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ABSTRACT

Charitha Raghavaraju: Enhancing Domain-Specific Automated Audio Captioning: A Study on
Adaptation Techniques and Transfer Learning
Master of Science Thesis
Tampere University
Master’s in Signal Processing and Machine Learning
December 2023

Automated audio captioning is a challenging cross-modal task that takes an audio sample as
input to analyze it and generate its caption in natural language as output. The existing datasets
for audio captioning such as AudioCaps and Clotho encompass a diverse range of domains, with
current proposed systems primarily focusing on generic audio captioning. This thesis delves into
the adaptation of generic audio captioning systems to domain-specific contexts, simultaneously
aiming to enhance generic audio captioning performance. The adaptation of the generic mod-
els to specific domains has been explored using two different techniques: complete fine-tuning
of neural model layers and layer-wise fine-tuning within transformers. The process involves ini-
tial training with a generic captioning setup, followed by adaptation using domain-specific training
data. In generic captioning, the process for training starts with training the model on the Audio-
Caps dataset followed by fine-tuning it using the Clotho dataset. This is accomplished through
the utilization of a transformer-based architecture, which integrates a patchout fast spectrogram
transformer (PaSST) for audio embeddings and a BART transformer. Word embeddings are gen-
erated using a byte-pair encoding (BPE) tokenizer tailored to the training datasets’ unique words,
aligning the vocabulary with the generic captioning task. Experimental adaptation mainly focuses
on audio clips related to animals and vehicles. The results demonstrate notable improvements in
the performance of the generic and domain adaptation systems. Generic captioning has demon-
strated an improvement in SPIDEr scores, increasing from 0.291 during fine-tuning to 0.301 with
layer-wise fine-tuning. Specifically, we observed a notable increase in SPIDEr scores, from 0.315
to 0.323 for animal-related audio clips and from 0.298 to 0.308 for vehicle-related audio clips.

Keywords: Automated audio captioning, transformer models, Clotho dataset, domain adaptation.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

Captioning involves the generation of text-based descriptions through the analysis of input

from any modality in a specific format. This input may take the form of audio (audio cap-

tioning, e.g., [1]), image (image captioning, e.g., [2]), or video (video captioning, e.g., [3])

content. Although captioning in image and video modalities has progressed significantly,

the domain of audio captioning remains relatively less explored. In this thesis, we’re div-

ing deep into audio captioning, also referred to as automated audio captioning (AAC). It

merges the concepts of natural language processing (NLP) and audio processing, which

is a multi-modal task that blends the understanding of sound and language.

Automated audio captioning can be utilized in various scenarios, such as enhancing ac-

cessibility for individuals with hearing abilities, contributing to security surveillance in in-

novative city environments, facilitating efficient audio organization through indexing, etc.

A basic AAC system is shown in Figure 1.1. Generating a caption in the natural language

requires an advanced understanding of the input audio signal. For instance, it requires the

ability to comprehend distinct sound events, discern their characteristics, and accurately

capture the spatiotemporal associations among multiple sound sources. An example of a

produced caption for an audio sample that has been given is "A woman sings while birds

chirp and baby coos".

AAC System A person is walkingin the woods, whilebirds are chirping.

Audio Caption

Figure 1.1. Fundamental visualization of an automated audio captioning system.

The research on AAC is mainly driven by deep neural networks (DNNs) and recent ad-

vancements in machine learning such as Transformers [4]. A sequence of audio samples

is passed through the network that outputs the word embeddings in a sequence as a

caption. In general, audio is processed to extract log-mel spectrogram features, and

words are tokenized into word embeddings. The captioning system relies on the Clotho

dataset [5]; however, its limited size may not comprehensively capture all real-life sce-

narios. To address this constraint, the largest available AAC dataset, AudioCaps [6] is
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utilized. These datasets contain audio and captions related to various sets of domains.

The captions in the current open datasets commonly cover a range of domains, such as

weather conditions, geographical locations, animal vocalizations, and human behavior.

Automated audio captioning systems that have been proposed so far are based on generic

captioning. It means that the systems are trained on generic datasets, that contain a di-

verse range of domains. In the context of applications such as traffic monitoring and

detection of suspicious activities in parking lots, the use of a generic AAC model can cre-

ate undue complexity. The incorporation of numerous domains within the model, when

addressing the tasks specific to the domain of vehicles or traffic, can lead to a state of

confusion and reduced accuracy. Therefore, it is essential to adapt the AAC system to

match the specific domain it’s being used in.

The motivation for domain adaptation of generic AAC lies in the need for improved ac-

curacy and reduced complexity when focusing on domain-specific tasks. For domain

adaptation, we choose a model that bases itself on a sequence-to-sequence architecture,

formed by a Transformer encoder and Transformer decoder with additional improvements

that include a pre-trained model for extracting audio embeddings. Domain adaptation is

achieved through two techniques: layer-wise fine-tuning and transfer learning. Both tech-

niques use a generic dataset to train the model initially and subsequently domain-specific

dataset is utilized to fine-tune the model. In layer-wise fine-tuning, experiments are done

by freezing different layers and fine-tuning the weights specific to a domain.

In this thesis, our main objective is to address the domain adaptation of generic audio

captioning systems and overcome the data scarcity issue of Clotho by experimenting with

different techniques of transfer learning. The system uses a transformer-based architec-

ture that employs a patchout fast spectrogram transformer (PaSST) for audio embeddings

and a BART transformer. For word embeddings, we utilize a byte-pair encoding (BPE) to-

kenizer trained on unique words from the training datasets to align the vocabulary with the

generic captioning task. In the experiments, we adapt the generic system to work with

audio clips such as animal or vehicle-related sounds. In addition to that, we also exper-

iment with various transfer learning and fine-tuning techniques along with three different

tokenizers.

1.1 Structure of the thesis

The remainder of this thesis is organized as follows: Chapter 2 presents a concise

overview of the essential theoretical concepts employed in this study. Chapter 3 is dedi-

cated to elucidating the proposed system and its comprehensive implementation. Chapter

4 offers a detailed account of the experiments, their evaluation, and the results derived

from the preceding chapter. Lastly, Chapter 5 outlines the thesis’s conclusion and poten-

tial avenues for future research.
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2. THEORETICAL BACKGROUND

This chapter gives a comprehensive review of fundamental concepts in machine learning,

audio processing, and natural language processing. Section 2.1 discusses the concepts

of audio signal processing used in this thesis briefly. Section 2.2 delves into machine

learning principles, while Sections 2.4 and 2.3 introduce the concepts associated with

sequence-to-sequence models for captioning and natural language processing, respec-

tively. Additionally, Sections 2.5 and 2.6 comprehensively explore audio captioning and

domain adaptation, offering valuable insights into these specific areas.

2.1 Audio processing

In this thesis, pre-processing involved the application of audio signal processing algo-

rithms especially, extracting audio features using mel-spectrogram from the audio input.

The concepts required to understand the mel-spectrogram such as short-time Fourier

transform (STFT) and mel scale are briefly presented in Sections 2.1.1 and 2.1.2, re-

spectively. Section 2.1.3 provides a detailed discussion on the mel-spectrogram.

2.1.1 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a mathematical approach for analyzing a sig-

nal’s time-varying frequency content. It depicts how a signal’s frequency components

vary over small, overlapping time intervals. The main idea of STFT is to decompose a

signal into its individual frequency components as they change over time. This is done

by splitting the signal into small time frames, performing the Fourier transform on each

frame, and then stacking the results to generate a time-frequency representation.

The computation of the STFT varies for continuous-time and discrete signals. In practical

scenarios, we deal with discrete signals, and therefore, we utilize the discrete form of

STFT. For a given discrete signal denoted as x[n], the computation of discrete STFT is

as follows:

  \label {eq:ann} X[m, \omega ] = \sum _{n=-\infty }^{\infty } x[n]\omega [n-m] e^{-j \omega n} 




 (2.1)
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where X[m,ω] represents the STFT of the signal at the frame m and frequency ω, x[n] is

the discrete signal, ω[n−m] is the discrete window function, ω is the angular frequency.

Some of the common window functions include the Hamming, Hanning, and Gaussian

windows. The balance that exists between frequency and time resolution is determined

by this window function. Figure 2.1 clearly shows how STFT can effectively capture both

the frequency and the corresponding time in the signal.

Figure 2.1. (Left) Time-domain signal of an audio sample from the Clotho dataset.
(Right) STFT of the corresponding audio sample.

2.1.2 Mel Scale

The perception of sound frequencies by the human auditory system is not linear. In

reality, the ability to discern between different frequencies gets less sensitive at higher

frequencies and grows more sensitive at lower frequencies. For example, we can readily

distinguish a variation in pitch between 1000 and 1500 Hz, but distinguishing the differ-

ence between 5000 and 5500 Hz becomes quite challenging, despite the fact that the

frequency gap is the same. This phenomenon demonstrates that the perception of pitch

follows a linear pattern at lower frequencies and a logarithmic pattern at higher frequen-

cies.

To overcome this apparent non-linearity, the "mel frequency scale" was developed. This

scale has been designed to make equal pitch intervals appear to be equally far from one

another. At lower frequencies, the Mel frequency scale produces densely packed bands;

at higher frequencies, the bands become more widely dispersed, as seen in Figure 2.2.

This method provides a more precise representation of a signal, which is consistent with

how humans hear sound.
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Figure 2.2. The x-axis represents frequency in the Hz scale, while the y-axis represents
the associated mel frequency scale.

The following formula is used to convert conventional Hertz (Hz) frequency to the mel

frequency scale:

  \label {eq:hz_to_mel} f_{mel} = 1127\hspace {0.1cm} log_e(1 + f/700),       (2.2)

Where the variable f represents the frequency in Hertz (Hz), and fmel corresponds to the

mel frequency.

2.1.3 Mel Spectrogram

The mel spectrogram of an audio signal is generated by calculating the power spectro-

gram, followed by a conversion of the frequencies within this power spectrogram to the

mel frequency scale. Initially, a mel filter bank is constructed by partitioning the entire

frequency range into a fixed number of mel frequency bins, usually denoted by "nmels"

(typically set to 64 or 128). These frequency bins are evenly spaced along the mel scale.

The power spectrogram is generated by squaring the absolute value of the STFT. This

power spectrogram is then passed through the mel filter bank, where the output from

each mel filter is summed and combined to produce the mel spectrogram of the audio

input. The mel spectrogram of an audio signal is shown in Figure 2.3.
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Figure 2.3. Mel spectrogram of a sample audio signal containing walking steps on pave-
ment.

2.2 Machine Learning

Machine learning, a subset of artificial intelligence (AI), is dedicated to developing models

and algorithms that empower computers to understand and make decisions or predictions

based on data. Unlike traditional programming where tasks are explicitly defined, machine

learning systems leverage data to identify patterns, generalize from examples, and en-

hance their performance through experience. Machine learning has a broad range of ap-

plications, from speech and image recognition to autonomous vehicles, natural language

processing, and recommendation systems, and it plays a vital role in solving complex,

data-driven problems.

Machine learning incorporates a range of techniques, including reinforcement learning

(learning through interactions with an environment), unsupervised learning (identifying

patterns in unlabeled data), and supervised learning (learning from labeled data) [7].

They are utilized in distinct use cases and applications. Supervised learning is used in

applications that already have a target or labeled data i.e., automated audio captioning

[1], image classification [8], sentiment analysis [9] etc. Clustering [10], anomaly detection

[11], image compression [12] falls under unsupervised learning. Reinforcement learning

is used for example, game playing [13], autonomous vehicles [14] etc.

In machine learning, multiple techniques can be used to train the systems that are cus-

tomized to the unique requirements and features of the dataset. These techniques in-

clude unsupervised learning, supervised learning, self-supervised learning, and semi-

supervised learning. In this work, we utilize supervised learning which is explained in

2.2.1. In the subsequent sections, we focus on providing a comprehensive introduction to

fundamental machine learning algorithms that are the basis for this thesis.
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2.2.1 Supervised Learning

Supervised learning is a machine learning approach through which the algorithm learns

to interpret labeled input data into output data. To train a mapping or function that can

produce precise predictions or classifications when given either fresh or unknown data is

the aim of supervised learning.

In a supervised learning approach, the algorithm is provided with a training dataset con-

sisting of input-output pairs, that can be denoted as (x1, y1), (x2, y2), (x3, y3), ..., (xn, yn).

Here, x signifies the data given as input, y is the corresponding ground truth or target,

and the total number of input data points is represented as n. To give an instance, in

a dataset for forecasting housing prices, the input data would include features such as

square footage, number of bedrooms, and so on, while the intended outputs would be the

matching sale prices. Supervised learning is an effective and commonly used machine

learning approach, but it necessitates a large quantity of labeled training data and may

not be suitable for tasks where obtaining labeled data is challenging or costly.

2.2.2 Artificial Neural Networks

Artificial neural networks (ANNs), sometimes known as neural networks for short, were

developed by the human brain’s initial models of processing sensory data [15]. Each

neuron is considered a computational unit that performs a simple task based on the given

input. ANNs can be applied for the classification and regression of continuous target

variables. The fundamental building block of any ANN contains a single neuron, where

every input x = [x0, x1, x2, .., xn−1] to the neuron has an associated weight w = [w0, w1,

w2, .., wn−1]T that alters the strength of the input. The output y of a neuron is formulated

as

  \label {eq:ann} y = f((\sum _{i=1}^{n-1} w_i x_i) + b) = f(wx + b) 



      (2.3)

where b is a bias and f() is an activation function. Bias is a learnable parameter that

allows neurons to introduce a shift or offset in their activation. It enables the model to

find complex patterns and make accurate predictions. An activation function is a math-

ematical function that determines the output of a neuron based on the weighted sum of

inputs. The activation function is often a logistic function that converts the output to a

number between 0 and 1. It enables the neuron to learn non-linear relations between the

input features. Common activation functions include rectified linear unit (ReLU), sigmoid,

hyperbolic tangent (tanh), and softmax [16] functions that are explained in Section 2.2.4.
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Figure 2.4 provides a visual depiction of an artificial neuron, aligning with the mathemati-

cal expression presented in Equation 2.3.

∑ f()

x1

x2

xn-1

w1

w2

wn-1

y…

b

Figure 2.4. An image representing an artificial neuron having n inputs.

An artificial neural network (ANN) is built by layering a large number of artificial neu-

rons. The preceding layer’s outputs serve as inputs for each neuron in the subsequent

layer in this architecture. The parameters of an artificial neural network (ANN), which are

commonly denoted as Θ, are composed of the biases and weights corresponding to the

neurons inside the network. Three layers make up a neural network in general: an input

layer, either one or several hidden layers, and the output layer. The input layer of each

neuron points to input features which are passed to hidden layers where the non-linearity

is introduced to learn complex relationships. The configuration of the output layer in an

artificial neural network, including the number of neurons and the choice of activation

function, is determined by the nature of the task at hand. In binary classification, for ex-

ample, it is typical to have only one neuron in the output stage with an activation function

called a sigmoid. A general representation of ANN is visualized in Figure 2.5.

x1

x2

h1

h2

h3

Input
layer

Hidden
layer

Output
layer

y2

y1

Figure 2.5. A graphical illustration of the artificial neural network having two data points
in the input layer, three nodes in the hidden layer of the network, and two nodes in the
final layer. Each node in the hidden and output layer has an associated activation function
f() and biases b and each edge has an associated weight w.
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A neural network in which knowledge flows in a unidirectional manner, moving to the out-

put layer from the input layer without any feedback loops, is referred to as a feed-forward

neural network (FFN). Extending the concept of feed-forward networks, deep neural net-

works (DNNs) are characterized by their multiple hidden layers. An instance of a deep

neural network is a convolutional neural network (CNN) employed in image classification.

Such networks incorporate alternative designs that modify neural connections to suit spe-

cific machine-learning tasks. This is referred to as introducing an inductive bias into the

model [17].

2.2.3 Training Neural Networks

To train a network, ANNs employ a learning process [18]. The learning is classified into

two important categories such as unsupervised and supervised learning. This section

explains how to train a neural network using supervised learning.

Input data
Machine learning 

model (ANN)
Predicted 

output

Ground 
truth

Loss 
function

Supervised learning

Er
ro

r 
va

lu
e

Weight update (𝛩)

xi
yi

ŷi

LossXE

Figure 2.6. A visualization of supervised learning and the stages involved in training a
machine learning model (ANN).

Figure 2.6 illustrates the various stages involved in supervised learning. In the context of

training a neural network using a supervised learning algorithm, the model’s parameters

Θ are initially assigned random weights. The input xi is fed into the model and processed

through all the network’s layers, ultimately generating an output prediction denoted as ŷi.

This initial training phase is referred to as forward propagation. To assess the model’s

performance, a loss function L is employed. It measures the dissimilarity (error) between

the ground truth label yi and the predicted output ŷi. Examples of commonly used loss

functions include cross-entropy (XE) loss, that can be often used for classification tasks

and is defined as follows:

  \label {eq:xe} Loss_{XE} = -\sum _{i=1}^{n-1} y_i log(\hat {y}_i)  



 (2.4)
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and mean square error (MSE) for regression is expressed as

  \label {eq:mse} Loss_{MSE} = \frac {1}{n} \sum _{i=1}^{n-1} (y_i - \hat {y}_i)^2 







 
 (2.5)

where yi is the ground truth, and ŷi is the predicted output.

The primary objective during the training process is to find the appropriate parameter

values for the model so that the difference between the predicted output and the ac-

tual ground truth is minimized. To achieve this, we calculate an error value using a loss

function, which guides in optimizing the neural network’s parameter values Θ through

gradient descent techniques. This adjustment process is commonly referred to as back-

propagation [18]. The weights for any input xi in the parameter set Θ are updated as

  \label {eq:weight_update} \Theta ' = \Theta - \lambda \triangledown _\Theta L     (2.6)

where λ is the learning rate.

These processes are repeated across multiple epochs, encompassing all the data points

until the model attains its minimal loss. An epoch in neural network training signifies a

complete iteration through the entire training dataset, during which the model’s parame-

ters are adjusted. The model with the lowest loss is saved and subsequently utilized for

evaluation and real-time applications.

One of the key challenges in training models is the issue of over-fitting, where the model

becomes too specialized in learning from the training data and struggles to generalize to

real-world data. To address this problem, regularization techniques such as dropout and

early stopping are employed. Dropout involves randomly deactivating a subset of neurons

during each training step, which mitigates over-fitting by preventing inter-dependencies

among neurons [19]. On the other hand, early stopping involves terminating the training

process when there is no further improvement in validation metrics.
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2.2.4 Activation Functions

Neural networks consist of layers of neurons that process the input to extract features and

produce an output. These layers in the network such as convolutional networks behave

as a linear model, limiting its capacity to represent intricate patterns in the data. To enable

the neural network to gain knowledge of complicated and non-linear patterns, activation

functions are introduced to scale the outputs of each layer non-linearly and pass them on

to the next layer.

Activation functions used in this thesis for developing the model have been discussed in

detail in this section. Specifically, the softmax activation function along with the rectified

linear unit (ReLU) are explained.

Rectified Linear Unit

5 4 3 2 1 0 1 2 3 4 5
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Figure 2.7. Activation function ReLU.

Rectified linear unit otherwise known as ReLU is one of the popular activation functions

in neural networks. It is mathematically represented as

  f(x) = \begin {cases} x & x > 0 \\ 0 & \text {otherwise.} \end {cases} 

  


(2.7)

As shown in Figure 2.7, the output of the activation is the same as the input if it is positive,

and the output is 0 in other cases. ReLU does not impose an upper bound on its output

values for positive inputs, thereby avoiding the vanishing gradient problem commonly

associated with other activation functions.
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Softmax Activation Function

The softmax activation function is commonly employed as the output layer in neural net-

works for tasks involving multi-class classification. For an input vector [z1, z2, .., zN ], con-

taining N real numbers, it transforms the vector into a probability distribution by exponen-

tiating its elements and normalizing them, ensuring that the sum of the resulting probabil-

ities equals 1. The softmax function is mathematically represented as

  softmax(z_i) = \frac {e^{z_i}}{\sum _{j=1}^{N} e^{z_j} } \hspace {0.7cm} z_i \in \mathbb {R}. 




   (2.8)

It scales the values generated by the final classification layer, creating a probability dis-

tribution for the predicted class. The index corresponding to the highest probability in the

output of the softmax function is selected as the predicted class.

2.2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep learning architectures primarily

used for tasks involving image analysis and recognition. CNNs are first introduced in [20]

for the purpose of hand-written zip code recognition. The term "convolutional neural net-

work" signifies that the network utilizes a mathematical operation known as convolution.

Mathematically, convolution between an input x and a learnable filter k is defined as

  \label {eq:cnn} s(t) = (x * k)(t) = \sum _{i=-\infty }^{\infty } x(a)k(t-a)     




  (2.9)

where t is the time index which takes only integers. In machine-learning applications, the

input to the network is multi-dimensional, and the kernel usually is a multi-dimensional

array. Extending the above equation to the multi-dimensional case, for instance, a two-

dimensional image X with a kernel K as

  \label {eq:cnn} S(i,j) = (X * K)(i,j) = \sum _{m=-\infty }^{\infty } \sum _{n=-\infty }^{\infty } X(m,n)K(i-m, j-n)      







    (2.10)

Many machine learning models, including convolutional neural networks (CNNs), often

implement a mathematical operation that is essentially equivalent to convolution but is

referred to as cross-correlation. It is represented as

  \label {eq:cnn} S(i,j) = (X * K)(i,j) = \sum _{m=-\infty }^{\infty } \sum _{n=-\infty }^{\infty } X(i+m, j+n)K(m, n)      







    (2.11)
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where the output at position (i, j) in the feature map is represented by the symbol S(i, j).

The visualization of the convolution or cross-correlation mechanism is depicted in Figure

2.8.

1 2 3

4 5 6

7 8 9

1 2 1

0 1 0

1 2 1

1*1+2*2+3*1+4*0+5*
1+6*0+7*1+8*2+9*1

45* = =

0 1 0 0 1

1 0 1 1 0

0 1 0 0 0

1 1 0 1 0

0 0 0 1 1

1 2 1

0 1 0

1 2 1

*

4 3 2

6 5 5

3 2 4

=

U

V S

1)

2)

1 0 1 1 0 1 2 1* 2 3 3=

u v s3)

Figure 2.8. Illustration of the cross-correlation involving a sliding window operation. Im-
age 1 showcases a two-dimensional case with singular multiplication and summation op-
eration using a 3x3 kernel. The process of cross-correlation between an input that is
two-dimensional and a two-dimensional kernel is depicted in Image 2. A similar one-
dimensional instance is shown in Image 3. The colored squares in each scenario repre-
sent the places where the kernel is centered to calculate the same color result.

CNNs utilize these convolutional layers that contain multiple filters to capture different

features from the input image, resulting in multiple feature maps. Following each convo-

lutional layer are activation functions (ReLU) and pooling layers. Through downsampling,

pooling layers decrease the spatial dimensionality of feature maps. A common pooling

method called "max-pooling" [21] extracts the largest value from a local neighborhood.

The final layer typically has single or multiple fully connected layers that resemble ANNs

for high-level reasoning. Figure 2.9 shows the network configuration of a neural network

based on convolution (CNN).

The foundational CNN is primarily employed in computer vision [20] and relies on two-

dimensional convolution as its core operation. However, they are also used for one-

dimensional sequential data in [22], [23]. Using pre-trained models, CNNs may be opti-

mized for particular tasks or used as feature extractors in transfer learning.

Convolutional neural networks have been instrumental in driving progress in computer

vision systems [24], [25] and have seen widespread applications in the field of audio

processing [26].
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Figure 2.9. This diagram illustrates the typical architecture of a Convolutional Neural
Network, which commonly comprises a sequence of convolutional blocks, followed by
several fully connected layers.

2.2.6 Transformers

Transformers are a type of deep neural network model architecture that has a profound

impact on natural language processing (NLP) and machine learning tasks after its first

introduction in the paper "Attention is all you need" [4]. It is recognized as an essential

component for many state-of-the-art NLP models and has been effectively employed in

several computer vision tasks such as image classification [27], and audio processing

tasks like sound event detection [28] and audio captioning [29].

Unlike other sequence-to-sequence models such as recurrent neural networks (RNNs),

Transformers entirely rely on a novel architecture called attention mechanism. An atten-

tion function translates a set of pairs of keys and values and a query into an output, all

of which are vectors: keys, values, and the output [4]. The simple attention layer mech-

anism, the scaled-dot product has been depicted in Figure 2.10. This mechanism of

attention layer is mathematically formulated as

  \label {eq:attn} Attention(\mathbf {Q, K, V}) = softmax(\frac {\mathbf {QK^T}}{\sqrt {d_k}})\mathbf {V} ,  





 (2.12)
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Figure 2.10. Scaled dot product attention mechanism of the base Transformer. The
optional masking in the attention graph prevents the decoder’s self-attention from focusing
on future time steps.

where the input comprises of the feature matrices containing nq queries Q and values V

with dimensions, Q ∈ Rnq×dk , V ∈ Rnq×dv , and nk keys K with dimensions K ∈ Rnk×dk .

To calculate the similarity between the key and query, the query matrix and the key matrix

are multiplied. A higher degree of resemblance results in a higher value, and the other way

around. Subsequently, the result is processed using a softmax operator, as elaborated in

Section 2.2.4, in order to normalize the attention scores in the range of 0 to 1. The softmax

operation is specifically applied over the dimension corresponding to the sequence length

or query dimension, resulting in the generation of an attention map denoted as W . These

weights determine how much focus each position should have on the current position

during computation. The value vector and the attention weights are multiplied to calculate

the attention feature.

There are two types of attention mechanisms: self-attention and multi-head attention. In

self-attention and multi-head attention, the values, keys, and queries are all component

parts of the same sequence, but there is a distinction in how the sequences are used.

The mechanism is applied in parallel with different sets of parameters in multi-head at-

tention, enabling more complex relationships to be captured. However, in the sequence-
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to-sequence framework described in Section 2.4, encompassing both an encoder and a

decoder, cross-attention is implemented. During this process, queries are generated from

the decoder input, while values and keys are extracted from the encoder outputs at each

time step [4].

Scaled Dot-Product Attention

Linear Linear Linear

h

Concat

Linear

KQV

Multi-Head Attention

Figure 2.11. Multi-head attention. It involves multiple attention layers operating simulta-
neously in parallel.

In Transformers, the multi-head attention mechanism is employed. In this mechanism,

when using h attention heads, the keys, queries, and values are processed by h separate

attention mechanisms, each operating independently. The final result is usually obtained

by concatenating and projecting the outputs from all attention heads again using a linear

layer as depicted in Figure 2.11. It is represented mathematically as

  \begin {aligned} MultiHead(\mathbf {Q, K, V}) &= Concat(head_1, ..., head_h)\mathbf {W_O}, \\ head_i &= Attention(\mathbf {QW_i^Q}, \mathbf {KW_i^K}, \mathbf {VW_i^V}) \end {aligned}    

 





(2.13)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel

are the weight vectors of the projections, and dmodel refers to the dimension of the original

queries, keys, and values. The dimensionality of each head is reduced to dk = dv =
dmodel

h

to match the computational cost of full-dimensional single-head attention [4]. Further-

more, all the attention layers can be run parallel as they have different parameters.

Transformers are typically utilized in an encoder-decoder architecture, characterized by

key hyperparameters: the embedding size denoted as dmodel, the number of encoder and

decoder blocks represented as (Ne, Nd), and the dimension of inner layers referred to as
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Figure 2.12. The basic Transformer model’s architecture. The encoder is positioned on
the left block, while the decoder is positioned on the right block. Nx is the number of
encoder-decoder layers in the Transformer. The figure is sourced from [4].

dff . In the original Transformer architecture, the fundamental values are set as follows:

dmodel = 512, both Ne and Nd are 6, and dff = 2048. Figure 2.12 shows the Transformer

architecture in a detailed way.

Inputs and ground truth sequences are initially projected into vectors called embeddings

through a feed-forward neural network (FFN). Since the Transformer lacks any inherent

notion of sequence order, positional information must be added to the embeddings. This

is typically done by adding fixed positional encoding vectors to the input embeddings,

which contain information about the position of each token in the sequence. Positional

encodings can be approached in various ways, for instance, encodings can be learned
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[30] or as introduced in [31]. The encoder outputs are obtained by passing these extracted

positional embeddings through an encoder block that includes a feed-forward layer and a

multi-head attention mechanism.

The positional embeddings of the ground truth are passed through the decoder block

which contains an extra layer of masked multi-head attention along with multi-head atten-

tion and a feed-forward layer. Masked multi-head attention is a variant of the attention

mechanism used in transformers. It involves multiple attention heads that operate in par-

allel, each attending to distinct segments of the input sequence. The masking aspect

ensures that each position in the sequence can only attend to previous positions, pre-

venting information leakage from future tokens during training or generation.

2.3 Natural Language Processing

Natural language processing (NLP) is a facet of artificial intelligence (AI) that empowers

computers to comprehend, interpret, and generate human language. It performs tasks

such as text summarization, language translation, sentiment analysis, etc. In the thesis,

the datasets used to train contain a sequence of words in the natural language called

captions. So, it is critical to express these words in the form of vectors so that ma-

chine learning algorithms can interpret them. In the following sections, the fundamental

representation of words as vectors using one-hot encoding is explained. The byte-pair

encoding (BPE) tokenization utilized in the present work is briefly discussed in section

2.3.2.

2.3.1 Word Vectors

One of the simplest methods for representing words as vectors is through one-hot en-

coding. In machine learning models, it is especially useful for representing categorical

information as binary vectors, such as decision trees. Each class or category is repre-

sented as a unique binary vector, where all elements are assigned a value of 0 except for

the element corresponding to the category, which is set to 1. For instance, a categorical

word set contains X = {“bird”, “chirp”, “tree”}, it can be encoded as

‘bird’ = [1, 0, 0]

‘chirp’ = [0, 1, 0]

‘tree’ = [0, 0, 1]

However, one-hot encoding has two major limitations; high dimensionality and lack of se-

mantic information. One-hot encoding yields high dimensional vectors, where the dimen-

sion is equal to the vocabulary size. This can result in highly lengthy and sparse feature

spaces, particularly in languages with huge vocabularies such as English. Managing and

analyzing such extensive volumes of data can be computationally and memory-intensive.
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For example, if the above-mentioned word set has millions of words, it can be represented

as

‘bird’ = [1, 0, 0, ..., 0]

‘chirp’ = [0, 1, 0, ..., 0]

‘tree’ = [0, 0, 1, ..., 0]

One-hot encoded vectors are orthogonal to one another, which means they have no intrin-

sic similarity or meaning. As a result, cosine similarity and other similarity measurements

are always zero. This lack of semantic information makes it challenging for models to

capture relationships and meanings between words. From the above word set, the co-

sine similarity is the same between the vector pairs ‘bird’, ‘chirp’, and ‘bird’, ‘tree’. it can

be represented as

CosineSimilarity(‘bird’, ‘chirp’) = CosineSimilarity(‘bird’, ‘tree’) = 0

The aforementioned limitations have resulted in the development of alternative word rep-

resentations, such as word embeddings (e.g., Word2Vec [32], GloVe [33], and FastText

[34]), which try to solve both large dimensionality and semantic information challenges.

Word2Vec is a word embedding technique that is most commonly used in natural lan-

guage processing (NLP) and machine learning. It is designed to learn dense vector

representations (embeddings) of words from a large set of corpora to capture semantic

relationships between the words and has high cosine similarity. FastText is an extension

of Word2Vec as it is designed to handle the subword information.
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Figure 2.13. Continuous bag of words (CBOW) architecture. Using the context words
provided, it anticipates the target word.

Word2Vec and FastText both employ two techniques to represent words as vectors: con-

tinuous bag of words (CBOW) [32] and skip-gram model [35]. Within the CBOW model, a

neural network aims to forecast the target word based on its adjacent context words and

a defined context window. The ’context window’ parameter specifies how many words to

include as context on both sides of the target word. As an illustration, given the sentence
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’The dog is sleeping on the bed’, if the context words are ’dog’, ’is’, ’on’, and ’the’, then

CBOW tries to predict the target word ’sleeping’. Here, the context window is set to two.
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Figure 2.14. Skip-gram architecture. It predicts the surrounding context words based on
the given target word.

The skip-gram model is the vice-versa of the CBOW model, where the target word is given

and it predicts the context words. Using the aforementioned example, if the target word

’sleeping’ is given, skip-gram tries to predict the surrounding context words, ’dog’, ’is’, ’on’,

and ’the’. The techniques CBOW and skip-gram model architectures are shown in Fig-

ures 2.13 and 2.14, respectively. While CBOW is faster to train and works well on small

to medium datasets, skip-gram captures fine-grained semantic relationships and is pre-

ferred for larger datasets. Furthermore, FastText takes into account subword information

such as character n-grams to capture meaningful relationships for the out-of-vocabulary

(OOV) words. For instance, In the case of words like smaller, faster, and larger, FastText

recognizes that they share the common character n-gram (n = 2) "er" at the end of the

word.

2.3.2 Word Tokenization / Language Modelling

In this thesis, to encode the captions, byte-pair encoding (BPE) [36] is used. Byte-pair

encoding (BPE) is a data compression and text encoding algorithm used in various natural

language processing (NLP) tasks, including subword tokenization and text compression.

It is extensively used for handling languages and creating subword tokenizers for machine

translation and language modeling.

BPE was initially designed as a compression technique that combines common byte pairs

and denotes them with unused bytes [37]. It segments words into subwords, ranging from

as short as a single character to as long as an entire word. This segmentation is achieved

by iteratively merging frequently occurring adjacent characters or character sequences

(bi-grams) into new symbols, ultimately forming a subword vocabulary. It is crucial to



21

identify the ideal number of merges to achieve optimal performance. Vocabulary size can

also be predefined to limit the number of merges while training.

Suppose, we have a vocabulary set containing words, V = { ’old’, ’older’, ’lower’ }. A

special end token is added at the end of each word i.e., V = { ’old</w>’, ’older</w>’,

’lower</w>’ }. Initially, every character and the special token in the training set is consid-

ered a new token. So the basic vocabulary consists of individual characters: {’o’, ’l’, ’d’,

’w’, ’e’, ’r’, ’</w>’}. The most common adjacent characters (bi-grams and tri-grams) from

the corpus are ’er’, ’ol’, and ’old’, which can be merged and added to the vocabulary. This

process repeats for a few iterations to get a vocabulary set as {’old’, ’l’, ’o’, ’w’, ’er</w>’}.

This can be further used to tokenize the sentences into subwords.

Byte-pair encoding is an unsupervised learning technique that learns patterns and sub-

word representations of the text data. Other tokenization approaches, such as subword

regularization [38] and BPE-dropout [39], have been proposed to increase robustness.

The motivation to use BPE in this thesis is that it can handle morphologically complex

languages effectively and has the ability to adapt to the training corpus while also han-

dling out-of-vocabulary (OOV) words.

2.4 Sequence-to-Sequence Models for Captioning

Sequence-to-sequence (Seq2Seq) models are a type of neural network that was devel-

oped to process a sequence of data to generate an output sequence. In simple terms,

the input and output are both sequences. They find extensive application in natural lan-

guage processing tasks such as machine translation, speech recognition, and more. In

machine translation, both the source and target are textual sequences, whereas in au-

tomated audio processing, an audio sequence is taken in as an input and the output is

a textual representation. Sequence lengths in both tasks could vary not only across dif-

ferent input-output pairs but also within the same sample, emphasizing the necessity for

specific deep neural network designs capable of processing variable-length data.

The basic architecture of Seq2Seq models comprises two primary components, namely

the encoder and decoder, explained in the following sections 2.4.1 and 2.4.2 respectively.

This method does not try to encode a whole input statement into a single fixed-length

vector, which is the primary distinction between it and the conventional encoder-decoder.

Instead, an adaptive subset of these vectors is chosen once the input text has been

converted into a sequence of vectors [40].
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2.4.1 Encoder

In the encoder, the input sequences are processed and transformed into fixed-length

vector representations. It is often referred to as context vectors or embeddings. The in-

formation regarding the input sequence is captured in these embeddings, or vectors, that

are used to generate the output sequences. The encoder can be implemented through

the most popular deep neural networks such as recurrent neural networks (RNNs), long

short-term memory (LSTM), or gated recurrent units (GRUs). For each timestep t in the

input sequence, the mathematical representation of the hidden state of the encoder can

be expressed as:

  h_t = Encoder(x_t, h_{t-1})     (2.14)

where xt and ht represent the input and hidden state of the encoder, respectively, at

timestep t, and Encoder denotes the selected recurrent unit (RNN, LSTM, or GRU).

After T timesteps, the output of the last hidden state hT of the encoder serves as a

context vector c.

In recent times, to improve the performance of the models and address different types

of data, various encoder architectures have been used. Some of them are Transformers

and convolutional neural networks (CNNs). In particular, attention mechanisms like self-

attention and multi-head attention are employed as encoders to capture dependencies

between different parts of the input sequence. However, the encoder architectures are

selected depending on the task requirements.

2.4.2 Decoder

The context vector generated by the encoder is given as input to the decoder, thus gen-

erating the output sequence in an auto-regressive manner. In simple words, it generates

one element of the output sequence at each time step, conditioned on the previous ele-

ments and the context vector. RNNs and LSTM are often used as decoders to generate

the output sequence. The previously generated outputs and the context vector are pro-

vided as inputs to the decoder. The formulation of the decoder at each timestep t in the

output sequence is given as

  \begin {aligned} s_t &= Decoder(s_{t-1}, y_{t-1}, c) \\ y_t &= softmax(W_s s_t) \end {aligned}    

 
(2.15)

where st is the hidden state of the decoder at time step t, yt is the output (probability

distribution over the vocabulary) at time step t, yt−1 is the previously generated output,
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c is the context vector from the encoder, Ws is the output weight matrix, Decoder is the

decoder’s recurrent unit.

Seq2Seq models are trained by calculating the loss for each time step of the output and

then using back-propagation to update the model’s weights. During the training process, it

can be beneficial to provide the actual correct output from the previous time step as input

to the decoder rather than using the model’s own generated output from the previous

step. This technique, which can speed up training and stabilize learning, is referred to as

teacher forcing [41].

Several decoders other than LSTM and GRU have been used in recent times, depend-

ing on the specific task. Transformers and attention-based decoders have become quite

popular due to their strong performance in NLP tasks. At each decoding stage, an at-

tention mechanism allows the decoder to weigh the relevance of different sections of the

input sequence. Each element in the input sequence is given attention scores or weights,

indicating how much attention the decoder should give that element while generating the

following token.

When working with sequence-to-sequence models like the Transformer, two typical de-

coding methods used in sequence-generating tasks are greedy search and beam search.

These techniques determine the process by which the model, given an input sequence,

produces an output sequence. In a simple decoding algorithm like a greedy search al-

gorithm, the model chooses a token with the highest predicted probability as the next

element without considering future sequences. As it ignores the global context of the

sequence, it may lead to improper results.

Instead of only choosing the top-scoring token at each step, exploring multiple sequences

in parallel would be better for the global context. Beam search is one such sophisticated

decoding algorithm that keeps track of the fixed number (beam size) of candidate se-

quences. It considers the top-k tokens at each step and preserves the k most likely

sequences based on cumulative probabilities. This can be helpful in capturing long-range

dependencies and producing coherent output. In beam search, the beam size is a hyper-

parameter that may be adjusted depending on the specific task. Beam search frequently

incorporates length normalization as a standard step to minimize the issue of favoring

shorter sequences [42].
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2.5 Automated Audio Captioning

Automated audio captioning serves as a cross-modal task that bridges the gap between

audio signal processing and natural language processing. The aim of this project is to

provide a natural language written description, or caption, for a particular audio record-

ing [1]. Audio captions usually provide one-sentence summaries of the most common

audio occurrences and scenarios in the audio samples. The physical characteristics of

sound objects and the acoustic environment, as well as the spatial-temporal interactions

between audio occurrences and scenes, may all be included in these comprehensive de-

scriptions [43]. An example of a caption that describes an audio clip can be "children

yelling in the background and a voice complaining in the foreground at a car wash"1.

AAC systems generally employ the sequence-to-sequence model as a foundational frame-

work to generate captions for audio content. This model takes in a sequence of audio

frames as input to the encoder and predicts an output caption from the decoder as ex-

plained in Section 2.4. In the thesis, we use a Transformer as an encoder to get the

audio embeddings and a transformer-based neural network as a decoder to predict the

output. Either one-hot or vectorization techniques are utilized to encode the words. We

use a subword encoding technique i.e., byte-pair encoding (BPE) as mentioned in section

2.3.2.

2.6 Generic AAC and Domain Adaptation

All the automated audio captioning systems proposed so far have been focusing on de-

veloping a model for the generic dataset that contains a wide range of domains from

environment, and traffic to animal sound events. Instead of focusing on all the domains,

training the system with diverse audio content belonging to a specific domain can be valu-

able. For instance, in terms of real-time implementation of AAC systems in parking lots or

in traffic, training with diverse traffic or vehicle data is useful. Due to the inherent limitation

of data scarcity in a specific domain, it would be difficult to train a domain-specific model

which may result in poor results. Furthermore, generic AAC can create unnecessary

complexity due to a wide range of domains.

In order to solve this issue, we first train a general AAC system using generic captioning

datasets that includes material from a wide range of domains, and then adapt this system

to a domain-specific task. This is called domain adaptation. It can be achieved through

two machine learning techniques: transfer learning and layer-wise finetuning which are

explained in the following Sections 2.6.1 and 2.6.2 respectively.

1Caption is from the Clotho dataset.
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2.6.1 Transfer learning

A machine learning technique called transfer learning leverages a model that has been

developed on one task to be fine-tuned or modified for an alternate but associated task.

It is particularly beneficial in situations when the target job has limited data availability be-

cause it makes use of the information gained from the source task to enhance the target

task’s performance. The knowledge transfer can include feature patterns, representa-

tions, or learned parameters. New tasks can benefit from the use of pre-trained models

that have been trained on bigger datasets.

In this thesis, a pre-trained Transformer model is used as the encoder to extract the audio

embeddings. For enhancing the performance of the generic AAC, the system is trained

with the AudioCaps [6] dataset and then fine-tuned with the Clotho [5] dataset. While in

domain adaptation, the Clotho dataset is initially split into 2 sets containing vehicle data

and the rest of the data i.e., external data. The system is first trained with external data

and fine-tuned with the vehicle data to obtain a domain-specific model. This is explained

further in detail in Chapter 3.

2.6.2 Layer-wise Fine-Tuning

Layer-wise fine-tuning is a machine learning approach that involves fine-tuning a pre-

trained neural network model by modifying or updating individual layers or sections of

the model while allowing the remaining layers alone. The fine-tuning process has more

control and specialization since different layers capture different layers of abstraction and

domain-specific information. Several layer-wise fine-tuning techniques involve selective

updating, freezing layers, fine-tuning strategy, and so on.

In selective updating, a group of layers or some specific layers are chosen for fine-tuning

based on the experimental results and domain knowledge. While in freezing layers, the

layers that are not chosen for fine-tuning are "frozen," which means that during training,

their weights and parameters stay unchanged. This helps in preserving the knowledge

and features learned in earlier training stages. In the fine-tuning strategy, layers chosen

for fine-tuning are adjusted based on the target task’s requirements. This might involve

changing the learning rates, applying different optimization techniques, or making other

modifications to the layer’s architecture.

In this thesis, all the three above approaches of fine-tuning are utilized. In the encoder-

decoder architecture used, selective updating of specific layers of the encoder and freez-

ing the remaining layers has been experimented with. Along with that, while fine-tuning,

learning rates are changed. By selectively updating and freezing layers, the model has

retained valuable prior knowledge while specializing in the nuances of the new task.
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3. PROPOSED SYSTEM

In this chapter, we have provided a comprehensive explanation of the deep learning sys-

tem that was developed to implement the audio captioning system, along with insights

into the datasets utilized. The detailed discussion of the models employed for audio em-

bedding extraction, word processing, and the Transformer model’s implementation, has

been outlined in Section 3.1. Datasets in detail are explained in Section 3.2. In Section

3.3, how the model is trained with different strategies has been discussed for both generic

captioning and domain adaptation systems.

3.1 Model Architecture

A traditional sequence-to-sequence encoder-decoder architecture has been adopted to

implement this thesis. A baseline model automated audio captioning task1 proposed in

the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 challenge

is taken as a reference model for the automated audio captioning system. VGGish [44]

has been employed to extract audio features, while a Transformer serves as both the en-

coder and decoder. For acoustic scene classification, sound event recognition, and audio

tagging tasks, patchout fast spectrogram transformer (PaSST) based audio embeddings

were presented recently, which have shown considerable improvement in performance2.

As a result, we replaced the VGGish-based audio feature extractor in the baseline system

with a PaSST-based audio feature extractor. The input to the Transformer encoder con-

sists of PaSST audio embeddings, which it uses to extract encoded audio feature outputs.

In Transformers, specifically, auto-regressive decoders are used which generate output

sequences step by step, where each step relies on previously generated elements, mak-

ing it suitable for tasks like language translation and text generation. This auto-regressive

decoder takes the encoder’s output as input and generates a probability distribution over

the vocabulary. This vocabulary is constructed through training on the distinct words in

the datasets using a byte-pair encoding (BPE) trainer. The fundamental audio captioning

system has been illustrated in Figure 3.1.

1https://dcase.community/challenge2022/task-automatic-audio-captioning
2https://github.com/kkoutini/passt_hear21

https://dcase.community/challenge2022/task-automatic-audio-captioning
https://github.com/kkoutini/passt_hear21
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Figure 3.1. Overview of an automated audio captioning system.

3.1.1 Audio Embeddings

PaSST, the Patchout Fast Spectrogram Transformer, is employed for extracting audio

features from a provided audio input in all of the experiments. It is one of the backbone

models trained on the AudioSet [45] dataset and is initialized with the weights from the

vision transformer pre-trained on ImageNet. Similar to Vision Transformer (ViT) proposed

in [27], PaSST operates by extracting patches from the input audio spectrogram. The

transformer architecture of the PaSST is summarized in Figure 3.2.
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Figure 3.2. The architecture of Patchout Transformer. Detailed visualization of the audio
embedding extraction from the PaSST model is shown. The figure is adapted from [46].

Initially, the mel-spectrogram is extracted from the audio signal. The process is initiated

at the top-left corner of the figure by feeding the extracted audio spectrogram as the input

to the model. As detailed in the reference [27], in (1), the fixed-size patches are extracted

from the input audio spectrogram and are flattened to embed into a linear projection

embedding. In (2), positional encodings for both frequency and time are incorporated.

This simplifies the process of performing inference and fine-tuning pre-trained models for

downstream tasks with shorter audio durations.
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In step (3), Patchout is applied, where random patches are dropped out of the input

sequence, reducing the sequence length. When the transformer is being trained, it is

provided with this input sequence, which encourages the transformer to use an incom-

plete sequence to do the classification [46]. There are two types of Patchout: structured

and unstructured Patchout. The entire column or row of retrieved patches is discarded

after specific frequency bins or periods are selected in structured patchout. Unstructured

patchout is the most basic type of patchout, where the patches to be discarded are cho-

sen at random [46]. A classification token C is added to the patches at the end, and

for models based on Dataefficient Image Transformers (Deit) [47], a distillation token D

is added. In the thesis, we use unstructured Patchout, and only a classification token is

added.

Finally, in step (4), the sequence is flattened and passed through d self-attention blocks,

where d is the depth of the transformer. The output obtained from the transformer is sent

to the multi-layer perception (MLP) classifier to obtain the final audio embeddings.

The PaSST embedding model comprises various configurations, including scene embed-

dings and time-stamp embeddings. In the scene embedding setup, a singular embedding

is generated for a specific audio segment. Conversely, the timestamp embeddings setup

generates multiple embeddings without pooling them over time. In the experiments con-

ducted in this thesis, scene embeddings are employed.

To extract either the scene embeddings or time-stamp embeddings, PaSST utilizes var-

ious distinct modules for audio embedding extraction. In this thesis, specifically three

modules namely PaSST base, PaSST base2level, and PaSST base2levelmel are used to

extract audio embeddings. These three modules were chosen because of their state-

of-the-art performance on the FSD50K [48] dataset for the audio tagging task in the

HEAR213 challenge. The difference between these three modules lies in the dimensions

of the time-stamp embeddings extracted during the process. In the case of PaSST base,

the time-stamp embedding dimensions are set to 1295. However, for PaSST base2level,

the dimensions are doubled to 1295 × 2, i.e., it concatenates a longer window (160 ms

and 800ms), and for PaSST base2levelmel, the dimensions become 768 + 1295 × 2,

where a raw mel spectrogram is concatenated additionally [49]. The derivation of scene

embeddings involves computing the mean over the time-stamp embedding dimension

mentioned above, yielding a resultant dimensionality of 1295.

In this thesis, we use audio scene embeddings that are specifically obtained using the

PaSST base2levelmel4 module. These embeddings have a dimensionality of R1295×1,

with 1295 being the embedding dimension.

3https://neuralaudio.ai/hear.html
4https://github.com/kkoutini/passt_hear21

https://neuralaudio.ai/hear.html
https://github.com/kkoutini/passt_hear21
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3.1.2 BPE Tokenization and Vocabulary

A tokenizer is a natural language processing component that breaks down a text or se-

quence of text into smaller units, typically words, subwords, or tokens. These tokens are

easier to handle than raw text because they are segmented into meaningful subunits,

making it easier for machine learning models to understand and process them. In the

baseline model, bidirectional and auto-regressive transformers (BART) tokenizers have

been used to tokenize words. It is a tokenization method specifically designed for BART

model architecture, a transformer-based neural network developed by Facebook AI [50].

It is trained on a diverse corpus of content, including news articles, books, and websites.

A specific BART tokenizer named facebook/bart-base tokenizer is utilized which has a

vocabulary size of 50265 tokens.

In the thesis, we have experimented by extending the vocabulary of the BART tokenizer.

This is done by adding the unique words extracted from the Clotho dataset captions. In

some contexts, if a word or token related to audio captioning datasets is not present in

the language model or tokenizer, it might result in out-of-vocabulary (OOV) issues. It can

pose challenges to NLP tasks as the tokenizer cannot handle the OOV word or token.

To overcome this, a subword tokenization algorithm namely byte-pair encoding is utilized.

The BPE algorithm is briefly explained in Section 2.3.2 of Chapter 2.

To train the BPE tokenizer for the AAC task, the process involves several general steps,

including data pre-processing, vocabulary construction, subword tokenization using the

BPE algorithm, and model training. Data pre-processing entails tasks such as removing

punctuation, eliminating double spaces, and converting all characters to lowercase within

each sentence from the dataset captions. Furthermore, each caption has two unique

tokens inserted at the beginning and end: "<eos>" (end of sentence) and "<sos>" (start

of sentence).

Furthermore, all the distinct words present in the training split dataset are gathered, re-

sulting in 4,368 unique words for the Clotho dataset. For transfer learning purposes,

vocabularies from both AudioCaps and Clotho datasets are merged, resulting in a com-

bined vocabulary of 6,656 words. The tokenizer is then trained from scratch using these

unique words from the dataset corpus, along with any special tokens required. Each

token can be either a subword or an individual letter from the model vocabulary. The

training process is explained briefly in Section 2.3.2 of Chapter 2

The length of the vocabulary in this tokenizer varies, with 6,316 words for the Clotho

dataset and 8,989 words for the combined corpus of AudioCaps and Clotho.
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3.1.3 Transformer

A traditional sequence-to-sequence backbone model of bidirectional and auto-regressive

transformers is used for the experiments in this thesis. The basic visualization of BART is

illustrated in Figure 3.3. The implementation consists of a sequence-to-sequence model

that utilizes a left-to-right auto-regressive decoder and a bidirectional encoder over dis-

torted text [50]. There are n decoder and encoder layers within it. In the baseline system,

a base model of BART with n = 6 layers has been used. In the thesis, we experiment with

n = 4, 12 layers, with twelve attention heads and affine layers with 3072 hidden units.

Autoregressive 
Decoder

Bidirectional 
Encoder

<s> A B C D

A B C D E

A _ B _ E

Figure 3.3. The schematic illustration of BART. The encoder does not require alignment
with decoder outputs, enabling arbitrary noise transformations. In this case, the text has
been replaced by mask symbols, corrupting the page. A bidirectional model is utilized to
encode the corrupted text on the left, and an autoregressive decoder is then employed to
calculate the probability of the original document on the right [50]. The figure is adapted
from [50].

Audio embeddings from the PaSST model are passed as an input to the encoder of

BART, which gives the encoded audio outputs. Each block of the encoder consists of a

multi-head attention block and a feed-forward layer that outputs encoded 768-dimensional

audio features. Each decoder block additionally contains a masked multi-head attention

block along with a multi-head attention block and performs cross-attention across the

audio features that are encoded from the final hidden layer. It does not use the addi-

tional feed-forward network before word prediction as in Figure 2.12 of Chapter 2. The

auto-regressive decoder employs encoder outputs along with BPE-tokenized word em-

beddings. Each token within the word sequence is associated with a feature vector via

an embedding map and then forwarded to the decoder. In each layer of the decoder, at-

tention mechanisms are employed: self-attention considers previously generated tokens,

and cross-attention considers the entire encoder output sequence. Each decoder layer

within the transformer produces an output of a 768-dimensional embedding. The BART

for audio captioning is depicted in the following Figure 3.4.
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PaSST Encoder

Audio Input

BART DecoderBART Encoder

<s> A B C D

A B C D E

Figure 3.4. BART schematic illustration for automated audio captioning. An additional
PaSST encoder is used to extract audio embeddings and undergo training in the BART
model to generate a caption in an auto-regressive way.

Subsequently, a final layer, comprising a softmax activation function, produces probability

scores for each vocabulary item. The final output is determined through beam decoding

with a beam size of 4, which generates multiple probabilities and selects the most favor-

able one as the ultimate output. During training, standard cross-entropy loss is utilized to

minimize the training loss.

3.2 Datasets

For all of the experiments in the thesis, two AAC datasets are utilized: Clotho (version

2)5 [5] and AudioCaps6 [6]. These datasets encompass a wide variety of generic audio

samples paired with diverse textual captions spanning various domains. For the domain

adaptation experiments, the dataset is sourced from the Clotho dataset, where the audio

samples specific to animal and vehicle domains are segregated based on the metadata

keywords.

3.2.1 AudioCaps

AudioCaps [6] is one of the easily available and largest datasets available for audio cap-

tioning tasks. It consists of 46, 000 audio samples comprising around 127 hours of data.

It is gathered through crowdsourcing on AudioSet [45] which is an audio tagging dataset

that contains audio and video samples from YouTube. The duration of each audio sample

is 10s.

5https://github.com/audio-captioning/clotho-dataset
6https://github.com/cdjkim/audiocaps

https://github.com/audio-captioning/clotho-dataset
https://github.com/cdjkim/audiocaps
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The dataset is divided into three splits: train, validation, and evaluation splits. Every au-

dio sample in the training split has one ground truth caption associated with it. On the

other hand, every file in the validation and evaluation sets has a set of 5 captions asso-

ciated with it. These captions are crowdsourced from Amazon Mechanical Turk (AMT).

The audio samples and their corresponding captions contain a diverse range of acoustic

environments and domains. These domains encompass nature, sports, music, and ev-

eryday life scenarios, making it a valuable and comprehensive resource for training and

evaluating captioning models.

3.2.2 Clotho

Clotho [5] serves as a significant benchmark dataset in the field of captioning research

and is designated for task 6 within the DCASE challenge. It comprises a total of 6972

audio samples with a total duration of approximately 43.6 hours. The data is sourced

from the online platform Freesound [51], and the audio clip durations range from 15 to 30

seconds.

The dataset has been divided into four splits: development, validation, evaluation, and

test. In this dataset, the development split comprises 3, 839 audio clips, with an equal

distribution of 1, 045 clips each in the validation and evaluation splits. Additionally, the

test data split consists of 1, 043 samples. Notably, each audio clip is manually annotated

by human annotators, and this annotation includes the creation of 5 captions for each clip.

The captions of the test split are not public and are not used for evaluation in the thesis.

The captions are also crowdsourced from AMT and have a length of 8 to 20 words per

caption.

For domain adaptation, the Clotho dataset is divided into two datasets: domain/target data

and external data. Initially, the insights about the domains covered in the whole dataset

are gathered through the statistical analysis of the keywords provided in the metadata

of the training dataset. For the experiments in the thesis, specifically two domains are

focused such as animals and vehicles.

By leveraging domain-specific keywords identified in the metadata, the dataset was parti-

tioned into animal-related and vehicle-related data. Initially, a keyword list is pre-processed

from the metadata, where terms associated with animals, such as ’bird’, ’dog’, and ’chirp,’

from the metadata are flagged as ’yes.’ Subsequently, files containing these positively

marked keywords were extracted from the complete Clotho dataset. Similarly, for the ve-

hicle data, metadata keywords were pre-processed, and keywords such as ’car,’ ’motor,’

and ’horn’ from the metadata were labeled as ’yes.’ Files containing these affirmative

keywords were then isolated from the overall Clotho dataset. This process efficiently

separates animal-related and vehicle-related data based on the specified keywords.
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The remaining files from the Clotho dataset serve as external data in the case of the

animal-specific dataset, and the same follows for the vehicle-specific domain. This divi-

sion enabled the creation of subsets of data specifically tailored to our intended domain.

In the animal-specific and vehicle-specific subsets, there were 721 and 114 audio clips

respectively for training and evaluation in the animal domain, and 827 and 115 audio clips

for training and evaluation in the vehicle domain, respectively.

3.3 Model Training

The proposed model serves a dual purpose, being employed for training both generic

captioning systems and adapting to specific domains (domain adaptation). Both of these

models take as input a 1295-dimensional audio embedding feature derived from the

Patchout Fast Spectrogram Transformer (PaSST). PaSST, in turn, processes a mono

audio file, meaning it deals with single-channel audio data sampled at 32 kHz. In the

following sections, the techniques applied to train the models for both of these distinct

systems are discussed in detail.

3.3.1 Generic Captioning

To train the proposed model for generic captioning, the entire Clotho dataset is utilized.

The model is trained using the development and validation splits of the Clotho data, and

its performance is evaluated using the evaluation split of the Clotho dataset. Various

configurations of the BART model have been tested: a base model (BART-base) with

n = 6, a large model (BART-large) with n = 12, and n = 4, where n is the number

of encoder-decoder layers in the Transformer. Additionally, experimentation has been

conducted with an extended vocabulary BART tokenizer, alongside the original BART to-

kenizer, which has a vocabulary size of 50,265 tokens. Furthermore, a BPE tokenizer,

trained on the Clotho corpus, has been employed as a baseline for all subsequent exper-

iments conducted in this thesis.

Due to the limited data availability in the Clotho dataset, the transfer learning technique

is conducted using the AudioCaps dataset. The model is trained with AudioCaps [6] and

then fine-tuned and evaluated with the Clotho [5] dataset. Furthermore, layer-wise fine-

tuning has been performed which is briefly explained in Section 2.6.2 of Chapter 2. To

facilitate transfer learning from the AudioCaps dataset to Clotho, four distinct strategies

were implemented that aimed at freezing specific layers within the transformer architec-

ture. These strategies encompass the following:

Freezing all attention layers: In this approach, all the attention layers in both the en-

coder and decoder of the transformer were frozen. This primarily transfers learned de-

pendencies and relationships among input tokens.
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Freezing the whole encoder: The weights of the entire encoder layers are frozen in this

technique. It goes a step further by additionally transferring the extracted audio features

and their representations to the target domain.

Freezing only attention layers in the encoder: Here, the focus is on preserving linguis-

tic knowledge and contextual understanding of the input, making sure that these layers

remain static during transfer.

Freezing attention layers in the decoder: In this strategy, we freeze the attention layers

of the decoder within the transformer. This allows the model to maintain the capacity to

generate captions based on the transferred knowledge obtained during pre-training.

These diverse freezing strategies enable us to tailor the transfer learning process and

selectively retain specific aspects of the pre-trained knowledge, ultimately enhancing the

model’s adaptability to the target domain.

3.3.2 Domain Adaptation

The Clotho dataset has been selected as the foundation for domain adaptation, aiming

to tailor the audio captioning system to operate effectively within a specific domain. To

achieve this, the dataset has been divided into distinct target domains, as explained in

section 3.2.2. The BART model with n = 4 encoder-decoder layer configuration has

been utilized to train the system.

To adapt the AAC system to a particular domain, such as animal-related data, the initial

step involves training the model using the animal data extracted from the development

and validation splits of the Clotho dataset. Subsequently, the model’s performance is

assessed exclusively on the animal-related data. The same process is followed for the

vehicle-related data domain as well. Given the limited availability of domain-specific data,

we utilize external data from the Clotho dataset to perform fine-tuning. This process

enables the transfer of knowledge to enhance the model’s performance in the target do-

mains.

The model undergoes a two-step training process. Initially, it is trained on the exter-

nal data extracted from the Clotho dataset. Subsequently, fine-tuning takes place using

domain-specific data related to animals or vehicles from the Clotho dataset. Addition-

ally, the layer-wise fine-tuning strategies outlined in section 3.3.1 have been employed to

examine and optimize the domain adaptation process.
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In addition to the aforementioned training process, an alternative approach has been

explored. In this scenario, the model is initially trained using the complete Clotho dataset.

Subsequently, the model undergoes fine-tuning with domain-specific data, focusing on

either animals or vehicles, which is separated from the Clotho dataset. Similar layer-wise

fine-tuning strategies are also implemented in this case.

The primary objective during fine-tuning and layer-wise fine-tuning lies in transferring es-

sential knowledge, enabling the model to leverage its prior learning experiences effec-

tively and adapt more efficiently to the audio captioning task within the specific domain.
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4. EXPERIMENTS AND EVALUATION

In this chapter, the experiments conducted in this thesis and the corresponding results

are focused. The experimental configurations employed in the subsequent sections have

been outlined in Section 4.1. Following that, Section 4.2 provides an explanation of the

evaluation metrics that were utilized in our experiments. In the final Section 4.3, the

performance of the both generic and domain adaptation captioning systems has been

presented.

4.1 Experimental Setup

The implementation of all models is carried out using the Python library PyTorch1 [52], a

widely-used framework for deep learning. The identical set of hyperparameters employed

in the baseline system of task 6 in the DCASE 2022 challenge has been utilized in this

thesis. To minimize the cross-entropy loss, we employed the AdamW optimizer [53].

Throughout all stages of training, including fine-tuning and transfer learning, a constant

learning rate of 10−5 was maintained. Additionally, a dropout rate of 0.1 was applied to

the proposed model to mitigate overfitting issues.

For data processing, both input audio and text features were padded to fixed lengths of 32

and 64, respectively. Zero vectors were used for padding audio features, while a special

"< pad >" token was employed for text feature padding.

The model undergoes training for a variable number of epochs, typically up to 20, de-

pending on the specific experiment. After every 1000 iterations, we assess the loss on

the validation set. The checkpoint associated with the lowest validation loss is saved and

is used to evaluate during the inference stage. During the inference stage, we employ a

beam search with a beam size of 4 to substantially enhance performance.

4.2 Metrics

In captioning tasks, such as image and audio captioning, the evaluation process usu-

ally involves a combination of translation metrics and metrics specifically tailored to the

captioning task. This dual approach ensures a comprehensive assessment of the sys-

1https://github.com/pytorch/pytorch

https://github.com/pytorch/pytorch
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tem’s performance in accurately describing the audio content in meaningful and contex-

tually appropriate textual captions. The most commonly employed translation metrics

include BLEU [54], METEOR [55], and ROUGE-L [56]. Captioning metrics encompass

CIDEr [57] and SPICE [58], in addition to a third metric, SPIDEr [59], which is a linear

combination of the aforementioned two captioning metrics. A detailed explanation of the

above-mentioned metrics is as follows:

BLEU (Bilingual Evaluation Understudy): It measures the quality of captions by com-

paring n-grams (unigrams, bigrams, etc.) in generated and ground truth captions. BLEU

computes a weighted geometric mean of these n-gram precisions, that match with the

ground truth captions [54].

METEOR (Metric for Evaluation of Translation with Explicit ORdering): Captions

are evaluated based on precision, recall, stemming, and synonymy. Words in generated

captions have been matched with ground truth captions, and an F-score is computed

based on several matching alternatives [55].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Caption quality is eval-

uated by calculating the overlap of n-grams in generated and ground truth captions.

ROUGE-L emphasizes sentence-level similarity by focusing on the longest common sub-

sequence [56].

CIDEr (Consensus-based Image Description Evaluation): Using term-frequency inverse-

document-frequency (TF-IDF) weighting, CIDEr determines the weighted cosine similar-

ities of n-grams [57]. CIDEr is especially useful during analyzing captions when several

ground truth captions are available.

SPICE (Semantic Propositional Image Caption Evaluation): SPICE assesses cap-

tions on the basis of their semantic content. It determines whether captions have speci-

fied language components like objects, attributes, and relationships [58].

SPIDEr (SPICE-Derived): SPIDEr makes use of both CIDEr and SPICE by generating

an average of these two metrics [59].

In addition to these conventional captioning metrics, the performance of the system is

measured by two recently proposed metrics namely SentenceBert [60] and Fense [61].

SentenceBert is a neural network based on transformers, designed to generate mean-

ingful sentence embeddings for capturing semantic information. For pairs of sentences,

the distance between these embeddings has been used to determine their semantic sim-

ilarity. Meanwhile, Fense combines the SentenceBert metric for caption similarity with an

Error Detector component, which penalizes incorrect sentences.
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In this thesis, SPIDEr stands out as the primary evaluation metric, following the evalu-

ation methods employed in the DCASE audio captioning challenge. Alongside SPIDEr,

we provide detailed insights into the system’s performance through other metrics includ-

ing CIDEr, SPICE, SentenceBert, and Fense scores in the subsequent sections. This

comprehensive evaluation approach offers a well-rounded assessment of the system’s

capabilities, addressing both consensus and semantic content, as well as capturing se-

mantic similarity and penalizing incorrect sentences.

4.3 Evaluation of Experiments

In this section, we present the results obtained from various experiments conducted for

this thesis. The performance evaluation of different configurations of the PaSST and

BART model has been reported in Sections 4.3.1 and 4.3.2, respectively. Different tok-

enizer performances while training the model has been presented in the Section 4.3.3.

In the Section 4.3.4, the evaluation performance of the model when it is fine-tuned is

summarized. Lastly, we report the domain adaptation results in the Section 4.3.5.

4.3.1 PaSST embeddings results

The baseline model for the audio captioning task in the DCASE 2022 challenge originally

relies on VGGish audio embeddings, but the proposed system has introduced the use

of PaSST audio embeddings as a replacement. As mentioned earlier, the PaSST model

comprises three distinct modules designed for extracting scene embeddings from audio

input.

The performance of these various PaSST modules is presented in Table 4.1. The re-

sults indicate that the PaSST base2levelmel module has outperformed the other modules

PaSST base and PaSST base2level in terms of performance. Consequently, this module

was selected to extract audio embeddings for all the future experiments conducted in this

thesis.

Table 4.1. Performance evaluation results of different audio embeddings.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

PaSST base 0.392 0.114 0.253 - -

PaSST base2level 0.392 0.114 0.253 - -

PaSST base2levelmel 0.425 0.120 0.278 0.517 0.518



39

4.3.2 BART configurations results

Initially, the proposed system underwent training with a base model of BART, featuring

n = 6 layers in both the encoder and the decoder. Furthermore, the experiment included

testing the BART-large model with an extensive n = 12 layers and another variant with

reduced complexity, employing n = 4 encoder-decoder layers.

A comprehensive assessment of the performance of these distinct BART model config-

urations is briefly presented in Table 4.2. The results from the table clearly indicate that

the BART model featuring n = 4 encoder-decoder layers demonstrated superior perfor-

mance compared to the other models. Consequently, this particular BART configuration

was selected for utilization in future experiments.

Table 4.2. Performance evaluation results of different BART configurations.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

BART-base (n = 6) 0.434 0.123 0.278 0.518 0.517

BART-large (n = 12) 0.413 0.121 0.267 0.507 0.502

BART (n = 4) 0.436 0.125 0.282 0.525 0.526

4.3.3 Tokenizer performance results

Initially, the model was trained using both the standard BART tokenizer and its extended

vocabulary version. Since the BART tokenizer is pretrained on a large corpus, it includes

tokens unrelated to the specific captioning dataset. To address this, a Byte Pair Encoding

(BPE) tokenizer was trained from scratch using the available training dataset corpus. The

performance comparison of these tokenizers is summarized in Table 4.3.

Table 4.3. Performance evaluation of different tokenizer setups.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

BART 0.434 0.123 0.278 0.517 0.518

BART 0.419 0.122 0.271 0.510 0.514

(extend vocabulary)

BPE 0.439 0.127 0.283 0.516 0.517

(unique words only)

The results clearly indicate that the tokenizer trained on the specific dataset outperformed

the one pretrained on a larger corpus containing a wide range of text from various do-

mains. Subsequently, in the later experiments involving fine-tuning, this system, which

incorporates PaSST as the audio embedding extractor, BART as the encoder-decoder,

and the BPE tokenizer, was adopted as the baseline.
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4.3.4 Layer-wise Fine-Tuning Results

The fine-tuning process was conducted on the two primary datasets, AudioCaps and

Clotho, using two distinct strategies: fine-tuning involving all layers of the neural model

and fine-tuning with selective layer freezing as explained in Section 3.3.1 of Chapter 3.

The initial phase involved training the model using the AudioCaps dataset. Subsequently,

the fine-tuning phase was executed, during which the model’s weights and parameters

were updated through back-propagation. In contrast, for the latter set of experiments,

the weights of the specific layers within the transformer were deliberately frozen and left

unaltered during the fine-tuning process.

Comprehensive results detailing the outcomes of these varied fine-tuning experiments

are presented in Table 4.4. These findings provide valuable insights into the model’s

adaptability and performance under different fine-tuning strategies.

Table 4.4. Layer-wise fine-tuning performance evaluation.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

Fine-tuning 0.453 0.130 0.291 0.531 0.531

Layer-wise fine-tuning the model across datasets

(training with AudioCaps, and fine-tuning by freezing

specific layers in the transformer with Clotho)

Frozen layers

All attention layers 0.456 0.130 0.293 0.529 0.527

Encoder layers 0.448 0.129 0.288 0.526 0.526

Encoder attention layers 0.468 0.133 0.301 0.530 0.528

Decoder attention layers 0.451 0.129 0.290 0.527 0.526

4.3.5 Domain Adaptation Results

Given the constraints of limited domain-specific data, we leveraged the insights gained

from the preceding fine-tuning tests to optimize the approach for domain adaptation. Ta-

ble 4.5 provides the results when the model is trained and evaluated with only a domain-

specific dataset and when the model is trained with the entire Clotho dataset and evalu-

ated on the domain-specific dataset. The table indicates that the SPIDEr score is higher

when assessing the dataset with the generic model compared to the SPIDEr score ob-

tained from the evaluation using the domain-specific model.

Table 4.6 offers a thorough comparative analysis of our experiments. It highlights the

differences in results between domain adaptation with and without layer-wise fine-tuning,

using a generic Clotho dataset that is split into external data and domain-specific data.
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Table 4.5. Domain adaptation results for vehicles and animals using domain-specific
model and a generic model.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

Vehicles

Domain-specific model 0.324 0.101 0.213 0.476 0.497

Generic model 0.488 0.109 0.298 0.527 0.530

Animals

Domain-specific model 0.294 0.139 0.217 0.566 0.568

Generic model 0.461 0.168 0.315 0.648 0.619

These results are generated by initially training the model with the external dataset from

Clotho, followed by the application of fine-tuning and layer-wise fine-tuning using domain-

specific datasets related to either animals or vehicles.

Table 4.6. Domain adaptation results for vehicles and animals: Comparison of fine-tuning
and layer-wise fine-tuning using external and domain-specific data.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

Vehicles

Fine-tuning 0.414 0.112 0.263 0.511 0.521

All attention layers 0.433 0.111 0.272 0.525 0.531

Encoder attention layers 0.407 0.113 0.260 0.514 0.520

Animals

Fine-tuning 0.432 0.156 0.294 0.615 0.598

All attention layers 0.437 0.158 0.297 0.602 0.593

Encoder attention layers 0.389 0.153 0.271 0.612 0.598

The alternative training process mentioned in Section 3.3.2 of Chapter 3 results are pre-

sented in Table 4.7. Here the model is firstly trained with the entire Clotho dataset and

then fine-tuning and layer-wise fine-tuning strategies are applied to the domain-specific

data extracted from the Clotho dataset.

In cases where fine-tuning was absent (i.e., the model was trained from scratch), it was

then evaluated using domain-specific data. The results presented in the table demon-

strate a significant enhancement in SPIDEr scores for captioning related to vehicles and

animals. These findings underscore the model’s successful adaptation to domain-specific

captioning tasks, signifying its proficiency in capturing the unique characteristics of the

target domain.

For instance, when comparing the generic AAC model to the domain-adapted captioning

model, we observe a notable shift in the generated captions. The generic model might
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Table 4.7. Domain adaptation results for vehicles and animals: comparison of fine-tuning
and layer-wise fine-tuning using generic and domain-specific data.

Setup CIDEr SPICE SPIDEr FENSE SentenceBERT

Vehicles

Fine-tuning 0.461 0.124 0.293 0.528 0.536

All attention layers 0.488 0.127 0.308 0.536 0.540

Encoder attention layers 0.460 0.122 0.291 0.528 0.536

Animals

Fine-tuning 0.462 0.163 0.312 0.633 0.622

All attention layers 0.480 0.166 0.323 0.638 0.624

Encoder attention layers 0.450 0.163 0.306 0.632 0.621

produce captions like "a person is snoring in the background as a dog barks in the fore-

ground" or "an engine is running at a steady pace." In contrast, the domain-adapted model

generates captions such as "an animal is snoring while it is raining" and "the engine of

a car is revving up and down" for the same audio segments. These results illustrate the

discernible trend of captions becoming more coherent and domain-centric when domain

adaptation is applied.
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5. CONCLUSION AND FUTURE WORK

Automated audio captioning is a multi-modal translation task where a system takes in

an audio signal as input and analyses it to generate a caption in natural language as its

output. For training the system, we leveraged two widely available datasets: Clotho and

AudioCaps.

As the baseline model, we introduced a sequence-to-sequence framework comprising

a Transformer encoder and Transformer decoder based on the BART model. The in-

put audio signal embeddings were extracted using the pre-trained Transformer network,

Patchout Fast Spectrogram Transformer (PaSST), trained on the AudioSet dataset. Word

tokenization was performed using subword tokenization, specifically byte-pair encoding.

We conducted experiments with various configurations of the BART Transformer model,

different tokenization methods, and different modules of the PaSST model.

Among the three PaSST modules, the PaSST base2levelmel module stood out, achieving

a SPIDEr score of 0.278. Further improvements were observed by decreasing the BART

encoder-decoder layers to n = 4, resulting in a SPIDEr score of 0.282. Additionally,

by employing the byte-pair encoding tokenizer, the model’s performance was enhanced,

yielding a SPIDEr score of 0.283.

This thesis explores explicitly the adaptation of a generic audio captioning model into a

domain-specific captioning model by leveraging knowledge transfer. Our approach in-

volves initially training the model on large datasets and subsequently fine-tuning it using

domain-specific training data. The model’s performance is evaluated using three different

settings such as training from scratch, fine-tuning, and layer-wise fine-tuning.

Fine-tuning involved training the model using both the source and target datasets with-

out any layer freezing. On the other hand, layer-wise fine-tuning involved experimenting

with various layer-freezing strategies within the transformer architecture. Notably, layer-

wise fine-tuning consistently outperformed different approaches, showcasing substantial

performance enhancements compared to training the model from scratch. The domain-

specific model, under the layer-wise fine-tuning setting with all attention layers frozen,

yielded remarkable SPIDEr scores of 0.308 for vehicles and 0.323 for animals. This ap-

proach not only improved performance but also deepened the model’s comprehension,

resulting in the generation of more precise and contextually appropriate captions for audio
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samples within its specialized domain.

In the future, we aim to enhance the Clotho dataset by augmenting the diversity of both

audio samples and captions. Moreover, we intend to expand the size of the dataset, as

training with limited data can be challenging. Additionally, we have plans to elevate the

overall quality of captions within the Clotho dataset. In addition to these explorations, we

also intend to develop advanced model architectures that can harness the potential of

multi-modal inputs for audio captioning tasks.
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