'D Tampere University

Donal Johny

EXPLORING IMPLEMENTATION
OF RUST-BASED SECURE
OPERATING SYSTEMS ON
RISC-V MP SOC

Faculty of Information Technology and Communication Sciences (ITC)
Master's thesis

Examiners: Prof. Timo Hamalainen

Henri Lunnikivi, PhD researcher

January 2024

Abstract

Donal Johny: EXPLORING IMPLEMENTATION OF RUST-BASED SECURE
OPERATING SYSTEMS ON RISC-V MP SOC

Master’s thesis

Tampere University

Master’s Degree Programme in Software Development
January 2024

The rapid advancement of technology in contemporary times has catalysed the
proliferation of specialised processors, mainly driven by the open-source nature of
the RISC-V ISA. This shift from royalty fees has rendered RISC-V an appealing
foundation for processor design, creating intricate Systems-on-Chip (SoCs) featur-
ing diverse subsystems and processor cores tailored to various functions.

As software platforms for embedded applications become increasingly sophis-
ticated, the limitations of controlling them with bare metal drivers have become
more pronounced. Operating systems customized for microcontrollers have be-
come vital, especially for enabling embedded systems like Internet of Things (IoT)
devices. However, these operating systems require more advanced features, such
as dynamic memory allocation, flexible concurrency, and fault isolation, to cope
with the intricate demands of these devices.

Tock, an innovative operating system designed specifically for low-power plat-
forms, addresses these challenges by leveraging specialized hardware protection
mechanisms and the advanced type-safety features of the Rust programming lan-
guage. This combination produces a reliable multi-programming environment for
microcontrollers, ensuring optimal performance through software fault isolation,
robust memory protection, and efficient management of dynamic application work-
loads.

This thesis delves into the intricate process of porting Tock OS to a custom
RISC-V processor, aiming to gain a deeper understanding of the complexities
involved in this task. While the actual porting will not be implemented in this
study, the research provides a comprehensive breakdown of the requirements for
a custom Tock OS port, encompassing hardware and software aspects. The thesis

scrutinises the Tock OS architecture and project structure, examining existing

works on porting Tock OS to various platforms.

The customised ballast chip produced by the SoC hub is scrutinised within
the scope of this investigation. To enhance research and education, Tampere
University collaborates with partnering corporations to explore SoC development,
including its architecture and toolchain. The feasibility report presented details
of the porting process, outlining the approach, challenges faced, and findings and
recommendations derived from this study.

Keywords: Rust, MPSoC, Tock OS, SoC Hub.

The originality of this thesis has been checked using the Turnitin Originality Check

service.

Preface

I want to extend my deepest thanks to all the individuals who have contributed in
various ways to help me complete my thesis. Firstly, I am grateful to Prof. Timo
Hamaélainen for allowing me to work at SoC Hub and providing valuable guidance
throughout my research. Secondly, I want to acknowledge Henri Lunnikivi for of-
fering unwavering support and assistance, especially during the more challenging
aspects of my study. Additionally, I would like to thank Tom Szymkowiak for his
consistent help with Ballast hardware. Lastly, [am indebted to the Tock OS team,
including Amit Levy and Lawrence Esswood from Google, for their assistance with
Tock OS.

Moreover, I sincerely thank my family for their constant backing and motivation
throughout this journey. 1 am particularly thankful to my dearest friend, Sanni

Lehtikunnas, whose steady encouragement kept me going.

Tampere 22nd January 2024,
Donal Johny.

Contents

Abstract
Preface
List of Figures
List of Programs
List of Tables
1 Imtroduction 1
2 Tock System Architecture 3
2.1 User Space 5
2.2 Kernel 5)
2.3 Hardware Drivers 5
24 Capsules 6
2.5 Other security measures 6
3 Tock Project Structure 7
3.1 Tock repository 7
3.2 The Tock repository structure 7
3.3 Development Environment Setup 8
4 Setting up a custom Tock project L. 10
4.1 Crate Modifications, 10
4.1.1 archcrate. 10
4.1.2 chipecrate 11
4.1.3 boardcrate 12
4.1.4 Tockloader 17
4.1.5 Adding a Platform to Tock Repository 18
4.1.6 Related work 18
5 Ballast Architecture 25
5.0.1 PULP-platform 27
5.0.2 PULPissimo 27
5.0.3 Ibex-core 29
5.0.4 System Control CPU 30

5.0.5 Ballast Toolchain
6 Feasibility of portingo

6.0.1 Testsetup
7 Results. o

7.0.1 Future work
8 Conclusions
References

List of Figures

2.1

3.1
3.2

5.1
5.2
5.3
5.4
9.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6

Tock OS stack [31] [26]

Terminal showing installation of tools on a Linux machine [19] . . .
udev rules for Tock OS [19]

Ballast High-level Overview
Granitti Board with Ballast MPSoc
PULPisimo SoC block diagram
Ibex Core
System Control CPU
Comparison of PULPisimo and System Control CPU

Granitti Board with Ballast MPSoc setup for UART testing
UART transmission and reception application

Directory tree of Granitti board files

Diff showing the changes made for one of the Granitti board files

Directory tree of Ballast chip files
Diff showing the changes made for one of the Ballast chip files . . .

25
26
28
29
30
31

35
36
37
38
39
39

List of Programs

4.1

4.2
4.3
6.1
7.1
7.2

Example of component instantiation for light and an ambient light

sensor [27] . . Lo 13
Example of basic component creation [25]. 13
Example of using a component [25]. 15
snippet from the layout.ld file of Granitti board. 38
Before Refactoring 42

After Refactoring 42

List of Tables

4.1 Boards with tier 1 support from Tock OS [28]
4.2 Boards with tier 2 support from Tock OS [28]
4.3 Boards with tier 3 support from Tock OS [28]

Abbreviations

ABI
APB
API
ASIC
AXI
BSP
FLL
FPGA
GDB
HIL

Iot

IPC
IPC

ISA
MCU
MPSoC
NAPOT
OpenOCD
PAC
PLL

PMP

Application Binary Interface
Advanced Peripheral Bus

Application Programming Interface
Application Specific Integrated Circuit
Advanced eXtensible Interface
Bootstrap Processor
Frequency-locked loop

Field Programmable Gate Array
GNU Debugger

Hardware Interface Layer

Internet of Things

Inter Process Communication
Inter-Process Communication
Instruction Set Architecture

Micro Controller Unit

Multiprocessor Systems-on-Chip
Naturally aligned power-of-two region
Open On-chip Debugger

Peripheral Access Crate.
Phase-Locked Loop

Physical Memory Protection

PULP-platform
RISC

RLS

SDIO

SoC

SRAM

SVD

TOR

Parallel Ultra Low Power Platform
Reduced Instruction Set Computer
Rust Language Server

Secure Digital Input/Output
System on Chip

Static Random-Access Memory

System View Description

Top Of Range

1 Introduction

In today’s world of technology, the emergence of the RISC-V Instruction Set Ar-
chitecture (ISA) has ignited a boost in the development of specialised processors.
This is primarily attributed to the open nature of the ISA, which removes the
requirement for royalty fees, making it a highly desirable foundation for processor
design. This has led to the creation of intricate SoCs featuring a variety of subsys-
tems and processor cores responsible for a range of functions, including running
main applications, managing communications, handling signal processing, ensur-

ing security, and managing storage.

The emergence of intricate software platforms geared towards embedded appli-
cations has rendered controlling them with bare metal drivers impractical. Conse-
quently, operating systems tailored for microcontrollers have become indispensable
for empowering embedded systems, especially Internet of Things (IoT) devices [1].
However, these operating systems often need more fundamental features such as
dynamic memory allocation, flexible concurrency, and fault isolation, which are in-
creasingly essential due to these devices’ intricate nature and multi-programming

requirements [1].

Tock is an innovative operating system designed specifically for low-power plat-
forms [1]. It utilises specialised hardware protection mechanisms in tandem with
the advanced type-safety features of the Rust programming language, resulting
in a reliable multi-programming environment for microcontrollers. Tock ensures
optimal performance by providing software fault isolation, robust memory protec-

tion, and efficient management of dynamic application workloads.

This thesis delves into the intricate process of porting Tock Operating System
(OS) to a custom RISCV processor, with the primary goal of gaining a deeper
understanding of the complexities involved in this task. Although the porting
will not be implemented in this study, the research will provide a comprehensive
breakdown of the requirements for a custom Tock OS port, including hardware
and software requirements. Additionally, the thesis will explore the Tock OS ar-
chitecture and project structure in detail and existing works on porting Tock OS

to various platforms.

The customised Ballast chip produced by the SoC hub will be examined within
the scope of this investigation [37]. Tampere University and partnering corpora-
tions have teamed up to enhance research and education on SoC development,
emphasising exploring its architecture and toolchain [37]. A feasibility report de-
tailing the porting process will also be provided, outlining the approach utilised,

challenges faced, and findings and recommendations from this study.

The thesis comprises eight chapters, with Chapter 2 providing an overview
of the Tock system architecture and its various components, such as the kernel,
hardware drivers, user space, capsules, and security features. Chapter 3 focuses
on the project structure, discussing the repositories and development environment
setup. Chapter 4 delves into setting up a custom tock project, including necessary
crate modifications, Tockloader information, a brief examination of existing Tock
ports, and an overview of development progress. Chapter 5 introduces the Ballast
Architecture, detailing the various subsystems in the SoC, along with an introduc-
tion to the Ballast toolchain. Chapter 6 explores the feasibility of porting and the
resulting outcomes. Finally, Chapter 7 concludes the thesis, analysing the goals

and achievements and suggests potential avenues for further research.

2 Tock System Architecture

Tock is an embedded operating system (OS) developed as part of an academic re-
search project. The OS is designed to enable multiple applications simultaneously
on embedded platforms that use Coretex-M and RISC-V technologies. Tock has
been designed to safeguard against harmful applications and device drivers, even
in cases where these applications are not mutually trusting [1].

This chapter will examine the Tock system architecture and how it helps Tock

protect itself from malicious code.

Tock follows two methods to safeguard various parts of the operating sys-
tem. Firstly, the Tock kernel and device drivers are coded in Rust, which ensures
compile-time memory safety and type safety. Rust also aids in isolating platform-
specific drivers and device drivers from the kernel [19] [31]. Secondly, Tock utilizes

memory protection units to isolate applications from each other and the kernel [1].

In the Tock stack depicted in Figure 2.1, the hardware device, or MCU, is high-
lighted in red at the bottom. This device comprises a processing unit, or CPU,
and a range of peripherals that enhance its functionality, including a random num-
ber generator (RNG) and encryption capabilities (AES) [31]. Additionally, these

peripherals enable the MCU to interface with other hardware components, such

as GPIO, USB, 12C, ADC, SPI, and UART [1] [31].

The hardware is equipped with low-level drivers (highlighted in orange) that
enable direct interaction with the hardware, forming a Hardware Interface Layer
(HIL) for the kernel and capsules [31] [19]. The kernel, depicted in teal, primarily
functions as an intermediary between the low-level drivers and capsules, offer-
ing the process scheduler, inter-process communication (IPC) driver, and memory
management. The upper portion of the kernel, illustrated in blue, comprises cap-
sules that are high-level drivers that interact with one another through HILs and
provide an API to the user space [31]. Applications, shown in light green, operate
above the kernel and use the API to request services from the kernel instead of

being connected to it [31].

[92] [18] 42015 SO 490L T°g 24mbrg

asn vda S3v 14vn
850 |_Lvn SsempieH
‘
H [esn J(ova J[sav J[wwn J[ou]
218 DId
‘OININ [oo J[2av][swir][ond [1ds] 213 Yuawadevew
5590014 “Ja|Npayas
104 pamOJIE 4 s1aALQ |esaydiiad 214129ds-13]|043U020491 A
s3esun) EIENEI 0]
paisniL
(11H) 49Ae @oepa3u| BieMpIRH pazIpJEpuR)S (3sny)
.
. |[9UJO)|
(usppiqioy . TC0LIS ‘E. pied ds . NVdMO19 m d|
SoEsUn) ¢ m ‘dowrsur
.
EEEEEEE NN EEEEE NN EEEEEEEE NN NN NN SN EEEEEEEEEEEEEEEEEEEENEEEEEEEEER wum..._.c_wu.c_ =muw>m
(paInpayos (Hugy L opoign ERFE 201q1|
Alsandwaaid 3 3|1jo1d Buisuas ¥201
21805 I UM
Mmmmzb_cz 374 [921n485] e e ddy > d
9

2.1 User Space

Tock operates at a high level of abstraction, providing various applications and
services that can be written in any language compatible with the device’s MCU
architecture [19] [31]. However, these programs operate under a restricted mode,
where they can only access resources authorised by the OS and cannot interact
directly with hardware. In addition, application processes can only access memory
allocated by the kernel and cannot access memory belonging to the kernel or other
applications [19] [31]. As a result, Tock refers to these applications and services as

running in user mode, comprising the user space of the operating system [19] [31].

To achieve its objectives, Tock mandates the presence of a Memory Protection
Unit (MPU) in hardware. Although Tock can operate on hardware that lacks an

MPU, it cannot restrict application memory access [19] [31].
2.2 Kernel

The Tock kernel is responsible for various critical tasks, including scheduling appli-
cations and services, allocating memory, and facilitating inter-process communi-
cation [31] [19]. It also provides an essential interface for hardware access through
the Hardware Interface Layer (HIL) and grants applications and services access
to driver functions via the system call interface (syscall). Additionally, the kernel
carefully regulates CPU usage to ensure optimal performance and prevent unau-
thorized access [31] [19].

2.3 Hardware Drivers

In Figure 2.1, the hardware drivers are easily identifiable by their orange colour.
Their primary function is establishing communication with hardware components
while implementing a HIL and exposing functionality to the kernel [31] [19]. These
plugins also facilitate direct communication between the hardware interface and
drivers. Rust uses unsafe blocks for specific memory access to allow the kernel to
interface with hardware [31] [19]. In order to reduce the need for unsafe blocks,
the kernel provides a register interface that all drivers can utilise. This approach

ensures that all drivers can uniformly access the hardware, utilising the same code

and method [31] [19].
2.4 Capsules

Tock uses capsules as upper-level drivers to provide an Application Binary Inter-
face (ABI) for applications and services in the user space [31] [19]. These capsules
utilise hardware drivers and other capsules through the HIL interface to offer sys-
tem calls. Tock’s capsules come in two types: Syscall capsules, which provide
system calls to applications and services within the userspace, and Service cap-
sules, which provide services to other capsules, usually interfacing with a specific

hardware device via a standard bus such as SPI, 12C, or serial [31] [19].

2.5 Other security measures

Tock takes excellent care to ensure the system remains safe from harmful code.
The kernel’s code is contained entirely within its repository, with no external
dependencies except the Rust core library [31] [1]. Any capsules containing unsafe
blocks are not compiled, guaranteeing they are memory-safe and can only access
hardware via a HIL. Furthermore, applications and services operate in user mode,
preventing direct access to hardware and limiting their memory access to their

processes, which ensures the system stays secure and stable [31] [1].

3 Tock Project Structure

The following section provides a detailed overview of the Tock project structure
and outlines the necessary steps for creating an ideal environment for Tock OS

development.

3.1 Tock repository

The official tock repository can be accessed via the following link: https://github.com/tock
The following three are relevant to this research out of all the existing repositories
[26].

o tock - this repository contains all the source code for the Tock operating

system

 libtock-c - this repository contains libraries for running C applications on

top of Tock and some examples.

o libtock-rs - this repository contains libraries for running Rust applications

on top of Tock and some examples.
3.2 The Tock repository structure

The Tock repository holds the source code for the Tock kernel, which is structured

in the following manner [26].

o arch -This directory contains customised content for various architectures,
providing detailed information about their structures and functions. Cur-
rently, Tock offers support for both Cortex and RISC-V architectures [26]
[19].

e boards - Contained within this directory is a collection of code designed to

cater to each device presently integrated into Tock [26] [19].

o capsules - The capsules in the Tock kernel are analogous to drivers in other
operating systems. This specific directory contains capsules that facilitate

either peripheral support or communication channels [26] [19].

https://github.com/tock

e chips - The code presented here has been specifically tailored to support
Tock’s MCU implementations. This folder has been designed to work with
the arch folder and includes functions unique to each SoC [26] [19].

e doc - This resource furnishes an all-encompassing set of guidelines on profi-

ciently employing Tock and its intricate framework.

o kernel -Contained within this directory is the comprehensive Tock kernel im-
plementation, encompassing various essential components such as the system
call, Inter-Process Communication (IPC), memory management, scheduler,
and Hardware Interface Level (HIL) definition files.

« ibraries - contain libraries used by all the source codes in this repository. [26]
[19].

o tools - These scripts create builds, execute tests, and carry out similar oper-

ations.

3.3 Development Environment Setup

$ curl https://sh.rustup.rs -sSf | sh

$ sudo apt install gcc-arm-none-eabi

$ sudo apt install gdb-multiarch

$ pip3 install tockloader==1.8.0 --user

$ grep -q dialout <(groups $(whoami)) || sudo usermod -a -G
dialout $(whoami) # Note, will need to reboot if prompted for
password

$ sudo apt-get install openocd

Figure 3.1 Terminal showing installation of tools on a Linuz machine [19]

The following tools and libraries must be installed to develop and deploy the
Tock kernel applications in development mode [26] [19].

e tock - the Tock kernel source code Github repository;

 libtock-rs the Rust application library repository;

o rustup - an installer for the Rust programming language;
e Rust - the compiler and tools for Rust applications;
e OpenOCD - a tool to program and debug the devices;

o Tockloader - a tool to manage the installation of the Tock kernel and Tock

applications on the devices;
o GCC for arm/RISC-V - relevant compilers for the devices;
o Any additional device-specific tools.

Once the tools are installed. The next step is to setup the udev rules for the
hardware. This will allow OpenOCD to interact with the USB connection. To
achieve this, create a new file in the udev directory located in etc/udev/rules.d
and add the following to the file.

ACTION!="add|change", GOTO="openocd rules end"
SUBSYSTEM!="usb|tty|hidraw", GOTO="openocd rules end"

Please keep this list sorted by VID:PID

CMSIS-DAP compatible adapters
ATTRS{product}=="*CMSIS-DAP*", MODE="664", GROUP="plugdev"

LABEL="openocd rules end"
Figure 3.2 udev rules for Tock OS [19]

Once the files has been saved, to load the new configuration, simply restart udev
system with the following command sudo udevadm control —reload-rules [19]
[26]

10

4 Setting up a custom Tock project

A new "board” crate must be created to incorporate a new platform onto Tock.
This may entail adding ”chip” and "arch” crates [25]. In Rust, a crate refers to the
minimum amount of code the Rust compiler processes simultaneously [32]. Crates
can encompass modules, which could be defined in other files compiled with the
crate. There are two types of crates: binary crates and library crates. Binary
crates are executable programs, such as command-line tools or servers, that can

be compiled and run [32].

The board crate specifies the hardware resources available on the platform and
connects capsules with chip crates [25]. The chip crate, in turn, implements pe-
ripheral drivers for a specific microcontroller, utilising traits from kernel/src/hil
[25]. A rust trait defines the functionality a particular type has and can be shared
with other types. Traits are similar to a feature called interfaces in other lan-

guages, although there are some differences in rust [33].

The existing chip crate may be utilised if the platform already utilises a Tock-
supported microcontroller. On the other hand, the arch crate implements low-level
code for a specific hardware architecture, such as the initial boot process and sys-

tem call implementation [25] [19].

4.1 Crate Modifications

This section includes more details on what is required to implement each type of

crate for a new hardware platform.

4.1.1 arch crate

Tock is compatible with various architectures, including the ARM Cortex-MO,
Cortex-M3, and Cortex-M4, as well as the RISC-V 32IMAC [25]. Its codebase
is architecture-agnostic mainly, except for a few components, such as syscall en-

try/exit, interrupt configuration, top-half interrupt handlers, MPU configuration

11

(if applicable), and power management configuration (if applicable). This ap-
proach maximises portability and minimises the need for platform-specific code.
If Tock is being ported to a new architecture, relevant architecture code should be
added to this crate [25].

4.1.2 chip crate

When developing a crate for a microcontroller, it is vital to strike a balance be-
tween specificity for a particular microcontroller family and generality to support
multiple microcontrollers within that family[25]. For instance, the chips/nrf52
and chips/nrf5x crates share support for the nRF58240 and nRF58230 micro-
controllers in order to streamline the process of adding new microcontrollers and

avoid duplicative code [25].

The chip crate incorporates microcontroller-specific implementations of the in-
terfaces defined in kernel/src/hil. Given the many features of chips, Tock offers
a variety of interfaces to express them. The process of implementing a new chip
begins with getting the reset and initialisation code up and running and configur-
ing it to run on the chip’s default clock [25]. Next, a GPIO interface should be
added, and a minimal board incorporating the chip should be created. Validation
should be performed using an end-to-end userland application that utilises GPIOs.
This approach enables incremental progress and provides an opportune moment
to submit a pull request to Tock, showcasing one’s efforts and drawing further
support [25].

As one progresses, breaking down the chip into manageable work units is advis-
able. For instance, implementing kernel::hil:: UART for the chip and submitting
a pull request would be prudent. It is worth noting that historically, Tock chips
defined peripherals as static mut global variables, which led to the use of unsafe
code and prevented boards from instantiating only necessary peripherals. Now,
peripherals are instantiated at runtime in main.rs, addressing such issues [25]. To
facilitate the use of the chip by other boards without adding unnecessary overhead
and code size, the chip should provide a ChipNameDefaultPeripherals struct

that defines and creates all available peripherals for the chip in Tock.

12

4.1.3 board crate

The board crate, which is located in the boards/src directory, is specifically de-
signed to cater to the needs of a particular hardware platform [25]. By configuring
the kernel, the board file facilitates the hardware setup to be supported. This in-
volves many tasks, such as creating sensor drivers, mapping communication buses

to those sensors, and configuring GPIO pins.

Tock is currently utilising "components” to establish board crates [25]. These
components are structured containers containing all the necessary setup code for
a specific driver and only require boards to provide unique options specific to that

platform.

1

5

1

2

3

13

let is129035 = components::isl29035::I1s129035Component : :new(
sensors_i2c, mux_alarm)

.finalize (components::isl129035_component_static!(sam4l::ast::Ast)

)

let ambient_light = components::is129035::AmbientLightComponent::new(
board_kernel,
capsules::ambient_light::DRIVER_NUM,
is129035,

)

.finalize (components::ambient_light_component_static!());

Program 4.1 Example of component instantiation for light and an ambient light sensor

[27]

Although board initiation should primarily be done using components, not all
components have been developed yet, so board files typically consist of a combina-
tion of components and verbose driver instantiation. To begin with, it is advisable
to use an existing board’s main.rs file and make modifications as necessary. Ini-
tially, it is recommended to delete most capsules and gradually add them back as

progress is made [25].

Component creation

Developing a component is highly recommended to enhance the setup process for
capsules. This approach offers two key advantages: firstly, any intricacies in-
volved in configuring the capsule can be isolated within the component, thereby
reducing the likelihood of errors during capsule usage. Secondly, the specifics of
creating a capsule are abstracted from the overall setup of a board. As such, Tock

advocates for boards to leverage components for their primary startup process [25].

Basic components generally have a structure like the following simplified ex-

ample for a console component [25].

use core::mem::MaybeUninit;

/// Helper macro that calls “static_buf!() . This helps allow
components to be

/// instantiated multiple times.

14

5 #[macro_export]

macro_rules! console_component_static {
O = {{
let console = kernel::static_buf!(capsules::console::Console
<'static>);
console

1}

/// Main struct that represents the component. This should contain
all

/// configuration and resources needed to instantiate this capsule.

5 pub struct ConsoleComponent {

uart: &'static capsules::virtual_uart::UartDevice<'static>,

impl ConsoleComponent {
/// The constructor for the component where the resources and
configuration
/// are provided.
pub fn new(
uart: &'static capsules::virtual_uart::UartDevice,
) -> ConsoleComponent {
ConsoleComponent {

uart,

impl Component for ConsoleComponent {
/// The statically defined (using “static_buf!() ") structures
where the
/// instantiated capsules will actually be stored.
type StaticInput = &'static mut MaybeUninit<capsules::console::
Console<'static>>;
/// What will be returned to the user of the component.

type Output = &'static capsules::console::Console<'static>;

/// Initializes and configures the capsule.
unsafe fn finalize(self, s: Self::StaticInput) -> Self::0utput {
/// Call "~ .write() on the static buffer to set its contents

15

with the
1 /// constructor from the capsule.

12 let console = s.write(console::Console::new(self.uart));

14 /// Set any needed clients or other configuration steps.
15 hil::uart::Transmit::set_transmit_client (self.uart, console);

16 hil::uart::Receive::set_receive_client(self.uart, console);

18 /// Return the static reference to the newly created capsule
object.

19 console

50 }

1}

Program 4.2 Example of basic component creation [25].

1 // in main.rs:
3 let console = ConsoleComponent::new(uart_device)

1 .finalize (components::console_component_static!());

Program 4.3 Example of using a component [25].

When creating components, it is imperative to adhere to the following guide-
lines [25]:

o All static buffers required for the component must be generated exclusively
using the static_ buf!() macro and not elsewhere. This guarantees that

components can be utilised multiple times [25].

« The macro that encapsulates static__buf!() should follow the naming con-
vention of [capsule name] component_ static!(). The macro should

solely produce static buffers.

» All resources and configurations not linked to static buffers should be passed

to the new() constructor of the component object.

In certain instances, capsules and resources may be templated over chip-specific
resources, making static buffer definition more intricate. The same macro strategy
must be employed for other static buffers to ensure that components are reusable

across diverse boards and microcontrollers.

16

Board Support

Boards necessitate supplemental support files in addition to kernel code. These
files contain vital metadata regarding the board’s nomenclature, instructions on
how to load code onto it, and any unique requirements that may be essential for
userland applications to function on the board [25].

Each board must devise a customised routine to manage panic incidents effec-
tively. While the Tock kernel handles most panic machinery, the board author
must ensure that the hardware interfaces, namely the LEDs or UART, are pro-
vided with primary access [25]. Each board must author a custom routine to
handle panic!s.

To start with, the LED-based panic! feature is the easiest to set up. The
panic! handler should configure a noticeable LED and then to activate it use the
following. kernel::debug::panic__blink_ forever [25].

If the system has UART, it can access a wealth of helpful debugging information
from the kernel; however, we are dealing with a panic! scenario, it is essential to
keep the implementation minimalistic. The UART supplied must be synchronous
(unlike the rest of the kernel UART interfaces, which are asynchronous). The
simplest way is to create a basic Writer that writes one byte at a time directly
to the UART. The efficiency of the panic! UART writer is not a priority [25].
Afterwards, it can replace the call to kernel::debug::panic__blink_forever with
kernel::debug::panic. Remember to keep it simple and efficient for the best
results [25].

Board Cargo.toml, build.rs

To ensure a seamless process, generating a high-level manifest, Cargo.toml, is
crucial for every board crate. This can be done by duplicating an existing board’s
manifest and modifying the board name and author(s) as necessary. Moreover,
Tock includes a build script, build.rs, that should be included. This build script
helps to include a dependency on the kernel layout, making the process more
straightforward [25].

17

Board Makefile

There is a Makefile in the root of every board crate [25]. At a minimum, the board
Makefile must include:

When building the kernel, it is essential to include rules in the board Makefile
to get code onto the board [25]. This process will vary depending on the specific

board used, but Tock provides two commonly used targets:

» "program”: This is used to load code onto boards with a bootloader or other
support IC [25]. During regular operation, users can plug in the board and

type "make program” to load the code.

o 7"flash”: This is used for more direct loading, typically done through a JTAG
or similar interface [25]. Often, this requires external hardware, although
some development kit boards have an integrated JTAG on-board, making

external hardware unnecessary.
« install”: This should be an alias for either "program” or "flash”, depending
on the preferred approach for the specific board [25].
Board README

For each board, it is necessary to include a README.md file at the top level of
the crate [25]. This file should contain the following:

e Links to information on the platform and how to acquire it. If multiple

versions of the platform exist, specify the version used for testing.

e An overview of how to program the hardware and any additional dependen-

cies required [25].
4.1.4 Tockloader

Tockloader is a Python-based application utilised to program Tock onto various
hardware platforms. Upon successful installation, this tool provides a plethora of
commands for efficient management of applications on a board [29]. Among the

key commands available are:

 Tockloader install - Load Tock applications onto the board [29].

18

o Tockloader update - Update an application that is already on the board with
a new binary [29].

o Tockloader uninstall application name - Remove the specified application
from the board [29].

Tockloader conveniently includes a list of hardcoded parameters for a diverse
range of boards, which can be accessed through the "list-known-boards” com-
mand. However, if the desired platform is not present, one can simply specify the
necessary parameters through command line options and provide a board name.
Alternatively, it is recommended to file an issue on the Tockloader repository so
that the development team can update the tool to include pertinent information
about the selected platform [29].

4.1.5 Adding a Platform to Tock Repository

When merging a board into the main Tock repository, specific guidelines must be
followed [25].

o The board’s hardware should be easily accessible and available for purchase

online.

« The platform should have console support for debug!() and printf(), timer
support, and GPIO support with interrupt functionality.

o The contributor should also be prepared to maintain the platform and assist

with testing for future releases.

4.1.6 Related work

As of October 2023, Tock OS now officially supports several architectures including
Cortex-M, Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, RISC-V,
and RV32I. Additionally, Tock provides support for various hardware platforms,
which can be found in the boards directory of the Tock repository [28].

To better organize the boards, Tock has divided them into three tiers based on

their level of support.

19

o Tier 1 consists of the most feature-complete and well-tested boards, which
are used regularly by core team members and highly engaged contributors.
These boards are showcased in the Tock Book [28].

o Tier 2 includes platforms with reasonably regular use, but may have incom-
plete peripheral support or known issues documented in the release notes.
Some Tier 2 boards are variations of Tier 1 boards and are in good shape
but not heavily tested [28].

o Tier 3 boards are new or highly experimental and only promise to support
the minimum platform requirements listed in the Porting documentation

[28].

RISC-V

Tock exhibits robust backing towards the RISC-V architecture, albeit lacking in
tier 1 or 2 support for any individual RISC-V board. For those seeking to employ

Tock on RISC-V, several alternatives are available.

o ESP32-C3-DevKitM-1. This board is under active development to move to
Tier 2 support [28].

o For an entirely virtual platform on QEMU, the QEMU RISC-V 32-bit virt
platform board can be used. This can be quickly started and run on a host

computer [28].

o For a simulation environment one can use Verilator with OpenTitan Earlgrey
on CW310 or Verilated LiteX Simulation [28].

o For an FPGA setup one can use OpenTitan Earlgrey on CW310 or LiteX
on Digilent Arty A-7 [28].

20

ON IOPBO[H0} | Opro[1ooyg 0P8CG A | FIN-XOWO)) INUV 0P8CE AT 91D
ON IOPBOIOY poouado €E8CAAYY | FIN-XOHO)) NV oA NQ-O0-DIN HAd
ON IOPBO[}O} | opro[00y 078c5GAdY | FIN-X°HOD INHV qTd €€ ouRN
ON IOPROHIOY url 0F8cGAHY | PIN-XOHO)) INUV | MA-0¥8CEA YU 2TPION
ON IOPROPY0Y | WPROI00Y | VOSDTVINVS | PIN-XOMO0) WUV Xt
ON IOPROHD0} | Wpeo[30og | VASDTVINVS | PIN-XOH0) INHV ['*H
jproddns NINHO | yuowiAojdep ddy | ooejrojuy NOIN 9INJIYIIY pIreogq

'[8¢] SO Y20L wouf guoddns T 4213 ypm spivog [219D

21

ON Wo9SND Wo9Snd coffody FIN-X00100) INYV qrgeyordxe - ungyredg
ON wo)sno wojsno corody PIN-X94I00) NV | OuRN STwolry preogpoy ungsyiedg
ON poouado poouado 070ZdY | FOIN-X0%0D) INHV 001J 1 A1moqdsey
ON WIO3STO Wo3sno 0v0edd | HOIN-X0300) INHV FIoUuo) 0¥0cdd OUeN
ON poouado poouado 0702dY | F0IN-Xe110D) INHVY oseq Io1o[dxy 0014
dIM wojsno | poouado DCIVATEINLS | VIN-X010D WUV 1 A1940081(J DZTPATEINLS
dIM wosno poouado | 9TOAE0EACEINLS PIN-XO300) WUV 1 £30400SIQEATENLS
dIM Wo3st poouado 6CVACEINLS PIN-X0100) INHV 176874 99PN LS
dIM WO3ST poousdo IWYACEINLS PIN-X0M0D) INHV H49¥¥d 09PUN LS
ON TOPROD03 url 0¥8caAH" PIN-XOHO) INHV ¢E8CEADY
ON 1OPROHY0Y url 0V8caAH™ PINXOIOD) UV uorod opnred
ON 1OPBOHY0Y qurl 0F8csAdu PIN-X03100) INHV O[BUO-0F8TGAYU dIPION
ON 1OPEOH0Y gl 6E8CGAYU PIN-X0M0D) INHV MA-¢G AT OIpIoN
NINAO | uswidordep ddy | ooejIajuf NON 9INJINIYIIY pIeog

\%@\ SO Y90 wouf peoddns g 4913 ypm spivogg gy 219D

22

ON 1OproRPO} | paousdo 1T PALAIS | DVINIZEAY A-DSTYH JL00T L-V A1y juaqisiq

ON woIsnd UI0ISNO 290T IY XIN'T LIN-X010)) NV 0§ Asuo9],

ON WO3Sno WO3STY ¢G0T ITH XIN'T LIN-XOHIO0D) INHY | 33 uonyenfea] g0l IH XIN'T

ON 19PBO[HD0} | I9PBO[HV0] €00D-0TEHA A-DSIY JojueAlu] oAIHTH DA

ON wo}sno WoIsTo £0-cedSH 1ICEAY UST-A-DSIYH T-INHMMAR-ED-¢edSH

(1) sox JoPrBO[HO0} poouado ¢00D-0TeHA A-DSIYH d A9Y TPALATH PAIAIS

(1°g) sox JoPBOHOO} poouado ¢00D-01¢HA A-DSIY A-PY preogpay ungyieds

ON Wo3sno poouado | 9NDDTOVACEINLS VIN-X031I00) INYV | PIeod 2107 9N DD 107 IPVOM

rroddns NINHO) | yuswLojdep ddy | adoejioju] NON 9INJINIYIIY preogq

'[83] SO Y20, wouf ioddns g 4213 ypm

spavog g°¥ 2190,

23

Tock Development status

As of November 2023, Tock has advanced to version 2.1.1, boasting over 100 con-
tributors working on the project tirelessly. Tock introduces fresh features, stability

updates, and bug fixes with each new version release to elevate its performance.

Tock 1.0 was deliberately engineered to prioritise low power and binary sta-
bility, allowing applications compiled for the 1.0 system call interface to operate
on any kernel claiming a 1.0 system call interface. It included support for vari-
ous system call interfaces, including timers, debug consoles, LEDs, buttons, GPIO,
and high-level sensor drivers like accelerometer, magnetometer, light, temperature,
pressure, and more [20].

Additionally, Tock 1.0 addressed issues, such as bug fixes that remedied pin
misassignment on the new imix board [20] and power scaling issues in sam4l, and
addressed bugs with the SAM4AL SPI slave implementation [20].

The landmark release of Tock, version 1.3, had two pivotal goals. Firstly,
it aimed to make Tock architecture agnostic, and secondly, it sought to incorpo-
rate an interface that enabled the sending and receiving of UDP packets [21]. To
achieve the former objective, several changes were implemented, including the elim-
ination of support/arm.rs from the kernel crate [14], the removal of architecture-
specific stack/register handling from processes [15], the relocation of architecture-
dependent syscall code to arch/cortex-m [15], the eradication of Arm register
specifics from panic print [16], and the addition of support for a universal MPU

interface [17].

The following software release, Version 1.5, boasts many new updates to
improve user experience. These include better process handling, RISC-V develop-

ment, support for new boards, and updated components [22].

One of the most notable features in this update is the addition of generic com-
ponents, which allows capsule authors to create components for new sensors. This
makes it much simpler and more trustworthy to chain callbacks together on any
board with that sensor [23].

24

Another essential addition to Version 1.5 is support for RISC-V Physical
Memory Protection (PMP). The MPU implementation on RISC-V allows for al-
locating sections of memory for apps, enabling userspace apps to run. Tock uses
the Physical Memory Protection (PMP) Top of Range (TOR) alignment to avoid
alignment issues with Naturally aligned power-of-two region (NAPOT). This also
results in less wasted memory, as using NAPOT requires the address to be aligned
to the size [22].

Moreover, Version 1.5 includes capsules for low-level debugging, log storage,

and the 13gd20 3-axis gyro and temperature sensor [22].

The Tock 2.0 system call interface has undergone significant changes resulting
in a more defined resource sharing mechanism between processes and the kernel.
The updated system calls now allow up to four registers of values to be returned
to userspace. Capsules are now subject to additional restrictions in implementing

subscribe and allow, which are now checked within the kernel. [24].

Regarding app requirements, Tock 2.0 mandates that each app include a Tock
Binary File header specifying the minimum kernel version needed. The process
loader automatically checks this header and rejects any apps not explicitly com-
patible with Tock 2.0. Furthermore, all capsules must store the process state in

a grant; each capsule can only have up to one grant.

The update also involved significant changes to the chip and platform traits in
the kernel. The chip now only includes functions closely tied to microcontrollers,
while the platform has been divided into distinct and well-defined traits. The
kernel crates have been reorganized, and kernel exports are now structured more
clearly.

Finally, Tock 2.0 supports new platforms like the Nano Connect, BBC Mi-
cro:bit v2, Teensy 4.0, and Raspberry Pi Pico, among others.

Ongoing efforts are being made towards the unveiling of Tock 3.0, with no

definitive date of release disclosed as of November 2023.

25

5 Ballast Architecture

7~ HPC Subsystem MPC Subsystem (" SysCtrlSubsystem \

CVAG CVAB RISCY IBEX

T SRAM Interleaved Boot SRAM
ubsystem Banks Bank ROM Banks

C2C Subsystem Enterconnect Subsystem

caCc
HP ICN LP ICN CFG ICN

Interface
DSP Subsystem Peripherals Subsvsteh

(—A' Subsystem Ethernet Subsystem
Global Interrupt
AAMU SW Interrupt
Generator

Ethernet
NVIDIA NVDLA)
-
Config Registers }
Accelerator

Figure 5.1 Ballast High-level Overview

Figure 5.1 shows a high level block diagram of the Ballast Architecture [9].
The system is comprised of three processor subsystems based on RISC-V archi-
tecture. The first subsystem, high-performance computing (HPC), is a multi-core
subsystem that can run Linux and comes with two CVA6 64-bit processor cores [9]
[30]. The second subsystem, medium performance computing (MPC), is a single-
core subsystem that utilises the PULP-platform’s PULPissimo microcontroller.
Lastly, the System Control CPU (SysCtrlCPU) subsystem is also based on the
PULPissimo microcontroller but uses the smaller Ibex-core, while the MPC uses
the RISCY processor core. The SysCtrlCPU subsystem functions as the Bootstrap
Processor (BSP) of the system, while the other subsystems function as application
processors [9] [30].

26

The other subsystems on the chip support the operation of these three sub-
systems. The Digital Signal Processor (DSP) subsystem is a custom-designed
co-processor for the RISC-V-based processors on the SoC. The Aamu-core of the
subsystem is a Transport Triggered Architecture (TTA) processor [11], an alter-
native to the more common operation-based processor architecture used in CPUs.
The Aamu-core was generated using the TTA-based co-design environment (TCE)
toolchain.

The Ethernet subsystem allows for ethernet connectivity, while the chip-to-chip
(C2C) subsystem provides an interface for communicating with an external chip.
The Al subsystem acts as an accelerator for Al applications and is built on the
open-source NVIDIA deep learning accelerator (NVDLA) [10].

Figure 5.2 Granitti Board with Ballast MPSoc

Figure 5.2 shows the Ballast MPSoC Connected to the Granitti board. The
board was custom designed by the SoC Hub team to debug the different subsystems
in Ballast.

The top peripheral subsystem grants shared peripheral access to all cores and
continuous memory space. The Interconnect subsystem furnishes connectivity
within the chip with three distinct interconnects for high-performance (HP ICN),

27

low-performance (LP ICN) and configuration (CFG ICN) applications. The Bal-
last ASIC subsystems utilise phase-locked loop (PLL) circuits to produce the re-
quired clock frequencies on the chip. PLLs are frequency synthesisers that generate
frequencies from one or multiple source frequencies. They are a favourable solution
for ASIC systems because they can be made as part of the IC, reducing the amount

of external noise the signals can encounter and providing GHz-level frequencies.

5.0.1 PULP-platform

The PULP project is a joint effort between the University of Bologna’s Department
of Electrical, Electronic and Information Engineering and ETH Ziirich’s Integrated
Systems Laboratory. It began in 2013 with the intention of developing computing
solutions that achieve optimal performance while consuming minimal energy [9]
[30].

The PULP platform is an open-source system constructed on the RISC-V in-
struction set architecture. It aims to enhance energy efficiency and performance by
integrating data- and thread-level parallelism with near-threshold voltage comput-
ing. This technique operates transistors near their threshold voltage level, which
helps to decrease power consumption.

The platform offers designs for both small IP blocks, like RISC-V CPUs, pe-
ripherals, interconnects, and hardware accelerators, as well as complete single or

multi-core systems.

5.0.2 PULPissimo

The PULPissimo is a microcontroller platform that uses 32-bit RISC-V technol-
ogy. It can be designed to use either the RI5CY-core, a 4-stage pipelined CPU
with an optional floating point unit, or the Ibex-core, a 2-stage CPU optimized
for controlling tasks. The customization option is used on the Ballast SoC where
the MPC subsystem uses the RI5CY-core, and the SysCtrlCpu subsystem uses the

Ibex-core.

The PULPissimo (Fig 5.3) design comprises five functional subsystems: the
fabric controller (FC), peripherals, I/O DMA (DMA), interconnect, and mem-
ory. The architecture is divided into three modules: the Padframe, the Safe Do-

28

Pulpissimo

SoC Domain

Memory Subsystem

Memory Memeory

Interleaved Memory Bank Bank

Low Latency Interconnect

Interconnect
Subsystem APB Bridge

]
E UARIT
T
I
L
- SDI0
& =
uDMA Subsystem ble

Subsystem

GPIO

Pad Control and MUX

Peripherals
Subsystem

APB Bus

[FLL |

Figure 5.3 PULPisimo SoC block diagram
[9] [30]

main, and the SoC Domain. This segmentation allows for creating individually
controllable power domains in an ASIC implementation. The Padframe contains
technology-independent wrappers for the SoC’s 1/O pads, while the Safe Domain
contains modules that must remain powered on, regardless of the SoC’s state.

Lastly, the SoC Domain includes all five functional subsystems.

The FC subsystem houses the RISC-V CPU and an interrupt controller con-
nected to the advanced peripheral bus (APB) interface. Other hardware acceler-
ators that the PULPissimo may have are also located in this subsystem to ensure
consistent power domain control. The memory subsystem contains all internal
memory for the system on a chip (SoC). The interconnect subsystem connects

the memory, external debug bridge, FC, peripheral, and the DMA subsystem.

29

The DMA subsystem is an autonomous direct memory access (DMA) subsys-
tem within the peripherals subsystem designed to manage data transfers between
peripherals and memory, reducing the workload of the CPU. The SoC supports
multiple peripheral interfaces, including SPI, UART, and JTAG, which are mul-
tiplexed into a smaller number of available physical ports using dedicated control

registers.

5.0.3 Ibex-core

J

wdala o

addr o
rdata _i

o

Instruction Mem

I

ebug Interfac

FDLW

Figure 5.4 Ibex Core
[9] [30]

The Ibex is a processor core (fig 5.4) optimised for embedded devices that
supports a base integer instruction set, reduced register extension (E), and M and
C extensions. It can implement either 32 or 16 32-bit general purpose registers
(GPRs) depending on the use of the E extension. The IF/IDE register bank
separates the two pipeline stages between the fetch and decode unit. Due to
its Harvard architecture, the Ibex implements some control and status registers
(CSRs) defined in the RISC-V specification and has separate instruction and data
memory interfaces.

The Ballast SoC is controlled and booted by the System Control CPU (
5.5). The Ballast development team created the SysCtrlCPU by customising the
PULPissimo SoC, removing unnecessary peripherals and using the Ibex-core in-
stead of the default RI5CY-core. The removed interfaces include 12C, 12S, and the

30

camera interface. Instead, an AXI interface, subsystem control signals, and a cus-
tom SDIO interface were added. These interfaces provide high-bandwidth connec-
tivity within the Ballast ASIC, reset, clock, and PLL signals for other subsystems
on the ASIC, and an external memory space accessible for the CPU immediately
as instruction execution starts, respectively. The custom SDIO interface includes
a hardware state machine to perform an initialisation routine of an external SD

card.

5.0.4 System Control CPU

SysCtriCPU

SoC Domain

Memory Subsystem

Low Latency
Interconnect

Interconnect
Subsygtgm APB Bridge

5Pl

uDMA
Subsystem

Pad Frame

Pad Control and MUX

Peripherals
Subsystem

APB Bus

[30]

Figure 5.5 System Control CPU

Multiple memory-mapped registers have been introduced to enhance control

over the Ballast SoC. These include 32-bit registers for PLL control, status func-
tions for nine ASIC subsystems, and three registers with 8-bit clock controls. Ad-
ditionally, two 32-bit registers were added for subsystem reset and clock enables,
aiding in power analysis. Lastly, a 16-bit clock divider control register has been

incorporated for top peripherals. Size reductions were made to most memory on

31

the SysCtrlCPU from the PULPissimo.

The L2 static random-access memory (SRAM) on the PULPissimo has been
reduced from 512 KB to 64 KB, and the size of the boot ROM has been reduced
from 8 KB to 4 KB. Additionally, the system’s memory map has been scaled
down, and the regions for the frequency-locked loop (FLL) and optional hardware

accelerator have been removed.

PULPissimo SysCtriCPU

Central Processing Unit RISCY Ibex

Pipeline Stages 4 2

SRAM Size (kB) 512 64

ROM Size (kB) 8 4

Clocking Unit FLL PLL

Peripheral Interfaces UART, CAMIF, SPI, 12C, UART, SPI, SDIO, GPIO
I12S, SDIO, GPIO

Additions

SDIO register interface,
AXl interface, system
control signals

Figure 5.6 Comparison of PULPisimo and System Control CPU

[9] [30]

5.0.5 Ballast Toolchain

In order to explore the feasibility of porting Tock OS on Ballast, a Rust-based
toolchain is required, along with additional tools to generate necessary code. Rust
has plenty of tools to help with software development, ranging from build man-
agement tools to linter and code formatting. It also has embedded specific tools,

such as svd2rust, for creating peripheral access crates.

32

Cargo

The Cargo package manager for Rust facilitates the declaration of dependencies
and ensures a consistent build for Rust packages. This is achieved by utilising two
metadata files containing package information, the acquisition and construction of
the package’s dependencies, and the invocation of Rustc or a suitable build tool
with the appropriate parameters to complete the package build. Additionally,
Cargo introduces a set of conventions that streamline working with Rust packages
(34].

Cargo normalises the required commands for program and library builds, re-
sulting in a simplified building process. Instead of invoking the rust compiler
directly, a user can use a general command, such as "cargo build,” to allow Cargo
to handle the construction of the correct rustc call [34]. Cargo also automatically
retrieves any dependencies defined in the project from a registry and prepares them

for incorporation into the build as needed [34].

Rust-clippy

Clippy is a helpful tool that assists users in writing more idiomatic Rust code
by catching common mistakes [5]. It offers various lint categories, each providing

solutions on how to fix the issues they detect. Some of the lint categories include:

o Clippy:correctness which, when triggered, aborts compilation since the

code is either wrong or useless and requires fixing [6].

« Clippy:suspicious which, by default, warns the user about potentially sus-

picious code that should be fixed unless intentionally written that way [6].

« Clippy:complexity which offers suggestions on simplifying code, focusing

on making it more readable while preserving semantics [6].

o Clippy:perf, which suggests increasing performance by writing code in a
way that is easier for the optimiser to handle. This warning applies to code

that the compiler cannot trivially optimise [6].

33

Rust-analyzer

Rust-analyzer is a highly regarded open-source implementation of a language server
that caters to the Rust programming language [2]. Tt is optimised to be compat-
ible with various code editors that support the Language Server Protocol (LSP),

thereby providing a more robust Rust development experience [2] [7].

Although Rust Language Server (RLS) and rust-analyser act as language servers
for Rust, rust-analyser is renowned for its superior speed and broader range of
features [2] [7]. While RLS was initially the official language server for Rust,
rust-analyser has emerged as the new standard and is often the preferred choice
for developers. As of 2022, the Rust Language Server (RLS) is gradually being

phased out in favor of rust-analyser [2] [7].

Rustfmt

An application designed to align the syntax of Rust code with established style

conventions [35].

svd2rust

svd2rust is a handy command line tool that converts System View Description
(SVD) files into crates with a type-safe API [36]. This API is ideal for accessing the
peripherals of a device with ease. An SVD file, which is an XML file describing the
hardware features of a microcontroller, provides details on all available peripherals,

as well as the associated registers’” memory location and function [36].

Kactus2

Kactus2 is a graphical toolset utilised to design embedded systems, primarily SoCs
based on FPGAs [3]. Its key objective is to enhance development productivity by
enabling the reuse, exchange, and integration of Intellectual Properties (IPs). The

development and maintenance of Kactus2 are performed by the System-on-Chip

34

Research Group at Tampere University [4].

Kactus2 boasts numerous features, including the capability to package IPs
for reuse and exchange, import existing IPs as IP-XACT components, generate
HDL module headers for new IP-XACT components, utilize IP-XACT files from
any standard compatible vendor, reuse IPs in designs, establish interconnections
among wires and busses, create hierarchical HW designs, generate multilevel hier-
archies, configure component instances in designs, including the sub-designs, utilize

generator plugins to create HDL with wiring and parameterisation and integrate

HW and SW [4].

Moreover, Kactus2 enables users to use a memory designer that allows preview-
ing memory maps and address spaces. Users can package software to IP-XACT
components and map them to hardware while generating makefiles that build ex-
ecutables with rules defined in IP-XACT components [3] [4].

OpenOCD

The Open On-Chip Debugger (OpenOCD) is designed to provide debugging, in-
system programming, and boundary-scan testing for embedded target devices [12].
Accomplishing this relies on a debug adapter - a small hardware module that facil-
itates the proper electrical signalling required to debug the target. Debug adapters
are necessary because the debug host, where OpenOCD is run, typically lacks na-

tive support for this signalling or the necessary connector to link to the target [12].

These adapters support one or more transport protocols, each utilising different
electrical signalling and messaging protocols. Debug adapters come in various
types and are often referred to by different names, with differences in product
naming. They may be packaged as discrete dongles, sometimes called hardware
interface dongles. Alternatively, some development boards integrate them directly,
allowing the board to connect directly to the debug host via USB and, in some

cases, power it over USB [12].

35

6 Feasibility of porting

To determine the feasibility of porting, it was essential to first establish a func-
tional toolchain. Thanks to the assistance of Kactus2 and svd2rust, this was
successfully accomplished. Kactus2 produced an SVD file from IPXACT, which
was then passed on to svd2rust. This tool generated the Peripheral Access Crate
(PAC), a secure and direct interface to the chip’s peripherals [38]. This allows
users to customize every detail to their exact requirements. Typically, the PAC
is only necessary if the higher layers don’t suffice or during development. The
svd2rust file output was then formatted using the rustfmt tool, dividing the single

file into multiple files corresponding to each peripheral.

6.0.1 Test setup

Figure 6.1 Granitti Board with Ballast MPSoc setup for UART testing

In order to conduct a thorough system evaluation, as seen in 6.1 the Ballast
MPSoC was linked to the Granitti board, which boasted an FTDI chip and an
RS232 board for UART communication. Subsequently, it was linked to the host

36

PC. The host PC was equipped with an openOCD server and GDB, which were
activated using the following commands.
sudo openocd —f config.cfg

riscv64gc -unknown -none-gdb executable

A rudimentary UART transmission and reception application was developed
and implemented to verify the connectivity upon successfully generating the PAC.
Subsequently, the application, as mentioned earlier, was flashed onto the device

to conduct a comprehensive test. Figure 6.2 demonstrates the application.

0]

0]

B, 0]
166,

D =] D

,
=

9
2¢

Figure 6.2 UART transmission and reception application

A comprehensive investigation was carried out to analyse the implementation
of existing Tock OS ports. The study was centred on two platforms, namely
BBC Micro:bit v2 and OpenTitan [13]. The former boasts tier 1 Tock OS sup-
port, a functional operating system port, and uses an Arm Cortex-M4. The latter
is an open-source secure silicon ecosystem that provides silicon IP and complete
top-level designs for various applications. OpenTitan features a discrete, secure
microcontroller [13] and an integrated secure execution environment supporting
Root of Trust functionality, secure boot, and DICE attestation. It was created in
collaboration with lowRISC and leverage a RISC-V architecture [8].

After conducting research, it was noticed that the CVA6 RISC-V shared simi-
larities with the RISC-V architecture found in the Ballast SoC’s High-Performance
Computing (HPC) subsystem. As Tock OS necessitates an MPU, HPC was the
sole subsystem featuring one. Running Tock OS on a system lacking an MPU
would require excising MPU-specific code from the kernel. However, as this re-
search aimed to utilise Tock OS unaltered, HPC was deemed the appropriate

37

choice. Consequently, a test plan was devised to assess the feasibility of operating

a minimum viable version of Tock OS on the SoC.

Figure 6.3 Directory tree of Granitti board files

In order to accomplish this, the repository required the inclusion of Ballast
SoC specific code. After considering the similarities between the HPC subsystem
and the Opentitan EarlGrey SoC, it was determined that Opentitan would serve
as the foundation. Initially, the pertinent Granitti board code was added to the
tock/Repository/boards, including files such as a Cargo.toml file to manage
project details and dependencies, a layout.ld file (figure 6.6) to outline the board
layout, a Makefile for code building, and board-specific files for alarms, encryption

tests, and flash controller.

38

MEMORY
{
rom (rx) : ORIGIN = 0x20000000, LENGTH = 0x30000
/* Support up to 0x2009_0000 for apps
* and 0x2009_0000 to 0x2010_0000 is for flash storage.
*/
prog (rx) : ORIGIN = 0x20030000, LENGTH = 0x60000
/* The first 0x650 bytes of RAM are reserved for the boot
* ROM, so we have to ignore that space.
* See https://github.com/lowRISC/opentitan/blob/master/sw/device/
silicon_creator/lib/base/static_critical.ld
* for details
x/
ram ('rx) : ORIGIN = 0x10000650, LENGTH = 0x10000 - 0x650

Program 6.1 snippet from the layout.ld file of Granitti board.

o

/ uring .

earlgrey: :uart::Uart::new(
earlgrey::vart::UARTO_BASE,
earlgrey::chip_config: :CONFIG.peripheral_freq,

)

.transmit_sync(buf);

1safe { pac::Peripherals::steal() };
mpe = p.MPC Lit()

soc_control unsafe { SocControl::pre i(mpc.soc_control, 30
udma = mpc.udma 1it();
mut uvart = ballast_hal::udma::Serial::init(
udma.uvart,
ballast::chip_config::CONFIG.peripheral_freq,
&soc_control,
Dk
vart.bwrite_all(buf);

Figure 6.4 Diff showing the changes made for one of the Granitti board files

The next task was to incorporate the Ballast chip’s unique code into tock-
/Repository /chips.

39

Figure 6.5 Directory tree of Ballast chip files

This entailed adding Cargo.toml files for project dependencies, chip.rs to fa-
cilitate high-level setup and interrupt mapping, chip__config.rs to support chip-
specific configuration, gpio.rs for handling GPIO instantiation, i2c.rs to configure
i2c¢ functionality, interrupt.rs to manage named interrupts for the chip, lib.rs
for drivers and chip support, plic.rs for platform-level interrupt control peripheral

driver, timer.rs to drive timers, and lastly uart.rs to handle UART functionality.

type UART = ballast_hal::udma::metapac: :mpc_udma: :UART;

ct BallastDefaultPeripherals<
0 vart: ballast_hal::udma::Ser
ct BallastDefaultPeripherals {
serial::Serial,

> BallastDefaultPeripherals<
L BallastDefaultPeripherals {

pub fn new(red_calle i ynamicDeferredCall) ->
p = e { pac::Peripheral eal() };
let udma n1it().udme
vart

1:serial: ~ial(vart);
art: OWr1s art..Jart..newicra

{ vart }

Figure 6.6 Diff showing the changes made for one of the Ballast chip files

40

7 Results

While running the test, it was determined that the operating system could not be
executed on the HPC due to architectural differences. The test was plagued by
multiple compiler errors, which, upon further investigation, were caused by Tock’s

insufficient support for 64-bit platforms.

Upon careful analysis, it became apparent that two key factors were hindering
the feasibility of this research. Firstly, much code rewriting would be required to
enable Tock OS to support 64 RISC-V architectures. Secondly, time constraints
proved to be a crucial barrier, as the projected timeframe for such a comprehensive
rewrite would exceed the scope of a master’s thesis. The addition of support for
Ballast MPSoC necessitated the modification of 41 files and writing approximately
4,500 lines of code (LOC). Incorporating support for a 64-bit architecture would
require substantial additional work and time. As a result, it is not feasible to

complete the project within the specified timeline.

7.0.1 Future work

With enough time, a 64-bit port can be achieved by updating the registers to
64-bit in all low-level startup and context switching codes. Any implementation
supporting both register sizes is recommended to minimise the using cfg statements
to avoid compiling different low-level assembly code depending on the RISC-V
architecture. While code duplication should be avoided, balancing this with the
risk of bug fixes only being propagated to one architecture is essential. [18]

To create a Tock OS port, the user must create a RISC-V 64-bit integer Archi-
tecture folder in the repository that follows RISC-V specifications. The next step
is to use 64-bit load/stores in the architecture code. The following list of files in

the repository must be modified for the porting process. [18]

« kernel/src/config.rs

» kernel/src/memop.rs

41

» kernel/src/syscall.rs

« kernel/src/grant.rs

« arch/riscv/Cargo.toml

« arch/riscv/src/syscall.rs

« arch/riscv/src/csr/mcause.rs

o arch/riscv/src/csr/mod.rs

« arch/riscv/src/csr/satp.rs

« arch/riscv/src/lib.rs

« arch/rv32i => riscv/src/pmp.rs

o arch/rv32i => riscv/src/support.rs

arch/rv32i/src/lib.rs

After additional conversations with the Tock OS team and a Google engineer
who also attempted a Tock OS 64-bit port, it was discovered that most of the port-
ing process consisted of updating the code where u32 was utilised to use usize
instead. ”Places that assumed 32-bit did so formally by using u32, so
changing to usize fixed most of the problems. Rarely did any code
implicitly rely sizeof(usize) or alignof(usize) == 4.” (Lawrence Esswood,

personal communication, January 2024).

This is because usize is pointer-sized, meaning its size depends on the archi-
tecture for which the program is being compiled. For instance, on a 32-bit x86

computer, usize equals u32, whereas on x86_ 64 computers, usize equals u64.

N

42

Changes were also made to the upcall traits, but wrapper APIs rarely used
it directly; instead, they used the type that implemented it. So, the following
changes were made to the implementation.
impl Upcall<AnyId> for core::cell::Cell<Option<(u32, u32)>> {

fn upcall (&self, arg0: u32, argl: u32, _: u32) {
self .set(Some((argld as u32, argl as u32)));

Program 7.1 Before Refactoring

impl Upcall<AnyId> for core::cell::Cell<Option<(u32, u32)>> {
fn upcall (&self, arg0O: usize, argl: usize, _: usize) {

self .set(Some((argld as u32, argl as u32)));

impl Upcall<AnyId> for core::cell::Cell<Option<(usize, usize)>> {

fn upcall (&self, arg0O: usize, argl: usize, _: usize) {

self .set (Some ((argd, argl)));

Program 7.2 After Refactoring

This ensured that any existing APIs that wanted u32s could continue to have

them, and new interfaces could use usize.

Before porting Tock to a new platform or microcontroller, it is imperative to
conduct a thorough assessment to determine whether the platform is suitable for
the intended purpose. Although no definitive criteria checklist exists, essential and

generally expected criteria are typically evaluated.

The must-have criteria include memory protection support, typically in the
form of the MPU on Cortex-M platforms or the PMP on RISC-V platforms, as
well as at least 32-bit support. Since Tock is not designed for 16-bit platforms,
this criterion is crucial. Additionally, the platform should possess sufficient RAM
and flash to support userspace applications, with a minimum of 64 kB of RAM
and 128 kB of flash generally considered sufficient.

43

Furthermore, the generally expected criteria require the platform to be 32-bit,
although future support for 64-bit platforms may become available. Additionally,
while a multi-core CPU is acceptable, Tock is designed to utilise only one core,

and the platform should be single-core.

By adhering to these criteria, the transition of Tock to a new platform or
microcontroller can be carried out effectively and efficiently, ensuring optimal per-

formance and functionality.

It is advisable to involve the Tock OS team from the beginning of develop-
ment. Their active developers can guide how to approach specific problems and
implement features. This also ensures that the work adheres to their standards

and meets quality requirements.

44

8 Conclusions

The present study aimed to investigate the feasibility of porting Rust-based secure
operating systems onto a RISC-V MP System on Chip (SoC), focusing on imple-
menting the operating system on a new RISCV SoC platform.

The study commenced with a detailed investigation of the Tock OS, encom-
passing its architecture, user space, kernel, hardware drivers, and security features.
This was followed by exploring the Tock OS repository, project structure, and the

development environment required to work on Tock OS.

Subsequently, a comprehensive breakdown of the requirements for a custom
Tock OS port was presented, which included the hardware and software require-
ments, modifications in the codebase, related works, and boards supporting Tock
OS. Additionally, the study highlighted some key features added during the Tock

development history, along with some of the bugs encountered.

The target platform was introduced in the subsequent chapter, which included
subsystems and the toolchain for the platform. The feasibility report elaborated
on the approach to test the hypothesis and presented the results. The following

chapter details the steps required to complete future work.

Overall, the hypothesis exploration was successful despite the unachieved end
goal due to time constraints. The Ballast SoC toolchains worked well, and creat-
ing a PAC and using it to access various peripherals of the SoC proved successful.
Most of the difficulties faced during the project were attributed to the lack of re-
lated work regarding 64-bit Tock OS and the absence of official support for 64-bit

architectures during the research period.

The research yielded a comprehensive list of software requirements subse-
quently conveyed to the Ballast hardware team. The objective was to articu-
late the essential functionalities the hardware platform must possess to facilitate

developers and operating systems in future versions of the MPSoC. The list en-

45

compasses a wide range of requirements, including support for 32-bit architectures
with MPU, efficient management of interrupts (PLIC & CLINT(s)), provision of
atomic instructions, standard embedded smclic (CLIC) compliant with RISC-V,
and advanced RISC-V ACLINT, among other critical features.

In conclusion, the present study can contribute to exploring the potential of

porting Tock on future SoC-Hub projects.

46

References

1]

=

Bradford Campbell Amit Levy et al. “Multiprogramming a 64 kB Computer
Safely and Efficiently”. In: Multiprogramming a 64 kB Computer Safely and
FEfficiently (2017). URL: https://tockos . org/assets/papers/tock-
sosp2017.pdf.

Rust Analyzer. Rust Analyzer. URL: https://rust-analyzer.github.io/.

System on Chip Research Group. kactus2. URL: https://research.tuni.
fi/system-on-chip/tools/.

System on Chip Research Group. kactus2. URL: https://github . com/
kactus2/kactus2dev.

Clippy. Clippy Documentation. URL: https : // doc . rust - lang . org /
clippy/.

Clippy. Clippy Lints. URL: https://doc.rust-lang.org/clippy/lints.
html.

JetBrains. Rust Analyzer. URL: https://www. jetbrains.com/help/fleet/

using-rust-analyzer.html.
lowrisc. lowrisc. URL: https://lowrisc.org/.

Antti Nurmi. BootROM Development for a Novel Multiprocessor System-on-
Chip. 2022.

NVIDIA. NVDLA. URL: http://nvdla.org/.
OpenASIP. TTA. URL: http://openasip.org/.

OpenOCD. OpenOCD. URL: https://openocd . org/doc/pdf /openocd.
pdf.

OpenTitan. OpenTitan. URL: https://opentitan.org/book/doc/introduction.

html.

Tock OS. Architecture Agnostic Tock. URL: https://github.com/tock/
tock/pull/962.

Tock OS. Architecture Agnostic Tock. URL: https://github.com/tock/
tock/pull/1113.

https://tockos.org/assets/papers/tock-sosp2017.pdf
https://tockos.org/assets/papers/tock-sosp2017.pdf
https://rust-analyzer.github.io/
https://research.tuni.fi/system-on-chip/tools/
https://research.tuni.fi/system-on-chip/tools/
https://github.com/kactus2/kactus2dev
https://github.com/kactus2/kactus2dev
https://doc.rust-lang.org/clippy/
https://doc.rust-lang.org/clippy/
https://doc.rust-lang.org/clippy/lints.html
https://doc.rust-lang.org/clippy/lints.html
https://www.jetbrains.com/help/fleet/using-rust-analyzer.html
https://www.jetbrains.com/help/fleet/using-rust-analyzer.html
https://lowrisc.org/
http://nvdla.org/
http://openasip.org/
https://openocd.org/doc/pdf/openocd.pdf
https://openocd.org/doc/pdf/openocd.pdf
https://opentitan.org/book/doc/introduction.html
https://opentitan.org/book/doc/introduction.html
https://github.com/tock/tock/pull/962
https://github.com/tock/tock/pull/962
https://github.com/tock/tock/pull/1113
https://github.com/tock/tock/pull/1113

[16]

[17]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

47

Tock OS. Architecture Agnostic Tock. URL: https://github.com/tock/
tock/pull/1115.

Tock OS. Architecture Agnostic Tock. URL: https://github. com/tock/
tock/pull/1159.

Tock OS. RISC-V 6/ bit support. URL: https://github.com/tock/tock/
issues/2332.

Tock OS. “The Tock Book. (English)”. In: (). DOI: https://book.tockos.
org/getting started.

Tock OS. Tock 1.0. URL: https://github.com/tock/tock/releases/tag/
release-1.0-2018-02.

Tock OS. Tock 1.3. URL: https://github.com/tock/tock/releases/tag/
release-1.3.

Tock OS. Tock 1.5. URL: https://github.com/tock/tock/releases/tag/

release-1.5.
Tock OS. Tock 1.5. URL: https://github.com/tock/tock/pull/1338.

Tock OS. Tock 2.0. URL: https://github.com/tock/tock/releases/tag/

release-2.0.

Tock OS. “Tock OS porting guide . (English)”. In: (). DOL: https://github.
com/tock/tock/blob/master/doc/Porting.md.

Tock OS. Tock Repository. URL: https://github.com/tock/tock.

Tock OS. “Tock Supported Architectures. (English)”. In: (). DOI: https:
//github.com/tock/tock/tree/master/arch.

Tock OS. “Tock Supported Boards. (English)”. In: (). DOI: https://github.

com/tock/tock/tree/master/boards.
Tock OS. TockLoader. URL: https://github.com/tock/tockloader.

PULP. “Pulp Platform Implementation”. In: (). DOI: https://pulp-platform.
org/implementation.html.

Alexandru Radovici et al. “Embedded Systems Software Development”. In:
Getting Started with Secure Embedded Systems: Developing IoT Systems for
micro: bit and Raspberry Pi Pico Using Rust and Tock (2022), pp. 1-521.

https://github.com/tock/tock/pull/1115
https://github.com/tock/tock/pull/1115
https://github.com/tock/tock/pull/1159
https://github.com/tock/tock/pull/1159
https://github.com/tock/tock/issues/2332
https://github.com/tock/tock/issues/2332
https://doi.org/https://book.tockos.org/getting_started
https://doi.org/https://book.tockos.org/getting_started
https://github.com/tock/tock/releases/tag/release-1.0-2018-02
https://github.com/tock/tock/releases/tag/release-1.0-2018-02
https://github.com/tock/tock/releases/tag/release-1.3
https://github.com/tock/tock/releases/tag/release-1.3
https://github.com/tock/tock/releases/tag/release-1.5
https://github.com/tock/tock/releases/tag/release-1.5
https://github.com/tock/tock/pull/1338
https://github.com/tock/tock/releases/tag/release-2.0
https://github.com/tock/tock/releases/tag/release-2.0
https://doi.org/https://github.com/tock/tock/blob/master/doc/Porting.md
https://doi.org/https://github.com/tock/tock/blob/master/doc/Porting.md
https://github.com/tock/tock
https://doi.org/https://github.com/tock/tock/tree/master/arch
https://doi.org/https://github.com/tock/tock/tree/master/arch
https://doi.org/https://github.com/tock/tock/tree/master/boards
https://doi.org/https://github.com/tock/tock/tree/master/boards
https://github.com/tock/tockloader
https://doi.org/https://pulp-platform.org/implementation.html
https://doi.org/https://pulp-platform.org/implementation.html

48

Rust. Packages and Crates. URL: https://doc.rust-1lang. org/book/
ch07-01-packages-and-crates.html.

Rust. Rust Traits. URL: https://doc.rust-1lang.org/book/ch10-02-
traits.html.

Rust. The Cargo Book. URL: https://doc.rust-lang.org/cargo/guide/

why-cargo-exists.html.
rustfmt. rustfmt. URL: https://github.com/rust-lang/rustfmt.
svd2rust. svd2rust. URL: https://docs.rs/svd2rust/latest/svd2rust/.

SoC Hub Tampere. Ecosystem for Finnish System-on-Chip design and co-
creation. URL: https://sochub.fi/.

Rust Embedded Terminology. PAC. URL: https://docs.rust-embedded.

org/discovery/microbit/04-meet-your-hardware/terminology.html.

https://doc.rust-lang.org/book/ch07-01-packages-and-crates.html
https://doc.rust-lang.org/book/ch07-01-packages-and-crates.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/cargo/guide/why-cargo-exists.html
https://doc.rust-lang.org/cargo/guide/why-cargo-exists.html
https://github.com/rust-lang/rustfmt
https://docs.rs/svd2rust/latest/svd2rust/
https://sochub.fi/
https://docs.rust-embedded.org/discovery/microbit/04-meet-your-hardware/terminology.html
https://docs.rust-embedded.org/discovery/microbit/04-meet-your-hardware/terminology.html

	Abstract
	Preface
	List of Figures
	List of Programs
	List of Tables

	Introduction
	Tock System Architecture
	User Space
	Kernel
	Hardware Drivers
	Capsules
	Other security measures

	Tock Project Structure
	Tock repository
	The Tock repository structure
	Development Environment Setup

	Setting up a custom Tock project
	Crate Modifications
	arch crate
	chip crate
	board crate
	Component creation
	Board Support
	Board Cargo.toml, build.rs
	Board Makefile
	Board README

	Tockloader
	Adding a Platform to Tock Repository
	Related work
	RISC-V
	Tock Development status

	Ballast Architecture
	PULP-platform
	PULPissimo
	Ibex-core
	System Control CPU
	Ballast Toolchain
	Cargo
	Rust-clippy
	Rust-analyzer
	Rustfmt
	svd2rust
	Kactus2
	OpenOCD

	Feasibility of porting
	Test setup

	Results
	Future work

	Conclusions
	References

