examples belonging to the Car class.

Dataset Training (hh:mm) Test (hh:mm)

AudioSet 85:15 36:32
MAVD 01:03 00:27
TAU UrbanASC 02:00 01:30

Table 1: Amount of data available per dataset.

As a second source of annotated audio-visual data we use the
Urbansas dataset [17], which consists of 3 hours of manually an-
notated data, compiled from two different datasets: MAVD [6] and
TAU Urban Audio-Visual Scenes 2021 dataset (TAU UrbanASC)
[7]. MAVD is an audio-visual dataset created to monitor urban
noise in Montevideo, Uruguay, and consists of 1.5 hours of man-
ually annotated data divided into train and test set. The TAU Urban
Audio-Visual Scenes 2021 dataset (TAU UrbanASC) [7] consists
of synchronized audio and video segments with a length of 10 sec-
onds recorded in 12 different European cities. Of these, 1.5 h of the
street traffic clips was annotated within the Urbansas dataset. We
treat MAVD and TAU UrbanASC separately in our experiments.
The total amount of data available in the training and test subsets
used in our classification experiments is presented in Table 1.

We perform the classification experiments using the object-
based labels and, for comparison, the reference audio labels, when
available. Since audio reference labels are only available for two
of the three datasets, AudioSet and MAVD, the comparative exper-
iment is performed only for these two datasets.

3. EXPERIMENTAL RESULTS

We performed object detection on five image frames of the video
clip (one frame every two seconds) using the pretrained YOLO
model. To extract frames from the video we used the OpenCV li-
brary 1 in Python. For each of these five frames, YOLO returns
labels corresponding to the four target classes, and coordinates for
the bounding box of each object. The predicted labels include mul-
tiple instances of different classes for each 10 s video clip. To avoid
losing any information about the detected objects, we create the set
of labels inferred based on the video as the union set of the pre-
dicted object labels. The audio clip is then assigned the resulting
set of labels for training a model as a multilabel classifier.

3.1. Comparison of inferred labels with audio reference labels

First of all, we verify to what extent the object-based inferred labels
match the audio reference labels. To this end, we compare the ob-
tained labels with the reference labels for all the data in each dataset
(including training and test set, when available). The results are pre-
sented in Table 2. The object-based labels are most similar with the
reference labels for the Car class in all three datasets, having a sig-
nificantly higher F-score than any other class. We also observe that
the Truck class has very low precision values for all three datasets.
The discrepancy between the object-based and the audio reference
labels is quite large for many cases. For example in the case of Au-
dioSet the Bus class the precision is 0.32, meaning that only one
third of clips labeled as Bus by YOLO are also annotated based on
audio as containing the sound.

1https://github.com/opencv/opencv
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AudioSet MAVD TAU UrbanASC
Class P R F P R F P R F

Bus 0.32 0.73 0.45 0.86 0.55 0.67 0.43 0.90 0.59
Car 0.72 0.89 0.79 0.67 0.97 0.79 0.65 0.99 0.78

Motorcycle 0.46 0.90 0.61 0.50 0.35 0.41 0.71 0.42 0.53
Truck 0.36 0.87 0.51 0.12 0.80 0.21 0.13 0.84 0.23

Average 0.47 0.85 0.59 0.54 0.67 0.52 0.48 0.79 0.53

Table 2: Comparison of the object-based labels and reference audio labels for the three datasets.
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Figure 2: Training instances available for AudioSet, MAVD and TAU UrbanASC using the reference audio labels (blue) and object-based
labels (red). For TAU UrbanASC, only the testing set is annotated, therefore we have no reference for comparison.

AudioSet MAVD TAU UrbanASC
Reference labels object-based Reference labels object-based object-based

Class P R F P R F P R F P R F P R F

Bus 0.00 0.00 0.00 0.18 0.08 0.11 0.73 0.46 0.57 0.82 0.22 0.35 0.23 0.27 0.25
Car 0.73 0.79 0.76 0.67 0.96 0.79 0.81 0.87 0.84 0.67 1.00 0.80 0.63 0.99 0.77
Motorcycle 0.51 0.32 0.39 0.54 0.43 0.48 0.50 0.32 0.39 0.67 0.09 0.16 0.00 0.00 0.00
Truck 0.00 0.00 0.00 0.28 0.68 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.34 0.11

Average 0.31 0.28 0.29 0.42 0.54 0.45 0.51 0.41 0.45 0.54 0.33 0.33 0.23 0.40 0.28

Table 3: Classification results for the three datasets, for the classifier trained with the reference labels and with the object-based labels.

Figure 2 illustrates the number of instances per class available
for training the audio classification system for each case. It can be
clearly seen that the Car class is the one with highest number of
example instances for both label sets (reference and object-based
labels) and all three datasets, while Truck has considerably less in-
stances in the reference labels compared to the object-based labels.

3.2. Audio classification with object-based labels

We train a classifier using YOLO object-based labels. For com-
parison, we also train the same classifier structure using the audio
reference labels. These models are then tested on the same test set
and their performances are compared in terms of precision, recall,
and F-score. The results are presented in Table 3.

For AudioSet, we observe that the classifier trained with object-
based labels obtains a significantly higher recall for all the classes,
and a higher F-score, despite the classifier output being evaluated
against the reference annotations of the dataset itself. The system
trained with object-based labels is able to recognize a higher num-
ber of event instances in the test data than if trained with the official

reference labels provided in the dataset. However, this does not hap-
pen for the MAVD dataset. We hypothesize that the annotation pro-
cess of MAVD was more efficient, and the quality of its reference
labels is high. As seen from the results in Table 2, YOLO produces
a lot of false positives, which in the case of MAVD are detrimental
to the training process and consequently to the classification per-
formance. Only for the Car class the classification performance is
similar between the two training scenarios, but while recall for the
model trained with the object-based labels reaches 100%, its preci-
sion suffers due to false positives. For the TAU UrbanASC we do
not have audio reference labels, therefore we can only analyze the
training with the object-based labels. The results in Table 3 show a
high recall value for the Car class, which seems to be the dominant
class among all datasets and label sets. At the same time. the sys-
tem does not classify correctly any Motorcycle instances, which is
the least represented class in the training data. Overall, the results
on TAU UrbanASC are similar to those on MAVD.
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Figure 3: Example of mislabelled vehicles by YOLO.

3.3. Discussion

The Truck class is a very difficult case for all datasets, even though it
is somewhat detected in AudioSet and TAU UrbanASC by the sys-
tem trained with the object-based labels. In particular, the perfor-
mance in AudioSet is very high, considering that the system trained
with reference labels does not find any instance of this class. To un-
derstand this significant improvement in performance for AudioSet,
we checked the clips for which YOLO indicated label Truck but
the audio reference label did not contain it. We listened to 50 ran-
domly selected clips and observed that 14% of them indeed contain
truck sounds. In these cases, YOLO indicated a correct sound label
based on the image, which were missing labels in the audio ref-
erence. There were also many false positives which add noise to
the training process; nevertheless, the overall effect on the system
performance was positive.

We visually inspected also the MAVD dataset Truck class, to
understand the difference between the datasets. Looking at the pre-
dictions from the object detector, we observed that different types of
vehicles (cars and buses) were mislabeled as trucks, which creates
confusion between the categories. Two such examples are shown
in Figure 3. In addition, in MAVD there were many scenes with
parked vehicles which were visible and detected by the object de-
tector, but did not produce any sound, therefore creating misleading
information for the audio classifier during training.

This investigation revealed a very obvious drawback of using
this method - objects in the image that do not produce sound (in this
case parked vehicles) appear as false positives for the audio modal-
ity, and may be detrimental to performance. However, even with all
these drawbacks and possible failure scenarios, the approach was
shown to produce reasonable labels and in some cases lead to per-
formance improvements. While this does not solve the problem of
labeling audio content in audio-visual datasets, it can serve as a tool
in more advanced training approaches; for example the object-based
labels can be used as suggestions for methods that use active learn-
ing, or with a human-in-the-loop for verification; or can be treated
as labels with some level of uncertainty to complement data that has
been manually labeled by human annotators.

4. CONCLUSIONS

This work presented a novel approach of labelling audio data uti-
lizing video information, to investigate the suitability of the method
for creating reference labels for audio. The obtained labels were
used afterwards in audio classification task. The method is based on

an object detector model that takes as input a few frames of video
corresponding to the audio clip, and predicting the target classes.
Experiments performed on three different datasets showed the feasi-
bility of using the audio-visual connection in the data to label audio
content. However, the approach is unsuitable for situations when
the sound sources are obscured/absent in the video frames, as they
are not found by the object detector. In addition, some target sound-
ing objects in the scene may actually not produce a sound in specific
instances, leading to false positive labels. Despite these drawbacks,
the method proves to be faster and lower-cost compared to the tradi-
tional annotation methods. Results from the experiment show that
the method may outperform models trained with the provided refer-
ence audio labels, if they contain noisy or possibly incorrect infor-
mation. We conclude that object-based labeling provides a suitable
supervision signal for training and may be a useful tool in learn-
ing about audio content if handled as complementary information
or to reinforce existing information about the data. Future work
will focus on exploring more datasets for including a larger number
of classes, and approaches for alleviating the effect of errors intro-
duced by the object-based detector.
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