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ABSTRACT 

Photovoltaic (PV) power systems are prone to ageing and degradation occurring in 
the PV cells during their lifespan. Such phenomena cause significant output power 
degradation which manifests as economic losses. Hence, a reliable condition 
monitoring procedure to detect and quantify ageing is a necessity. Such procedures 
do exist, but they are typically laborious and costly. The present study aims at 
finding a solution for this problem.  

A feasible approach for monitoring the condition of a PV system is to 
measure the current-voltage curves from the terminals of a PV unit and fit a 
mathematical model describing the operation of a PV module or a larger PV unit 
to the curves. The widely used single-diode model is a suitable choice. The fitted 
model parameters provide valuable diagnostic information on the condition of the 
PV cells.  
 However, there are some practical challenges. Firstly, the model 
parameters are affected by the operating conditions, the measurements of which 
seldom exist at practical PV sites. This makes it necessary to identify the operating 
conditions jointly with the model parameters. Secondly, using entire measured 
current-voltage curves in fitting requires the rundown of the PV system for the 
measurement period, while using partial current-voltage curves reduces the fit 
quality. Hence, a systematic study of the effect of the limitation of the 
measurement range on the fitted parameters is needed. Thirdly, the discrepancies in 
the current-voltage measurement data make such limitation even more involved. 
Hence a suitable pre-processing procedure for the measurement data is needed.  
 These issues are addressed in this thesis from an empirical viewpoint. First, 
a new pre-processing procedure for the measured current-voltage curves is 
developed. It can be used to improve the quality of such measurement data, 
making it more suitable for fitting. Thereafter, a novel single-diode model fitting 
procedure identifying the operating irradiance and temperature jointly with the 
actual model parameters is developed. It can be utilized fully without external 
irradiance or temperature measurements. Finally, the effect of limiting the 
measurement range of the current-voltage curves to the vicinity of the maximum 
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power point is systematically investigated, particularly focusing on ageing detection. 
It is shown how the measurement range of the current-voltage curves can be 
limited while maintaining the reliable detection of ageing. As a significant result, 
the developed single-diode model fitting procedure allows for the usage of suitably 
formed partial current-voltage curves in the parameter identification.  

vii 

TIIVISTELMÄ 

Aurinkosähkövoimalan aurinkokennot ovat järjestelmän elinkaaren myötä 
taipuvaisia ikääntymään ja rappeutumaan. Ikääntymisilmiöt aiheuttavat merkittäviä 
tehohäviöitä, mikä ilmenee taloudellisina tappioina. Näin ollen tarvitaan luotettava 
kunnonvalvontamenetelmä niin kennojen ikääntymisen toteamiseksi kuin 
ikääntymisen asteen määrittämiseksi. Tällaisia menetelmiä löytyy, mutta niiden 
käyttö on tyypillisesti työlästä ja kallista. Tämän väitöstutkimuksen tarkoitus on 
löytää ratkaisu kyseiseen ongelmaan.  

Käyttökelpoinen lähestymistapa aurinkosähkövoimalan kunnonvalvontaan 
on virta-jännitekäyrien mittaaminen aurinkopaneelin tai -paneelikokonaisuuden 
liittimistä ja aurinkokennon toimintaa kuvaavan matemaattisen mallin sovittaminen 
mitattuihin käyriin. Malliksi soveltuu laajasti käytetty yksidiodimalli. Mallin 
sovitteen parametrit tarjoavat diagnostisesti arvokasta tietoa aurinkokennojen 
kunnosta. 

Tässä on kuitenkin eräitä käytännön haasteita. Ensinnäkin yksidiodimallin 
parametreihin vaikuttavat myös toimintaolosuhteet, joiden mittauksia on harvoin 
käytännön aurinkosähkövoimaloissa. Täten on tarpeen tunnistaa 
toimintaolosuhteet laskennallisesti yhdessä yksidiodimallin parametrien kanssa. 
Toiseksi kokonaisten virta-jännitekäyrien käyttö sovitukseen vaatii voimalan 
alasajon mittausjakson ajaksi, kun taas osittaisten virta-jännitekäyrien käyttö 
heikentää sovitteen laatua. Näin ollen järjestelmällinen tutkimus mittausalueen 
rajoittamisen vaikutuksesta sovitteen antamiin parametreihin on tarpeen. 
Kolmanneksi virta-jännitemittausdatassa esiintyvät poikkeamat tekevät 
mittausalueen rajoittamisesta entistä hankalampaa. Täten tarvitaan sopiva 
mittausdatan esikäsittelymenetelmä.  

Näitä kysymyksiä käsitellään tässä väitöskirjassa kokeellisesta näkökulmasta. 
Ensiksi kehitetään uusi esikäsittelymenetelmä mitatuille virta-jännitekäyrille. 
Menetelmää voidaan käyttää parantamaan mittausdatan laatua, mikä tekee datan 
soveltuvammaksi yksidiodimallin sovittamiseen. Seuraavaksi kehitetään uusi 
yksidiodimallin sovitusmenetelmä, joka tunnistaa laskennallisesti varsinaisten 
yksidiodimallin parametrien ohella toimintalämpötilan ja -säteilyvoimakkuuden. 
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Menetelmää voidaan käyttää täysin ilman ulkoisia säteilyvoimakkuus- ja 
lämpötilamittauksia. Lopuksi tarkastellaan järjestelmällisesti virta-jännitekäyrien 
mittausalueen rajoittamista maksimitehopisteen ympäristöön keskittyen lähinnä 
ikääntymisen tunnistamiseen ja näytetään, miten virta-jännitekäyrien mittausaluetta 
voidaan rajoittaa niin, että ikääntyminen saadaan yhä tunnistettua luotettavasti. 
Merkittävä tulos on, että kehitetty yksidiodimallin sovitusmenetelmä mahdollistaa 
sopivasti mitattujen osittaisten virtajännitekäyrien käytön parametrien 
tunnistamisessa. 
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1 INTRODUCTION 

The ongoing battle against climate change requires continuous actions to be taken. 
Indeed, climate change is currently considered the largest threat to global health 
(World Health Organization (WHO), 2021). A key feature of climate change is 
global warming. Such warming mainly results from the emission of greenhouse 
gases into the Earth’s atmosphere. These emissions originate largely from the usage 
of fossil fuels in energy production. This detrimental development has rendered 
the need to replace fossil fuels in energy production with non-fossil energy sources 
whenever possible. This holds especially for electricity production. (International 
Energy Agency (IEA), 2021; United Nations, 2023.) 

The alternative option for fossil fuels in electricity production is provided 
by sources of renewable energy. Remarkably, the substitution of fossil fuels by 
renewable energy sources in energy production belongs to the most significant 
actions in climate change mitigation. The share of renewable energy from global 
electricity production was estimated to be almost 29% in 2020 (IEA, 2021). The 
major renewable energy sources include solar photovoltaic (PV) power, wind 
power, bioenergy and hydropower; some other forms of renewable energy also 
exist such as geothermal energy and tidal energy (US Energy Information 
Administration (EIA), 2022).  

Of the renewable energy sources, solar PV energy is globally the fastest 
growing (IEA, 2021); its growth has been exponential for the past few decades. By 
the end of 2012, the global solar PV power installation capacity was 104 GW, 
whilst by the end of 2021 the corresponding figure was 849 GW (International 
Renewable Energy Agency (IRENA), 2022). However, the conversion of light into 
electricity is not a modern invention as such; the photoelectric effect was 
discovered by Edmond Becquerel in 1839 but explained by Albert Einstein in 1905 
(Copeland et al., 1942; Millikan, 1914). Since then, the various steps taken to better 
understand the PV effect principles and develop the PV cell technologies have 
enabled the establishment of the wide-scale utilisation of PV power systems in 
electrical energy production. This development has been further enhanced by the 
indisputable advantages of solar PV power as an energy resource. Firstly, there 
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exists no threat of lacking manufacturing material: silicon (Si), being the most 
common manufacturing material, is widely available and inexpensive. Secondly, the 
manufacturing process causes only low emissions to the atmosphere. Indeed, the 
carbon footprint of PV was estimated to be approximately 2% of that of coal in 
2015 (Solar Power Europe, 2022). Thirdly, PV systems cause no emissions or other 
disturbances to their environment during their operation. Unlike wind turbine 
systems which feature noise and flashing lights, solar PV systems are quiet and 
inconspicuous. Fourthly, solar PV systems can be specifically sized and scaled 
according to the need, purpose, and location, which enables their versatile usage. A 
PV system can either be connected to the power grid or constitute a stand-alone 
system so that the excess energy is stored into rechargeable batteries. Finally, solar 
energy is inexhaustible and, as such, overwhelmingly sufficient to cover the global 
energy need. These aspects make solar PV power an ecologically and economically 
viable tool for electricity production. 

The performance and lifetime of a PV system depend strongly on the 
condition of its PV modules. However, how to maintain sufficiently good 
condition of the PV modules throughout their expected operational lifetime is far 
from obvious. Regardless of the warranties guaranteed by the manufacturers, PV 
modules tend to suffer from a variety of unpredictable and often premature 
degradation and ageing phenomena during the course of their lifespan 
(Manganiello et al., 2015). Indeed, such mechanisms occurring in PV modules may 
drastically decrease the output power of the PV system. Hence the ageing and 
degradation of PV modules should be detected early. However, the visual 
inspection of such defects is often neither economically feasible nor quantitatively 
reliable. This makes the exploitation of specific condition monitoring procedures 
mandatory. A useful tool for such purposes is provided by the electrical current-
voltage (I-U) characteristic curves measured from the terminals of a PV system. 
Such an approach is characterised by quantitative accuracy and applicability to 
most PV systems when compared to other techniques such as electroluminescence 
(EL) or infrared thermographic (IRT) imaging of PV modules, which require the 
use of drones or other specific high-cost equipment and might be complex 
(Ahmad et al., 2019; Fadhel et al., 2019).  

Much effort has been put in the literature into developing different 
condition monitoring approaches based on measured I-U curves to detect ageing 
and degradation occurring in PV systems. Such approaches often rely on the fitting 
of the mathematical single-diode model describing the operation of a PV cell, 
module, or larger PV unit to the experimental I-U curves measured from the PV 
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system. Indeed, the magnitude, variation, and drift in the theoretical single-diode 
model parameters that are mathematically identified from measured I-U curves can 
reveal the occurrence of changes in the characteristics of the PV cells (Petrone et 
al., 2017b). However, most of the existing condition monitoring approaches based 
on the single-diode model parameter identification demand the measurement of 
the operating irradiance and temperature of the PV system. Without such 
information, no diagnostic conclusions can be drawn, as the parameter values are 
also affected by the operating conditions. Unfortunately, there seldom exist 
irradiance or temperature sensors at practical PV sites, and if they do exist, they are 
placed in a specific location, thus not representing the operating conditions of all 
the PV modules of the installation. Most importantly, inverter manufacturers aim 
to analyse the I-U curves independently of other measurement systems. Hence, the 
simultaneous mathematical identification of operating irradiance and temperature 
jointly with the single-diode model parameters is mandatory. However, only few 
published studies (Lappalainen et al., 2020; Lappalainen et al., 2022a) have 
addressed this issue by presenting such procedures. In Lappalainen et al. (2020), 
explicit equations are used instead of more accurate iterative ones. Lappalainen et 
al. (2022a) does exploit iterative equations, but a large number of equations is 
needed, which increases the complexity of the method. This renders the need to 
develop an iterative method with fewer equations. One of the aims of this thesis is 
to fill this gap, so that the operating irradiance and temperature become 
simultaneously identified.  

After developing a single-diode model fitting procedure with operating 
condition identification capabilities, another major challenge remains regarding the 
applicability of the model for condition monitoring at real PV sites. The problem is 
that for most single-diode model parameter identification approaches, the usage of 
partially measured I-U curves is insufficient for reliable parameter identification 
(Petrone et al., 2017a). However, the entire curve from beginning to end cannot be 
measured during the normal operation of the PV system, as it rather requires a 
temporary rundown of the PV system. Such undesired interruptions in electricity 
production and the consequent disturbances to the power system could be avoided 
if only partial I-U curves in the vicinity of the maximum power point (MPP) were 
measured. However, such a reduction of the measured I-U curve portion reduces 
the accuracy of the fitted parameters and thus weakens the reliability of the 
diagnosis. Hence it is reasonable to ask how the measurement region of the I-U 
curve should be limited. The literature offers single-diode model identification 
approaches operating on reduced I-U curve measurement data. However, they 
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typically show only one or two examples on the formation of a partial I-U curve 
used for fitting. Consequently, the optimal choice for the measured portion of the 
I-U curve for single-diode model parameter identification still remains unclear. To 
address this issue, Lappalainen et al. (2022a) systematically investigated the effect 
of I-U curve cutting on the fitted parameters by utilising percentages of the MPP 
power (PMPP) as the cutting limits. Unfortunately, the used dataset comprises only a 
small number of I-U curves, whence there exists no statistically reliable study on 
the effects of the selection of the measurement region of the I-U curve on the 
fitting accuracy of the single-diode model. In addition, no other principle for 
limiting the measurement region of the experimental I-U curve has been 
investigated than the MPP power-based approach mentioned in Lappalainen et al. 
(2022a). However, as voltage acts as the reference quantity of the inverter, the 
performance of an MPP voltage (UMPP) based I-U curve cutting in the single-diode 
model fitting should be investigated as well. These issues constitute a clearly 
missing area of the literature and addressing them is one of the tasks of this thesis.  

A practical challenge appearing in the fitting of the single-diode model to 
experimental I-U curves gathered from real-case PV systems is the poor quality of 
the measurement data. Indeed, the measured I-U curves might be noisy, discrepant, 
and suffer from measurement errors and other inaccuracies. Ignoring such 
inconsistencies in the data before fitting might lead to inaccurate fitting results and 
hence to unreliable diagnostic conclusions. However, the literature yet lacks a 
sophisticated, systematically constructed pre-processing procedure for raw 
measured I-U curves which is applicable to any curve regardless of the used 
measurement device. This forms a research gap, the filling of which is also one of 
the tasks of this thesis.  

In light of the above discussion, the following research questions are 
raised: 

• How to pre-process the measured current-voltage curves in order 
to remove their discrepancies? 

• How to implement a simple single-diode model fitting procedure 
identifying also the operating irradiance and temperature? 

• How the limitation of the measurement range of the current-
voltage curves used for fitting affects the fitted parameters?  

Addressing these three issues, the achievements of this thesis are the 
following:  

• the development of a universal pre-processing procedure 
(Kalliojärvi-Viljakainen et al., 2020a; Kalliojärvi-Viljakainen et al., 
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2020b) for noisy and discrepant I-U curve measurement data to 
improve the fitting quality 

• the development and validation of a novel I-U curve fitting 
procedure (Kalliojärvi-Viljakainen et al., 2022) to identify single-
diode model parameters jointly with operating irradiance and 
temperature from experimental I-U curves 

• the systematic comparative testing of the developed fitting 
procedure for partially measured I-U curves based on either PMPP 
or UMPP percentages (Kalliojärvi et al., 2022) from the online 
condition monitoring point of view, with the main focus on series 
resistance parameter identification.  
 

This thesis provides a fully mature step-by-step PV module single-diode 
model parameter identification procedure. The developed procedure can be used 
for the further design of online condition monitoring applications. 

The author wrote this dissertation and all publications related to it. 
Assistant Prof. Kari Lappalainen implemented the simulation model (Villalva et al., 
2009) used for initial testing of the research hypotheses and was responsible for the 
curation of the experimental measurement data used in this work. Prof. Seppo 
Valkealahti outlined the scope of the research. Assistant Prof. Lappalainen and 
Prof. Valkealahti provided guidance throughout the research process and gave 
fruitful comments on the substance. 

The remainder of this thesis is organised as follows. In Chapter 2, the 
necessary background is revised. Chapter 3 is dedicated to describing the 
mathematical modelling of the PV systems. In particular, the single-diode model 
fitting procedure developed for this thesis is presented. Chapter 4 is devoted to the 
issues related to the I-U curve measurement data. In particular, the developed pre-
processing procedure is presented. Chapter 5 is dedicated to the validation of the 
developed single-diode model fitting procedure for entire measured I-U curves. 
Chapter 6 shows the parameter identification results for partial I-U curves 
measured in the vicinity of the MPP. Chapter 7 focuses on showing the ageing 
detection capabilities of the developed single-diode fitting procedure. Chapter 8 
provides discussion and criticism concerning the choices made during the study. 
Further research topics are also suggested. Chapter 9 summarises the conclusions 
and significance of the research work.  
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2 BACKGROUND 

2.1 Solar energy 
 
The Sun serves as the primary energy source for the Earth. Its core is mainly 
composed of hydrogen and helium. Being subjected to high heat and pressure, it 
allows for the occurrence of a nuclear fusion reaction uniting hydrogen atoms into 
helium atoms. The obtained helium atom has a mass smaller than that of the 
original hydrogen atoms. Thus, it follows from the relativity theory that such a loss 
in mass is released as extra nuclear energy. This nuclear energy then travels through 
the successive layers of the Sun and becomes converted into thermal energy, which 
radiates into space in the form of electromagnetic waves. (Häberlin, 2012.) 

These electromagnetic waves proceed in empty space at an approximate 
speed of 300 000 km/s. The wavelength of this radiation varies from 0.3 to 3 µm, 
its spectrum following that of a black body radiator at 5800 K temperature (Luque 
and Hegedus, 2003). As explained by Albert Einstein, the electromagnetic radiation 
originating from the Sun can be alternatively interpreted as minutely small light 
quanta called photons. Each photon is characterised by its energy and momentum. 
These two properties depend on the frequency of the corresponding 
electromagnetic wave. This discretisation of the initially continuous notion of 
electromagnetic solar radiation helped Einstein to explain the photoelectric effect 
(Niaz et al., 2010). 

The total power of solar radiation is 3.85x1026 W (Häberlin, 2012), of 
which 170 000 TW reaches the Earth (Guerrero-Lemus and Martinez-Duart, 
2012). However, 29% of that amount is reflected back into space. Hence, only the 
remaining 121 000 TW (71%) is absorbed by the Earth’s atmosphere and surface 
(National Aeronautics and Space Administration (NASA), 2009). For comparison, 
the global annual energy consumption is estimated to be 160 000 TWh (Nuclear 
Power, 2023). It follows that the solar radiation produced in approximately 1 hour 
and 20 minutes would suffice to cover annual global energy consumption. 
Theoretically, the full coverage of the global energy demand could be achieved 
with a nominal power generation of 18.3 TW having full-time peak-power 
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operation. The global capacity of the PV installations exceeded the mark of 1 TW 
in April 2022 (PV Magazine, 2022), whence the contribution of PV power in 
meeting the demand for energy production is significant. 

The averaged irradiance during the year at the edge of the Earth’s 
atmosphere is approximately 1367 W/m2, with the actual irradiance values varying 
between 1322 and 1414 kW/m2. This figure is called the solar constant. Only part 
of the solar radiation arriving at the edge of the Earth’s atmosphere succeeds in 
reaching the surface of the PV modules of an installed power system. The 
diminishing of the radiation in the atmosphere occurs via scattering, absorption, 
and reflection. In this spirit, solar radiation can be divided into direct, diffuse, and 
reflected components, respectively. (Häberlin, 2012.) The amount of irradiance 
arriving at the Earth’s surface depends strongly on the location, the season, and the 
time of day. For instance, the irradiance received by the PV modules of the TAU 
PV power research plant at Tampere University in summertime can reach up to 
900 W/m2 in clear sky conditions. In contrast, the cloud enhancement 
phenomenon in partially cloudy conditions can raise this figure as high as 1.4 
kW/m2 or even more, with the diffuse irradiance being around 100 W/m2. (Järvelä 
et al., 2020; Lappalainen et al., 2022b.).  

2.2 Photovoltaic effect and photovoltaic cells 
 

Being composed mainly based on the presentations appearing in the books Fraas 
and Partain (2010), Häberlin (2012), Kittel (2005), and Luque and Hegedus (2003), 
this section provides an insight into the operational principle of PV cells. Basically, 
a PV cell is a semiconductor diode device exploiting the photovoltaic effect to 
produce electricity. The most commonly used PV cell material is crystalline silicon, 
dominating the global market with a 95% share (Fraunhofer Institute for Solar 
Energy Systems (ISE), 2022). Hence the case of a typical silicon PV cell is used as 
the example below.  

In order to understand the background of the photovoltaic effect 
occurring inside semiconducting material, a short revision of the energy level and 
energy band structures of such a material is needed. As a familiar example, the 
energy levels of an atom are typically illustrated as circular orbits around its nucleus 
according to the model presented by Niels Bohr. It follows from the quantisation 
of energy that an electron lying in a solid material can only have certain stepwise-
located energy levels: no electron can possess an energy between these levels. 
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Returning to the atom example, an electron cannot be located between two 
adjacent orbits. The range of the allowed energy levels in material for electrons 
located in a close proximity to each other can be considered as a sequence and is 
therefore called an energy band. Any electric current in the material consists of the 
movement of electrons in its energy bands, in practice in the conduction band. 
Obeying the minimum energy principle, the electrons tend to occupy the lowest 
possible energy levels. Hence, the energy bands are filled in order from the bottom 
to the top. The upper limit for such filling is called the Fermi energy level. In 
semiconducting materials, the lower and upper energy bands immediately 
surrounding the Fermi energy level are the valence and conduction bands, 
respectively. In contrast, the Fermi energy level in conductors lies in the 
conduction band.  

The empty gap appearing between the conduction and valence bands in 
semiconductors and insulators is called the band gap. It contains no allowed energy 
levels for electrons. Remarkably, the band gap of a semiconductor is narrow, 
whence a moderate amount of energy is needed for an electron to surpass it. Such 
energy is called band gap energy, being 1.121 eV for silicon at the Standard Test 
Conditions (STC) temperature. The band gap energy has a strong negative 
temperature dependence. Only those electrons receiving external energy equal to or 
larger than the band gap energy can be lifted from the valence band to the 
conduction band and make a positively charged hole appear in the valence band. It 
is exactly this process which makes semiconducting material conductive.  

Like all semiconductor diode devices, PV cells are based on the p-n 
junction. Such a junction is generated by combining two different types of 
semiconducting material. The formation of such materials is performed by a 
process called doping. Therein, specific impurities like boron or phosphorous 
atoms are added to the crystalline structure of silicon in a controlled manner. 
Doping regulates the number of charge carriers in the energy bands of the 
semiconducting material. The usage of different dopants leads to obtaining 
different types of doped semiconductors. More precisely, the doping can be 
performed by providing either extra electrons in the conduction band or extra 
holes in the valence band. The former situation can be achieved, for instance, by 
using phosphorous as the dopant. Silicon has four valence electrons in the 
outermost electron shell, whilst phosphorous has five valence electrons. In the 
doping process, each phosphorous atom donates the extra electron to the 
conduction band. Such a dopant is therefore called a donor, and the resulting 
doped material is called a negative type (n-type) semiconductor. The latter situation 
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is reached, for instance, by using boron as the dopant. Boron has only three 
valence electrons. Hence each boron atom accepts an extra electron from the 
valence band, making a hole appear in the valence band. Boron is therefore called 
an acceptor. The resulting doped material is called a positive type (p-type) 
semiconductor.  

A p-n junction is constructed by joining p- and n-type materials. The 
attachment of these differently doped materials together makes the electrons in the 
n-type region diffuse around inside the material. The diffusion of the electrons 
away from the n-type material creates a space charge zone into the n-type material 
that includes positively charged donor ions. Accordingly, as the p-type material 
receives the diffused electrons, a space charge zone characterised by negatively 
charged acceptor ions appears in the p-type material. Some of the diffused 
electrons fill holes in the p-type material. It follows that the two space charge zones 
form together a region called a depletion region. The depletion region is charge-
neutral when considered as a whole, but a clear charge distribution is present inside 
it. Indeed, all the charge carriers lying on the depletion region are fixed and no 
mobile charge carriers exist there. Thus, the depletion region separates the positive 
and negative mobile charge carriers from each other. The mobile charge carriers 
are located outside the depletion region in the so-called quasi-neutral regions. The 
described process creates an internal electric field across the p-n junction. In 
particular, a built-in voltage is formed over the depletion region. The built-in 
voltage is the origin of the open-circuit (OC) voltage (UOC) of a PV cell, which in 
turn is obtained from the p-n junction by attaching electrical contacts to the edges 
of the quasi-neutral regions.  

Ultimately, the production of current using a PV cell is possible by 
exposing it to light. The photons received by the semiconducting material possess a 
certain amount of energy which then becomes absorbed by the electrons lying in 
the valence band. If the absorbed energy exceeds the band gap energy, the 
electrons are lifted to the conduction band. Consequently, there appear holes in the 
valence band. Having arrived at the conduction band, the electrons can diffuse 
freely. Some of the diffusing electrons find their way into the p-n junction. 
Therein, the internal electric field accelerates the wandering of the electrons from 
the p-n junction towards the n-type material. In accordance with the movement of 
electrons in the conduction band, the holes move in the valence band. This process 
results in a flow of electric current inside the material. The phenomenon is referred 
to as the photovoltaic effect. The photovoltaic effect closely resembles the 
photoelectric effect initially discovered by Becquerel. The difference is that in the 
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latter case, the electrons spread out to the surrounding space rather than being kept 
detained inside the material structure.  

Individual PV cells are characterised by low output voltage and current. To 
extract more output power, the PV cells are connected in series to form a larger 
unit called a PV module. A typical PV module structure consists of series-
connected PV cells, divided into blocks of PV cells, each protected by a bypass 
diode. The purpose of bypass diodes is to protect the PV cell, for example, from 
localised heating phenomena resulting from partial shading or other sources of 
mismatch (Vieira et al., 2020). Indeed, such heating can lead to the appearance of 
hot spots which can damage the PV module permanently. Finally, PV modules can 
be connected in series and parallel configurations to form an array of the 
appropriate size. (Petrone et al., 2017b.)  

The first silicon PV cell with practical applicability was invented in 1954 by 
Bell Laboratories in the US with an efficiency of 6%. For reference, the best 
reported efficiency for silicon PV cells is 27.6% (Green et al., 2022). During the 
first few decades of PV cell manufacturing, the used material was mono-crystalline 
silicon. Thereafter, the repertoire was complemented with PV cells fabricated of 
multi-crystalline silicon (mc-Si). Later, alternative PV cell technologies such as 
amorphous silicon (a-Si), thin-film cadmium telluride (CdTe), and copper indium 
gallium selenide (CIGS) have been introduced, each with its own specific features.  

2.3 Degradation and ageing of photovoltaic cells 
 
During their lifespan, PV modules are prone to different degradation phenomena 
occurring in the PV cells. According to Lannoy and Procaccia (2005), degradation 
can be defined as ‘the gradual deterioration of the characteristics of a component 
or of a system which may affect its ability to operate within the limits of 
acceptability criteria and which is caused by the operating conditions’. Ageing of 
PV cells is one such phenomenon. For financial and technical reasons, ageing 
should be detected reliably and in time. Firstly, Bastidas-Rodriguez et al. (2015) 
pointed out that the resulting reduction in power output manifests as increments in 
the payback time of the investment put into the PV system. Secondly, it not only 
impedes the optimal utilisation of the PV system but also causes additional damage 
in a cumulative fashion. For instance, Manganiello et al. (2015) highlighted that 
ageing and mismatching constitute a closed loop; the nonuniform ageing of PV 
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cells causes mismatching, whilst the thermal effects stemming from mismatching 
cause ageing.  

Given the possible defects and degradation effects during the PV module 
lifespan, manufacturers have provided two-fold warranties for commercial 
modules. The product warranty is there to cover material defects as well as those 
caused by the actual manufacturing process. The length of the warranty period is 
determined by the PV module manufacturer: the minimum is 10 years, the typical 
warranty period being 15-25 years. The performance warranty is there to guarantee 
that the electrical performance does not fall below the acceptable degradation rate. 
Typically, the PV module performance warranty is 25-30 years. The allowed 
average annual degradation rate depends on the length of the warranty period, 
among other factors. However, it has been outlined that annual degradation rates 
higher than 0.8%/year are too high to meet a 25-year performance warranty. 
(Prieto-Castrillo et al., 2020) 

Regardless of the warranties guaranteed by the manufacturers, premature 
ageing processes occur in PV cells (Manganiello et al., 2015). In general, defects in 
PV modules are not rare. Moreover, Fernandes et al. (2016) observed that 25% of 
the reported defects in actual PV modules occurred during the first operational 
year. During the second year, the number is still 15%. Consequently, various case 
studies have verified that the acceptable degradation rate has been exceeded. The 
mean peak power degradation reported in Lillo-Sanchez et al. (2021) was 30.9% 
after 22 operational years, which is equivalent to an annual degradation of 
1.4%/year. Azizi et al. (2018) also reported that an almost 30% power reduction 
may occur in 20 operational years. In Sanchez-Friera et al. (2011), the reported 
peak power loss after 12 operational years was 11.5%. Tan et al. (2022) investigated 
the lifetime of PV modules in Australia, ending up with practical lifetimes of only 
15-20 years. A more optimistic number was provided by Fernandes et al. (2016), 
stating that PV modules manufactured after 2000 would lose only 12% of their 
performance in 25 operational years. However, it was strongly emphasised that 
such an outcome requires sufficient maintenance of the PV system. Such findings 
reflect the difficulty of predicting the progress of ageing as well as the need to 
utilise condition monitoring procedures to work out appropriate maintenance 
measures. 

There are several potential causes for premature ageing, such as long 
periods of outdoor exposure, insufficient maintenance, and problems in the 
enclosure of the PV module, to name but a few (Bastidas-Rodriguez et al., 2015). 
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Consequently, there are also many ageing mechanisms occurring in PV modules. 
Manganiello et al. (2015) summarised the most common ageing mechanisms. 

Corrosion is a common ageing mechanism in PV modules occurring in the 
metallic parts of the PV module. It is strongly accelerated by hot and humid 
operating conditions. The presence of corrosion is often tied to other defects and 
ageing phenomena explained in the following. 

Discoloration is a term used for the browning and yellowing of PV cells. It 
follows from the degradation of the encapsulant material (ethylene vinyl acetate, 
EVA) resulting from ultraviolet (UV) radiation and high operating temperatures. 
Light yellowing is caused by thermal discoloration, while dark browning results 
from photothermal processes or penetration of oxygen from the rear of the PV 
module to the front (Kouadri-Boudjelthia et al., 2021). Wohlgemuth et al. (2013) 
reported that EVA discoloration is a major cause of power degradation in 
crystalline silicon PV modules; field-aged modules tend to suffer from browning 
rather than yellowing (Kaplani, 2012). As a cumulative effect, discoloration causes 
corrosion in metallic cell busbars (Sinha et al., 2016).  

Delamination is defined as weakened adhesion between the structural 
layers of the PV module. As stated by Manganiello et al. (2015), it has many 
origins. Firstly, environmental stresses make the PV cells and their interconnectors 
move apart from each other. Secondly, thermal expansion of humidity and air 
detained in the PV module burdens the structure of the module. Thirdly, humidity 
jointly with UV radiation cause solder bond defects. Fourthly, high operating 
temperatures engender the vaporisation of the encapsulant, which allows for the 
intrusion of water into the PV module. This in turn leads to corrosion. 
Delamination also causes dispersion of light, whence the reflective losses increase. 
A visible sign of PV module frontside delamination is a white or milky pattern 
(Sanchez-Friera et al., 2011).  

The formation of bubbles inside the PV module originates from thermal 
decomposition and chemical reactions occurring in the material. Such reactions 
free gases inside the PV module. Having been detained inside the PV module 
structure, the bubbles create an air chamber characterised by a lower temperature 
than that of the neighbouring region. This makes it difficult for heat to dissipate 
from the area surrounding the bubble, making the PV cell overheat. This can lead 
to the appearance of hot spots which may damage the PV cells permanently. 
Bubbles located on the front of the PV cell also diminish the irradiance received by 
the PV cell. This leads to dispersion of light and an increase in reflective losses. If 
bubbles inside the PV module break, the back sealing surface might become 
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broken as well. This in turn allows water to intrude into the PV module. 
(Manganiello et al., 2015.) 

The anti-reflective (AR) coating of the PV cell is prone to degradation due 
to the radiation received during PV system operation and oxidation enabled by the 
loss of adhesion between the PV cell and its encapsulant. Moreover, AR coating 
degradation accelerates due to the presence of high voltages with respect to the 
ground. This degradation type can be observed as colour changes of the coating. 
(Manganiello et al., 2015.) 

The ribbon, solder bonds, and other metallic parts of the PV module are 
also prone to degradation and possible breakage. Possible causes include thermal 
expansion stresses. In particular, high temperatures make the metallic parts degrade 
faster. (Manganiello et al., 2015.) 

The silicon wafers of the PV cells can break as well. The breakage can be 
caused by mechanical or thermal stresses as well as carelessness during treatment 
such as shipping, installation, or maintenance. Cracks may cause localised heating 
phenomena such as hot spots and lead to the existence of isolated regions inside 
the PV cell. Consequently, the I-U curves measured from the defective PV module 
resemble those obtained during partial shading with multiple MPPs. (Manganiello 
et al., 2015.) 

Dust and soiling covering an area of the surface of PV module is a direct 
cause of partial shading. The shaded PV cells might act as a load, which in turn 
generates hot spots. Hot spots can also be generated via defects in the junction box 
and bypass diodes. (Manganiello et al., 2015.) 

Light-induced degradation (LID) is a loss in the efficiency of a silicon solar 
cell due to boron-oxygen defects or copper contamination. However, not all the 
mechanisms behind LID are clear. LID manifests as decreased diffusion lengths of 
minority carriers and increased recombination rates. (Lindroos and Savin, 2016; 
Sopori et al., 2012.) 

Potential-induced degradation (PID) originates from leakage currents 
between the PV cell and the frame of the module that are caused by high voltages. 
PID is further enhanced by humidity and high temperatures. The different types of 
PID include the dissolution of the AR coating and the degradation of the 
metallisation grid, among others. However, the most common PID effect is that of 
shunting. (Manganiello et al., 2015.) 

The occurrence of the different degradation phenomena varies according 
to the outdoor environment, the material, and the type of PV modules as well as 
their operational age, among other factors (Manganiello et al., 2015). The authors 
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shunting. (Manganiello et al., 2015.) 
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to the outdoor environment, the material, and the type of PV modules as well as 
their operational age, among other factors (Manganiello et al., 2015). The authors 
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reported that the most common degradation mechanism for aged PV modules 
fabricated of crystalline silicon is EVA encapsulant degradation, with second place 
held by solder degradation. In similar spirit, Rabii et al. (2003) observed EVA 
browning to be the main ageing mechanism in field-aged multi-crystalline PV cells. 
Sanchez-Friera et al. (2011) observed that the most frequent forms of degradation 
were glass weathering, delamination, and oxidation of the AR coating and PV cell 
metallisation grid. In turn, the most significant defects found by Lillo-Sanchez et al. 
(2021) were heavy browning, milky patterns, and the oxidation of the metallisation 
grid. In particular, these defects seemed to become severe after 20 years of 
operation. The comprehensive review by Jordan et al. (2017) concluded that older 
PV systems suffer mostly from EVA discoloration, while new PV systems installed 
within the last 10 years are especially prone to hot spots. 

The aforementioned findings reflect the unpredictability of ageing processes. 
The situation is further complicated by the fact that ageing is often invisible or at 
least difficult to quantify. Although effects like discoloration, detachment effects, 
glass cracks, and burned cells can be visually observed, many others cannot, such 
as defects in electrical connections, shunting, microcracks, and p-n junction 
degradation. The need to detect and quantify ageing reliably emphasises the need 
to use more sophisticated tools, such as electrical measurements of PV modules, 
for condition monitoring and diagnosis. (Manganiello et al., 2015.) 

2.4 Condition monitoring of photovoltaic systems 
 
Condition monitoring needs related to PV power systems can be divided between 
the alternating (AC) and direct current (DC) sides. Focusing on the latter, the most 
common condition monitoring approaches are briefly reviewed here. Fitting the 
scope of this thesis, the condition monitoring methodology based on the measured 
I-U curves is highlighted. I-U curve-based condition monitoring and diagnosis is 
further divided into offline and online approaches. Of these two categories, online 
condition monitoring is discussed in more detail because of its greater practical 
applicability. Specific attention is paid to limiting the measured region of a I-U 
curve; a related literature review is also provided to emphasise the importance of 
the study conducted in the present thesis. Finally, the choice of measurement 
region of the I-U curve is discussed from the viewpoint of ageing detection.  

Condition monitoring performed for a PV system is necessary for both the 
AC and DC sides of the system, the inverter acting as the watershed between them. 
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The AC side needs to be monitored because of power quality issues, possible 
interruptions in electricity production, and requirements set by standards related to 
the grid connection of the PV system. In turn, DC-side condition monitoring is 
needed to find defective PV modules, perform efficiency calculations, and detect 
different development trends of the system in either short or long operating 
periods. In particular, a condition monitoring procedure developed for the AC side 
does not detect minor changes in the DC side as they are weakly reflected to the 
power output of the PV system. (Kala et al., 2020.) Hence, ageing detection should 
be performed on the DC side as well. In addition, the location of defective 
modules inside the PV system cannot be discovered from the AC side. Azizi et al. 
(2018) also noted that ageing does not cause significant changes in the total 
harmonic distortion (THD) on the AC side because the increase in series resistance 
restricts the fundamental and harmonic components of the current. (Kala et al., 
2020.) 

The leading condition monitoring methods for the DC side of PV systems 
are analyses of images or measured I-U curves. The most important methods used 
in image analysis are infrared thermographic (IRT) and electroluminescence (EL) 
imaging. Unlike IRT imaging, EL imaging cannot be performed during the normal 
operation of the PV system. However, the diagnostic results obtained by IRT are 
not as accurate as those obtained by EL imaging. The imaging methods are costly, 
especially the complex EL imaging. Hence their usage is economically feasible only 
for large PV systems. Most importantly, these methods provide mostly qualitative 
diagnostic results, so the degradation of PV modules cannot usually be quantified 
by these methods. These facts constitute certain limitations from the viewpoint of 
online condition monitoring. In turn, analysis of measured I-U curves is an 
attractive solution to these problems. The curves can be traced during the 
operation of the maximum power point tracking (MPPT) algorithm. In particular, 
the measurement of partial I-U curves does not interrupt the electricity supply. As 
a clear advantage, I-U curve tracing combined with single-diode model fitting 
enables quantitative analysis of degradation. (Ahmad et al., 2019.)  

Condition monitoring and diagnosis approaches intended for PV systems 
based on measured I-U curves can be roughly divided into offline and online 
categories. Conventional offline techniques rely on the measurement of the entire 
I-U curve with its SC and OC ends. The availability of the entire I-U curve data for 
fitting enhances the accuracy of the fitted parameters and the reliability of the 
diagnosis. However, it requires the disconnection of the investigated PV module or 
array from the system, causing an interruption in the electricity production. To 
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address this issue, online condition monitoring approaches have been developed. 
Such techniques require only the measurement of a partial I-U curve in the vicinity 
of the MPP without reaching the extreme ends. Such measurements can be 
implemented during the normal operation of the PV system. Online condition 
monitoring approaches based on reduced I-U curve measurement data tend to 
suffer from lower accuracy and produce fewer diagnostic parameters than offline 
approaches. (Bastidas-Rodriguez et al., 2017a.) 

In the spirit of this discussion, it is necessary to further develop online 
condition monitoring approaches for PV systems based on measured I-U curves. 
Such a successful approach must both reproduce the fitting parameters with 
sufficient accuracy and operate in close proximity to the MPP. However, finding 
the optimal trade-off is not obvious based on the existing knowledge. 

Some light has been shed on this discussion by the previous research. 
Several authors have tested single-diode model fitting procedures for individual 
partial I-U curves as well. Lappalainen et al. (2020) used the partial I-U curve 
obtained by moving the voltage 3 V away from the MPP symmetrically on both 
sides. Consequently, the OC slope was decently reproduced, while the SC slope of 
the fitted curve suffered from clear overshoot. To obtain more balanced fitting 
throughout the I-U curve, the authors recommended setting a power limit with 
respect to MPP power (PMPP). In this light, the fitting procedure was tested with a 
power limit of 90% of PMPP. This choice led to an increase in the series resistance 
and decrease in the shunt resistance of the fitted curve. Hachana et al. (2013) 
constructed their partial I-U curves by selecting 30% of the measurement points 
closest to the MPP for fitting. Fitting to such partial curves at high irradiance 
conditions produced smaller series resistance values than fitting to entire curves. 
Tina et al. (2016) developed an analytical parameter identification procedure 
operating within the voltage limits of usual commercial inverters. As such, it 
requires the measurement of partial I-U curves within the range between UOC and 
the lower voltage limit such as 60% of UOC. The procedure was able to identify the 
single-diode model parameters well for irradiance values larger than 500 W/m2.  

As another approach, the use of some special points around the MPP has 
been considered for fitting. Garrigós et al. (2007) located four points around the 
MPP in variable positions and investigated the effect of such choices for fitting. 
The best fit quality was obtained by picking two points from both sides of the 
MPP. Blanes et al. (2012) and Toledo et al. (2012) chose six measurement points 
divided into two blocks around the MPP. It was observed in Toledo et al. (2012) 
that the proper performance of the fitting procedure requires that the voltage 
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separation of the points belonging to the same block must not exceed 5% of the 
first selected voltage point. Moreover, the separation between the central points of 
the blocks must not exceed 20% of the voltage of the central point of the first 
block. An issue to be observed was also the choice of voltage steps determining the 
density of the selected points: when such a step was set to 2% of UMPP, the OC 
and SC ends exhibited a clear overshoot and a slight undershoot, respectively. The 
fit quality was improved by setting the voltage step to 2.5% of UMPP, which caused 
only a slight overshoot and undershoot in the OC and SC ends, respectively. 
Toledo and Blanes (2016) used four arbitrary points on the I-U curve jointly with 
the slopes of the I-U curve at these points. The four points were selected 
differently for different tests. The presented method worked even when restricting 
the I-U curve in the vicinity of the MPP at voltage limits of about 2%-3% of UMPP. 

As can be deduced from the above, the different choices of the I-U curve 
measurement region used for single-diode model fitting provide different fitting 
results. Indeed, the fit quality in each region of the I-U curve as well as the 
reproduction accuracy of each parameter value are not equal but strongly depend 
on the choice of the I-U curve measurement region available for fitting. Hence, the 
final goal of the fitting must be considered when selecting the measurement region. 
Having the focus on ageing detection, the most important parameter is the series 
resistance. Spagnuolo et al. (2019a) emphasised the challenges faced in series 
resistance identification due to the noise in the I-U curve measurement data 
combined with the difficulty to measure UOC. Indeed, Sera et al. (2011) remarked 
that the series resistance can be identified mainly from the OC slope of the 
measured I-U curve. Towards this end, the authors suggested selecting the 
measurement points up to 60%-75% of the maximum power point current (IMPP) 
on the right side of the MPP. This principle was also adopted in the work by 
Petrone et al. (2017a), where the authors complemented the choice of the 
measurement region by using a 15% voltage reduction to the left of the MPP. 
Indeed, the authors observed such an offset to be sufficient to reproduce the 
almost linear high-voltage region of the I-U curve. As the result, their fitting 
procedure caused at most only 11% power losses of the PMPP, yet maintaining a 
good fit quality. 

Overall, all the mentioned works constructed partial I-U curves only by way 
of individual examples. The effect of the construction method of partial I-U curves 
on the fitting accuracy has not been systematically studied. To shed some light on 
this issue, Lappalainen et al. (2022a) constructed partial I-U curves using power 
limits which are certain percentages of PMPP. However, the used dataset consisted 
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of only 20 curves, whence there are still no statistically plausible results obtained by 
using a larger dataset. In addition, no other I-U curve cutting principle, such as 
setting cutting limits based on UMPP percentages, has been systematically studied. 
These issues are addressed in this thesis, as was done in (Kalliojärvi et al., 2022).  

2.5 Degradation and ageing indicators 
 

Degradation and ageing of PV modules can be quantified by investigating the PV 
module’s electrical characteristics. Indeed, ageing changes the shape of the I-U 
curve (Manganiello et al, 2015). To distinguish between different degradation and 
ageing effects, using various indicators helps to identify their source and type. In 
the following, some widely used indicators from the literature are briefly reviewed. 
Following the scope of this thesis, only those indicators which are directly based 
on I-U curve measurements and single-diode models are considered here.  

Firstly, the reduction in PMPP is only an overall consequence of the 
weakened state of PV system health. As such, it does not reveal the type of 
degradation; more specific indicators are needed for that purpose. Indeed, PMPP is a 
function of ISC, UOC, and fill factor (FF). These three indicators provide more 
detailed information about the state of health of the PV system. (Quansah et al., 
2017.) 

Reduced ISC levels may indicate the presence of discoloration of the EVA 
encapsulant, delamination, glass corrosion, LID, and other phenomena that 
diminish the transmittance of light. In turn, UOC reduction may occur due to LID, 
PID, or a short-circuited bypass diode, among other reasons. Compared to ISC, 
UOC tends to exhibit much smaller decreases in the PV modules in practical PV 
fields (Ahmad et al., 2019; Hrelja et al., 2018, Kaplani, 2012; Lindroos and Savin, 
2016; Ndiaye et al., 2014; Quansah and Adaramola, 2018).  

The ratio γU=UMPP/UOC is a degradation indicator affected by increments 
in series resistance. Higher series resistance levels yield lower γU values. For 
constant series resistance levels, γU decreases almost linearly with increasing 
irradiance and temperature. (Kalliojärvi-Viljakainen et al., 2019; Spagnuolo et al., 
2019b). The variation of γU with respect to the operating conditions and stage of 
ageing of the PV module is relatively wide. Indeed, Spagnuolo et al. (2019b) 
reported γU values of 0.57-0.81, the values being around 0.70-0.75 for a non-
degraded PV module at high irradiance conditions. Unfortunately, no explicit 
formulae have been validated yet for γU as a function of irradiance, temperature, 
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and series resistance. Obviously, the γU ratio depends on the PV module type as 
well. Wang et al. (2011) obtained γU levels of approximately 0.81, while Di Piazza 
et al. (2015) and Moballegh and Jiang (2014) summarised that the majority of 
commercial PV modules exhibit values of 0.75-0.80 and 0.70-0.80, respectively. 
Hence the experimental values for γU serve as a guideline for its correct magnitude. 

The ratio γI = IMPP/ISC is also affected by degradation due to increased 
series resistance. Indeed, higher Rs levels produce lower γI values. In addition, γI is 
a decreasing function of irradiance; in Spagnuolo et al. (2019b), the value varied in 
the range of 0.80-0.93. At high irradiance conditions, the value can be considered 
approximately constant (Bastidas-Rodriguez et al., 2017a). Sera (2010) suggested 
values of 0.91-0.92, while Spagnuolo et al. (2019b) and Wang et al. (2011) reported 
values around 0.90 and 0.93, respectively.  

Fill factor FF is defined as the product of γUγI. It measures the squareness 
of the I-U curve, which is made less steep by degradation. In particular, this may be 
due to decreased shunt resistance (Carrero et al., 2021; Kebir et al., 2021; Rabii et 
al., 2003) or increased series resistance (Carrero et al., 2021; Sinha et al., 2016). 
However, Piliougine et al. (2021) pointed out that some studies detected no 
decrease in FF despite the degradation, while some others revealed considerable 
FF reduction. Obviously, FF is affected by operating conditions as well. As a rule 
of thumb, commercial PV modules have fill factors greater than 0.60 (Di Piazza et 
al., 2015).  

Normalised fill factor (NFF) is defined as the ratio FF/FFSTC, where the 
denominator is calculated from the datasheet values at STC. Like FF, NFF is also 
sensitive to the detected MPP and thus does not characterise any specific type of 
fault or degradation. (Bastidas-Rodriguez et al., 2017a.) In particular, NFF is 
affected by operating conditions. In fact, it is a function of irradiance and 
temperature, and its behaviour depends on the type of PV module technology 
(Marion, 2002). Bastidas-Rodriguez et al. (2017a) observed that NFF behaves 
approximately linearly as a function of the ratio ISC/ISC,STC. An increase in Rs was 
reflected in a reduced slope of such a line, leading to smaller NFF values. They 
emphasised that since NFF acts inversely proportionally to the operating 
temperature of the PV module, degradation cannot be reliably detected by using 
NFF only. 

Among the single-diode model parameters, series resistance is the most 
prominent indicator of ageing. Increments in Rs usually indicate corrosion and 
degradation of the metallic parts of the PV module or other bulk defects hindering 
the current flow. Singh et al. (2018) assessed different series resistance estimation 
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Among the single-diode model parameters, series resistance is the most 
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the current flow. Singh et al. (2018) assessed different series resistance estimation 
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techniques for silicon-based PV modules. They highlighted that the series 
resistance identification technique depends on the model and equations used. 
Change in series resistance ΔRs is also a direct indicator for ageing detection. ΔRs 
can be evaluated as an average increment of fitted series resistance values 
(Kalliojärvi-Viljakainen et al., 2022; Lappalainen et al., 2022a; Piliougine et al., 
2021). Sera and Teodorescu (2009) also provided a method to estimate changes in 
series resistance rather than the actual series resistance value. A specific approach 
to define ΔRs is that presented by Bastidas-Rodriguez et al. (2017a). Therein, ΔRs is 
defined as the ratio ΔUMPP/IMPP. Indeed, changes in Rs mainly affect the UMPP 
value, but their effect on IMPP is negligible. Further, the authors normalised this 
indicator, denoted by NΔRs, by dividing the ΔRs value by the series resistance value 
of the non-degraded PV module. Such a choice enables the quantification of 
ageing. A technical issue to be considered is that fitted Rs values always deviate 
from each other to some extent. On the other hand, the nonuniform nature of 
ageing also causes dispersion in fitted Rs values: the levels of corrosion experienced 
by the modules in a PV system do not usually coincide (Piliougine et al., 2021).  

Another single-diode model parameter related to PV module degradation 
is the shunt resistance, which is connected to shunting-type defects. In particular, a 
decrease in the Rh value can indicate an early stage of PID before the appearance 
of considerable power loss (Finsterle et al., 2021). However, the single-diode model 
is rather insensitive with respect to the Rh parameter, implying that two similar-
looking I-U curves may have largely different Rh values (Rashel et al., 2016). 
Hence, it is not always obvious whether the shunt resistance values are exhibiting 
real variation; such is the case in Piliougine et al. (2021). Change in shunt 
resistance, denoted by ΔRh, is defined as UMPP/ΔIMPP in (Bastidas-Rodriguez et al., 
2017a). The choice is justified by the observation that Rh variation has an obvious 
effect on IMPP but only a negligible effect on UMPP. The normalised value of ΔRh 
(NΔRh) is obtained by dividing the ΔRh value by the Rh value of a non-degraded 
PV module.  

The serial-parallel ratio (SPR) is an indicator classifying PV modules into 
two categories according to whether the series resistance or the shunt resistance 
effect is dominant (Cannizzaro et al., 2014). However, the usage of SPR for 
classification of high-fill-factor PV modules may be problematic (Di Piazza et al., 
2015; Petrone et al., 2017b). Piliougine et al. (2021) observed that SPR is not a 
good indicator for the identification of absolute series resistance value or a change 
of series resistance. However, the authors noted that it can be used as a discrete 
indicator of degradation.  
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In conclusion, none of the aforementioned indicators used individually, 
except series resistance, provide absolute answers describing the state of health of 
the PV module; instead, the joint use of the indicators gives a better view of the 
condition of the PV module. It is also evident that the operating conditions must 
be taken into account when using any of these indicators.  

2.6 Current-voltage curve tracing 
  

Experimental I-U curve measurements can be performed either by an inverter or 
by a specific measurement device called the I-U curve tracer. The implementations 
of these two alternatives differ significantly from each other. Inverters are designed 
for online operation, but I-U curve tracers are usually exploited offline (Zhu and 
Xiao, 2020). By their hardware properties, most PV string inverters could be used 
to track at least partial I-U curves if only such functions were implemented in their 
control software (Spataru et al., 2015). Instead, I-U curve tracers are designed to 
measure entire I-U curves. Only the operation of I-U curve tracers falls within the 
scope of this thesis and is discussed in the remainder of this section. 

I-U curve tracing is performed by making the tracer act as a dynamic load 
between the PV output terminals. In all commercial I-U curve tracers, the 
adjustment of a dynamic load controls the PV output current (voltage), whence the 
voltage (current) also becomes simultaneously regulated (Pereira et al., 2021; Zhu 
and Xiao, 2020).  

The dynamic load action of an I-U curve tracer can be implemented via 
different methods (Durán et al., 2008a; Zhu and Xiao, 2020), the most used 
methods relying on resistive load, capacitive load, electronic load, or a DC-DC 
converter. The resistive load approach is the simplest method to implement the 
tracing system. However, it has some major limitations. Firstly, Zhu and Xiao 
(2020) remarked that a passive resistor bank tends to be too bulky. Secondly, the 
range of resistors limits the allowed measurement range. In particular, the 
distribution of the measurement points along the I-U curve is uneven (Zhu and 
Xiao, 2020). Indeed, as stated by Campos et al. (2018), there exists no variable 
resistor component with an ohmic range from zero to infinity. The stepwise 
behaviour of the resistor connections leads to the appearance of a large gap in the 
measurement points between the MPP and OC points, which increases with the 
increasing number of PV modules (Pereira et al., 2021; Zhu and Xiao, 2020). In 
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addition, Zhu and Xiao (2020) reported difficulties in reaching the OC point. Such 
issues might become real problems in large PV systems. 

The capacitive load method is the most common principle in commercial 
I-U curve tracers (Pereira et al., 2021; Zhu and Xiao, 2020). Therein, a large 
capacitor is exploited as the dynamic load (Durán et al., 2008a; Zhu and Xiao, 
2020). The capacitor is charged during the measurement sweep. The charging 
makes the current of the measurement circuit decrease and the voltage increase, 
which in turn produces the I-U curve from SC to OC (Zhu and Xiao, 2020). The 
method is simple, and the measurement time is short. In addition, the capacitive 
load methodology can be utilised to track the global MPP by measuring the partial 
power-voltage (P-U) curve with an auxiliary external capacitor (Spertino et al., 
2015). The constraints of the capacitive load method mainly concern the sizing of 
the capacitors. Obtaining a sufficient measurement range in large-scale PV systems 
requires high capacitance, a wide voltage range, and high inrush current tolerance 
(Zhu and Xiao, 2020). On the other hand, Mahmoud (2006) and Durán et al. 
(2008a) highlighted that the usage of low capacitance components is mandatory to 
reach a short measurement time. Pereira et al. (2021) summarised that the 
measurement time depends largely on the PV system and the behaviour of the 
capacitors under charging. Durán et al. (2008a) noted that the accurate acquisition 
of I-U curves requires the usage of high-quality capacitors having low equivalent 
series resistance (ESR) and small losses. Meeting such a requirement obviously 
increases the costs. From the point of possible online measurements, a new 
measurement can be started only after the discharge of the capacitor is fully over, 
whence I-U curves cannot be measured partially (Durán et al., 2008a).  

Compared to the previously described I-U curve tracing methods, the 
electronic load method is preferred due to its fastness, smoothness, and accuracy 
(Willoughby and Osinowo, 2018; Zhu and Xiao, 2020). Tracers based on the 
electronic load method use transistors as the dynamic load. The most common 
choices for this purpose are metal-oxide-semiconductor field-effect transistors 
(MOSFETs), but bipolar junction transistors (BJTs) or insulated gate bipolar 
transistors (IGBTs) are also used. The PV output current is controlled by 
regulating the transistor gate-source voltage UGS (MOSFET, IGBT) or current 
(BJT). This modulates the ON-state resistance between the drain and source of the 
transistor, thus performing the dynamic load action (Zhu and Xiao, 2020; Pereira 
et al., 2021). The gate-source voltage signal in MOSFETs and IGBTs is easier to 
generate than the gate-source current signal in BJTs (Zhu and Xiao, 2020). The 
gate-source voltage (current) signal controls the drain current (ID), which equals the 
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PV current. The obtained I-U measurement points are therefore determined by the 
intersection points of the PV module I-U curve and the ID-UDS curve of the 
transistor, where UDS is the drain-source voltage (Zhu and Xiao, 2020). The 
current-ramp-based measurement results in the reproduction of the measured I-U 
points with linear spacing in the high-voltage region, where ID varies almost linearly 
with UDS (Zhu and Xiao, 2020). In contrast, the flatness of the I-U curve of a PV 
module with respect to voltage in the SC and MPP regions makes the PV output 
voltage sensitive to small variations in UGS. This forces the measurement points to 
move too fast in the SC region. (Leite et al., 2012; Zhu and Xiao, 2020.)  

Finally, DC-DC converters can be used for I-U curve tracing in their 
continuous conduction mode (CCM), in which condition the current through the 
inductor is continuous (Durán et al., 2008b). The dynamic load action is performed 
by regulating the duty cycle, which allows for the emulation of impedance values 
between zero and infinity and the consequent formation of an entire I-U curve 
(Durán et al., 2008b; Pereira et al., 2021). At this point, not all DC-DC converter 
topologies are suitable for I-U curve tracing because of their inability to measure 
the entire I-U curve. Indeed, a boost converter cannot reach the values near the 
OC point as this would require the emulation of impedances larger than the 
inductor resistance, whereas a buck converter fails to measure the values near the 
SC point, as the capacity to emulate impedances smaller than the inductor 
resistance is missing. Consequently, a buck-boost derived converter serves as a 
solution. (Enrique et al., 2005; Durán et al., 2008b; Zhu and Xiao, 2020.) However, 
as shown in (Zhu, 2018), the distribution of measurement points along the entire I-
U curve tends to be uneven; although the adaptive I-U curve tracing developed in 
(Zhu, 2018) enables the dense acquisition of points in the MPP region, there are 
only a few points in other regions of the I-U curve. In addition, the high-frequency 
power switching causes undesired ripple in the output voltage and current and 
causes the risk of producing noisy measurement data (Zhu and Xiao, 2020; Pereira 
et al., 2021). Compared to the other I-U curve tracing methods, the advantages of 
the DC-DC converter method are its high efficiency, low cost, short measurement 
time, good accuracy, and the flexible possibility to modify the measurement sweep 
direction and speed as well as the measured part of the I-U curve (Durán et al., 
2008a; Pereira et al., 2021).  

The uneven distribution of measurement points on the obtained I-U curve 
produced by all the described I-U curve tracing methods is an obvious limitation 
when fitting a mathematical model to the measured I-U data. Indeed, an excellent 
fit quality is achieved in the regions of the I-U curve with densely appearing 
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measurement points, whereas the regions with sparse points suffer from lower fit 
quality (Zdanowicz, 1994). One solution for such a problem is proposed by Vega 
et al. (2019). Their I-U curve tracer design is an electronic load tracer with a 
specific double-sweep property. Therein, the high-voltage and high-current regions 
are divided into a fixed number of equidistant current and voltage intervals, 
respectively, which enables the even distribution of the measurement points. 
However, the developed tracer is unfortunately as yet a prototype. Another 
possible solution to mitigate the measurement point spacing problem in the case of 
electronic load tracers is to utilise control circuits to adjust the MOSFET operation 
(Zhu and Xiao, 2020). However, these solutions are not universal and applicable to 
all kinds of I-U curve tracer designs. This renders the need to develop a generic 
pre-processing procedure for the I-U curve measurement data. To address this 
issue, the development of such a procedure is presented in this thesis (Kalliojärvi-
Viljakainen et al., 2020a).  
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3 ELECTRICAL MODEL OF PHOTOVOLTAIC 
SYSTEMS 

3.1 Electrical model of photovoltaic module 
 
This section is devoted to the mathematical modelling of a PV system, be it an 
individual PV cell, module, or larger unit. Firstly, the mathematical double-diode 
and single-diode models describing the operation of such a system are represented. 
Secondly, the consequent formation of the I-U curve providing the corresponding 
graphical presentation for the PV system is discussed. Thirdly, the notions of the 
diode models and the plotted I-U curve are tied together by explaining the relation 
of each of the model parameters to the graphical I-U curve. Finally, some general 
relevant aspects related to parameter identification are highlighted. This section is 
mainly based on the books Häberlin (2012) and Luque and Hegedus (2003). 

The complex process concerning the operation of a PV cell described in 
Section 2.2 can be modelled via a set of partial differential equations called the 
semiconductor equations. The actual exact solution is very complicated and thus 
non-illustrative. However, the complexity of these equations can be mitigated by 
making certain simplifying assumptions. Firstly, the front and back contacts of the 
PV cell are assumed to be ideal ohmic contacts. Secondly, the material is assumed 
to be subject to uniform doping. Thirdly, the steady-state operation of the PV cell 
is assumed. Fourthly, the drift current of minority carriers, i.e., holes in the n-type 
and electrons in the p-type material, can be neglected with respect to the diffusion 
current of these carriers in the quasi-neutral regions. 

Such a simplification of the semiconductor equations leads to a pair of 
differential equations known as the minority-carrier diffusion equations. Indeed, 
the behaviour of minority carriers determines the behaviour of the PV cell. 
Basically, the minority-carrier diffusion equations state that the diffusion current of 
minority carriers summed up with the optical generation rate of current carriers 
equals the recombination rate of the electron-hole pairs. The solution set in the 
presence of the boundary constraints given by the above simplifications is the I-U 
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curve of the PV system. Its equation is provided in its initial form for an ideal PV 
cell 

 

 I = ISC − Io1 (e
qU
kT − 1) − Io2 (e

qU
2kT − 1) .                                                                  (1) 

 
Equation (1) represents the PV cell output current I as a function of the output 
voltage U. It can be visualised via a simple equivalent circuit. Firstly, there is an 
ideal current source corresponding to the short-circuit (SC) current (ISC) of the PV 
cell. Indeed, it follows from the ideality of the model that all the produced 
electron-hole pairs are available for the PV output current after the subtraction of 
the two diode currents appearing in (1). The two forward-biased diodes connected 
in parallel describe diode properties of the PV cell. The first and second diode 
terms account for the diode currents in the quasi-neutral and depletion regions, 
respectively. Therein, Io1 and Io2 are the respective dark saturation currents arising 
from the recombination occurring in these regions. The appearance of constants 1 
and 2 in the denominators of the two exponential terms indicate the strong 
nonlinearity of the I-U curve. Moreover, k is the Boltzmann constant, q the 
electron charge, and T the PV cell operating temperature. Equation (1) is called the 
ideal double-diode model of PV cells. The other more practical electrical models of 
a PV cell originate from it.  

Indeed, the operation of a practical PV cell differs from that of an ideal PV 
cell. Namely, there occur different loss mechanisms in the PV cells causing ohmic 
losses to the PV cell output. Some of these loss mechanisms can be viewed as 
series-type and some as shunting-type when introduced into the equivalent circuit. 
Hence, equation (1) is corrected by inserting series and shunt resistance parameters 
Rs and Rh to model such effects. The series resistance Rs originates from sources 
such as the resistances of the quasi-neutral regions, the lateral current through the 
quasi-neutral region of the more heavily doped n-type material from well-
conditioned regions to those suffering from weaker condition, and the resistance 
of metal contacts like solder bonds, cell interconnect busbars and the metallisation 
grid as well as from their contact with the semiconducting material (van Dyk and 
Meyer, 2004; Hrelja et al., 2018; Meier and Schroder, 1984; Würfel et al., 2007). 
The shunt resistance Rh originates from non-idealities on the PV cell surface, 
impurities near the p-n junction, damage to the crystal structure, and other factors 
causing leakage currents across the p-n junction or the edge of the PV cell and 
partial shorting (Hrelja et al., 2018; van Dyk and Meyer, 2004). Both parasitic 
resistances limit the current output of the PV cell. Consequently, the current 
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source parameter ISC must be replaced with another parameter to distinguish 
between the largest possible practical current output and the ideal current due to 
the generation of electron-hole pairs in the PV cell. For this purpose, the parameter 
photocurrent Iph is used. The resulting model (2) is called the (non-ideal) double-
diode model of a PV cell  
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The double-diode model (2) is characterised by high accuracy, but unfortunately 
also by high computational complexity due to its implicit nature and large number 
of parameters. However, (2) can be simplified by observing that the recombination 
mechanism in the quasi-neutral regions dominates that occurring in the depletion 
region. This leads to maintaining only one exponential term, replacing the two 
original factors 1 and 2 with a suitable trade-off between them. The resulting factor 
is denoted by the ideality factor A. Such a simplification leads to the PV cell single-
diode model equation 
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q(U+IRs)

AkT − 1) − U + IR𝑠𝑠
Rh
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The particular choice of an electrical model depends on the practical application. In 
some cases, the single-diode model is not sufficiently accurate, while some cases 
can be treated by using a much simpler model. For the purposes of the present 
work, the single-diode model is observed to be sufficiently accurate and useful 
because of its computational simplicity. 

Equation (3) can be scaled to account for larger PV units such as PV 
modules, strings, or even entire arrays (Petrone et al., 2017b). The basic PV unit 
used in this thesis is an individual PV module, whence the single-diode model of a 
PV module  
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is used throughout this thesis. It uses the notation UT =NskT/q for the thermal 
voltage of the PV module, where Ns is the number of PV cells connected in series 
in the module. 
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Obviously, any I-U curve can be characterised by the five single-diode 
model parameters (Iph, Io, A, Rs, Rh) of (4). Each of these has its impact on the 
unique shape of an individual I-U curve, which can be best understood by 
considering the practical nature and physical meaning of the parameter. The 
photocurrent Iph determines the current source capability of the PV device in the 
ideal situation and is only slightly larger than ISC. Hence, these two quantities are 
often considered equal (Dittrich, 2015). The saturation current Io is negligibly small 
compared to Iph. The magnitude of Io affects the location of the exponential 
curvature of the I-U curve. The ideality factor A regulates the smoothness of the 
exponential curvature around the MPP and is essentially a parameter that describes 
the internal operation of the PV cell. (Petrone et al., 2017b.) The series and shunt 
resistances Rs and Rh affect the slopes of the I-U curve on the high-current and 
high-voltage regions of the I-U curve, respectively. In practice, the shunt resistance 
has large ohmic values, whereas the magnitude of the series resistance is usually 
fractions of Ω. An increase in series resistance causes a drop in the MPP voltage, 
while a decrease in the shunt resistance reduces the MPP current (Hrelja et al., 
2018, Petrone et al., 2017b).  

The importance of the model parameters lies in the mathematical analysis 
and diagnosis of the PV cell. Indeed, the parameter values can provide valuable 
information on the PV cell’s condition. Unfortunately, these parameters cannot be 
directly measured but must be identified from a measured I-U curve via some 
mathematical procedure. The literature acknowledges a wide variety of single-diode 
model parameter identification approaches. Regardless of the clearly distinct effects 
of individual single-diode model parameters on the shape of the I-U curve, the 
parameters must be identified as a whole. They are strongly interconnected, so that 
a change in one parameter also affects the others. The issues related to parameter 
identification are discussed later in Section 3.3. 

3.2 Effect of operating conditions on photovoltaic system electrical 
characteristics 

 
The electrical performance of a PV system is significantly affected by the irradiance 
G it receives and its temperature T. Indeed, the electrical characteristics such as the 
MPP voltage and current, OC voltage and SC current provided by the PV system 
are altered along with the operating conditions. Such changes affect the shape and 
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location of the obtained I-U curve in the coordinate plane. Consequently, the 
single-diode model parameters identified from the I-U curve are affected as well.  

To mitigate the effect of varying operating conditions on the electrical and 
single-diode model parameters, specific formulae for converting the parameters 
from one operating condition to another have been presented in the literature. 
Generally, a certain set of conversion formulae is assigned to a specific model 
depending on the author. A comparison of conversion methods of PV module 
characteristics can be found in Anani and Ibrahim (2020), for instance. To avoid 
confusion, only the formulae used in this thesis are presented in this section. 

The single-diode model parameter identification procedure developed for 
this thesis utilises the conversion of two electrical quantities, namely the SC current 
ISC and the OC voltage UOC of the PV module. ISC is directly proportional to 
irradiance, since the photon flux arriving at the PV module increases linearly with 
increasing irradiance. In particular, linear growth concerns the number of photons 
possessing sufficient energy to overcome the bandgap. These photons become 
absorbed in the PV cell and generate the electron-hole pairs causing the current 
flow through the PV cell. (Petrone et al., 2017b.) 

In contrast to the irradiance effect, the effect of the temperature on ISC is 
only minute, being an outcome of two opposite temperature effects. On one hand, 
the increasing temperature narrows the bandgap. This allows more photons to 
generate electron-hole pairs, which increases the SC current. On the other hand, 
the diffusion length and lifetime of electrons and holes as charge carriers decrease 
with increasing temperature. Hence, the recombination losses increase, which 
reduces the SC current. The firstly mentioned effect is dominant. It follows that 
the joint effect of temperature on ISC is positive. (Petrone et al., 2017b.) The 
dependence of ISC on the operating conditions is obtained in this work as in De 
Soto et al. (2006) by 
 

 ISC = 
G

GSTC
(ISC,STC + KI(T-TSTC)),                                                                             (5) 

 
where ISC,STC, GSTC and TSTC are the STC values of SC current, irradiance, and 
temperature, and KI is the temperature coefficient of SC current at STC.  

The OC voltage decreases linearly with increasing temperature because of 
the narrowing of the bandgap. On the other hand, irradiance affects UOC in a 
logarithmic manner. Indeed, the recombination of electrons and holes accelerates 
nonlinearly as the irradiance decreases, especially at low irradiance levels. The 
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dependence of OC voltage on the operating conditions is provided as in 
Kratochvil et al. (2004) by 

 
UOC=UOC,STC+KU(T-TSTC)+AUTln(Geff),                                                                  (6) 

 
where UOC,STC is the OC voltage at STC, KU the temperature coefficient of the OC 
voltage at STC, and Geff the efficient irradiance, which can be calculated as in 
(Kratochvil et al. 2004) via 
 

Geff=
ISC

ISC,STC+KI(T-TSTC) .                                                                                              (7) 

 
Accordingly, irradiance has a positive linear effect on the PV system’s output 
power. In contrast, the operating temperature has a negative linear impact on the 
power output of the PV system. (Kratochvil et al., 2004; Skoplaki and Palyvos, 
2009.) 

The single-diode model parameter conversion formulae presented by De 
Soto et al. (2006) and Schroder (1998) are adopted in this thesis. Hence, the ideality 
factor A and series resistance Rs are considered invariant from the operating 
conditions, i.e.,  

 
A = ASTC                                                                                                              (8) 
 
and 
 
Rs=Rs,STC,                                                                                                             (9) 
 
where ASTC and Rs,STC are the STC values for the ideality factor and series 
resistance, respectively. However, the shunt resistance Rh is considered to be 
inversely proportional to irradiance (Schroder, 1998), i.e.,   
 

Rh= 
GSTC

G
Rh,STC,                                                                                              (10) 

 
where Rh,STC is the STC value of shunt resistance. The dependence of the 
photocurrent Iph on the operating conditions is modelled via 
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Iph = 
G

GSTC
(Iph,STC + KI(T-TSTC)),                                                                            (11) 

 
where Iph,STC is the photocurrent at STC.  

The saturation current Io has a strong positive dependence on the PV 
module’s operating temperature (De Soto et al., 2006) and has been found to have 
only a minor, negligible, or unclear dependence on the irradiance depending on the 
used model (Ruschel et al., 2021). The conversion of Io has not been considered in 
this thesis, because it has minor diagnostic value in practice.  

It should be noted that despite the existence of the conversion formulae, 
operating conditions cannot be neglected in the analysis. As a simplification of the 
double-diode model, the single-diode model performs improperly under low 
irradiance conditions (Chaibi et al., 2019). However, this well-known limitation can 
be simply overcome by analysing the single-diode model parameters at high 
irradiance levels (Bastidas-Rodriguez et al., 2017a).  

3.3 Parameter identification from measured current-voltage curves 
 

Single-diode model parameters cannot be directly measured from a PV module but 
must be identified via some mathematical procedure from its I-U curve instead. 
The identification of single-diode model parameters is not a trivial task because of 
the nonlinear and implicit nature of the single-diode model equation. Jointly with 
these properties, the parameters are of very different orders of magnitude, which 
makes finding the correct solution yet more complicated (Bastidas-Rodriguez et al., 
2017b). Indeed, solving the single-diode model equation is a non-convex 
optimisation problem with multiple local minima, i.e., the solution is not unique 
but there may be several sets of parameters that satisfy the equation. (Laudani et 
al., 2014; Rhouma et al., 2017.) The risk of failing to find the correct parameters 
increases when the number of parameters to be identified is large (Chin and Salam, 
2019; Humada et al., 2020; Laudani et al., 2014). 

Single-diode model parameter identification relies on fitting the model to 
empirical data. Fitting is an optimisation process that aims to minimise the 
difference between the theoretical model and empirical data. The fitted single-
diode model equation can be expressed in either an implicit or explicit form. The 
different optimisation techniques used in single-diode model fitting can be roughly 
divided into three main categories. Iterative approaches utilise numerical 
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Single-diode model parameter identification relies on fitting the model to 
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techniques to find the parameters. Analytical approaches provide a symbolic or 
analytical solution directly without iterations. Stochastic approaches employ 
metaheuristic algorithms to fit the mathematical model to empirical data. Each of 
these techniques has its advantages and disadvantages. Iterative approaches exhibit 
good accuracy. However, they require a proper initial guess solution in order to 
converge towards the correct solution. In addition, their computational cost is 
high. Analytical approaches are often more straightforward to implement and have 
a lower computational cost. However, the simplicity of such procedures reduces 
the accuracy of the results and makes the identification procedure prone to noise. 
Stochastic algorithms are usually accurate and capable of finding the correct 
solution. Naturally, this occurs at the expense of computational cost. From the 
point of view of developing the fitting procedure, the correct performance of 
fitting requires that the problem-specific control parameters are properly adjusted 
and the consistency issues arising from the variety of candidate solutions are 
overcome. (Batzelis, 2019; Chin and Salam, 2019; Jordehi, 2016.) 

Every such parameter identification category has gained wide attention in 
the literature. However, almost each of the proposed approaches can only identify 
the single-diode model parameters without providing any information about 
irradiance and temperature of the operating conditions. Such approaches are 
insufficient for practical condition monitoring and diagnostic purposes, as the 
identified parameter values depend on the operating conditions. The lack of 
information on the operating conditions makes a reliable diagnosis based on the I-
U curves measured from the PV system virtually impossible, unless the operating 
conditions are identified jointly with the single-diode model parameters.  

To participate in this discussion, this thesis introduces a novel single-diode 
model parameter identification approach that simultaneously provides information 
on the PV module’s operating irradiance and temperature (Kalliojärvi-Viljakainen 
et al., 2022). In addition, there exist only a few published studies such as 
Lappalainen et al. (2020) and Lappalainen et al. (2022a) that introduce single-diode 
model fitting procedures with the capability of identifying the operating conditions 
as well. These three approaches differ from each other by the following properties. 

The presentation of the single-diode model is explicit in Lappalainen et al. 
(2020) and implicit in Kalliojärvi-Viljakainen et al. (2022) and Lappalainen et al. 
(2022a). The work of Lappalainen et al. (2020) relies on the usage of the popular 
Lambert W function (Ghani and Duke, 2011; Accarino et al., 2013). Such a choice 
converts the implicit single-diode model equation into an explicit form. However, 
the implementation of the Lambert W function is practically based on 
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approximations (Batzelis et al., 2020; Lappalainen et al., 2022a). The different 
methods of implementing the Lambert W function in PV cell modelling were 
evaluated in Batzelis et al. (2020). It was concluded that the most accurate Lambert 
W function implementation (i.e., the MATLAB function lambertw.m) has the largest 
computational cost. In this light, a single-diode model parameter identification 
based on the implicit equation is recommended when possible. In the studies of 
Lappalainen et al. (2022a) and Kalliojärvi-Viljakainen et al. (2022), the implicit form 
of the single-diode model equation has been used to maintain the accuracy.  

The approaches (Kalliojärvi-Viljakainen et al., 2022; Lappalainen et al., 
2020; Lappalainen et al., 2022a) differ also in their choice of auxiliary equations to 
set up the single-diode model. The expression for saturation current Io is based in 
Lappalainen et al. (2020) and Lappalainen et al. (2022a) on bandgap- and 
temperature-based expression as in De Soto et al. (2006). Such an approach 
introduces extra coefficients which must be calculated before fitting. In turn, 
Kalliojärvi-Viljakainen et al. (2022) employs the saturation current expression 
obtained from the single-diode model equation by using only one auxiliary 
equation. The small number of equations used in this case simplifies the 
calculation.  

The third difference between the methods (Kalliojärvi-Viljakainen et al., 
2022; Lappalainen et al., 2020; Lappalainen et al., 2022a) lies in the initial guess 
solution provided for the fitting algorithm, as the initial guess must be set for each 
output parameter directly produced by the fit. In Lappalainen et al. (2020) and 
Lappalainen et al. (2022a), the set of direct output parameters of the fit is {G, T, Rs, 
Rh} and, therefore, the initial guess for the parameters of the first I-U curve of the 
dataset is {GSTC, TSTC, Rs,STC, Rh,STC}. In both works, the Lambert W function is 
utilised to calculate Rs,STC and Rh,STC. The following I-U curves in the used dataset 
utilise the previous fitted values as the initial guess. However, the irradiance value 
may vary rapidly from curve to curve. In Kalliojärvi-Viljakainen et al. (2022), the 
set of direct output parameters of the fit is {Iph, T, Rs, Rh}. The initial guess for the 
parameters of the first curve is {IMPP/γI, TSTC, Rs,STC, Rh,STC}, where γI is an 
experimental approximation for the ratio IMPP/ISC calculated from the PV module’s 
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Remarkably, the SC current of the I-U curve does not need to be measured, but 
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techniques to find the parameters. Analytical approaches provide a symbolic or 
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procedure of Villalva et al. (2009). Hence no explicit approach has been utilised. 
The following curves after the first one in the dataset utilise the previously 
calculated values of T, Rs, and Rh as the initial guess. Such a choice is justified 
because these parameters change slowly as environmental conditions change.  

Finally, the choice of a suitable single-diode model fitting procedure 
depends on the situation. When the focus is on ageing and detection of series 
resistance, the Lambert W function fails to perform properly for highly degraded 
PV modules (Piliougine et al., 2021). Hence the usage of the implicit single-diode 
model equation is preferred for such purposes. 

3.4 Developed single-diode model fitting procedure 
 
The developed fitting procedure takes the measured I-U curves as its inputs. In 
addition, the values for ISC,STC, UOC,STC, IMPP,STC, UMPP,STC, KI, KU, Ns and A of the 
PV module are required. This makes the fitting procedure easily applicable in real-
case PV systems: the electrical characteristics at STC are reported for any 
commercial PV module in its datasheet provided by the manufacturer. The fitting 
procedure returns the single-diode model parameters Iph, Io, Rs and Rh jointly with 
the operating irradiance G and temperature T as its outputs. This enables the 
interpretation of the fitted parameter values in relation to the operating conditions.  

The simultaneous presence of all these six parameters of interest in the 
fitting equation might cause a fitting algorithm to be trapped in a local optimum 
instead of the correct solution with a physical meaning (Laudani et al., 2014). To 
prevent this, the set of parameters directly obtained from the fit is reduced to Iph, 
T, Rs and Rh. The value of Io is calculated inside the fitting objective function called 
by the fit.m function in MATLAB via the expression 

 

Io =
Iph−

UOC
Rh

𝑒𝑒
UOC
AUT−1

,                                                                                                        (12) 

 
which is obtained from (4) at OC. A successful estimation of Io requires an 
accurate estimation of UOC. Indeed, UOC is not directly measured but calculated in 
a point-by-point manner inside the fitting objective function to adjust the fitting 
parameters. Such an approach also enables partial I-U curves to be analysed, 
leaving the extreme ends of the curves unmeasured. The estimate for UOC inside 
(12) is provided by (6)-(7). 

 

35 

After the actual curve fitting, the SC current of the fitted curve is 
calculated as  

 

ISC =
Iph

1 + Rs
Rh

,                                                                                                                (13) 

 
and further the irradiance is calculated via 
 

 G =  GSTCISC

ISC,STC + KI(T − TSTC) .                                                                                   (14) 

 
Fig. 1 describes the entire parameter identification process for a set of measured I-
U curves. The stopping criteria determined for the actual fitting algorithm are as 
follows. Suitable maximum numbers of iterations and objective function 
evaluations were found to be 3000 and 10000, respectively. The tolerances for the 
step size and differences in fitted parameter values between two iterations were 
both set to MATLAB’s default values of 1e-6. 
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Figure 1. Flowchart of the parameter identification process.  
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4 MEASUREMENT DATA AND ITS PRE-
PROCESSING 

4.1 Measurement data 
 
The measurement data used in this thesis was gathered from the TAU PV power 
research plant of Tampere University located on the rooftop of the Sähkötalo 
building on the Hervanta campus. The detailed configuration of the PV installation 
is described in Torres Lobera et al. (2013a). The PV power plant consists of 69 PV 
modules (NAPS NP190GK) fabricated of multi-crystalline silicon, the total 
nominal peak power being 13.1 kWp. An individual PV module follows the typical 
PV module structure consisting of 54 series-connected PV cells and is protected by 
three bypass diodes, each connected in antiparallel with a block of 18 cells. The PV 
modules are installed with a tilt angle of 45 degrees with respect to the horizon, 
facing nearly due south. (Torres Lobera et al., 2013a.)  

The PV power plant has been equipped with climatic and electrical 
measurements. Ambient temperature and relative air humidity are measured by a 
HMP155 sensor (Vaisala). Wind speed and direction are registered by an ultrasonic 
WS425 sensor (Vaisala). Global irradiance is measured by a pyranometer CMP22 
(Kipp & Zonen), and the diffuse component of irradiance is captured with a 
pyranometer CMP21 equipped with a shadow ring. In addition, a mesh of 24 pairs 
of SPLite2 and Pt100 sensors register the irradiance received by individual PV 
modules and their backplate temperature. The irradiance measurements are in good 
agreement with the actual irradiance received by the PV modules, the measurement 
accuracy having been discussed in Torres Lobera et al. (2013a). The backplate 
temperature measurements were observed to correlate closely with the actual PV 
cell temperatures (Torres Lobera et al., 2013b) and can thus be used as a reference 
for the PV cell temperature by taking into account the heat capacity of the PV 
module and other possible factors affecting the PV cell temperature. The sampling 
frequency of the climatic measurements is 10 Hz, which is sufficient to capture 
even the fastest climatic phenomena affecting power generation. The acquired 
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climatic measurements are stored in a SQL (Structured query language) database. 
(Torres Lobera et al., 2013a)  

The electrical I-U curve measurements are implemented by an I-U curve 
tracer utilising eight parallel-connected IGBTs as the electronic load. The sampling 
frequency for the measured I-U curves has been set to 1 Hz. 

The I-U curve data used in this thesis was measured from PV module 19. 
The corresponding irradiance and temperature values were measured with SPLite2 
and Pt100 sensors connected to module 19. The choice of an individual module 
for analysis well met the need for the development and performance verification of 
the proposed I-U curve fitting procedure. It was experimentally observed in 
Lappalainen et al. (2020) that the values of SC current, OC voltage, and MPP 
current and voltage (ISC,STC, UOC,STC, IMPP,STC, UMPP,STC) of module 19 at STC differ 
slightly from their nominal datasheet values reported in Torres Lobera et al. 
(2013a). Therefore, their values had to be redetermined to ensure a reliable analysis. 
The exploited redetermination process is described in detail in the Appendix. Using 
the obtained values, the STC values for the parasitic resistances (Rs,STC, Rh,STC) were 
determined by exploiting the procedure of Villalva et al. (2009), the used MATLAB 
code having been initially presented in Mäki (2013). The temperature coefficients 
for SC current and OC voltage at STC (KI, KU) were obtained from the 
manufacturer datasheet. The ideality factor A was kept constant (Stornelli et al., 
2019). The key parameters of PV module 19 at STC are provided in Table 1. 

 
Table 1.  The electrical characteristics of PV module 19 at STC. 
Parameter Value 
ISC, STC 8.72 A 
UOC, STC 32.8 V 
IMPP, STC 7.94 A 
UMPP, STC 22.9 V 
Rh, STC 354 Ω 
Rs, STC 0.768 Ω 
KI 0.0047 A/K 
KU -0.124 V/K 
A 1.1 
Ns 54 
 

The used measurement datasets are described in Table 2. Dataset A was 
used for testing the curve fitting procedure developed in this thesis in different 
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operating conditions. Therefore, it contains conditions of stable high irradiance 
and temperature, as well as sharp irradiance transitions with a significant drop in 
temperature. The stable high-irradiance part was thereafter separated into its own 
dataset B to analyse the model performance with partial I-U curves. Indeed, 
measurements made in low irradiance conditions are not meaningful for the goals 
of this thesis. Datasets C, D and E were used for the ageing analysis. All were 
measured under high irradiance conditions. Different stages of ageing were 
emulated by connecting different-sized resistors with additional series resistances 
(Rs,add) in series with PV module 19. In this way, it could be shown quantitatively 
that the used fitting procedure is able to identify the series resistance correctly. 
Datasets C, D and E were measured over less than two months, so real ageing 
effects did not have time to occur between measurements. This enabled the reliable 
quantification of series resistance increments.  

 
Table 2.  The used measurement datasets. 
Dataset Rs,add (Ω) Date Start time Length (s) 
A 0.00 2020-08-25 12:57:26 3600 
B 0.00 2020-08-25 12:57:26 2400 
C 0.00 2020-08-25 12:57:26 1300 
D 0.22 2020-07-18 11:06:02 1300 
E 0.69 2020-07-31 12:16:39 1300 

 
All the measured I-U curves share some common characteristics. Firstly, 

the direction of an I-U curve measurement sweep is from OC to SC, which was 
also strongly preferred in the earlier literature (Chayavanich et al., 2006). Indeed, 
using the opposite direction produces distortion in the measured I-U curves at high 
voltage values close to the MPP. As explained in Chayavanich et al. (2006), the 
reason for that is the charging and discharging current of the PV cell resultant 
capacitance consisting of the transition and diffusion capacitances appearing in the 
reduced AC equivalent circuit model of the PV module. However, this problem is 
mitigated by the appropriate measurement sweep direction.  

Secondly, each I-U curve contains 4000 measurement points obtained by 
changing the system current step by step, resulting in current-voltage points at 
equal time intervals. The measurements were performed with a 100 ms ramp 
controlling the gate signal, and the actual duration of the measurement sweep was 
less than 40 ms. However, such a short ramp might be prone to circulation of 
current due to resonance inside the system. This may cause distortion on the 
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tracked I-U curves. Both current and voltage vectors suffer from unintentional 
abnormalities, similar observations having been made in Hao et al. (2021) and 
Nilsson (2014). In addition, approximately 80% of the measurement points are 
accumulated to the OC region of the I-U curve. In contrast to the densely located 
measurement points in the high-voltage region, there are fewer of them in the 
high-current region. Consequently, the over-weighted OC region becomes strongly 
emphasised in the single-diode model fitting. Such a superior fit quality in the OC 
region compromises the fit quality in the SC region (Zdanowicz, 1994).  

The aforementioned data quality problems make it necessary to eliminate 
the abnormal measurement points as well as to redistribute the remaining 
measurement points before the actual fitting of the single-diode model. One 
possibility is to perform the fitting as soon as the most obvious abnormalities have 
been eliminated and try to improve the fit quality by issuing the Bisquare method 
jointly with the fit.m function in MATLAB. The Bisquare method minimises a 
weighted sum of squares, where the furthest points are given the least weights in 
fitting. However, using this method increases the computational time significantly. 
Several pre-processing procedures have been presented in the literature. These 
procedures can be roughly divided into those for eliminating abnormalities and 
those for redistributing the measurement data. Meng et al. (2023) smoothed the I-
U curve data by applying a first-order Kalman filtering algorithm separately to the 
current and voltage measurement vectors of the I-U curve. Sun et al. (2019) 
smoothed the time series data of UMPP and IMPP by a physics-based filtering 
method. The algorithm divides the data into time intervals. The data of each 
interval is subject to fitting. The relative error of fitting is calculated point by point. 
Those points with an error of at least 50% are considered outliers and discarded. 
Thereafter, the algorithm examines the number of the remaining data points in the 
time interval. If the points are less than 80% of their original number, all the points 
in the interval are discarded. However, it should be noted that the authors did not 
apply the method for I-U curves. If the procedure were so applied, the use of time 
intervals might not provide a straightforward solution at least for the problem of 
the uneven weighting of measurement points between different parts of the I-U 
curve. Another approach, used in Lappalainen et al. (2022a), utilised the 
observation that the measured I-U curves contain several points with redundant 
voltage values. Points with similar voltage values were treated as a single point by 
averaging the corresponding current values. Although such a procedure reduced 
the unintentional weighting and was also adopted in Kalliojärvi-Viljakainen et al. 
(2022), it is not the most systematic, as the exact location of the remaining points 
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depends on the measured I-U curve. Lappalainen et al. (2021) smoothed the I-U 
curve measurement data as follows. The previously mentioned procedure 
(Lappalainen et al., 2022a) was applied first. Thereafter, the abnormal measurement 
points were removed by comparing the power of each measurement point to its 
neighbouring points. If the power difference to the neighbouring points was larger 
than 1.3 times the mean power difference of the previous and next nine 
measurement points, then the point was discarded as abnormal. Chen and Zhang 
(2021) redistributed the I-U curve measurement data by sampling data points by 
equidistant current intervals in the high-voltage region and equidistant voltage 
intervals in the high-current region. However, the number of points remaining on 
the I-U curve is based on a trial-and-error manner, hence varies from curve to 
curve.  

In this light, a pre-processing procedure is needed to both remove 
abnormalities and mitigate the uneven weighting among the measurement points of 
the I-U curve. Towards this end, a pre-processing procedure for the raw I-U curve 
measurement data developed in Kalliojärvi-Viljakainen et al. (2020a) was exploited 
in this thesis. The developed pre-processing procedure has two steps: 1) 
elimination of abnormal measurement points, and 2) removal of measurement 
point weighting.  

4.2 Elimination of abnormal measurement points 
 

The proposed I-U curve pre-processing procedure is initiated by determining the 
maximum power point. Indeed, the MPP divides the I-U curve into high-current 
and high-voltage parts that need to be treated differently during the developed pre-
processing procedure, so the MPP must be determined. The goal is to find the 
dominant MPP point among the noisy measurement data, because the maximum 
measured power value can be an abnormal measurement point caused by 
measurement error or noise. 

For the MPP estimation, only the topmost part of the measured P-U curve 
is of interest. The investigated region is limited to an experimentally validated 
percentage of 95% of the maximum value of the measured power. Thereafter, the 
power distance of each P-U point to its adjacent points is determined. If the 
measured power of a point deviates from the power values of its adjacent points 
more than the standard deviation of all the measured power values of the limited 
interval, the point is considered an abnormal measurement point and discarded 
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Several pre-processing procedures have been presented in the literature. These 
procedures can be roughly divided into those for eliminating abnormalities and 
those for redistributing the measurement data. Meng et al. (2023) smoothed the I-
U curve data by applying a first-order Kalman filtering algorithm separately to the 
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time interval. If the points are less than 80% of their original number, all the points 
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depends on the measured I-U curve. Lappalainen et al. (2021) smoothed the I-U 
curve measurement data as follows. The previously mentioned procedure 
(Lappalainen et al., 2022a) was applied first. Thereafter, the abnormal measurement 
points were removed by comparing the power of each measurement point to its 
neighbouring points. If the power difference to the neighbouring points was larger 
than 1.3 times the mean power difference of the previous and next nine 
measurement points, then the point was discarded as abnormal. Chen and Zhang 
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the I-U curve. Towards this end, a pre-processing procedure for the raw I-U curve 
measurement data developed in Kalliojärvi-Viljakainen et al. (2020a) was exploited 
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dominant MPP point among the noisy measurement data, because the maximum 
measured power value can be an abnormal measurement point caused by 
measurement error or noise. 
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percentage of 95% of the maximum value of the measured power. Thereafter, the 
power distance of each P-U point to its adjacent points is determined. If the 
measured power of a point deviates from the power values of its adjacent points 
more than the standard deviation of all the measured power values of the limited 
interval, the point is considered an abnormal measurement point and discarded 
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from the set of possible maximum power point estimates. It should be noted that 
such a criterion for identifying abnormalities is rather loose compared to several 
other statistical criteria; it excludes only the most obvious measurement errors. 
However, the usage of this simple method is justified in the case of the sharply 
sawing nonlinear P-U measurement data. The exclusion of the largest measurement 
errors leaves behind less heterogeneous P-U data, which is further smoothed by 
applying moving average filtering with an interval of 20 points. Finally, the estimate 
for the MPP is retrieved from the smoothed P-U measurement data.  

Fig. 2 illustrates the performance of the MPP estimation step. As can be 
seen, there is a clear difference between the measured and estimated MPP power. 
The estimation step is easy to implement as part of the pre-processing procedure. 
In addition, it has low computational burden, and its accuracy is sufficient for the 
I-U curve fitting purposes of the present work.  

 

 
Figure 2. Estimation of MPP from the raw measured P-U data before the elimination of 
abnormal measurement points. 

 
The MPP estimation is followed by the actual elimination of the abnormal 

measurement points, where the entire measured I-U curve is subjected to the 
developed sequential elimination algorithm (Kalliojärvi-Viljakainen et al., 2020a). 
Basically, the algorithm follows the dominant shape of the I-U curve by short 
piecewise linear approximations and evaluates the distance of measurement points 
from the fitted lines. Measurement points having the longest distance to the fitted 
line are regarded as abnormal, utilising the statistical interquartile range (IQR) 
method.  

Initiating from the OC end of the raw measured I-U curve, the algorithm 
provides a progressive partition of the measurement points into short intervals of 
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appropriate lengths. The length of each interval is pre-determined and tied to the 
voltage value of the determined MPP. The interval lengths of piecewise linear 
approximations are experimentally adjusted so that they follow well the shape of 
the original measured I-U curve. Fig. 3 illustrates the division of the raw measured 
I-U curve into voltage regions, each having its specific length for the intervals. The 
lengths of intervals in different voltage regions of the I-U curve are reported in 
Table 3.  

The voltage intervals partially overlap, so that the last 20% of the points of 
the previous interval provide the beginning of the next interval. This is to enhance 
the operation of the elimination algorithm. For any individual interval, the scanning 
of the interval is immediately followed by line fitting. The fitted lines are of the 
form U =aI+b and I = cU+d on the high-voltage and high-current regions of the I-
U curve, respectively. These choices are justified as the independent variable on 
either side of the MPP is mainly responsible for the occurrence of the 
abnormalities. Indeed, abnormalities in the high-voltage region are mostly due to 
current offsets and vice versa. The elimination algorithm calculates the distance of 
every measurement point of the interval from the fitted line. When the calculated 
distance of a point from the fitted line exceeds the widely used statistical threshold 
of 1.5 times the IQR, the point is considered an abnormal measurement point and 
is removed. A detailed example illustrating the operation of the elimination 
algorithm is shown in Fig. 4.  

 

 
Figure 3. Division of the raw measured I-U curve into voltage regions for the elimination 
of abnormal measurement points.  
 
 



 

42 

from the set of possible maximum power point estimates. It should be noted that 
such a criterion for identifying abnormalities is rather loose compared to several 
other statistical criteria; it excludes only the most obvious measurement errors. 
However, the usage of this simple method is justified in the case of the sharply 
sawing nonlinear P-U measurement data. The exclusion of the largest measurement 
errors leaves behind less heterogeneous P-U data, which is further smoothed by 
applying moving average filtering with an interval of 20 points. Finally, the estimate 
for the MPP is retrieved from the smoothed P-U measurement data.  

Fig. 2 illustrates the performance of the MPP estimation step. As can be 
seen, there is a clear difference between the measured and estimated MPP power. 
The estimation step is easy to implement as part of the pre-processing procedure. 
In addition, it has low computational burden, and its accuracy is sufficient for the 
I-U curve fitting purposes of the present work.  

 

 
Figure 2. Estimation of MPP from the raw measured P-U data before the elimination of 
abnormal measurement points. 

 
The MPP estimation is followed by the actual elimination of the abnormal 

measurement points, where the entire measured I-U curve is subjected to the 
developed sequential elimination algorithm (Kalliojärvi-Viljakainen et al., 2020a). 
Basically, the algorithm follows the dominant shape of the I-U curve by short 
piecewise linear approximations and evaluates the distance of measurement points 
from the fitted lines. Measurement points having the longest distance to the fitted 
line are regarded as abnormal, utilising the statistical interquartile range (IQR) 
method.  

Initiating from the OC end of the raw measured I-U curve, the algorithm 
provides a progressive partition of the measurement points into short intervals of 

 

43 

appropriate lengths. The length of each interval is pre-determined and tied to the 
voltage value of the determined MPP. The interval lengths of piecewise linear 
approximations are experimentally adjusted so that they follow well the shape of 
the original measured I-U curve. Fig. 3 illustrates the division of the raw measured 
I-U curve into voltage regions, each having its specific length for the intervals. The 
lengths of intervals in different voltage regions of the I-U curve are reported in 
Table 3.  

The voltage intervals partially overlap, so that the last 20% of the points of 
the previous interval provide the beginning of the next interval. This is to enhance 
the operation of the elimination algorithm. For any individual interval, the scanning 
of the interval is immediately followed by line fitting. The fitted lines are of the 
form U =aI+b and I = cU+d on the high-voltage and high-current regions of the I-
U curve, respectively. These choices are justified as the independent variable on 
either side of the MPP is mainly responsible for the occurrence of the 
abnormalities. Indeed, abnormalities in the high-voltage region are mostly due to 
current offsets and vice versa. The elimination algorithm calculates the distance of 
every measurement point of the interval from the fitted line. When the calculated 
distance of a point from the fitted line exceeds the widely used statistical threshold 
of 1.5 times the IQR, the point is considered an abnormal measurement point and 
is removed. A detailed example illustrating the operation of the elimination 
algorithm is shown in Fig. 4.  

 

 
Figure 3. Division of the raw measured I-U curve into voltage regions for the elimination 
of abnormal measurement points.  
 
 



 

44 

Table 3. Division of the raw measured I-U curve into voltage regions for the elimination of 
abnormal measurement points.  
Region Voltage limits Interval length 
1 0.8UMPP - OC 0.05UMPP 
2 0.5…0.8UMPP 0.1UMPP 
3 0.2…0.5UMPP 0.2UMPP 
4 SC – 0.2UMPP one interval 

 
 

 
Figure 4. Elimination of abnormal measurement points illustrated by two successive steps 
at the beginning of the OC end of the I-U curve. 
 

The elimination algorithm must be tested for I-U curves measured at high, 
medium, and low irradiance conditions, because the shape of the measured I-U 
curve changes with changing irradiance. Figs. 5-7 illustrate the excellent 
performance of the algorithm in such irradiance conditions. Remarkably, I-U 
curves measured in low irradiance conditions (Fig. 7) include more abnormalities 
than curves measured in high or medium irradiance conditions (Figs. 5 and 6) 
(Kalliojärvi-Viljakainen et al., 2020a). Using the measurement data provided by the 
I-U curve tracer, the algorithm finds 100-250 abnormal measurement points from 
high-irradiance curves and 100-300 abnormal measurement points from medium-
irradiance curves. The corresponding figure for low irradiance curves is 100-450. 
(Kalliojärvi-Viljakainen et al., 2020a.) Such a difference is mainly explained by the 
measurement accuracy of the I-U curve tracer, its effect on the measurement 
results being amplified at low irradiance levels. Nonetheless, the presented 
numbers of eliminated abnormalities are not universal but depend on the used I-U 
curve measurement data. A significant result is that the elimination algorithm 
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retains the original shape of the measured I-U curve under all irradiance conditions. 
Consequently, the algorithm can be used to improve the quality of any measured I-
U curve before curve fitting.  
 

 
Figure 5. Raw I-U curve measured at high irradiance conditions (G = 1008 W/m2) before 
and after the elimination of abnormal measurement points.  
 

 
Figure 6. Raw I-U curve measured at medium irradiance conditions (G = 589 W/m2) 
before and after the elimination of abnormal measurement points.   
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Figure 7. Raw I-U curve measured at low irradiance conditions (G = 176 W/m2) before 
and after the elimination of abnormal measurement points.  

4.3 Removal of weighting from measurements 
 
Unfortunately, the issue of the unintentional weighting of the measurement points 
still exists after the elimination of abnormal measurement points. To address this 
issue, a computationally systematic approach for the removal of the undesired 
weighting of measurement points is presented in Kalliojärvi-Viljakainen et al. 
(2020a). Therein, the I-U curve is first split into high-current and high-voltage 
regions, separated by the estimated MPP. Both regions are then divided into an 
equal number of short and evenly distributed intervals. In the spirit of Vega et al. 
(2019) and Wolf and Benda (2013), the even distribution of these intervals is 
reached by dividing the high-current region into equidistant voltage intervals and 
the high-voltage region into equidistant current intervals. Finally, the current and 
voltage values of each interval are averaged to form one current-voltage point 
representing the entire interval. The points obtained in this manner are called the 
representative points. The representative point approach is utilised in Kalliojärvi et 
al. (2022).  

The choice of an appropriate number of representative points per an I-U 
curve is an important issue which must be addressed to guarantee successful fitting. 
Figs. 8-11 show the direct output parameters Iph, Rh, Rs and T of the developed 
single-diode model fitting procedure described in Chapter 3 as a function of the 
number of the representative points used for fitting. The first 300 successive I-U 
curves of dataset A have been used for the analysis. Such a number of measured I-
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U curves is expected to be sufficiently large to show the real behaviour of the fitted 
parameters, and sufficiently small to maintain stable operating conditions.  

Fig. 8 shows that the fitted photocurrent values are stable when at least 40 
representative points are used for fitting. A smaller number of representative 
points leads to difficulties capturing the MPP curvature correctly, whence the SC 
end of the fitted I-U curve clearly overshoots. This becomes visible as increased Iph 
values.  

 

 
Figure 8. The fitted photocurrent values obtained from 300 successive I-U curves 
measured at stable high irradiance conditions as a function of the number of representative 
points used for fitting. The blue boxes represent the fitted values between the 25th and 75th 
percentiles, the red line is the median, and the dashed lines indicate the extreme data 
points.  
 

Fig. 9 shows that the fitted shunt resistance values are not as stable as the 
fitted Iph values when using a small number of representative points. Such a finding 
was expected, as the single-diode model is not particularly sensitive to the value of 
Rh. If only a few tens of representative points are used for the fitting, the obtained 
Rh values are too small, but settle when using a larger number of representative 
points. This behaviour follows again from the failure to repeat the curvature 
around the MPP; the overshooting Iph values and the undershooting Rh values are 
directly linked to each other. 

Fig. 10 shows that the fitted series resistance values are relatively stable 
when at least 100 representative points are used for fitting. Below that, the Rs 
values fluctuate somewhat, which is a natural consequence of the variations of Iph 
and Rh parameters shown in Figs. 8-9.  
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Figure 9. The fitted shunt resistance values obtained from 300 successive I-U curves 
measured at stable high irradiance conditions as a function of the number of representative 
points used for fitting. The blue boxes represent the fitted values between the 25th and 75th 
percentiles, the red line is the median, the dashed lines indicate the extreme data points. 
 

 
Figure 10. The fitted series resistance values obtained from 300 successive I-U curves 
measured at stable high irradiance conditions as a function of the number of representative 
points used for fitting. The blue boxes represent the fitted values between the 25th and 75th 
percentiles, the red line is the median, and the dashed lines indicate the extreme data 
points. 
 

Fig. 11 shows that the fitted temperature stabilises quickly as the number 
of representative points increases. This follows from the correct repetition of the 
OC end of the I-U curve in fitting, even when using a small number of 
representative points. 
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Figure 11. The fitted temperature values obtained from 300 successive I-U curves 
measured at stable high irradiance conditions as a function of the number of representative 
points used for fitting. The blue boxes represent the fitted values between the 25th and 75th 
percentiles, the red line is the median, and the dashed lines indicate the extreme data 
points. 
 

In conclusion, 100-200 representative points seem to be enough for fitting 
the single-diode model reliably to I-U curves. However, if the single-diode model is 
fitted to partial I-U curves, a number of representative points closer to 100 is 
preferable to avoid high computational costs and exceeding the number of original 
measurement points. The last-mentioned issue is especially important when dealing 
with partial I-U curves measured in very close proximity to the MPP. 

4.4 Generation of partial current-voltage curves  
 
Since the online condition monitoring approaches based on the measured entire I-
U curves significantly disturb the operation of the PV systems, the use of partial I-
U curves is highly desirable. However, the measurement range of the I-U curve 
cannot be arbitrarily limited, as its choice certainly affects the overall quality of the 
fit and the accuracy of the parameters of the fitted single-diode model. A 
systematic investigation of such effects is thus needed. To address this issue, this 
thesis applies two easily applicable I-U curve cutting principles (Kalliojärvi et al., 
2022), both of which limit the measurement range of the I-U curve to the vicinity 
of the MPP.  

The first I-U curve cutting principle is based on the MPP power. The 
cutting points are defined as a certain percentage of the PMPP. Points on the I-U 
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curve with a power higher than or equal to the power limit are taken into account 
when fitting. Fig. 12 shows an example of PMPP-based cutting with a 50% cutting 
limit of PMPP.  

 

 
Figure 12. Measured P-U curve (green) jointly with 50% cutting limits of PMPP on the left 
(red) and right (black) side of the MPP. 

 
The second I-U curve cutting principle is based on the MPP voltage. 

Points on the I-U curve having a voltage difference from the MPP smaller than or 
equal to a fixed percentage of UMPP are taken into account when fitting. Such a 
cutting principle is justified because the voltage is typically used as a reference 
quantity for the operation of the inverter. Fig. 13 shows an example of UMPP-based 
cutting with a 35% cutting limit on either side of the MPP.  

In contrast to the PMPP-based cutting, the UMPP-based cutting needs special 
attention when choosing the cutting limits, since the difference from UMPP must 
not exceed UOC. The ratio γU defines the maximum allowed percentage pmax for 
such a difference via the equation 

 

pmax  =  1
γU

 − 1.                                                                                                             (15) 

 
There is no risk of exceeding the end of the I-U curve on the SC side of the curve. 
This is due to the wide high-current region of the I-U curve. 
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Figure 13. Measured I-U curve (green) jointly with cutting limits of 35% of UMPP on the 
left (red) and right (black) side of the MPP. 
 

It is also possible to set different cutting limits on either side of the MPP. 
Such a choice might come into question when, for instance, you want to determine 
only the series resistance, which is mainly determined by the OC slope of the I-U 
curve. Fig. 14 shows an example where the cutting percentage is 10% of PMPP to 
the left of the MPP and 60% to the right.  
 

 
Figure 14. Measured I-U curve (green) jointly with the left (red) and right (black) cutting 
limits of 10% and 60% of PMPP.  
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5 VALIDATION OF THE FITTING PROCEDURE 

This chapter is devoted to verifying the operation of the developed single-diode 
model fitting procedure. Its performance was evaluated for each fitted parameter 
and the analysis is based on dataset A. The raw measured I-U curves were pre-
processed as follows. The abnormal measurement points were removed as 
described in Section 4.2. Thereafter, the redundant voltage values were replaced 
with a single voltage value, and the corresponding current values were averaged to 
form a single current value. Such an approach was computationally faster than 
generating representative points when dealing with entire measured I-U curves.  

5.1 Identification of operating conditions 
 
Fig. 15 shows the calculated and measured irradiance values of PV module 19 as a 
function of time during the measurement period. The first 2500 seconds comprise 
a period of stable high irradiance. Thereafter, sharp irradiance transitions appear at 
2600-3400 seconds. After 3400 seconds, the irradiance reaches a high level again 
and remains so for the rest of the measurement period. 
  

 
Figure 15. Calculated and measured irradiance received by module 19 as a function of time 
during the one-hour measurement period.  
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It is evident from Fig. 15 that the calculated irradiance values agree well 

with the measured irradiance values during stable high irradiance conditions as well 
as during sharp irradiance transitions. The calculated irradiance values lie slightly 
above the measured values, being in line with Lappalainen et al. (2020). There is an 
approximate difference of 10 W/m2 between the calculated and measured 
irradiance values. The accurate reproduction of irradiance by the proposed fitting 
procedure results from the accurate fitting at the SC end, which was particularly 
improved by the redetermination of the ISC,STC value (Appendix). 

The good recognition of irradiance in all operating conditions is of primary 
importance in terms of the usability of the developed I-U curve fitting procedure 
and enables the irradiance-based classification of the measured I-U curves into 
those used in diagnostics or excluded. Indeed, only curves measured under high 
irradiance conditions are valid for analysis based on the single-diode model. The 
possibility to classify the measured I-U curves enhances the usability of the fitting 
procedure at practical PV sites.  

Fig. 16 shows the fitted operating temperature of PV module 19 jointly 
with its measured backplate temperature as a function of time during the one-hour 
measurement period. Obviously, the irradiance conditions are strongly reflected in 
the temperature of the PV module. For the first 2500 seconds of the measurement 
period, the temperature is high and relatively stable with small variations. 
Thereafter, a period shaded by clouds with sharp irradiance transients causes a 
deep drop in temperature. Finally, the return of irradiance to a high level raises the 
temperature again.  

 

 
Figure 16. Fitted and measured operating temperature of PV module 19 as a function of 
time during the one-hour measurement period.  
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Fig. 16 reveals that the fitted temperature values closely follow the 

variation of the measured temperature. The gap between the measured and fitted 
temperature is in line with previous work (Lappalainen et al., 2022a). The main 
reason for the gap is the cooling effect of wind blowing towards the front surface 
of the PV module during the measurement period. The thermal inertia of the PV 
module is shown as a delay between the fitted and measured temperature; the heat 
transfer from the PV cell to the sensor located on the backplate of the PV module 
takes time. Taking these phenomena into account using the developed procedure 
would require separate wind measurements (Torres Lobera and Valkealahti, 2014), 
which is not in accordance with the original goals of the work to identify the 
examined variables only from the measured I-U curves. In addition, the measured 
temperature curve looks thinner and smoother than the fitted one. This results 
from two facts. Firstly, the measured I-U curves respond to sudden changes in the 
PV module temperature faster and more accurately than the temperature sensor. 
Secondly, it is characteristic that the parameter values calculated by the fitting 
procedure vary slightly around the average value.  

In conclusion, the developed fitting procedure reproduces the PV module 
temperature consistently in all operating conditions. Such a finding is a 
consequence of the correct fitting of the single-diode model at the OC end of the 
measured I-U curve, regardless of the irradiance level.  

5.2 Identification of series resistance 
 
Fig. 17 shows the series resistance values identified from PV module 19 during the 
one-hour measurement period as a function of measurement time. During the 
stable high irradiance period comprising the first 2400 seconds of the measurement 
period, the fitted series resistance exhibits good stability, varying only slightly 
around 0.794 Ω. This is in line with previous studies (Lappalainen et al., 2020). The 
basic statistical characteristics of the fitted series resistance during the first 2400 
seconds of the measurement period are given in Table 4 and the histogram in Fig. 
18. The median and mean values of the series resistance are approximately equal. 
Such a result supports the observation that the fitted series resistance values tend 
to be normally distributed whenever their number is sufficiently large and the 
operating conditions are stable. These findings are expected, as the single-diode 
model performs best under stable high irradiance conditions.   
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Figure 17. Fitted series resistance of PV module 19 as a function of time during the one-
hour measurement period.  
 
Table 4. Basic statistical quantities of series resistance identified from PV module 19 in 
stable condition of high irradiance during the first 2400 seconds of the measurement 
period.    
Statistical quantity Value 
Mean (Ω) 0.7941 
Median (Ω) 0.7942 
Standard deviation (Ω) 0.0090 
Interquartile range (Ω) 0.0145 
 

The period of low irradiance with sharp transients following the high 
irradiance period causes the fitted series resistance to vary strongly to higher values. 
The increment in Rs reaches 25%, in accordance with Lappalainen et al. (2020). 
Generally, changes in the fitted Rs values originate from the fact that decreasing 
irradiance changes the shape of the I-U curve. Indeed, the curvature around the 
MPP as well as the slope of the I-U curve in the high-voltage region are changed. 
Fig. 19 shows the fitted series resistance during the one-hour measurement period 
as a function of measured irradiance. It is evident from Fig. 19 that as the 
irradiance decreases, the fitted Rs values increase considerably and their dispersion 
increases.  

The direction of the change in the fitted series resistance values depends 
on the selected value of the ideality factor. The value A = 1.1 utilised in the present 
study makes the series resistance shift upwards from the main trend of Rs under 
stable high irradiance condition. It was experimentally observed that setting A = 
1.3 produces downward shifts in the fitted Rs values at low irradiances which are 
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even larger than those shown in Fig. 17. This phenomenon is explained by the role 
of the ideality factor for the curvature of the I-U curve in the MPP region. Indeed,  

 

 
Figure 18. Histogram of fitted series resistance values obtained during the stable high 
irradiance condition of the first 2400 seconds of the measurement period.  
 

 
Figure 19. Fitted series resistance of PV module 19 as a function of measured irradiance 
during the one-hour measurement period. 
 
all the single-diode model parameters are strongly interconnected; any change in 
one parameter affects the others as well.  

The series resistance is again stable at the end of the measurement period 
because the irradiance coming to the module is also consistently high. However, it 
is slightly smaller than at the beginning of the measurement period. The difference 
stems from the fact that the PV module’s operating temperature is significantly 
lower after shading at the end of the measurement period. Such a finding suggests 
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a slight positive temperature dependence of Rs (De Soto et al., 2006; Piliougine et 
al., 2020).  

These findings confirm the functionality of the developed single-diode 
model fitting procedure for the reliable identification of series resistance in stable 
high irradiance conditions. In contrast, low irradiance conditions are unsuitable for 
series resistance analysis as expected.  

5.3 Identification of other single-diode model parameters 
 
Fig. 20 shows the fitted photocurrent values obtained during the one-hour 
measurement period as a function of measured irradiance. The identified Iph value 
increases linearly as the irradiance increases, as expected. The small deviation of the 
obtained values around the linear trend stems mostly from the minor temperature 
dependence of the photocurrent, since the measured temperature varies by more 
than 20 ºC during the measurement period. It should be noted that Iph is correctly 
identified even at low irradiance levels. This is because the fitting procedure 
correctly follows the SC end of the measured I-U curve at any irradiance level. 
  

 
Figure 20. Fitted photocurrent of PV module 19 as a function of measured irradiance 
during the one-hour measurement period.  
 

Fig. 21 shows the fitted shunt resistance values during the one-hour 
measurement period as a function of the measurement time. The obtained shunt 
resistance values deviate largely from each other even at stable high irradiance 
conditions. The appearance of deviation in fitted Rh values is expected, as the 
single-diode model is not sensitive to the value of this parameter (Rashel et al., 
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resistance values deviate largely from each other even at stable high irradiance 
conditions. The appearance of deviation in fitted Rh values is expected, as the 
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2016). However, the deviation is larger than that obtained in Lappalainen et al. 
(2022a). The Rh values obtained under high irradiance conditions are in the order 
of a few hundred Ω, being well above 200 Ω. These findings are in accordance 
with a previous study (Lappalainen et al. 2020).  

Fig. 22 shows the fitted Rh values converted to STC via (10) during the 
one-hour measurement period as a function of the measurement time. The 
conversion of fitted shunt resistance to STC reduces the deviation of the Rh values. 
However, the deviation is still too large for these values to be used for reliable 
diagnosis, even in high irradiance conditions. The poor performance of the single-
diode model at low irradiance conditions is visible in Figs. 21-22 between 2600 and 
3400 s. 
 

 
Figure 21. Fitted shunt resistance as a function of time during the one-hour measurement 
period.  
 

 
Figure 22. Fitted shunt resistance converted to STC as a function of time during the one-
hour measurement period.  
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Figs. 23-24 show the fitted dark saturation current during the one-hour 

measurement period as functions of the measurement time and measured PV 
module operating temperature, respectively. The magnitude of the identified Io 
values is some fractions of µA, which is in line with a previous study (Meyer, 2017). 
The strong dependence of Io on the operating conditions is visible in both figures 
(compare Figs. 15-16).  
 

 
Figure 23. Fitted dark saturation current of PV module 19 as a function of time during the 
one-hour measurement period.  
 

 
Figure 24. Fitted dark saturation current of PV module 19 during the one-hour 
measurement period as a function of the measured operating temperature of the PV 
module.  
 

The observed behaviour of the fitted parameters Iph, Rh and Io shows that 
the developed fitting procedure also works for them and they behave as expected 
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under varying operating conditions. However, more detailed analysis of Iph, Rh and 
Io is out of scope of the present work.  
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6 FITTING TO PARTIAL CURRENT-VOLTAGE 
CURVES 

This chapter is devoted to investigating the performance of the developed single-
diode model fitting procedure for partial I-U curves. Its performance was evaluated 
in terms of Iph, Rs, and T, as these three parameters provide the most important 
diagnostic information. Where necessary, the fitted parameters are converted to 
STC in order to eliminate the effect of operating conditions from the obtained 
parameters. Since the possible use of the measured partial I-U curves is related to 
online condition monitoring, the analysis is performed in the best operating range 
of the single-diode model. Hence the analysis is based on dataset B measured 
under stable conditions of high irradiance. 

The raw measured I-U curves are pre-processed as follows. The abnormal 
measurement points are removed as described in Section 4.2. Thereafter, the 
measurement range of the I-U curve used for fitting is divided into 100 
representative points as described in Section 4.3. This number of points is large 
enough to preserve the original shape of the measured I-U curve regardless of the 
measurement range, but at the same time small enough to be used with the smallest 
measured partial I-U curves. The representative points are equally distributed along 
the measured parts of the I-U curve as described in Section 4.3, which ensures the 
comparability of the results.  

6.1 Fitting to partial current-voltage curves based on the MPP 
power limit 

 
 

Throughout this section, the I-U curve cutting principle is symmetrical with respect 
to the MPP power estimated as described in Section 4.4. This means that the same 
power limit is applied for either side of the MPP.  

Fig. 25 shows the fitted photocurrents converted to STC during the 40-
minute measurement period as a function of the PMPP-based cutting limit. The 
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corresponding statistical quantities are presented in Table 5. Obviously, a cutting 
limit of 60% or more provides accurate results with a small deviation; the scatter of 
the calculated Iph,STC values increases significantly with smaller cutting limits. Such a 
finding is of practical significance, showing that 60% of the top of the P-U curve is 
sufficient for a reliable analysis of Iph,STC. The mean Iph,STC values in that region are 
in excellent agreement with the real ISC,STC value of PV module 19 (Table 1) being 
only some fractions of a per cent higher. Table 5 reveals that the deviation from 
the mean photocurrent of the entire curve first slightly increases as the cutting limit 
of the curve decreases and more quickly after 60%. Also, the standard deviation 
increases first slightly and then faster with a decreasing cutting limit, being finally 
ten-fold for the cutting limit of 10% of PMPP. An interesting finding is also that the 
calculated Iph,STC values share a common lower threshold of around 8.71 A, which 
corresponds closely to the real ISC,STC value of PV module 19. This is because the 
fitted I-U curve either always exactly matches the SC end of the measured curve or 
exceeds it but never falls below it. 

 

 
Figure 25. Fitted photocurrents at STC as a function of the PMPP-based I-U curve cutting 
limit during the 40-minute measurement period.  
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Table 5. Basic statistical quantities of photocurrent converted to STC during the 40-minute 
measurement period for different PMPP-based I-U curve cutting limits.  
Cutting limit 
(% of PMPP) 

Mean  
(A) 

Median  
(A) 

Standard 
deviation (A) 

Interquartile 
range (A) 

Entire curve 8.7417 8.7416 0.0054 0.0080 
90 8.7418 8.7418 0.0060 0.0085 
80 8.7429 8.7429 0.0062 0.0087 
70 8.7442 8.7439 0.0094 0.0148 
60 8.7459 8.7455 0.0085 0.0118 
50 8.7483 8.7486 0.0150 0.0261 
40 8.7561 8.7462 0.0305 0.0581 
30 8.7700 8.7554 0.0471 0.0927 
20 8.7867 8.7836 0.0603 0.1226 
10 8.8071 8.8151 0.0702 0.1363 
 

Fig. 26 shows the fitted series resistances as a function of the PMPP-based 
cutting limit during the 40-minute measurement period. The corresponding 
statistical quantities are provided in Table 6. The mean series resistance increases 
only marginally, being almost constant when the cutting limit decreases. This 
indicates that series resistance can be determined by analysing partial I-U curves 
measured very close to the MPP. However, the standard deviation increases 
strongly when the cutting limit is below 50%, increasing the uncertainty of the 
fitted parameter.  
 

 
Figure 26. Fitted series resistances as a function of the PMPP-based I-U curve cutting limit 
during the 40-minute measurement period.  
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during the 40-minute measurement period.  
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Table 6. Basic statistical quantities of series resistances during the 40-minute measurement 
period for different PMPP-based I-U curve cutting limits. 
Cutting limit 
(% of PMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 0.7892 0.7892 0.0098 0.0161 
90 0.7925 0.7924 0.0126 0.0219 
80 0.7960 0.7961 0.0132 0.0248 
70 0.7995 0.8000 0.0156 0.0244 
60 0.8036 0.8040 0.0150 0.0248 
50 0.8079 0.8079 0.0169 0.0253 
40 0.8081 0.8131 0.0367 0.0605 
30 0.8050 0.8137 0.0620 0.1104 
20 0.8035 0.7984 0.0841 0.1563 
10 0.8060 0.7888 0.1055 0.1800 

 
Fig. 27 shows the fitted temperature values obtained during the 40-minute 

measurement period as a function of the PMPP-based I-U curve cutting limit. The 
calculated mean temperature decreases slightly as the cutting limit decreases. The 
reason is that the high-voltage region of the I-U curve is not completely linear but 
curves downwards, resulting in an increase in UOC values and a decrease in 
temperature as the cutting limit increases. The same reason also leads to an 
increase in series resistance as the cutting limit decreases. The scatter of the 
temperature is almost constant above the cutting limit of 50% of PMPP. For cutting  
 

 
Figure 27. Fitted temperatures as a function of the PMPP-based I-U curve cutting limit 
during the 40-minute measurement period.  
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limits smaller than 50% of PMPP, the scatter of the fitted temperature clearly 
increases with the decreasing cutting limit. Such a finding reflects the instability of 
the fitting procedure if the I-U curve is cut too much.  

Fig. 28 shows the number of iterations and Fig. 29 the number of objective 
function evaluations per one I-U curve fit as a function of the PMPP-based cutting 
limit during the 40-minute measurement period. The number of iterations is 
smallest when fitting the single-diode model to the measured full I-U curves, and 
remained small up to the cutting limit of 50% of PMPP. If the cutting limit is further 
reduced, the scatter in the number of iterations increases significantly. Such a 
finding results from the instability of the fitting procedure when the I-U curve is  
 

 
Figure 28. Number of iterations needed for fitting as a function of the PMPP-based I-U 
curve cutting limit during the 40-minute measurement period.  

 
Figure 29. Number of objective function evaluations needed for fitting as a function of 
the PMPP-based I-U curve cutting limit during the 40-minute measurement period.  
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Figure 28. Number of iterations needed for fitting as a function of the PMPP-based I-U 
curve cutting limit during the 40-minute measurement period.  

 
Figure 29. Number of objective function evaluations needed for fitting as a function of 
the PMPP-based I-U curve cutting limit during the 40-minute measurement period.  
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cut too much. The findings related to Fig. 28 are also directly visible in Fig. 29. The 
objective function is evaluated on average five times during one iteration.  
 

6.2 Fitting to partial current-voltage curves based on the MPP 
voltage limit 

 
Throughout this section, the I-U curve cutting principle is symmetrical with respect 
to the MPP voltage estimated as described in Section 4.4. This means that an equal 
voltage limit is applied either side of the MPP. Due to the nonlinear shape of the I-
U curve, the high-voltage side of the curve is covered more than the high-current 
side. This causes a different distance between adjacent representative points on the 
left and right sides of the MPP. There are 50 representative points on both sides of 
the MPP, and they are denser in the high-current region than in the high-voltage 
region.  

As earlier explained, the maximum cutting percentage is defined by the 
quantity γU. Its minimum value for dataset B is slightly above 0.7, requiring the 
upper limit for the cutting percentage to be 0.39. The maximum cutting percentage 
is chosen to be 35% in the present work. The entire measured I-U curves serve as 
the reference in this case as well.  

Fig. 30 shows the calculated Iph,STC values during the 40-minute 
measurement period as a function of the UMPP-based cutting limit. The related 
statistical quantities are reported in Table 7. The scatter compared to the reference 
case is large for all the studied cutting limits and significantly exceeds the scatters 
of the PMPP-based cutting limits. This results from the fact that the SC slope of the 
measured partial I-U curve is less covered than the OC slope and has less weight 
during the fitting. The more the I-U curve is cut, the more the calculated Iph,STC 
values deviate. The calculated mean Iph,STC value increases considerably with the 
increasing cutting limit. However, all the Iph,STC values lie over a common threshold 
of around 8.71 A, meaning that the fitted curves never underestimate the SC 
current but can overestimate it strongly. It can be concluded that the UMPP-based 
symmetrical cutting limit is not a viable approach for online condition monitoring 
applications that analyse parameters related to the SC slope of the I-U curve.  
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Figure 30. Fitted photocurrent values converted to STC as a function of the UMPP-based I-
U curve cutting limit during the 40-minute measurement period.  
 
Table 7. Basic statistical quantities of photocurrent converted to STC during the 40-minute 
measurement period for different UMPP-based I-U curve cutting limits. 
Cutting limit 
(% of UMPP) 

Mean  
(A) 

Median  
(A) 

Standard 
deviation (A) 

Interquartile 
range (A) 

Entire curve 8.7417 8.7416 0.0054 0.0080 
35 8.7769 8.7753 0.0303 0.0467 
30 8.7861 8.7680 0.0573 0.1035 
25 8.8035 8.7420 0.0936 0.1667 
20 8.8272 8,7843 0.1103 0.2040 
15 8.8444 8.8479 0.1122 0.2058 
10 8.8269 8.7433 0.1379 0.1771 

 
Fig. 31 shows the fitted series resistance values of the partial I-U curves as 

a function of the UMPP-based cutting limit obtained during the 40-minute 
measurement period. The corresponding statistical quantities are reported in Table 
8. The deviation of the fitted series resistances at any studied cutting limit is much 
larger than the deviation of the series resistance obtained utilising the entire 
measured I-U curves. This is also the case for the largest cutting limit of 35%, 
although most of the OC slope is covered. The deviation increases strongly with 
the decreasing cutting limit. Such findings indicate that UMPP-based symmetrical 
cutting is not an optimal choice for series resistance identification either. This 
problem is not alleviated even by the mean value of Rs, which is nearly constant 
regardless of the cutting limit, because the deviation of the fitted values around the 
mean is too large for a reliable diagnosis.  
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Figure 30. Fitted photocurrent values converted to STC as a function of the UMPP-based I-
U curve cutting limit during the 40-minute measurement period.  
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Fig. 31 shows the fitted series resistance values of the partial I-U curves as 

a function of the UMPP-based cutting limit obtained during the 40-minute 
measurement period. The corresponding statistical quantities are reported in Table 
8. The deviation of the fitted series resistances at any studied cutting limit is much 
larger than the deviation of the series resistance obtained utilising the entire 
measured I-U curves. This is also the case for the largest cutting limit of 35%, 
although most of the OC slope is covered. The deviation increases strongly with 
the decreasing cutting limit. Such findings indicate that UMPP-based symmetrical 
cutting is not an optimal choice for series resistance identification either. This 
problem is not alleviated even by the mean value of Rs, which is nearly constant 
regardless of the cutting limit, because the deviation of the fitted values around the 
mean is too large for a reliable diagnosis.  
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Figure 31. Fitted series resistances as a function of the UMPP-based I-U curve cutting limit 
during the 40-minute measurement period.  

 
Table 8. Basic statistical quantities of series resistances during the 40-minute measurement 
period for different UMPP-based I-U curve cutting limits.  
Cutting limit 
(% of UMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 0.7892 0.7892 0.0098 0.0161 
35 0.7962 0.7963 0.0173 0.0266 
30 0.7979 0.8000 0.0303 0.0441 
25 0.7992 0.8094 0.0667 0.1148 
20 0.7929 0.7883 0.0969 0.1811 
15 0.7922 0.7708 0.1133 0.1937 
10 0.7973 0.7862 0.1247 0.1770 

 
Fig. 32 shows the fitted temperature values obtained during the 40-minute 

measurement period as a function of the UMPP-based cutting limit. The fitted 
temperature values vary strongly around the average values and a larger cutting of 
the I-U curve leads to larger variation in the fitted temperature. When the average 
series resistance of Fig. 31 slightly increases, the average temperature of Fig. 32 
decreases. Such a result is a natural consequence of the combined effect of 
temperature and series resistance on the OC slope of the I-U curve. An increment 
in fitted temperature value is associated with a decrease in fitted UOC value, which 
in turn causes the fitted Rs to decrease.  
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Figure 32. Fitted temperatures as a function of the UMPP-based I-U curve cutting limit 
during the 40-minute measurement period.  
 

Fig. 33 shows the number of iterations and Fig. 34 the number of objective 
function evaluations per one I-U curve fit as a function of the UMPP-based I-U 
curve cutting limit during the 40-minute measurement period. Remarkably, the 
numbers of iterations and objective function evaluations needed in the UMPP-based 
cutting are significantly larger than those in the PMPP-based cutting. This is because 
the algorithm has an obvious difficulty in fitting the single-diode model to partial I-
U curves that cover only a small part of the SC slope.  

 
 

 
Figure 33. Number of iterations needed for fitting as a function of the UMPP-based I-U 
curve cutting limit during the 40-minute measurement period.  
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Figure 33. Number of iterations needed for fitting as a function of the UMPP-based I-U 
curve cutting limit during the 40-minute measurement period.  
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Figure 34. Number of objective function evaluations needed for fitting as a function of 
the UMPP-based I-U curve cutting limit during the 40-minute measurement period.  
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7 AGEING DETECTION 

This chapter is devoted to investigating the ageing detection capability of the 
developed single-diode model fitting procedure. The analysis focuses fully on the 
identification of the series resistance parameter.  

In practical condition monitoring applications, no reliable diagnostic 
conclusions can be drawn based only on few randomly measured I-U curves. 
Instead, a sufficiently large number of successive I-U curves measured at stable 
high irradiance conditions must be analysed. However, there are no previous 
studies of a sufficient number of measured I-U curves for this purpose. This issue 
has been addressed in Section 7.1 (Kalliojärvi et al., 2022). 

The capability of the single-diode model fitting procedure to quantify 
ageing from entire and partial measured I-U curves is investigated in Sections 7.2 
and 7.3. Ageing was modelled by adding two resistors of different sizes, each in 
turn, in series with the PV module, and then identifying the series resistance from 
the measured I-U curves. One resistor (0.22 Ω) emulates moderate ageing, while 
the other (0.69 Ω) emulates severe ageing. Datasets C, D, and E described in 
Chapter 4 were used for the analysis. In Section 7.2, the I-U curves are cut 
symmetrically based on the PMPP percentages. The investigation of the symmetrical 
UMPP-based cutting of I-U curves is omitted due to its weak capability to produce 
series resistance correctly (Section 6.2). However, since series resistance is a key 
quantity in ageing detection, it is reasonable to ask whether it could be better 
identified by focusing the measurement range of the I-U curve on the OC slope 
(Sera et al., 2008). Compromising the correctness of other fitting parameters, the 
PMPP- and UMPP-based I-U curve cutting principles can be applied by setting 
different cutting limits on either side of the MPP. This issue is investigated in 
Section 7.3.  
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Figure 34. Number of objective function evaluations needed for fitting as a function of 
the UMPP-based I-U curve cutting limit during the 40-minute measurement period.  
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7.1 Number of current-voltage curves needed for series resistance 
analysis 

 
The analysis is based on the fact that the fitted Rs values obtained under stable 
operating conditions have a characteristic deviation around the average value due 
to the fitting and measurement methods of the I-U curve. If the number of 
analysed I-U curves is too small, the entire deviation range is not reached and the 
statistical reliability of the analysis suffers. Hence the behaviour of the Rs deviation 
as a function of the number of I-U curves was analysed. Entire measured I-U 
curves were used in the analysis, so that the deviation of the fitted Rs values due to 
cutting the curves did not affect the results. 

Two non-overlapping subsets of dataset B are analysed. The corresponding 
measurement periods are 1-600 s (Case A) and 1201-1800 s (Case B). These 
periods were measured under stable high-irradiance conditions. However, their 
temperature profiles differ from each other, as shown in Fig. 35. In case A, the 
temperature is clearly higher at the beginning than in case B, but then drops by 
about 4 ºC. Such differences in temperature are expected to have an impact on the 
obtained series resistance values because of the slight temperature dependence of 
the series resistance.  
  
 

 
Figure 35. Measured PV module temperatures during the 10-minute measurement 
periods selected for the analysis of the scatter in fitted series resistances. 
 

Figs. 36-37 show the fitted series resistance values of Case A and Case B as 
a function of the number of the analysed I-U curves. The corresponding key 
statistical quantities are reported in Table 9. The series resistances have slightly 
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larger values in Case A than in B, partly because of the higher temperatures in Case 
A. The deviation of the fitted Rs values reaches stability in a shorter time in Case B 
than in Case A. This difference is explained by the smaller deviation of the PV 
module’s temperature during the measurement period of Case B. Fig. 36 and Table 
9 reveal that the obtained mean series resistance decreased about 0.4% when the 
temperature decreased by 4 ºC. Such a finding is to be noted when designing real-
case condition monitoring applications. Nevertheless, neither the mean of the 
fitted series resistance nor its standard deviation was especially sensitive to the 
number of analysed I-U curves. In this light, a measurement period of few minutes 
is sufficient for reliable series resistance analysis. 
 

 
Figure 36. Fitted series resistance values and their mean value (black line) as a function of 
the number of measured I-U curves used for analysis in Case A.  
 

 
Figure 37. Fitted series resistance values and their mean value (black line) as a function of 
the number of measured I-U curves used for analysis in Case B.  
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Table 9. Basic statistical quantities of fitted series resistances for different numbers of 
analysed I-U curves in Cases A and B. 
                                           A                                                 B  
Number of  
I-U curves 

Mean  
(Ω) 

Standard 
deviation (Ω) 

Mean  
(Ω) 

Standard 
deviation (Ω) 

60 0.7933 0.0085 0.7888 0.0102 
120 0.7932 0.0093 0.7871 0.0105 
180 0.7929 0.0095 0.7875 0.0100 
240 0.7923 0.0096 0.7895 0.0101 
300 0.7916 0.0097 0.7892 0.0099 
360 0.7911 0.0098 0.7891 0.0096 
420 0.7907 0.0099 0.7888 0.0094 
480 0.7904 0.0098 0.7884 0.0091 
540 0.7901 0.0099 0.7884 0.0091 
600 0.7900 0.0100 0.7881 0.0091 

 
The analysis reveals that a measurement period of few minutes with a 1 Hz 

sampling frequency is sufficient for the reliable determination of the series 
resistance of the PV module. However, a reliable analysis seems to require 
sufficiently stable high irradiance conditions. These findings have a practical 
meaning when designing the condition monitoring procedures for PV systems and 
also serve as guidelines for future research.  

7.2 Ageing detection based on entire and symmetrically limited 
partial current-voltage curves 

 
It is reasonable to ask whether the identification of series resistance performs 
equally well for differently aged PV modules, since an increase in the series 
resistance changes the shape of the I-U curve. Hence the performance of the 
fitting procedure must be tested for PV modules exhibiting different stages of 
ageing. This was modelled by adding two resistors of different sizes, each in turn, 
in series with the PV module. The issue is addressed in this section by analysing 
entire measured I-U curves as well as curves symmetrically cut with respect to the 
PMPP, as it proved to be a promising online parameter identification approach 
(Section 6.1).  
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Fig. 38 shows the fitted series resistances obtained from the entire 
measured I-U curves of non-aged (Rs,add = 0.00 Ω), moderately aged (Rs,add = 0.22 
Ω), and severely aged (Rs,add = 0.69 Ω) PV modules as a function of time during 
1300-second measurement periods of stable high irradiance. The identified 
resistances are very stable with a small deviation around the average value in each 
studied case of emulated ageing. This indicates that the developed identification 
procedure is also stable for aged PV modules. The fitting procedure also 
reproduces the emulated ageing of the PV module with additional series resistors 
well. Hence, the fitting procedure seems to be a reliable diagnostic tool at least for 
entire measured I-U curves.  
 

 
Figure 38. Fitted series resistances as a function of time during the 1300-second 
measurement periods obtained from entire I-U curves.  

 
Figs. 39-40 show the series resistance values for partial I-U curves obtained 

using cutting limits of 50% and 20% of PMPP. The developed fitting procedure 
produces stable series resistances with a relatively small deviation around the 
average identified Rs value when the 50% cutting limit is used. As is expected, the 
scatter in the fitted Rs is slightly larger than for entire measured I-U curves. 
Remarkably, the series resistance value is identified equally well for aged and non-
aged PV modules. Hence, I-U curves symmetrically cut at down to 50% of PMPP 
can be well-utilised in ageing analysis using the developed fitting procedure. In 
contrast, Fig. 40 serves as an example of a too small cutting limit. Although the 
fitted series resistances exhibit equally large scatter in each studied ageing case, the 
scatter seems to be too large for reliable diagnosis. Maybe they, too, could be 
utilised using suitable statistical analysis, as the values seem to fluctuate around the 
same averages as when using entire I-U curves. 
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Table 9. Basic statistical quantities of fitted series resistances for different numbers of 
analysed I-U curves in Cases A and B. 
                                           A                                                 B  
Number of  
I-U curves 

Mean  
(Ω) 

Standard 
deviation (Ω) 

Mean  
(Ω) 

Standard 
deviation (Ω) 

60 0.7933 0.0085 0.7888 0.0102 
120 0.7932 0.0093 0.7871 0.0105 
180 0.7929 0.0095 0.7875 0.0100 
240 0.7923 0.0096 0.7895 0.0101 
300 0.7916 0.0097 0.7892 0.0099 
360 0.7911 0.0098 0.7891 0.0096 
420 0.7907 0.0099 0.7888 0.0094 
480 0.7904 0.0098 0.7884 0.0091 
540 0.7901 0.0099 0.7884 0.0091 
600 0.7900 0.0100 0.7881 0.0091 

 
The analysis reveals that a measurement period of few minutes with a 1 Hz 

sampling frequency is sufficient for the reliable determination of the series 
resistance of the PV module. However, a reliable analysis seems to require 
sufficiently stable high irradiance conditions. These findings have a practical 
meaning when designing the condition monitoring procedures for PV systems and 
also serve as guidelines for future research.  

7.2 Ageing detection based on entire and symmetrically limited 
partial current-voltage curves 

 
It is reasonable to ask whether the identification of series resistance performs 
equally well for differently aged PV modules, since an increase in the series 
resistance changes the shape of the I-U curve. Hence the performance of the 
fitting procedure must be tested for PV modules exhibiting different stages of 
ageing. This was modelled by adding two resistors of different sizes, each in turn, 
in series with the PV module. The issue is addressed in this section by analysing 
entire measured I-U curves as well as curves symmetrically cut with respect to the 
PMPP, as it proved to be a promising online parameter identification approach 
(Section 6.1).  
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Fig. 38 shows the fitted series resistances obtained from the entire 
measured I-U curves of non-aged (Rs,add = 0.00 Ω), moderately aged (Rs,add = 0.22 
Ω), and severely aged (Rs,add = 0.69 Ω) PV modules as a function of time during 
1300-second measurement periods of stable high irradiance. The identified 
resistances are very stable with a small deviation around the average value in each 
studied case of emulated ageing. This indicates that the developed identification 
procedure is also stable for aged PV modules. The fitting procedure also 
reproduces the emulated ageing of the PV module with additional series resistors 
well. Hence, the fitting procedure seems to be a reliable diagnostic tool at least for 
entire measured I-U curves.  
 

 
Figure 38. Fitted series resistances as a function of time during the 1300-second 
measurement periods obtained from entire I-U curves.  

 
Figs. 39-40 show the series resistance values for partial I-U curves obtained 

using cutting limits of 50% and 20% of PMPP. The developed fitting procedure 
produces stable series resistances with a relatively small deviation around the 
average identified Rs value when the 50% cutting limit is used. As is expected, the 
scatter in the fitted Rs is slightly larger than for entire measured I-U curves. 
Remarkably, the series resistance value is identified equally well for aged and non-
aged PV modules. Hence, I-U curves symmetrically cut at down to 50% of PMPP 
can be well-utilised in ageing analysis using the developed fitting procedure. In 
contrast, Fig. 40 serves as an example of a too small cutting limit. Although the 
fitted series resistances exhibit equally large scatter in each studied ageing case, the 
scatter seems to be too large for reliable diagnosis. Maybe they, too, could be 
utilised using suitable statistical analysis, as the values seem to fluctuate around the 
same averages as when using entire I-U curves. 
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Figure 39. Fitted series resistances as a function of time for partial I-U curves with a 
cutting limit of 50% of PMPP during the 1300-second measurement periods.  

 

 
Figure 40. Fitted series resistances as a function of time for partial I-U curves with a 
cutting limit of 20% of PMPP during the 1300-second measurement periods.  

 
In order to provide a more systematic quantitative analysis, Tables 10-12 

provide the key statistical quantities of the fitted series resistances as a function of 
the PMPP-based cutting limits for the non-aged, moderately aged, and severely aged 
PV module. The figures in Table 10 are well in line with Table 6. Such a result is 
expected because it has been previously shown that a few hundred measured I-U 
curves are sufficient for reliable analysis of Rs. Figs. 41-42 visualise the results of 
Tables 11-12, showing the fitted Rs values as a function of the PMPP-based cutting 
limit for the moderately aged and the severely aged PV module, respectively.  
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Table 10. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves without using additional series resistance with the PV module for 
different PMPP-based cutting limits.  
Cutting limit 
(% of PMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 0.7894 0.7896 0.0101 0.0167 
90 0.7926 0.7926 0.0130 0.0225 
80 0.7959 0.7963 0.0134 0.0247 
70 0.7994 0.7999 0.0156 0.0247 
60 0.8032 0.8035 0.0151 0.0246 
50 0.8075 0.8077 0.0166 0.0246 
40 0.8087 0.8148 0.0362 0.0592 
30 0.8059 0.8141 0.0620 0.1103 
20 0.8040 0.7988 0.0841 0.1584 
10 0.8080 0.7912 0.1016 0.1712 
 
Table 11. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves using additional series resistance of 0.22 Ω with the PV module for 
different PMPP-based cutting limits.  
Cutting limit 
(% of PMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 1.0401 1.0396 0.0079 0.0130 
90 1.0436 1.0427 0.0101 0.0172 
80 1.0465 1.0456 0.0110 0.0185 
70 1.0496 1.0484 0.0112 0.0200 
60 1.0533 1.0532 0.0136 0.0209 
50 1.0568 1.0540 0.0111 0.0203 
40 1.0593 1.0588 0.0219 0.0336 
30 1.0598 1.0672 0.0453 0.0809 
20 1.0596 1.0672 0.0690 0.1280 
10 1.0560 1.0428 0.0968 0.1768 
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Figure 39. Fitted series resistances as a function of time for partial I-U curves with a 
cutting limit of 50% of PMPP during the 1300-second measurement periods.  

 

 
Figure 40. Fitted series resistances as a function of time for partial I-U curves with a 
cutting limit of 20% of PMPP during the 1300-second measurement periods.  

 
In order to provide a more systematic quantitative analysis, Tables 10-12 

provide the key statistical quantities of the fitted series resistances as a function of 
the PMPP-based cutting limits for the non-aged, moderately aged, and severely aged 
PV module. The figures in Table 10 are well in line with Table 6. Such a result is 
expected because it has been previously shown that a few hundred measured I-U 
curves are sufficient for reliable analysis of Rs. Figs. 41-42 visualise the results of 
Tables 11-12, showing the fitted Rs values as a function of the PMPP-based cutting 
limit for the moderately aged and the severely aged PV module, respectively.  
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Table 10. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves without using additional series resistance with the PV module for 
different PMPP-based cutting limits.  
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Table 11. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves using additional series resistance of 0.22 Ω with the PV module for 
different PMPP-based cutting limits.  
Cutting limit 
(% of PMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 1.0401 1.0396 0.0079 0.0130 
90 1.0436 1.0427 0.0101 0.0172 
80 1.0465 1.0456 0.0110 0.0185 
70 1.0496 1.0484 0.0112 0.0200 
60 1.0533 1.0532 0.0136 0.0209 
50 1.0568 1.0540 0.0111 0.0203 
40 1.0593 1.0588 0.0219 0.0336 
30 1.0598 1.0672 0.0453 0.0809 
20 1.0596 1.0672 0.0690 0.1280 
10 1.0560 1.0428 0.0968 0.1768 
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Table 12. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves using additional series resistance of 0.69 Ω with the PV module for 
different PMPP-based cutting limits.  
Cutting limit 
(% of PMPP) 

Mean  
(Ω) 

Median  
(Ω) 

Standard 
deviation (Ω) 

Interquartile 
range (Ω) 

Entire curve 1.5077 1.5079 0.0079 0.0139 
90 1.5103 1.5103 0.0101 0.0183 
80 1.5119 1.5113 0.0112 0.0195 
70 1.5134 1.5128 0.0109 0.0214 
60 1.5147 1.5141 0.0129 0.0196 
50 1.5159 1.5131 0.0125 0.0221 
40 1.5181 1.5182 0.0154 0.0231 
30 1.5180 1.5244 0.0317 0.0511 
20 1.5086 1.5251 0.0580 0.0988 
10 complex complex complex complex 
 

 
Figure 41. Series resistances obtained during the 1300-second measurement period of I-U 
curves as a function of the PMPP-based cutting limit for module 19 with Rs,add = 0.22 Ω. 
 

Table 12 shows that the fitting procedure encountered a problem when the 
cutting limit was reduced to 10% of PMPP for the severely aged PV module. Indeed, 
the algorithm then occasionally returned complex parameter values without a 
physical meaning. Such a result stems from the fact that the MPP curvature of the 
I-U curve of a severely aged PV module is levelled off. Hence it is difficult to fit 
the single-diode model to such a curve when only a very limited region around the 
MPP is used for fitting. However, this is not a serious limitation, as the parameter 
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values of successfully fitted I-U curves with small cutting limit are already known 
to deviate too strongly for reliable diagnosis. 
 

 
Figure 42. Fitted series resistances obtained during the 1300-second measurement period 
of I-U curves as a function of the PMPP-based cutting limit for module 19 with Rs,add = 0.69 
Ω. 
 

Tables 10-12 reveal that PMPP-based I-U curve cutting behaves similarly for 
all stages of ageing. The mean of the fitted series resistances increases only slightly 
the more the curves are cut, and the same is true with the standard deviation down 
to a 50% cutting limit. When the I-U curves are cut below the cutting limit of 50%, 
the standard deviation increases faster. In addition, the standard deviation and 
interquartile range behave approximately similarly in Tables 10-12 as functions of 
the cutting limit. The minor differences are explained by slightly different operating 
conditions and the scattered nature of the fitted parameters resulting from the 
optimisation procedure. 

In conclusion, the cutting limits of 50-100% of PMPP provide stable values 
of identified series resistance for all stages of ageing. Hence, the measurement 
range of the I-U curve can be selected freely within these limits. Such a finding 
provides a practical guideline for the development of the proposed approach 
towards a full online condition monitoring approach. In contrast, the usage of 
smaller cutting limits does not allow for reliable diagnostic results by using the 
parameter identification approach presented in this thesis. 
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Table 12. Basic statistical quantities of fitted series resistances obtained from 1300 
measured I-U curves using additional series resistance of 0.69 Ω with the PV module for 
different PMPP-based cutting limits.  
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Figure 41. Series resistances obtained during the 1300-second measurement period of I-U 
curves as a function of the PMPP-based cutting limit for module 19 with Rs,add = 0.22 Ω. 
 

Table 12 shows that the fitting procedure encountered a problem when the 
cutting limit was reduced to 10% of PMPP for the severely aged PV module. Indeed, 
the algorithm then occasionally returned complex parameter values without a 
physical meaning. Such a result stems from the fact that the MPP curvature of the 
I-U curve of a severely aged PV module is levelled off. Hence it is difficult to fit 
the single-diode model to such a curve when only a very limited region around the 
MPP is used for fitting. However, this is not a serious limitation, as the parameter 
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values of successfully fitted I-U curves with small cutting limit are already known 
to deviate too strongly for reliable diagnosis. 
 

 
Figure 42. Fitted series resistances obtained during the 1300-second measurement period 
of I-U curves as a function of the PMPP-based cutting limit for module 19 with Rs,add = 0.69 
Ω. 
 

Tables 10-12 reveal that PMPP-based I-U curve cutting behaves similarly for 
all stages of ageing. The mean of the fitted series resistances increases only slightly 
the more the curves are cut, and the same is true with the standard deviation down 
to a 50% cutting limit. When the I-U curves are cut below the cutting limit of 50%, 
the standard deviation increases faster. In addition, the standard deviation and 
interquartile range behave approximately similarly in Tables 10-12 as functions of 
the cutting limit. The minor differences are explained by slightly different operating 
conditions and the scattered nature of the fitted parameters resulting from the 
optimisation procedure. 

In conclusion, the cutting limits of 50-100% of PMPP provide stable values 
of identified series resistance for all stages of ageing. Hence, the measurement 
range of the I-U curve can be selected freely within these limits. Such a finding 
provides a practical guideline for the development of the proposed approach 
towards a full online condition monitoring approach. In contrast, the usage of 
smaller cutting limits does not allow for reliable diagnostic results by using the 
parameter identification approach presented in this thesis. 
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7.3 Ageing detection based on asymmetrically limited partial 
current-voltage curves 

 
As series resistance is mainly determined by the OC slope of the I-U curve, the 
question arises primarily of using that range for fitting the single-diode model. 
Therefore, the capability of the developed fitting procedure to identify Rs is tested 
by using asymmetrically measured I-U curves with the major emphasis on the high-
voltage region. In this section, the symmetrical PMPP-based cutting method serves 
as an appropriate reference.  

Tables 13-15 report the basic statistical quantities of the identified series 
resistances during 300-second high-irradiance measurement periods of I-U curves 
cut based on the PMPP percentages for differently aged PV modules. The 
measurement periods are the first 5 minutes of datasets C, D, and E. The main 
emphasis in fitting is on the OC slope of the I-U curve. The cutting limits on the 
left and right side of the MPP are varied within the ranges of 10%-40% and 40%-
60% of PMPP, respectively. These choices are based on the observation that a 
symmetrical cutting limit of 50% of PMPP still performed well in detecting series 
resistance.  

Tables 13-15 show the behaviour of the fitted series resistance when the 
cutting limits are varied. If the cutting limit on one side of the MPP is fixed, a 
decrease of the cutting limit on the other side weakens the accuracy of Rs 
detection. This occurs at all stages of PV module ageing. If only the left cutting 
limit is decreased, then the average fitted Rs values decrease. This effect is caused 
by the increased emphasis of the OC slope in fitting, while the weight of the SC 
slope decreases. If only the right cutting limit is decreased, then the average fitted 
Rs values increase. Correspondingly, this effect originates from the increased 
emphasis of the SC slope. 

For all the cutting cases reported in Tables 13-15, the deviation of the 
fitted Rs values is larger than that obtained by using a symmetrical PMPP-based 
cutting limit of 50%. However, the smallest cutting percentages still producing a 
tolerable deviation in the identified Rs values seem to be 20% on the left side of 
MPP and 50%-60% on the right side. 
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Table 13. Basic statistical quantities of fitted series resistances obtained from 300 measured 
I-U curves without using additional series resistance with the PV module for different 
PMPP-based cutting limits. 
   Limit (%)                                  Quantity (Ω) 
Left Right Mean Median St. deviation  IQR 
40 60 0.8027 0.8033 0.0149 0.0217 
 50 0.8086 0.8096 0.0165 0.0277 
 40 0.8123 0.8181 0.0344 0.0566 
30 60 0.8009 0.8015 0.0153 0.0220 
 50 0.8066 0.8071 0.0176 0.0276 
 40 0.8091 0.8176 0.0369 0.0617 
20 60 0.7988 0.7997 0.0160 0.0231 
 50 0.8042 0.8056 0.0195 0.0293 
 40 0.8043 0.8163 0.0413 0.0679 
10 60 0.7961 0.7973 0.0166 0.0233 
 50 0.8000 0.8017 0.0238 0.0296 
 40 0.7951 0.8138 0.0538 0.0846 

 
Table 14. Basic statistical quantities of fitted series resistances obtained from 300 measured 
I-U curves using additional series resistance of 0.22 Ω with the PV module for different 
PMPP-based cutting limits. 
       Limit (%)                                Quantity (Ω) 
Left Right Mean Median St. deviation IQR 
40 60 1.0484 1.0488 0.0130 0.0190 
 50 1.0541 1.0516 0.0112 0.0202 
 40 1.0578 1.0560 0.0227 0.0349 
30 60 1.0457 1.0462 0.0138 0.0211 
 50 1.0514 1.0493 0.0119 0.0215 
 40 1.0544 1.0530 0.0255 0.0419 
20 60 1.0421 1.0423 0.0156 0.0229 
 50 1.0479 1.0465 0.0135 0.0226 
 40 1.0485 1.0490 0.0305 0.0510 
10 60 1.0342 1.0354 0.0192 0.0276 
 50 1.0394 1.0412 0.0191 0.0287 
 40 1.0345 1.0439 0.0450 0.0793 
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7.3 Ageing detection based on asymmetrically limited partial 
current-voltage curves 

 
As series resistance is mainly determined by the OC slope of the I-U curve, the 
question arises primarily of using that range for fitting the single-diode model. 
Therefore, the capability of the developed fitting procedure to identify Rs is tested 
by using asymmetrically measured I-U curves with the major emphasis on the high-
voltage region. In this section, the symmetrical PMPP-based cutting method serves 
as an appropriate reference.  

Tables 13-15 report the basic statistical quantities of the identified series 
resistances during 300-second high-irradiance measurement periods of I-U curves 
cut based on the PMPP percentages for differently aged PV modules. The 
measurement periods are the first 5 minutes of datasets C, D, and E. The main 
emphasis in fitting is on the OC slope of the I-U curve. The cutting limits on the 
left and right side of the MPP are varied within the ranges of 10%-40% and 40%-
60% of PMPP, respectively. These choices are based on the observation that a 
symmetrical cutting limit of 50% of PMPP still performed well in detecting series 
resistance.  

Tables 13-15 show the behaviour of the fitted series resistance when the 
cutting limits are varied. If the cutting limit on one side of the MPP is fixed, a 
decrease of the cutting limit on the other side weakens the accuracy of Rs 
detection. This occurs at all stages of PV module ageing. If only the left cutting 
limit is decreased, then the average fitted Rs values decrease. This effect is caused 
by the increased emphasis of the OC slope in fitting, while the weight of the SC 
slope decreases. If only the right cutting limit is decreased, then the average fitted 
Rs values increase. Correspondingly, this effect originates from the increased 
emphasis of the SC slope. 

For all the cutting cases reported in Tables 13-15, the deviation of the 
fitted Rs values is larger than that obtained by using a symmetrical PMPP-based 
cutting limit of 50%. However, the smallest cutting percentages still producing a 
tolerable deviation in the identified Rs values seem to be 20% on the left side of 
MPP and 50%-60% on the right side. 
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Table 13. Basic statistical quantities of fitted series resistances obtained from 300 measured 
I-U curves without using additional series resistance with the PV module for different 
PMPP-based cutting limits. 
   Limit (%)                                  Quantity (Ω) 
Left Right Mean Median St. deviation  IQR 
40 60 0.8027 0.8033 0.0149 0.0217 
 50 0.8086 0.8096 0.0165 0.0277 
 40 0.8123 0.8181 0.0344 0.0566 
30 60 0.8009 0.8015 0.0153 0.0220 
 50 0.8066 0.8071 0.0176 0.0276 
 40 0.8091 0.8176 0.0369 0.0617 
20 60 0.7988 0.7997 0.0160 0.0231 
 50 0.8042 0.8056 0.0195 0.0293 
 40 0.8043 0.8163 0.0413 0.0679 
10 60 0.7961 0.7973 0.0166 0.0233 
 50 0.8000 0.8017 0.0238 0.0296 
 40 0.7951 0.8138 0.0538 0.0846 

 
Table 14. Basic statistical quantities of fitted series resistances obtained from 300 measured 
I-U curves using additional series resistance of 0.22 Ω with the PV module for different 
PMPP-based cutting limits. 
       Limit (%)                                Quantity (Ω) 
Left Right Mean Median St. deviation IQR 
40 60 1.0484 1.0488 0.0130 0.0190 
 50 1.0541 1.0516 0.0112 0.0202 
 40 1.0578 1.0560 0.0227 0.0349 
30 60 1.0457 1.0462 0.0138 0.0211 
 50 1.0514 1.0493 0.0119 0.0215 
 40 1.0544 1.0530 0.0255 0.0419 
20 60 1.0421 1.0423 0.0156 0.0229 
 50 1.0479 1.0465 0.0135 0.0226 
 40 1.0485 1.0490 0.0305 0.0510 
10 60 1.0342 1.0354 0.0192 0.0276 
 50 1.0394 1.0412 0.0191 0.0287 
 40 1.0345 1.0439 0.0450 0.0793 
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Table 15. Basic statistical quantities for fitted series resistances obtained from 300 measured 
I-U curves using additional series resistance of 0.69 Ω with the PV module for different 
PMPP-based cutting limits. 
       Limit (%)                                Quantity (Ω) 
Left Right Mean Median St. deviation IQR 
40 60 1.5092 1.5088 0.0143 0.0222 
 50 1.5132 1.5092 0.0130 0.0223 
 40 1.5165 1.5160 0.0152 0.0232 
30 60 1.5070 1.5072 0.0158 0.0251 
 50 1.5115 1.5067 0.0141 0.0247 
 40 1.5145 1.5151 0.0170 0.0252 
20 60 1.5024 1.5035 0.0186 0.0267 
 50 1.5076 1.5039 0.0160 0.0281 
 40 1.5095 1.5126 0.0210 0.0298 
 

Figs. 44-45 illustrate such cases where the left cutting limit is 20% and the 
right cutting limits are 60% and 50%, respectively. The interquartile ranges of the 
fitted Rs values in Fig. 44 are close to the case of having a symmetrical PMPP-based 
cutting limit of 50% but are clearly larger in Fig. 45. The deviation increases even 
more if the cutting limit on the right side of the MPP is set to 40%. However, the 
average Rs values remain almost unchanged. When the left cutting limit is set to 
10% for the severely aged module, the fitting algorithm occasionally produces 
complex numbers as the fitted parameter values.  

 

 
Figure 44. Identified series resistances during the 300-second I-U curve measurement 
periods for different cases of ageing by using a PMPP-based cutting limit of 20% on the left 
side of MPP and 60% on the right side.  
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Figure 45. Identified series resistances during the 300-second I-U curve measurement 
periods for different cases of ageing by using a PMPP-based cutting limit of 20% on the left 
side of MPP and 50% on the right side.   
 

These results show that asymmetrical cutting emphasising the OC slope of 
the I-U curve can be used at least for finding the correct order of magnitude of 
series resistance. If exceptionally high Rs values are then identified, a more accurate 
diagnosis can be obtained by increasing the measurement range in the SC slope 
region of the I-U curve. It should be noted that emphasising the OC slope in 
fitting leads to the weakened fitting accuracy of the other single-diode model 
parameters. This, in turn, complicates the identification of irradiance. 
 



 

82 

Table 15. Basic statistical quantities for fitted series resistances obtained from 300 measured 
I-U curves using additional series resistance of 0.69 Ω with the PV module for different 
PMPP-based cutting limits. 
       Limit (%)                                Quantity (Ω) 
Left Right Mean Median St. deviation IQR 
40 60 1.5092 1.5088 0.0143 0.0222 
 50 1.5132 1.5092 0.0130 0.0223 
 40 1.5165 1.5160 0.0152 0.0232 
30 60 1.5070 1.5072 0.0158 0.0251 
 50 1.5115 1.5067 0.0141 0.0247 
 40 1.5145 1.5151 0.0170 0.0252 
20 60 1.5024 1.5035 0.0186 0.0267 
 50 1.5076 1.5039 0.0160 0.0281 
 40 1.5095 1.5126 0.0210 0.0298 
 

Figs. 44-45 illustrate such cases where the left cutting limit is 20% and the 
right cutting limits are 60% and 50%, respectively. The interquartile ranges of the 
fitted Rs values in Fig. 44 are close to the case of having a symmetrical PMPP-based 
cutting limit of 50% but are clearly larger in Fig. 45. The deviation increases even 
more if the cutting limit on the right side of the MPP is set to 40%. However, the 
average Rs values remain almost unchanged. When the left cutting limit is set to 
10% for the severely aged module, the fitting algorithm occasionally produces 
complex numbers as the fitted parameter values.  

 

 
Figure 44. Identified series resistances during the 300-second I-U curve measurement 
periods for different cases of ageing by using a PMPP-based cutting limit of 20% on the left 
side of MPP and 60% on the right side.  

 

83 
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These results show that asymmetrical cutting emphasising the OC slope of 
the I-U curve can be used at least for finding the correct order of magnitude of 
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region of the I-U curve. It should be noted that emphasising the OC slope in 
fitting leads to the weakened fitting accuracy of the other single-diode model 
parameters. This, in turn, complicates the identification of irradiance. 
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8 DISCUSSION 

The methods developed in this thesis are based on certain choices made during the 
research process. In the following, the most relevant of these choices are raised for 
discussion. The consequent motivation for considering alternative choices is based 
on the existing literature. As a result, interesting topics for future research are 
provided which could possibly help to further improve the proposed methodology.  

The first observations are related to the formation of the initial guess 
values of parameter needed by the developed single-diode model fitting procedure. 
The parasitic resistances at STC calculated via the iterative procedure by Villalva et 
al. (2009) served as their initial guess for the first current-voltage curve of the 
dataset. Ayodele et al. (2016) reported that the Villalva algorithm is quite immune 
to changes in the initial guess values. This property justifies its usage in initialising 
the fitting procedure: even if the values of the SC current, OC voltage, MPP 
current, and MPP voltage at STC needed in the initialisation were not exactly 
known, the identified STC values for the parasitic resistances are not expected to 
change much. As a possible development idea, the modules do not have to be 
assumed to be in STC conditions at the beginning of the fitting procedure: the 
MPP tracking algorithm of the inverter finds the MPP current and voltage and the 
first initial guess for parasitic resistances could also be provided by using these 
values.   

The initial guess for the photocurrent was calculated based on the ratio 
IMPP/ISC, which was assumed to be constant in this thesis. The used constant value 
was derived from experimentally determined values of MPP and SC currents at 
STC. The obtained constant (0.91) is in line with previous studies (Bastidas-
Rodriguez et al., 2017a; Sera, 2010; Sera et al., 2011; Spagnuolo et al., 2019b; Wang 
et al., 2011). The observation by Spagnuolo et al. (2019b) that higher irradiance 
levels lead to larger differences in the IMPP/ISC ratio for different series resistance 
additions could be considered when applying the developed fitting procedure for 
PV module ageing detection in practice. 

In contrast to the utilisation of the IMPP/ISC ratio in the present work, the 
proposed fitting procedure in its existing form does not make any assumptions 
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based on the ratio UMPP/UOC. This simplifies the procedure in the sense that 
UMPP/UOC, which is a decreasing function of irradiance and temperature and also 
depends on series resistance (Spagnuolo et al., 2019b), has a much larger dispersion 
than IMPP/ISC. If a fixed estimate were needed for UMPP/UOC in the proposed fitting 
procedure, the cumulation of the ageing and irradiance effects on the UMPP/UOC 
value would possibly lead to the presence of scarce errors in the estimate of UOC 
and hence in the estimate of the PV module temperature. This situation has been 
avoided by introducing the irradiance-dependent formula for OC voltage in the 
expression of saturation current.  

The second observations are related to the actual fitting procedure. The 
combined use of the formulae for the saturation current and OC voltage enables 
the consistent repetition of the PV module’s operating temperature at all irradiance 
levels. This is in accordance with the findings by Boyd et al. (2011), who observed 
that Io adjusts the predicted voltage at all points of the I-U curve: this observation 
has been emphasised by Nassar-Eddine et al. (2016). In turn, the correctly 
estimated OC voltage is directly linked to the fitted temperature value. Ibrahim and 
Anani (2017b) compared several conversion formulae in terms of performance and 
observed that the expression of saturation current depending on OC voltage is the 
most accurate of the compared methods. Moreover, Ibrahim and Anani (2017a) 
observed that the best results for the OC voltage are obtained when its irradiance 
and temperature dependencies are considered simultaneously. These observations 
further support the observations made during the present study.  

The choice of ideality factor is perhaps an even more influential issue. 
Indeed, the actual ideality factor of the used PV module is not known, and this is 
also the case in the real-case PV applications. In this work, the ideality factor was 
set to 1.1. However, treating the ideality factor as a fixed constant is an obvious 
limitation in the usage of the proposed fitting procedure. The fitting procedure 
could be fine-tuned by removing the assumption of a constant ideality factor. 
Indeed, Ruschel et al. (2021) emphasised that although the majority of authors treat 
the ideality factor as a constant with respect to irradiance and temperature, there is 
no full consensus on this independence.  

Considering these facts, the choice of the ideality factor is relevant, as its 
correctness affects the fit quality and the reliability of the diagnosis. This gives rise 
to new research questions, such as finding the actual ideality factor of the PV 
module or the introduction of a non-constant ideality factor in the proposed fitting 
procedure. The latter issue could be addressed by using a conversion formula for 
the ideality factor, or possibly tuning the fitting procedure so that the ideality factor 
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is one of the fitted parameters. However, adding a new fitting parameter 
complicates the fitting procedure considerably.   

The third observations are related to the ageing detection of the proposed 
fitting procedure based on series resistance. Piliougine et al. (2021) analysed the 
capability of four explicit single-diode model parameter identification methods to 
detect ageing and degradation. They found that the SPR method did not detect 
degradation when series resistance is low. Piliougine et al. (2021) also found that 
the Lambert W function based method always underestimated the changes in series 
resistance, which became even worse for higher additional resistances. In this light, 
Lambert W based methods are not the best choice for highly degraded PV 
modules. The iterative identification method provided in this thesis also slightly 
underestimated the change in series resistance, as observed in Kalliojärvi et al. 
(2022). However, Lappalainen et al. (2022a) showed that such an underestimation 
originates from the root mean square error (RMSE) based minimisation in terms of 
current and could be corrected by the introduction of the voltage as the quantity to 
be minimised. Indeed, Hao et al. (2021) emphasised that the current-based 
approach, although the most common choice, does not entirely account for the 
deviation between the fitted and measured I-U curves; the measurement errors of 
each measurement point concern the voltage as well as the current. The 
minimisation of RMSE in terms of voltage could be a further improvement for the 
present work.  

The positive temperature dependence of series resistance is a phenomenon 
recognised in the analysis of the present study as well as in the existing literature 
(Piliougine et al., 2020; Humada et al., 2016; van Dyk and Meyer, 2004). In 
addition, the temperature dependence of series resistance at the beginning of the 
PV module’s lifespan and after 8 operational years in was investigated in Hrelja et 
al. (2018) via a linear model. The slope of the line showing the series resistance as a 
function of temperature exhibited no considerable changes in terms of time. In 
contrast, Ibrahim and Anani (2017b) stated that series resistance has only little 
sensitivity to changes in temperature. Attivissimo et al. (2012) provided an 
uncertainty analysis in PV cell parameter estimation by using the double-diode 
model. The authors considered series resistance to be invariant regardless of 
operating conditions. However, the fitting procedure developed in this thesis 
exhibits a slight positive temperature dependence which must be taken into 
account in real-case applications. One interesting topic for future research is to find 
out the temperature coefficient of series resistance of the PV module used in this 
work.  
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An important aspect is the stability of the fitting procedure for differently 
aged PV modules. Guejia-Burbano et al. (2021) observed that their procedure 
provides stable parameters for a healthy PV module, whereas the parameters 
deviate in the case of a PV module with degraded series resistance. The results 
presented in this thesis show that the series resistance detection performs well for 
non-aged and aged PV modules. This is a certain advantage which enhances the 
usability of the proposed fitting procedure in real-case ageing detection.  

The fourth observations are related to the overall performance of the 
fitting procedure. The accuracy of the fitted parameters is definitely a measure of 
the performance of any fitting procedure. Humada et al. (2016) emphasised that 
the accuracy of a fitting procedure depends on the actual fitting algorithm, but also 
the initial guess and the confidence interval of the parameters affect. In addition, 
the accuracy of a PV model is also affected by the dataset, the number of selected 
parameters, and their accuracy (Humada et al., 2020). However, Ayodele et al. 
(2016) remarked that no model is absolutely the most accurate; it depends on the 
identified parameter in question. In addition, the authors pointed out that the 
identification performance of the single-diode model is too often compared only 
based on the model accuracy. However, other relevant metrics include the 
robustness of the algorithm, computational speed, memory requirement, and ease 
of implementation (Ayodele et al., 2016). Humada et al. (2020) highlighted that 
regardless of the PV model under investigation, the accuracy and complexity of a 
model, including the number of fitting parameters, should be considered as a 
whole. In light of this discussion, it would be interesting to compare the accuracy 
of the obtained parameters and the overall performance of the proposed procedure 
to the two procedures (Lappalainen et al., 2020; Lappalainen et al., 2022a) that can 
identify the operating irradiance and temperature jointly with the single-diode 
model parameters.  

The fifth observation is related to the quality and amount of the 
measurement data. Indeed, Mellit et al. (2018) pointed out that the measurement 
accuracy is a significant part of the effectiveness of a monitoring system. The 
authors highlighted that inverters fail to produce accurate measurement data. This 
might be a challenge when performing diagnosis based on I-U curves measured by 
inverter instead of specific I-U curve tracers. The quality of the measurement data 
is also expected to affect the need to pre-process the data and the choice of a 
suitable pre-processing procedure. It would be interesting to investigate the 
performance of the developed fitting procedure by using current-voltage 
measurement data produced by an inverter instead of an I-U curve tracer. 
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Remarkably, the fitting procedure was tested only by using an individual PV 
module, while Lappalainen et al. (2020; 2022a) tested their developed fitting 
procedures with different PV modules.  
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9  CONCLUSIONS 

This thesis focused on showing the functionality of the developed novel single-
diode model fitting procedure for current-voltage curves measured from a PV 
system. The main emphasis was on investigating the parameter identification 
capabilities of the developed fitting procedure for online analyses of the PV system 
and ageing detection. The procedure was developed in a stepwise manner. Firstly, a 
pre-processing procedure for measured current-voltage curves was developed. 
Secondly, a suitable theory for developing the single-diode model fitting was 
sought, whereafter the actual model was developed. Thirdly, the functionality of 
the developed single-diode model fitting procedure was demonstrated for the 
measured current-voltage curves of a PV module. Fourthly, the fitted parameters 
were converted into reference conditions to obtain comparable results. Fifthly, the 
effects on the fitted parameters were investigated when the measurement range of 
the current-voltage curves was limited to the vicinity of the MPP. The main focus 
was on developing a method for fitting the single-diode model to the measured I-U 
curves of a PV module and verifying its functionality, especially for online ageing 
detection based on the determined series resistance.  

The pre-processing of measured current-voltage curves was implemented 
by using a statistical method, the application of which was accompanied by a 
suitable reconstruction of points used for fitting. The developed pre-processing 
procedure eliminated the measurement noise and other abnormal measurement 
points as desired. In addition, the unintentional weighting of measurement points 
caused by the measurement device was effectively removed by using the 
representative point approach developed for this thesis. The developed pre-
processing procedure can be applied for current-voltage curves obtained by any 
commercial current-voltage curve tracer following a similar operating principle. 

An appropriate approach to constructing a single-diode model fitting 
procedure with the desired capability to identify the operating conditions was 
observed to be one with iterative equations and a small number of direct fitting 
parameters. Indeed, no approximate explicit equations were used. There were only 
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four direct fitting parameters, which enhanced the convergence towards the correct 
solution. 

The developed single-diode model fitting procedure identified the PV 
module’s operating irradiance and temperature well, especially when the PV 
module was operating under high irradiance conditions. Hence, there is no need 
for external measurements of operating conditions at practical PV sites. The 
reliable identification of operating conditions enables the classification of the 
measured current-voltage curves based on the operating conditions, i.e., whether 
an individual curve can be used in diagnosis or not. It was observed that the entire 
developed single-diode model performs best in stable high irradiance conditions. 
This was an expected result. 

The performance of the fitting procedure with respect to each single-diode 
model parameter was separately analysed by using entire measured current-voltage 
curves. Series resistance identification performed in a stable way under high 
irradiance conditions, whereas low irradiance conditions produced excessively high 
values that deviated strongly. As expected, shunt resistance values identified under 
high irradiance conditions lay above a certain threshold and varied relatively widely 
but around a nearly constant mean value. Low irradiance conditions gave rise to 
excessively high shunt resistance values as was anticipated. Photocurrent was 
identified correctly in all irradiance conditions, increasing linearly with irradiance. 
Series resistance and photocurrent had slight positive temperature dependences. 

The effect of the operating conditions on the fitted parameters was 
eliminated by converting the parameters to Standard Test Conditions. Widely used 
formulae from the literature were exploited for that purpose. It was observed that 
photocurrent and parasitic resistances obtained from entire measured curves at 
high irradiance conditions remained nicely within a narrow range when converted 
to STC. In contrast, the conversion applied to the parameters obtained at low 
irradiance conditions performed improperly as expected.  

The effect of limiting the measurement range of current-voltage curves to 
the vicinity of the MPP for fitting the single-diode model parameters was 
systematically studied for the developed fitting procedure. It was found that the 
cutting limit clearly affects the accuracy of the parameters. A significant 
observation was that appropriately chosen partial current-voltage curves can be 
well-used to identify the parameters of the single-diode model. It was found that 
the current-voltage curves could be cut in different ways to identify the series 
resistance. Symmetrical cutting with respect to the MPP power performed well 
when at least half of the power-voltage curve was measured for fitting. However, 
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symmetrical cutting with respect to the MPP voltage performed much more weakly 
and is not an accurate choice for ageing detection. It was also found that the curve 
does not necessarily need to be cut symmetrically with respect to the MPP if the 
focus is determining the series resistance. Indeed, the MPP power-based cutting 
principle was also investigated by setting different cutting limits on either side of 
the MPP. Some examples of such cutting were shown to be suitable for series 
resistance identification. Such a choice helps to avoid unnecessary measurements in 
the high-current region of the current-voltage curve, but naturally this happens at 
the expense of the accuracy of determining other parameters. However, further 
research is needed in order to find practically applicable solutions. 

The methods developed in this thesis provide a theoretical and practical 
background for designing a full online condition monitoring approach for ageing 
detection of PV systems. The obtained results also serve as a reference for future 
works.  
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APPENDIX. DETERMINATION OF THE PV MODULE 
ELECTRICAL CHARACTERISTICS AT STC 

Practical experiments have shown that the STC characteristic values (ISC,STC, 
IMPP,STC, UOC,STC, UMPP,STC) of the NAPS NP190GK PV module 19 differ from the 
values provided in the module’s datasheet and thus must be redefined so that they 
can be utilised in the proposed curve fitting procedure applied to the current-
voltage measurement data. For this purpose, among the measurements of the I-U 
curves performed for PV module 19, curves measured under stable environmental 
conditions close to the STC were searched. In total, 11 consecutive curves were 
accepted for the analysis. These curves were measured on 24 August 2020, which is 
close to the measurement dates of the experimental datasets used in this thesis. 
This guarantees that the redefined STC characteristic values are up to date for this 
thesis.  

The PV module operating conditions of the investigated 11 I-U curves 
belong to the irradiance range of 980-1000 W/m2 and PV cell temperature range of 
24-25 ºC. One should note that STC irradiance and PV cell temperature seldom 
occur in Finland. Usually, such conditions occur only during the irradiance 
transient following cloud shading, when the cloud enhancement phenomenon 
increases the irradiance received by the PV module. Therefore, the available 
operating conditions closest to STC were selected. 

The 11 I-U curves accepted for analysis were treated as follows. First, the 
developed fitting procedure was applied to each curve using the initial PV module 
datasheet values as initial guesses for the fitted parameters. The actual ISC and UOC 
of the fitted curve were determined as the y- and x-axis intercepts, and the IMPP,STC 
and UMPP,STC were determined at the MPP of the fitted curve. Secondly, because of 
the strong irradiance dependence of the current quantities, the formulae 

 
 IMPP,STC =  GSTC

G
IMPP                                                                                                   (A1) 

 
and 
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 ISC,STC =  GSTC

G
ISC                                                                                                      (A2) 

 
were employed to scale the determined currents with the measured irradiance to 
obtain the first estimates for the STC values to be discovered. In contrast, the 
obtained OC and MPP voltage were left unscaled, since the irradiance dependence 
of these quantities at high irradiance levels is negligible, so these values themselves 
served as the first STC estimates. Moreover, no temperature scaling was performed 
for the other four quantities, since the measured PV module backplate 
temperatures were very close to the STC temperature. After obtaining these first 
estimates of ISC,STC, IMPP,STC, UOC,STC, and UMPP,STC for each of the 11 curves, the 
values of each parameter were averaged to obtain new guesses for the fitted 
parameters. The fitting procedure was then repeated iteratively until the obtained 
STC values converged. The final STC values for the electrical parameters are 
shown in Table A.1. As can be seen, the variance of the obtained STC values of the 
11 fitted curves is very small, so their averages can very well be used as 
representative values for PV module 19. To demonstrate the accuracy of the fitting 
procedure utilising the determined STC characteristics, Fig. A.1 shows an example 
of the final fitted I-U curve jointly with the original data for the last, eleventh I-U 
curve.  
 
Table A.1. Operating conditions and the determined electrical STC characteristics for the 11 
measured I-U curves of PV module 19.  
Time G (W/m2) T (ºC) ISC,STC (A) IMPP,STC (A) UOC,STC (V) UMPP,STC (V) 
10.04.37 984.4 24.56 8.721 7.949 32.80 23.03 
10.04.38 984.9 24.56 8.719 7.946 32.79 22.99 
10.04.39 984.8 24.56 8.713 7.938 32.79 22.97 
10.04.40 984.8 24.56 8.719 7.931 32.78 22.95 
10.04.41 985.1 24.57 8.717 7.925 32.76 22.93 
10.04.42 985.8 24.58 8.720 7.929 32.75 22.91 
10.04.43 988.2 24.59 8.722 7.930 32.74 22.89 
10.04.44 990.4 24.60 8.707 7.947 32.72 22.84 
10.04.45 992.3 24.61 8.713 7.944 32.72 22.83 
10.04.46 995.1 24.64 8.710 7.945 32.71 22.82 
10.04.47 996.9 24.66 8.708 7.942 32.70 22.82 
Average 988.4 24.59 8.715 7.939 32.75 22.91 
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Figure A.1. The fitted curve jointly with the measured eleventh I-U curve used to 
determine the STC characteristic values of PV module 19.  
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