
Proceedings of the 8th Workshop on Detection
and Classification of Acoustic Scenes and Events 

(DCASE 2023)

Magdalena Fuentes, Toni Heittola, Keisuke Imoto, Annamaria Mesaros, 
Archontis Politis, Romain Serizel, Tuomas Virtanen (eds.)

September 20-22, 2023



This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit:

http://creativecommons.org/licenses/by/4.0/ 

Citation: Magdalena Fuentes, Toni Heittola, Keisuke Imoto, Annamaria Mesaros, Archontis Politis,
Romain Serizel, Tuomas Virtanen (eds.), Proceedings of the 8th Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE 2023), Sep. 2023. 

ISBN: 978-952-03-3171-9



Table of Content

Sound Event Classification with Object-Based Labels
James Afolaranmi, Irene Martín-Morató and Annamaria Mesaros

1

Learning in the Wild: Bioacoustics Few Shot Learning Without Using a Training Set
Víctor Aguado, Joan Navarro and Ester Vidaña-Vila

6

Multi-Resolution Conformer for Sound Event Detection: Analysis and Optimization
Sara Barahona, Diego de Benito-Gorron, Sergio Segovia, Daniel Ramos and Doroteo T.
Toledano

11

Foley Sound Synthesis at the DCASE 2023 Challenge
Keunwoo Choi, Jaekwon Im, Laurie M. Heller, Brian McFee, Keisuke Imoto, Yuki Okamoto,
Mathieu Lagrange and Shinnosuke Takamichi

16

STELIN-US: A Spatio-Temporally Linked Neighborhood Urban Sound Database
Snehit Chunarkar, Bo-Hao Su and Chi-Chun Lee

21

Foley Sound Synthesis Based on Generative Adversarial Networks Using Oneself-
Conditioned Contrastive Learning
HaeChun Chung, Yuna Lee and JaeHoon Jung

26

Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring
Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma Koizumi, Tomoya Nishida,
Harsh Purohit, Ryo Tanabe, Takashi Endo and Yohei Kawaguchi

31

Post-Processing Independent Evaluation of Sound Event Detection Systems
Janek Ebbers, Reinhold Haeb-Umbach and Romain Serizel

36

ToyADMOS2+: New Toyadmos Data and Benchmark Results of the First-Shot Anomalous
Sound Event Detection Baseline
Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi and Masahiro Yasuda

41

Evaluating Classification Systems Against Soft Labels with Fuzzy Precision and Recall
Manu Harju and Annamaria Mesaros

46

META-SELD: Meta-Learning for Fast Adaptation to the New Environment in Sound Event
Localization and Detection
Jinbo Hu, Yin Cao, Ming Wu, Feiran Yang, Ziying Yu, Wenwu Wang, Mark D. Plumbley and Jun
Yang

51

Leveraging Geometrical Acoustic Simulations of Spatial Room Impulse Responses for
Improved Sound Event Detection and Localization
Christopher Ick and Brian McFee

56

Speech Obfuscation in Mel Spectra That Allows for Centralised Annotation and
Classification of Sound Events
Michiel Jacobs, Lode Vuegen, Suraj Khan and Peter Karsmakers

61



FALL-E: A Foley Sound Synthesis Model and Strategies
Minsung Kang, Sangshin Oh, Hyeongi Moon, Kyungyun Lee and Ben Sangbae Chon

66

Label Filtering-Based Self-Learning for Sound Event Detection Using Frequency Dynamic
Convolution with Large Kernel Attention
Ji Won Kim, Sang Won Son, Yoonah Song, Hong Kook Kim, Il Hoon Song and Jeong Eun Lim

71

Improving Automated Audio Captioning Fluency Through Data Augmentation and
Ensemble Selection
Jaewon Kim, Yoon-Ah Park, Jae-Heung Cho and Joon-Hyuk Chang

76

Weakly-Supervised Automated Audio Captioning via Text Only Training
Theodoros Kouzelis and Vassilis Katsouros

81

Killing Two Birds with One Stone: Can an Audio Captioning System Also Be Used for
Audio-Text Retrieval?
Étienne Labbé, Thomas Pellegrini and Julien Pinquier

86

Few Shot Bioacoustic Detection Boosting with Finetuning Strategy Using Negative-Based
Prototypical Learning
Yuna Lee, HaeChun Chung and JaeHoon Jung

91

Masked Modeling Duo Vision Transformer with Multi-Layer Feature Fusion on Respiratory
Sound Classification
Boxin Liu, Shiqi Zhang, Daiki Takeuchi, Noboru Harada and Shoji Makino

96

Efficient Evaluation Algorithms for Sound Event Detection
Vincent Lostanlen and Brian McFee

101

Aggregate or Separate: Learning From Multi-Annotator Noisy Labels for Best
Classification Performance
Irene Martín-Morató, Paul Ahokas and Annamaria Mesaros

106

Active Learning in Sound-Based Bearing Fault Detection
Maarten Meire, Jeroen Zegers and Peter Karsmakers

111

Auditory Neural Response Inspired Sound Event Detection Based on Spectro-Temporal
Receptive Field
Deokki Min, Hyeonuk Nam and Yong-Hwa Park

116

Creating a Good Teacher for Knowledge Distillation in Acoustic Scene Classification
Tobias Morocutti, Florian Schmid, Khaled Koutini and Gerhard Widmer

121

Pretraining Representations for Bioacoustic Few-Shot Detection Using Supervised
Contrastive Learning
Ilyass Moummad, Romain Serizel and Nicolas Farrugia

126

Incremental Learning of Acoustic Scenes and Sound Events
Manjunath Mulimani and Annamaria Mesaros

131

Frequency & Channel Attention for Computationally Efficient Sound Event Detection
Hyeonuk Nam, Seong-Hu Kim, Deokki Min and Yong-Hwa Park

136



Unsupervised Domain Adaptation for the Cross-Dataset Detection of Humpback Whale
Calls
Andrea Napoli and Paul R. White

141

Few-Shot Bioacoustic Event Detection at the DCASE 2023 Challenge
Ines Nolasco, Burooj Ghani, Shubhr Singh, Ester Vidaña-Vila, Helen Whitehead, Emily Grout,
Michael Emmerson, Ivan Kiskin, Frants Jensen, Joe Morford, Ariana Strandburg-Peshkin, Lisa
Gill, Hanna Pamuła, Vincent Lostanlen and Dan Stowell

146

Advancing Natural-Language Based Audio Retrieval with Passt and Large Audio-Caption
Data Sets
Paul Primus, Khaled Koutini and Gerhard Widmer

151

Foley Sound Synthesis with a Class-Conditioned Latent Diffusion Model
Robin Scheibler, Takuya Hasumi, Yusuke Fujita, Tatsuya Komatsu, Ryuichi Yamamoto and
Kentaro Tachibana

156

Distilling the Knowledge of Transformers and CNNs with CP-Mobile
Florian Schmid, Tobias Morocutti, Shahed Masoudian, Khaled Koutini and Gerhard Widmer

161

Device Generalization with Inverse Contrastive Loss and Impulse Response Augmentation
Lorenz P. Schmidt and Nils Peters

166

Multi-Label Open-Set Audio Classification
Sripathi Sridhar and Mark Cartwright

171

Spectral Transcoder : Using Pretrained Urban Sound Classifiers on Undersampled
Spectral Representations
Modan Tailleur, Mathieu Lagrange, Pierre Aumond and Vincent Tourre

176

Audio Difference Captioning Utilizing Similarity-Discrepancy Disentanglement
Daiki Takeuchi, Yasunori Ohishi, Daisuke Niizumi, Noboru Harada and Kunio Kashino

181

Cross-Dimensional Interaction with Inverted Residual Triplet Attention for Low-Complexity
Sound Event Detection
Khandelwal Tanmay and Rohan Kumar Das

186

Exploring Multi-Task Learning with Weighted Soft Label Loss for Sound Event Detection
with Soft Labels
Khandelwal Tanmay and Rohan Kumar Das

191

Event Classification with Class-Level Gated Unit Using Large-Scale Pretrained Model for
Optical Fiber Sensing
Noriyuki Tonami, Sakiko Mishima, Reishi Kondo, Keisuke Imoto and Tomoyuki Hino

196

Audio-Change Captioning to Explain Machine-Sound Anomalies
Shunsuke Tsubaki, Yohei Kawaguchi, Tomoya Nishida, Keisuke Imoto, Yuki Okamoto, Kota Dohi
and Takashi Endo

201

Automatic Detection of Cow Vocalizations Using Convolutional Neural Networks
Ester Vidaña-Vila, Jordi Malé, Marc Freixes, Mireia Solís-Cifré, Miquel Jiménez, Cristian
Larrondo, Raúl Guevara, Joana Miranda, Leticia Duboc, Eva Mainau, Pol Llonch and Rosa Ma

206



Alsina-Pagès

Low-Complexity Acoustic Scene Classification Using Deep Mutual Learning and
Knowledge Distillation Fine-Tuning
Shilong Weng, Liu Yang, Binghong Xu and Xing Li

211

Two vs. Four-Channel Sound Event Localization and Detection
Julia Wilkins, Magdalena Fuentes, Luca Bondi, Shabnam Ghaffarzadegan, Ali Abavisani and
Juan Pablo Bello

216

PLDISET: Probabilistic Localization and Detection of Independent Sound Events with
Transformers
Peipei Wu, Jinzheng Zhao, Yaru Chen, Berghi Davide, Yi Yuan, Chenfei Zhu, Yin Cao, Yang Liu,
Philip J.B. J Jackson, Mark D. Plumbley and Wenwu Wang

221

Crowdsourcing and Evaluating Text-Based Audio Retrieval Relevances
Huang Xie, Khazar Khorrami, Okko Räsänen and Tuomas Virtanen

226

Text-Driven Foley Sound Generation with Latent Diffusion Model
Yi Yuan, Haohe Liu, Xiyuan Kang, Peipei Wu, Mark D. Plumbley and Wenwu Wang

231



Preface
This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and
Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023. 

The DCASE 2023 Workshop was the eighth edition of the Workshop on Detection and Classification of
Acoustic Scenes and Events, organized in conjunction with the DCASE Challenge. The aim of the
workshop  was  to  bring  together  researchers  from many  different  universities  and  companies  with
interest in the topic, and provide the opportunity for scientific exchange of ideas and opinions. 

The DCASE 2023 Workshop was jointly organized by researchers at Tampere University, Doshisha
University, University of Lorraine, and New York University. The workshop received 68 submissions.
Each paper was assigned to four reviewers, receiving at least three reviews. Of these, 47 papers were
accepted for presentation. 

The Organizing Committee was honored to have two keynote talks by leading experts in the field:
Andrew  Owens  (The  University  of  Michigan,  Department  of  Electrical  Engineering  and  Computer
Science) and Björn Schuller (Imperial College London, Group on Language, Audio, & Music; University
of Augsburg). 

We wish to warmly thank our contributors for the success of the DCASE 2023. The workshop was the
result of the hard work of many people, including all the authors and keynote speakers, the members of
the  Technical  Program  Committee,  as  well  as  all  the  organizers  and  participants  of  the  DCASE
Challenge tasks. 

This  edition  of  the  workshop  was  supported  by  sponsorship  from  Google,  Huawei,  Reality  Labs
Research,  Bose,  Hitachi  Ltd,  Samsung,  Adobe,  Cochlear.ai,  Gaudio,  MARVEL Project  H2020,  and
Mitsubishi Electric. We thank them for their valuable support to this workshop and the expanding topic
area. 

Annamaria Mesaros, Tuomas Virtanen, Keisuke Imoto,
Magdalena Fuentes, Romain Serizel, Archontis Politis, and Toni Heittola 



Sponsors

Platinum
sponsors

Gold
sponsors

Silver
sponsors

Bronze
sponsors



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

SOUND EVENT CLASSIFICATION WITH OBJECT-BASED LABELS
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ABSTRACT

Availability of audio-visual datasets and increase of computa-
tional resources have made possible the use of deep learning tech-
niques that exploit the relationship between audio and video. In
this paper, we present an approach that makes use of pretrained
models for object detection to label audio clips based on objects
that are expected to make sound. The study consists of perform-
ing object detection for four target classes belonging to vehicle
category and training sound classifiers in supervised way using
the resulting labels. We conclude that object detection is a useful
alternative for labeling audio-visual material for audio classifica-
tion, with substantial improvements in different datasets. Results
show that even for data provided with reference audio labels, la-
beling through video object detection can identify additional, non-
annotated acoustic events, thus improving the quality of the labels
in existing datasets. This promotes exploitation of video content not
only as an alternative, but also to complement the available label in-
formation.

Index Terms— sound event classification, deep neural net-
works, object-based labels.

1. INTRODUCTION

Audio classification tasks have increased in popularity in recent
years, due to applicability of methods for acoustic monitoring [1],
environment monitoring [2], or emotion recognition [3] along with
others. The analysis of acoustic scenes aims at recognizing differ-
ent types of information in the environment, for example vehicles
in urban scenes. The diversity of acoustic information in everyday
environments increases the complexity of such task.

Deep learning methods allow obtaining high performance on
classification tasks. Among the challenges that the traditional su-
pervised learning scenario must overcome, one is data availabil-
ity for training robust models. Supervised methods rely on the la-
beled data to train models effectively. These methods require accu-
rate labelling, meaning that when incorrect labels are present in the
training data, the learning process is compromised, leading to sub-
optimal performance of the model and reducing its generalization
capabilities [4]. Proper data curation, label verification, and quality
control mechanisms are essential to mitigate the impact of incorrect
labels and ensure the training of robust models.

The release of AudioSet [5] has been a milestone for the au-
dio datasets. It contains 527 sound classes from over 5000 hours
of audio recordings collected from YouTube videos, provided as
annotations for 10-second long clips. Following AudioSet, more

This work was supported by Academy of Finland grant 332063 “Teach-
ing machines to listen”. The authors wish to thank CSC-IT Centre of Sci-
ence Ltd., Finland, for providing computational resources.

datasets providing video and audio modalities have been published,
e.g. MAVD-traffic [6] and TAU Urban Audio-Visual Scenes 2021
[7] datasets. While these are the main audio-visual datasets used
in audio research, there is a much larger number of such datasets
that are used in image/video research. Audio-visual datasets pro-
vide a rich source of information that combines auditory and visual
modalities, offering valuable insights into the correlation and com-
plementarity between audio and visual cues.

The task of annotating sound events within such datasets is
time-consuming and expensive. As a result, the majority of audio-
visual datasets are primarily annotated for visual content; some
datasets have information on acoustic scene, while the annotation
of sound events remains limited to a smaller subset. For example
in EPIC-SOUNDS [8], the authors collected a large scale dataset of
audio annotations as an extension of the original EPIC-KITCHEN
dataset [9], which is originally aimed at computer vision research.

In this work we propose to investigate if labels derived through
object detection methods based on the video modality are suitable
for audio classification. Generally, the information in the audio and
visual modalities is highly correlated, and sound-producing objects
may be visible in the video, even though this is not guaranteed,
for example in poor light conditions or in the presence of obstruc-
tions. We investigate how well YOLO (You Only Look Once) ob-
ject detector [10] can be used to provide labels for audio content
to ultimately train an audio classification model. Experiments per-
formed on three different datasets show that even though the labels
inferred based on objects are not fully corresponding to the audio
ground truth, they provide a sufficient supervision signal for train-
ing a sound event classification system.

The rest of the paper is organized as follows: Section 2 in-
troduces the approach used for obtaining the object-based labels
and how they are used for audio classification purposes; Section
3 presents the datasets used in the experiments and introduces the
classification system; it also includes an analysis of the results and
discusses the comparison of the object-based labels with the refer-
ence audio labels; finally, Section 4 presents the conclusions and
future work.

2. OBJECT-BASED AUDIO CLASSIFICATION

Figure 1 illustrates the workflow followed in this study. To obtain
labels for the audio content, object detection using YOLO [10] is
performed on video frames from the video clip. The pretrained
model OpenL3 [11] is used to perform feature extraction and to
obtain the embeddings for the corresponding aucio clip. The labels
and the embeddings are used as input to the audio classification
model. The target labels are the labels obtained from the object-
detection model, and the input data are the embeddings from the
pretrained OpenL3 model. The acoustic model is then trained using
this information for classifying the selected target sounds.
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Figure 1: Proposed approach; Object detection is applied to frames
of the video, and the resulting output labels are used in training the
audio classification system.

2.1. Object detection framework

Object detection is a popular research task in computer vision. It
involves localization of target objects into bounding boxes and clas-
sification of those objects. Object detectors can be classified into
two categories: single-stage or two-stage object detectors, depend-
ing on the method used to locate and classify objects. YOLO falls
under the category of single-stage detector that carries out object
localization and classification in the same run [12].

YOLO architecture is based on multiple CNN layers followed
by fully connected layers. It predicts bounding boxes and class
probabilities simultaneously, making it efficient for real-time de-
tection. In [10], the authors showed that YOLO was able to score
57.9% mean average precision on the PASCAL VOC 2012 test set
on 20 labelled classes, and generalized better than other detectors
when tested for person detection in two artwork datasets. In our
study, we used a pretrained version of YOLOV5[13] capable of
recognizing 80 classes to perform detection of four vehicle-related
classes within the video data.

2.2. Audio classification framework

Because the scope of this work is to investigate feasibility of la-
beling audio through video, for the audio classification model em-
ployed in our study uses an existing architectures rather than design-
ing and optimizing one for the task. We use embeddings from the
pretrained L3-Net [14] implemented in OpenL3 [11] as a backbone,
and three dense linear layers of 512, 128 and 4 neurons stacked upon
each other; the network uses ReLU as an activation function for the
first two dense layers and sigmoid activation function for the output
layer to perform multi-label classification.

2.3. Datasets and baseline system

We use three different audio-visual datasets, namely: AudioSet [5],
the MAVD dataset in Urban environments [15] and a subset of TAU
Urban Audio-Visual Scenes 2021 Development Dataset [7]. In this
work we use four target sound classes: Bus, Car, Motorcycle and
Truck, which can all be found in these three datasets.

From AudioSet, a subset of 121.8 hours of data was selected
based on the target classes. A 70/30 ratio is used to partition this
subset into training and test set. The labels provided in AudioSet
are used as ground truth in our comparative experiments. As docu-
mented in [16], some clips in AudioSet may have incorrect or miss-
ing labels. This is due to the annotation process which included
a verification step for the candidate labels [5]; in this process the
labels were manually verified, but no new labels were added. In
general, AudioSet has a highly imbalanced class distribution which
is prominent also in the subset used in our experiments, with the
majority of the data examples belonging to the Car class.

Dataset Training (hh:mm) Test (hh:mm)

AudioSet 85:15 36:32
MAVD 01:03 00:27
TAU UrbanASC 02:00 01:30

Table 1: Amount of data available per dataset.

As a second source of annotated audio-visual data we use the
Urbansas dataset [17], which consists of 3 hours of manually an-
notated data, compiled from two different datasets: MAVD [6] and
TAU Urban Audio-Visual Scenes 2021 dataset (TAU UrbanASC)
[7]. MAVD is an audio-visual dataset created to monitor urban
noise in Montevideo, Uruguay, and consists of 1.5 hours of man-
ually annotated data divided into train and test set. The TAU Urban
Audio-Visual Scenes 2021 dataset (TAU UrbanASC) [7] consists
of synchronized audio and video segments with a length of 10 sec-
onds recorded in 12 different European cities. Of these, 1.5 h of the
street traffic clips was annotated within the Urbansas dataset. We
treat MAVD and TAU UrbanASC separately in our experiments.
The total amount of data available in the training and test subsets
used in our classification experiments is presented in Table 1.

We perform the classification experiments using the object-
based labels and, for comparison, the reference audio labels, when
available. Since audio reference labels are only available for two
of the three datasets, AudioSet and MAVD, the comparative exper-
iment is performed only for these two datasets.

3. EXPERIMENTAL RESULTS

We performed object detection on five image frames of the video
clip (one frame every two seconds) using the pretrained YOLO
model. To extract frames from the video we used the OpenCV li-
brary 1 in Python. For each of these five frames, YOLO returns
labels corresponding to the four target classes, and coordinates for
the bounding box of each object. The predicted labels include mul-
tiple instances of different classes for each 10 s video clip. To avoid
losing any information about the detected objects, we create the set
of labels inferred based on the video as the union set of the pre-
dicted object labels. The audio clip is then assigned the resulting
set of labels for training a model as a multilabel classifier.

3.1. Comparison of inferred labels with audio reference labels

First of all, we verify to what extent the object-based inferred labels
match the audio reference labels. To this end, we compare the ob-
tained labels with the reference labels for all the data in each dataset
(including training and test set, when available). The results are pre-
sented in Table 2. The object-based labels are most similar with the
reference labels for the Car class in all three datasets, having a sig-
nificantly higher F-score than any other class. We also observe that
the Truck class has very low precision values for all three datasets.
The discrepancy between the object-based and the audio reference
labels is quite large for many cases. For example in the case of Au-
dioSet the Bus class the precision is 0.32, meaning that only one
third of clips labeled as Bus by YOLO are also annotated based on
audio as containing the sound.

1https://github.com/opencv/opencv

2



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

AudioSet MAVD TAU UrbanASC
Class P R F P R F P R F

Bus 0.32 0.73 0.45 0.86 0.55 0.67 0.43 0.90 0.59
Car 0.72 0.89 0.79 0.67 0.97 0.79 0.65 0.99 0.78

Motorcycle 0.46 0.90 0.61 0.50 0.35 0.41 0.71 0.42 0.53
Truck 0.36 0.87 0.51 0.12 0.80 0.21 0.13 0.84 0.23

Average 0.47 0.85 0.59 0.54 0.67 0.52 0.48 0.79 0.53

Table 2: Comparison of the object-based labels and reference audio labels for the three datasets.

Bus Car Motorcycle Truck0

5000

10000

15000

20000

25000 ground truth
YOLO

Bus Car Motorcycle Truck0

100

200

300
ground truth
YOLO

Bus Car Motorcycle Truck0

200

400

600

800 YOLO

Figure 2: Training instances available for AudioSet, MAVD and TAU UrbanASC using the reference audio labels (blue) and object-based
labels (red). For TAU UrbanASC, only the testing set is annotated, therefore we have no reference for comparison.

AudioSet MAVD TAU UrbanASC
Reference labels object-based Reference labels object-based object-based

Class P R F P R F P R F P R F P R F

Bus 0.00 0.00 0.00 0.18 0.08 0.11 0.73 0.46 0.57 0.82 0.22 0.35 0.23 0.27 0.25
Car 0.73 0.79 0.76 0.67 0.96 0.79 0.81 0.87 0.84 0.67 1.00 0.80 0.63 0.99 0.77
Motorcycle 0.51 0.32 0.39 0.54 0.43 0.48 0.50 0.32 0.39 0.67 0.09 0.16 0.00 0.00 0.00
Truck 0.00 0.00 0.00 0.28 0.68 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.34 0.11

Average 0.31 0.28 0.29 0.42 0.54 0.45 0.51 0.41 0.45 0.54 0.33 0.33 0.23 0.40 0.28

Table 3: Classification results for the three datasets, for the classifier trained with the reference labels and with the object-based labels.

Figure 2 illustrates the number of instances per class available
for training the audio classification system for each case. It can be
clearly seen that the Car class is the one with highest number of
example instances for both label sets (reference and object-based
labels) and all three datasets, while Truck has considerably less in-
stances in the reference labels compared to the object-based labels.

3.2. Audio classification with object-based labels

We train a classifier using YOLO object-based labels. For com-
parison, we also train the same classifier structure using the audio
reference labels. These models are then tested on the same test set
and their performances are compared in terms of precision, recall,
and F-score. The results are presented in Table 3.

For AudioSet, we observe that the classifier trained with object-
based labels obtains a significantly higher recall for all the classes,
and a higher F-score, despite the classifier output being evaluated
against the reference annotations of the dataset itself. The system
trained with object-based labels is able to recognize a higher num-
ber of event instances in the test data than if trained with the official

reference labels provided in the dataset. However, this does not hap-
pen for the MAVD dataset. We hypothesize that the annotation pro-
cess of MAVD was more efficient, and the quality of its reference
labels is high. As seen from the results in Table 2, YOLO produces
a lot of false positives, which in the case of MAVD are detrimental
to the training process and consequently to the classification per-
formance. Only for the Car class the classification performance is
similar between the two training scenarios, but while recall for the
model trained with the object-based labels reaches 100%, its preci-
sion suffers due to false positives. For the TAU UrbanASC we do
not have audio reference labels, therefore we can only analyze the
training with the object-based labels. The results in Table 3 show a
high recall value for the Car class, which seems to be the dominant
class among all datasets and label sets. At the same time. the sys-
tem does not classify correctly any Motorcycle instances, which is
the least represented class in the training data. Overall, the results
on TAU UrbanASC are similar to those on MAVD.

3
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Figure 3: Example of mislabelled vehicles by YOLO.

3.3. Discussion

The Truck class is a very difficult case for all datasets, even though it
is somewhat detected in AudioSet and TAU UrbanASC by the sys-
tem trained with the object-based labels. In particular, the perfor-
mance in AudioSet is very high, considering that the system trained
with reference labels does not find any instance of this class. To un-
derstand this significant improvement in performance for AudioSet,
we checked the clips for which YOLO indicated label Truck but
the audio reference label did not contain it. We listened to 50 ran-
domly selected clips and observed that 14% of them indeed contain
truck sounds. In these cases, YOLO indicated a correct sound label
based on the image, which were missing labels in the audio ref-
erence. There were also many false positives which add noise to
the training process; nevertheless, the overall effect on the system
performance was positive.

We visually inspected also the MAVD dataset Truck class, to
understand the difference between the datasets. Looking at the pre-
dictions from the object detector, we observed that different types of
vehicles (cars and buses) were mislabeled as trucks, which creates
confusion between the categories. Two such examples are shown
in Figure 3. In addition, in MAVD there were many scenes with
parked vehicles which were visible and detected by the object de-
tector, but did not produce any sound, therefore creating misleading
information for the audio classifier during training.

This investigation revealed a very obvious drawback of using
this method - objects in the image that do not produce sound (in this
case parked vehicles) appear as false positives for the audio modal-
ity, and may be detrimental to performance. However, even with all
these drawbacks and possible failure scenarios, the approach was
shown to produce reasonable labels and in some cases lead to per-
formance improvements. While this does not solve the problem of
labeling audio content in audio-visual datasets, it can serve as a tool
in more advanced training approaches; for example the object-based
labels can be used as suggestions for methods that use active learn-
ing, or with a human-in-the-loop for verification; or can be treated
as labels with some level of uncertainty to complement data that has
been manually labeled by human annotators.

4. CONCLUSIONS

This work presented a novel approach of labelling audio data uti-
lizing video information, to investigate the suitability of the method
for creating reference labels for audio. The obtained labels were
used afterwards in audio classification task. The method is based on

an object detector model that takes as input a few frames of video
corresponding to the audio clip, and predicting the target classes.
Experiments performed on three different datasets showed the feasi-
bility of using the audio-visual connection in the data to label audio
content. However, the approach is unsuitable for situations when
the sound sources are obscured/absent in the video frames, as they
are not found by the object detector. In addition, some target sound-
ing objects in the scene may actually not produce a sound in specific
instances, leading to false positive labels. Despite these drawbacks,
the method proves to be faster and lower-cost compared to the tradi-
tional annotation methods. Results from the experiment show that
the method may outperform models trained with the provided refer-
ence audio labels, if they contain noisy or possibly incorrect infor-
mation. We conclude that object-based labeling provides a suitable
supervision signal for training and may be a useful tool in learn-
ing about audio content if handled as complementary information
or to reinforce existing information about the data. Future work
will focus on exploring more datasets for including a larger number
of classes, and approaches for alleviating the effect of errors intro-
duced by the object-based detector.
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ABSTRACT

Few-shot learning is a machine learning approach in which a pre-
trained model is re-trained for new categories with just a few ex-
amples. This strategy results very convenient for tasks with a dy-
namic number of categories as typically happens in acoustic data.
The purpose of this paper is to explore the possibility of skipping
this pre-training process and using as training data only the five first
shots of an audio file together with the silence between them. For
the experimental evaluation, data belonging to the Validation set of
Task 5 DCASE Challenge 2023 is used, purposely neglecting the
Training set. This challenge consists of detecting animal species
using only five positive examples. In this exploratory work, three
learning methods have been compared: a ResNet architecture with
a prototypical loss, a ProtoNet and an XGBoost classifier. In all
cases, spectrograms with different transformations are used as in-
puts. Obtained results are evaluated per audio file, enabling the
obtention of particular conclusions about different animal species.
While the detection for some species presents encouraging results
using only these first 5-shots as training data, all the tested algo-
rithms are unable to successfully learn how to properly detect the
blackbird sounds of the dataset.

Index Terms— Bioacoustics, Few-shot learning, Prototypical
networks, Acoustic Event Detection, Sound Event Detection

1. INTRODUCTION

Supervised machine learning methods aim at categorizing data from
a training set containing (extensive amounts of) labeled data [1].
The performance of these techniques is typically evaluated with a
test dataset that incorporates data samples that not only belong to
the same categories as the training set but also adhere to a similar
statistical distribution [2]. Since the early stages of artificial intelli-
gence in the 1950s, such approaches have demonstrated promising
results across diverse fields, including healthcare, computer vision,
robotics, and finance, among many others. However, pursuing bet-
ter accuracy and performance results, building more robust systems
and processing an ever-increasing amount of features, has driven
modern approaches to supervised machine learning (i.e., deep learn-
ing [3]) to be astonishingly data hungry [4, 5]. This data hungriness
is especially concerning in those applications in which obtaining a
high volume of labeled data to build a training dataset is unfeasible
and/or the computational resources for processing all the training
data are unavailable [6]. Recently, this situation has motivated the
conception of what has been coined as few-shot learning paradigm:
an alternative approach to current data-hungry supervised learning
techniques that aims at building reliable systems with a dramatically
low number of labeled training examples [6].

Few-shot learning can be viewed as an effort to emulate the in-
nate ability of humans to leverage previously acquired knowledge
when learning new concepts [7, 6]. For instance, learning to ride a
motorbike may require less training if an individual already knows
how to ride a bicycle. Traditional methods for few-shot learning
aim to take advantage of prior knowledge about certain categories
(e.g., bicycle riding in the previous example) in order to learn new
ones (e.g., motorbike riding in the previous example) [6]. Inter-
estingly, this machine learning approach has attracted a lot of in-
terest in the field of bioacoustics, particularly for tasks related to
sound event detection or species classification [8]. In this domain
it is very common to encounter large acoustic datasets that are very
time consuming to annotate and contain highly imbalanced classes
(i.e., events with with infrequent occurrences versus highly recur-
rent events) [8].

Typical approaches to few-shot learning consist of using pre-
trained systems with a (large) set of known classes and re-training
them with few—usually between two and five—shots (i.e., exam-
ples) by means of different algorithms such as meta-learning and/or
prototypical networks [8, 9]. These algorithms are still data hungry
[5] and strongly rely on the particular tricks and data used in this
pre-training process [8]. The purpose of this work is to explore the
benefits of skipping the pre-training stage in few-shot learning for
acoustic data and solely training the system with five shots of data
(as positive samples) plus the silence surrounding each of them (as
negative samples). To obtain reference values, this work has been
contextualized in the Task 5 [10] of the DCASE Challenge 2023 -
Few-shot bioacoustic event detection1 that challenges participants
to detect and classify vocalizations of animals using five examples
(i.e., shots) of each one of the species. For the sake of this work, the
Training set provided by the challenge organizers has been left aside
on purpose and different classifiers (i.e., ResNet, ProtoNet, and
XGBoost) have been trained using the aforementioned five shots
from the Validation set. More specifically, every audio file has been
used to train a model. Obtained results have been compared to the
DCASE baseline for Task 5 that features a prototypical network.
This work enables researchers to assess and quantify the benefits—
in terms of F1-score—of the pre-training process in few-shot learn-
ing for this particular challenge.

The remainder of this paper is organized as follows. Section
2 describes the methodology for data collection and the selection
of the classifiers. Next, Section 3 presents the experimental results
and their comparison with the DCASE baseline. Finally, Section 4
concludes the paper.

1https://dcase.community/challenge2023/task-few-shot-bioacoustic-
event-detection
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2. METHODOLOGY

This section delves into the methodology employed in this few-shot
learning study. We start by exposing the data collection as well as
the preprocessing steps. Moreover, we introduce the experimental
setup and the learning methods implemented. To end up, we show
the prototypical loss used in the experimentation and its mathemat-
ical sense in order to classify every event.

2.1. Data Collection and Preprocessing

Data used in this study are obtained from the Validation set of Task
5 DCASE Challenge 2023 - Few-shot bioacoustic event detection.
The dataset specifically focuses on animal species detection using
only five positive examples. The audio files are collected from vari-
ous sources and are annotated with the corresponding species labels.
Available data are split into three datasets: Training, Validation, and
Test. Note that classes in the Validation set are not available in the
Training set. In the Validation set, unlike in the Training Set, only
positive or negative labels are considered. That is, there is no more
than one species per audio file. Therefore, the objective will be to
train a model that is able to discern whether a given event is a vocal-
ization or not. Note that in this exploratory work, the Training set is
intentionally neglected, and only the Validation set is used for train-
ing the learning methods. This leads us to an “extreme” few-shot
learning where one model is created and trained for each audio file
with the task of detecting the corresponding vocalization. Also, it is
worth mentioning that the Test set has not been used as the complete
annotations are not publicly available.

Before conducting the experiments, we have conducted some
preprocessing steps. This involves computing the first five positive
event spectrograms labeled with positive class, as well as five neg-
ative samples. Negative spectrograms are computed from intervals
of silence or noise between the first five positive vocalizations of a
given duration. All spectrograms are equally sized and computed
using the duration of the smaller known positive or negative sample
in the few-shot samples of each audio. Figure 1 illustrates an exam-
ple of this preprocessing step. In Figure 1, the smallest sample is the
4th negative. As we are using the minimum duration event as win-
dow size for obtaining the spectrograms, larger events will result
split in more spectrograms, so the model may be trained with more
than 5 positive and negative spectrograms belonging to the same
sample. To avoid class imbalance, the number of positive and neg-
ative spectrograms is always the same, being the class that presents
less samples the one that limits the amount of data of each category.

2.2. Learning Methods

Three different learning methods have been employed in this study
to explore the benefits of using only the initial five shots of audio
data in the Validation set for training:

2.2.1. ResNet Architecture with Prototypical Loss

The ResNet architecture [11], a popular deep neural network, is
utilized in combination with the prototypical loss function. This ap-
proach aims to learn a feature representation space where examples
from the same category are grouped together. The ResNet model
is initially pre-trained on a large-scale dataset (ImageNet) and then
fine-tuned using the limited training data from the first five shots
(positive and negative) of the audio files.

Figure 1: Extraction of positive (POS) and negative (NEG) samples
from an audio file.

2.2.2. ProtoNet

ProtoNet [12] is a few-shot learning algorithm that builds proto-
type representations for each category based on a few labeled ex-
amples. It learns to classify new instances by computing similar-
ity measures between the prototypes and the query samples. The
ProtoNet uses an encoder, which is composed of multiple convo-
lutional blocks. Each convolutional block includes a convolutional
layer, batch normalization layer, ReLU activation function, and a
max pooling layer. These layers are applied sequentially to the in-
put data, transforming it and extracting meaningful features. The
number of convolutional blocks can vary, but in this architecture,
there are four convolutional blocks. In this study, a ProtoNet is
trained with the initial five shots for each audio file and the first five
computed negative samples.

2.2.3. XGBoost Classifier

XGBoost [13] is a gradient-boosting framework that is known for its
high performance in various machine learning tasks. In this work,
we aim to train a XGBoost classifier to learn from the first five shot
spectrogram patterns as well as from the first five silences and make
predictions on new instances.

2.3. Prototypical Loss

The prototypical loss, which has been used for training the ResNet
and the ProtoNet, is a mathematical formulation used in few-shot
learning tasks. Its objective is to train a model that can effectively
classify new instances from unseen classes with only a small num-
ber of labeled examples. In this loss function, support examples are
selected for each class in the Validation set. These support exam-
ples are used to define the characteristics of each class. The support
examples of each class are averaged together to create a prototype
representation, which serves as the centroid or central point of the
support examples for that class (see Equation 1).

cj =
1

Ns

Ns∑
i=1

xij (1)
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Precision Recall F1-score
Audio File (%) (%) (%)
Overall ResNet 12.19 53.95 18.13
Overall ProtoNet 33.41 66.15 37.30
Overall XGBoost 31.19 64.26 36.53
Overall DCASE Baseline 22.1 49.01 28.31

Table 1: Overall percentage of Precision, Recall and F1-score of the
3 evaluated models and the DCASE Prototypical network baseline.

The remaining examples for each class, which were not used as
support examples, are considered as query examples. The goal is to
classify these query examples based on their similarity to the pro-
totypes. In this case, for the similarity, Euclidean Distance is used.
The prototypical loss is obtained by computing the mean log prob-
ability of the negative distances mentioned early for each ground
truth class (see Equation 2). This loss encourages the model to as-
sign high probabilities to the correct classes for the query examples.
That is, this loss helps the model to project samples in an embedding
space where query samples should lay near its ground truth proto-
type. In addition to the classification loss, a regularization term is
added to the loss function. This term promotes compactness in the
prototype representations by penalizing their norm.

In Equation 2 Nq represents the number of query samples. The
numerator represents the exponential of the distance between the
model output for query sample i and its corresponding prototype
ck. The denominator is formed by the sum of the exponential of
all minus distances between query sample i and the rest of protot-
pyes. Finally λ is the regularization term that multiplies the norm
of prototypes set.

L = − 1

Nq

Nq∑
i=1

log

(
exp(−d(fϕ(xi), ck)∑
k′ exp(−d(fϕ(xi), ck′)

)
+ λ∥c∥ (2)

3. EXPERIMENTAL RESULTS

This section explains which metrics have been used and the ob-
tained results of the experimental evaluation.

3.1. Performance Evaluation Metrics

To assess the performance of the learning methods, the following
evaluation metrics are employed: precision, recall, and F1-score.
Precision and recall assess the algorithm’s ability to correctly clas-
sify positive instances and retrieve all relevant instances, respec-
tively. The F1-score combines both precision and recall into a sin-
gle metric. For computing those metrics, the True Positive, False
Positive and False Negative rates of each audio file were obtained.
The individual metrics of each audio file of the dataset have been
calculated using the code provided for Task 5 2023 of the DCASE
challenge, which is explained in [10]. After obtaining the individual
metrics for every audio file, the metrics were averaged to obtain an
overall score and thus be able to compare the different models.

3.2. Results and Analysis

Table 1 provides an overview of the performance of our three mod-
els. ResNet achieved a precision of 12.19%, indicating a poor
ability to correctly identify positive instances. The recall score of

Dataset POS Samples NEG Samples

PB

ME

HB

Figure 2: Positive (POS) and negative (NEG) spectrogram samples
for each one of the datasets (PB, ME, HB) of the Validation set.

53.95% suggests that it captured a moderate proportion of relevant
instances. The resulting F-measure was 18.13%, reflecting its over-
all performance.

ProtoNet performed better than ResNet, with a precision of
33.41% and a recall of 66.15%. This means ProtoNet had a higher
ability to identify positive instances and capture relevant instances.
As a result, it achieved an F-measure of 37.36%.

XGBoost showed similar performance to ProtoNet, with a pre-
cision of 31.19% and a recall of 64.26%. Its F-measure was 36.53%,
indicating a very similar effectiveness to ProtoNet. However it is
important to point out that XGBoost requires less than the half of
the training time than the ProtoNet and, also, it can be trained on a
CPU with a reasonable amount of time.

Furthermore, it is worth noting that all the models presented
in this study achieved higher recall metrics compared to the Pro-
totypical network Baseline provided by DCASE Task 5 (49.01%).
However, in terms of precision and F-measure, only the ProtoNet
and XGBoost models outperformed the DCASE baseline that was
pre-trained with the Training dataset.

In summary, ProtoNet and XGBoost outperformed ResNet in
terms of precision, recall, and F-measure, with ProtoNet achieving
the highest F-measure among the three models. Generally, these
models are thought to be deployed in low-complexity edge devices
that can be trained and used in a specific environment. For that pur-
pose, ProtoNet is easier to deploy in a low-complexity device due
to its simpler architecture and lower computational requirements. It
has fewer parameters and can run efficiently on devices with limited
resources. On the other hand, at inference time, XGBoost requires
more computational resources and may be more challenging to de-
ploy on low-complexity devices.

In terms of a per-audio analysis, the F1-scores for each model
and audio file have been computed and summarized in Table 2. All
three presented models struggle at detecting correctly the PB dataset
(blackbirds). By far, this dataset presents the worst results out of the
three datasets, As it can be observed, the highest score is obtained
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F1-score F1-score F1-score F1-score
Dataset Animal Audio File ResNet(%) ProtoNet (%) XGBoost (%) Baseline (%)
PB Blackbirds BUK1 20181011 001004.wav 0.53 1.26 0.41 2.09

BUK1 20181013 023504.wav 0.11 0.22 0.14 5.72
BUK4 20161011 000804.wav 0.17 0.37 0.14 0.35
BUK4 20171022 004304a.wav 4.04 0.49 0.46 19.35
BUK5 20161101 002104a.wav 7.68 1.88 1.88 7.67

Song Thrush BUK5 20180921 015906a.wav 0.14 0.21 0.21 3.38
ME Meerkats ME1.wav 13.45 4.32 2.04 3.48

ME2.wav 56.25 29.14 46.38 19.51
HB Mosquitos R4 cleaned recording 13-10-17.wav 39.08 78.98 70.27 32.43

R4 cleaned recording 16-10-17.wav 17.92 60.24 57.83 58.33
R4 cleaned recording 17-10-17.wav 15.70 67.40 64.81 10.37
R4 cleaned recording TEL 19-10-17.wav 10.86 80.00 38.03 67.54
R4 cleaned recording TEL 20-10-17.wav 36.20 88.47 71.79 18.18
R4 cleaned recording TEL 23-10-17.wav 16.03 91.93 76.24 72.48
R4 cleaned recording TEL 24-10-17.wav 55.88 81.15 80.91 72.32
R4 cleaned recording TEL 25-10-17.wav 31.09 35.61 86.27 37.65
file 423 487.wav 4.53 35.45 46.01 59.88
file 97 113.wav 16.67 15.35 12.84 18.93
Overall Scores 18.13 37.30 36.53 28.31

Table 2: Percentage (%) of F1-score per audio file of the Validation set.

by ResNet with a 7.68% of F-measure. This also happens when us-
ing the DCASE Baseline, even though in that case there is an audio
file that achieved an F1-score of up to 19.35%. To motivate this be-
haviour, Figure 2 shows an example of positive (POS) and negative
(NEG) spectrograms of this dataset. As it can be observed, the PB
dataset is the one that presents more noise, with the bird vocaliza-
tion being almost masked by the background noise. Visually, it is
even hard to distinguish the difference between the two of them (it
is the yellowest flat line on the top part of the spectrogram). With
the obtained spectrograms, the presence of noise in the PB audio
files might have affected the models’ ability to extract relevant fea-
tures and make accurate predictions, resulting in the obtained lower
F1-scores. Covnersely, in the ME (Meerkats) category, the ResNet
model obtained an F1-score of 13.45% in one audio file, which out-
performed ProtoNet (F1-score of 4.32%) and XGBoost (F1-score
of 2.04%) in the same file. On the other hand, the XGBoost model
performed exceptionally well in the other file (ME2.wav) with an
F1-score of 29.14%, surpassing the scores of ResNet (F1-score of
56.25%) and ProtoNet (F1-score of 46.38%). In average, the three
presented models obtain better results than the DCASE baseline
(except for the first audio file and the XGBoost model). Finally, for
the HB (Mosquitos) category, the ResNet model achieved an F1-
score of 39.08%, followed by ProtoNet with 78.98%, and XGBoost
with 70.27%. The F1-scores in this category indicate that ProtoNet
performed better than the other two models and the baseline.

When interpreting the results, it is crucial to consider the chal-
lenging nature of the PB audio files (very short vocalizations, back-
ground noise) and the impact they had on the models’ performance.
In noisy scenarios, it may be necessary to explore additional pre-
processing techniques or consider using specialized models or al-
gorithms specifically designed to handle such conditions. In this
work, PCEN [14] was evaluated as a possible technique to mitigate
noise, but it was discarded as it did not significantly improve the
results. It is also important to consider that every audio has an inde-
pendent model, so this approach is highly affected by the first initial
five shots for building a solid basis to predict the rest of the audio.

4. CONCLUSION

In this study, we explored the task of bioacoustic events detection
using few-shot learning techniques. Every model was trained using
solely the first five positive examples of animal vocalizations as well
as the first five silences (where silence means absence of the species
to be detected) of every audio of the Validation set of Task 5 DCASE
Challenge 2023, meaning that the Training set was not used.

Three learning methods have been evaluated: ResNet, Pro-
toNet, and XGBoost and compared to the DCASE baseline.

The results demonstrated that ProtoNet and XGBoost outper-
formed ResNet in terms of precision, recall, and F1-score. ProtoNet
achieved the highest F-measure among the three models, indicating
its effectiveness in discerning positive instances and capturing rele-
vant examples. This leads us to think that simpler models in terms
of parameters perform better than complex ones in few-shot learn-
ing scenarios where the training examples are limited. In general,
obtained results surpass the DCASE baseline.

However, it is important to note that the presence of background
noise, especially in the PB dataset, supposed a challenge to the mod-
els’ performance. This highlights the need for additional prepro-
cessing techniques and specialized models to handle such challeng-
ing conditions.

Future work should focus on improving data preprocessing
techniques (e.g., filtering denoising algorithms) and exploring ad-
vanced few-shot learning methods. Moreover, it should be analysed
whether expanding the dataset through data augmentation results in
better performance.
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ABSTRACT

The Conformer architecture has achieved state-of-the-art results in
several tasks, including automatic speech recognition and automatic
speaker verification. However, its utilization in sound event detec-
tion and in particular in the DCASE Challenge Task 4 has been
limited despite winning the 2020 edition. Although the Conformer
architecture may not excel in accurately localizing sound events, it
shows promising potential in minimizing confusion between differ-
ent classes. Therefore, in this paper we propose a Conformer opti-
mization to enhance the second Polyphonic Sound Detection Score
(PSDS) scenario defined for the DCASE 2023 Task 4A. With the
aim of maximizing its classification properties, we have employed
recently proposed methods such as Frequency Dynamic Convolu-
tions in addition to our multi-resolution approach, which allow us
to analyse its behaviour over different time-frequency resolution
points. Furthermore, our Conformer systems are compared with
multi-resolution models based on Convolutional Recurrent Neural
Networks (CRNNs) to evaluate the respective benefits of each ar-
chitecture in relation to the two proposed scenarios for the PSDS
and the different time-frequency resolution points defined. These
systems were submitted as our participation in the DCASE 2023
Task 4A, in which our Conformer system obtained a PSDS2 value
of 0.728, achieving one of the highest scores for this scenario among
systems trained without external resources.

Index Terms— DCASE 2023, Sound Event Detection, Con-
former, PSDS, Multi-resolution, Model fusion

1. INTRODUCTION

Sound Event Detection (SED) is the task that aims to detect and
classify different sound events present within an audio clip. Al-
though research in SED has a long history, the last few years have
witnessed an increasing interest in the field, motivated in part by
the publication of Google Audio Set [1] and the yearly challenges
and workshops organized by the DCASE community [2]. This pa-
per is centered in the context of one of these challenges, in particular
the DCASE Task 4A: Sound Event Detection with Weak Labels and
Synthetic Soundscapes. The goal of this task is to evaluate SED sys-
tems by employing both real and synthetic recordings which contain
10 sound event classes that can be found in a domestic environment.
Besides, it tackles the issue of employing unlabeled data as well as
different types of annotations: strong labels that provide temporal
information (timestamps) along with the sound event category, and
weak labels which solely indicate the category.

The metric employed for evaluating SED systems in this task
is the Polyphonic Sound Detection Score (PSDS) [3], that relies
on the intersection between detected and annotated sound events.
Considering that it can be tuned for evaluating different properties
of a SED system, two PSDS scenarios are proposed for the DCASE
Challenge 2023 Task 4A. Whereas the first one (PSDS1) focuses on
a fast reaction upon a sound event, requiring highly accurate local-
ization, the second scenario (PSDS2) aims to avoid the confusion
between classes, and it is not strict about timing errors.

Over the last few years, different architectures have been pro-
posed to address this task. Since 2018, the baseline is based on a
Convolutional Recurrent Neural Network (CRNN) [4], which em-
ploys CNNs for extracting local characteristics and RNNs to exploit
temporal dependencies. Architectures based on attention mecha-
nisms such as the Transformer [5] or the Conformer (Convolution
Augmented Transformer) [6] have also been explored for this task.
The Conformer architecture has been successfully employed by re-
cent state-of-the-art models in tasks such as automatic speech recog-
nition (ASR) [7] and automatic speaker verification (ASV) [8]. In
the field of sound event detection, it achieved promising results win-
ning the DCASE Challenge Task 4 in 2020 [9]. However, in the sub-
sequent editions it was scarcely used, to the extend that last year we
were the only team that submitted systems based on this architec-
ture [10]. Although our experiments revealed a better performance
of CRNN-based systems in terms of PSDS1, we observed the po-
tential of the Conformer at classifying sound events. Therefore,
in this paper we propose a continuation to our previous research
by optimizing the Conformer architecture towards the PSDS2 and
analysing its performance following our multi-resolution approach.

For this purpose, we introduce the Conformer architecture and
describe the methodologies employed for its optimization in Sec-
tion 2. The results of our experiments are presented and analysed
in Section 3. Finally, Section 4 highlights the salient conclusions
derived from this investigation.

2. PROPOSED METHODS

The Conformer (Convolution-Augmented Transformer) was de-
signed with the aim of building an attention-based network capable
of extracting both local and global features. For this purpose, a con-
volution module is added to the Transformer backbone. To solve
temporal confusion, the relative positional embedding proposed for
the Transformer-XL [11] is added to the global content-based at-
tention mechanism. While this approach initially appeared to be
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highly promising for addressing the detection and classification of
sound events, the Conformer has exhibited limitations in accurately
localizing timestamps, resulting in a lower performance in terms of
PSDS1 when compared with CRNNs. However, the Conformer has
shown a great ability at classifying correctly each sound event, even
when two sounds are similar or noise is present in an audio clip.

Considering that the main weakness of the Conformer architec-
ture is the lack of temporal resolution, we propose to optimize a
Conformer-based system towards the PSDS2. To accomplish this
objective, we employ a multi-resolution approach to assess the sys-
tem’s effectiveness across various time-frequency resolution set-
tings. Considering the pronounced influence of median filtering on
the temporal resolution of a SED system’s output, we adapt this
post-processing technique to the scenario we are targeting. To eval-
uate the proposed methods in the framework of the DCASE Chal-
lenge Task 4A, we compare the performance of our Conformer sys-
tems with a multi-resolution version of the official baseline model
based on CRNNs.

2.1. Optimized Conformer for PSDS2

Our Conformer model is based on the DCASE 2020 Task 4 winner
[9], which consist of a CNN for feature extraction with 4 conformer
blocks stacked. Additionally, they employ a tagging token similar
to the classification token used in BERT [12] to summarize the weak
label predictions through the attention layers.

To improve the PSDS2 value, we perform a hyperparameter
tuning setting as objective this metric, leading to an optimal config-
uration of 7 Conformer blocks with 4 attention heads each and an
encoder dimension of 144. Additionally, we substitute the CNN-
based feature extractor with a Frequency Dynamic Convolution
Neural Network (FDY-CNN) [13] to improve the classification of
non-stationary sound events. For the FDY-CNN we employ con-
text gating as the activation function and define a time-resolution
reduction of 8 by adding one more average-pooling layer along the
temporal dimension. Data augmentation techniques have also been
applied to avoid confusion between classes. By this means, we em-
ploy both Mixup and FilterAugment [14] with a probability of 50%
of applying them to the training data.

As semi-supervised learning, we utilize the mean-teacher
method [15] for training both architectures. This method employs
two identical models: student and teacher, whose weights are the
exponential average weights of the student. By minimizing a con-
sistency cost between the predictions of the student and teacher, the
model learns to generate targets from unlabeled data. Generally, the
teacher model achieves a more consistent learning trajectory across
epochs, leading to a superior performance during testing. Thus,
model selection is performed over the teacher network, adjusting
the objective metric based on the specific scenario we are target-
ing. Whereas for the CRNN we employ the one set for the baseline
(F1-score based on intersection), our Conformer systems use the
PSDS2.

2.2. Multi-resolution analysis

In previous research, we proposed a multi-resolution approach
which consist on varying the parameters employed for the ex-
traction of mel-spectrogram features. Our multi-resolution ap-
proach has demonstrated the advantages of employing distinct time-
frequency resolutions that align with the characteristics of each
PSDS scenario or sound event category. Given that the main weak-

Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
nmel 64 96 128 192 256

Table 1: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five resolution points employed
for the feature extraction. N , L, and R are reported in samples,
using a sample rate fs = 16000 Hz.

ness of the Conformer seems to be the time resolution of its detec-
tions, we will explore how the different time-frequency resolutions
impact the performance of this architecture.

Considering the trade-off between time and frequency resolu-
tion of the Short Time Fourier Transform (STFT), we design a total
of 5 resolution points such that they span a range from higher fre-
quency resolution to higher time resolution, relative to the original
resolution utilized by the baseline system.

As presented in Table 1, we establish the resolution of the base-
line system as the intermediate one (referred to as BS). From this
one we define four additional resolution points. Among these, two
are designed to double the resolution in frequency (F++) and in
time (T++), whereas the remaining two are halfway points between
BS and F++ (F+) or T++ (T+).

Single-resolution models are obtained by training each sys-
tem with one of the points mentioned above. They can be com-
bined into multi-resolution systems by frame-wise averaging the se-
quences of scores. As this combination is performed frame-wise,
the sequences must have the same length. However, the differ-
ent time resolutions defined in Table 1 lead to different lengths of
the score sequences: T1, T2, ...TN . To handle this issue we per-
form a linear interpolation of the sequences to the maximum length,
Tmax = max{T1, T2, ...TN}.

2.3. Class-dependent median filtering

Our multi-resolution approach is based on the fact that each sound
event class presents different temporal and spectral characteristics.
Therefore, smoothing the decoded predictions employing the same
median filter for every class would be counter-productive. Addition-
ally, each PSDS scenario can benefit from different window lengths.
Whereas shorter median filters can improve the localization of on-
sets and offsets, longer windows may be advantageous for avoiding
potential cross-triggers and, therefore, enhance the PSDS2.

For this purpose, we have employed a class-dependent median
filtering in which the optimal lengths of each class are computed
based on one of the PSDS scenarios, iterating over a range from 1
to 29 frames on the DESED Validation set.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

For our experimental results we will use the DESED (Domestic En-
vironment Sound Event Detection) dataset [16], which is the data
proposed for the DCASE Task 4A. This dataset contains both real
recordings, which are obtained from Google AudioSet [1], and syn-
thetically generated audios employing the Scaper library [17]. The
training data is composed of a synthetic strongly-labeled set (10,000
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PSDS DTC GTC CTTC αCT αST emax

Scenario 1 0.7 0.7 0.0 - 1.0 100
Scenario 2 0.1 0.1 0.3 0.5 1.0 100

Table 2: Parameter configuration for the PSDS scenarios.

clips), a real weakly-labeled set (1,578 clips) and a real unlabeled
set (14,412 clips).

To select the best model during the training procedure, the syn-
thetic validation set (2,500 clips) together with a 10% of the weakly-
labeled set is employed. For testing, we use the validation set,
which was constructed to match the clip-per-class distribution of
the weakly labeled training set. It consists of 1,168 real audio clips
annotated with strong labels.

3.2. Evaluation framework

The Polyphonic Sound Detection Score (PSDS) [3] was proposed
for the DCASE Challenge 2021 Task 4 to overcome the limitations
of event-based metrics, which rely on the overlap of collars and de-
pend on a unique operating point. For this purpose, they define the
Detection Tolerance Criterion (DTC) and the Ground Truth Inter-
section Criterion (GTC), which measure percentages of intersection
between ground-truth labels and detected sound events. Addition-
ally, they introduce the Cross-Trigger Tolerance Criterion (CTTC)
to consider data bias by distinguishing the subset of false positives
that intersect with labeled events, named as cross-trigger.

By modifying the threshold of intersection to these criteria, dif-
ferent properties of a SED system can be evaluated. As it is shown
in Table 2, PSDS1 is defined with higher values for the DTC and
GTC to measure a high intersection between labels and predictions.
Conversely, these values are lower for the PSDS2 but in this case,
the CTTC is taken into account to penalize the confusion between
classes, whose cost is influenced by αCT .

Results are provided for the recently proposed threshold-
independent PSDS [18] over the DESED Validation set. Each
model has been trained with three different initializations with the
aim of estimating the performance’s standard deviation. Moreover,
we have compared the complexity of individual systems by calcu-
lating the Multiply–Accumulate Operations (MACs) for 10 seconds
of audio prediction, a metric that was introduced in this year’s eval-
uation.

3.3. Single-resolution results

The performance of both architectures for the different time-
frequency resolution points defined is presented in Table 3. It is
clearly seen that CRNN-based systems achieve higher PSDS1 re-
sults, evidencing the Conformer’s limited temporal precision, which
is accentuated when employing features that are not temporally en-
hanced (F++). However, the Conformer system clearly outper-
forms the CRNN model in terms of PSDS2. Moreover, our Con-
former system exhibits a reduced level of complexity in terms of
Multiply-Accumulate operations (MACs). This metric is also influ-
enced by the different resolution points, with lower values observed
for frequency enhanced points, as they present shorter input lengths.
All Conformer results in Table 3 use FDY, which provides enhanced
performance as shown in Table 4.

Figure 1a shows a prototypical example highlighting the advan-
tages and limitations of the different architectures. The CRNN ac-
curately predicts the location of each event but confuses the second

CRNN PSDS1 PSDS2 MACs
F++ 0.316 ± 0.004 0.561 ± 0.012 0.891G
F+ 0.347 ± 0.015 0.583 ± 0.022 0.905G
BS 0.369 ± 0.006 0.579 ± 0.015 0.930G
T+ 0.368 ± 0.039 0.550 ± 0.066 1.772G
T++ 0.374 ± 0.003 0.575 ± 0.015 1.824G
Conformer PSDS1 PSDS2 MACs
F++ 0.194 ± 0.022 0.688 ± 0.015 0.588G
F+ 0.224 ± 0.030 0.696 ± 0.030 0.633G
BS 0.263 ± 0.020 0.688 ± 0.018 0.879G
T+ 0.251 ± 0.019 0.682 ± 0.014 1.147G
T++ 0.349 ± 0.029 0.668 ± 0.015 1.331G

Table 3: Average and standard deviation results of individual CRNN
and Conformer systems trained with different resolution points and
initialized with diverse seeds over the DESED Validation set. Inde-
pendent median filter was applied.

Architecture PSDS1 PSDS2
CNN + Conformer 0.220 ± 0.027 0.607 ± 0.018

FDY-CNN + Conformer 0.263 ± 0.020 0.688 ± 0.018

Table 4: Effects of employing FDY for the CNN-based feature ex-
tractor over the DESED Validation set.

one by predicting a Blender instead of a Vacuum cleaner. This de-
tection is considered a cross-trigger and will downgrade the PSDS2
value. In contrast, the Conformer predicts correctly the presence of
both sound events in the clip, but it lacks temporal precision, lower-
ing the PSDS1 results. The effect of the low resolution in time of the
Conformer is even more visible in Figure 1b, where the prediction
of continuous short events such as Alarm bell ringing is grouped
into a single one.

Additionally, results show that each PSDS scenario benefits
from a particular resolution point independently of the architecture
employed. As expected, PSDS1 benefits from higher temporal res-
olution, whereas an enhancement in frequency resolution improves
the results for PSDS2.

3.4. Multi-resolution results

Single-resolution models are combined following the process de-
scribed in Section 2.2 in order to obtain multi-resolution systems.
In Table 5 the results of six combinations with up to five resolu-
tion points are presented individually for CRNNs and Conform-
ers. Multi-resolution not only enhances the performance of single-
resolution models, but also evidence that the combination of certain
resolution points is more effective for a specific PSDS scenario. For
both architectures, the PSDS1 is enhanced when employing a com-
bination of resolutions enhanced in time. Conversely, the PSDS2
benefits from a combination of the five resolution points defined,
which is logical as some sound events can be better distinguished
by their spectral behaviour while others are better recognized based
on their temporal properties.

3.5. Results with task-dependent median filtering

We have experimented with the class-dependent median filter-
ing described in Section 2.3 in our best single-resolution systems
(CRNN T++ and Conformer F+) and in our two optimal multi-
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(a) YG3yk9UXVB9g 20.000 30.000.wav (b) Y9OqtuFGCCR8 30.000 40.000.wav

Figure 1: Ground truth, CRNN and Conformer predictions for two audio recordings from the DESED Validation set considering the baseline
resolution.

CRNN Confomer
Resolutions PSDS1 PSDS2 PSDS1 PSDS2
3res F+, BS, T+ 0.397 ± 0.010 0.615 ± 0.012 0.275 ± 0.012 0.719 ± 0.017
3res-F F++, F+, BS 0.375 ± 0.007 0.617 ± 0.013 0.255 ± 0.015 0.722 ± 0.014
3res-T BS, T+, T++ 0.401 ± 0.007 0.611 ± 0.014 0.329 ± 0.013 0.715 ± 0.017
4res-F F++, F+, BS, T+ 0.390 ± 0.007 0.623 ± 0.012 0.268 ± 0.010 0.724 ± 0.015
4res-T F+, BS, T+, T++ 0.405 ± 0.005 0.624 ± 0.013 0.309 ± 0.017 0.721 ± 0.016
5res F++, F+, BS, T+, T++ 0.398 ± 0.005 0.632 ± 0.011 0.306 ± 0.006 0.727 ± 0.015

Table 5: Average and standard deviations results for three initialization seeds of multi-resolution combinations of CRNN and Conformer
systems over the DESED Validation set. Fixed median filter was applied.

Obj. Model PSDS1 PSDS2

PSDS1 CRNN T++ 0.387 ± 0.004 0.585 ± 0.012
CRNN 4res-T 0.416 ± 0.005 0.626 ± 0.016

PSDS2 Conformer F+ 0.164 ± 0.018 0.740 ± 0.033
Conformer 5res 0.243 ± 0.007 0.781 ± 0.017

- Baseline 0.359 ± 0.006 0.562 ± 0.012
ConformerSED [19] 0.341 ± 0.013 0.576 ± 0.015

Table 6: Effects of employing a class-dependent median filtering
on our submitted systems. The Obj. column indicates the objective
metric employed to optimize the median filter length of each class.
The official baseline and a reproduction of the Miyazaki et al. Con-
former system [9] are included for comparison purpose. Results are
provided over the DESED Validation set.

resolution systems (CRNN 4res-T and Conformer 5res). Consid-
ering that the set of median filters learnt vary depending on which
metric is set as objective, we have considered for each system the
same PSDS scenario for which it has been designed: PSDS1 for
CRNN models and PSDS2 for Conformers.

As we present in Table 6, the systems optimized for PSDS1 im-
prove their results in this metric when the median filters are tuned
according the best class-wise PSDS1 performance (from 0.374 to
0.387 in CRNN T++, and from 0.405 to 0.416 in CRNN 4res-
T). Additionally, this criterion is helpful for the PSDS2 as well.

When it comes to the systems optimized for the second scenario,
their PSDS2 value is also enhanced when the median windows are
tuned class-wise (from 0.696 to 0.740 in Conformer F+, and from
0.727 to 0.781 in Conformer 5res). However, the median filters
learnt with this criterion considerably downgrade the performance
for PSDS1.

4. CONCLUSIONS

In this paper we presented the benefits of the Conformer architec-
ture for sound event detection by optimizing a system towards the
second scenario proposed for the DCASE Challenge 2023 Task 4A.
Among the submitted systems without employing external data, our
Conformer system achieves one of the best PSDS2 values over the
evaluation set (0.729).

Following our previous multi-resolution approach, we were
able to analyse its behaviour over different time-frequency reso-
lutions and compare its performance with a CRNN-based system.
Additionally, by employing this technique we not only demonstrate
that a multi-resolution ensemble can considerably enhance the re-
sults, but also revealed that the different PSDS scenarios bene-
fit from features that enhance either time or frequency resolution.
Therefore, we obtain the best PSDS1 when combining CRNN sys-
tems trained with resolution points enhanced in time, while our best
PSDS2 is obtained when combining the five resolutions defined for
the Conformer.
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ABSTRACT

The addition of Foley sound effects during post-production is a
common technique used to enhance the perceived acoustic proper-
ties of multimedia content. Traditionally, Foley sound has been pro-
duced by human Foley artists, which involves manual recording and
mixing of sound. However, recent advances in sound synthesis and
generative models have generated interest in machine-assisted or
automatic Foley synthesis techniques. To promote further research
in this area, we have organized a challenge in DCASE 2023: Task
7 - Foley Sound Synthesis. Our challenge aims to provide a stan-
dardized evaluation framework that is both rigorous and efficient,
allowing for the evaluation of different Foley synthesis systems. We
received 17 submissions, and performed both objective and subjec-
tive evaluation to rank them according to three criteria: audio qual-
ity, fit-to-category, and diversity. Through this challenge, we hope
to encourage active participation from the research community and
advance the state-of-the-art in automatic Foley synthesis. In this
paper, we provide a detailed overview of the Foley sound synthe-
sis challenge, including task definition, dataset, baseline, evaluation
scheme and criteria, challenge result, and discussion.

Index Terms— Generative models, DCASE, sound synthesis

1. INTRODUCTION

Recent years have seen remarkable progress in generative mod-
els, with applications in a variety of fields including image genera-
tion [1], text generation [2], music generation [3, 4, 5], and sound
generation [6, 7]. Models like these are capable of generating high-
quality and diverse samples, and have been widely adopted in both
academia and industry. In particular, sound generation has gained
increased attention in recent years, with advances in sound synthesis
and generative models enabling the creation of realistic and diverse
audio content.

Sound synthesis plays a crucial role in enhancing the audi-
tory perception of multimedia content, such as movies, music, and
videos. Automatic or machine-assisted Foley synthesis has the po-
tential to greatly streamline the process of creating these sound ef-
fects, freeing up time and resources for multimedia content creators.

∗Equal contribution

To encourage further research and development in the field of
automatic Foley synthesis, we developed a challenge that aims to
provide a standardized evaluation framework for different systems.
Challenges have been shown to be an effective way to motivate the
development of machine learning models, particularly in the early
stages of a research area. We believe that this Foley sound synthesis
challenge can play a critical role in advancing the state-of-the-art in
automatic Foley synthesis. This challenge was held as part of the
international Detection and Classification of Acoustic Scenes and
Events 2023 Workshop. The topics discussed in this introduction
are also covered in a proposal document [8].

2. PROBLEM AND TASK DEFINITION

We defined the problem of this challenge as ‘category-to-sound’
generation. The category is chosen in one of the selected seven cat-
egories - dog bark, footstep, gunshot, keyboard, moving motor ve-
hicle, rain, and sneeze/cough. The sound is specified as a 4-second
mono audio snippet with a sampling rate of 22,050 Hz.

As this was the first year of this challenge, we chose the input of
the system to be a sound category rather than text input with natural
language. This simplification was made to ease the organizing effort
such as defining the problem and the evaluation scheme, collection
of dataset, etc. We also intended this to lower the bar for partici-
pation, especially from academia, as category-based systems would
require less data and computational resources than free text inputs.
Similarly, limiting the problem to the seven categories clarified the
subjective evaluation criteria. The seven categories were chosen so
that i) the categories are useful for media creation, ii) it is feasible
to collect a reasonable quantity of training/evaluation sounds with
manual review, and iii) the generated sounds are easy to assess for
the evaluators.

Despite this simplification, our intention for this challenge is
to build towards generalizable and potentially useful approaches in
the real world. In this regard, we specified the submitted systems
should not simply copy-paste an existing sound, i.e., the systems
should be generative, not retrieving.

Our goal is to motivate the development of new methods for
Foley synthesis. Because the volume of data can be instrumental
in qualitative improvements across many areas of ML, we created
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two challenge tracks: one in which participants are free to augment
their training data with external sources (Track A), and the other in
which only the provided development dataset is allowed (Track B).
To enhance the efficiency of the challenge, we also provided two
pre-trained models, HiFi-GAN [9] and VQ-VAE [10], for Track B.
These models were trained using the official dataset.

For a fair and correct evaluation, we required the participants
to submit their model embedded in a Google Colab notebook tem-
plate1. This provided an easy, familiar, and verifiable way for par-
ticipants to share models while resolving any dependency issue for
the organizers, at least within the time frame of the challenge.

3. OFFICIAL DATASET AND BASELINE

The development dataset used in this task consists of 6.1 hours of
audio excerpts, each annotated with one of seven distinct sound
classes: footstep, sneeze/cough, rain, dog bark, moving motor vehi-
cle, gun shot, and keyboard. We selected the categories by consid-
ering an urban sound taxonomy [11]. The seven sound categories
were selected evenly from each top-level group (‘human’, ‘nature’,
‘mechanical’), except for ‘music.’ There is no overlap in the low-
level groups between the sound categories.

We collected the data from UrbanSound8K [11], FSD50K [12],
and BBC Sound Effects.2 To select the appropriate audio clips for
our challenge, we followed a two-step process. First, we gathered
audio samples that were annotated with labels closely related to one
of the seven sound categories. Second, to ensure consistency in the
challenge, we pre-processed the audio to mono 16-bit 22,050 Hz
and either zero-padded or segmented it to a length of 4 seconds, a
duration found sufficient for human recognition of class and audio
quality. This pre-processing step was applied before selection, as
the audio events comprise only a small portion of the total audio
length.

To ensure the quality of the dataset, we carefully selected the
audio clips for each category based on their relevance, variety, and
clarity. One organizer manually selected the collection of excerpts,
each of which was verified by a different organizer to ensure accu-
racy and clarity. Overall, we selected 5,550 labeled sound excerpts,
with the number of sounds per category ranging from 681 to 900.

We divided the dataset into a development dataset and an eval-
uation dataset. Although the number of audio samples varies across
sound classes, we ensured that the evaluation set had a consistent
number of 100 audio samples per category. This decision was made
to ensure that the evaluation set had a diverse range of sounds and
was not too small. We also made sure that the partitions were strati-
fied, so no source recording provided clips in both the development
and evaluation sets, even if there were multiple excerpts from the
same longer recording.

As a baseline system, we implemented a model [13] composed
of three independently trained modules: PixelSNAIL [14], VQ-
VAE [10], and HiFi-GAN [9]. The first module, PixelSNAIL, is an
autoregressive model that maps a sound category input to a time-
frequency representation. The second module, VQ-VAE, trans-
forms the PixelSNAIL output into a Mel spectrogram through a
compressed, latent vector encoding. The final module, HiFi-GAN,
transforms the VQ-VAE output (Mel spectrogram) into a time-
domain digital audio signal.

1https://colab.research.google.com
2https://sound-effects.bbcrewind.co.uk/

We selected the model as our baseline system for the following
reasons. First, the modules were assigned the reconstruction task
and the generation task separately, enhancing the whole architec-
ture’s explainability. Second, the participants were allowed to reuse
some of the modules. Since each module was trained independently,
improving the performance of the system can be achieved by modi-
fying the structure or scheme of specific modules while keeping the
remaining modules unchanged.

4. EVALUATION

Even for objective tasks such as classification and detection tasks,
it is challenging to provide unambiguous annotations and unbiased
evaluation metrics. Multiple evaluation metrics may be necessary,
but it can complicate the ranking of participants. [15]. With genera-
tive tasks such as the one considered in this challenge, the problem
is even more difficult, as the produced data is not a set of labels,
but audio, whose qualities must be assessed. This matter is far from
being solved and is currently undergoing active research [16]. Rec-
ognizing this as a challenge, we opted for a pragmatic combination
of objective and subjective evaluation protocols as proposed in [8].

In detail, we chose a two-step procedure. The first step consid-
ers objective metrics to get a first ranking of the proposed systems.
Due to the constraints on human listening time for subjective rat-
ings, in each track, only the top four entries were then considered
for the second step with a subjective evaluation.

We decided to measure the following qualities:
1. Perceptual Audio Quality: The degree of clarity of sound,

free from any artifacts, fuzziness, degradation, distortion,
and noise.

2. Fit-to-category: The degree to which a sound is recognized
as belonging in the intended category.

3. Diversity: The degree to which a system is able to produce
a diverse set of sounds.

Evaluation of the above qualities typically involves high-level
perceptual and cognitive processing by humans and thus cannot
be evaluated by simple computational means. For this reason, we
chose to complement the objective evaluation with subjective met-
rics. Although essential, subjective evaluation comes with some
constraints. Humans can give different ratings depending upon the
context of a sound they hear, and can experience fatigue. For the lat-
ter reason, only a subset of audio samples can be presented for sub-
jective rating. To make the sure the context is similar across raters
(and potentially, across future contests), the audio samples should
include some “anchors,” i.e. sounds which clearly have a very low
and/or high quality; anchors help to psychologically anchor the rat-
ings and also serve as a check on the quality of the rater [17].

4.1. Step 1: Objective Evaluation

We adopted Fréchet Audio Distance (FAD) [18], a reference-free,
lower-the-better, evaluation metric. FAD calculations were per-
formed for each category. Systems were then ranked based on the
average FAD across seven categories, and only the 4 top-performing
systems per track were considered for the second step, due to time
limitations of the subjective evaluation.

4.2. Step 2 : Subjective Evaluation

The subjective evaluation was operated in two steps. The first was
an online survey that measured the fit-to-category and perceptual
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audio quality. The fit-to-category asked the listener to use their gen-
eral notion of the sound category and was not restricted to referenc-
ing the exact sounds in the development set, nor was it based on the
number of sound events in a file. These tasks were performed on 20
sounds from each category, along with a set of anchors taken from
the development set and baseline system. The second step was a
measure of category diversity.

The selection of the 20 representative sounds was done as fol-
lows. OpenL3 embeddings of all the samples were computed and a
k-means clustering with k = 20 was conducted on them [19]. The
20 “medoid” representative sounds are selected as the ones with the
smallest Euclidean distance to the centroid in the embedding space.

After listening to each sound, the rater was asked to rate two
scales to indicate both its perceptual audio quality and its fit-to-
category, as defined in Section 4. For both scales, raters selected
among 11 levels, with 0 being an unusable sound and 10 being
the top of an absolute scale (the best possible, as opposed to the
best of this contest). Re-listening to the sound was permitted.
This procedure was more appropriate for category fit judgments
than MUSHRA [17] because each sound was unique and different
sounds could fit a category equally well.

Before rating a category, the rater listened to 6 representative
sounds of the category from the development set. The high and
low quality/fit anchor sounds, respectively, were hand-picked from
the evaluation set and our baseline system. These sounds were not
identified as anchors in the survey and were embedded in the main
test at random locations. Entries from Track A and B were inter-
mixed so that their relative quality would be apparent, even though
the competition rankings are separated within each track. The order
of trials was counterbalanced across test conditions.

4.3. Execution

All of the challenge participants performed the ratings on percep-
tual audio quality and fit-to-category for 4-7 categories, for a total
duration of about 3-6 hours. After each category, the listener could
take a break.

All participants listened to the same sounds. Thus, participants
who submitted one of the finalist systems actually rated sounds from
their own systems but their self-ratings were removed by the orga-
nizers before computing results. This allowed us to streamline the
rating system while removing potential rating bias.

Rating at least 4 categories was required to be eligible for a
prize. This requirement ensured that we had a fair distribution of
teams doing ratings and enough ratings per sound. Additionally,
some organizers rated sounds. This combined effort resulted in 10-
15 independent ratings per sound. 93 separate category ratings were
completed which took approximately 47 hours. Two of the 93 rat-
ings were omitted at the start of the data analysis because they mis-
rated 5 or more of the 12 quality-check trials (in both cases, giving
a rating of low quality & good fit to an anchor sound that had a high
quality & poor fit, indicating that they had confused the two scales).
The anchors that had low quality tended to get a poor fit rating, so
we did not use those as an exclusion criterion. Appropriate ratings
were given for anchors that had high quality & low fit, high quality
& good fit, and low quality & poor fit (4 of each type).

To validate the protocol as well as the software stack, a pi-
lot study was carried out with the outputs of the baseline system
in which the listeners were the organizers. During the evaluation
phase, the test was advertised to relevant mailing lists. In this ver-
sion, only one 30-minute category rating task was proposed to the

listener, using a scheme to distribute the ratings across categories.
Finally, as our second step, we also performed a subjective test

on Diversity. Diversity is a “set-based” quality, meaning that a set
of generated audio files are mandatory for measuring it. For this
reason, Diversity could not be evaluated within the above discussed
listening test, whose stimuli are considered independently. For each
system and each category, an organizer who did not participate in
the ratings generated a continuous audio file sequencing the 20 rep-
resentative sounds per system. Each file was given a name speci-
fying the category and an obfuscated version of the system id. The
diversity rating task took about 1.5 hours. Four other organizers,
blind as to which systems they were rating, rated the diversity of
the sounds per file from 0 (All the sounds appear to be identical) to
10 (Extremely large range of sounds).

Considering that 1) diversity may be less important than quality
and fitness and 2) this quality has been not as rigorously tested in
this edition of the challenge as the two other qualities, organizers
decided in advance that the diversity ratings were weighted half as
much as each of the audio quality and category fit ratings.

5. RESULTS

We provided a colab notebook as a starting point to implement
submissions. We received 42 systems in total, including 11 sys-
tems in Track A [20, 21, 22, 23, 24] and 31 systems in Track B
[25, 26, 27, 28, 29, 30, 31, 22, 32, 33, 34, 35, 36]. We removed dis-
qualified submissions that failed to run on standard colab instances
in a reasonable period of time. Before disqualification, we had a
4-day review period permitted for trivial bug fixes but did not allow
changes in parameterization of the submitted systems.

With the remaining 36 working systems submitted by 17 teams,
we generated 700 audio samples from 9 and 27 systems for tracks
A and B, respectively. The audio samples are available online3.

As all the scores (FAD scores per category, subjective test re-
sults on audio quality, fit-to-class, and diversity) were released on
the DCASE official website,4 we analyze the evaluation results in
this section.

In Fig. 1, the FAD scores of 17 systems are plotted. The
(x, y) position represents the average FAD score computed on the
development set (FAD-Dev) and the evaluation set (FAD-Eval), re-
spectively. The width and height of each rectangle represents the
(scaled) standard deviation over 7 categories for both sets, respec-
tively.

First, most of the systems show better (lower) FAD-Dev than
FAD-Eval, with the exception of [20]. This is expected, as the
training would be at least partially based on the development set.
Second, it turns out that FAD-Dev is a noisy measure to predict
FAD-Eval. This is not surprising as the final objective measure
(FAD-Eval) contained new sounds to prevent overfitting. Third,
comparing the top systems of track A and B, several systems in
track B showed better performance on FAD-Dev, but not in FAD-
Eval. This shows the difficulty of training a system with the limited
amount of data permitted in track B.

In Fig. 2, the top 8 systems and the baseline system are plot-
ted by their final ranking determined by a listening test as well as
FAD-Eval and FAD-Dev. On the left, the scatterplot shows the im-
portance of subjective tests. The Spearman’s rank correlation co-
efficient of the ranking by FAD-Eval and the final ranking is only

3https://zenodo.org/record/8091972
4https://dcase.community/challenge2023/

task-foley-sound-synthesis-results

18



Detection and Classification of Acoustic Scenes and Events 2023 21 – 22 September 2023, Tampere, Finland

0 2 4 6 8 10 12 14 16
FAD (Dev)

0

2

4

6

8

10

12

14

16

FA
D

 (E
va

l)

Track A
Track B
Baseline

Figure 1: FAD Scores on the development set vs the evaluation set,
computed on the 17 submitted systems and the baseline system.

‘0.238’. On the right, with FAD-Dev, the coefficient is somewhat
higher, ‘0.524’.

We established that subjective perceptual sound qualities were
not entirely predicted by objective FAD scores. In addition, we
established that the three perceptual metrics were interrelated, but
each had a unique contribution. Within each category, the corre-
lations between average rating scores of finalist systems of audio
quality and category fit were very strong (average across all cate-
gories was r = 0.98); however, when quality & fit ratings from
individual trials were correlated within each category, the average
correlation was less extreme (r = .75), showing that raters were
not giving identical answers to both questions. Our anchor trials
showed that the raters did know how to distinguish the two qual-
ities, because they appropriately rated the category-inappropriate
sounds with good audio quality. On the other hand, we also found
that raters gave all-around low ratings to the category-appropriate
sounds with poor audio quality. Because sound recognition was es-
sential for judging category fit, it is plausible that good audio quality
was required before being able to give a high category fit rating. Av-
erage diversity (within each category, across finalist systems) had a
strong relationship to category fit (r = 0.70); nonetheless, half of
the variance in diversity ratings was independent of quality/fit.

The perceptual ratings of the quality/fit of all the systems were
plausible, with the highest average ratings obtained for the sounds
from the development set, and the lowest for our baseline system.
The submitted systems had intermediate ratings, showing that there
is room for improvement in this challenge.

To summarize, there are expected mismatches between the
objective evaluation for the provided sounds (FAD-Dev) and the
sounds held back by the organizers (FAD-Eval); importantly, ob-
jective evaluation metrics did not completely align with subjective
evaluation (final ranking). This justifies two of our choices for the
evaluation scheme: i) receive submissions in the form of a system
(code) instead of sounds, and ii) run a subjective evaluation.

6. CONCLUSION

In this paper, we presented a challenge for automatic Foley sound
synthesis aimed at promoting further research and development in
generative AI for sound. We have provided a detailed overview of
the challenge, including task definition, dataset requirements, evalu-
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Figure 2: FAD scores on the development set and the evaluation set
vs. the final ranking determined by the listening tests.
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Figure 3: Relationships between objective measure (FAD-Eval) and
subjective tests.

ation criteria, a baseline implementation, and analysis of the results.
Through this challenge, we believe we have achieved our goal — to
encourage active participation from the research community and ad-
vance the state-of-the-art in automatic Foley synthesis. Although it
was the first year of the challenge, we received substantial submis-
sions in both of the tracks. We also performed the generation and
evaluation of the submitted systems successfully.

In both tracks, the best performing systems were based on deep
learning, with a sequence of a diffusion model for spectrogram gen-
eration and HIFI-Gan [9] for phase reconstruction.

There have been difficulties as well. Our analysis showed the
necessity of performing a subjective evaluation and running infer-
ence by ourselves. Unfortunately, both are costly; in total, about
47 hours were spent for the evaluation of 8 systems and about 471
A100 GPU hours for the inference. With permission, we released all
the generated sounds as well as their subjective/objective scores on
Zenodo, hoping to enable more analysis and even subjective quality
prediction models based on the data.

In the future, we hope that the standardized evaluation frame-
work provided by this challenge will help to facilitate comparisons
between different Foley synthesis systems. It is already apparent
that more sophisticated Foley sound synthesis will be possible in
the near future with text-input, video-input, etc. We hope our chal-
lenge will ultimately lead to the development of more effective and
efficient techniques.
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ABSTRACT

Automated acoustic understanding, e.g., sound event detec-
tion and acoustic scene recognition, is an important research di-
rection enabling numerous modern technologies. Although there
is a wealth of corpora, most, if not all, include acoustic sam-
ples of scenes/events in isolation without considering their inter-
connectivity with locations nearby in a neighborhood. Within a con-
nected neighborhood, the temporal continuity and regional limita-
tion (sound-location dependency) at distinct locations creates non-
iid acoustics samples at each site across spatial-temporal dimen-
sions. To our best knowledge, none of the previous data sources
takes on this particular angle. In this work, we present a novel
dataset, the Spatio-temporally Linked Neighborhood Urban Sound
(STeLiN-US) database. The dataset is semi-synthesized, that is,
each sample is generated by leveraging diverse sets of real ur-
ban sounds with crawled information of real-world user behaviors
over time. This method helps create a realistic large-scale dataset,
and we further evaluate it through perceptual listening tests. This
neighborhood-based data generation opens up novel opportunities
to advance user-centered applications with automated acoustic un-
derstanding. For example, to develop real-world technology to
model a user’s speech data over a day, one can imagine utilizing
this dataset as the user’s speech samples would modulate by diverse
sources of acoustics surrounding linked across sites and temporally
by natural behavior dynamics at each location over time.

Index Terms— Audio Dataset, Sound Synthesis, Urban Sound,
Connected

1. INTRODUCTION
Understanding acoustic surroundings seamlessly influences our
daily life, e.g., recognizing different emergencies by distinct alert-
ing sounds. Besides, acoustic sounds also affect human mental
health, e.g., work productivity in a calm/noisy environment [1], and
psychological impact on our well-being as the change in stress level
[2]. Thus, understanding acoustic sounds plays a crucial role in our
life, which provides plentiful information to uplift environmental
awareness and life quality. Especially recent advanced techniques
and the support of superior hardware in deep learning show a promi-
nent performance on these acoustic contextual tasks.

Basically, these acoustic context tasks can be generally divided
into two categories, which are sound event detection (SED) and
acoustic scene classification. Specifically, a sound event detection
task aims to predict a short-term and precise event, e.g., a dog bark-
ing, a car passing by, or a cell phone ringing. Differing from that, an
acoustic scene classification task targets an environment-wise con-
textualization, e.g., on the street and in a coffee shop, which may
compound multiple sound events. Recently, for sound event de-

tection tasks, Turpault in [3] proposed to use weakly labeled data
where a top-performed system using a convolutional neural net-
work (CNN) model has achieved 42.7% F-measure. Besides, Ron-
chini et al. [4] integrated non-target events as auxiliary information
while training and greatly impacted the SED task. As for acoustic
scene classifications, DCASE has been predominantly focusing on
scene classification in DCASE challenge Task 1 [5, 6, 7, 8, 9, 10]
with constantly evolving their scope of interest within the task. Re-
cently, they have been curious about the scope of this task on low-
complexity approach [11] solutions, in which the top system com-
peted with 48 submissions from 19 teams in the challenge and ob-
tained 59.6% accuracy with 1.091 log loss. Both event detection and
scene classification tasks manifest great accuracy in understand-
ing the acoustic scenes/events with deep-learning-based models and
provide insights for real-world applications.

However, most of them focus solely on scenes and events only.
The currently published datasets used for similar tasks; only con-
tain short-term audio from random locations and times isolatedly.
None of them consider the inter-connectivity with locations nearby
in a neighborhood. For instance, TAU Urban Acoustic Scenes 2020
Mobile [9] is one such designed for the scene classification task, but
it lacks consistency in connectivity with its context of surrounding.
The UrbanSound dataset [12] presents sound events compound with
scrapped urban noises from the internet, which makes it diversely
localized but poorly inter-linked. URBAN-SED dataset [13] having
11 events is a synthesized dataset aimed to compensate the sparsity
of strongly annotated datasets; however, the same Brownian noise
as background for all soundscape with predefined artificial synthesis
settings barely justifies the real acoustic variation in an urban sur-
rounding. ESC50 [14] with recordings in 2000 short clips emerge as
one of the highest labeled environmental recording datasets bring-
ing distinct 50 classes. Highlighting isolated high-quality sound
events, the NIGENS dataset [15] brings 14 distinct sound event
classes, including strong annotations. Whereas both ESC50 [14]
and NIGENS [15] datasets are designed for SED tasks without the
context of surrounding. SINS dataset [16] equipped with 16 activi-
ties aimed at activity detection in domestic environments for smart
home applications. STARSS22 dataset [17] contains spatial record-
ings of real sound scenes collected in interiors, including temporal
and spatial annotation of 13 sound events. However, both SINS
[16] and STARSS22 [17] datasets sound recordings only in the in-
teriors, which limits prominent datasets for diversity in the applica-
tions. Unlike the above-mentioned datasets, SONYC-UST [18] has
attempted to build a dataset equipped with spatiotemporal metadata.
The dataset contains real-world recordings in New York City with
annotations defined using 23 tags based on New York City noise
code. The highlight of SONYC-UST is the spatiotemporal con-
text information that comforts monitoring the distribution of sound
tags. But primarily focused on the events considered to be noise
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in the urban environment, eliminating common sound events (e.g.,
Birds chirping) which are not considered noise. Also, the record-
ings are intuitively at outdoor locations limiting the SED applica-
tions to deal with the events in outdoor scenarios. Alternatively,
in this work, we bring a new perspective/angle to this field; we
consider an application-wise scenario that can be applied in a user-
contextualized, environment-aware closer to our daily life. That is,
many applications incorporating speech are published as well, e.g.,
Speech Enhancement applications, Automatic Speech Recognition
(ASR) applications, and Speech Separation Tasks. To mention,
an unsupervised federated learning approach proposed by [19] for
speech enhancement and separation with a release of LibriFSD50K
dataset. And Darius Petermann et al. in [20] introduce the sep-
aration of an audio mixture into speech, music, and sound effects
using their proposed dataset named Divide and Remaster. How-
ever, they integrate acoustic scenes/events into speech but in a non-
realistic and artificial manner. Whereas to do so, continuous record-
ing from real-life scenes is required, and even with the recordings
subsequently, it needs to be annotated for the event’s presence to be
useful for SED tasks. Nevertheless, collecting new and large-scale
recordings from the real world and annotating them is expensive,
cumbersome, and time-consuming. Synthesis becomes a more fea-
sible way to catch the scalability of existing speech datasets.

Hence, being a preliminary study to implement this idea, we de-
velop a framework for synthesizing a continuous real-world acous-
tic distributed sound surrounding. Henceforth, we proposed this
dataset with the inspiration to equip researchers with variable sur-
rounding sound in an environment closely resembles realistic pat-
terns. The proposed dataset models the small-scale connected sur-
rounding in urban areas. The detail of the work is organized as fol-
lows: Section 2 presents the details of the synthesis, Section 3 sum-
marizes the dataset and presents the analysis of the same, and with
an end note, Section 4 discuss the dynamic scaling of the dataset
with potential applications and concludes the present work.

2. METHODOLOGY
The proposed dataset is synthesized to represent a small-scale inter-
connected urban area. The synthesis framework is divided into Pre-
conditions, Traffic, and Scene Synthesis. Here Preconditions deal
with the requirements for the synthesis, Whereas the synthesis part
is broadly divided into Traffic and Scene Synthesis.

2.1. Preconditions
Being an interconnected urban sound database, it is important to
map the locations and patterns for scene-specific sound classes to
conceptualize. Hence we presented a map in Fig. 1 for the pro-
posed dataset; mapping both indoor and outdoor environments, 5
distinct locations were selected for synthesis representing a small-
scale interconnected urban area. Street, Metro Station, Park, School
Playground, and Cafe, represented by microphones M1, M2, M3,
M4, and M5, respectively, are simulated with 14 acoustic sound
classes. Of all classes, 6 represented the background, and 8 were
the events. Vehicle, Train, Pedestrian, Cafe Crowd, Children Play-
ing, Urban Park, Street Music, Phone Ring, School Bell, Car Horn,
River, Bird, Fountain, and Dog Bark are considered acoustic sound
classes. Train, Pedestrian, Cafe Crowd, Urban Park, River, and
Fountain are considered as background, and the rest are the events.
After a thorough review, the sound recordings for mentioned classes
are adopted from a suitable published dataset, as in Table 1. At the
same time, the pattern for the appearance of the sound classes Ve-
hicle, Car Horn, Street Music, Pedestrian, and Dog Bark is inspired

by the annotation from real-world distribution of the closely rel-
evant events from the SONYC [18]. And as for the background
sound at the synthesized locations Metro Station, Park, and Cafe
follows the google maps popular time index using LivePopular-
Times1 python package for the respective sound class. Specifically,
searching nearby Manhattan, e.g., ”subway in Manhattan” prompt
shows 18 results with the popular time index, which indicates the
people’s traffic at that location. That helps relate to the density of
background sound of the location, and taking the average for the
number of results gives a general idea about the trend of busyness.
Since the SONYC [18] data is mainly concentrated around Man-
hattan, searching for google maps popular times around that area
makes the distribution consistent with the base area. This distribu-
tion is obtained for a week in an hourly fashion, which makes it
convenient to design the density of events or the crowded nature of
the background in a similar fashion.

2.2. Traffic Synthesis
Temporal connection across microphone locations is shaped by
Traffic Synthesis. Autonomous from overall Scene Synthesis, Traf-
fic Synthesis synthesizes a controlled flow of vehicles by tracing
each vehicle’s course with calculated time for the appearance of the
same vehicle at another microphone that comes under the vehicle’s
track. There are 4 entry nodes considered for each vehicle to enter
the environment as EN1-EN4. Now considering the more or less
busy route, the path for the vehicle is decided with a random distri-
bution till it exits the environment at the diagonally opposite node to
its entry node. IDMT dataset [21] enriched with 4 different vehicle
sounds at 3 different known speeds is best suited for Traffic Syn-
thesis. Since the map in Fig. 1 is conceived with an approximated
distance for microphone locations, hence compiling the information
of speed, a good approximation for the timing is achieved by using
Speed = Distance

Time
. Following this set of conditions has equipped

us with a temporal correlation across the microphone locations.

2.3. Scene Synthesis
Audio at 5 different microphone locations is synthesized to assem-
ble a scene that furnishes realistic event patterns with the temporal
connection. A brief overview of the acoustic classes at each synthe-
sized location is given in Table 2. Following a realistic distribution
described in 2.1, the dense nature of the environment is compiled
in the synthesis by adding more audio segments on top of the same

1https://github.com/GrocerCheck/
LivePopularTimes.git

Table 1: Sound Classes and Dataset used for the synthesis

Sound Class Source Dataset

Vehicle IDMT Traffic [21]
Train, Cafe Crowd,

Urban Park
TUT Rare Sound
Events 2017 [22]

Pedestrian TAU Urban Acoustic
Scenes 2020 Mobile [9]

Children Playing, Street Music UrbanSound [12]
Phone Ring NIGENS [15]

School Bell, River,
Fountain FreeSound.org

Car Horn, Dog Bark UrbanSound8K [12]
Bird ESC-50 [14]
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Figure 1: Acoustic Synthesis Map

sound class. A maximum of 3 audio segments have been added to
represent the maximum dense structure. For the direct correlation
of which popularity index from Google map has scaled down and
quantized to an integer value to result in a range of 0-3. The dense
scaling factor represents how many same-class audio segments to
add for the background. On the other hand, the same factor for the
event is inspired by a scaled version of SONYC [18] data for visu-
alization of the event patterns, which indicates the number of sound
events from the same classes added. However, events that are out-
side the SONYC [18] study are designed manually, e.g., Children
playing and School bell class distribution in the School Playground
microphone location (M4) are designed manually by considering
school operating hours. The different sound classes merged to cre-
ate a scene are scaled with the different intensities which is inspired
by the inverse distance relationship with the sound intensity as in
eq.(1). Whereas I1, I2 are the original and synthesis sound inten-
sities, and d1, d2 are the respective distance of the recording from
the source. Since the sounds taken from datasets do not contain the
information regarding the distance of recording in detail, hence the
chosen factor d2 is scaled in terms of distance d1 and then verified
by manual listening for any resulting scaling change required. The
data shown in Table 3 indicate the distance scale for the particular

Table 2: Combination of sound classes present at different locations
throughout the week.

Location Day Sound Classes

Street Mon-Sun Vehicle, Pedestrian, Phone Ring, Car
Horn, Dog Bark

Metro
Station Mon-Sun Train, Pedestrian, Phone Ring

Park Mon-Sun
Vehicle, Pedestrian, Urban Park,
Street Music, Phone Ring, Car Horn,
Bird, Fountain, Dog Bark

School
Play-
ground

Mon-Sun
Vehicle, Pedestrian, Children Play-
ing, School Bell, Car Horn, River,
Bird, Dog Bark

Sat - Sun Vehicle, Car Horn, River, Bird, Dog
Bark

Cafe Mon-Sun Vehicle, Cafe crowd, Phone Ring,
Car Horn

sound class used in synthesis, e.g., intensity scaling factor 2 indi-
cates the audio event or background sound in synthesis audio will
be twice as distance with respect to the one in the raw sound itself.

I2 = I1

(
d1
d2

)2

, (1)

Overall, in the end, all the considered sound classes, after go-
ing through dense scaling and distance scaling processes, are added
with each other to synthesize the scenario, which has the tempo-
ral pattern and interconnection with locations. Hence equipped us
with one of its kind acoustic dataset designed to simulate the closely
connected neighborhood urban area.

3. EXPERIMENTAL RESULTS
A brief assessment of the proposed dataset is presented, divided into
a summary and analysis of the dataset. In the following sections,
we discuss the summary and distribution of STeLiN-US further; we
analyze it from a visual and human listener’s perspective.

3.1. Summary
Following our proposed semi-synthesis procedures, we generate a
Spatio-temporally Linked Neighborhood Urban Sound (STeLiN-
US) database and is made available online2. Containing intercon-
nected acoustic surroundings and scene-specific events, the pro-
posed dataset is equipped with 525 audio clips comprising 43 hr
45 min in total. Synthesized for location-specific scene surrounding
and adjunct with strong annotations for the events have reinforced
the proposed dataset to be equivalently used in both scene classifi-
cation and event detection tasks. Besides, embedding the time and
day information with the synthesized acoustic scene has lifted the
applicability from traditional tasks.

3.2. Analysis

3.2.1. Dataset Distribution
To visualize the distribution of each sound class in the final synthe-
sis with respect to synthesized microphone locations, a series of bar

2https://doi.org/10.5281/zenodo.8241539

Table 3: Scaling d2 = k*d1, considered k values for respective lo-
cations and sound class, where d1, d2 are the respective distance of
the recording from the source.

Locations
Sound Class Street M.Station Park School-P.G. Cafe

Vehicle 2 - 4 5 5
Train - 1 - - -

Pedestrian 1 1 3 4 -
Cafe Crowd - - - - 0.5

Children
Playing - - - 3 -

Urban Park - - 1 - -
Street Music - - 3 - -
Phone Ring 9 9 9 - 15
School Bell - - - 3 -
Car Horn 3 - 5 6 6

River - - - 4 -
Bird - - 2 3 -

Fountain - - 2 - -
Dog Bark 4 - 2 5 -
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Figure 2: Average distribution of selected sound class in each synthesized location.
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Figure 3: Sound class distribution at each synthesized location
on (a) WeekDays (b) WeekEnds with corresponding annotators re-
spond for dense/ sparseness in (c) and (d) and equivalent respond
for naturalness in (e) and (f)

graphs are presented in Fig. 2. Following real environment distribu-
tion in sound classes, it showcases the distributed imbalance across
time, location, and sound class e.g., from Fig. 2 (a), the Street is less
busy during the morning than in late afternoon similarly in (e) cafe
is busier from morning to afternoon than in late evenings, which are
indeed the case in real life. Analogously, Fig. 2 can be compared
with Table 2, which explains the presence of each class at synthe-
sized microphone locations.

3.2.2. Listening Test
To validate the naturalness and sparseness of the proposed STeLiN-
US, we further conducted a listening test by human annotation. In
this experiment, a total of 50 audio samples (50 minutes in total)
are selected randomly from STeLiN-US but evenly distributed in
all synthesized microphone locations and times for this test. Pre-
cisely, all locations and time slots should present at least one time
in the listening test set. During the listening test, we define two
questions for annotators, including naturalness and sparseness. Nat-

uralness is annotated on a 5-Likert scale, where 1 represents strong
disagreement on the naturalness of audio (i.e., the audio sounds arti-
ficial), and 5 means strong agreement on naturalness (i.e., the audio
sounds natural). Similarly, sparseness is labeled by asking whether
the audio sounds in rush hour, which is a binary(yes/no) question
for them, and 0 for sparse, 1 for dense. In the overall listening test,
we include 6 unique annotators (2 females, and 4 males) in total.

Henceforth, to analyze the distribution in a systematic way, we
divide them into weekdays and weekends, as shown in Fig. 3 (a) &
(b), respectively. Fig. 3 (c) & (d) represent the Dense/Sparseness
results from three annotators (A1, A2, and A3) divided into week-
days and weekends, respectively. Similarly, Fig. 3 (e) & (f) is for
naturalness result. To have statistical results, we further compute
the average annotation among all the annotators and present their
standard deviation as well. Notably, we get 0.36 and 3.12 average
results for dense and naturalness, respectively, and similarly, we get
0.22 and 0.91 standard deviations. This conveys annotators agree
closely for dense and naturalness results with lower deviation at the
same time. It is amazing to observe the average naturalness result
is more than half of the max on the scale with the least deviation
among annotators depicting that even if the dataset is synthesized
one is still inclined to feel natural alike.

4. DISCUSSION AND CONCLUSION
The proposed synthesis approach cultivated with real-world user
behavior can be dynamically scaled to model any required envi-
ronment. Such wide adaptability can elevate application-specific
research solutions. Furnished with the real surrounding pattern dis-
tribution of sound classes, the proposed STeLiN-US dataset sim-
ulates the acoustic appearance of closely interconnected neighbor-
hoods in urban areas. This help in not only identifying the scenes
but also predicting acoustic scenarios. This accommodates the user-
centered applications, e.g., If combined with the ASR, the ASR
performance can be analyzed based on the location and time more
than that possible performance can be predicted beforehand based
on the prediction of the scene busyness. Hence this dataset can un-
veil many possible applications for the researcher. In contrast with
previously published datasets, portraying diversity across locations
yet interconnected and diverse events to truly justify the surround-
ing environment and still sound natural alike from the listening test
has made the proposed dataset unique and unmatched. Such incor-
poration of scene-specific events to replicate the real surrounding
environments facilitates researchers in testing trailblazing event de-
tection systems.
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ABSTRACT
The creation of sound effects, such as foley sounds, for radio or
film has traditionally relied on the expertise of skilled professionals.
However, synthesizing these sounds automatically without expert
intervention presents significant challenge. Particularly, when the
available data is limited, this challenge becomes even more com-
pounded. This often leads to a lack of diversity in the generated
data. In this paper, we propose effective GAN frameworks, O2C-
GAN and OC-SupConGAN for foley sound synthesis in this situa-
tion. The proposed frameworks use a new learning method, oneself-
conditioned contrastive learning (OCC learning), to solve problems
encountered in small dataset. The OCC learning is a method that
aims to expand the diversity of data while preserving the inherent
attributes of each class within the data. Experiments show that the
proposed framework outperforms baseline schemes, ranking 2nd in
DCASE2023-T7 Track B with a FAD score of 5.023 on the evalua-
tion set.

Index Terms— Foley sound synthesis, Generative Adversarial
Network, Contrastive Learning

1. INTRODUCTION

In recent years, there have been significant advancements in the
field of generative models, leading to a growing interest in gen-
erating images or sounds that fulfill specific user-defined condi-
tions across various domains. While the audio domain has seen
substantial advancements in voice synthesis for singing, text-to-
speech (TTS), and music generation, the focus on generating in
other acoustic domains, such as sound effects or background noises,
has been relatively limited [1, 2, 3]. Notably, foley sound synthe-
sis [4], crucial for enriching auditory experiences in narratives like
radio or movies, has been received relatively little attention. Fo-
ley sounds are meticulously crafted to synchronize with on-screen
events and actions, adding realism and depth to the overall sound
design. However, the creation of foley sounds traditionally relies on
skilled professionals manually performing and recording the neces-
sary sounds. This expert-driven approach restricts the scalability,
flexibility, and creative exploration in sound production. As a re-
sult, there is a clear need to explore automated approaches for gen-
erating user-desired foley sounds. However, tackling this challenge
is accompanied by various difficulties due to the complex nature of
foley sounds. Specifically, the problem is further exacerbated when
the available data for training models is scarce.

To promote research in the aforementioned field, task 7: Fo-
ley sound synthesis was introduced in the DCASE challenge. This
aimed to pioneer a new ground of audio synthesis and generate user-
desired sounds tailored to custom environments [5]. The following

Figure 1: Schematic figure of the application of oneself-conditioned
contrastive learning to different conditional contrastive losses. The
color of each shape represents a class. The color of line implies
the push-and-pull between the embeddings. The red line represents
pulling each embedding while the blue line represents pushing each
other. The thickness of the line expresses the strength of the pushing
and pulling force. The thicker the line, the stronger the pull or push.

task was divided into two sub-tasks: A and B. Participants were
challenged to generate 4-second audio clips with a dataset consist-
ing of about 800 data per class given from the challenge. Task B
allows only a dataset given from the challenge, while Task A allows
the use of external datasets. We participated in Task B. The require-
ment to train models with such a limited amount of data imposes a
critical flaw for the generative models. The scarcity of data is likely
to lead to problem with a lack of diversity in the generated data.

In this paper, we propose oneself-conditioned contrastive learn-
ing (OCC learning) that selectively applies label information in con-
ditional contrastive learning methods. The OCC learning uses label
information of the data itself but does not use label information be-
tween data. This extends the diversity between data while main-
taining the class-specific characteristics of the data. In small dataset
situations, OCC learning intentionally makes training of GAN dif-
ficult, increasing the stability of learning and solving the mode col-
lapse problem. This can be applied to models using conditional
contrastive learning method, among which we applied it to Con-
traGAN [6] and C-SupConGAN [7], thereby proposing O2C-GAN
and OC-SupConGAN respectively. The schematic difference be-
tween applying and not applying OCC learning to the contrastive
loss of each model is depicted in Figure 1.

The rest of this paper is structured as follows: In Section 2,
we provide a detailed description of our proposed methods, O2C-
GAN and OC-SupConGAN. Section 3 outlines the dataset used and
presents the experimental setup to compare with the baseline and
other variants of our approach. In Section4, we discuss the results
of our experiments, and finally, the last section concludes this paper.
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Figure 2: Illustration of a visual comparison of clusters of data embeddings generated by different trained GANs using t-SNE. The points of
each t-SNE are the embeddings of the data generated by the generator in the latent space of the discriminator.

2. METHODS

We build the 2-stage system to obtain high performance of FAD
score in the DCASE2023-T7 Track B. We denote the first stage as
the ‘Category-to-Mel spectrogram’ section and the second as the
‘Mel spectrogram-to-Sound’ section for straightforward explana-
tion. In the first step, we explain adversarial loss and introduce
two contrastive loss functions which proposed oneself-conditioned
contrastive learning (OCC learning) was fed into. We apply the
following OCC learning to ContraGAN and C-SupConGAN and
demonstrate effectiveness.

2.1. Category-to-Mel spectrogram

Adversarial Loss GAN [8] is composed of a generator and a dis-
criminator. Generator G intends to deceive the discriminator D with
a synthetic Mel spectrogram generated from the given label infor-
mation. On the other hand, the discriminator D must establish the
validity of the generated Mel spectrogram and the real Mel spectro-
gram using label information. G takes noise zi with label informa-
tion of class i, ci, and D takes real Mel spectrogram xi or fake Mel
spectrogram G(zi, ci) based on the same label information ci. We
use the hinge loss function as the adversarial loss function, and each
objective function for D and G are shown in the equation below.

lD = −min (0,−1 +D (xi, ci))−min (0,−1−D (G (zi, ci) , ci))
(1)

lG = −D (G (zi, ci) , ci)

Oneself-Conditioned Contrastive Loss (O2C loss) We first use
ContraGAN, which introduced conditional contrastive loss (2C
loss) to GAN. 2C loss is a supervised method that minimizes data-
to-data distances belonging to the same class and data-to-class dis-
tance and maximizes data-to-data distances belonging to the dif-
ferent classes using data embeddings and class embeddings. To
extract embeddings for contrastive learning, we divided the dis-
criminator D into two separate networks: D1 and D2. Firstly,
D(·) = D2(D1(·)) is used for calculating adversarial loss. To
extract data embeddings di, features of real or fake data extracted
from D1(·) are additionally feedforward to the projection head h(·).
Thus, we can term di = h(D1(xi, ci)) for simplicity. The class
embedding is extracted by the embedding function e(·) and can be
denoted as e(ci). Further, these features are mapped to the unit
hypersphere for cosine similarity computation.

Although the 2C loss function itself produces decent perfor-
mance, the small number of data per class leads to an unexpected
situation. We discovered that the adversarial loss of the discrimi-
nator D falls too quickly when we implement the 2C loss function
as it is in the current task. This occurrence leads to poor GAN
training, further to mode collapse problem [9] that produces similar
outputs within the class. To resolve this tragic event, we introduce
oneself-conditioned contrastive learning (OCC learning) to the orig-
inal 2C loss function, and term this oneself-conditioned contrastive
loss (O2C loss). As aforementioned above, 2C loss uses label infor-
mation for both data-to-data and data-to-class relations. O2C loss
ignores label information for data-to-data relations and uses label
information only for data-to-class relations. The training guidelines
for 2C loss and the O2C loss are outlined in (a) and (b) of Figure
1. As shown in the figure 1, the O2C loss maximizes distances
between all data embeddings, regardless of whether the data belong
to the same class or different classes, and only minimizes data-to-
class distance. This optional use of label information distributes
data within a class while maintaining the class’s distinctiveness.
The effect of O2C loss is shown in Figure 2. This solves the mode
collapse problem by securing the diversity of data while generating
well-classified data according to class and shows tremendous per-
formance improvement. The following data-to-data distance d2di,j
and data-to-class distance d2ci,i can be denoted as the equation 3.

d2di,j = exp (di · dj/τd) , d2ci,i = exp (di · e(ci)/τc) (2)

With the aforementioned notation, the O2C loss function is defined
as follows:

lO2C (di, ci) = − log

(
d2ci,i

d2ci,i +
∑N

k=1 1i̸=k · d2di,j

)
(3)

The · symbol denotes the inner (dot) product, and N is batch size.
The hyperparameter τ is applied to control the pushing and pulling
forces for distance between embeddings; the larger τ , the weaker
the force, and the smaller τ , the stronger the force. C-SupConGAN
differentiates the temperature hyperparameter for data-to-data dis-
tance τd and data-to-class distance τc to boost performance. We
set τd = 0.1, τc = 0.1 by default, but we also conducted the ex-
periment with different values of the two variables, which leads to
better results.
Oneself-Conditioned Supervised Contrastive loss (OC-SupCon
loss) C-SupConGAN, an advanced version of ContraGAN, uses

27



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

pre-trained data features to support the feature learning of the dis-
criminator. The conditional supervised contrastive loss (C-SupCon
loss) appends data-to-source relation to prior 2C loss. For data-to-
source relation, C-SupCon loss uses reference data embedding ex-
tracted from the pre-trained encoder f(·). This aids GAN’s feature
learning, thereby reduces the instability of the training process and
enable long-term training, and ultimately improved performance.
Nonetheless, mode collapse still occurs when C-SupConGAN is ap-
plied to the current task as it is. Therefore, we also apply the OCC
learning to C-SupCon loss and call it OC-SupCon loss.

d2si,i = exp (di · f(xi)/τc) (4)

In the same way, the OC-SupCon loss can be described as follows:

lOC–SupCon (di, ci) = − log

(
d2si,i + d2ci,i

d2si,i + d2ci,i +
∑N

k=1 1i ̸=k · d2di,k

)
(5)

The conceptual difference between the C-SupCon loss and the OC-
SupCon loss can be schematically confirmed in Figure 1.

We used ResNet18 [10] as the encoder network f(·), and it was
pretrained with Supervised Contrastive Learning (SupCon) [11]
loss function. For audio augmentation, we used fade in/out and
time masking during the pretraining process. After the pretraining
process is completed, we proceed with classification finetuning and
classification evaluation. Since additional dataset such as the evalu-
ation dataset was not open to the public, we could only evaluate the
performance of classification on the training set. The classification
accuracy achieved 100%, which may appear as overfitting, but we
can infer that the pretrained encoder network f(·) is capable of ex-
tracting high-quality audio embeddings from the training set. Thus,
we use the data embedding f(xi) extracted from the pretrained en-
coder f(·) as a reference to the data embedding di extracted from
the discriminator.

Our total system is optimized through two types of loss func-
tion, which is the combination of adversarial loss and O2C loss
function and the combination of adversarial loss and OC-SupCon
loss function. O2C loss or OC-SupCon loss is expressed as lC . In
this way, total loss function L can be described:

LD =
1

N

N∑
k=1

lD +
1

N

N∑
k=1

lC , LG =
1

N

N∑
k=1

lG+
1

N

N∑
k=1

lC (6)

L = LD + LG (7)

We term GAN using O2C loss as O2C-GAN, and OC-SupCon loss
as OC-SupConGAN.

2.2. Mel spectrogram-to-sound

After the training on the first stage, the trained generator network G
have the ability to generate Mel-spctrograms from class categories.
During the second stage, a pre-trained vocoder network transforms
the generated Mel-spectrogram into a time-domain digital audio
signal. Instead of proposing a new vocoder network, we leverage
the pre-trained vocoder network, HiFi-GAN [12], provided by the
DCASE challenge.

3. EXPERIMENT

We design our experiments for three purposes. First, we demon-
strate the effectiveness of oneself-conditioned contrastive learning
(OCC learning). The performances of models with or without
OCC learning are compared. Second, we examine the effect of the
temperature hyperparameter τ on the frameworks by adjusting τc.
Third, we verify the two proposed models exceed the performance
of the baseline system.

3.1. Experiment metrics

We use Frechet Audio Distance (FAD) [13]. FAD is a standard met-
ric for music enhancement and is very useful in that it is a reference-
free evaluation metric. FAD can be employed even in the absence
of a ground truth reference audio because it is calculated from col-
lections of hidden representations of created and real samples. The
FAD score can be computed by multivariate Gaussians between the
generated data set and the actual audio data set, which can be re-
ferred to as the reference embeddings.

3.2. Implementation Details

We use the log mel-band energies of input audio as an audio fea-
ture. We set the frame length to 1024, and hop size to 256. All the
models we train are devised to generate 80× 344 mel spectrogram.
Initially, we employed the learning rates used in C-SupConGAN to
train our proposed models. The generator was trained with a learn-
ing rate of 0.0001, while the discriminator was trained a learning
rate of 0.0004. However, the small amount of dataset led to the cir-
cumstance of discriminator D learning too quickly. Thus, we set
both learning rates equally to 0.0001. For all models, we use Adam
optimizer [14] with β1 = 0.5 and β2 = 0.999 for training. For
contrastive learning, we build a 2-layer projection layer h(·) which
embeds the output of the portion of discriminator network D1 to
128-dimension. During training, we freeze the weight of pretrained
encoder network E(·).

3.3. Dataset

The DCASE2023-T7 Track B development set contains 4,850 la-
beled sound fragments, classified into 7 categories: dog bark,
footstep, gunshot, keyboard, moving motor vehicle, rain, and
sneeze/cough. Each sound was fitted to a length of 4 seconds, and
zero-padded or segmented if necessary. All audio was transferred to
mono 16-bit 22,050 Hz sampling rate [5]. As we are participating
in subtask B, we do not use any external sources.

4. RESULTS

w/o OCC learning w. OCC learning
ContraGAN C-SupConGAN O2C-GAN OC-SupConGAN

FAD 12.667 12.552 5.480 5.230

Table 1: The comparison of FAD score on two baselines with and
without OCC learning.
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Method DT CT DogBark Footstep GunShot Keyboard Vehicle Rain Sneeze Average
O2C-GAN 0.1 0.1 2.784 4.370 4.667 3.555 17.511 3.899 1.577 5.480
O2C-GAN 0.1 1.0 3.348 3.990 3.495 4.074 14.861 3.529 1.865 5.023

OC-SupConGAN 0.1 0.1 2.616 3.739 6.322 4.089 14.172 4.304 1.371 5.230
OC-SupConGAN 0.1 1.0 4.854 3.103 4.790 3.665 13.604 3.727 1.435 5.026

Table 2: The comparison of FAD score on our proposed methods submitted to the DCASE2023-T7 Track B.

4.1. Effectiveness of OCC learning

We demonstrate the effectiveness of oneself-conditioned contrastive
learning (OCC learning) by comparing the cases with and without
OCC learning for two different GAN. We use t-SNE [15] to visu-
ally compare clusters of embeddings of data generated by different
trained GANs. In Figure 2, the points of each t-SNE are the embed-
dings of the data generated by the generator in the latent space of
the discriminator. Generated data are compared quantitatively using
FAD and it is shown in Table 1.

The GANs which do not use OCC learning train the model in a
way that the distance between the data embedding and the data’s
own condition embeddings as well as the distance between data
embeddings belonging to the same class becomes close. In Contra-
GAN, class embedding is used as condition, and in C-SupConGAN,
class embedding and pretrained data embedding are used as condi-
tion. When the dataset with a large amount of data per class is used,
this helps the data to cluster for class distinction. When a small
dataset with fewer data per class is used as in the current task, this
causes the data belonging to the class to clump too much, result-
ing in a decrease in the diversity of data. As a result, the loss of
discriminator D drops rapidly, resulting in poor training of GAN.
The GANs using OCC learning, O2C-GAN, and OC-SupConGAN,
optimize the model so that the distance between the data embed-
ding and the data’s own condition embeddings becomes close as
in the previous loss function, but the distance between data em-
beddings belonging to the same class becomes far. This expands
data clustering, amplifying the diversity among data belonging to
the same class while maintaining class distinctiveness by retaining
class attributes in data. As a result, by making learning task difficult,
GAN training becomes stable, and various and higher-quality data
are generated. Moreover, OC-SupConGAN leverages additionally
pre-trained data embeddings as the condition to enhance the sub-
jectivity of the data. Consequently, it leads to a broader dispersion
of data and improves performance compared to O2C-GAN. These
effects are visually illustrated in Figure 2 and shows a significant
performance improvement in Table 1.

4.2. Performance Comparison

Unlike ContraGAN, C-SupConGAN uses the different temperature
hyperparameters τ , which controls the strength of pulling or push-
ing between embeddings, for data-to-data distance τd and data-
to-condition distance τc. The higher the τ value, the weaker the
strength, the lower the τ value, the stronger. The temperature hy-
perparameter τd, which controls the strength of the data-to-data dis-
tance, is called DT, and the temperature hyperparameter τc, which
controls the strength of the data-to-condition distance, is called CT.
In C-SupConGAN, experiments using various values of τd and τc
were conducted, and the best performance was achieved at τd = 0.1
and τc = 1.0. We also performed experiments not only with
τd = 0.1 and τc = 0.1, which were used by default, but also

with τd = 0.1 and τc = 0.1. In OCC learning, this leads the
distance between all data embeddings to be strongly far, and the
distance between the data embeddings and the data’s own condition
embeddings to be weakly close. This encourages data to maintain
the unique characteristics of the class, but weaken the binding force
of the class, and secure more diversity by widening the distance
from other data. As a result, as shown in Table 2, the generation
performance is further improved.

Class Baseline Ours
O2C-GAN OC-SupConGAN

DogBark 13.412 3.348 4.854
Footstep 8.108 3.990 3.103
GunShot 7.952 3.495 4.790
Keyboard 5.230 4.074 3.665
Vehicle 16.107 14.861 13.604

Rain 13.338 3.529 3.727
Sneeze 3.771 1.865 1.435
Average 9.702 5.023 5.026

Table 3: The FAD score on each class of baseline scheme, O2C-
GAN, and OC-SupConGAN.

Table 3 refers to the performance comparison between base-
line method with our proposed methods: O2C-GAN and OC-
SupConGAN. Our two techniques outperform baseline methods in
every way. In particular, in ‘DogBark’ and ‘Rain’ classses, our
baseline frameworks performed 4 to 5 times better than the exist-
ing baseline. We speculate that this remarkable performance is due
to the proposed frameworks’ ability to enhance variance of data fea-
tures within the class while keeping distinct characteristic of class
using our proposed OCC learning. In Table 3, we can see that im-
provement of FAD performance of class ‘Moving Motor Vehicle’
is rather low. We infer this outcome is based on insufficient vari-
ance of audio data within the class. This trait induce generation of
similar data in the class regardless of the methods. To sum up, our
proposed frameworks achieve the average FAD score of 5.023 and
5.026, which is the half of the baseline.

5. CONCLUSION

In this paper, we propose new GAN frameworks, O2C-GAN and
OC-SupConGAN, for foley sound synthesis introduced by DCASE
challenge. The proposed frameworks use a new learning method,
oneself-conditioned contrastive learning (OCC learning), to solve
problems encountered in small dataset. The OCC learning is a
method that aims to expand the diversity of data while maintaining
the class properties in the data. Our proposed frameworks achieved
FAD scores of 5.023 and 5.026, outperformed the baseline frame-
work, and ranked 2nd in the DCASE2023-T7 Track B.
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ABSTRACT

We present the task description of the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) 2023 Challenge Task
2: “First-shot unsupervised anomalous sound detection (ASD) for
machine condition monitoring”. The main goal is to enable rapid
deployment of ASD systems for new kinds of machines without
the need for hyperparameter tuning. In the past ASD tasks, devel-
oped methods tuned hyperparameters for each machine type, as the
development and evaluation datasets had the same machine types.
However, collecting normal and anomalous data as the development
dataset can be infeasible in practice. In 2023 Task 2, we focus on
solving the first-shot problem, which is the challenge of training a
model on a completely novel machine type. Specifically, (i) each
machine type has only one section (a subset of machine type) and
(ii) machine types in the development and evaluation datasets are
completely different. Analysis of 86 submissions from 23 teams
revealed that the keys to outperform baselines were: 1) sampling
techniques for dealing with class imbalances across different do-
mains and attributes, 2) generation of synthetic samples for robust
detection, and 3) use of multiple large pre-trained models to extract
meaningful embeddings for the anomaly detector.

Index Terms— anomaly detection, acoustic condition monitor-
ing, domain shift, first-shot problem, DCASE Challenge

1. INTRODUCTION

Anomalous sound detection (ASD) [1–7] is the task of identify-
ing whether the sound emitted from a target machine is normal or
anomalous. Automatic detection of mechanical failure is essential
for the artificial intelligence (AI)–based factory automation. Use of
machine sounds for promptly detecting machine anomalies is useful
for monitoring a machine’s condition.

One fundamental challenge regarding the application of ASD
systems is that anomalous samples for training can be insufficient
both in number and type. In 2020, we organized the first ASD
task in Detection and Classification of Acoustic Scenes and Event
(DCASE) Challenge 2020 Task 2 [8]; “unsupervised ASD” that was
intended to detect unknown anomalous sounds using only normal
sound samples as the training data [1–7].

For the wide-spread application of ASD systems, advanced
tasks such as handling of domain shifts should be tackled [9]. Do-
main shifts are differences between the source and target domain

data caused by a machine’s operational conditions or environmen-
tal noise. Since methods developed in the task in 2020 fail to dis-
tinguish normal sounds subject to domain shifts and anomalous
sounds, the detection performance of these methods can degrade
under domain-shifted conditions. To reflect domain-shifted condi-
tions, we organized DCASE 2021 Task 2 [9], “unsupervised ASD
under domain shifted conditions” and DCASE Challenge 2022 Task
2 [10], “unsupervised ASD applying domain generalization tech-
niques”. The task in 2021 focused on handling domain shifts using
domain adaptation techniques, and the task in 2022 focused on han-
dling domain shifts using domain generalization techniques.

Previous tasks from 2020 to 2022 had premises such as multi-
ple machine IDs or section IDs for each machine type and the same
set of machine types for the development and evaluation datasets.
As a result, developed methods made use of multiple IDs within a
machine type or tuned hyperparameters using normal and anoma-
lous data from the development dataset. However, these premises
could pose a barrier when attempting to apply methods developed
in the past tasks to real-world scenarios, as preparing multiple IDs
for each machine type or collecting normal and anomalous data for
the development dataset can be time-consuming or even infeasible.

To solve the problem described above, we designed DCASE
Challenge 2023 Task 2, “First-Shot Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring”. This task
is aimed at developing methods for solving the first-shot problem
and rapidly deploying ASD systems, while the task also focuses on
developing domain generalization techniques for handling domain
shifts. Specifically, only one section is provided for each machine
type, and the sets of machine types are completely different between
the development and evaluation datasets.

We received 86 submissions from 23 teams. By analyzing these
submissions, we found techniques several top-rankers used in com-
mon: 1) sampling techniques for dealing with class imbalances , 2)
generation of synthetic samples for robust detection, and 3) use of
multiple large pre-trained models to extract meaningful embeddings
for the anomaly detector.

2. FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND
DETECTION UNDER DOMAIN SHIFTED CONDITIONS

Let the L-dimensional time-domain observation xi ∈ RL be an
audio clip that includes a sound emitted from a machine with a spe-
cific ID i. The ID serves as a unique identifier that indicates the
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machine’s class on the basis of its model number or other identi-
fying specifications. The goal of the ASD task is to classify the
machine as normal or anomalous by computing the anomaly score
Aθ(xi) by using an anomaly score calculator A with parameters θ.
A is trained to assign higher scores to anomalous samples and lower
scores to normal samples. The input to A can be the audio clip xi

or xi with additional information such as the ID. The machine is
classified as anomalous if Aθ(xi) exceeds a pre-defined threshold
ϕ

Decision =

{
Anomaly (Aθ(xi) > ϕ)
Normal (otherwise). (1)

The primary difficulty in this task is to train A using only normal
sounds (unsupervised ASD). The DCASE 2020 Challenge Task 2
was designed to address this issue.

In real-world scenarios, the domain-shift problem also needs
to be solved. Domain shifts are variations in conditions between
training and testing phases that impact the distribution of normal
sound data. These shifts can arise from differences in operating
speed, machine load, viscosity, heating temperature, environmental
noise, signal-to-noise ratio, and other factors. Two domains, source
domain and target domain, are defined: the former refers to the
original condition with sufficient training data and the latter refers
to another condition with only a few samples. The 2021 Task 2
aimed to develop domain adaptation techniques, assuming the do-
main information (source/target) of each sample is known. How-
ever, in practice, obtaining domain information is challenging due
to the difficulty in detecting domain shifts.

To address the challenges of applying domain adaptation tech-
niques in real-world scenarios, the 2022 Task 2 focused on develop-
ing domain generalization techniques. Domain generalization tech-
niques for ASD aim at detecting anomalies from different domains
with a single threshold. These techniques, unlike domain adaptation
techniques, do not require detection of domain shifts or adaptation
of the model during the testing phase.

Although several novel ASD methods have been proposed in
past tasks, we have recognized that their application in real-world
scenarios remains challenging. This is because certain assumptions
in previous tasks may not hold in practice. One such assumption is
that participants were allowed to tune the hyperparameters of the
model by using the test data of the development dataset. How-
ever, this is often infeasible in real-world applications where the
machine type can be completely new or the amount of test data can
be insufficient for tuning hyperparameters. Another assumption is
the existence of multiple IDs for a machine type. This assumption
has facilitated the development of outlier exposure approaches [11],
where sound clips from different machines are used as anomalies.
However, in many practical cases, the number of machines for a
machine type can be limited. This limitation arises because the cus-
tomers may not possess multiple machines of the same machine
type, or they may initially plan to install the system for only a few
machines. As a result, the developed methods in the previous tasks
may not be immediately applicable in practice.

To overcome these new challenges, the organizers designed the
2023 Task 2 with two main features: (i) completely different set
of machine types between the development and evaluation dataset
and (ii) Only one section for each machine type. Because the ma-
chine types are completely different between the development and
evaluation dataset, tuning hyperparameters using the test data from
the development dataset is no longer feasible. Furthermore, since
only one section is available for each machine type, multiple IDs
within a machine type cannot be used. As a result, participants are

expected to develop ASD methods without tuning hyperparameters
using the test data and without relying on multiple IDs within a ma-
chine type. We name these challenges the “first-shot problem”, as
these challenges replicate practical cases where the ASD system has
to be deployed for a novel machine type or with a limited number
of example measurements.

3. TASK SETUP

3.1. Dataset

The data for this task comprises three datasets: development
dataset, additional training dataset, and evaluation dataset.
Each dataset includes seven machine types, with one section per
machine type. Machine type means the type of machine such as
fan, gearbox, bearing, etc. Section is a subset or whole data within
each machine type.

Each recording is a single-channel audio with a duration of 6
to 18 s and a sampling rate of 16 kHz. We mixed machine sounds
recorded at laboratories and environmental noise samples recorded
at factories and in the suburbs to create each sample in the dataset.
For the details of the recording procedure, please refer to the papers
on ToyADMOS2 [12] and MIMII DG [10].

The development dataset consists of seven machine types (fan,
gearbox, bearing, slide rail, ToyCar, ToyTrain), and each machine
type has one section that contains a complete set of the training
and test data. Each section provides (i) 990 normal clips from a
source domain for training, (ii) 10 normal clips from a target do-
main for training, and (iii) 100 normal clips and 100 anomalous
clips from both domains for the test. We provided domain informa-
tion (source/target) in the test data for the convenience of partici-
pants. Attributes that represent operational or environmental condi-
tions are also provided in the file names and attribute csvs.

The additional training dataset provides novel seven machine
types (Vacuum, ToyTank, ToyNscale, ToyDrone, bandsaw, grinder,
shaker). Each section consists of (i) 990 normal clips in a source
domain for training and (ii) 10 normal clips in a target domain for
training. Attributes are provided in this dataset.

The evaluation dataset provides the same machine types as the
additional training dataset. Each section consists of 200 test clips,
none of which have a condition label (i.e., normal or anomaly) or
the domain information. Attributes are not provided.

The data for this task differs from the 2022 version in two main
aspects: reduced number of sections per machine type (from six in
2022 to one in this task) and a completely different set of machine
types between the development and evaluation datasets. As a result,
participants are required to train a model for a novel machine type
using only one section for each machine type and without hyperpa-
rameter tuning using the development dataset.

3.2. Evaluation metrics

For evaluation, the area under the receiver operating characteristic
curve (AUC) was employed as a metric to assess the overall detec-
tion performance, while the partial AUC (pAUC) was utilized to
measure performance in a low false-positive rate (FPR) range [0, p].
In this task, we used p = 0.1. In domain generalization task, the
AUC for each domain and pAUC for each section are calculated as

AUCm,n,d =
1

N−
d N

+
n

N−
d∑

i=1

N+
n∑

j=1

H(Aθ(x
+
j )−Aθ(x

−
i )), (2)

32



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

pAUCm,n =
1

⌊pN−
n ⌋N+

n

⌊pN−
n ⌋N+

n∑
i=1

N+
n∑

j=1

H(Aθ(x
+
j )−Aθ(x

−
i )),

(3)
where m represents the index of a machine type, n represents the
index of a section, d = {source, target} represents a domain, ⌊·⌋
is the flooring function, and H(x) returns 1 when x > 0 and 0

otherwise. Here, {x−i }
N−

d
i=1 are normal test clips in domain d in

section n and {x+j }
N+

n
j=1 are anomalous test clips in section n in

machine type m. The N−
d is the number of normal test clips in

domain d, N−
n is the number of normal test clips in section n, and

N+
n is the number of anomalous test clips in section n.

The official score Ω is given by the harmonic mean of the AUC
and pAUC scores over all machine types and sections:

Ω = h
{
AUCm,n,d, pAUCm,n |

m ∈ M, n ∈ S(m), d ∈ {source, target}} , (4)

where h {·} represents the harmonic mean (over all machine types,
sections, and domains), M represents the set of machine types, and
S(m) represents the set of sections for machine type m.

3.3. Baseline systems and results

The organizers provided an Autoencoder (AE)-based baseline sys-
tem with two different ways of calculating the anomaly scores. We
present the baseline system and its detection performance. For de-
tails, please refer to [13].

3.3.1. Autoencoder-based baseline

First, the log-mel-spectrogram of the input X = {Xk}Kk=1 is cal-
culated, where Xk ∈ RF , and F and K are the number of mel-
filters and time-frames, respectively. Then, the acoustic feature
at k is obtained by concatenating consecutive frames of the log-
mel-spectrogram as ψk = (Xk, · · · , Xk+P−1) ∈ RD , where
D = P ×F , and P is the number of frames of the context window.

3.3.2. Simple Autoencoder mode

In this mode, the anomaly score is calculated as

Aθ(X) =
1

DK

K∑
k=1

∥ψk − rθ(ψk)∥22, (5)

where rθ is the vector reconstructed by the AE, and ∥·∥2 is ℓ2 norm.

3.3.3. Selective Mahalanobis mode

In this mode, the Mahalanobis distance between the observed sound
and reconstructed sound is used to calculate the anomaly score. The
anomaly score is given as

Aθ(X) =
1

DK

K∑
k=1

min{Ds(ψk, rθ(ψk)), Dt(ψk, rθ(ψk))},

(6)
Ds(·) =Mahalanobis(ψk, rθ(ψk),Σ

−1
s ), (7)

Dt(·) =Mahalanobis(ψk, rθ(ψk),Σ
−1
t ), (8)

where Σ−1
s and Σ−1

t are the covariance matrices calculated with the
source domain data and target domain data of each section, respec-
tively.

Table 1: Results with Simple Autoencoder mode
Machine type Section AUC [%] pAUC [%]

Source Target
ToyCar 00 70.10 ± 0.46 46.89 ± 2.67 52.47 ± 1.28

ToyTrain 00 57.93 ± 2.12 57.02 ± 0.79 48.57 ± 0.32
bearing 00 65.92 ± 0.73 55.75 ± 0.76 50.42 ± 0.79

fan 00 80.19 ± 2.43 36.18 ± 3.71 59.04 ± 1.24
gearbox 00 60.31 ± 0.56 60.69 ± 0.63 53.22 ± 0.60
slider 00 70.31 ± 0.20 48.77 ± 0.12 56.37 ± 0.31
valve 00 55.35 ± 1.18 50.69 ± 1.12 51.18 ± 0.35

Table 2: Results with Selective Mahalanobis mode
Machine type Section AUC [%] pAUC [%]

Source Target
ToyCar 00 74.53 ± 1.55 43.42 ± 2.53 49.18 ± 0.49

ToyTrain 00 55.98 ± 2.41 42.45 ± 1.06 48.13 ± 0.17
bearing 00 65.16 ± 0.76 55.28 ± 0.57 51.37 ± 0.81

fan 00 87.10 ± 2.20 45.98 ± 4.43 59.33 ± 0.90
gearbox 00 71.88 ± 0.66 70.78 ± 0.62 54.34 ± 0.30
slider 00 84.02 ± 1.10 73.29 ± 0.60 54.72 ± 0.25
valve 00 56.31 ± 1.38 51.40 ± 0.40 51.08 ± 0.13

3.3.4. Results

The AUC and pAUC for each machine type are shown in Tables 1
and 2. The results are average of five independent runs.

4. CHALLENGE RESULTS

We received 86 submissions from 23 teams. Eleven teams outper-
formed the simple Autoencoder baseline, and eight teams outper-
formed the selective Mahalanobis baseline. The number of teams
was significantly fewer than for the task in 2022, where 22 out of
31 teams outperformed the baselines. This observation suggests that
the new features in this year’s task, such as having only one sec-
tion for each machine type and novel machine types in the evalua-
tion dataset, have increased the task’s difficulty level. Despite these
challenges, several top-ranked teams significantly outperformed the
baselines. Figure 1 illustrates the harmonic means of the AUCs for
the top 10 teams. Notably, all eight teams that outperformed the
baselines in the official scores also surpassed the baselines in the
harmonic mean of the AUCs in the target domain. This indicates
that higher AUCs in the target domain were crucial for higher ranks.

Since the task this year focused on developing ASD methods
that work for novel machine types, we compared the AUCs be-
tween the development and evaluation datasets. Figure 2 shows the
AUCs from the top 20 teams for the source domain, while Figure
3 displays the AUCs for the target domain. From Figure 2, it can
be observed that approximately half of the teams achieved higher
source-domain AUCs in the evaluation dataset compared to the de-
velopment dataset. This indicates that, with a sufficient amount of
training data, detection for a novel machine type can be possible
without significant degradation in performance. However, Figure
3 reveals that the target-domain AUCs were lower in the evalua-
tion dataset for most teams. This underscores the difficulty of deal-
ing with domain shifts for novel machine types. The lower AUCs
observed in the evaluation dataset for the target domain can be at-
tributed to the fact that the variations induced by domain shifts can
differ significantly for each machine type. In this case, when do-
main generalization techniques are developed for maximizing the
AUCs in the development dataset, using the same techniques for the
evaluation dataset will degrade the performance. Addressing these
variations becomes more challenging when only a limited number
of samples are available, further complicating the problem.

We summarize approaches used by top-ranked teams in the
following.
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Figure 1: Evaluation results of top 10 teams in the ranking. Average source-domain AUC (Top) and target-domain AUC (bottom) for each
machine type. Label “A” and “M” on the x-axis denote simple Autoencoder mode and selective Mahalanobis mode, respectively.
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Figure 2: Comparison of average source-domain AUC for the de-
velopment dataset and evaluation dataset across teams.
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Figure 3: Comparison of average target-domain AUC for the devel-
opment dataset and evaluation dataset across teams.

a. Oversampling for imbalance compensation
Because the number of samples in the datasets is imbalanced

across domains and attributes, compensating for these class imbal-
ances can improve the detection performance. The 6th team [14]
duplicated samples from classes with fewer samples, while the
1st and 2nd teams [15, 16] oversampled target-domain data using
SMOTE [17]. These approaches are only seen among top-rankers,
and can be one of the key factors for outperforming the baselines.

b. Synthetic data generation for robust detection
Synthetic data can be utilized to accurately model the dis-

tribution of normal data and enhance the robustness of the
detection model. The 1st, 4th, 5th, 10th, and 19th teams employed
Mixup [18] including its variants [15, 19–22], and obtained higher
source-domain AUCs. Other papers used other data augmentation

techniques such as speed perturbation, noise injection, and pitch
shift [14, 16, 23]. The treatment of generated synthetic data varies
among teams. While the 4th team [19] treated them as anomalous
samples that belong to a new class, the 1st and 5th teams [15, 20]
treated them as normal samples. Mixup can be one of the key fac-
tors for outperforming the baselines, as this technique was used by
several top-rankers and teams that achieved higher source-domain
AUCs.

c. Attribute ID classification using pre-trained models
Although only one section was provided for each machine type,

attributes were included in the development and additional training
dataset. As a result, many participants trained attribute classifiers
or machine type classifiers to obtain embeddings that could be used
for outlier detectors [14–16, 19, 24, 25]. For the outlier detector, k-
nearest neighbors algorithm (kNN) was used by most of the teams.

Pre-trained models are used [16, 24, 26] for attribute classi-
fiers or machine type classifiers. Although pre-trained models
have been used by participants in previous tasks, the 2nd and 3rd
teams [16,24] are the first teams that used multiple large pre-trained
models to achieve higher official scores. These pre-trained models
were fine-tuned with classification objectives, i.e., attribute or
machine type classification.

d. Other novel approaches
The 3rd team [24] grouped machine types into several cate-

gories so that generalization ability on novel machine types can be
obtained. The 7th team [23] used AudioLDM [27], a text-to-audio
model, to generate pseudo anomalous sounds from the text input.

5. CONCLUSION

This paper presented an overview of the task and analysis of the
solutions submitted to DCASE 2023 Challenge Task 2. The task
was aimed to develop an ASD system that works for a novel ma-
chine type with a single section for each machine type. Analysis
of the submission revealed that, for novel machine types, detection
in the target domain can be of significant difficulty compared to the
source domain. The analysis also revealed useful methods for out-
performing the baselines: 1) sampling techniques for dealing with
class imbalances, 2) generation of synthetic samples by mix-up and
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its variants, and 3) use of multiple large pre-trained models for at-
tribute ID classification.

6. REFERENCES

[1] Y. Koizumi, S. Saito, H. Uematsu, and N. Harada, “Optimiz-
ing acoustic feature extractor for anomalous sound detection
based on Neyman-Pearson lemma,” in EUSIPCO, 2017, pp.
698–702.

[2] Y. Kawaguchi and T. Endo, “How can we detect anomalies
from subsampled audio signals?” in MLSP, 2017.

[3] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,
“Unsupervised detection of anomalous sound based on deep
learning and the Neyman-Pearson lemma,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 27,
no. 1, pp. 212–224, Jan. 2019.

[4] Y. Kawaguchi, R. Tanabe, T. Endo, K. Ichige, and K. Hamada,
“Anomaly detection based on an ensemble of dereverberation
and anomalous sound extraction,” in ICASSP, 2019, pp. 865–
869.

[5] Y. Koizumi, S. Saito, M. Yamaguchi, S. Murata, and
N. Harada, “Batch uniformization for minimizing maximum
anomaly score of DNN-based anomaly detection in sounds,”
in WASPAA, 2019, pp. 6–10.

[6] K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and
Y. Kawaguchi, “Anomalous sound detection based on interpo-
lation deep neural network,” in ICASSP, 2020, pp. 271–275.

[7] H. Purohit, R. Tanabe, T. Endo, K. Suefusa, Y. Nikaido,
and Y. Kawaguchi, “Deep autoencoding GMM-based unsu-
pervised anomaly detection in acoustic signals and its hyper-
parameter optimization,” in DCASE Workshop, 2020, pp. 175–
179.

[8] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura,
Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo,
M. Yasuda, and N. Harada, “Description and discussion
on DCASE2020 challenge task2: Unsupervised anoma-
lous sound detection for machine condition monitoring,” in
DCASE Workshop, 2020, pp. 81–85.

[9] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi,
K. Dohi, R. Tanabe, H. Purohit, and T. Endo, “Description and
discussion on DCASE 2021 challenge task 2: Unsupervised
anomalous detection for machine condition monitoring under
domain shifted conditions,” in DCASE Workshop, 2021, pp.
186–190.

[10] K. Dohi, T. Nishida, H. Purohit, R. Tanabe, T. Endo, M. Ya-
mamoto, Y. Nikaido, and Y. Kawaguchi, “MIMII DG: Sound
dataset for malfunctioning industrial machine investigation
and inspection for domain generalization task,” in DCASE
Workshop, 2022.

[11] R. Giri, S. V. Tenneti, F. Cheng, K. Helwani, U. Isik, and
A. Krishnaswamy, “Self-supervised classification for detect-
ing anomalous sounds,” in DCASE Workshop, 2020, pp. 46–
50.

[12] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Yasuda,
and S. Saito, “ToyADMOS2: Another dataset of miniature-
machine operating sounds for anomalous sound detection un-
der domain shift conditions,” in DCASE Workshop, 2021, pp.
1–5.

[13] N. Harada, N. Daisuke, T. Daiki, O. Yasunori, and
Y. Masahiro, “First-shot anomaly detection for machine con-
dition monitoring: a domain generalization baseline,” arXiv
preprint arXiv:2303.00455, 2023.

[14] Y. Zhou and Y. Long, “Attribute classifier with imbalance
compensation for anomalous sound detection,” DCASE2023
Challenge, Tech. Rep., June 2023.

[15] J. Jie, “Anomalous sound detection based on self-supervised
learning,” DCASE2023 Challenge, Tech. Rep., June 2023.

[16] Z. Lv, B. Han, Z. Chen, Y. Qian, J. Ding, and J. Liu, “Unsuper-
vised anomalous detection based on unsupervised pretrained
models,” DCASE2023 Challenge, Tech. Rep., June 2023.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: Synthetic minority over-sampling tech-
nique,” vol. 16, no. 1, 2002.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018. [On-
line]. Available: https://openreview.net/forum?id=r1Ddp1-Rb

[19] K. Wilkinghoff, “Fraunhofer fkie submission for task 2: First-
shot unsupervised anomalous sound detection for machine
condition monitoring,” DCASE2023 Challenge, Tech. Rep.,
June 2023.

[20] J. Yafei, B. Jisheng, and H. Siwei, “Unsupervised abnor-
mal sound detection based on machine condition mixup,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[21] W. JiaJun, “Self-supervised representation learning for first-
shot unsupervised anomalous sound detection,” DCASE2023
Challenge, Tech. Rep., June 2023.

[22] T. Fujimura, I. Kuroyanagi, T. Hayashi, and T. Toda, “Anoma-
lous sound detection by end-to-end training of outlier expo-
sure and normalizing flow with domain generalization tech-
niques,” DCASE2023 Challenge, Tech. Rep., June 2023.

[23] J. Tian, H. Zhang, Q. Zhu, F. Xiao, H. Liu, X. Mei, Y. Liu,
W. Wang, and J. Guan, “First-shot anomalous sound detection
with gmm clustering and finetuned attribute classification us-
ing audio pretrained model,” DCASE2023 Challenge, Tech.
Rep., June 2023.

[24] A. Jiang, Q. Hou, J. Liu, P. Fan, J. Ma, C. Lu, Y. Zhai, Y. Deng,
and W.-Q. Zhang, “Thuee system for first-shot unsupervised
anomalous sound detection for machine condition monitor-
ing,” DCASE2023 Challenge, Tech. Rep., June 2023.

[25] L. Wang, F. Chu, Y. Zhou, S. Wang, Z. Yan, S. Xu, Q. Wu,
M. Cai, J. Pan, Q. Wang, J. Du, T. Gao, X. Fang, and
L. Zou, “First-shot unsupervised anomalous sound detection
using attribute classification and conditional autoencoder,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[26] Y. Zeng, H. Liu, and Y. Zhou, “General anomalous sound
detection using sound event classification and detection,”
DCASE2023 Challenge, Tech. Rep., June 2023.

[27] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic,
W. Wang, and M. D. Plumbley, “AudioLDM: Text-to-audio
generation with latent diffusion models,” 2023.

35



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

POST-PROCESSING INDEPENDENT EVALUATION OF SOUND EVENT DETECTION
SYSTEMS

Janek Ebbers, Reinhold Haeb-Umbach

Paderborn University,
Department of Communications Engineering,

33098 Paderborn, Germany,
{ebbers,haeb}@nt.upb.de

Romain Serizel
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ABSTRACT
Due to the high variation in the application requirements of sound
event detection (SED) systems, it is not sufficient to evaluate sys-
tems only in a single operating point. Therefore, the community
recently adopted the polyphonic sound detection score (PSDS) as
an evaluation metric, which is the normalized area under the PSD-
ROC. It summarizes the system performance over a range of operat-
ing points. Hence, it provides a more complete picture of the overall
system behavior and is less biased by hyper parameter tuning. So
far PSDS has only been computed over operating points resulting
from varying the decision threshold that is used to translate the sys-
tem output scores into a binary detection output. However, besides
the decision threshold there is also the post-processing that can be
changed to enter another operating mode. In this paper we pro-
pose the post-processing independent PSDS (piPSDS) which com-
putes PSDS over operating points with varying post-processings
and varying decision thresholds. It summarizes even more oper-
ating modes of an SED system and allows for system comparison
without the need of implementing a post-processing and without a
bias due to different post-processings. While piPSDS can in prin-
ciple also combine different types of post-processing, we here, as a
first step, present median filter independent PSDS (miPSDS) results
for this year’s DCASE Challenge Task4a systems. Source code is
publicly available in our sed scores eval package1.

Index Terms— sound event detection, polyphonic sound de-
tection, evaluation, post-processing, median filter

1. INTRODUCTION
Machine listening is recently attracting increased interest not only
from academia but also from industry. It is the field of develop-
ing machines which can replicate the human ability of recogniz-
ing and processing a large number of different sounds. There are
many sub-disciplines to machine listing, with sound event detection
(SED) [1] being one of them. Its aim is to recognize, classify and
temporally localize sounds within an input audio. Due to the large
number of possible applications, sounds and environments, one par-
ticular challenge is that there is often no or only little training data
that perfectly matches the target application. Therefore, there is a
particular interest in approaches for model training which can ex-
ploit imperfect data, such as weakly labeled learning [2, 3] and/or
training with mismatched or unlabeled data [4, 5], as investigated
by the Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge Task 4 [6] for several years now.

Another more fundamental challenge for successful SED sys-
tem development is the meaningful evaluation and comparison of

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - 282835863.

1https://github.com/fgnt/sed scores eval

system performance, where the choice of the evaluation metric can
have a large impact [7]. Firstly, there is the complexity of the
event matching between detected and ground truth events. Cur-
rently there exist three different approaches namely segment-based,
collar-based and intersection-based [8, 9]. The DCASE Challenge
Task 4 recently moved to intersection-based evaluation as it is more
robust w.r.t. ambiguities in the ground truth labeling. Secondly,
due to the high variation in application requirements, there is of-
ten not a single optimal system behavior as, e.g., expressed by the
F1-score. In some applications, missed hits may, e.g., be much
more severe than false alarms. Therefore, system evaluation must
ideally represent all different operating modes equally to capture
the overall system behavior. The polyphonic sound detection score
(PSDS) [9, 10] has been employed to capture performance over the
range of decision thresholds, which are used to translate soft system
output scores2 into binary decisions. Therefore, system comparison
using PSDS is also less biased by threshold tuning w.r.t. to a certain
operating point.

However, the post-processing [11] (e.g. median filtering), that
is applied to the classifier output either before or after thresholding,
has also a large impact on the system performance, which is mostly
underinvestigated. In particular, system comparisons may be biased
due to the employment of different post-processings. Also tuning of
the post-processing hyper-parameters may overfit to a certain sce-
nario while performing badly in mismatched scenarios which can
give misleading information on the system itself. Similar to the de-
cision threshold, the type and parameters of the post-processing can
be understood as operating parameters of the system and may be ad-
justed to enter another operating mode which better suits the current
scenario and application requirements.

In this paper we propose post-processing independent PSDS
(piPSDS) which summarizes performance over both different post-
processings and decision thresholds. Hence, it gives an even more
complete picture of the system’s performance over different operat-
ing modes and furthermore is less biased by hyper-parameter tun-
ing. We perform investigations on this year’s DCASE Challenge
Task 4 submissions and show that 1) there is indeed a large im-
pact on evaluation results due to post-processing 2) for different
operating points there are different optimal post-processings and 3)
the proposed piPSDS allows SED system evaluation unbiased from
threshold and post-processing tuning.

The rest of the paper is structured as follows. First, we reca-
pitulate the preliminaries of SED, its evaluation and the PSDS in
Sec. 2.1, Sec. 2.2 and Sec. 2.3, respectively. Our proposed piPSDS
is presented in Sec. 3. Finally, we show results in Sec. 4 and draw
conclusions in Sec. 5.

2Note the ambiguity of the term score here, where PSD score refers to a
metric value while output scores refer to soft class activity predictions of a
model/neural network.
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2. PRELIMINARIES

2.1. Sound Event Detection
To not only recognize but also temporally localize sound events,
SED systems perform multi-label classification within smaller time-
windows of an audio clip, e.g., at short-time Fourier transform
(STFT) frame-level. For each window n a system provides soft
classification scores yn,c for each event class c out of a set of C
predefined sound event classes of interest. These scores represent
the predicted activity of the event within a particular time-window.
To obtain a hard decision, soft classification scores can be binarized
using a certain decision threshold γc, where the class c is assumed
active in the n-th window if yn,c ≥ γc, else it is assumed inactive.
Connected active windows are then merged into a detected event
(t̂on,i, t̂off,i, ĉi) defined by onset time t̂on,i, offset time t̂off,i and class
label ĉi, respectively, where i represents the event index. Usually it
is beneficial to run some kind of post-processing before or after bi-
nariazation to obtain meaningfully connected event predictions and
be more robust w.r.t. outliers. Common post-processings are, e.g.,
median filtering [12] and Hidden Markov Model smoothing [13].
The type and hyper-parameters of the post-processing, as well as
the decision threshold and any other hyper-parameters that may be
easily changed during application are summarized as a system’s op-
erating parameters τ in the following.

2.2. Evaluation of Detected Events
The evaluation of the detected events of event class c for specific
operating parameters τ is, in accordance with other classification
tasks, based on counting the intermediate statistics NTP,c,τ , NFN,c,τ

and NFP,c,τ , which refer to the numbers of
• ground truth (GT) events that have been correctly detected by

the system a.k.a. true positive (TP) detections,
• GT events that have not been detected by the system a.k.a. false

negative (FN) detections,
• detected events that do not match any GT event a.k.a. false

positive (FP) detections,
accumulated over the whole evaluation set, respectively. Bilen et
al. [9] have further taken cross triggers (CTs) into account, a.k.a.
substitutions, with NCT,c,k,τ being the number of FPs of class c
matching GT events from another event class k, which may impair
user experience more than standalone FPs.

When counting above intermediate statistics, different ap-
proaches exist for the temporal matching between detected events
and GT events. As the definitions of PSDS and piPSDS, however,
do not depend on the temporal matching that is used, we here only
briefly recap intersection-based evaluation which has recently been
used for PSDS computation as it is more robust w.r.t. ambiguities
in the labeling of the evaluation data. Note, however, that one could
instead also compute segment-based and collar-based [8] (pi)PSDS.

Intersection-based evaluation requires detected events to inter-
sect with GT events by at least a fraction ρDTC to be not counted as
a FP detection. Moreover, it requires a GT event to intersect with
non-FP events by at least a fraction ρGTC to be counted as a TP de-
tection. Further, if an FP event intersects with a GT event of another
class by at least a fraction ρCTTC it is counted as a CT.

Of particular interest are in the following the TP rate (TPR)
defined as rc,τ =

NTP,c,τ
NTP,c,τ+NFN,c,τ

, and the effective FP rate (eFPR)

ec,τ =
NFP,c,τ

Tds
+ αCT

1

C − 1

∑
k

k ̸=c

NCT,c,k,τ

Tk
. (1)

which consists of the FPR NFP,c,τ
Tds

plus an additional penalty on

CT rates (CTRs) NCT,c,k,τ

Tk
averaged over all other classes k ̸= c

and weighted by αCT. Note that, with intersection-based evaluation,
there is not a countable number of negative events, which is why the
FPR is computed w.r.t. the total duration of the evaluation dataset
Tds, whereas CTRs are computed w.r.t. the total duration of activity
Tk of the k-th class within the evaluation dataset.

2.3. Polyphonic Sound Detection Score
To compute PSDS [9], one starts with the computation of single-
class PSD-ROC curves rc(e) for each event class c. rc(e) is ob-
tained as a continuous ”staircase-type” interpolation of true posi-
tive rates rc,τ plotted over corresponding eFPRs ec,τ for different
operating parameters τ ∈ T̂c.

While τ may be any (set of) hyper-parameter(s) that may
change system behavior, it has so far, in accordance with the stan-
dard definition of ROC curves [14], only been considered to be the
decision threshold used to translate soft prediction scores into bi-
nary detections. Here, an algorithm for the efficient joint evaluation
of all possible decision thresholds has been proposed in [10]. Note
that, in contrast to standard ROC curves, it is here not always guar-
anted that rc,τ is monotonically increasing with ec,τ , when, e.g.,
sophisticated intersection-based evaluation is employed. As in op-
eration, however, one would always prefer the operating point with
a higher true positive rate at lower or equal false positive rate if
available, T̂c represents only best case operating parameters:

T̂c =
{
τ
∣∣ ∄λwith ec,λ ≤ ec,τ and rc,λ > rc,τ

}
. (2)

Having the single-class PSD-ROC curves rc(e), the overall
PSD-ROC curve is defined as the effective true positive rate

r(e) = µTP(e)− αSTσTP(e) (3)

which is average per-class true positive rate minus a penalty on stan-
dard deviation over classes weighted by a metric parameter αST with

µTP(e) =
1

C

C∑
c=1

rc(e); σTP(e) =

√√√√ 1

C

C∑
c=1

(rc(e)− µTP(e))2.

Finally, the PSDS is the normalized area under the PSD-ROC:

PSDS =
1

emax

∫ emax

0

r(e)de (4)

with the maximal false positive rate emax being a metric parameter,
which controls up to which false positive rate the operating points
may still be relevant.

3. POST-PROCESSING INDEPENDENT POLYPHONIC
SOUND DETECTION SCORE

Besides the decision threshold there is also the post-processing that
we could change to enter another operating mode. As an exam-
ple, Fig. 1 shows the single-class PSD-ROC curves for ”Speech”
from this year’s ”Baseline BEATS” system [15] when using post-
processing median filtering with lengths of 0.1 s and 1.0 s, respec-
tively. It appears that when the system is operated in low eFPR
mode, than it is better to use the larger median filter window size.
When the system should be operated in high TPR mode, it is better
to use a smaller window size. Thus, it is reasonable and also fairly
easy to choose the post-processing depending on the requirements
of a given application. To account for this in the system evaluation,
which is supposed to capture overall system behavior, we propose
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Figure 1: Baseline Speech ROCs with different median filters

to incorporate the variation of post-processing into the computation
of the PSDS to get a post-processing independent PSDS (piPSDS).

To do so, we consider the operating parameters τ = (l, γ) to be
a tuple of the post-processing l and the decision threshold γ. Here,
l defines which postprocessing is used out of a predefined set of L
possible post-processings.

The definition of the PSD-ROC according to Sec. 2.3 with τ ∈
L×R, where L = {l ∈ N | l < L}, gives us the pi-PSD-ROC. Due
to the restriction to best case operating points in Eq. 2 the single-
class pi-PSD-ROCs can be computed as

rc(e) = max
l

rc,l(e) (5)

where rc,l(e) is the single-class PSD-ROC for a single post-
processing l, which results from variation of the decision thresh-
old and can be efficiently computed using the algorithm from [10].
Hence, the single-class pi-PSD-ROC chooses, for a given eFPR e,
the post-processing with the highest TPR. piPSDS is then, analo-
gously to Eq. 4, the normalized area under the pi-PSD-ROC.

Overall, piPSDS has two major advantages over only threshold-
independent PSDS. Firstly, it better captures real-world SED appli-
cations, where it is natural to choose the post-processing that best
suits the current application requirements. Secondly, for research it
allows for system comparison without a bias being introduced by
different post-processings.

4. RESULTS

Investigations are done with the baseline and submissions of this
year’s DCASE challenge Task4a. Participants have been asked to,
in addition to their post-processed submission, also share the raw
prediction scores as provided by their model/neural network with-
out any further post-processing. This allows us to investigate 1) the
impact of the post-processing, 2) post-processing independent eval-
uation. All following evaluations are performed on the DESED [16]
public eval set, which is a part of the challenge evaluation data.

There are two intersection-based PSDS evaluated in the chal-
lenge, which refer to different scenarios. PSDS1 (ρDTC = 0.7,
ρGTC = 0.7, αCT = 0, αST = 1, emax = 100/hour) particu-
larly evaluates the model’s capability of temporally localizing sound
events, whereas PSDS2 (ρDTC = 0.1, ρGTC = 0.1, ρCTTC = 0.3,
αCT = 0.5, αST = 1, emax = 100/hour) is more focused on evalu-
ating the reliable recognition of event classes within an audio clip.
Due to space constraints and with post-processing being particu-
larly relevant for the temporal localization of sound events, we only
consider PSDS1 evaluation in the following.

With median filtering being the most popular type of post-
processing for SED systems, we here consider median filter inde-
pendent PSDS (miPSDS) as an instance of piPSDS, where the set
of possible post-processings consists of median filters with differ-
ent filter lengths. As the set of median filter lengths we use 21 filter
lengths linearly spaced from 0.0 s (no filtering) to 1.0 s, 10 from
1.1 s to 2.0 s, 5 from 2.2 s to 3.0 s and 4 from 3.5 s to 5.0 s over-
all totaling 40 different filter lengths. The implementation of the
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Figure 2: Upper Plot: PSD-ROCS for different post-processing se-
tups. Lower Plot: Optimal median filter lengths over operating
points as tracked by median filter independent PSD-ROC.

median filter equals a time continuous filtering of a piece-wise con-
stant signal that is defined by the timestamped prediction scores3

submitted by the participants. This way it is ensured the systems
employ the very same post-processing regardless of the system’s
output resolution which may vary across systems. Implementations
of the median filter, miPSDS and piPSDS, with the latter taking any
list of differently post-processed scores, are publicly available in the
sed scores eval package1, that is, in accordance with the challenge,
used for evaluation.

We first run investigations on the baseline system Base-
line BEATS [15] (Baseline). In the upper subplot of Fig. 2 we com-
pare the following PSD-ROCs:

1. median filter independent: as defined in Eq. 3
2. best median filters: choosing best performing median filter

per class as follows
r̃c(e) = rc,b(e) with b = argmaxlauc(rc,l(e)),

3. without any post-processing.

It can be seen, that by applying (best) median filtering the PSD-ROC
can be significantly improved over the unprocessed case. It can
be further observed, that there are operating points, especially for
low eFPRs, where the mi-PSD-ROC (mi-PSD-ROC) is higher than
best median filter PSD-ROC. This indicates that best median filters
are, although giving best overall performance, not the best choice
for each individual operating point and better performance can be
achieved by choosing operating point dependent filter lengths as
the mi-PSD-ROC does. In the lower subplot of Fig. 2 we plot, for
some event classes, the optimal filter lengths over operating points.
We can see that for lower eFPRs optimal median filters tend to be
longer than for higher eFPRs, which can be explained by the fact
that longer median filters better suppress short duration FPs. Fur-
ther, event classes with longer per-event durations, such as ”Frying”
and ”Running Water”, tend to have overall longer median filters
than short duration event classes, which makes intuitively sense.

Next, we evaluate challenge submissions4 with, without and in-
dependent of post-processing. As submitting unprocessed scores
was optional, we evaluate only systems from the 12 teams
that did provide them. We limit evaluation to the one single-
model system per team that gave best PSDS1 performance in
the challenge (with original post-processing). These systems

3Note that median filtering and thresholding are permutation invariant,
i.e., applying the median filter before binarization yields the same result as
applying it afterwards

4https://zenodo.org/record/8248774
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Figure 3: System Evaluation. Upper Plot: original post-processing vs. no post-processing. Middle Plot: miPSDS vs. PSDS with optimal
median filter lengths per class vs. no post-processing. Lower Plot: miPSDS computed with unprocessed vs. post-processed data.

are Barahona-AUDIAS-2 [17], Cheimariotis-DUTH-1 [18], Chen-
CHT-2 [19], Guan-HIT-3 [20], Kim-GIST-HanwhaVision-2 [21],
Lee-CAUET-1 [22], Li-USTC-6 [23], Liu-NSYSU-7 [24], Liu-
SRCN-4 [25], Wang-XiaoRice-1 [26], Wenxin-TJU-6 [27], Xiao-
FMSG-4 [28].

To be able to evaluate the variance of system performance over
different runs of system training, participants submitted prediction
scores for three runs of training for each system. To further track
variance of results due to variations in the evaluation data, we per-
form bootstrapped evaluation, where evaluation is performed on
20 different 80% fractions of the eval data. In total we evaluate
3 · 20 = 60 different setups and report the mean and 5% − 95%
confidence interval of the system’s performances. This evaluation
procedure is the same as we used for official challenge evaluation.

We first want to investigate the impact of the post-processing
on the systems’ performances in the upper subplot of Fig. 3. by
comparing the performance with and without the post-processing
as used by the participants. It appears that for some systems,
e.g., Kim-GIST-HanwhaVision-2, the performance significantly de-
grades when removing the post-processing, whereas for other sys-
tems the performance does not degrade or even improves. When
evaluating the unprocessed scores, the ranking also changes at mul-
tiple positions to Kim, Chen, Li, Xiao, Cheimariotis, Wenxin, Base-
line, Liu NSYSU, Guan, Wang, Lee, Liu SRCN, Barahona. This
suggests that there is some bias introduced by the post-processing,
particularly, whether a sophisticated post-processing is employed or
not. To some extent, however, it may also be a system property that
it can benefit from post-processing more than other systems.

We next evaluate our proposed miPSDS and compare it to ”no
processing” and ”best median filters” in the middle subplot of Fig. 3.
It can be seen that for all systems performance can be improved by
best median filters and further improved by operating point specific

median filters as considered by miPSDS. Some systems, e.g., Kim
and Barahona, benefit more from best median filters / median fil-
ter independent evaluation than others, which can be explained by
our previous assumption that the effectiveness of post-processing
is to some extent also a system property. Here, miPSDS evalua-
tion gives again a different ranking which is Kim, Chen, Wenxin,
Xiao, Cheimariotis, Li, Guan, Liu NSYSU, Baseline, Wang, Lee,
Liu SRCN, Barahon.

Note, that it is still possible to run additional post-processing
before piPSDS evaluation to improve performance. However, it can
be assumed that the possible gain is rather small and it is more likely
that an additional post-processing degrades piPSDS. To investi-
gate this, we compare miPSDS evaluated on unprocessed scores
vs. scores with participants’ original post-processing in the lower
subplot of Fig. 3. It can be seen that in all cases the additional post-
processing degrades miPSDS performance.

5. CONCLUSIONS

Due to the high variation of SED system application requirements,
SED evaluation has to capture the overall system behavior over var-
ious operating points. Therefore, the community recently moved to
decision threshold independent evaluation using PSDSs to capture
performance over different decision thresholds used for binarization
of system output scores. In this paper we proposed piPSDS which
further evaluates performance over different post-processings and
effectively choosing the post-processing that is best suited for a cer-
tain operating mode. It has been shown that piPSDS indeed over-
comes the bias introduced due to different post-processings but still
accounts for system-specific effectiveness of post-processing. It fur-
ther allows for system comparison without the need of employing a
sophisticated post-processing, e.g., during system development.

39



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

6. REFERENCES

[1] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley,
“Sound event detection: A tutorial,” IEEE Signal Processing
Magazine, vol. 38, no. 5, pp. 67–83, 2021.

[2] Y. Wang, J. Li, and F. Metze, “A comparison of five multiple
instance learning pooling functions for sound event detection
with weak labeling,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2019,
pp. 31–35.

[3] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda,
and K. Takeda, “Weakly-supervised sound event detection
with self-attention,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2020,
pp. 66–70.

[4] L. JiaKai, “Mean teacher convolution system for dcase 2018
task 4,” Detection and Classification of Acoustic Scenes and
Events Challenge, Tech. Rep., September 2018.

[5] J. Ebbers and R. Haeb-Umbach, “Pre-training and self-
training for sound event detection in domestic environments,”
DCASE2022 Challenge, Tech. Rep., June 2022.

[6] DCASE 2023 Challenge Task 4a description. [Online].
Available: https://dcase.community/challenge2023/task-
sound-event-detection-with-weak-labels-and-synthetic-
soundscapes

[7] G. Ferroni, N. Turpault, J. Azcarreta, F. Tuveri, R. Serizel,
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ABSTRACT

This paper introduces the newly recorded ToyADMOS dataset for
the DCASE 2023 Challenge Task 2, First-shot anomalous sound de-
tection for machine condition monitoring (DCASE2023T2). New
machine types, such as ToyDrone, ToyNscale, Vacuum, and Toy-
Tank, were newly recorded as a part of the Additional training and
Evaluation datasets. This paper also shows benchmark results of the
First-shot baseline implementation (with simple autoencoder and
selective Mahalanobis modes) on the DCASE2023T2 Evaluation
dataset and the previous DCASE Challenge Task 2 datasets in 2020,
2021, and 2022, compared with the baselines of those years.

Index Terms— DCASE 2023 Challenge Task 2, First-Shot
Anomalous sound detection, ToyADMOS dataset

1. INTRODUCTION
In recent years, exhaustive research has been done on anomalous
sound detection (ASD) for machine condition monitoring. Several
challenge tasks related to ASD were organized in the Detection and
Classification of Acoustic Scenes and Events (DCASE).

The first ASD challenge was DCASE 2020 Challenge Task 2:
Unsupervised Detection of Anomalous Sounds for Machine Condi-
tion Monitoring (DCASE2020T2) [1]. The task setting required
systems to have only the normal samples of machine operating
sound for training. No anomalous sound sample was available for
training because getting enough number of anomaly samples is ex-
tremely difficult in real application scenarios. The organizers of
DCASE2020T2 had to create specific datasets for the task by in-
tentionally adding damage to machines, e.g., toys. The datasets are
called ToyADMOS and MIMII dataset [2, 3]. Since then, the ASD
challenge task has been extended to represent more realistic appli-
cation scenarios, such as DCASE 2021 Challenge Task 2: Unsuper-
vised Anomalous Sound Detection for Machine Condition Moni-
toring under Domain Shifted Conditions (DCASE2021T2) [4], and
DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring Applying Domain
Generalization Techniques (DCASE2022T2) [5]. ToyADMOS2,
MIMII DUE, and MIMII DG datasets had been developed [6, 7, 8].

In DCASE 2023 Challenge Task 2: “First-shot Anoma-
lous Sound Detection for Machine Condition Monitoring”
(DCASE2023T2) [9], new datasets and a baseline implementation
complying with the First-shot requirements were introduced [10, 6,
8, 11]. First-shot means the system can use only the given training
data for the target. The First-shot ASD is characterized as follows:

• No use of data from different machine instances (not given)

• No hyperparameter tuning nor tool ensemble enabled for dedi-
cated machine type (by analyzing ground truth results with both
normal and anomaly samples)

A B C

A

B

C

A B C

A B C

(a)

(b)

(c)

(d)

Figure 1: Images of toy-model configurations A, B, and C for
(a) ToyDrone, (b) ToyNscale, (c) Vacuum, and (d) ToyTank.

This paper describes the newly added ToyADMOS data for the
Additional training and Evaluation datasets of the DCASE2023T2.
In addition, this paper also shows benchmark results of the First-
shot baseline implementation [12] on the previous DCASE Chal-
lenge Task 2 datasets in 2020, 2021, 2022, and 2023, compared
with the baselines of those years [13, 14, 15, 16, 17]. The source
code and data are available at GitHub [12] and Zenodo [9, 18, 19].

2. TOYADMOS2+: ADDITIONAL DATA FOR THE
DCASE2023 CHALLENGE TASK 2

To provide the First-shot training data for DCASE2023T2, the fol-
lowing four machine types, (a) ToyDrone, (b) ToyNscale, (c) Vac-
uum, and (d) ToyTank, were newly recorded. Each machine type
has three model configurations (A, B, C) shown in Fig. 1. The ma-
chine operating sounds were recorded with the room layout and the
microphone settings shown in Figs. 2 and 3.

ToyDrone: The ToyDrone flies in a guide frame as shown in
Figs. 2(a) and 3(a). There are three flying patterns.
ToyNscale: The N-scale toy train runs on a railway track. Sound
data were collected with eight microphones surrounding the track,
as shown in Figs. 2(b) and 3(b).
Vacuum: The Vacuum is set on a guide frame in Figs. 2(c)
and 3(c). A floor mat or a wooden floor plate was used.
ToyTank: The ToyTank runs in a guide frame as shown in
Figs. 2(d) and 3(d).

To generate anomaly samples, some of the parts were intentionally
damaged. Anomaly conditions for each machine type are shown in
Table 1.
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Figure 2: Recording-room layouts and microphone arrangements, (a) ToyDrone, (b) ToyNscale, (c) Vacuum, and (d) ToyTank.
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Figure 3: Images of microphone arrangements
(a) ToyDrone, (b) ToyNscale, (c) Vacuum, and (d) ToyTank.

Table 2 shows the recording setting. All the operating sound
and noise samples were recorded with 48 kHz sampling, 24-bit for
each channel, and then downsampled to 16 kHz, 24-bit, monaural.
Sample duration varies from 6 sec to 18 sec, depending on the ma-
chine type, as shown in Table 2. Domain shift conditions were con-
trolled by changing machine instances (ID), operating speed, mic
position, and mixed background noise samples. Table 3 shows the
domain shift conditions of source and target domains.

For training data (Additional training dataset), there are 1000
normal samples given for training, where 990 samples are from the
source domain, and 10 samples are from the target domain. For
evaluation data (Evaluation dataset), 50 normal and 50 anomaly
samples are from each source and target domain. In total, there
are 200 samples for each machine type. In total, 960 min of data
was prepared. The data is available at the Zenodo links [18, 19]
under the Creative Commons Attribution 4.0 International Public
License [20].

Table 1: Anomaly conditions for each machine type.

(a) ToyDrone (b) ToyNscale

Part Condition Part Condition

Propeller - Cut one side Carriage - Flat tire
- Cut two sides - Broken shaft

Guard - Guard missing Railway - Disjointed
Unbalance - Offset weight track - Obstructing stone

(c) Vacuum (d) ToyTank

Part Condition Part Condition

Air filter - No filter Trackbelt - Damaged belt
Nozzle - Thread jam - Foreign object
Dust bag - Bag full Trackbelt wheel - Wheel lock

- No dust bag - Missing wheel

Table 2: Recording conditions for DCASE2023T2 Eval. dataset.

ToyDrone ToyNscale Vacuum ToyTank

Model variations A, B, C A, B, C A, B, C A, B, C

Speed levels Three patterns Five Lb, M, Mb, H∗1 Five
Mic. config Ch. 1 - 3 Ch. 1 - 8 Ch. 1 - 4 Ch. 1 - 4

Noise type∗2 N1 N1 N2 N2
Sample duration 18 sec 6 sec 15 sec 8 sec
∗1L, M, H mean Lo, Middle, and High power, and Lb, Mb means with a brush on.
∗2N1: windy outside noise and N2: room air conditioning noise.

Table 3: Domain shift settings for DCASE2023T2 Eval. dataset.

Source domain ToyDrone ToyNscale Vacuum ToyTank

Machine ID A, B A, B A, B A, B
Speed 2, 3 2, 3 Lb, M, Mb, H∗1 3, 4
Mic. Dynamic 1 Dynamic 1 - 4 Dynamic 1 Dynamic 1

Noise∗2 N1 N1 N2 N2

Target domain ToyDrone ToyNscale Vacuum ToyTank

Machine ID C C C C
Speed 1 1, 5 Mb, H∗1 1, 5
Mic. Dynamic 2 Dynamic 5 - 8 Dynamic 2 Dynamic 1

Noise∗2 N1 N1 N2 N2
∗1L, M, H mean Lo, Middle, and High power, and Lb, Mb means with a brush on.
∗2N1: windy outside noise and N2: room air conditioning noise.

3. BENCHMARK RESULTS WITH THE DCASE2023T2
FIRST-SHOT BASELINE

3.1. The DCASE2023T2 First-shot baseline
DCASE2023 Challenge Task 2 baseline has the following two op-
erating modes. For the details, see Sec. 3.2 and [11].
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Table 4: AUC results of the DCASE 2023 Challenge Task 2 Evaluation dataset.

System metric hmean∗1 amean∗1 ToyDrone ToyNscale ToyTank Vacuum Bandsaw Grinder Shaker

First-shot compliant AUC (source) 0.7421 0.7484 0.8121 0.7650 0.7196 0.8815 0.6710 0.7039 0.6859
simple Autoencoder AUC (target) 0.5357 0.5436 0.5375 0.4891 0.6655 0.4488 0.5264 0.5590 0.5790
mode (FS-AE) [12] pAUC (src & tgt) 0.5551 0.5575 0.5316 0.5223 0.5998 0.6040 0.5098 0.5858 0.5489

TOTAL score 0.5981 0.6165
Selective AUC (source) 0.7877 0.7934 0.8495 0.6684 0.8085 0.8031 0.8328 0.7396 0.8519
Mahalanobis AUC (target) 0.5377 0.5707 0.4218 0.4377 0.4879 0.8727 0.6014 0.5169 0.6566
AE mode [12] pAUC (src & tgt) 0.5722 0.5779 0.5140 0.5107 0.5470 0.6795 0.5684 0.6033 0.6227

TOTAL score 0.6151 0.6474
DCASE2022T2 AUC (source) 0.7732 0.7835 0.9018 0.7705 0.8325 0.9047 0.6708 0.7051 0.6993
baseline AE [16] AUC (target) 0.3644 0.4049 0.2611 0.3940 0.3430 0.2397 0.4554 0.5494 0.5920

pAUC (src & tgt) 0.5323 0.5346 0.4970 0.5112 0.5807 0.5116 0.5023 0.5789 0.5605
TOTAL score 0.5071 0.5744

cf. DCASE2023T2 Top 1 AUC (source) 0.8313 0.8377 0.8026 0.9042 0.8480 0.9690 0.7655 0.7367 0.8376
Jie IESEFPT task2 2 AUC (target) 0.6008 0.6444 0.4544 0.8768 0.4682 0.9548 0.5749 0.6082 0.5734
[21] (operating condition pAUC (src & tgt) 0.6203 0.6399 0.5158 0.7774 0.6153 0.8532 0.5335 0.6245 0.5597
label classification) TOTAL score 0.6697 0.7073
∗1hmean denotes harmonic mean, and amean denotes arithmetic mean.

First-shot-compliant simple Autoencoder mode (FS-AE):
This is a simple autoencoder. For training, the model parameter
θ of the AE is trained to minimize the mean square error (MSE)
between a normal input sample x− and its reconstruction x̂−

using

Loss = MSE(x−, x̂−), (1)
where x̂− = Decθ(Encθ(x

−)). (2)

For the testing phase, the anomaly score Aθ is calculated with the
reconstruction error of the given query sample x using

Anomaly Score Aθ = MSE(x, x̂), (3)
where x̂ = Decθ(Encθ(x)). (4)

When the anomaly score exceeds the pre-set threshold, the sample
is detected as an anomaly sample.

Selective Mahalanobis Autoencoder mode: The anomaly
score Aθ is calculated using the covariance matrixes Σ−1

s

and Σ−1
t of distance between normal samples x− and its

reconstruction x̂− for the source and target domains with:
Anomaly Score Aθ = min{Ds(x, x̂), Dt(x, x̂)}, (5)

where Ds(·) = Mahalanobis(x, x̂,Σ−1
s ), (6)

Dt(·) = Mahalanobis(x, x̂,Σ−1
t ). (7)

3.2. Experimental setup and evaluation criterion
For the First-shot compliant baseline, the model hyperparameters
were set to the values described in [11].

The frame size for STFT was 64 ms with 50 % hop size trans-
lated into 128 frequency bands Log-mel energies. Five consecutive
frames were concatenated to formulate 640 dimensions (128×5) as
input to the system. In the autoencoder model, there were three lay-
ers of 128 dimensions linear, Batch normalization, and Activation
with ReLU each, in encoder and decoder. The bottleneck layer had
eight dimensions. The number of epochs for training was 100. The
batch size was 256, and the Adam optimizer used a 0.001 learning
ratio.

The performances of the two operating modes of the
DCASE2023T2 baseline [11, 12] were compared with the pre-
vious baselines, such as DCASE2020T2 baseline AE [13],
DCASE2021T2 baseline AE [14], DCASE2021T2 baseline Mo-
bileNetV2AE [15], DCASE2022T2 baseline AE [16], and
DCASE2022T2 MobileNetV2 [17]. The Evaluation datasets and

baseline systems dedicated to the DCASE Challenges were used.
For those baseline systems, hyperparameters were set to the ones
used in the corresponding previous DCASE Challenges [1, 4, 5,
10, 9, 22, 23, 24]. The total scores Ω for evaluating the sys-
tems are calculated based on Area Under the Receiver Operat-
ing Characteristic (ROC) curve (AUC) and partial AUC (pAUC)
with a harmonic mean (hmean) and an arithmetic mean (amean)
of AUC and pAUC. All the results were the averaged score
of systems trained with three different random seeds except for
Jie IESEFPT task2 2 [21] that were copied from the official score.

3.3. Experimental results
Experimental results of the DCASE2023T2 First-shot baseline on
the DCASE2023T2 Evaluation datasets are shown in Table 4. Some
other results of the DCASE2023T2 baseline compared with the
previous baseline systems on the Evaluation datasets of DCASE
2020, 2021, and 2022 Challenge tasks are shown in Tables 5,
6, and 7, respectively. The DCASE2023T2 baseline with the
selective Mahalanobis AE mode performed better than others in
the DCASE2021T2, DCASE2022T2, and DCASE2023T2. For
DCASE2020T2, the DCASE2023T2 baseline with the FS-AE mode
performs better because of no domain shift. The DCASE2023T2
baseline can be a performance benchmark for the tasks.

4. CONCLUSION
This paper introduces the newly recorded ToyADMOS dataset for
the DCASE 2023 Challenge Task 2, First-shot anomalous sound
detection for machine condition monitoring. New machine types,
such as ToyDrone, ToyNscale, Vacuum, and ToyTank, are newly
recorded as a part of the Additional training and Evaluation datasets.
This paper also shows benchmark results of the First-shot base-
line implementation (with simple autoencoder and selective Maha-
lanobis modes) on the previous DCASE Challenge Task 2 datasets
in 2020, 2021, 2022, and 2023, compared with the baselines of
those years. ToyADMOS2+ dataset (DCASE 2023 Challenge Task
2 Additional Training Dataset and Evaluation Dataset) is avail-
able at [9, 18, 19] with the Creative Commons Attribution 4.0 In-
ternational Public License [20]. The updated source code of the
DCASE2023T2 baseline supporting all the previous task settings is
available at [12].
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Table 5: AUC results of the DCASE 2020 Challenge Task 2 Evaluation dataset.

System metric hmean∗1 amean∗1 ToyCar ToyConvayor fan pump slider valve

First-shot compliant AUC 0.7817 0.8003 0.8399 0.7859 0.8601 0.8618 0.7975 0.6567
simple Autoencoder pAUC 0.6187 0.6342 0.6936 0.6651 0.6903 0.6499 0.5872 0.5191
mode (FS-AE) [12] TOTAL score 0.6907 0.7173
Selective AUC 0.7434 0.7845 0.8101 0.7727 0.9478 0.9175 0.7280 0.5305
Mahalanobis pAUC 0.6115 0.6366 0.5892 0.6700 0.7886 0.7333 0.5292 0.5095
AE mode [12] TOTAL score 0.6710 0.7105
DCASE2020T2 AUC 0.7774 0.7959 0.7973 0.8822 0.8593 0.8408 0.8148 0.5810
baseline AE [13] pAUC 0.6189 0.6312 0.6630 0.7075 0.6768 0.6443 0.5869 0.5085

TOTAL score 0.6892 0.7135
∗1hmean denotes harmonic mean, and amean denotes arithmetic mean.

Table 6: AUC results of the DCASE 2021 Challenge Task 2 Evaluation dataset.

System metric hmean∗1 amean∗1 ToyCar ToyTrain fan gearbox pump slider valve

First-shot compliant AUC (source) 0.6421 0.6506 0.7049 0.7009 0.6818 0.6605 0.6336 0.6483 0.5245
simple Autoencoder AUC (target) 0.5716 0.5817 0.6211 0.5808 0.5850 0.6278 0.5699 0.5592 0.5279
mode (FS-AE) [12] pAUC (source) 0.5224 0.5244 0.5232 0.5265 0.5225 0.5541 0.5175 0.5166 0.5104

pAUC (target) 0.5206 0.5253 0.5680 0.5082 0.5081 0.5712 0.5098 0.5189 0.4926
TOTAL score 0.5601 0.5705

Selective AUC (source) 0.6488 0.6696 0.8438 0.5677 0.7773 0.6581 0.6774 0.6593 0.5033
Mahalanobis AUC (target) 0.5664 0.5885 0.6560 0.4706 0.6060 0.6333 0.6284 0.5849 0.5401
AE mode [12] pAUC (source) 0.5418 0.5507 0.6896 0.4937 0.5601 0.5485 0.5408 0.5063 0.5159

pAUC (target) 0.5279 0.5328 0.6009 0.5093 0.5308 0.5717 0.5067 0.5101 0.5001
TOTAL score 0.5676 0.5854

DCASE2021T2 AUC (source) 0.6468 0.6556 0.7490 0.7141 0.6624 0.6736 0.6312 0.6444 0.5146
baseline AE [14] AUC (target) 0.5693 0.5834 0.6232 0.6451 0.5568 0.6330 0.5612 0.5408 0.5236

pAUC (source) 0.5272 0.5305 0.5409 0.5660 0.5176 0.5516 0.5143 0.5149 0.5082
pAUC (target) 0.5318 0.5386 0.5692 0.5959 0.4982 0.5807 0.5101 0.5219 0.4945
TOTAL score 0.5650 0.5770

DCASE2021T2 AUC (source) 0.5351 0.6034 0.4279 0.5215 0.7505 0.5620 0.7013 0.7246 0.5360
baseline AUC (target) 0.5236 0.5892 0.5800 0.3852 0.6396 0.4889 0.7107 0.7517 0.5681
MobileNetV2 [15] pAUC (source) 0.5569 0.5736 0.5299 0.5312 0.6467 0.5522 0.6342 0.6060 0.5149

pAUC (target) 0.5617 0.5780 0.6505 0.4921 0.6288 0.4962 0.6236 0.6241 0.5304
TOTAL score 0.5431 0.5860

∗1hmean denotes harmonic mean, and amean denotes arithmetic mean.

Table 7: AUC results of the DCASE 2022 Challenge Task 2 Evaluation dataset.

System metric hmean∗1 amean∗1 ToyCar ToyTrain fan gearbox bearing slider valve

First-shot compliant AUC (source) 0.6515 0.6803 0.8331 0.4998 0.6562 0.7116 0.7479 0.7594 0.5539
simple Autoencoder AUC (target) 0.5123 0.5418 0.6537 0.5243 0.3580 0.6026 0.5621 0.5264 0.5657
mode (FS-AE) [12] pAUC (src & tgt) 0.5344 0.5420 0.6658 0.4973 0.5136 0.5152 0.5474 0.5355 0.5192

TOTAL score 0.5599 0.5880
Selective AUC (source) 0.6650 0.7138 0.9401 0.5031 0.6820 0.8510 0.7195 0.7637 0.5371
Mahalanobis AUC (target) 0.5557 0.5999 0.7965 0.5075 0.4055 0.7724 0.6280 0.5595 0.5296
AE mode [12] pAUC (src & tgt) 0.5623 0.5763 0.7738 0.5067 0.5133 0.6071 0.5763 0.5408 0.5164

TOTAL score 0.5903 0.6300
DCASE2022T2 AUC (source) 0.6478 0.6762 0.7749 0.5973 0.6433 0.7006 0.7281 0.7548 0.5346
baseline AE [16] AUC (target) 0.4451 0.4771 0.4761 0.3915 0.3200 0.5762 0.5321 0.4931 0.5505

pAUC (src & tgt) 0.5263 0.5314 0.5939 0.4969 0.5046 0.5204 0.5519 0.5377 0.5146
TOTAL score 0.5272 0.5616

DCASE2022T2 AUC (source) 0.5758 0.6535 0.6457 0.5340 0.6914 0.5996 0.6333 0.7692 0.7014
baseline AUC (target) 0.4542 0.5248 0.4621 0.5916 0.3842 0.4433 0.5239 0.5052 0.7629
MobileNetV2 [17] pAUC (src & tgt) 0.5345 0.5413 0.5419 0.5046 0.5354 0.4820 0.5151 0.5498 0.6601

TOTAL score 0.5163 0.5732
∗1hmean denotes harmonic mean, and amean denotes arithmetic mean.
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EVALUATING CLASSIFICATION SYSTEMS AGAINST SOFT LABELS WITH FUZZY
PRECISION AND RECALL

Manu Harju, Annamaria Mesaros
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ABSTRACT
Classification systems are normally trained by minimizing the

cross-entropy between system outputs and reference labels, which
makes the Kullback-Leibler divergence a natural choice for measur-
ing how closely the system can follow the data. Non-binary refer-
ences can arise from various sources, and it is often beneficial to use
the soft labels for training instead of the binarized data. In addition
to the cross-entropy based measures, precision and recall provide
another perspective for measuring the performance of a classifica-
tion system. However, the existing definitions for precision and
recall require binary reference labels, and binarizing the data can
cause erroneous interpretations and loss of information about the
underlying data distributions. We present a novel method to calcu-
late precision, recall and F-score without quantizing the data. The
proposed metrics are based on fuzzy theory and extend the well es-
tablished metrics, as the definitions coincide when used with binary
labels. To understand the behavior of the proposed metrics we show
numerical example cases and an evaluation of different sound event
detection models trained on real data with soft labels.

Index Terms— soft labels, soft precision and recall, sound
event detection

1. INTRODUCTION

The target labels in classification tasks are usually presented in one-
hot or multi-hot encoded form, indicating target classes being either
present or absent. This leads naturally to using binary representa-
tions for the data; however, nothing prevents us for using non-binary
values. The terms hard and soft labels are often used to make the
distinction between the binary and non-binary cases. Soft labels can
be derived from binary data e.g. by using label smoothing [1] or
data augmentation with mixup [2]. Furthermore, non-binary values
can be used to represent uncertainty in the original data. Using soft
labels to present the annotators confidence can improve the model
performance [3, 4] and help with ambiguous classes [5].

One particular case is in the DCASE 2023 Challenge, where the
organizers provide soft labels in the sound event detection (SED)
task. The data was collected by splitting approximately 3-minute
long recordings into 10-second clips with a one-second stride, and
the clips were annotated on Amazon Mechanical Turk for tempo-
rally weak labels. Each clip was annotated by five different anno-
tator, and therefore a single one-second segment in the middle part
in the longer files got annotation from 50 workers. The collected
labels were used to estimate competence values for the individual
annotators, which were then used to compute weighted averages of
the annotator opinions, with the resulting numbers designated as the
soft labels for one-second segments of audio [6].

This work was supported by Academy of Finland grant 332063 “Teach-
ing machines to listen”.

The challenge task is about training a sound event detection
system using the soft labels, to investigate if leveraging information
from the soft labels is beneficial for the acoustic models. However,
the evaluation is done using hard labels and hard metrics. Convert-
ing soft labels into binary requires choosing a threshold value, and
finding a good one is not a trivial task. The most straightforward
way is to use 0.5 as the threshold, and this is also how the reference
data for the challenge is binarized. However, as a consequence, six
event classes out of 17 are left out from the evaluation, as there are
not enough segments with a soft label value above the threshold.

Converting the soft reference labels into binary means discard-
ing part of the information about the data. On the other hand, using
soft labels for training was shown to improve accuracy and yield
more structure for the more ambiguous classes in the learned fea-
ture space [5]. Furthermore, training models with soft labels was
shown to improve the performance on out-of-sample data and to
make the models more robust against adversarial attacks [3].

In [7], soft labels have been used for training a SED, and the
Kullback-Leibler divergences in the results indicate that the system
output is closer to the reference labels than for the case when the
same system is trained using the hard labels. Furthermore, using
the midpoint of the value range as the threshold for each class in-
dependently improves the performance on less represented classes.
Nevertheless, if the system performance is measured from binary
references, we are missing out the uncertainty levels in the data. In
an extreme case such harsh quantization renders the data unusable
by converting all the labels into the same value.

In this paper we propose a novel method to calculate precision
and recall from softly-labeled data. The proposed metrics coincide
with the hard metrics when used with binary labels, and thus can be
seen as an extension of the hard precision and recall for handling
soft references and system outputs. Using the soft labels directly
allows measuring the system’s ability to track the reference data,
taking the metrics closer to the cross-entropy based ones. However,
the soft precision and recall also provide similar information about
the bias of the classifier as the hard metrics.

Measuring precision and recall requires counting set sizes for
the predicted outputs and the references. For example, in multil-
abel classification, for a single input sample we may have a set of
predicted labels and a set of reference labels. Previous work for
soft metrics involve the idea of the set elements having soft bound-
aries for several different scenarios. Such elements may overlap
with each other, making measuring the set size more difficult. The
work in [8] presents a number of examples, including comparing
sets of words and audio segmentation. In the word set comparison,
syntactic and semantic similarities are measured between words to
determine the overlap and soft cardinality of the sets. In the segmen-
tation example the onset and offset times are from continuous scale
but the segments themselves are hardly labeled. In [9], audio seg-
ments are converted into fuzzy sets with soft boundaries and fuzzy
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set theory is used to compute fuzzy precision and recall. However,
in all these examples, the elements activities in the prediction and
reference sets are binary. In contrast, the elements of interest in our
case are well defined audio segments with clear boundaries, but the
intensities of the predictions and reference data, i.e. the soft labels,
come from the unit interval.

This paper is organized as follows: Section 2 introduces the
theoretical definitions of the soft precision and recall and a few nu-
merical examples for understanding the behavior of the metrics in
various scenarios. Section 3 shows a comparison of hard and soft
metrics using the DCASE 2023 Challenge SED with soft labels task
data, and the method and results are discussed in Section 4. Finally,
Section 5 presents conclusions and future work.

2. SOFT PRECISION AND RECALL

2.1. Definitions

Let X be the set of all elements to be classified, and L ⊆ X ,
G ⊆ X be the sets of predicted labels and ground truth references,
respectively. In the binary case, the sets L and G contain the pos-
itively labeled elements. Precision and recall can be defined using
set theoretical notation [8] with:

Precision =
|L ∩G|
|L| ,

Recall =
|L ∩G|
|G| , (1)

F1 − score = 2
|L ∩G|
|L|+ |G| .

A fuzzy set is defined by its membership function µ : X →
[0, 1] mapping each element of X to its grade of membership. We
interpret L and G as fuzzy sets through the soft labels: given the
reference label value yi and prediction ŷi for the i’th item xi, the
membership function values are:

µL(xi) = ŷi,
µG(xi) = yi.

(2)

We use the standard definition of intersection for fuzzy sets,
namely the minimum of the membership function values. Finally,
the fuzzy set cardinality is just the sum of the membership values,
resulting in the following definitions for the soft precision, recall,
and F1-score

Precision =

∑
i min(ŷi, yi)∑

i ŷi
,

Recall =

∑
i min(ŷi, yi)∑

i yi
, (3)

F1 − score = 2

∑
i min(ŷi, yi)∑
i(ŷi + yi)

.

It is possible to use some other T-norm for the fuzzy intersec-
tion, but the advantage of using minimum is its idempotency, i.e.
min(x, x) = x. From idempotency it follows that if ŷi = yi for
any value in the unit interval, then also the precision and recall for
that item will be equal to 1.
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Figure 1: F-scores for a two-point example, comparing a 0.2 refer-
ence with a 0.2 + ε prediction.

2.2. Examples

Table 1 shows three small example cases. For each case, four data
points are illustrated as a bar plot, where the blue bars represent
predictions and the red bars correspond to reference labels. The
dashed grey line denotes the threshold value of 0.5. All three ex-
amples contain 50 % of positive references in the binarized case.
The table presents for each case the hard and soft metrics, and the
last column shows Kullback-Leibler divergence for a measure of
difference between the predictions and references.

For the first two examples the reference labels are the same and
they correspond to a more clear annotation of categories. In the
first case, half of the predicted positives are correct, and half of the
positive references are found; in the second case, both positive ref-
erences are found. For these two examples, the values for the hard
metrics are as expected. However, the third example represents a
more ambiguous case, where the labels are close to the 0.5 thresh-
old value. In such a case the label quantization may turn the pre-
diction and reference into complete opposites, resulting in very low
scores despite the small difference between the system outputs and
the reference labels. Furthermore, according to the KL-divergence
the predictions are closest to the references in the last example, even
though the hard metrics indicate the opposite.

To get a better insight about the behavior of the metric, we con-
struct an example of two data points. The first data point is a true
positive with value 0.8 for both prediction and reference. For the
second point we set the reference label to 0.2 and use 0.2 + ε for
our prediction. The effect of perturbing the prediction around the
ground truth can be seen in Figure 1. The figure shows that the
soft F-score has a sharp peak at the correct value. For ε > 0.3 the
hard metric interprets the label as incorrect, while the soft metrics
still finds some common mass between the prediction and reference
label, resulting in higher soft F-score than the hard one.

3. EXPERIMENTAL RESULTS

3.1. System evaluations

We use the baseline system from the DCASE 2023 Challenge task
4B and two different modifications to explore the behavior of the
proposed metrics. The baseline system is a standard CRNN with
three convolutional blocks and one bidirectional GRU layer of size
32. Each convolutional block consists of a single 2D convolution
with 128 filters and 3x3 kernels followed by batch normalization,
rectified linear unit, max pooling, and dropout layers. The sec-
ond system, denoted TinyCRNN, has two convolutional blocks, the
number of filters is reduced to 32, and the GRU size is halved in
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Hard Soft
Data points P R F P R F KLD

0.0
0.5
1.0

50.0 50.0 50.0 66.7 60.0 63.2 0.446

0.0
0.5
1.0

100.0 100.0 100.0 85.0 85.0 85.0 0.083

0.0
0.5
1.0

0.0 0.0 0.0 88.9 80.0 84.2 0.061

Table 1: Simple example cases. Blue is predicted value, red is the reference label value. The dashed grey line is the threshold value at 0.5.
The predictions are closest to the reference in the third case, even though the classical hard metrics indicate the opposite.

comparison to the baseline. The third system, denoted DWSNet,
uses a similar GRU layer and the same number of blocks as the
baseline, but each block consists of four depthwise separable con-
volutions. The number of parameters for the baseline, TinyCRNN,
and DWSNet models are 380k, 28k, and 215k, respectively. The
models are trained with soft labels and regression setup using the
code provided with the baseline model.

In addition to the trained systems, we compute scores for three
data-driven sampling methods for generating a randomized system
output based on the training data. In the first case we fit beta dis-
tributions for each class in the training data and produce the system
output by sampling from each distribution individually. The second
sampled output is generated in a similar manner to the first one, but
the fitted distributions are shuffled so that the classes are assigned
a randomly chosen distributions of other classes. The original data
comes from five different scenes with partially overlapping sets of
classes, and the labels for absent classes are set to zero. As a result,
the fitted distributions are biased towards zero, and for a single seg-
ment the method can output labels that are never seen co-occurring
in the data. The third output is generated by sampling individual
time steps from the training data, i.e. taking all outputs for all the
classes at the same time.

For an extensive analysis, we use two different hard label eval-
uation methods that are supplied with the task baseline code. In the
first case the system outputs are binarized using 0.5 as the threshold
value. In the second case the system output values are automatically
class-wise thresholded for the best macro F-score [10]. We call this
method optimal threshold (OT). The soft metrics are calculated over
the set of 11 classes included in the challenge evaluation for a direct
comparison with the above-mentioned metrics, and also for all the
17 classes that are present in the training data.

Table 2 shows micro and macro F-scores of the trained systems
and sampling methods. Micro F-score (Fm) is the global average
over all the data points, whereas macro F-score (FM ) is the un-
weighted average of the class-wise F-scores. The numbers in the
table are jackknife estimates of means over ten runs. The confi-
dence intervals are omitted from the table for brevity. In addition to
the F-scores, we include the Kullback-Leibler divergences to have
another perspective for the system outputs. The results show that
the soft metrics correlate well with the hard metrics. However, the
soft metrics tend to give higher values since all the common content

between the predictions and the references is taken into account.
Both soft and hard F-scores agree that DWSNet has the best perfor-
mance, with the exception of the hard macro F-score, for which the
confidence intervals of DWSNet and baseline overlap. Similarly,
all the F-scores for TinyCRNN are lower than those of the baseline.
This ranking of the trained systems is also in agreement with the
KL-divergences. Furthermore, the soft F-scores are also placing the
random methods in the same order as the KL-divergence. The OT
F-scores for all three random cases are close to each other, therefore
it is difficult to draw any conclusion on their difference.

Interestingly, the OT F-score is very similar irrespective of the
beta sampling method. The data consists of five different scenes
having different sets of classes, whereas the sampling is done inde-
pendently for each class throughout all the data. As expected, shuf-
fling the order of the distributions takes the predicted labels even
further from the references, as shown by the KLD values. The hard
and soft F-scores are lower for the shuffled case, but because the
optimal threshold follows the distribution of the predictions, the OT
F-score fails to indicate that these predictions are worse than the
class-wise beta ones.

The confidence intervals of the optimal threshold hard metric
and the soft metric are shown in Figure 2. The figure indicates that
the soft F-scores are more stable than the optimal threshold ones,
having narrower CIs, particularly for the micro F-score. The OT
method is optimizing threshold values for each class individually,
which is causing some variations in the micro F-scores. In addition,
there is some overlapping in the confidence intervals of the OT F-
scores.

3.2. Random system output

We generate several different random predictions from arbitrarily
chosen distributions to investigate the stability of the measures. The
predicted labels are sampled from beta distributions with α = β =
r with r ∈ {0.01, 0.1, 1, 5, 20} and evaluated against the chal-
lenge reference data. Increasing the parameter r lowers variance
and makes the probability mass more concentrated around the mid-
dle point. In addition to the random samples we also include a sys-
tem output of a constant value 0.5. In all the cases, the distribution
is symmetric and has expectation of 0.5.

Due to the symmetry, the hard F-score gives the same result for
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Betas Shuffled betas Data sampling Baseline TinyCRNN DWSNet
Fm FM Fm FM Fm FM Fm FM Fm FM Fm FM

Hard 23.2 9.1 7.2 4.6 30.9 10.9 70.4 35.0 64.8 26.2 72.8 35.7
Hard / OT 27.4 18.0 26.4 18.1 25.0 17.8 51.7 41.5 49.2 39.7 60.2 43.6
Soft 35.5 23.0 17.1 14.1 39.0 25.9 72.6 65.5 69.4 60.2 77.0 70.3
Soft (all classes) 33.3 18.6 15.7 12.6 36.8 21.1 70.4 58.8 66.8 53.2 75.1 64.5

KLD 0.746 1.138 0.074 0.034 0.044 0.028

Table 2: F-scores and KL-divergences for the system outputs measured against the reference labels. Fm and FM denote micro F-score and
macro F-score, respectively.

Betas shuffled
Betas

Data sampling
Baseline

TinyCRNN
DWSNet

micro F-score

soft
hard/OT

0.2 0.4 0.6 0.8
Betas shuffled

Betas
Data sampling

Baseline
TinyCRNN

DWSNet
macro F-score

soft
hard/OT

Figure 2: 95% confidence intervals for the average F-score of the
trained models and generated random system outputs.

all the distributions, and is therefore left out from the comparison.
Figure 3 shows that also the OT hard macro F-score stays constant,
but optimizing the class-wise thresholds introduces some variation
to the micro F-score. In contrast to the hard F-scores, the soft F-
score decreases as the KL-divergence between the predictions and
reference labels increases. Despite that the setup is very particular
and the generated random samples are far from a real model output,
this experiment shows that there are cases where the hard metrics
are not able to make the distinction between system outputs with
different KL-divergences.

4. DISCUSSION

The hard metrics work well if the reference labels are clearly clus-
tered into positives and negatives. However, when the label values
come from a wider scale, converting the data into binary can make
the predictions look worse than they are. In practice, the errors
from converting the data into binary are not very likely to mislead
in the overall interpretation of the results, since averaging over a
large number of segments will smooth out the values. However, a
non-informative evaluation result is still possible if most of the data
lie close to the threshold value. Nevertheless, hard metrics are not
useful if we want to measure how well a system learns the uncer-
tainties in the reference labels.
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Figure 3: F-score against KL-divergence for the random system pre-
dictions evaluated against real data reference labels.

The soft metrics tend to give higher values than the hard ones
since all the segments with nonzero reference or nonzero prediction
contribute to the total scores. However, even if the soft F-scores
are pushed higher in comparison with the hard ones, the differences
between the trained systems are more visible, as the confidence in-
tervals are separated by wider margins.

Finally, the definitions of the soft precision and recall make
them differentiable, which makes it possible to train a model using
a loss based on the soft metrics. Based on brief experiments with
the baseline model, the soft F-score based loss did not bring any
significant advantage compared to the MSE loss used in the base-
line. Nevertheless, this direction may require more extensive exper-
iments and system architecture design that was out of the scope of
this work.

5. CONCLUSIONS

This paper introduced soft definitions for the precision and recall
based on fuzzy sets, extending the classical hard metrics to evaluate
system outputs against soft labels. The experiments show that the
proposed metrics correlate well with the hard F-scores, and ranking
system outputs according to the soft F-score agrees with the rank-
ing based on KL-divergence. Furthermore, the confidence intervals
of the results suggest that the soft F-score is more stable than the
optimal threshold method. In future work, we plan to investigate
the behavior of the proposed metrics with more real system outputs
along with the existing metrics. In addition, the soft precision and
recall based loss for model training could be studied in more detail.
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[6] I. Martı́n-Morató and A. Mesaros, “Strong labeling of sound
events using crowdsourced weak labels and annotator compe-
tence estimation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 31, pp. 902–914, 2023.
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ABSTRACT

For learning-based sound event localization and detection (SELD)
methods, different acoustic environments in the training and test
sets may result in large performance differences in the validation
and evaluation stages. Different environments, such as different
sizes of rooms, different reverberation times, and different back-
ground noise, may be reasons for a learning-based system to fail.
On the other hand, acquiring annotated spatial sound event sam-
ples, which include onset and offset time stamps, class types of
sound events, and direction-of-arrival (DOA) of sound sources is
very expensive. In addition, deploying a SELD system in a new
environment often poses challenges due to time-consuming train-
ing and fine-tuning processes. To address these issues, we propose
Meta-SELD, which applies meta-learning methods to achieve fast
adaptation to new environments. More specifically, based on Model
Agnostic Meta-Learning (MAML), the proposed Meta-SELD aims
to find good meta-initialized parameters to adapt to new environ-
ments with only a small number of samples and parameter updating
iterations. We can then quickly adapt the meta-trained SELD model
to unseen environments. Our experiments compare fine-tuning
methods from pre-trained SELD models with our Meta-SELD on
the Sony-TAU Realistic Spatial Soundscapes 2023 (STARSSS23)
dataset. The evaluation results demonstrate the effectiveness of
Meta-SELD when adapting to new environments.

Index Terms— SELD, MAML, unseen environments, fast
adaptation, meta-learning, few-shot

1. INTRODUCTION

Sound event localization and detection (SELD) refers to detect-
ing categories, presence, and spatial locations of different sound
sources. SELD characterizes sound sources in a spatial-temporal
manner. SELD was first introduced in Task 3 of the Detection and
Classification of Acoustics Scenes and Events (DCASE) 2019 Chal-
lenge [1]. After three iterations of Task 3 of the DCASE Chal-
lenge, types of data transform from computationally generated spa-
tial recordings to real-scene recordings [2].

SELD can be regarded as a Multi-Task Learning problem. Ada-
vanne et al. [3] proposed SELDnet for a joint task of sound event
detection (SED) and regression-based direction-of-arrival (DOA)

estimation. SELDnet is unable to detect homogeneous overlap,
which refers to overlapping sound events of the same type but with
different locations. The Event-Independent Network V2 (EINV2),
with a track-wise output format and permutation invariant training,
was proposed to tackle the homogeneous overlap detection prob-
lem [4–6]. Different from two outputs of SED and DOA in SELD-
net and EINV2, the Activity-coupled Cartesian DOA (ACCDOA)
approach merges two subtasks into a single task [7, 8]. The Carte-
sian DOA vectors contain the activity information of sound events
in the ACCDOA method.

In practical SELD system deployment, unseen complex envi-
ronments may lead to performance degradation. In the STARSS22
dataset [2], there are no duplicated recording environments in the
training and validation sets. Our previous system submitted to Task
3 of the DCASE 2022 Challenge obtained the second rank in the
team ranking [9]. However, we found unsatisfactory generaliza-
tion performance for fold4 room2 recordings in the dev-test-tau set
of STARSS22 [9]. Experimental results show that class-dependent
localization error LECD is high and location-dependent F-score
F≤20◦ is low, but class-dependent localization recall LRCD is high.
This suggests there may be the weak localizing performance of our
system in fold4 room2. In addition, manually annotated spatial
sound event recordings are very expensive. Taking the STARSS22
dataset for example [2], each scene was captured with a 32-channel
spherical microphone array, a 360◦ camera, a motion capture (mo-
cap) system, and wireless microphones. Onset, offset, and class
information of sound events were manually detected and classified
by annotators through listening to wireless microphone recordings
and watching video recordings, while positional annotations were
extracted for each event by masking the tracker data with the tem-
poral activity window of the event. In the end, 360◦ video record-
ings are utilized to validate those annotations. This type of complex
recording and annotation process means that large datasets of the
annotated spatial recording might be expensive.

Few-shot learning can act as a test bed for learning like hu-
mans, allowing a system to learn from small samples and reducing
data gathering effort and computation [10]. Meta-learning, which
facilitates few-shot learning, learns a general-purpose learning al-
gorithm that generalizes across tasks and ideally enables each new
task to be learned well from the task-distribution view [11]. Meta-
learning has advanced few-shot learning significantly in computer
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Figure 1: The multi-ACCDOA representation of the SELD model.
There is no track dimension in the ACCDOA representation.

vision [12,13]. One of the most successful meta-learning algorithms
is model-agnostic meta-learning (MAML) [14]. MAML tries to
learn general initial parameters that can be rapidly adapted to an-
other task. The method is model-agnostic and compatible with any
model trained with gradient descent. It can be applicable to a variety
of different learning problems, including classification, regression,
and reinforcement learning. In audio signal processing, the meta-
learning method has recently attracted interest as a way to solve
few-shot learning problems recently. Meta-TTS [15] is proposed
to build personalized speech synthesis systems with few enrolled
recordings of unseen users’ voices using MAML. In [16], MAML
is utilized to allow sound source localization models to adapt to dif-
ferent environments and conditions.

In this paper, we propose Meta-SELD, applying meta-learning
to SELD models with activity-coupled Cartesian DOA (ACCDOA)
representation [7] to improve performance, especially in localiza-
tion. We use MAML to find general initial parameters to min-
imize the loss across several tasks in Meta-SELD so that it can
quickly adapt to an unseen environment. We take recordings in
different environments as different tasks and aim to improve the
performance of a specific unseen environment with a few samples
recorded in the same environment. The experimental results demon-
strate that Meta-SELD outperforms the fine-tuning method from the
pre-trained SELD model in the STARSS23 dataset.

2. RELATED WORK

Activity-coupled Cartesian DOA (ACCDOA) representation [7] as-
signs a sound event activity to the length of a corresponding Carte-
sian DOA. When inferring, the threshold is set for the length of
class-wise Cartesian DOA vectors to determine whether an event
class is active. In contrast to EINV2, the ACCDOA representation
merges SED and DOA branches into a single branch, decreasing the
model parameters and avoiding the necessity of balancing the loss
measuring on the SED task and the DOA task.

The ACCDOA representation can not detect homogenous over-
laps. Therefore, multi-ACCDOA which still contains a single
branch and combines class-wise output format and track-wise out-
put format, is proposed to overcome the problem [8]. While each
track in the track-wise output format of EINV2 only detects one
event class and a corresponding location, each track in the multi-
ACCDOA predicts activities and corresponding locations of all tar-
get classes. Auxiliary duplicating permutation invariant training
(ADPIT) is also proposed to train each track of the multi-ACCDOA
with original targets and duplicated targets, enabling each track to
regard the same target as the single one. The multi-ACCDOA rep-
resentation is shown in Fig. 1. Its outputs are track-wise and class-
wise Cartesian DOA vectors. Each vector length indicates the ac-
tivity of the event. Besides the activity threshold, multi-ACCDOA
employs angle thresholds to determine whether the predicted ob-
jects are the same or different.

3. META-SELD

3.1. The SELD model

Without loss of generality, in this study, we adopt a simple Convolu-
tional Recurrent Neural Network (CRNN) as our network, which is
similar to the baseline of Task 3 of DCASE 2022 Challenge [2] but
with ACCDOA format. The network has three convolution blocks
followed by a one-layer bidirectional gated recurrent unit (BiGRU).
The network takes the concatenation of log-mel spectrograms and
intensity vectors as input and predicts active sound events with cor-
responding Cartesian DOA vectors for each time step. The network
architecture of CRNN is shown in Table 1.

Table 1: The network architecture of CRNN

Log-mel spectrogram & Intensity vectors
(Conv2d 3× 3 @ 32, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 64, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 128, BatchNorm2d, ReLU)× 2, Avg Pooling 2× 2
(Conv2d 3× 3 @ 256, BatchNorm2d, ReLU)× 2, Avg Pooling 1× 2

Global average pooling @ frequency
1-layer BiGRU of 128 hidden size, 256× 39 linear layer, Tanh

Mean Square Error

3.2. Meta-SELD training

Given a model represented by a parameterized function fΘ with pa-
rameters Θ, MAML [14] learns the initial parameters Θ0 from gen-
eral tasks Ti sampled from the training setDtrain and is expected to
perform well on unseen tasks from the test set Dtest after a few it-
erations of parameters update with a small number of samples from
the corresponding task. These initial parameters are very sensitive
to being further optimized on a specific task. Each task Ti consists
of a labeled support set Si of K samples and a labeled query setQi

of Q samples. A new task is expected to be quickly adapted with K
samples, which is known as K-shot learning. The loss function of
MAML is defined as

L =
∑

Ti∼p(T )

LTi(fΘ) (1)

where p(T ), which is sampled from Dtrain, is a distribution over
tasks that we want our model to be able to adapt to. In contrast to
supervised deep learning methods, the objective of which is to find
optimal parameters to minimize the loss function across all train-
ing samples, MAML tries to find generalized initial parameters for
different tasks. MAML will then update the initial parameters after
several iterations of training on data of new tasks.

There are two groups of parameters in the MAML algorithm,
meta-parameters and adapt-parameters. In the meta-training phase,
MAML starts with randomly initialized meta-parameters Θ and
then adapts to a new specific task Ti with several update iterations
using Si. The meta-parameters Θ become adapt-parameters Θ′

i:

Θ′
i = Θ− α∇ΘLTi (fΘ,Si) (2)

where α is the adaptation learning rate for adapt-parameters up-
dates. After updates across a batch of tasks, the meta-parameters
are updated as:

Θ = Θ− β∇Θ

∑
Ti

LTi

(
fΘ′

i
,Qi

)
(3)
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Algorithm 1 Meta-training of MAML for Meta-SELD

Require: Distribution over all rooms p(T ), adaptation step size α,
meta step size β

1: randomly initialize meta-parameters Θ
2: while not done do
3: Sample a batch of rooms Ti ∼ p(T )
4: for each room Ti do
5: Sample disjoint examples (Si,Qi) from Ti
6: Let Θi,0 ← Θ
7: for gradient descent step j := 0 to N − 1 do
8: Perform gradient descent to update adapt-parameters:

Θi,j+1 ← Θi,j − α∇ΘiLTi (Θi,j ,Si)
9: end for

10: Compute LTi(fΘi,N ,Qi)
11: end for
12: Perform gradient descent to update meta-parameters:

Θ← Θ− β∇Θ

∑
Ti
LTi

(
fΘi,N ,Qi

)
13: end while

where β is the meta step size. The loss LTi is calculated by the
parameterized function fΘ′

i
on the query set Qi. After updating

Θ on the query set, Θ will be used as initial parameters for the
following meta-training steps.

We aim to adapt to an unseen environment with K samples (K-
shot). The objective of MAML is to find optimal initial parameters
across several tasks, so we need to construct a set of tasks from
the training set Dtrain. Dtrain is split according to the different
recording rooms. Audio clips recorded in different rooms belong
to different tasks. We first sample a batch of tasks from all tasks
and then sample K + Q samples in each task, where K samples
for a support set Si and Q samples for a query set Qi. The overall
training procedure of MAML is summarized in Algorithm 1. Step 8
in Algorithm 1 is an inner-loop update for adapt-parameters, while
Step 12 is outer-loop updates for meta-parameters.

3.3. Meta-SELD test

In the meta-testing phase, a specific unseen task T test
j created using

Dtest is used. T test
j consists of a labeled support set Stestj of K

samples, and an unlabeled query set Qtest
j of Q samples. After

training the model using well-trained parameter Θ from the meta-
training phase as the initial parameters on Stestj , we get updated
parameters Θj

′. We then use fΘ′
j

to evaluate onQtest
j .

The meta processes for testing and training are slightly differ-
ent. Similar to the training, the test setDtest is split according to the
recording room of each audio clip. For clips of each room, we also
chose K samples for meta-test support set Stestj and all remaining
samples for meta-test query setQtest

j . After N iterations of param-
eters update on Stestj , the meta-parameters Θ are updated to Θj,N .
The final performance is evaluated onQtest

j with fΘj,N .

4. EXPERIMENTS

4.1. Dataset

There are 16 different recording rooms in total in the development
set of the STARSS23 dataset, including nine recording rooms in
dev-train-set and seven recordings rooms in dev-test-set. The de-
velopment set of STARSS23, which contains roughly 7.5 hours of
recordings, has less data than the development set in DCASE 2021,

which contains roughly 13 hours of synthetic recordings [17]. Con-
sidering the complexity of the real-scene environment, we use ad-
ditional datasets to improve the performance. We generated simu-
lated data using the generator code provided by DCASE1. We syn-
thesize multi-channel spatial recordings by convolving monophonic
sound event examples with multi-channel Spatial Room Impulse
Responses (SRIRs). Samples of sound events are selected from
AudioSet [18] and FSD50K [19], based on the affinity of the la-
bels in those datasets to target classes in STARSS23. PANNs [20]
are then employed to clean the selection of the clips. We use pre-
trained PANNs to infer these clips and select high-quality clips
based on output probability above 0.8. We extracted SRIRs from
the TAU Spatial Room Impulse Response Database (TAU-SRIR
DB)2, which contains SRIRs captured in 9 rooms at Tampere Uni-
versity. It was used for official synthetic datasets in DCASE 2019-
2021 [1, 17, 21].

The 2700 1-minute audio clips that we synthesized using the
abovementioned SRIRs from 9 rooms are used for Dtrain, and all
of dev-set of STARSS23, recorded in 16 rooms, are used for Dtest.

4.2. Experimental setup

The sampling rate of the dataset is 24 kHz. We extracted 64-
dimensional log mel spectrograms from four-channel first-order
ambisonics (FOA) signals with a Hanning window of 1024 points,
and a hop size of 320. Each audio clip is segmented to a fixed length
of five seconds with no overlap for training and inference.

In the meta-training phase, the training set and test set are di-
vided into 9 tasks and 16 tasks, respectively, corresponding to 9
rooms and 16 rooms. We first sample a batch of rooms randomly
and then sample a batch of examples from each of the rooms. The
batch of samples of each room constructs a task, and a part of the
samples are support samples while the remaining samples are query
samples. The batch size of rooms and samples is 4 and 64, respec-
tively. A batch of samples contains 30 support samples and 34 query
samples. In the meta-test phase, we sort the audio clips according
to the filename, and select the first 30 samples of recordings of each
room as samples from the support set Stestj . The remaining samples
of each room are as samples from the test set Qtest

j . The AdamW
optimizer is used for updates of meta-parameters of MAML, while
the SGD optimizer is used to update adapt-parameters. The meta
step size β begins with 0.001 in the first 100 epochs out of 150
epochs in total and is then decreased by 10% every 20 epochs. The
adaptation step size and the number of update iterations are always
kept at 0.01 and 5, respectively.

To demonstrate the effectiveness of Meta-SELD, we compare
Meta-SELD with the fine-tuning method from the pre-trained SELD
model. Firstly, we train a SELD model with AdamW optimizer in
Dtrain from scratch. The learning rate is 0.0003 for the first 70
epochs and then decreases to 0.00003 for the following 20 epochs.
Secondly, we initialize the parameters from the previously trained
SELD model and then use Stesti and Qtest

i as the training set and
the test set of the i-th room to fine-tune. Similar to the process of
the adapt-parameters updates in MAML, the SGD optimizer with a
step size of 0.01 and update iterations of 5 are used for fine-tuning.

A joint metric of localization and detection [22, 23] is used:
location-dependent F-score (F≤20◦ ) and error rate (ER≤20◦ ), and
class-dependent localization recall (LRCD) and localization error

1https://github.com/danielkrause/DCASE2022-data-generator
2https://zenodo.org/record/6408611
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Table 2: The performance of the Meta-SELD and fine-tuning methods from pre-trained SELD models. Both two methods are evaluated in
Qtest

i . Note that overall scores of the fine-tuning method and Meta-SELD compute the fast adaptation performance of each individual room
and then micro-average.

Room ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ ESELD ↓
Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta Pre-train Fine-tune Meta

fold3 room4 0.624 0.574 0.603 44.5% 40.4% 29.8% 17.8◦ 17.6◦ 21.5◦ 64.6% 61.2% 54.4% 0.408 0.414 0.470
fold3 room6 0.639 0.607 0.594 38.0% 40.5% 40.4% 18.0◦ 17.2◦ 17.4◦ 65.3% 63.8% 61.1% 0.427 0.415 0.419
fold3 room7 0.610 0.606 0.660 31.1% 30.7% 20.8% 23.6◦ 24.1◦ 22.5◦ 59.9% 60.5% 48.3% 0.458 0.457 0.523
fold3 room9 0.673 0.601 0.608 43.7% 46.6% 47.5% 19.1◦ 18.6◦ 18.3◦ 78.7% 78.2% 73.3% 0.389 0.364 0.375
fold3 room12 0.685 0.659 0.689 28.0% 29.8% 33.0% 26.8◦ 26.1◦ 33.3◦ 43.1% 43.6% 46.3% 0.531 0.518 0.520
fold3 room13 0.650 0.599 0.594 37.7% 39.4% 36.1% 17.5◦ 16.9◦ 15.9◦ 50.9% 48.8% 37.1% 0.465 0.453 0.488
fold3 room14 0.633 0.582 0.613 40.2% 37.4% 28.6% 23.2◦ 23.7◦ 24.8◦ 55.3% 54.0% 47.2% 0.452 0.450 0.498
fold3 room21 0.757 0.750 0.735 19.3% 21.6% 18.9% 20.5◦ 18.9◦ 20.6◦ 39.3% 31.4% 43.8% 0.571 0.581 0.556
fold3 room22 0.850 0.818 0.800 11.4% 12.8% 16.7% 31.6◦ 29.5◦ 29.0◦ 45.6% 43.8% 48.8% 0.614 0.604 0.577
fold4 room2 0.809 0.774 0.753 6.2% 8.2% 15.4% 47.8◦ 41.3◦ 33.0◦ 72.4% 72.4% 75.7% 0.572 0.550 0.506
fold4 room8 0.716 0.716 0.702 31.7% 33.6% 30.7% 22.5◦ 21.0◦ 23.2◦ 54.0% 49.4% 49.4% 0.496 0.501 0.507
fold4 room10 0.792 0.708 0.651 36.3% 41.7% 35.8% 23.8◦ 21.5◦ 20.2◦ 66.1% 72.0% 78.2% 0.475 0.423 0.406
fold4 room15 0.582 0.563 0.539 33.3% 33.5% 43.4% 16.5◦ 15.5◦ 19.3◦ 42.8% 42.6% 59.0% 0.478 0.472 0.406
fold4 room16 0.601 0.584 0.607 39.8% 40.5% 34.3% 21.7◦ 21.9◦ 21.6◦ 55.1% 54.9% 48.7% 0.443 0.438 0.474
fold4 room23 0.813 0.746 0.676 25.4% 26.5% 31.8% 26.2◦ 24.9◦ 25.8◦ 40.4% 43.6% 47.3% 0.575 0.546 0.507
fold4 room24 0.828 0.779 0.782 26.2% 25.7% 30.8% 19.4◦ 19.7◦ 24.4◦ 41.0% 43.6% 42.7% 0.566 0.549 0.546

Overall 0.707 0.677 0.672 23.0% 24.2% 26.0% 22.8◦ 22.3◦ 21.9◦ 39.5% 40.2% 41.0% 0.552 0.539 0.531

(LECD). F≤20◦ and ER≤20◦ consider true positives predicted un-
der a spatial threshold 20◦ from the ground truth. LECD and LRCD

are computed for localization predictions in the case that the types
of sound events are predicted correctly. A macro-average of F≤20◦ ,
LRCD and LECD is used.

We use an aggregated SELD metric which was computed as

ESELD =
1

4

[
ER≤20◦ + (1− F≤20◦) +

LECD

180◦
+ (1− LRCD)

]
.

(4)

4.3. Experimental results

Table 2 shows the performance of the Meta-SELD method com-
pared with the fine-tuning method from the pre-trained SELD mod-
els. The pre-trained SELD models are trained without using sam-
ples from Dtest.

According to the last row of Table 2, the overall score, which
is a micro average across all rooms, shows that all of ER≤20◦ ,
F≤20◦ , LECD, and LRCD are improved using Meta-SELD com-
pared with the fine-tuning method. We observe a drop in ESELD
in fold3 room4 and fold4 room8 even though some new sam-
ples of unseen environments are used for training. This may be
due to the fact that the new samples do not have valid informa-
tion for training. We also observe the Meta-SELD method im-
proves ESELD by a large margin in fold3 room22, fold4 room2, and
fold4 room23 where the pre-trained model has poor performance
across all rooms. Specifically, ER≤20◦ , F≤20◦ , and LRCD of
fold3 room22 and fold4 room23 outperform other methods. Meta-
SELD mainly improves the performance of SED in fold3 room22
and fold4 room23. All metrics of fold4 room2 are improved in
Meta-SELD compared with the fine-tuning method, especially in
DOA estimation. In fold4 room2, all of the pre-trained model,
the fine-tuning method, and Meta-SELD achieve LRCD of over
70%, but LECD of three methods is always high compared with
LECD of other rooms. Meta-SELD decreases 14.8◦ and 8.3◦ of
LECD compared with the pre-trained model and the fine-tuning
method in fold4 room2, hence directly leading to the increase of
F≤20◦ and the decrease of ER≤20◦ . However, performance degra-
dation happens in fold3 room4, fold3 room7, fold3 room14, and
fold4 room16, where Meta-SELD has the worst metric scores.
There is no significant change in LECD, and the decline in SED

performance is the main factor. One of the possible reasons for
this observation could be that there are some conflicts in optimizing
Meta-SELD across a batch of rooms.

Experimental results demonstrate that Meta-SELD can find bet-
ter initial parameters across a batch of tasks than the fine-tuning
method, especially in rooms where the pre-trained model and the
fine-tuning method perform worse. Meta-SELD reduces the risk of
overfitting when using a small number of samples, which usually
happens in the fine-tuning method.

5. CONCLUSION

In this paper, we presented Meta-SELD, which employed Model-
Agnostic Meta-Learning (MAML) to the sound event localization
and detection task to achieve fast adaptation to unseen environ-
ments. The method only utilizes a small number of samples and
a few update iterations of training. We use the STARSS23 dataset
and synthesized 2700 1-minute samples that are convolved using
monophonic sound event clips with multi-channel spatial room im-
pulse responses. The sound event clips are extracted from FSD50K
and AudioSet and are further filtered by the PANNs model through
a probability threshold. The SRIRs used are from TAU-SRIR DB.
Our methods are trained on synthetic datasets and evaluated on all
development sets of the STARSS23 dataset. Audio clips recorded
from the same room or synthesized using SRIRs collected from the
same room are regarded as the same task for MAML. The exper-
imental results show that the Meta-SELD method improves ESELD
significantly in those rooms where both the pre-trained model and
the fine-tuning method perform unsatisfactorily. The overall score
demonstrates that the Meta-SELD method outperforms the fine-
tuning method on average.
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ABSTRACT

As deeper and more complex models are developed for the task of
sound event localization and detection (SELD), the demand for an-
notated spatial audio data continues to increase. Annotating field
recordings with 360◦ video takes many hours from trained annota-
tors, while recording events within motion-tracked laboratories are
bounded by cost and expertise. Because of this, localization models
rely on a relatively limited amount of spatial audio data in the form
of spatial room impulse response (SRIR) datasets, which limits the
progress of increasingly deep neural network based approaches. In
this work, we demonstrate that simulated geometrical acoustics can
provide an appealing solution to this problem. We use simulated ge-
ometrical acoustics to generate a novel SRIR dataset that can train a
SELD model to provide similar performance to that of a real SRIR
dataset. Furthermore, we demonstrate using simulated data to aug-
ment existing datasets, improving on benchmarks set by state of the
art SELD models. We explore the potential and limitations of geo-
metric acoustic simulation for localization and event detection. We
also propose further studies to verify the limitations of this method,
as well as further methods to generate synthetic data for SELD tasks
without the need to record more data.

Index Terms— Acoustic Simulation, Localization, Data Aug-
mentation

1. INTRODUCTION

Sound event detection and localization (SELD) is the union of two
active fields of research; sound event detection (SED), and localiza-
tion, or direction-of-arrival (DoA) estimation. Expanding the scene-
description capabilities of SED with the spatiotemporal character-
ization of localization sees applications ranging from autonomous
robot navigation [1] and urban monitoring [2], to speaker diariza-
tion [3] and immersive experiences in virtual and augmented reality
devices.

While earlier techniques for SELD have focused on traditional
signal-processing or parametric models such as [4, 5, 6, 7], recent
literature is dominated by deep neural network (DNN) approaches,
which have been shown superior performance in both pure local-
ization [8, 9] as well as joint SELD tasks [10]. A surge of interest
in this field can be attributed to the introduction of SELD as a task
in the DCASE2019 challenge [11]. This challenge included the re-
lease of several 4-channel audio datasets with spatial and temporal
annotations for sound events. The audio was generated by con-
volving sound events with spatial room impulse responses (SRIRs)

This material is based upon work supported by the National Science
Foundation under NSF Award 1922658.

recorded in 5 separate rooms at 504 unique azimuth-elevation-
distance combinations. This was further iterated upon by the SELD
challenge in DCASE2020 [12] with 13 unique rooms. Recently,
DCASE2022 reintroduced the challenge with hand-annotated real-
world recordings in the STARSS22 dataset [13], providing one of
the first datasets with real-world data upon which to evaluate SELD
models. This dataset uses a combination of 360◦ video, and mo-
tion capture to extract spatiotemporal annotations that were man-
ually validated. In addition to this, the DCASE2022 dataset also
included a release of the SRIRs used to generate the training data
for the SELD task, as well as the code for the generator itself, al-
lowing users to generate their own annotated spatial data [14]. This
data included SRIRs measured over a wide range of positions over
9 different rooms in Tampere University’s campus.

These datasets are unique in the density of SRIR measurements
across particular paths, the variety of acoustic enclosures, and the
large amount of SRIRs. Because of their scale, visibility, and
quality, these datasets have become some of the most cited SRIR
datasets for DNN-based approaches to SELD, because of their abil-
ity to meet the data requirements of these highly-parametrized mod-
els. Despite this, these datasets are still severely limited by the
recording procedure of SRIRs, which require time, expertise, and
a low-noise environment to produce at a high quality. Increasing
the spatial density, variety of trajectories types, and number of tra-
jectory paths becomes multiplicatively time consuming to develop.
Furthermore, the range of rooms in which these measurements can
be recorded is inherently limited by the limitations of the recording
facilities, usually limited to a dozen rooms or so in the best of cases.
However, without a wide range of acoustic environments to perform
these measurements, generalization to a variety of unseen acoustic
environments becomes impossible.

Physical acoustic simulations provide an attractive solution to
the limitations of field-recorded SRIRs. Acoustic simulation is typ-
ically split into two categories: wave based methods, which simu-
late the propagation of sound waves through physical media, and
geometric modeling methods, which model the transportation of
acoustic energy through acoustic rays, mimicking popular methods
for modeling optical rays. Geometrical acoustics approximate the
wavelength of the propagating sound to have wavelength relatively
small compared to the room geometries of interest, and neglects
wave effects such as diffraction or scattering. Nevertheless because
of ease of implementation and computational efficiency, geometri-
cal acoustic modeling methods have seen wide success in several
tasks, including modeling architectural acoustics [15] and room pa-
rameter estimation [16].

In this work, we propose utilizing one method of geometrical
acoustics modeling, the image source method, to generate simu-
lated SRIRs for training DNN models for SELD. We demonstrate
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the effectiveness of this simulated method for SRIR generation us-
ing the framework and data provided in previous DCASE SELD
challenges. By creating an audio dataset from simulated SRIRs,
we train a SELD model with similar performance to one utilizing
real-world SRIRs. By directly compares simulated SRIRs with a
datasets of recorded SRIRs of the similar size, room geometries,
and DoA distributions, we demostrate the downstream effects of
simulation in place of recording as being relatively minimal, dif-
fering our work from prior studies [17]. Furthermore, we augment
a typical SRIR dataset with simulated SRIRs, training models that
outperform those trained solely on recorded SRIRs. Finally we pro-
pose further experiments to explore the use of simulated SRIRs for
training SELD models. The code associated with this work is re-
leased in an open-source github repository 1 to further work in using
synthetic SRIRs for training DNN models.

2. ACOUSTIC SIMULATIONS

2.1. The Image Source Method

The image source method (ISM) is a technique used in architec-
tural acoustics and room modeling to predict the sound field in en-
closed spaces [18]. The ISM considers the primary sound source
and virtual images reflected by the room’s boundaries. These vir-
tual sources are assumed to emit sound with the same magnitude
and phase as the primary source, but with a delay due to the addi-
tional path length traveled. Typically, this starts with defining the
room geometry, including the positions and shapes of the walls,
ceiling, and floor. For each reflecting surface, virtual image sources
are “mirrored” across the boundary. The number of virtual sources
depends on the order of reflections considered. From here, the in-
teraction between the primary sound source and the virtual image
sources is calculated by determining the path lengths, time delays,
and attenuation factors associated with each source-receiver com-
bination, as well as the material properties of each surface through
which the sound path is reflected upon. By summing the contribu-
tions of the primary source and its image sources, the sound field
at various locations in the room can be predicted, providing an es-
timation of the sound pressure level, arrival times, and directivity
patterns.

It’s important to note several limitations of the ISM model. The
ISM implicitly assumes that all surfaces are perfectly reflective and
flat, with idealized acoustic properties, which fails to account for
acoustic effects such as scattering or diffraction. Furthermore, the
order of reflections/virtual sources scales the computational cost ex-
ponentially, meaning compute late-stage reflections in an SRIR pro-
hibitively expensive.

Despite its limitations, the image source method is widely used
due to its computational efficiency and effectiveness in predicting
sound fields in enclosed spaces. Because localization is more reliant
on direct sounds/early reflections, the limitations caused by use of
the the ISM for computing SRIRs can be expected to be relatively
minimal.

2.2. The TAU-SRIR Dataset

To validate the use of ISM-generated SRIRs in a direct-comparison,
we take the existing TAU-SRIR database [14] as an example
database for which well established metrics for SELD have been
measured.

1https://github.com/ChrisIck/DCASE_Synth_Data

Azimuth (ϕ) Elevation (θ)
M1 45◦ 35◦

M2 −45◦ −35◦

M3 135◦ −35◦

M4 −135◦ 35◦

Table 1: Microphone Geometry for TAU-SRIR dataset. Each mi-
crophone is 4.2cm from the center, and is modeled with a hypercar-
dioid response.

Room Name Traj. type Nt Nh NSRIRs

Bomb shelter Circular 2 9 6480
Gym Circular 2 9 6480
PB132 Circular 2 9 6480
PC226 Circular 2 9 6480
SA203 Linear 6 3 1594
SC203 Linear 4 5 1592
SE203 Linear 4 4 1760
TB103 Linear 4 3 1184
TC352 Circular 2 9 6480

Table 2: Trajectory information for rooms contained in the TAU-
SRIR dataset [14]. Each room contains trajectories across a number
of trajectory groups (Nt) and a number of heights (Nh), for a total
of Nt × Nh trajectories per room. Each trajectory is sampled in
roughly 1◦ increments.

The TAU-SRIR database contains SRIRs recorded in 9 differ-
ent rooms throughout Tampere University’s campus. Each SRIR is
computed by recording a maximum-length sequence (MLS) played
through a loudspeaker, recorded on an Eigenmike spherical micro-
phone array. Each SRIR was downsampled to 24kHz and truncated
at 300ms, resulting in 7200 samples per RIR. The data is stored in
a 4-channel audio corresponding to a tetrahedral microphone array
with the geometry in spherical coordinates (ϕ, θ), specified in Ta-
ble 1. For each room, the position of the microphone array was
provided.

SRIRs were measured along either circular or linear traces at
fixed distance from the microphone array along the z-axis at a num-
ber of trajectory groups, separated by distance and reflection across
the axis of the microphone array in the case of linear traces. Circu-
lar trajectory groups had a specified radius of orbit, whereas linear
trajectories had a specified start and end point in 3D space. Each
trajectory was repeated at a number of different heights, and each
trajectory had a fixed number SRIR measurements and correspond-
ing DoA measurements recorded as Cartesian components of a unit
vector. The number of SRIR measurements vary across different
trajectories/heights, spaced in roughly 1◦ increments. The total
number measurements can be seen in Table 2

2.3. Room Simulation

We recreate this dataset using the python package pyroomacous-
tics [19], a pythonic implementation of the ISM, that has demon-
strated use in implementations of various algorithms for beamform-
ing, direction finding, adaptive filtering, source separation, and sin-
gle channel denoising.

To replicate the acoustic conditions of each of the rooms in the
TAU-SRIR dataset, we randomly sampled the RIRs uniformly in
each room until we had a sample of 5 single-channel RIRs. Using
the Schroeder method [20], we estimated the RT60 of each room by
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Figure 1: The log-scale energy decay from a sample of RIRs from
a singular room. The region in the dashed lines is roughly linear,
suggesting it corresponds to mid-late reflections, and is used for an
estimate of RT60

hand-selecting the early decay of the energy-decay function of the
RIR samples and computing the linear fit. This can be see in in Fig-
ure 1. Using the inverse Sabine formula, we used this to estimate
the mean absorption coefficient of the rooms and the number of re-
quired reflection orders to approximate a room of a similar RT60.
We combined these parameters with the geometry estimations from
the TAU-SRIR dataset to construct virtual rooms matching those of
the 9 rooms in the TAU-SRIR dataset. To this room, we added a
virtual tetrahedral microphone with the geometry specified in Ta-
ble 1, with each virtual microphone using a hypercardioid response
pattern centered at the position specified in the TAU-SRIR dataset.

Figure 2: SRIR measurement positions reconstructed from the
DoAs provided in the TAU-SRIR dataset (blue), compared to the
path specified by the height, radius, and position labels provided
(red)

To estimate the positions of the SRIRs in space correspond-
ing to the DoA measurements in the TAU-SRIR dataset, we chose
points along the DoA that most closely matched the corresponding
path on the line specified by the trajectory in the dataset. Circular

datasets specified their height and radius, and were centered along
the same z-line as the microphone array. Linear trajectories spec-
ified the start point and end points of their traces. These matched
points were estimated by projecting the DoA vectors onto a cylin-
der that matched the radius of the trajectory, after translation by the
position of the microphone array and the height of the trajectory of
interest (see Figure 2). Once these points were estimated, they were
placed into the simulated room in a position relative to the virtual
microphone array, and the 4-channel SRIR was computed with the
ISM for each point, at the sample rate of 2400kHz. To match the di-
mensions of the original TAU-SRIR dataset, we truncate the SRIRs
to 300ms, providing us with an SRIR with dimensions of 7200× 4
for each point.

3. METHODOLOGY

To evaluate the performance of this dataset in SELD tasks, we gen-
erated a dataset of audio events consistent with the methodology
of dataset generation for training the baseline SELD model in the
DCASE 2022 challenge [21]. We generated 3 datasets, one using
the original SRIR database, which we will refer to as the TAU-SRIR
datset. We also generated a dataset using only the synthetic SRIRs,
which we refer to as the SIM-SRIR dataset. Finally, we generated
a third dataset that equally samples both the original and simulated
SRIRs, which we will refer to as the augmented SRIR dataset, or
AUG-SRIR.

3.1. Data Generation

To generate our annotated spatialized audio, we followed the pro-
cedure used in DCASE2019-2021, by convolving various sound
events with SRIRs.

The sound events were drawn from the FSD50k audioset [22],
a subset containing over 20k sound events of 13 classes selected for
the DCASE challenge. These sound events were spatialized into
virtual recordings, each corresponds to a singular room, allowing
for up to three concurrently active sources. The sources can be
static or dynamic, with equal probability, and the dynamic sources
can move at slow (10◦/sec), moderate (20◦/sec), or fast (40◦/sec)
angular speeds. Each sample lasted 60 seconds, 40 of which had at
least one active event class.

For each of the 3 SRIR datasets, 1200 recordings were created
in separate folds, 900 for training and 300 for validation. The train-
ing and validation sets used 6 and 3 rooms respectively, such that
none of the same rooms overlapped both folds.

3.2. Model

The model architecture is identical to the one used in the
DCASE2022 Task 3 challenge baseline [13]; a SELDnet style
CRNN with multi-ACCDOA representation for co-occuring events
[23]. The model takes T frames of an STFT time-frequency repre-
sentation of the multichannel features, and outputs T/5×N×C×3
vector coordinates, and N is the assumed maximum co-occurring
events, in our case 3.

The input features are 4-channel 64-band log-mel spectrograms
combined with SALSA-lite spatial features, all of which are trun-
cated to include bins up to 9kHz, without mel-band aggregation fol-
lowing [24]).

Each model was trained on the training folds generated from the
SRIR datasets described above. In addition to this, data from the
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ER20◦ F20◦ LECD LRCD

TAU-SRIR 0.71 14.4% 55.1◦ 39.2%
SIM-SRIR 0.73 13.0% 79.6◦ 34.8%
AUG-SRIR 0.75 16.3% 52.3◦ 42.3%

Table 3: The cross-class evaluation metrics for models trained on
data generated from different SRIR datasets

Sony-TAu Realistic Spatial Soundscapes 2022 (STARSS22) [13]
was added for training, using the 54 development sound mixtures
for training, but witholding the remaining 52 clips for evaluation of
the models, ensuring the results were exclusively on real recorded
data from unseen rooms. The models were trained for 100 epochs
each,

3.3. Evaluation

Evaluation was completed using join localization-detection metrics
established in the DCASE 2020 challenge. The detection metrics
used were error-rate and F1 score for a spatial threshold within 20◦

(ER20◦ and F20◦ ). F1 score was macro-averaged to account for
class distribution differences in the FSD50k audio subset used. Lo-
calization metrics are class dependent localization error and recall
(LECD and LRCD).

4. RESULTS

Despite the coarse physical approximations made by the ISM, the
entirely synthetic SRIRs generated with this process performed
nearly as well as the SRIRs recorded in real world settings. Fur-
thermore, the dataset of real SRIRs augmented by synthetic SRIRs
outperformed both by a narrow margin, showing benefits of geomet-
rical acoustics simulation for data augmentation for SELD tasks.

Regarding the cross-class average performance of the models in
Table 3, we can see that for our classification metrics, all three mod-
els perform relatively similarly, with a slight performance edge to
the AUG-SRIR dataset trained models. Looking into the per-class
results in figure 3, we can see that generally, all three models strug-
gle with similar classes (telephone, laughter, door), but the AUG-
SRIR dataset outperforms both in certain classes for which both
other models perform poorly on (Water tap/Faucet, and Knock).

Looking at the localization based results, it appears that some
amount of the performance differences between the SIM-SRIR
trained models and the TAU-SRIR trained models can possibly
be attributed to model fine-tuning; while SIM-SRIR trained mod-
els had poor localization performance on certain results (Water
tap/Faucet, and Knock), the AUG-SRIR model outperformed the
baseline TAU-SRIR dataset. This suggests that the SIM-SRIR
datasets are actually providing beneficial information for these
sound classes missing from the TAU-SRIR datasets. With more
thorough model tuning, it’s possible that the performance for SIM-
SRIR trained models it even closer to that of the baseline.

5. CONCLUSION

In this work we demonstrated the potential of using acoustic simula-
tion to generate spatial audio data for training SELD models. We’ve
shown that simulated SRIR data can improve the performance of
SELD models as a form of data augmentation. In addition to this,
we’ve shown that simulated SRIRs, while not as effective as those

Figure 3: Per-class results of models trained on each dataset for F-
measure within 20◦, localization error, and localization recall.

recorded in real acoustic environments, can be used to effectively
train SELD models, removing the relatively high cost of produc-
ing additional data for similarly performing results in a relatively
limited setting. Generating larger volumes of SRIRs over a wider
range of acoustic conditions could provide even better results than
these baselines, potentially demonstrating greater robustness over
varying acoustic environments. Furthermore, using a high-volume
of simulated SRIRs to train a model, and using a hold-out of lim-
ited high-quality real-world data to fine the model could produce
SoTA results. This result is promising for future experiments in-
volve SRIRs for use in acoustic simulation data. Understanding the
requirements for angular density in dynamic SRIR recordings can
help inform future dataset collection practices, as well as the robust-
ness of these models to noise; limited work was done exploring the
effect of noise on the models trained with simulated SRIRs. Further
ablation studies are necessary to understand the limitations of ge-
ometrical acoustic methods for SELD-based tasks, but these early
experiments suggest that these can provide a low-resource alterna-
tive to real-world SRIR recordings.
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multiple doa estimation using acoustic intensity features for
ambisonics recordings,” IEEE Journal of Selected Topics in
Signal Processing, vol. 13, no. 1, pp. 22–33, 2019.

[10] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen,
“Sound event localization and detection of overlapping
sources using convolutional recurrent neural networks,”
CoRR, vol. abs/1807.00129, 2018. [Online]. Available:
http://arxiv.org/abs/1807.00129

[11] S. Adavanne, A. Politis, and T. Virtanen, “Localization,
detection and tracking of multiple moving sound sources
with a convolutional recurrent neural network,” CoRR,
vol. abs/1904.12769, 2019. [Online]. Available: http:
//arxiv.org/abs/1904.12769

[12] A. Politis, S. Adavanne, and T. Virtanen, “A dataset of
reverberant spatial sound scenes with moving sources for
sound event localization and detection,” in Proceedings
of the Detection and Classification of Acoustic Scenes
and Events 2020 Workshop (DCASE2020), Tokyo, Japan,
November 2020, pp. 165–169. [Online]. Available: https:
//dcase.community/workshop2020/proceedings

[13] A. Politis, K. Shimada, P. Sudarsanam, S. Adavanne,
D. Krause, Y. Koyama, N. Takahashi, S. Takahashi,
Y. Mitsufuji, and T. Virtanen, “STARSS22: A dataset
of spatial recordings of real scenes with spatiotemporal
annotations of sound events,” in Proceedings of the
8th Detection and Classification of Acoustic Scenes and
Events 2022 Workshop (DCASE2022), Nancy, France,
November 2022, pp. 125–129. [Online]. Available: https:
//dcase.community/workshop2022/proceedings

[14] A. Politis, S. Adavanne, and T. Virtanen, “TAU Spatial Room
Impulse Response Database (TAU- SRIR DB),” Apr. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6408611

[15] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” The Journal of the
Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 04
1979. [Online]. Available: https://doi.org/10.1121/1.382599

[16] C. Ick, A. Mehrabi, and W. Jin, “Blind acoustic room param-
eter estimation using phase features,” in ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2023, pp. 1–5.

[17] F. B. Gelderblom, Y. Liu, J. Kvam, and T. A. Myrvoll, “Syn-
thetic data for dnn-based doa estimation of indoor speech,”
in ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp.
4390–4394.

[18] J. B. Allen and D. Berkley, “Image method for efficiently
simulating small-room acoustics,” The Journal of the
Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 04
1979. [Online]. Available: https://doi.org/10.1121/1.382599

[19] R. Scheibler, E. Bezzam, and I. Dokmanic, “Pyroomacoustics:
A python package for audio room simulations and array
processing algorithms,” CoRR, vol. abs/1710.04196, 2017.
[Online]. Available: http://arxiv.org/abs/1710.04196

[20] M. R. Schroeder, “New method of measuring reverberation
time,” The Journal of the Acoustical Society of America,
vol. 37, no. 3, pp. 409–412, 1965. [Online]. Available:
https://doi.org/10.1121/1.1909343

[21] K. Shimada, Y. Koyama, S. Takahashi, N. Takahashi,
E. Tsunoo, and Y. Mitsufuji, “Multi-accdoa: Localizing and
detecting overlapping sounds from the same class with aux-
iliary duplicating permutation invariant training,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Singapore, Singapore, May 2022.

[22] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra,
“Fsd50k,” Oct. 2020. [Online]. Available: https://doi.org/10.
5281/zenodo.4060432

[23] K. Shimada, Y. Koyama, S. Takahashi, N. Takahashi,
E. Tsunoo, and Y. Mitsufuji, “Multi-accdoa: Localizing and
detecting overlapping sounds from the same class with auxil-
iary duplicating permutation invariant training,” 2022.

[24] T. N. T. Nguyen, D. L. Jones, K. N. Watcharasupat,
H. Phan, and W.-S. Gan, “SALSA-lite: A fast and effective
feature for polyphonic sound event localization and detection
with microphone arrays,” in ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, may 2022. [Online]. Available:
https://doi.org/10.1109%2Ficassp43922.2022.9746132

60



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

SPEECH OBFUSCATION IN MEL SPECTRA THAT ALLOWS FOR CENTRALISED
ANNOTATION AND CLASSIFICATION OF SOUND EVENTS

Michiel Jacobs1,2,3, Lode Vuegen1,2,3, Suraj Khan1,2,3, Peter Karsmakers1,2,3∗

1 KU Leuven, Dept. of Computer Science, Kleinhoefstraat 4, B-2440 Geel, Belgium
2 Flanders Make @ KU Leuven

3 Leuven.AI - KU Leuven Institute for AI
Corresponding authors: {michiel.jacobs, peter.karsmakers}@kuleuven.be

ABSTRACT

Nowadays, computerised Sound Event Classification (SEC) aids
in several applications, e.g. monitoring domestic events in smart
homes. SEC model development typically requires data collected
from a diverse set of remote locations. However, this data could
disclose sensitive information about uttered speech that might have
been present during the acquisition.
In this work, three data preprocessing techniques are investigated
that obstruct recognising semantics in speech, but retain the re-
quired information in the data for annotating sound events and SEC
model development. At the remote location, the data are first pre-
processed before transferring to a central place. At the central loca-
tion, speech should not be interpretable anymore, while still having
the opportunity to annotate data with relevant sound event labels.
For this purpose, starting from a log-mel representation of the sound
signals, three speech obfuscation techniques are assessed: 1) calcu-
lating a moving average of the log-mel spectra, 2) sampling a few
of the most energetic log-mel spectra and 3) shredding the log-mel
spectra. Both intelligibility and SEC experiments were carried out.
All considered techniques proved effective in obfuscating speech,
while still allowing SEC. For stationary sound events, calculating
the moving average of the log-mel spectra is recommended, as well
as shredding the log-mel spectra. For impulsive sound events, sam-
pling a few of the most energetic log-mel spectra is recommended.

Index Terms— Speech obfuscation, sound event classification,
log-mel spectra

1. INTRODUCTION

Since the past couple of years, there is a growing trend in utilis-
ing sound to monitor certain processes. Sound monitoring allows to
continuously perceive environments in an automated manner using
machine or deep learning (resp. ML, DL) models, e.g. to predict
when machine components are about to fail [1], to classify home ac-
tivities [2] or to automatically interpret auscultation sounds for dis-
ease monitoring [3]. Next to the signals of interest, the microphones
used are prone to picking up speech signals as well. These speech
signals could potentially contain private and/or sensitive informa-
tion. Therefore, speech obfuscating techniques have to be applied
to the recorded sound.

In this work, three preprocessing techniques are evaluated that
make the speech present in the sound data unintelligible. Each of
these techniques can be run on an extreme edge device with minimal

∗Funding provided by Flanders Innovation & Entrepreneurship Agency
(VLAIO) and Flanders Make.

computational overhead, prior to communicating the sound data to
the central location. This way, speech is obfuscated while still re-
taining enough information to centrally perform the tasks of Sound
Event Classification (SEC). Moreover, although no words can be
recognised, the data still allow human annotators to add class labels
to the restored sound data at the central location for refining the ML
models.

The main contributions of this work are the following: a) study
the effects of three different preprocessing techniques for speech
obfuscation, b) perform speech and event intelligibility experiments
to study the effect of these speech obfuscation techniques on sound
intelligibilty (speech should be obfuscated, while sound events
should still be identifiable), and c) perform domestic SEC experi-
ments to study the effect of these speech obfuscation techniques on
SEC model classification performance.

The remainder of this paper is organised as follows: Section
2 discusses the related work. Section 3 explains the obfuscation
techniques studied. Next, Section 4 describes the intelligibility and
classification experiments. Section 5 then covers the results of the
intelligibility and the classification experiments. Next, Section 6
discusses the results and findings. Finally, Section 7 summarises
this work and forms the conclusion.

2. RELATED WORK

Kumar, Nguyen, Zeng et al. [4] presented subsampling and sound
shredding techniques, both applied on mel-frequency cepstral co-
efficients (MFCC). With subsampling, MFCC feature vectors get
thrown out of the sequence in a nonrandom manner. When applying
subsampling, the event duration plays an important factor. The time
duration of the shortest event (class) has to exceed the subsampling
period, since otherwise this event can completely get lost when the
corresponding frames are thrown away. Therefore, subsampling
MFCCs at regular time intervals is considered not relevant in this
research, since it could remove events with short duration. With
sound shredding, blocks of MFCCs (units) get randomly shuffled
inside of a so-called snippet. The authors indicated that subsam-
pling and sound shredding are valid speech obfuscation techniques
that still allow context, gender and speaker recognition using both a
k-nearest neighbour (kNN) and a support vector machine (SVM).

When opting to interpret the sound events centrally, another
possibility would be to add a speech filter to the edge device. This
way, detected speech is simply not sent to the central server. One
example would be a so-called Voice Activity Detector (VAD). The
drawback of such a VAD is that when an event of interest overlaps a
speech signal, it will be discarded and the event gets lost [5]. Also,
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the use of such speech filters is more complex in terms of computa-
tion as compared to the techniques considered in this work.

The work of Larson, Lee, Liu et al. [6] focussed on detecting
cough, while disguising speech. The authors proved that ten prin-
cipal components suffice for classifying the cough sounds. When
the number of principal components was increased to 25, the qual-
ity of the coughing sound was good and 84% of the spoken words
was concealed. However, in the context described in this work such
preprocessing is likely to hinder the post-hoc labelling of any audio
events that are present in the data.

Chen, Adcock and Krishnagiri [7] used a methodology that
identified the vocalic regions using a vocalic syllable detector and
replaced the local vocalic linear predictive coefficients (LPC) with
those of pre-recorded vowels. Speech intelligibility experiments
showed that this methodology can reduce the word recognition rate
to 7%. Furthermore, Liaqat, Nemati, Rahman et al. [5] applied this
methodology to detect coughs. The mean classification accuracy of
the raw audio was 75.86%, while the mean classification accuracy
of the filtered audio was 75.75%. The t-test p-value equalled 0.985,
thus showing no significant difference between the raw and filtered
classification accuracies.

3. METHODOLOGY

This section starts by discussing the calculation of the log-mel spec-
tra, which are the features most commonly used for sound event
classification using DL techniques. Next, it discusses which speech
obfuscation techniques were applied in the experiments: 1) calcu-
lating the moving average of the log-mel spectra, 2) sampling the
most energetic log-mel spectra and 3) shredding the log-mel spec-
tra. Finally, this section outlines the steps required to transform
the processed log-mel spectra back into a time-domain sound signal
(sound restoration).

3.1. Feature extraction: log-mel spectra

The most popular choice for acoustical features in combination with
DL are the so-called log-mel spectra [8]. To calculate the short-time
Fourier transform (STFT), the following parameters were used: 32
milliseconds (ms) window length, 16 ms hop length (50% overlap),
and Hamming window. Finally, the STFT frames were converted
into mel frames using a 64-dimensional mel filterbank and the log-
arithm was taken.

3.2. Speech obfuscation techniques

When averaging consecutive log-mel spectra, nonstationary speech
signals get diffused when they are represented by an aggregated
log-mel spectrum spanning a larger time horizon. The larger the
number of frames being averaged, the more difficult it becomes to
restore the original speech afterwards. As can be seen in Table 1,
three moving average (MA) configurations were tested. First, MA-
light refers to averaging over a sliding window having a length of
4 frames (80 ms) and a step of 3 frames (48 ms). Second, MA-
medium refers to averaging over a sliding window having a length
of 8 frames (144 ms) and a step of 5 frames (80 ms). Third, MA-
heavy refers to averaging over a sliding window having a length of
12 frames (208 ms) and a step of 7 frames (112 ms).

When sampling the most energetic windows, a sliding win-
dow is moved over the mel frequency domain audio signal within a
nonoverlapping larger segment. At each position, the energy (sum
of squares inside smaller, overlapping segment) is calculated and
only those segments having highest energy are retained. As can be

seen in Table 1, again three configurations were tested. First, with
ENERGY-light a block of 56 contiguous (912 ms) frames is taken
and is replaced by the block of 18 contiguous (304 ms) frames hav-
ing the highest energy. Second, with ENERGY-medium a block of
112 contiguous frames (1,808 ms) is taken and is replaced by the
block of 18 contiguous frames having the highest energy. Third,
with ENERGY-heavy a block of 168 contiguous frames (2,704 ms)
is taken and is replaced by the block of 18 contiguous frames having
the highest energy.

With sound shredding, log-mel frames get randomly shuffled
inside of a so-called snippet, which is a region of contiguous log-
mel spectra wherein sound shredding is applied [4]. Two parameters
have to be defined, i.e. the unit size refers to the number of frames
that are seen as a whole (a block of contiguous, adjoining frames),
and the number of units inside one snippet. Again, three configura-
tions were tested and can be found in Table 1. First, SHRED-light
uses a snippet size of 3 units (208 ms). Second, SHRED-medium
uses a snippet size of 6 units (400 ms). Third, SHRED-heavy uses
a snippet size of 16 units (1,040 ms). In all three configurations the
unit size was kept at 4 contiguous frames (80 ms), since this was re-
quired by the convolutional kernels of the DL-based SEC models in
the automated classification experiments. One limitation of sound
shredding is that all sound information is kept, i.e. given sufficient
effort an attacker could still rearrange the units in the correct order
again.

3.3. Sound restoration

In order to assess the speech and event intelligibility of the obfus-
cated sound features, these features have to be restored to the time-
domain signal. Recall that prior to obfuscation the sound data were
transformed to log-mel spectra. To return to the time domain, the
log, mel and STFT operations have to be reversed. The logarithm
can be perfectly undone without introducing artefacts. The inver-
sion from mel frequency scale back to regular frequency scale can
be achieved by equation (1):

|X̂[k]|2 =

B−1∑
b=0

M
†
bkmb ≈ |X[k]|2 (1)

where M† is the Moore-Penrose pseudo-inverse of the mel matrix
M , |X[k]|2 the magnitude spectrogram and mb the mel value of bin
b. This equation guarantees that |X̂[k]|2 is the best solution with
minimum norm [9]. This inversion of mel frequency might intro-
duce minor artefacts. The inverse STFT operation was performed
using NumPy’s numpy.fft.irfft function and corresponding
phase information [10].

4. EXPERIMENTS

4.1. Speech intelligibility experiment

The speech intelligibility experiment aimed to evaluate the level of
obfuscation by having participants grade the restored audio. The
data used in this experiment were derived from the Mozilla Com-
mon Voice Dutch Subset (v10.0) [11]. A subset of 27 sound files
was taken from the Dutch (NL) dataset. Messages of varying length
(6 to 9 words) and of both male and female speakers were included.

Twelve native Dutch-speaking participants each got one of
three sets of 27 sound recordings obfuscated with varying tech-
niques and configurations. The participants had to grade their ob-
fuscated recordings on an ordinal scale from one to three. Herein,
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Table 1: The abbreviations used in the experiments, alongside a brief description of the corresponding configuration. “Light” always refers
to the least obfuscating technique, while “heavy” refers to the most obfuscating configuration.

Group Abbreviation Description
baseline 32 ms STFT window size and 16 ms STFT step size, 64 log-mel bins.

Moving average of
log-mel spectra

MA-light Moving average over 4 log-mel frames, step size of 3 log-mel frames.
MA-medium Moving average over 8 log-mel frames, step size of 5 log-mel frames.
MA-heavy Moving average over 12 log-mel frames, step size of 7 log-mel frames.

Sampling
log-mel spectra

ENERGY-light For each block of 56 frames, apply a sliding window with length 18 frames and hop size 1 frame and retain the 18 frames having highest energy.
ENERGY-medium For each block of 112 frames, apply a sliding window with length 18 frames and hop size 1 frame and retain the 18 frames having highest energy.
ENERGY-heavy For each block of 168 frames, apply a sliding window with length 18 frames and hop size 1 frame and retain the 18 frames having highest energy.

Shredding
log-mel spectra

SHRED-light Sound shredding with unit size: 4 log-mel frames, snippet size: 3 units.
SHRED-medium Sound shredding with unit size: 4 log-mel frames, snippet size: 6 units.
SHRED-heavy Sound shredding with unit size: 4 log-mel frames, snippet size: 16 units.

a score of ’1’ represented sound that is completely incomprehensi-
ble, a score of ’2’ represented sound that had a portion of the words
comprehensible, while a score of ’3’ referred to perfectly under-
standable audio. The mean intelligibility score then represented the
mean grade for each preprocessing obfuscation method.

Next to the ordinal score, each participant had to write down the
message he/she understood. By comparing the understood message
and the true transcription, an objective measure of the obfuscated
sound quality could be made. In case a participant noted the sound
recording as ’2’ but none of the words in the message he/she under-
stood were correct, then the score was altered afterwards to ’1’. In
case the participant assessed the recording as ’3’ but the sentence
understood was different or incomplete, then the score was changed
to ’2’. If the assigned score equalled ’3’ and the understood mes-
sage differed by only a single word as compared to the transcription
and the meaning of the sentence did not become very different, only
then the score was kept as ’3’.

In our speech intelligibility experiment, phase information was
not discarded when calculating the STFT to simulate the best re-
construction possible (worst-case scenario from the point of speech
intelligibility). Therefore, this information could be used during
reconstruction. The baseline had the same transformation and re-
construction applied.

4.2. Sound event intelligibility experiment

The sound event intelligibility experiment is similar to the speech
intelligibility experiment and differs only in the type of sound to
label, i.e. the same participants had to recognise varying domes-
tic sound events in 18 obfuscated recordings. The event classes
are summarised in Table 2 and originate from the same dataset as
used in the classification experiment (Section 4.3). The labelled
events were graded in a binary true/false manner, i.e. a correct label
received score ’1’, while an incorrect label received ’0’. The par-
ticipants did not receive any prior knowledge about the recording
procedure (e.g. microphone location) that could help them.

In our event intelligibility experiment, the phase information
was discarded after calculating the STFT and was replaced by a
random Gaussian noise phase (worst-case scenario from the point
of event intelligibility). The baseline had the same transformation
and reconstruction applied.

4.3. Sound event classification experiment

For the domestic event classification task, the data and classifier
model from Vuegen and Karsmakers [12] were used. The con-
sidered dataset contains domestic sound events collected from 72
home environments. In total, data for eight different domestic sound
events are available. The recordings were made using a sampling
frequency equal to 32 kHz and each sample had a 16-bit resolution.

In total, 47.7 hours of data were recorded, spread out over 1519
recordings. Table 2 gives an overview of the dataset distribution.

Table 2: Overview of the dataset used in the SEC task and the
event intelligibility experiment. “Background” refers to silence and
sounds that do not belong to any of the other classes. [12].

Class Hours Recordings
Background 10.5 205
Door & window 5.3 141
Faucet & shower 9.3 386
Footstep 4.2 220
Kitchen hood 4.0 140
Speech 4.9 217
Toilet 5.5 136
Radio & television 4.0 74

As a classifier model a convolutional neural network (CNN)
is used. Its performance is evaluated in a 4-fold cross-validation
scheme using the previously discussed log-mel features. The model
consists of three convolutional layers having 32 filters and ReLU ac-
tivation (no pooling), followed by one fully-connected layer having
64 neurons with ReLU activation and finally one fully-connected
output layer of 8 neurons with softmax activation (8 classes). The
dimensions of the convolutional kernel were 4× 4, with a stride of
1 × 4. Note that in case sound shredding is used as an speech ob-
fuscation technique, the horizontal stride of the convolutional ker-
nel was modified to have a value of 4. As such the kernel always
spanned a single shredding unit (4 log-mel frames). This way, a ker-
nel never covered a mix of two neighbouring shredded units which
are expected to have an unnatural transient from one unit to the
other. Zero padding was added to keep the correct dimensions.

The input dimension of the CNN models can be found in Table
3 and was set to one second for the baselines of MA and SHRED
techniques. For the ENERGY techniques, the input of the baseline
CNN was thrice the segment length.

5. RESULTS

Two types of experiments were carried out to test both the compre-
hensibility of speech and events, and the SEC model performance
on the obfuscated log-mel spectra. The first set of experiments tried
to assess the level of speech obfuscation through intelligibility ex-
periments, while the second experiment assessed SEC performance.
Table 1 lists the abbreviations used, alongside a brief description of
each of the nine tested configurations.

5.1. Speech intelligibility experiment

The results of the speech intelligibility experiment can be found in
Table 4a. As was mentioned in Section 4.1, a mean intelligibility
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score equal to 1 represents a perfect obfuscation, while a mean in-
telligibility score equal to 3 represents perfectly comprehensible au-
dio. It can be seen that both MA-medium and MA-heavy are able to
achieve the best obfuscation in this preliminary speech intelligibil-
ity experiment. Furthermore, ENERGY-heavy and SHRED-heavy
can be recommended as well, since both have a mean opinion score
below 1.20. SHRED-light performs worst in obfuscating speech.

5.2. Event intelligibility experiment

In the event intelligibility experiment, participants had to label ob-
fuscated domestic events. As can be seen in Table 4b, all of the
MA and SHRED obfuscation techniques (with the exception of
MA-medium and SHRED-medium) score above 0.70, while all EN-
ERGY obfuscating techniques score less.

5.3. Classification

The results of the domestic event classification experiment are pre-
sented in Table 3. It can be seen that all models have comparable
classification results.

Table 3: Results of the CNN classification experiment. The baseline
always spanned the same time horizon at the network’s input.

Macro average recall ± SD
(4 folds; in %)

Macro F1 ± SD
(4 folds; in %) Nr. of input frames

Obfuscated Baseline Obfuscated Baseline Obfuscated Baseline
MA-light 84± 0.0 85± 0.0 83± 0.0 84± 0.0 20 61

MA-medium 83± 0.0 85± 0.0 82± 0.5 84± 0.5 12 63
MA-heavy 82± 0.5 85± 0.0 81± 0.5 84± 0.0 8 61

ENERGY-light 83± 0.5 87± 0.5 82± 0.5 87± 0.0 54 168
ENERGY-medium 82± 0.0 89± 0.0 82± 0.6 89± 0.5 54 336

ENERGY-heavy 81± 0.8 90± 0.6 81± 1.0 89± 0.5 54 504
SHRED-light 84± 0.0 84± 0.5 83± 0.5 83± 0.5 60 60

SHRED-medium 85± 0.5 85± 0.5 85± 0.6 85± 0.6 72 72
SHRED-heavy 84± 0.5 85± 0.5 83± 0.0 84± 0.6 64 64

6. DISCUSSION

The results of the speech intelligibility experiment (Table 4a) are as
expected, with the exception of MA-medium and MA-heavy. The
MA-medium speech appeared to be less intelligible as compared
to MA-heavy, but this could be explained by the limited number
of participants and assessments. For all ENERGY techniques, the
impulsive events all had perfect classifications and can therefore be
recommended for this kind of events.

The results of the event intelligibility experiment (Table 4b)
are as expected as well, with the exception of MA-medium and
SHRED-medium. Possible reasons for these inconsistencies are the
possibility for the participants to choose “I don’t know”, the limited
number of participants and the limited diversity in combinations of
obfuscation techniques and event types. In practice, the annota-
tors could also have access to additional information, e.g. the mi-
crophone location and the spectrogram representation. This would
aid them in annotating the events. Furthermore, when looking at
the participants’ annotations it can be noted that most mistakes
were between “speech” and “radio & television”, and “footsteps”
and “door & window” (impulsive sounds), and between “faucet
& shower”, “toilet”, “background” and “kitchen hood” (station-
ary sounds). More experienced annotators would be better at dis-
tinguishing these different types of events. Note that our partici-
pants were not trained beforehand, which could also explain why
the baseline is lower than MA-light and SHRED-light.

In the results of the CNN classification experiment (Table 3), a
decrease in performance can be seen with all three ENERGY tech-
niques as compared to their corresponding baselines. This decrease

Table 4: Results of the intelligibility experiments.

(a) Speech, lower is better, range [1, 3].

Obfuscation technique Mean opinion score ± SD
Baseline 2.96± 0.09
MA-light 1.69± 0.43

MA-medium 1.03± 0.08
MA-heavy 1.06± 0.17

ENERGY-light 1.64± 0.33
ENERGY-medium 1.22± 0.23

ENERGY-heavy 1.19± 0.27
SHRED-light 1.97± 0.29

SHRED-medium 1.36± 0.42
SHRED-heavy 1.17± 0.22

(b) Events, higher is better, range [0, 1].

Obfuscation technique Mean score ± SD
Baseline 0.77± 0.20
MA-light 0.83± 0.20

MA-medium 0.58± 0.20
MA-heavy 0.71± 0.19

ENERGY-light 0.67± 0.26
ENERGY-medium 0.67± 0.30

ENERGY-heavy 0.50± 0.35
SHRED-light 0.88± 0.14

SHRED-medium 0.58± 0.20
SHRED-heavy 0.75± 0.22

could be explained by the fact that the CNN model has less informa-
tion at its input. For ENERGY-light, the time at the model’s input
is reduced by 66.7% as compared to its baseline. For ENERGY-
medium this reduction is equal to 83.2%, and for ENERGY-heavy
this reduction is equal to 88.8%. A smaller decrease in performance
is also noticeable with MA, due to the reduced resolution at the
network’s input. SHRED does not suffer from a decrease in perfor-
mance, because the same information is still present at the network’s
input.

7. CONCLUSION

In this work, three techniques based on the log-mel spectra were
investigated for the purpose of speech obfuscation. A requisite
was that sound data could be labelled by human raters at a later
point in time, without having intelligible speech in the recordings.
The first technique was calculating the moving average of 4 (MA-
light), 8 (MA-medium) or 12 (MA-heavy) log-mel frames. The
second technique was sampling those windows of log-mel frames
having the highest energy, where 18 out of 56 frames (ENERGY-
light), 18 out of 112 frames (ENERGY-medium) or 18 out of 168
frames (ENERGY-heavy) were kept. The final technique was sound
shredding, where 4 contiguous log-mel frames were kept in a so-
called unit. These units were then randomised inside of a snippet
of length 3 units (SHRED-light), 6 units (SHRED-medium) or 16
units (SHRED-heavy).

Both a speech and event intelligibility experiment (12 partici-
pants) and a SEC classification experiment were carried out. The
intelligibility experiment demonstrated that both MA-heavy and
SHRED-heavy achieved good speech obfuscation levels, while still
having the possibility to label the data. Furthermore, the proposed
techniques only had minor impact on the classification performance
when evaluating on a dataset with sounds from domestic events,
except for the ENERGY techniques.

All considered techniques proved effective in obfuscating
speech, while still allowing SEC. For stationary sound events, cal-
culating the moving average or shredding the log-mel spectra is rec-
ommended. For impulsive sound events, sampling a few of the most
energetic log-mel spectra is recommended.
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ABSTRACT

This paper introduces FALL-E, a foley synthesis system and
its training/inference strategies. The FALL-E model employs
a cascaded approach comprising low-resolution spectrogram
generation, spectrogram super-resolution, and a vocoder. We
trained every sound-related model from scratch using our ex-
tensive datasets, and utilized a pre-trained language model.
We conditioned the model with dataset-specific texts, en-
abling it to learn sound quality and recording environment
based on text input. Moreover, we leveraged external lan-
guage models to improve text descriptions of our datasets and
performed prompt engineering for quality, coherence, and di-
versity. FALL-E was evaluated by an objective measure as
well as listening tests in the DCASE 2023 challenge Task 7.
The submission achieved the second place on average, while
achieving the best score for diversity, second place for audio
quality, and third place for class fitness.

Index Terms— Sound synthesis, foley, generative audio

1. INTRODUCTION

Generative AI has seen significant progress in recent years,
particularly in the domains of images and text. However, the
progress in sound generation has been comparatively slower.

In the field of sound generation, numerous impressive
works have been introduced including text-to-sound models
such as AudioGen [1] and AudioLDM [2]. In addition, sev-
eral works can be used as modules of the whole system such
as Hifi-GAN [3], SoundStream, EnCodec [4, 5], latent diffu-
sion [6], and spectrogram super-resolution [7].

Furthermore, in text-input and text-conditioned genera-
tion, models such as T5 [8], GPT [9, 10], text prompt engi-
neering [11, 12], and diffusion with conditioned generative
models [1, 2, 13, 14] have been introduced. As the behavior
of large deep learning models is somewhat difficult to ana-
lyze, these works enable us as users to steer the model using
carefully selected text inputs.

In this context, we present a novel approach to foley
synthesis that utilizes a cascade system composed of low-
resolution spectrogram generation, a super-resolution mod-
ule, and a vocoder. Our system represents our submission to
the DCASE 2023 Task 7 - Foley Synthesis Challenge (Track

∗Equal contribution.

A) [15]. While we report objective measures with respect
to the official evaluation set, our ultimate goal is to develop
sound generation models that extend beyond the challenge’s
scope.

In Section 2, we introduce our model architecture, FALL-
E, detailing the function of each module and how they work
in tandem. In Section 3, we provide an in-depth analysis of
our evaluation results, showcasing the effectiveness of our
approach in various settings. Lastly, in Section 4, we sum-
marize our contributions and highlight future directions for
our work.

2. FALL-E

2.1. Architecture

The cascade system, which involves generating low-
resolution images or features and subsequently obtaining
higher-resolution results, has been extensively utilized in
generation models[14, 16, 17]. We adopt this approach to
generate foley sound. Our proposed system, FALL-E, con-
sists of three separately-trained models: diffusion-based low-
resolution spectrogram generation model and upsampling
model, and a GAN-based mel-spectrogram inversion net-
work.

Text Encoder of FALL-E is a pre-trained Flan-T5, an
instruction finetuned-variant of a T5 model which shows
better performance for various applications [18]. The class
category is mapped to predefined text prompts from the
prompt corpus. Then Flan-T5 converts the text prompts into
a sequence of text embedding, which is input to the Low-
resolution Spectrogram Generator.

Low-resolution Spectrogram Generator is based on
Glide, a diffusion generative model for text-to-image gen-
eration [14]. This module produces a low-resolution spectro-
gram. Specifically, it generates a 32 × 128 feature map for a
128-bin, 512-frame mel-spectrogram. The module employs
a U-Net shaped architecture with 5 residual blocks in both the
encoder and decoder. In the encoder, each block comprises 2
convolution layers and an additional upsampling layer with
the number of convolution channels in each block increasing
linearly from 192. The decoder is a mirrored version of the
encoder.

Spectrogram Upsampler is another diffusion-based
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Prompt CorpusCategory Flan-T5
Text Encoder

Small Spectrogram
GeneratorNoise

Text embedding

Spectrogram
[32x128]

Spectrogram
Upsampler Spectrogram

[128x512]

GAN Vocoder Waveform

Prompt

Figure 1: The overall system. Shaded blocks indicate the rule-based or pretrained models.

Module name Num. of Parameters
Text Encoder 110 M
Low-res. Spec. Generator 318 M
Spectrogram Upsampler 89 M
Mel Inversion Network 125 M

Total 642 M

Table 1: The number of parameters in each module.

generative model that synthesizes mel-spectrograms from a
given low-resolution spectrogram. The overall architecture
of this model is a U-Net that is similar to Low-resolution
Spectrogram Generator but with a different number of blocks
and channels. Its encoder and decoder consists of 4 blocks
and the number of convolution channel in the first block
is 128. Unlike Low-resolution Spectrogram Generator, it
isn’t conditioned on text; it is only conditioned by the low-
resolution mel-spectrogram feature.

Mel Inversion Network converts the generated mel-
spectrograms into waveforms. Based on HiFi-GAN [19] and
BigVGAN [20], we add FiLM [21] layers as a residual con-
nection. The additional layer helps the model to preserve
signal characteristics of the conditioned spectrogram and im-
proves the phase reconstruction quality. We open-sourced
this mel inversion network, GOMIN.1

The whole system has 642M parameters in total. Its de-
tails are described in Table 1.

2.2. Datasets

Training datasets include various sources across private and
public audio datasets, including AudioSet [22], CLOTHO
[23], FreeToUseSounds.2, Sonniss,3 WeSoundEffects,4 and
ODEON.5 To prevent data imbalances or the potential risks

1https://github.com/ryeoat3/gomin
2https://www.freetousesounds.com/all-in-one-bundle/
3https://sonniss.com/gameaudiogdc
4https://wesoundeffects.com/we-sound-effects-bundle-2020
5https://www.paramountmotion.com/odeon-sound-effects

Name AQ Dataset Size Modality

Dura. N. Files Lb Cp Vd

Public dataset
AudioSet noisy 5420 h 1,951,460 ✓ ✓
Clotho noisy 37.0 h 5,929 ✓
Free To Use Sounds noisy 175.7 h 6,370 ✓
Sonnis Game Effects clean 84.6 h 5,049 △
WeSoundEffects clean 12.0 h 488 △
Odeon Sound Effects clean 19.5 h 4,420 △
Private dataset
Private dataset clean 3829 h 371,116 △

Table 2: A list of audio datasets. AQ: audio quality, Dura.:
duration, N. Files: number of files. Modality columns re-
fer to the existence of labels, captions, and videos, respec-
tively. Clean recording: Audio is recorded in well-treated
environments and mastered for professional content produc-
tion. Noisy: dataset contains environmental noises or inter-
ference signals. △: Textual information included, not neces-
sarily captions. This table is partially from [1] and [24]

of model misbehavior, samples with speech or musical con-
tents are filtered out based on their metadata. After the filter-
ing, we used 3,815 hours of audio signals for training.

2.3. Prompting Strategy

Text conditioning can be optimized or engineered to improve
the model behavior. One of our focuses was to control the
recording condition/environment of the generated signals so
that the model can learn from crowd-sourced, noisy datasets
(low recording SNR) as well, while being able to produce
high-quality audio. Among the datasets we used, AudioSet,
Clotho, and Free To Use Soounds were ”noisy” dataset. We
append a special token that indicates noisy dataset to the text
input during training. For the other datasets, we append clean
dataset token. The impact of this additional token will be
discussed in Section 3. We also clean the text label (i.e., text
normalization) by dropping some stop words and numbers.

Our model is designed to process natural language text.
When we directly use the sound class name as input, we
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Sound class WAS ↑ Qual. ↑ Fit. ↑ Div. ↑ FAD ↓
Dog bark 7.984 7.612 8.223 8.250 11.456
Footstep 6.865 6.455 7.082 7.250 5.959
Gun shot 7.255 6.814 7.573 7.500 3.021
Keyboard 6.989 6.814 7.157 7.000 4.090
Motor vehicle 6.881 6.446 7.131 7.250 6.173
Rain 6.243 5.928 6.306 6.750 5.738
Sneeze & cough 6.553 6.528 6.606 6.500 2.340

Average 6.967 6.657 7.154 7.214 5.540

Table 3: DCASE 2023 task 7 official results across all sound
classes. WAS indicates “Weighted Average Score”, Qual.
refers to audio quality, Fit. to category fitness, and Div. to
diversity within the class.

Model WAS ↑ Qual. ↑ Fit. ↑ Div. ↑ FAD ↓
Surrey 7.886 7.546 8.419 7.500 3.621
LINE 7.339 6.444 7.529 8.750 3.679
HEU 4.877 3.800 5.142 6.500 5.685
Baseline 2.688 2.930 2.447 - 13.412

Ours 7.984 7.612 8.223 8.250 11.456

Table 4: Comparison of the official results for the “Dog
Bark” sound class in DCASE 2023 Task 7 with other sub-
mission models.

have observed that the diversity of the generated sound is
not as sufficient as that of real sound samples from the train-
ing dataset. On the other hand, by employing a variety of
text prompts for each class, our model is capable of gen-
erating a more diverse range of sounds. For example, for
footstep sound class, we can provide prompts such as:“clean
recording, footsteps on snow”, “clean recording, footsteps,
running”, and “clean recording, footsteps in a large room”.

3. EVALUATION AND ANALYSIS

In DCASE 2023 Task 7, our model achieved 2nd place in
subjective scores and 3rd place in FAD scores, with a spe-
cific breakdown of 2nd place in Audio Quality, 3rd place in
Category Fit, and 1st place in Diversity. Table 3 presents
the details of each sound class. In this section, we will delve
deeply into the topics of objective and subjective evaluations.

The right column in Table 3 presents FAD scores across
all sound classes using the official evaluation repositories.6

Our approach outperforms the baseline approach in all
classes, with notable improvements observed in the rain and
moving motor vehicle classes. Furthermore, the subjective
quality is significantly improved by our model in all classes.
It should be acknowledged that FAD scores may not be in-
dicative of other important aspects of audio quality such as

6https://github.com/DCASE2023-Task7-Foley-Sound-Synthesis

Figure 2: Mel-spectrograms of the generated audio samples
using different recording environment prefixes. Prompts for
images are (top) “clean recording, puppy bark,” and (botton)
“noisy recording, puppy bark,” respectively

clarity, high-SNR, and high-frequency components. Also,
as FAD measures similarity between a reference set and a
test set, improvement beyond reference is mismeasured as a
degradation, including quantization noise and codec noise.
As evidenced in Table 3 and Table 4, our performance in the
“Dog Bark” sound class received the worst score in FAD,
while achieving the highest score in the Weighted Average
Score (WAS).

Our model was developed to generate high-quality au-
dio suitable for real-world scenarios using the environment
and audio quality prefixes. Despite most of the audio sam-
ples in our training dataset exhibiting poor audio quality due
to background noise, babble noise, wind noise, device noise,
and codec distortion, we confirmed our model produces high-
quality audio. As discussed in Section 2.3, we controlled the
audio sample quality by adding a special token as a prefix to
the original text. Given that audio quality cannot be evalu-
ated objectively, we conducted a informal listening test for
the same text with both clean and noisy prefixes. Depending
on the prefix used, we observed impressive improvements in
sound quality across all sound classes. As illustrated in Fig-
ure 2, we can clearly observe that the use of the clean prefix
had a discernible impact on the audio quality, as indicated
by the mel-spectrogram images. This type of model steering
by prompting has been popular in other domains, and to our
best knowledge, our work is the first work that successfully
shows it in audio generation.

To improve quality for mel-spectrogram inversion, we
trained our own network based on HiFi-GAN [19] and BigV-
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Figure 3: Mel-spectrogram for reconstructed samples. (top)
ground-truth waveform, (middle) reconstructed with chal-
lenge baseline model, and (bottom) Our GOMIN system.

GAN [20] as explained above. Thanks to its bigger capac-
ity and other architectural improvements, it showed better
performance for overall sound categories. Compared to the
baseline model,6 our model well reconstructs tonal or har-
monic components in the signal especially when the input
mel-spectrograms include complex composition.

4. CONCLUSION

In this paper, we have presented FALL-E, Gaudio’s fo-
ley synthesis system. FALL-E employs a cascaded ap-
proach with low-resolution spectrogram generation, a super-
resolution module, and a vocoder. Our system was submit-
ted to the DCASE 2023 Task 7 - Foley Synthesis Challenge
(Track A), and we have reported the objective measure with
respect to the official evaluation set. Through our extensive
dataset and language model conditioning, as well as prompt
engineering, we have achieved high-quality, diverse, and co-
herent sound generation results.

There is a vast potential for the development of genera-
tive AI in the audio domain. As technology continues to ad-
vance, new possibilities for sound generation arise, and the
potential applications of this technology are vast. For exam-

ple, in film and game production, foley synthesis could be
used to produce more realistic sound effects, saving time and
resources compared to traditional foley artistry. We believe
that FALL-E, along with other works in the field, will pave
the way for future advancements in generative audio tech-
nology, and we look forward to the continued development
of this exciting area of research.
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ABSTRACT 

This paper proposes a convolutional recurrent neural network 
(CRNN)-based sound event detection (SED) model. The pro-
posed model utilizes frequency dynamic convolution (FDY) with 
a large kernel attention (LKA) for convolution operations within 
the CRNN. This is designed to effectively capture time-frequency 
patterns and long-term dependencies for non-stationary audio 
events. In addition, we concatenate a pre-trained bidirectional en-
coder representation from audio transformers (BEATs) embed-
ding with the output of FDY–LKA. This provides the FDY-based 
feature maps with semantic information. Given the limited labeled 
data condition of the DCASE Challenge dataset, we first employ 
the mean-teacher-based semi-supervised learning. Then, we pro-
pose label filtering-based self-learning for audio event data selec-
tion, when their pseudo labels predicted from the mean-teacher 
model are strong correlated with given weakly labels. This strat-
egy applies weakly labeled and unlabeled data, and then extends 
to the AudioSet. We evaluate its performance of the proposed 
SED model on DCASE 2023 Challenge Task 4A, measuring the 
F1-score and polyphonic sound detection scores, namely PSDS1 
and PSDS2. The results indicate that the proposed CRNN-based 
model with FDY–LKA improves the F1-score, PSDS1, and 
PSDS2 in comparison to the baseline for DCASE 2023 Challenge 
Task 4A. When we apply the BEATs embedding via average 
pooling to both the baseline and the proposed model, we find that 
the performance of the proposed model significantly outperforms 
the baseline, with an F1-score of 6.2%, a PSDS1 score of 0.055, 
and a PSDS2 score of 0.021. Consequently, our model is ranked 
first in the DCASE 2023 Challenge Task 4A evaluation for a sin-
gle model track, and second for an ensemble model. 

Index Terms—Sound event detection, semi-supervised 
learning, label filtering-based self-learning, frequency dy-
namic convolution, large kernel attention, BEATs embed-
ding 

1. INTRODUCTION 

The objective of sound event detection (SED) is to recognize and 

classify individual sound events originating from acoustic signals, 
along with their corresponding time stamps. The potential appli-
cations of the SED model have been attracted from audio caption-
ing [1] to various domains, such as wildlife tracking [2], equip-
ment monitoring [3], and medical monitoring [4]. In recent years, 
SED has been extensively researched using deep learning models 
[5]. However, a significant challenge in using deep learning for 
SED is the requirement of strong labels, which are expensive and 
time-consuming. This problem has led to develop weakly super-
vised or semi-supervised learning techniques to mitigate such la-
bel requirement. 

To address this problem, we apply a self-learning strategy 
based on label filtering to train the proposed SED model when the 
quantity of labeled training data is limited. The proposed model is 
based on a convolutional recurrent neural network (CRNN), 
where the convolution is realized with frequency dynamic convo-
lution (FDY) [6] with large kernel attention (LKA) [7].  

As a remedy for limited resources, we use select data from 
the AudioSet [8] as additional training material. In this context, 
the audio class of each data item from AudioSet is mapped into 
that of the DCASE Challenge Task 4A and data belonging to the 
DCASE audio class are selected. However, even though this ap-
proach of using additional AudioSet data improves SED perfor-
mance [9], it leads to a data imbalance issue. Furthermore, this 
method tends to include audio data whose characteristics differ 
from those in the DCASE training set. Thus, we propose an alter-
native in the form of a label filtering-based self-learning method 
to select appropriate data from AudioSet by examining the infer-
ence probability during model training.  

Next, one of the most successful components in detection 
models is the application of an attention mechanism, which em-
phasizes semantic knowledge in the feature map. Of late, there 
have been several types of attention mechanisms, like squeeze-
and-excitation (SE) [10] and convolutional block attention mod-
ule (CBAM) [11], which are designed to accommodate channel 
and/or spatial information for attention. These mechanisms alter 
or reshape an image to obtain attention weights, given that images 
are shift-invariant for classification or detection. However, the 
spectrogram image of an audio event signal is neither shift-invar-
iant nor stationary, necessitating an attention mechanism with un-
altered attention weights. 

Inspired by image classification and detection [7], we incor-
porate LKA into the sound event detection model. Combining this 
enables us to maintain long-term dependency for the attention, 
even when the audio signals are non-stationary. To the best of our 

* This work was supported in part by Hanhwa Vision Co. Ltd., 
and by Institute of Information & communications Technology 
Planning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.2022-0-00963). 
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knowledge, we are the first to apply this to sound event detection 
tasks.  

Our contributions can be summarized as follows: 
l We have developed a label-filtering approach to supplement 

training data from weakly-labeled out-of-domain sources, 
such as AudioSet, within a self-learning-based model train-
ing framework. As a result, we have improved the detection 
accuracy of sound event detection. 

l Additionally, we have integrated an attention mechanism, 
the large kernel attention (LKA), proposed for image classi-
fication and detection, into the sound event detection model. 
This is vital as audio signals are inherently non-stationary, 
necessitating the retention of long-term dependency for the 
attention.  

l We have applied our proposed training strategy to designing 
SED models for the DCASE 2023 Challenge Task 4A and 
achieved the best performance in terms of F1-score and 
PSDSs [12] without an ensemble. Moreover, our ensemble 
model ranked second. 
 
Following this introduction, Section 2 describes the dataset 

and input features of the SED model. Section 3 proposes a label 
filtering-based self-learning strategy applied to the FDY–LKA-
CRNN model. Next, Section 4 evaluates the performance of the 
proposed SED models on the validation dataset task of DCASE 
2023 Task 4A. Finally, Section 5 concludes this paper. 

2. DATASET  

The DCASE 2023 Challenge Task 4A consists of four datasets: 
weakly labeled data, unlabeled in-domain training data, strongly 
labeled synthetic data, and strongly labeled real data. All the audio 
clip data span 10 seconds each. The strongly labeled synthetic da-
taset is unique in that it is generated by Scraper [13]. The weakly 
labeled dataset only has class labels and is annotated for 1,578 

clips. The unlabeled in-domain training dataset includes 14,412 
audio clips. Meanwhile, the real strongly labeled and synthetic 
datasets comprise 3,470 and 10,000 clips, respectively. In addi-
tion to the DCASE dataset, we utilize a subset of AudioSet that 
includes 18,000 clips with in-domain weak labels. 

The following preprocessing steps are employed to prepare 
the data for input to the model: First, the mono-channel signals 
are resampled from 44.1 to 16 kHz. Subsequently, the audio sig-
nals are divided into frames of 2,048 samples each, with a hop 
length of 160 samples. Each frame first undergoes a 2,048-point 
fast Fourier transform (FFT), followed by a 128-dimensional mel-
filterbank analysis. This results in input feature dimensions of 
(1001x128). The extracted mel-spectrogram features are then nor-
malized using the mean and standard deviation of all the training 
audio samples. 

3. PROPOSED FDY–LKA-CRNN-BASED SED MODEL 

Fig. 1 illustrates the training procedure of the proposed FDY–
LKA-CRNN-based SED model, which employs a label filtering-
based self-learning strategy. As depicted in the upper-left arm of 
the figure, an SED model is initially trained using the mean-
teacher approach, where the entire DCASE Challenge Task 4A da-
taset is utilized. For a detailed procedure of this first-stage training, 
please refer to the training description in [14]. Subsequently, label 
filtering is carried out to select audio event data from AudioSet for 
the training of the second-stage SED model. This selection process 
is designed to choose audio event data for which the pseudo-labels, 
predicted from the first-stage SED model, strongly correlate with 
the weak labels provided by the AudioSet data descriptors. Finally, 
the second-stage SED model as shown in the lower arm of Fig. 1 
is retrained using both the entire DCASE challenge data and the 
selected AudioSet data.  

The following subsections explains the network architecture 
of the proposed LKA-CRNN-based SED model, LKA-based at-
tention, and label filtering-based self-learning. 

3.1. Network architecture 

Table 1 displays the network architecture of this proposed model. 
The model comprises one stem block, six FDY–LKA blocks, one 
optional fusion block, and one RNN block. Initially, all input fea-
tures for each audio clip are grouped to form a spectral image of 
dimensions (1001×128×1), which serves as the input to the stem 
block. In detail, the stem block consists of one convolutional 
block with 32 kernels of size (3×3) and a stride of (1×1), which is 
further processed by batch normalization (BN), gated linear unit 
(GLU) activation, and a 2×2 average pooling layer. Note that 
(x×y×z) and (x×y) indicate (frame×frequency×channel) and 
(frame×channel), respectively.  

Next, the output from the stem block is processed by the first 
FDY–LKA block. This block is made up of FDY, LKA, BN, GLU, 
and an average pooling layer, as indicated in the table. The output 
of each FDY–LKA block is then passed to the next FDY–LKA 
block. Consequently, the output from the last FDY–LKA block, 
which is also the output of FDY–LKA-CNN, becomes a feature 
map with a dimension of (250×1×256). 

In the fusion block, we optionally use the bidirectional en-
coder representation from audio transformers (BEATs) encoder 
[15] which is pretrained with AudioSet. The BEATs encoder ex-

 

Figure 1: Illustration of the training procedure for the proposed 
FDY–LKA-CRNN-based SED model, including a label filtering-
based self-learning strategy. 
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tracts the embedding corresponding to high-level semantic infor-
mation. To align the dimensions between the output of the FDY–
LKA-CNN and the BEATs embedding, we employ either average 
pooling or nearest neighbor interpolation. This results in four dis-
tinct models, constructed by applying one of these methods at the 
first or second stage for model diversity. The aligned BEATs em-
bedding is then concatenated with the output of the FDY–LKA-
CNN, followed by a fully connected (FC) layer to produce a fea-
ture map with a dimension of (250×256). 

Finally, this feature map is processed by the RNN block, 
which comprises two bidirectional gated recurrent units (Bi-
GRUs) designed to learn temporal context information. To per-
form SED, the output from the RNN block is processed by an FC 
layer and then a sigmoid function, generating an output with a di-
mension of (250×10), where 10 indicates the number of sound 
events to be detected. 

The following subsection provides detailed explanations of 
our contributions, such as the LKA-based attention and label-fil-
tering-based self-learning strategy, which are two key factors in 
achieving state-of-the-art SED performance.  

3.2. LKA-based attention 

The FDY, in each FDY–LKA block, is designed to capture the 
specific frequency characteristics associated with each event class 
category in the DCASE challenge. However, it is not enough to 

only use FDY; we also need to represent the long-term depend-
ency of audio signals. Audio signals are inherently non-stationary, 
which means that we need to apply LKA-based attention, as illus-
trated in the FDY–LKA block in Table 1. Originally, LKA was 
proposed for image classification and detection tasks [7] to assign 
attention to a pixel by considering its adjacent pixels. In this paper, 
we interpret the spectrogram of an audio event sound as an image. 
Therefore, the attention for a specific time-frequency bin should 
be assigned by taking into account its adjacent time-frequency 
bins or bands. 

The LKA attention mechanism comprises three distinct con-
volution layers: a depth-wise convolution layer, a depth-wise di-
lation convolution layer, and a (1x1) convolutional layer. The 
depth-wise convolution layer utilizes the local time-frequency in-
formation derived from the feature map procured by FDY. Fol-
lowing this, the depth-wise dilation convolution layer extracts es-
sential long-range time-frequency band information. The final 
convolutional layer focuses on a channel that represents audio 
events as the functionality of the attention mechanism. 

3.3. Label filtering-based self-learning 

We propose a label filtering method to address the scarcity of 
strongly labeled data provided by the DCASE challenge. First, we 
prepare the data for label filtering, which includes 1) all the weakly 
labeled and unlabeled data from the DCASE dataset, and 2) a seg-
ment of AudioSet data that corresponds to one of the DCASE au-
dio classes. We then use the first-stage SED model to infer these 
data and obtain the class prediction probabilities. 

Next, we generate a strong pseudo-label, 𝑙!", of the c-th class 
at the F-th frame for a given audio data using the following equa-
tion:  
 

𝑙!" 	= 	 $
1,		if		(𝑝𝐶

𝐹		>	α)	and	(𝑝# 	>	β)				
0,		otherwise,																														

for all c       (1) 

 
where 𝑝!"  represents the probability of the c-th class at the F-th 
frame of the audio signal for the strong pseudo-label, and 𝑝! rep-
resents the probability of the c-th class for the weak pseudo-label. 
If 𝑝!"  and 𝑝!  exceed the given thresholds, α and β, respectively, 
then the strong pseudo-label is assigned as class c. If (1) is not met, 
the audio data is discarded. Note that we set α and β to 0.5 and 0.7, 
respectively, from the exhaustive search. 

After completing the label filtering process, all audio data 
with strong pseudo-labels are utilized as the second-stage training 
data. Here, the strongly labeled data from the DCASE dataset is 
also incorporated in the second stage. 

4. PERFORMANCE EVALUATION 

4.1. Model training 

In the first training stage, the FDY–LKA-CRNN-based SED 
model parameters were initialized using the Xavier initialization 
[16]. The Adam optimization technique [17] was employed with 
a dropout rate [18] of 0.5. The learning rate was determined ac-
cording to the ramp-up strategy [19], with the maximum learning 
rate reaching 0.001 after 50 epochs. Various augmentation tech-
niques were applied to the training data, including time-frequency 
shift [20], time mask [21], mix-up [22], and filter augmentation 

Table 1. Network architecture of the proposed FDY–LKA-
CRNN-based SED model, where the Fusion Block is optionally 
performed when BEATs embedding is applied. 

Name Layers Output shape 
Input Layer Input: log-mel spectrogram 1001×128×1 

Stem Block 3x3, Conv2D, @32 GLU, BN 
2x2 average pooling layer 500×64×32 

FDY–LKA 
Blocks 

:
FDY(K=4), @64, GLU, BN 

LKA
2x2 average pooling layer

; 250×32×64 

:
FDY(K=4), @128, GLU, BN 

LKA
1x2 average pooling layer

; 250×16×128 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×8×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×4×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×2×256 

:
FDY(K=4), @256, GLU, BN 

LKA
1x2 average pooling layer

; 250×1×256 

Fusion Block 
(optional) 

Average pooling or interpolation 
on BEATs embedding 250×768 

Channel-wise Concatenation 
!Output of FDY–LKA blocks (250×256)

BEATs embedding (250×768) "  250×1024  

Fully connected layer  
(1024×256) 250×256 

RNN Block ( 256 Bi-GRU cells ) x 2 250×512 
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[23]. In the second stage, all training hyperparameters were set 
identically to those in the first stage. 

4.2. Experimental results 

The performance of the proposed SED model was evaluated using 
the measures defined in the DCASE 2023 Challenge Task 4A [24]: 
an event-based F1-score and PSDSs. Table 2 compares the per-
formance between the baseline and various versions of the pro-
posed SED models on the validation and evaluation datasets of 
the DCASE 2023 Challenge Task 4A. The performance on the 
validation dataset was drawn from the results released by DCASE 
2023 Challenge Task 4A [25]. Note that there are blanks in the 
performance on the evaluation dataset for the first-stage SED 
model with interpolation since we did not submit this version to 
the DCASE challenge. Additionally, all the numbers in the table 
were averaged over three evaluations for each model, according 
to the DCASE challenge guideline. 

We first compared the performance of our proposed model 
trained in the first stage with the baseline; both models were 
trained with the DCASE 2023 Challenge dataset without BEATs 
embeddings. As shown in the first and fourth rows of the table, 
the proposed FDY–LKA-CRNN-based SED model achieved a 
higher F1-score, PSDS1, and PSDS2 by 17.6%, 0.112, and 0.153, 
respectively, than the baseline. Upon applying BEATs embedding 
in the form of either interpolation or average pooling to the first-
stage SED model, we observed increased F1-score, PSDS1, and 
PSDS2, compared to the first-stage model without BEATs em-
bedding. The superior performance of the first-stage SED model 
over the baseline can be attributed to the contribution of FDY–
LKA to the representation learning for this sound event detection 
task. 

Second, we examined the effectiveness of expanding the 
training data from AudioSet on the SED performance. From the 
second and eighth rows in the table, it is clear that the addition of 
AudioSet data via the proposed label filtering significantly im-
proved the SED performance. Specifically, the second-stage SED 
model with average pooling provided higher F1-score, PSDS1, 
and PSDS2 by 6.2%, 0.055, and 0.021, respectively, than the 
baseline with average pooling. Moreover, the second-stage SED 

model outperformed the first-stage SED model, indicating that la-
bel filtering is an efficient method for expanding training data. 

Next, we constructed an ensemble model by combining 24 
different models from each of the first- and second-stage SED 
models, which were taken according to different training epochs. 
This ensemble outperformed the baseline and individual stage 
models, due to inherent benefits of ensemble modeling such as 
reducing overfitting and improving model robustness. 

Lastly, we compared our results with those of the Wenxin-
TJU system [26] that was ranked the third place in the single 
model system track of DCASE 2023 Challenge Task 4A. As 
shown in the third and eighth rows of the table, the second stage 
of the proposed FDY–LKA-CRNN model provided higher 
PSDS1 for both the validation and evaluation dataset than Wen-
xin-TJU system, while two models had similar PSDS2.   

5. CONCLUSION 

We proposed an FDY–LKA-CRNN-based SED model with 
BEATs embedding for sound event detection. To achieve state-of-
the-art performance in the DCASE 2023 Challenge Task 4A, we 
integrated the LKA-based attention to capture long-term depend-
ency within the convolutional architecture. Additionally, we pro-
posed a label filtering approach to select data from another public 
domain dataset—AudioSet. Accordingly, we developed a two-
stage model training approach; the first-stage model was trained 
using DCASE 2023 Challenge data, while the second-stage model 
was trained using both DCASE 2023 Challenge data and selected 
AudioSet data. Finally, we constructed several versions of SED 
models based on the first- or second-stage training and their en-
semble, which included models constructed by BEATs embedding 
using two different methods—interpolation and average pooling.  

Various versions of the proposed FDY–LKA-CRNN-based 
SED models were evaluated on the validation dataset for DCASE 
2023 Task 4A, and their performance was compared with the base-
line. The results revealed that the proposed second-stage SED 
model, featuring LKA-based attention and label filtering-based 
data selection, significantly improved the SED performance com-
pared to the baseline and the first-stage SED models. Moreover, 
an ensemble model consisting of the first- and second-stage mod-
els outperformed other versions of the proposed models.  

Table 2: Performance comparison of the baseline and different versions of the proposed SED models on the validation and evaluation 
dataset of the DCASE 2023 Challenge Task 4A. 

Model AudioSet BEATs 
embedding Ensemble Validation dataset  Evaluation dataset 

F1-score (%) PSDS1 PSDS2  F1-score (%) PSDS1 PSDS2 

Baseline [25] 
- - - 40.7 0.359 0.562  37.7 0.327 0.538 

Ö Average 
pooling - 57.6 0.491 0.787  56.7 0.510 0.798 

Wenxin-TJU [26] Ö Ö - - 0.512 0.808  58.2 0.546 0.831 

FDY–LKA-
CRNN  

(Stage 1) 

- - - 58.3 0.471 0.715  54.5 0.459 0.701 
- Interpolation - 63.3 0.527 0.782  - - - 

- Average 
pooling - 62.9 0.525 0.776  61.2 0.576 0.809 

FDY–LKA-
CRNN 

(Stage 2) 

Ö Interpolation - 63.4 0.543 0.806  63.8 0.581 0.835 

Ö Average 
pooling - 63.8 0.546 0.808  64.6 0.591 0.831 

FDY–LKA-
CRNN 

(Stages 1 & 2) 
Ö Both Ö 65.6 0.567 0.815 

 
65.5 0.611 0.846  
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ABSTRACT

Automated audio captioning is a task of generating descriptions cor-
responding to audio clips. The training process of AAC typically
consists of a pre-training, fine-tuning, and reinforcement learning.
While reinforcement learning enhances the evaluation metrics for
captions, it has the drawback of potentially lowering the quality of
the captions, such as incomplete sentence or repetitive words. In
this study, we propose an ensemble selection technique that com-
bines models before and after reinforcement learning to improve
evaluation metrics while maintaining caption quality. Furthermore,
we apply several data augmentation techniques to complement the
characteristics of WavCaps, which predominantly consists of sin-
gle events, and improve generalization property. In particular, pro-
posed approaches can reach impressive scores both an existing met-
ric SPIDEr , and a new fluency metric SPIDEr-FL, 0.344 and 0.315,
respectively. This resulted in a 2nd place ranking in DCASE 2023
task 6a, while the baseline system achieved SPIDEr of 0.271 and
SPIDEr-FL of 0.264.

Index Terms— Automated audio captioning, pre-training, data
augmentaion, reinforcement learning

1. INTRODUCTION

Automated audio captioning (AAC) is an audio-to-text generation
task that first introduced by K. Drossos et al. [1]. It is an multi-
modal task combines audio processing and natural language pro-
cessing to describe audio clips using natural language. Unlike
sound event detection [2] and audio classification tasks [3], AAC
aims to capture spatio-temporal relationships in audio clips and per-
form advanced interpretation of audio. The detection and classifi-
cation of acoustic scenes and events (DCASE) challenge has played
a significant role in promoting research on AAC, particularly with
the use of audio-caption pair datasets like Clotho [4] and AudioCaps
[5].

During the initial development of AAC models, recurrent neu-
ral network (RNN)-based approaches [1, 6, 7] were commonly pro-
posed. Moreover, as attention-mechanism language models [8] with
superior performance emerged, transformer-based models gained
significant popularity. Various transformer-based architectures, in-
cluding convolution neural network (CNN)-transformer [9, 10],
transformer [11], and CNN-RNN-transformer [12] with encoder-
decoder structures, were widely adopted. These models establish a
crucial connection between audio and transformer-based language
models. CNN-based encoders have particularly demonstrated out-
standing performance in audio representation as audio feature ex-

*: Equal contributions.

tractors. This combination of transformers and CNN-based en-
coders has significantly advanced the field of AAC.

In this study, we employ a bidirectional auto-regressive trans-
former (BART) [13] based CNN-BART model. In addition, we used
data augmentation techniques such as SpecAugment [14], PairMix
[15], and synonym substitution in the pre-training and fine-tuning
process to enhance the generalization characteristics of the model
and complement the characteristics of the dataset. SpecAugment is
a widely used technique that applies random transformations to the
log mel-spectrogram of the audio input, thereby enhancing robust-
ness and generalization. PairMix is a multimodal data augmentation
technique that mixes two audio clips and captions. The WavCaps
[16] we used in the pre-training process mostly consisted of single
event audio clips; therefore, model could not be sufficiently train-
ing about the spatial-temporal features. To address these issues, we
used PairMix in the pre-training phase. Additionally, to enhance the
model’s universality and prevent overfitting during fine-tuning, we
conducted synonym substitution, which entailed replacing random
words with their synonym within the caption.

Reinforcement learning (RL) was adopted to futher enhance the
model’s performance. Specifically, we utilized RL based on self-
critical sequence training, which has been proposed as a supplemen-
tary method to directly improve evaluation metrics. Throughout the
RL process, we monitored the CIDEr [17] score, resulting in sig-
nificant improvements in SPIDEr . However, it is worth noting that
RL models often generate captions of lower quality, such as incom-
plete sentences or repetitive words, as their primary objective is to
improve the CIDEr score. In this study, we proposed an ensemble
selection technique that can maintain the advantages of RL while
enhancing caption quality. By combining models trained without
RL and models trained with RL, we observed improvements in both
SPIDEr and SPIDEr-FL scores compared to using the pre-trained
model alone. Also, the proposed method showed higher perfor-
mance than the existing models in terms of SPIDEr and SPIDEr-
FL.

2. RELATED WORKS

AAC task employs various data augmentation techniques to en-
hance model performance and improve generalization capabilities.
These techniques include SpecAugment, mix up, time stretching,
white noise injection, and more. Among them, SpecAugment is
widely used as a key data augmentation technique in AAC. It in-
volves transforming spectrogram data in the frequency domain to
increase data diversity. Frequency domain transformations can be
performed in various ways, such as time masking, where a portion
of the time axis is masked or duplicated, and frequency masking,
where certain frequency ranges are masked. These transformations
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Figure 1: The flow of overall system. Synonym and RL refer synonym substitution and reinforcement learning.

allow the model to learn from a wider range of frequency patterns
and enhance its robustness to noise and environmental changes,
thereby improving both performance and generalization abilities.
SpecAugment is recognized as a vital component of data augmen-
tation and is widely adopted in research and applications. By utiliz-
ing this technique, AAC models can effectively operate in various
environments and noise conditions. Additionally, mix up [18] is a
technique where two audio samples are linearly combined to create
a new sample. This allows the model to learn features from different
audio sources and diversify the training data. PairMix linearly com-
bines two captions to generate a new caption, which helps improve
the model’s learning by creating diverse combinations of sentence
structures and content.

Captioning models are usually trained using cross-entropy loss.
However, it should be noted that minimizing the loss function does
not always improve the evaluation metric. To address these chal-
lenges, we employ a technique called self-critical sequence training
[19]. This approach allows us to optimize the evaluation metrics
directly, leading to improved scores in terms of these metrics. The
model generates captions, and rewards are computed based on the
metrics (such as SPICE [20], BLEU, CIDEr) between the gener-
ated captions and the ground truth captions. The model is trained to
maximize these rewards, aiming to generate superior captions.

3. METHODS

3.1. Data augmentation

3.1.1. PairMix

PairMix is an efficient and straightforward multimodal data aug-
mentation technique in AAC task. It is first introduced in image
captioning field named MixGen [21]. PairMix combines two audio
clips and concatenates their corresponding captions. The formula
for this process can be represented as follows:

â =

N∑
i=1

λiai, (1)

t̂ = Concat(tNi=1), (2)

where a, t, â, and t̂ represent the audio waveform, caption, aug-
mented audio, and augmented caption, respectively. λi ∈ [0, 1]

for i = 1, 2, ..., N is a hyperparameter that controls the degree of
mixing.

Although data augmentation in the multimodal domain often
poses challenges, PairMix provides an uncomplicated solution for
audio-text datasets. By merging two audio clips, the model trained
using PairMix data augmentation can extract multiple simultaneous
sound events. This capability is crucial in AAC because detecting
multiple sound events significantly improves the accuracy of the re-
sulting captions. Simultaneously, the concatenation of two captions
provides the model with the potential to generate more detailed and
extended descriptions of audio clips. Hence, PairMix effectively
enhances both audio feature extraction of detecting multiple sound
events and caption quality of generating longer, specific descrip-
tions.

3.1.2. Synonym substitution

Synonym substitution is a simple but effective data augmentation
technique [22] derived from WordNet-based synonym substitution.
This method entails substituting certain words in a sentence with
their synonyms, thus allowing the model to express audio clips us-
ing rich vocabulary. During the fine-tuning process, we select in-
dividual words from the target captions, particularly nouns, and
replaced them with their synonyms at random. This strategy can
improve the generalization property of the model and the semantic
properties of generated captions by ensuring that a single audio clip
does not correspond to a single caption, but to various captions with
the same meaning.

3.2. Audio feature extractor

In our model, we employ a 14-layer CNN derived from the pre-
trained audio neural networks (PANNs) [23] architecture for the
extraction of audio features. The choice of PANNs as an audio
feature extractor through transfer learning is both rational and ef-
fective, given its pre-training on an audio tagging dataset. Au-
dio tagging involves a multi-label classification task, necessitating
the model to identify overlapping events occurring simultaneously
within an audio clip. This requirement aligns well with the AAC
task, which also needs to discern overlapping sound events. This
particular CNN architecture is acknowledged for its great perfor-
mance in capturing audio representations. It comprises six convo-
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lutional blocks, each containing two CNN layers with a kernel size
of 3 × 3. Following each CNN layer, batch normalization [24] is
used to standardize the inputs, and a rectified linear unit (ReLU)
activation function [25] is incorporated to enhance performance.

3.3. Language model

We incorporated BART as our language model, motivated by its im-
pressive track record in text generation tasks. BART comprises an
encoder and a decoder, each constructed from 12 transformer lay-
ers. The BART encoder receives the audio features produced by
the audio feature extractor. In contrast, the BART decoder ingests
both the output of the BART encoder and the reference caption. An
attention mechanism is employed between the BART encoder and
decoder, facilitating the model in capturing the semantic nuances
and contextual information within the input sentence. Within each
transformer block of the decoder, self-attention is applied to model
the interactions among all the words in the input sentence. This
strategy enables the model to generate precise predictions for the
subsequent word, leading to high-quality text generation. The ap-
plication of self-attention aids the model in capturing long-range
dependencies and complex contextual relationships between words.

3.4. Ensemble selection

When choosing models for an ensemble, the conventional approach
is to select those that perform well on particular evaluation metric.
In the context of AAC, one of CIDEr or SPIDEr-FL is often con-
sidered when forming ensemble combinations. However, this can
lead to an imbalance, where one metric’s increses while the other
remains unchanged or decrease. This situation is particularly evi-
dent when there’s a large difference between CIDEr and SPIDEr-
FL scores, often occurring when the model is trained using RL. The
RL method, SCST, specifically targets the CIDEr evaluation met-
ric score. While this approach elevates the CIDEr score, it tends
to lower the SPIDEr-FL score. In order to simultaneously boost
both scores, we strategically select the models for the ensemble.
Some of these models are already trained using RL, while others are
not. Given that CIDEr score can be elevated sufficiently due to RL,
we exclude models achieve low scores on SPIDEr-FL for attaining
greater scores of it. This method aims to ensure high performance
on both the CIDEr and SPIDEr-FL metrics. We will describe about
the metrics in subsection 4.4.

4. EXPERIMENTS

4.1. Training

Our learning process consists of three stages: pre-training, fine-
tuning and ensemble selection. During the pre-training phase, we
employed the WavCaps, AudioCaps, and Clotho datasets to train
the model, integrating the PairMix augmentation technique. Subse-
quently, in the fine-tuning phase, we froze the audio feature extrac-
tor and fine-tuned the model using the Clotho dataset via various
methods. Some of the experiments utilized data augmentation tech-
niques, while others did not. Similarly, a subset of the models was
fine-tuned using a RL approach, while others were not. In the final
phase, we created several combinations of the outcomes from the
fine-tuning step to form an ensemble. Fig. 1 shows the overview of
our proposed methods.

4.2. Dataset

4.2.1. WavCaps

The WavCaps dataset1 is a large-scale, weakly-labelled audio cap-
tioning dataset, encompassing approximately 400,000 audio clips
paired with captions. This dataset is including BBC Sound Effects,
FreeSound [26], SoundBible and AudioSet [27]. To reduce the
challenges associated with noisy and unsuitable raw descriptions,
a three-stage processing pipeline leveraging ChatGPT is employed.
The average duration of the audio clips is 67.59 seconds, and cap-
tions primarily consist of single-event descriptions, with an average
caption length of 7.8 tokens. However, due to the unavailability of
some data from FreeSound, we focused exclusively on the publicly
accessible data for our research.

4.2.2. AudioCaps

AudioCaps is a dataset composed of 46,000 audio clips, each 10
seconds in duration and paired with text descriptions. The dataset
is divided into three subsets: development-training, development-
validation, and development-testing, which contain 38,118, 500,
and 979 audio clips, respectively. While the training set provides
a single caption per audio clip, the validation and testing sets offer
five captions for each clip.

4.2.3. Clotho

Clotho v2.1 is divided into three subsets within its published
development sets: development-training, development-validation,
and development-testing. The development-training subset com-
prises 3,839 audio clips, and the development-validation and
development-testing subsets each consist of 1,045 audio clips. All
audio files in this dataset fall within a duration of 15 to 30 sec-
onds. For each audio clip, there are five accompanying captions,
each ranging from 8 to 20 words in length.

4.3. Experiment setup

The proposed model was trained using Adam [28] optimizer with
batch size of 16 in both pre-training and fine-tuning phases. In pre-
training phase, the learning rate was fixed to 1× 10−6, and in fine-
tuning phases, we used two different learning rates of 5×10−5 and
1 × 10−6. We adopted PairMix technique during pre-training pro-
cess and we set λ = 0.5 and N = 2 in Eq. (1) and Eq. (2). With
regard to synonym substitution, we randomly selected 8 captions
in mini batch and substituted one nouns to another similar mean-
ing nouns. In terms of ensemble selection, we selected models as
following rules. First, exclude two models attaining the lowest and
second lowest scores on SPIDEr (PairMix 1, PairMix 2) and also
SPIDEr-FL (PairMix+RL 1, PairMix+S·S+RL), respectively. Sec-
ond, exclude two models attaining the lowest scores on SPIDEr and
SPIDEr-FL (PairMix 1, PairMix+RL 1). Finally, exclude none of
them.

4.4. Evaluation metrics

We evaluated the models trained by our methods through one ma-
chine translation metric, METEOR [29], and four captioning met-
rics. CIDEr , SPICE, SPIDEr and SPIDEr-FL are those. ME-
TEOR assesses translation quality through exact word matches,

1https://github.com/XinhaoMei/WavCaps
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Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL

PairMix 1 0.179 0.458 0.125 0.291 0.290
PairMix 2 0.183 0.468 0.130 0.299 0.295

PairMix+S·S 1 0.182 0.473 0.129 0.301 0.298
PairMix+S·S 2 0.188 0.483 0.137 0.310 0.306
PairMix+RL 1 0.192 0.505 0.135 0.320 0.154
PairMix+RL 2 0.193 0.518 0.142 0.330 0.227

PairMix+S·S+RL 0.195 0.526 0.143 0.335 0.226

Table 1: Performances of each data augmentation techniques and
RL on Clotho evaluation split. For all metrics, higher values in-
dicate better performance. S·S refers synonym substitution. The
difference between the number of models is the learning rate. Mod-
els possessing number 1 in their names are trained with learning
rate of 5× 10−5 and the others are 1× 10−6.

stem matches, synonym matches and phrase matches. Then it com-
putes the harmonic mean of precision and recall according those
matches. CIDEr measures weighted sum of cosine similarity be-
tween predicted and reference captions by term frequency and in-
verse document frequency so that it shows how created caption is
well related to audio clip. SPICE metric calculates F-score using
semantic scene graphs in sense of words relations in the captions.
This means SPICE score can indicate model ability to generate se-
mantically correct captions. SPIDEr is the average of CIDEr score
and SPICE score, which is able to estimate the balance between two
metrics. SPIDEr-FL is an evaluation metrics that includes the flu-
ency of captions. It is calculated by dividing the SPIDEr score by
10 for each individual example with an error.

5. RESULTS

The results of data augmentation techniques and RL on Clotho test
set are shown in Table 1. We observed synonym substitution slightly
enhances both SPIDEr and SPIDEr-FL scores. Additionally, we
compared the models trained with RL and those that are not. The
models trained with RL were scoring higher values of SPIDEr than
those models without, however, one of the captions of the highest
SPIDEr score model was ‘a fishing line is being wound up and a
keys in’ which was not fluent enough since the sentence was not ter-
minated. This results in the SPIDEr-FL scores were significantly
lower than the models not trained with RL. As a result, the model
trained with PairMix and synonym substitution with learning rate
1 × 10−6 appeared the highest score of SPIDEr-FL. Meanwhile,
the model trained with PairMix, synonym substitution and RL was
seem to be the top SPIDEr score model. In the context of en-
semble selection, we analyzed the relations of ensembles with and
without RL. The ensemble model excluding the RL scored similar
in both SPIDEr and SPIDEr-FL metrics with the top SPIDEr-FL
single model. However, when at least one model trained through
RL was included in the ensemble, there was a notable increase
in SPIDEr scores. Furthermore, for SPIDEr-FL, some of these
models achieved higher scores compared to ensembles without RL.
Especially ensemble 3 model was achieving the highest score on
SPIDEr-FL metric. We also observed the caption improvement like
following with the same audio clip we stated above: ‘a fishing reel
is being wound up and a bell is ringing’. This caption is clearly
more fluent. From Fig. 2, we noticed 4:1 ratio of non-RL models
and RL models was performing the best. The model combination
of each ensemble model is described below.

Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL # of model

Ensemble 1 0.185 0.485 0.132 0.308 0.305 4
Ensemble 2 0.196 0.537 0.144 0.341 0.256 5
Ensemble 3 0.195 0.539 0.144 0.341 0.332 5
Ensemble 4 0.195 0.529 0.144 0.336 0.279 5
Ensemble 5 0.196 0.543 0.146 0.345 0.277 6
Ensemble 6 0.195 0.535 0.145 0.340 0.311 6
Ensemble 7 0.196 0.542 0.147 0.344 0.298 7

Table 2: Results of ensemble selection.

Figure 2: Ensemble SPIDEr-FL scores according to ratio of non-
RL and RL models. The legend shows the ratio according to colors.

• Ensemble 1: 4 models trained without RL.
• Ensemble 2: Top 5 SPIDEr models.
• Ensemble 3: Top 5 SPIDEr-FL models.
• Ensemble 4: Excluding the lowest SPIDEr model and

SPIDEr-FL model.
• Ensemble 5: Top 6 SPIDEr models.
• Ensemble 6: Top 6 SPIDEr-FL models.
• Ensemble 7: All 7 models.

6. CONCLUSION

In this study, we presented data augmentation, RL, and ensemble se-
lection to boost both evaluation metrics, SPIDEr and SPIDEr-FL.
PairMix successfully rose the performance during the pre-training
phase. This was considered the result of PairMix effect of devel-
oping the ability to detect multiple sound events at the same time
stamps. Synonym substitution, likewise, elevated the model capa-
bility to express in various vocabulary. In terms of RL, it only con-
centrated on increasing the value of metric score, the actual fluency
of captions decrease. This led to conclude removing RL models for
ensemble was reasonable choice, however, those ensemble models
including RL models were showing better performance when they
were evaluated with both SPIDEr and SPIDEr-FL. The chosen RL
models played a role of regularization on ensemble, leading to gen-
erate well-related and more fluent captions.
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ABSTRACT
In recent years, datasets of paired audio and captions have en-
abled remarkable success in automatically generating descriptions
for audio clips, namely Automated Audio Captioning (AAC). How-
ever, it is labor-intensive and time-consuming to collect a suffi-
cient number of paired audio and captions. Motivated by the re-
cent advances in Contrastive Language-Audio Pretraining (CLAP),
we propose a weakly-supervised approach to train an AAC model
assuming only text data and a pre-trained CLAP model, alleviat-
ing the need for paired target data. Our approach leverages the
similarity between audio and text embeddings in CLAP. During
training, we learn to reconstruct the text from the CLAP text em-
bedding, and during inference, we decode using the audio embed-
dings. To mitigate the modality gap between the audio and text
embeddings we employ strategies to bridge the gap during training
and inference stages. We evaluate our proposed method on Clotho
and AudioCaps datasets demonstrating its ability to achieve a rel-
ative performance of up to 83% compared to fully supervised ap-
proaches trained with paired target data. 1 Our code is available at:
https://github.com/zelaki/wsac

Index Terms— Automated audio captioning, multi-modal
learning, contrastive learning.

1. INTRODUCTION

Audio-Language tasks have recently gained the attention of the au-
dio community with the introduction of Automated Audio Caption-
ing and Language-Based Audio Retrieval in the DCASE Challenge
and the release of publicly available Audio-Language datasets such
as Clotho [1] and AudioCaps [2]. The intrinsic relationship between
Audio and Language presents an opportunity for the development
of models that can effectively establish a shared semantic space for
the two modalities. Such an approach has recently achieved great
success with models like COALA [3], AudioClip [4], and CLAP
[5, 6, 7]. These models use parallel audio-text data to train a joint
representation, where the embeddings of audio-text pairs are simi-
lar. Such models achieve high accuracy in a zero-shot setting in a
variety of tasks including Sound Event Classification, Music tasks,
and Speech-related tasks [5].

Automated Audio Captioning (AAC) is a multimodal task that
aims to generate textual descriptions for a given audio clip. In or-
der to generate meaningful descriptions, a method needs to capture
the sound events present in an audio clip and generate a descrip-
tion in natural language. Training audio captioning models requires

1This work was conducted in the framework of the PREMIERE project
(No. 101061303) that is funded by the European Union.

large datasets of audio-caption pairs, and these are challenging to
collect. While great effort has been done, the data scarcity issue
of audio captioning still withholds. The common datasets in AAC,
AudioCaps and Clotho, contain together 50k captions for training,
whereas 400k captions are provided in COCO caption [8] for image
captioning. Kim et al. [9] observe that due to the limited data, prior
arts design decoders with shallow layers that fail to learn general-
ized language expressivity and are fitted to the small-scaled target
dataset. Due to this issue, their performance radically decreases
when tested on out-of-domain data. Motivated by these limitations
we present an approach to AAC that only requires a pre-trained
CLAP model and unpaired captions from a target domain. This
alleviates the need for paired audio-text data, and also allows for
simple and efficient domain adaptation.

Our approach is inspired by recent advances in zero-shot im-
age captioning [10, 11], that leverage the aligned multi-modal la-
tent space provided by CLIP [12] obviating the need for image data
during training and by the recent success of Contrastive Language-
Audio models such as CLAP [5] in many downstream tasks. We
train a lightweight decoder model to reconstruct texts from their re-
spective CLAP embeddings, and at inference use this decoder to
decode the audio embeddings. Our findings align with prior studies
in image captioning suggesting that such an approach is suboptimal
due to the presence of a phenomenon known as modality gap [13].

The modality gap suggests that embeddings from different data
modalities are located in two completely separate regions of the em-
bedding space of multi-modal contrastive models [13]. To mitigate
this issue we employ strategies that have been shown to effectively
condense the gap in CLIP embeddings [10, 11] and show that they
can be effectively utilized for CLAP models. These strategies can
be divided into two categories, strategies that condense the gap dur-
ing training and during inference.

Experiments on Clotho and AudioCaps datasets show that our
weakly-supervised approach can achieve comparable performance
to prior fully supervised arts, without requiring any target audio data
during training. Our contributions can be summarized as follows:
(1) We propose WSAC: Weakly-Supervised Audio Captioning an
AAC approach that requires no auditory in-domain data for training,
(2) we demonstrate that the modality gap phenomenon is present in
CLAP models, and (3) employ methods that effectively mitigate it.

2. TEXT-ONLY TRAINING

Our goal is to learn a model that produces a caption for a given
audio clip. Unlike fully supervised approaches, during training we
only assume that we have access to a set of target domain captions
C. We further assume a pre-trained CLAP model with an audio en-
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Figure 1: Overview of our proposed approach. Left: An illustration of the CLAP training paradigm. The encoders are trained to map
semantically similar audio-caption pairs to similar embeddings in a joint representation space. Middle: Our proposed weakly supervised
training. A frozen CLAP text encoder embeds a caption and a decoder learns to reconstruct the caption from its embedding. Right: At
inference, we decode the audio embedding extracted from a frozen CLAP audio encoder, using the trained decoder.
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coder Aclap and a text encoder Tclap trained to project semantically
similar audio-text pairs into similar embeddings in a shared embed-
ding space as presented in Fig. 1 (Left). Given an audio clip xa and
text xt let za = Aclap(xa) ∈ Rd and zt = Tclap(xt) ∈ Rd be
their embeddings.

First we extract text embeddings zt for all xt ∈ C, keeping
Tclap frozen. During training, our goal is to learn a network that
inverts the CLAP text encoder Tclap. We use a textual decoder
D consisting of a mapping network f and an auto-regressive lan-
guage model, to reconstruct the original text xt from the CLAP
text embedding zt. Following recent work [9], we train our de-
coder using the prefix language modeling paradigm. Specifically,
after passing the text embedding through the mapping network f
we regard p = f(zt) as a prefix to the caption. Given a text
t = {w1, w2, ..., wT }, our objective is to minimize the autoregres-
sive cross-entropy loss:

L = −
T∑

i=1

logD(wi|w<i,p) (1)

Since the CLAP text embedding is optimized to be similar to
the CLAP audio embedding, we can directly infer the text decoder
using the audio embeddings za without any pairwise training on
the target dataset. The training and inference stages are presented
in Fig. 1 (middle) and (right) respectively.

3. STRADEGIES TO BRIDGE THE MODALITY GAP

Directly employing the audio embeddings to infer D is not optimal
due to the presence of the modality gap. Fig. 2 is a visualization of
generated embeddings from the pre-trained CLAP model from the
Clotho training set. Paired inputs are fed into the pre-trained model
and the embeddings are visualized in 2D using T-SNE [14]. This
visualization clearly demonstrates the presence of the modality gap
phenomenon, as a noticeable gap separates the paired audio and
text embeddings. To address this issue, we utilize strategies that
have demonstrated success in bridging the modality gap in CLIP

embedding space [10, 11, 13]. We show that these strategies can
be adopted for CLAP and show their effectiveness in mitigating the
modality gap. These approaches can be divided into two categories:
Bridging the gap either during the training phase or during the in-
ference phase.

3.1. Training strategies

Attempting to reduce the modality gap during training we adopt
the following strategies: (a) Noise injection [10], and Embedding
Shift [13]. These strategies aim to narrow the disparity between
the modality used to train the decoder, which is text, and the target
modality, which is audio.

3.1.1. Noise injection

In [10], the authors show that injecting the text embedding with
Gaussian noise during training has the effect of creating a region
in the embedding space that will map to the same caption. This
method assumes that the corresponding audio embedding is more
likely to be inside this region. Following [10], we add zero-mean
Gaussian noise of standard deviation σ to the text embedding be-
fore feeding it to the decoder. We set σ to the mean Linf norm of
embedding differences between five captions that correspond to the
same audio. Since we assume no access to target audio data we esti-
mate σ using 50 audio-caption pairs from the WavCaps dataset [7].
Thus the prefix in Eq. 1 becomes p = f(zt +n), where n ∈ Rd is
a random standard Gaussian noise with standard deviation σ.

3.1.2. Embedding shift

Building upon the findings of [13], who investigated the impact
of shifting embeddings in various multi-modal contrastive learning
models on downstream tasks, we propose a method to align the text
embeddings with the audio embeddings during training. First, we
define the modality gap following [13], as the difference between
the center of audio embeddings and text embeddings:

82



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

60 40 20 0 20 40 60

30

20

10

0

10

20

30
Audio Embeddings
Text Embeddings

Figure 2: Visualization of audio and text embedding pairs ran-
domly sampled from the Clotho training set. The modality gap phe-
nomenon is present as the audio and text modalities are embedded
in two completely separate regions.

∆gap =
1

n

n∑
i=1

zai −
1

n

n∑
i=1

zti (2)

Then, we shift every text embedding toward closing the modality
gap, and thus the prefix in Eq. 1 becomes p = f(zt +∆gap).

3.2. Inference strategies

At inference, we adopt two training-free strategies proposed in [11],
and map an audio embedding extracted from the CLAP audio en-
coder Aclap into the text embedding space. For both strategies, we
will assume a decoder D trained on some target data as described
in Section 2 and a set of text embeddings obtained from the target
training set that we will refer to as Memory, M = {z1t , z2t , ...zNt },
where N is the size of the training set.

3.2.1. Nearest-neighbor decoding

A straightforward strategy that can be adopted at inference time to
mitigate the modality gap is to use the nearest text embedding as
the prefix, instead of the audio embedding. We calculate the cosine
similarity between the audio embedding za and the text embeddings
in M and decode with the most similar:

p = zi | i = argmax
zt∈M

sim(za, zt) (3)

Where sim(x,y) = x·y
∥x∥·∥y∥ . Since the decoder is trained to recon-

struct the original text conditioned on the text embedding, nearest-
neighbor decoding can be successful if a sufficiently similar text
embedding is present in M.

3.2.2. Projection-based decoding

A better approach is to project the audio embedding into the text
embedding space. This involves obtaining the representation of the
audio embedding, by combining the embeddings in M through a
weighted combination.

p =

|M|∑
i=1

wi ∗ zti (4)

The weights wi for these text embeddings are determined by cal-
culating the cosine similarity between the audio embedding za and
each embedding in M. Following [11] the similarity is then scaled
by a temperature parameter τ and normalized using a softmax func-
tion:

wi =
exp(sim(za, zti)/τ)∑|M|
j=1 exp(sim(za, ztj)/τ)

(5)

4. EXPERIMENS

4.1. Data

We conduct experiments using two benchmarks, AudioCaps and
Clotho. AudioCaps contains 50k, 10-second audio clips sourced
from Audioset [15]. Each audio is annotated with one caption in
the training set and five captions in the evaluation set. Clotho con-
sists of 4981 audio samples of 15 to 30 seconds duration. Each au-
dio is annotated with five captions. We follow the standard recipes
of training, validation, and test splits on each dataset for our ex-
periments. To adhere to a weakly-supervised setting we assume no
access to audio data in the training and validation sets.

4.2. Experimental setup

To extract audio and text embeddings we employ a frozen CLAP
model2 trained on WavCaps [7]. The audio encoder is a CNN14
from Pre-trained Audio Neural Networks (PANNs) [16], and the
text encoder is a BERT-based model [17]. We choose this model
as the embedding extractor because AudioCaps and Clotho datasets
were not included in its training set. This choice is made under the
assumption that target audio data are unavailable for training pur-
poses. The decoder D consists of a mapping network f which is a
2-layered MLP, and the language model which is a 4-layer Trans-
former [18] with 4 attention heads. The size of the hidden state is
768. The decoder D is trained from scratch on the target captions.
The noise variance for Noise Injection training is set to σ2 = 0.013.
We train the proposed model for 30 epochs using Adam optimizer
[19] and a batch size of 64. The learning rate is linearly increased to
2× 10−5 in the first five epochs using warm-up, which is then mul-
tiplied by 0.2 every 10 epochs. We use greedy search for decoding.

4.3. Compared methods and evaluation metrics

Since no previous work has addressed AAC in similar supervi-
sion settings we compare our methods against fully supervised ap-
proaches trained on paired data. Koh et al. [23] use a latent
space similarity objective and train a model with a PANNs encoder
and a transformer decoder. Xu et al. [22] design a GRU for the
decoder. Mei et al. [20] propose a full transformer encoder-
decoder architecture. Gontier et al. [21] utilize a pre-trained
language model based on BART [21], and finetune it for AAC us-
ing guidance from Audioset tags. Kim et al. [9] propose prefix
tuning for AAC learning a prefix to guide the caption generation of
a frozen GPT-2 [24]. Mei et al. [7] utilize a CLAP audio en-
coder pre-trained on WavCaps and a BART decoder achieving state-
of-the-art results in both Clotho and AudioCaps. All the methods in
this work are evaluated by the metrics widely used in the caption-
ing tasks, including BLEU [25], METEOR [26], ROUGE-L [27],
CIDEr [28], SPICE [29], and SPIDEr [30].

2https://github.com/XinhaoMei/WavCaps/tree/master
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Table 1: Results on AudioCaps and Clotho. We report results for fully supervised methods trained on audio-caption pairs, and our proposed
methods trained only on captions. WSAC is our baseline approach presented in Section 2. We refer to Noise injection as NI, Embedding
shift as ES, Nearest-neighborhood decoding as NND and, Projection-based decoding as PD. We highlight the best results for fully and weakly
supervised methods with underline and bold respectively.

Dataset Supervision Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr SPICE SPIDEr

Audiocaps

Audio-Caption
Pairs

Mei et al. [20] 0.647 0.488 0.356 0.252 0.222 0.468 0.679 0.160 0.420
Kim et al. [9] 0.713 0.552 0.421 0.309 0.240 0.503 0.733 0.177 0.455

Gontier et al. [21] 0.699 0.523 0.380 0.266 0.241 0.493 0.753 0.176 0.465
Mei et al. [7] 0.707 - - 0.283 0.250 0.507 0.787 0.182 0.485

Captions
Only

WSAC 0.574 0.398 0.267 0.167 0.222 0.426 0.493 0.155 0.324
WSAC+NI 0.662 0.477 0.328 0.216 0.223 0.46 0.579 0.155 0.367
WSAC+ES 0.653 0.458 0.300 0.185 0.214 0.451 0.540 0.154 0.347
WSAC+NND 0.643 0.457 0.312 0.198 0.231 0.454 0.548 0.166 0.357
WSAC+PD 0.698 0.511 0.357 0.232 0.241 0.479 0.633 0.173 0.403

Clotho

Audio-Caption
Pairs

Xu et al. [22] 0.556 0.363 0.242 0.159 0.169 0.368 0.377 0.115 0.246
Koh et al. [23] 0.551 0.369 0.252 0.168 0.165 0.373 0.380 0.111 0.246
Kim et al. [9] 0.560 0.376 0.253 0.160 0.170 0.378 0.392 0.118 0.255
Mei et al. [7] 0.601 - - 0.180 0.185 0.400 0.488 0.133 0.310

Captions
Only

WSAC 0.462 0.282 0.173 0.102 0.166 0.343 0.265 0.113 0.189
WSAC+NI 0.525 0.314 0.193 0.118 0.164 0.352 0.315 0.113 0.214
WSAC+ES 0.546 0.332 0.203 0.120 0.159 0.353 0.301 0.109 0.205
WSAC+NND 0.498 0.294 0.179 0.106 0.166 0.338 0.332 0.113 0.222
WSAC+PD 0.532 0.324 0.200 0.118 0.174 0.354 0.371 0.123 0.247

4.4. Results and Discussion

In this section, we present the results of our proposed methods on
the performance metrics and compare them with fully supervised
arts. Additionally, we illustrate the effectiveness of each strategy
in reducing the modality gap. As shown in Table 1 our methods
demonstrate comparable performance to prior state-of-the-art mod-
els despite never encountering in-domain audio data during training.
We present the results of our baseline approach described in Section
2 and the results of the baseline approach in conjunction with the
strategies presented in Section 3. It is evident that all the strategies
boost the performance of our baseline approach in both evaluation
sets. Interestingly the inference strategies outperform the training
strategies in most cases. We hypothesize that this is because they
utilize the Memory M which consists of in-domain text embed-
dings in order to bridge the modality gap. Our best-performing
method, namely Projection-based decoding achieves 80% and 83%
of the SPIDEr performance of the current fully supervised state-
of-the model in Clotho and AudioCaps evaluation sets respectively.
Additionally Projection-based decoding matches the performance
of the of fully-supervised approaches proposed by Kim et al. [9].
Koh et al. [23] and Xu et al. [22] in the Clotho evaluation set.
Visualization of embeddings: To further examine the effectiveness
of the proposed strategies we illustrate the embeddings in 2D space
using t-SNE in Fig. 3. In Fig. 3a and 3b we randomly sample au-
dio and text embeddings from the Clotho training set after applying
Noise Injection and Embedding Shift to the text embeddings. Fig.
3c and 3d illustrate randomly selected text embeddings from the
Clotho evaluation set, alongside the embeddings utilized for decod-
ing, namely the nearest neighbors and the projections, rather than
the paired audio embeddings. It is evident that all strategies are ef-
fective in condensing the modality gap showcased in Fig. 2, where
the audio and text modalities are embedded at arm’s length in their
shared representation space.

5. CONCLUSION AND FEATURE WORK

In this work, we propose a weakly-supervised approach for Auto-
mated Audio Captioning that requires a pre-trained CLAP model
and only additional text data to train on a target domain. Our method
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Figure 3: TSN-E visualizations of the embedding space after apply-
ing the strategies presented in Section 3.

alleviates the necessity of paired data in a target domain, which are
hard to collect. We demonstrate that by leveraging the shared em-
bedding space of CLAP we can learn to reconstruct the text from the
CLAP text embedding and during inference decode using the audio
embeddings. We show that such an approach is suboptimal due to
the presence of a modality gap and adopt strategies that effectively
mitigate it. Our best-performing method achieves comparable re-
sults to prior arts trained in a fully supervised manner. For future
work, we plan to study the effectiveness of our proposed approach
on other tasks, such as Music Captioning and Audio Question An-
swering. We further aim to train a mapping network to learn the gap
between the two modalities in a supervised manner.
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ABSTRACT

Automated Audio Captioning (AAC) aims to develop systems
capable of describing an audio recording using a textual sentence.
In contrast, Audio-Text Retrieval (ATR) systems seek to find the
best matching audio recording(s) for a given textual query (Text-to-
Audio) or vice versa (Audio-to-Text). These tasks require differ-
ent types of systems: AAC employs a sequence-to-sequence model,
while ATR utilizes a ranking model that compares audio and text
representations within a shared projection subspace. However, this
work investigates the relationship between AAC and ATR by ex-
ploring the ATR capabilities of an unmodified AAC system, without
fine-tuning for the new task. Our AAC system consists of an audio
encoder (ConvNeXt-Tiny) trained on AudioSet for audio tagging,
and a transformer decoder responsible for generating sentences. For
AAC, it achieves a high SPIDEr-FL score of 0.298 on Clotho and
0.472 on AudioCaps on average. For ATR, we propose using the
standard Cross-Entropy loss values obtained for any audio/caption
pair. Experimental results on the Clotho and AudioCaps datasets
demonstrate decent recall values using this simple approach. For
instance, we obtained a Text-to-Audio R@1 value of 0.382 for Au-
dioCaps, which is above the current state-of-the-art method without
external data. Interestingly, we observe that normalizing the loss
values was necessary for Audio-to-Text retrieval.

Index Terms— Automated audio captioning, audio-text re-
trieval, ConvNeXt, DCASE Workshop

1. INTRODUCTION

In recent years, audio-language tasks have received greater atten-
tion due to advances in machine learning for text processing. For
example, the Automated Audio Captioning (AAC) task aims to cre-
ate machine learning systems that produce a sentence describing an
audio file, while the Audio-Text Retrieval (ATR) task aims to use a
caption to extract an audio from its database (Text-to-Audio, T2A)
or use an audio to retrieve a caption from its database (Audio-to-
Text, A2T). Research on these tasks is also boosted by the DCASE
Challenge and Workshop1, which proposed two tasks dedicated to
AAC and T2A. Although these tasks appear to be closely related,
they are usually performed by two different systems and architec-
tures. Those systems can sometimes share common weights [1],
but they need to be trained differently on several phases. In the im-
age captioning task, the authors of [2] proposed to use a captioning
system by describing each image and compare these descriptions to
the captions instead of the images. In this paper, we propose an-

1https://dcase.community/

other method for using an AAC system to perform the ATR task,
and we investigate the implications of using this system in this way.

2. SYSTEM DESCRIPTION

2.1. AAC system architecture

To achieve the AAC task, we employ a deep neural network with an
encoder-decoder architecture. We trained a ConvNeXt [3] (CNext)
model for audio tagging and used it as an encoder to produce frame-
level features to overcome the lack of audio-language data. The
ConvNeXt was trained on the AudioSet [4] audio tagging dataset
without the AudioCaps [5] audio captioning dataset files to avoid
biases. This encoder achieves a high mAP score of 0.462 on Au-
dioSet. The details of the architecture and training hyperparame-
ters are given in [6]. The encoder gives a list of features of shape
768 × 31 for a 10-seconds audio clip, which are projected by a
sequence of dropout set to 0.5, dense layer, a ReLU activation and
another dropout set to 0.5. The decoder is a standard transformer de-
coder architecture [7] with six decoder layers blocks, four attention
heads per block, a feedforward dimension of 2048, a GELU [8] acti-
vation function and a global dropout set to 0.2. Unlike a lot of AAC
and ATR systems, no pre-trained weight has been used for the de-
coder/word modelling part. We found that freezing the ConvNeXt
encoder leads to lower variances, so we decided to pre-compute all
its embeddings to train only the decoder part. The whole model
contains 28M frozen parameters and 12M trainable parameters.

2.2. Data augmentation

During our training with the decoders, we added three different aug-
mentations on audio and input word embeddings to reduce overfit-
ting and improve model generalization. Mixup [9] modifies the in-
put audio and word embeddings during training, with α set to 0.4.
Each embedding is mixed with another one in the current batch, ex-
cept for the target, which remains unmixed. Label Smoothing [10]
is applied to the target one-hot vectors to reduce the maximal prob-
ability of each word and limit the confidence of the model. Finally,
SpecAugment [11] masks a part of the audio frame embeddings,
with 6 stripes dropped with a maximal size of 4 in time axis and 2
stripes dropped with a maximal size of 2 in feature axis.

2.3. Using a captioning system for retrieval

The first idea to use an AAC system for ATR is to generate pre-
dictions to describe each audio file and compare each text query to
each description using a metric like BLEU, CIDEr-D or SBERT, as
proposed in [2], but we found low results using this strategy. We
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Table 1: AAC results on Clotho and AudioCaps testing subsets. Our results are averaged over 5 seeds. WC stands for WavCaps [12] dataset.
Best values for each dataset/metric are in bold, and best values without external data are underlined.

Dataset System Train data #params METEOR CIDEr-D SPICE SPIDEr SPIDEr-FL

CL
BEATs+Conformer [13] CL+AC 127M .193 .506 .146 .326 .326
CNN14-trans [14] CL 88M .177 .441 .128 .285 N/A

CNext-trans (ours) CL 40M .189 .464 .136 .300 .298

AC
HTSAT-BART [12] AC+WC 171M .250 .787 .182 .485 N/A

Multi-TTA [15] AC 108M .242 .769 .181 .475 N/A

CNext-trans (ours) AC 40M .246 .763 .183 .473 .472

believe that AAC systems tend to produce less detailed and diversi-
fied sentences than references, which leads to a loss of information
when using it to summarize the audio content into a single sen-
tence. Typically, the vocabulary size used during inference is only
around 617 distinct words over the 1839 words present on average
in the references for the Clotho development-testing subset. AAC
systems are usually trained to predict the next token of a sentence
using previous words and the audio file. This means that the model
actually takes as input an audio and a caption, and the loss could
be used to score this input. We decided to simply use the Cross-
Entropy (CE) loss used in training to score each pair, and expecting
that an AAC system should be able to give a higher loss value when
the input caption does not match the input audio file than when they
match. Equations 1a and 1b describe how an audio and text element
are retrieved using the CE.

T2A(t, A, f) = argmin
a∈A

CE(f(a, tprev), tnext) (1a)

A2T(a, T, f) = argmin
t∈T

CE(f(a, tprev), tnext) (1b)

where t corresponds to a caption, T is the list of all captions, a is an
audio file from the A list of audio files. f is the AAC system which
produces the distributions of probabilities for the next words tnext

given the previous words tprev in the context of an audio file.

3. EXPERIMENTAL SETUP

3.1. Datasets

AudioSet [4] is the largest audio tagging dataset publicly available
and contains 2M pairs of audio/tag. The audio files last for 10 sec-
onds extracted from YouTube videos and the dataset contains 527
different sound events tags. Clotho [16] (CL) is an AAC dataset
containing 6974 audio files ranging from 15 to 30 seconds in length
extracted from the FreeSound website. The dataset is divided into
three splits used respectively for training, validation and testing,
containing five captions per audio file. In our experiments, each
audio file is resampled from 44.1 kHz to 32 kHz. During training,
we randomly select one of five captions for each audio file. Audio-
Caps [5] (AC) is the largest AAC dataset written only by humans,
containing 51308 audio files from the AudioSet dataset. Since origi-
nal YouTube videos are removed or unavailable for various reasons,
our version of the train split contains 46230 out of 49838 files, 464
out of 495 in the validation split and 912 out of 975 files in the test
split. In addition, we slightly improve caption correctness in the
training subset by manually fixing 996 invalid captions with gram-
matical and typographic errors. For the two AAC datasets, captions
are put in lowercase and all punctuation characters are removed.

The codebase used to download, read and extract data is a package
named aac-datasets2.

3.2. Metrics

For the AAC task, we report the five metrics used in the DCASE
Challenge task 6a. METEOR [17] is based on the precision and
recall of the words. CIDEr-D [18] uses the TF-IDF scores of the
shared n-grams between candidates and references. SPICE [19]
builds a graph representing the scene described by the captions and
computes an F-score with its common edges. SPIDEr [20] averages
the two previous metrics and finally, SPIDEr-FL3 is a combination
of the SPIDEr metric with a pre-trained system designed to detect
fluency errors. When one of them is detected, the SPIDEr score is
divided by a factor of 10. The codebase for AAC metrics is avail-
able as a public Pip package4 named aac-metrics. For the ATR task,
we use the Recall@k metric, which measures if a relevant (ground
truth) element is in the top-k retrieved elements.

3.3. Hyperparameters

The number of training epochs K is set to 400 with a batch size
set to 512. The optimizer used is AdamW with an initial learning
rate (lr0) set to 5 · 10−4, β1 set to 0.9, β2 set to 0.999, ϵ set to
10−8 and weight decay set to 2. Weight decay is not applied to
the bias contained in the network. The learning rate is decreased
during training at the end of each epoch k using a cosine scheduler
rule: lrk = 1

2

(
1 + cos( kπ

K
)
)
lr0. The gradient L2-norm is clipped

to 1 to avoid collapsing across seeds, the label smoothing reduces
maximal target probability by 0.2 and the mixup α hyperparame-
ter is set to 0.4. Since only the projection and the decoder part are
trained, a single AAC experiment runs in one hour on AC and three
hours on CL datasets with one V100 graphics card. To validate our
model, we used the FENSE metric [27] which is based on the cosine
similarity of the embeddings produced by a pre-trained Sentence-
BERT model combined with the same fluency error detector used
in SPIDEr-FL. During validation and inference, we used the stan-
dard beam search algorithm to generate better sentences. In order to
limit the number of repetition tokens, we forced the model to avoid
generating the same word twice in a single sentence, except for stop
words defined in the NLTK package.

2https://pypi.org/project/aac-datasets/0.3.3/
3https://dcase.community/challenge2023/

task-automated-audio-captioning
4https://pypi.org/project/aac-metrics/0.4.2/

87

https://pypi.org/project/aac-datasets/0.3.3/
https://dcase.community/challenge2023/task-automated-audio-captioning
https://dcase.community/challenge2023/task-automated-audio-captioning
https://pypi.org/project/aac-metrics/0.4.2/


Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

Table 2: Audio-language retrieval results on Clotho and AudioCaps testing subsets. Our results are averaged over five seeds. WC stands for
WavCaps dataset. Best values for each dataset/task/metric are in bold, and best values without external data are underlined. The asterisk *
denotes the results scaled by a min-max strategy described in 4.2.

Retrieval System Training #params Text-to-audio Audio-to-text
dataset dataset(s) R@1 R@5 R@10 R@1 R@5 R@10

CL

PaSST-N4 [21] CL+AC+WC 441M .261 .553 .693 N/A N/A N/A

CNN14-BERT [12] CL+WC 214M .215 .479 .663 .271 .527 .663
CNN14-BERT [22] CL 192M .167 .410 .539 N/A N/A N/A

Triplet-weighted [23] CL 185M .142 .366 .497 .169 .381 .514
TAP+PMR [24] CL 185M .171 .396 N/A .182 .399 N/A

CNext-trans (ours) CL 40M .137 .349 .480 .148* .404* .541*

AC

HTSAT-BERT [12] AC+WC 141M .422 .765 .871 .546 .852 .924
ONE-PEACE [25] CL+AC+7 others 2B .425 .775 .884 .510 .819 .920

MMT [26] AC 290M .361 .720 .845 .396 .768 .867
Multi-TTA [15] AC 187M .347 .703 .832 .402 .740 .872
TAP+PMR [24] AC 185M .368 .727 N/A .417 .762 N/A

CNN14+TAP+PMR [24] AC 192M .334 .688 N/A .431 .733 N/A

CNext-trans (ours) AC 40M .382 .733 .853 .398* .814* .919*

4. RESULTS

4.1. AAC and ATR results

The AAC results are given in Table 1. We also reported the SOTA
scores for each dataset, without reinforcement learning, without en-
semble method and with or without external captioning datasets.
On CL, our model performs better than the previous SOTA with-
out external data (CNN14-trans) in all metrics and uses more than
twice fewer parameters (40M instead of 88M). We believe this is
mainly due to our stronger pretrained encoder, which has a higher
mAP score on AudioSet and produces better features for AAC. On
AC, the model reach a score very close to the Multi-TTA method,
with only 0.002 absolute difference in SPIDEr despite having an
unbiased encoder not trained on the testing files of AC.

Retrieval results are shown in Table 2. Just as AAC results, we
reported the SOTA methods without ensemble methods and with or
without external captioning datasets. Since all values are not al-
ways reported, we added several SOTA methods to compare our
system with at least one other methods for each column. For the
T2A task on the CL dataset, our model performs better than the
DCASE baseline, but worse than most SOTA methods. However,
the system achieves the highest scores on AudioCaps without ex-
ternal data. Somewhat surprisingly, our system outperforms other
methods without external data on the A2T task on R@5 and R@10,
but not on the R@1 metric on both datasets.

4.2. A2T min-max scaling

We found that even if our system performs well on T2A task, the
results on A2T one were really low compared to the SOTA ones.
The system reaches an R@1 of 0.146 on AC and 0.038 on CL when
using raw loss values. We found that this is caused by a subset of
the captions, where the loss values are almost always lower than
the others for all audio files. For instance, in Figure 1a, the ver-
tically lowest green curve corresponds to the loss of a query with
all the other audio files, and is almost always lower than the other
curves. In particular, only 120 unique captions are retrieved for
1045 queries during the A2T task with raw losses, but we did not

find a strong correlation between these captions and the frequencies
of their words or their length. In order to clarify why it impacts only
the A2T task and not T2A, we provide a simple example in Table 3.
This example shows the loss values for three different audio Ai with
their corresponding captions Ci. When we perform the T2A task,
we select the retrieved audio Ai with the lowest loss value in the
column i, which achieves a perfect score in that case. However,
when we perform A2T, only the caption C1 is retrieved, because
its column has a range of value different from the others, which
explains the poor results when using raw loss values. To tackle
this problem, we propose a post-processing which scales each “col-
umn” (i.e., each series of values corresponding to a single caption).
In particular, we tried to normalize and standardize, but a simple
min-max scaling has led to the best results. We also added a rule
when two retrieved captions has the same score (zero when they are
the minimal value of their column) by using their original losses to
decide which one will be used. The impact of this scaling on the
A2T losses are given in figures 1b and 1c.

Table 3: Real loss values over 3 audio files and captions.

C1 C2 C3

A1 1.7 8.4 8.1
A2 2.1 7.6 8.5
A3 2.0 8.3 6.5

5. BENEFITS AND DOWNSIDES OF USING AAC SYSTEM

Recently, the authors of paper [28] showed that ATR systems usu-
ally fail to capture high-level relations between sounds by showing
corrupted captions to an ATR system. More precisely, they propose
to replace in caption the word “after” by “before” and vice versa
to invert the sequence of sound events described and name this the
Before-After Test (BAT). The ATR system should be able to give a
lower score for an incorrect input caption than for a correct one. We
believe that audio-language systems should be able to capture that
kind of information better than audio event classes, but the actual
metrics do not usually reflect the model performance on it. In ad-

88



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

0 200 400 600 800 1000
Audio files

2

3

4

5

6

7

8

C
E

(a) Sorted losses for 3 captions over audios.

0 1000 2000 3000 4000 5000
Captions

2

3

4

5

6

7

8

C
E

(b) Sorted losses for 3 audios over captions.

0 1000 2000 3000 4000 5000
Captions

0

0.2

0.4

0.6

0.8

1

C
E

(c) Scaled sorted losses for 3 audios over captions.

Figure 1: Losses for 3 queries over all retrieved items. The position of the relevant (ground truth) elements are shown with a cross.

dition to the perturbation proposed by them, we proposed to switch
the relation type from sequence to superposition and vice versa by
replacing some words or inverting the propositions of the sentence.
For example, the sentence “a man speaks then a dog barks” can
become “a man speaks as a dog barks” if we replace “then”, or be-
come “a dog barks then a man speaks” if we invert the propositions
between “then”. We detailed the different words tested in Table 4.

Table 4: Detailed words used for Replace. BAT stands for Before-
After-Test, seq2sup for sequence-to-superposition and sup2seq for
superposition-to-sequence.

Set Words Replaced by one of

BAT before after
after before

seq2sup followed by, and then, as, whilethen, before, after

sup2seq as, while followed by, and then,
then, before, after

Table 5: Accuracy over different perturbations on Clotho
development-testing subset. 0.5 is the score of a random model.

System Type Set Accuracy

MLP [28]

Replace BAT

.496
MLP+ACBA [28] .554
TFMER [28] .509
TFMER+ACBA [28] .685

CNext-trans (ours) Replace
BAT .768

seq2sup .825
sup2seq .903

CNext-trans (ours) Invert
BAT .892
seq .906
sup .778

The Table 5 shows that our model performs very well at dis-
criminating sound events relations, with 76.8% for the BAT, higher
than the best of the compared study (68.5%). We can also see that
our model performs very well on other tests which perturb the rela-
tions, with 90.6% It could imply that our model effectively captures

the sequence and superposition relations. We also noticed for the
Invert test with superposition words that our model is still able to de-
tect the correct caption, probably because the first sounds described
in those sentences are the loudest or longest ones in the audio.

Nevertheless, an AAC system requires computing the whole de-
coder pass-forward for each pair audio/caption, while usually ATR
systems compute separate embeddings for each modality. For the
A2T task, the post-processing is required to achieve an acceptable
performance, necessitating to keep the minimal and maximal value
of the loss for each caption, or an estimation of them. If a new
caption is added to the database, the minimal and maximal value
also need to be computed or estimated with several audio files. This
scaling should also be required for zero shot experiments, which is
close to the A2T task.

6. CONCLUSIONS

In this study, we propose a straightforward method for leveraging
any standard AAC system for A2T. We demonstrate that despite not
being specifically trained for it, an AAC system can achieve reason-
able performance on both the T2A and A2T subtasks. Furthermore,
it can even attain state-of-the-art scores compared to ATR meth-
ods that do not employ external data. We also observed that our
model often overestimates the loss value for a subset of captions
in the A2T task, resulting in poor results in the initial configura-
tion. To address this issue, we introduced a post-processing strat-
egy based on min-max scaling to mitigate bias in the scores. This
adjustment significantly improved the results, for instance, increas-
ing R@1 from 0.038 to 0.148 on Clotho. Finally, we evaluated our
system by perturbing the input captions and found that it outper-
forms another ATR method in distinguishing various sound event
relations. In the future, potential research directions could involve
modifying AAC training using a contrastive-based loss to enhance
ATR performance or developing new benchmarks and test databases
to refine the evaluation of ATR systems.
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ABSTRACT

Sound event detection involves the identification and temporal lo-
calization of sound events within audio recordings. Bioacous-
tic sound event detection specifically targets animal vocalizations,
which necessitate substantial time and resources for manual anno-
tation of temporal boundaries. This paper aims to address the chal-
lenges associated with bioacoustic sound event detection by propos-
ing a novel prototypical learning framework. Our approach fuses
contrastive learning and prototypical learning to use the limited
amount of dataset at its utmost. Further, our framework leverages
finetuning strategy with a novel loss function to develop a robust
framework. Experimental results on a benchmark dataset demon-
strate the effectiveness of our proposed method in accurately de-
tecting and localizing bioacoustic sound events, improving the F1
score from 29.59% to 83.08%.

Index Terms— Few-shot Learning, Contrastive Learning, fine-
tuning, bioacoustic sound Event Detection

1. INTRODUCTION

Sound event detection is the task of recognizing the sound events
and their respective temporal start and end times in a recording [1].
In the case of bioacoustic sound event detection, the task focuses on
animal vocalizations, which demand time and resources to anno-
tate each time stamp [2]. Few-shot learning (FSL) is a supervised
learning method that can achieve high performance on data from
completely different domains even with a small amount of data.
As all of these tasks encounter data scarcity and the difficulty of
building a framework generalized in the acoustic domain, FSL has
come into the limelight. In the previous DCASE-T5 challenges,
submitted systems achieved great performance by using the trans-
ductive inference method [3, 4, 5], improved prototypical learning
[6], contrastive learning [7], and multi-class classification learning
via splitting the audio segment into frame-level [8]. Nevertheless,
proposed methods showed relatively low performance on the eval-
uation dataset compared to the performance obtained on the vali-
dation set. The majority of existing methods adopted prototypical
learning to identify positive classes from negative classes. Proto-
typical learning itself demonstrated high performance, there were
two limitations to taking the performance to another level. Firstly,
the capability of high-level feature learning was challenging since
the model was trained on classifying binary classes, which are pos-
itive and negative. Second, the loss function of current prototyp-
ical learning [9] focuses on pulling positive classes, which we re-
fer to as “positive-based prototypical loss function (PPL)”. It may
be promising on the training dataset, which contains a sufficient
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Figure 1: Overview of the proposed framework. The framework
consists of a pretraining stage and finetuning stage. The pretraining
stage is described in (a). The encoder fθ is trained on the train-
ing dataset through supervised contrastive loss (SupCon) and PPL
functions. Also, the finetuning stage can be seen in (b). Pretrained
encoder fθ is finetuned on the validation dataset. We exploit NPL
function throughout finetuning process.

amount of positive class data, but it can lead to overfitting when the
amount of negative class data is much greater than that of positive
class. If the model is trained in the standard prototypical learning
manner, the embedding features of negative classes are highly likely
to be dispersed, while those of positive classes are well-clustered in
the embedding space. As the class imbalance problem is prevalent
in the bioacoustic domain, we propose a fine-tuning strategy with a
negative-based prototypical loss function (NPL) to ameliorate this
issue. The proposed method suggests additional training on nega-
tive class data to enhance the ability to aggregate negative classes
in the embedding space. By applying the proposed strategy, the
pretrained model can attain the superior capability to discriminate
between positive and negative classes. Through this strategy, the
pretrained model can achieve a higher F-measure on the validation
dataset.

2. METHODS

2.1. Outline

Our overall framework can be shown in Figure 1. We utilize
our method in N -way K-shot task. Prior to previous systems
[3, 4, 5, 6, 7, 8], we denote the positive segment as the target sound
event and the negative segment as the audio segments that do not
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contain the target sound event in each audio file. Given the fact that
training dataset contains 45 classes and task 5 is regarded as 5-shot
learning problem, we set N = 45 and K = 5. As each audio file
in the validation dataset should be considered independently, we
define negative segments from a single audio file as solitary nega-
tive classes instead of grouping negative segments into a single ‘un-
known’ class. Simply put, each audio file contains a single positive
class and a single negative class. Also, our system has 45 negative
classes along with 45 positive classes. This enables encoder net-
work fθ(·) to cluster positive segments more densely, maximizing
the gap between positive segments and negative segments.

2.2. Pretraining Stage

In the pretraining stage, we train the encoder network fθ(·). We
select each 2 × K positive segments and negative segments from
the dataset and set K segments as support segments and the other as
query segments. We denote the positive support set of class i as Sp

i

and the query set as Qp
i , and the negative support set and the query

set of class i can be expressed as Sn
i , Qn

i where |S| = |Q| = K.
The prototype of each set defined in class i, which is represented by
the mean embedding vectors, is defined as the equation below.

s∗i =
1

|S∗
i |

∑
(xi,yi)∈S∗

i

fθ(xi), q
∗
i =

1

|Q∗
i |

∑
(xi,yi)∈Q∗

i

fθ(xi) (1)

where (xi, yi) are the segment and its label of the class i in each set.
Equation 2 describes PP i

j , which is the euclidean distance between
positive embedding vectors of Qp

i and positive support prototype of
class j, spj .

PP i
j =

√∑
x∈Q

p
i

(fθ(x)− spj )
2

 (2)

In the same way, we denote PN i
j , which is the euclidean distance

between embedding vectors of Qp
i and negative support prototype

snj .

PN i
j =

√∑
x∈Q

p
i

(fθ(x)− snj )
2

 (3)

We can formulate positive-based loss for class i as the equation be-
low.

ppli = −log

(
exp

(
−PP i

i

)∑N
j=1

(
exp

(
−PP i

j

)
+ exp

(
−PN i

j

))) (4)

Using equation 4, PPL is described as the equation 5.

PPL =
1

N

N∑
i=1

ppli (5)

We pretrain fθ(·) with PPL function and supervised contrastive
(SupCon) loss function [10] to enhance the feature representa-
tion capacity of fθ(·). We build a 2-layer projection layer gθ(·)
to create embedding vectors for each audio segment in the fol-
lowing step. Thus, our total loss function for pretraining step is
Ltrain = LPPL + LSupCon. We adopt 3-layer ResNet [11] net-
work from previous years’ method [3] as fθ(·). We set the output
embedding dimension to 2048 for LPPL, and downsize the dimen-
sion to 512 for LSupCon. Through the pretraining stage, the en-
coder network fθ(·) can attain the ability to embed positive classes
well in the embedding space.
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Figure 2: Let zpi = fθ(x
p
i ) be the positive embedding vector in

the query set of class i, and zni = fθ(x
n
i ) as the negative embed-

ding vector in the following set. (a) depicts PPL function, which
seeks to minimize PP i

∗. (b) describes the NPL function, minimize
NN∗ while maximize NP i

∗. Given that the encoder network al-
ready possesses the capability to cluster positive classes, we utilize
NPL during the fine-tuning stage to increase the distance between
sn∗ and sp∗. The red line infers pull force, and the blue dotted line
refers to push force.

2.3. Finetuning Stage

After the pretraining stage, fθ(·) is capable of detecting positive
segments from negative segments. Nonetheless, the dataset is com-
prised of a large number of negative segments and a scarce amount
of positive segments in the bioacoustic domain. This fact may not
guarantee the good performance of fθ(·) on the general bioacoustic
domain. In order to resolve data scarcity and performance mainte-
nance issues, we figured that a sole training stage was not enough.
Based on the unique characteristic of the bioacoustic dataset, we
finetune fθ(·) to aim at negative-based feature learning, which is
the opposite of the aforementioned stage. We display a comparison
of PPL and NPL in Figure 2. Further, we propose a further devel-
oped Distance-based NPL function by incorporating the Furthest
Point Sampling (FPS) algorithm [12] into the NPL function.
Negative-based Prototypical Loss We add an additional definition
of distances between embedding vectors of Qn

∗ and support proto-
types. Unlike PPL, NPL minimizes the distance between negative
embedding vectors and sn while maximizing the distance between
the positive embedding vectors. We redesign the positive-based loss
ppli as the equation 6.

pnli = −log

(
exp

(
PN i

i

)∑N
j=1

(
exp

(
PP i

j

)
+ exp

(
PN i

j

))) (6)

Following the equations 2 and 3, we define NP and NN as eu-
clidean distance of negative query embedding vectors between the
positive support prototype and negative support prototype. Equa-
tion 7 and 8 describes NP and NN specifically.

NP i
j =

√∑
x∈Qn

i

(fθ(x)− spj )
2

 (7)

NN i
j =

√∑
x∈Qn

i

(fθ(x)− snj )
2

 (8)
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And we add new negative-based loss nnli to minimize the gap be-
tween negative embedding vectors and sn. The following distance
function is described below.

nnli = −log

(
exp

(
−NN i

i

)∑N
j=1

(
exp

(
−NP i

j

)
+ exp

(
−NN i

j

))) (9)

With equations 6 and 9, NPL function can be summarized as equa-
tion 10.

NPL =
1

N

N∑
i=1

(pnli + nnli) (10)

By finetuning fθ(·) with LNPL, fθ(·) learns the ability to cluster
negative embedding vectors and negative prototype more densely,
giving the effect of separating positive segments and negative seg-
ments.
Distance-based Negative-based Prototypical Loss While NPL
loss function randomly picks K support features and K query fea-
tures from 2 × K arbitrarily chosen features, we extend NPL loss
function by adopting the idea of the Furthest Point Sampling (FPS)
algorithm. FPS algorithm is a classic method used in 3D point
clouds [12]. Since we aim to clump negative embedding vectors
and negative prototype, we believe the distance-based selection of
query and support features can maximize the efficacy of NPL loss
function. All distances between 2×K randomly extracted positive
features and 2 × K negative features are calculated. The positive
and negative features with the shortest distance are selected as a
pair of reference features. Nearest-neighbor sampling method [13]
is attempted based on the selected positive reference feature and
negative reference feature. Thus, we set negative features placed
close to the positive features as a negative support set, and positive
features closely located to the negative features as a positive query
set. Then, we optimize the loss function to maximize the distance
between the negative prototype and positive query set so that we
can ultimately maximize PN . We conduct the furthest sampling
based on the prior negative reference feature in negative features.
Through this process, negative features located on the outskirts will
be selected from negative features, and non-selected features will
be located on the inner side among negative features. We set the
selected features to a negative query set and the unselected features
to a negative support set. The negative prototype created from neg-
ative support set is used to minimize the distance between negative
query set, eventually minimizing NN . In this way, we can boost
the initial goal of NPL by optimizing the maximization of positive-
negative distance and minimization of negative-to-negative distance
at the same time. The following procedures are illustrated in Figure
3. For post-processing and inference, we applied methods proposed
in the DCASE 2022 challenge [3].

3. EXPERIMENT

3.1. Experimental setup

We conducted the experiments for two purposes. First, we prove
that our novel framework is more applicable in the few-shot learning
domain than baseline methods. In the previous DCASE challenges,
transductive inference (TI) method adapted from [14] played a cru-
cial role in challenge [15, 16, 17, 18]. Here, we apply part of the TI
method as a variant to our scheme. Thus, we compare variants with
our method to analyze the impact of our novel finetuning strate-
gies as an ablation study. Second, we intend to prove the efficacy

Figure 3: We denote each positive and negative reference feature as
Refp and Refn. The triangle, circle, and star-shaped figure each
represent the feature vectors of the support set, the query set, and
the prototype respectively. (a) shows the process of maximizing
PN based on Ref∗ through nearest-neighbor sampling. (b) is the
process of minimizing the NN via the furthest point sampling.

of our proposed method by comparing the results of grafting the
finetuning strategy. We set contrastive learning and few-shot learn-
ing as our basic framework. In all experiments, the learning rate
was set to 0.001 and the input length was fixed at 0.2 seconds. To
prevent overfitting on any dataset, we implemented early stopping.
We did not use any augmentation or additional acoustic features.
We adopted the official evaluation metric1 as our evaluation metric.
Since the full annotation of the evaluation set was not released in
public, we considered the validation set of the DCASE 2023 task 5
dataset as the evaluation set.

Precision (%) Recall (%) F-measure (%)
Template Matching 2.42 18.32 4.28

Prototypical Network 36.34 24.96 29.59
DCASE2022 Winning Team [8] 77.50 71.50 74.40

Ours Pretraining 74.27 56.70 64.31
Finetuning 89.93 77.20 83.08

Table 1: The precision, recall, and F-measure of the validation set.

4. RESULTS

4.1. Performance Comparison

We compare our methods with baseline schemes and the winning
team of DCASE 2022 [8]. we describe our basic framework as
the “backbone” for convenience. Pretraining denotes the perfor-
mance of the encoder fθ(·) after the pretraining stage, and Fine-
tuning denotes the performance after the finetuning stage. As can

1https://github.com/c4dm/dcase-few-shot-bioacoustic
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System PB ME HB Overall
F-measure (%) Pre (%) Rec (%) F-measure (%)

Backbone 45.27 74.58 80.66 66.39 59.28 62.64
w. TI method 47.18 85.71 72.50 74.27 56.70 64.31

w. Distance-based NPL finetuning 63.04 95.41 95.60 90.17 74.38 81.52
w. TI method & Distance-based NPL finetuning 63.45 99.05 97.53 89.93 77.20 83.08

Table 2: The precision, recall, and f-measure of each subset in the validation set.

be seen in Table 1, our proposed method outnumbers both base-
line and 2022 challenge-winning team by a large margin. We also
evaluated our encoder network fθ(·) after each stage to confirm the
impact of the distance-based NPL function. The performance dis-
parity between the two stages clearly verifies distance-based NPL
function actually have a meaningful impact on developing the ca-
pacity to detect positive sound event even in the highly imbalanced
dataset, increasing the performance up to 18.77%. In Table 2, we
compare our basic scheme and its variants. We select the condition
where the distance-based NPL finetuning strategy and TI method
are additionally applied to our backbone for comparison. We select
systems with different conditions as mentioned in section 3.1. Our
system showed relatively low performance on the PB dataset rel-
ative to other datasets in general. We assume this phenomenon is
due to the drastic ratio between the positive segment and the nega-
tive segment as it contains a relatively short duration of the positive
segment. Since the features extracted from positive segments are
limited, the encoder network fθ(·) finds it more difficult to detect
positive segments. This phenomenon was consistently observed in
the performance of the DCASE2023 evaluation dataset [19]. All
of our submitted systems showed relatively low performance on the
CT dataset, in which the majority of positive segments are less than
0.2 seconds, which is the minimum input length of our method.

4.2. Ablation Study

In the ablation study, we compare our baseline scheme and the com-
bination of two different novel finetuning strategies. We compared
the case where only the basic training stage was performed for each
baseline and the case where original NPL finetuning and distance-
based NPL finetuning was applied.

System F-measure
Backbone 62.64

w. NPL finetuning 79.79
w. Distance-based NPL finetuning 81.52

Table 3: Ablation study of the proposed method.

Table 3 states that finetuning strategy with the NPL function and
the distance-based NPL function shows a noticeable numerical dif-
ference. We presume the following difference is based on the pro-
totype selection. While typical NPL selects support features and
query features randomly, distance-based NPL is based on euclidean
distance, which is more definite. This induces the network to fine-
tune in a way that estimates the position of the positive prototype
and escalates PN , increasing performance more intuitively. The ef-
fect of distance-based NPL finetuning is visualized with t-SNE [20]
in Figure 4. As shown in figure 4, t-SNE of the same class tend to

cluster more densely after distance-based NPL is exploited. The fact
that the distance-based NPL performed better than the conventional
NPL was also confirmed in the performance of the evaluation set. It
was confirmed that the systems finetuned with distance-based NPL
performed better than the systems finetuned with typical NPL. The
performance gap was more prominent in the case where the positive
class and the negative class were very similar, such as MGE dataset
in the DCASE 2023 evaluation set [19].

Figure 4: (a) and (c) are extracted from the same audio, and (b) and
(d) are extracted from the same audio file. (a), (b) are visualizations
extracted after pretraining stage. and (c), and (d) are extracted after
finetuning stage. Red dot represents embedding vectors extracted
from positive segments, and blue dot represents vectors extracted
from negative segments.

5. CONCLUSION

In this paper, we presented a novel framework for few-shot bioa-
coustic event detection. Our method combines the contrastive learn-
ing method and prototypical learning and uses the novel finetuning
strategy of using a modified prototypical loss function. The pro-
posed pretraining process enables embedding positive class data on
the embedding space, NPL finetuning strategy enables pretrained
network to detect sound events in the environment where positive
sound events were unseen in the training stage or fine-tuning stage.
Experiments showed that the proposed framework can robustly sep-
arate positive and negative segments in highly imbalanced datasets.
Further, the fact that all of the submitted systems achieve high F-
measure scores on two new subsets proves its ability to generalize
to new classes [19].
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ABSTRACT

Respiratory sounds are significant relevant indicators for respi-
ratory health and conditions. Classifying the respiratory sounds of
patients can assist doctors’ diagnosis of lung diseases. For this pur-
pose, many deep learning-based automatic analysis methods have
been developed. However, it is still challenging due to the lim-
ited medical sound datasets. In this study, we apply a pre-trained
Vision Transformer (ViT) based model from the Masked Model-
ing Duo (M2D) framework for this task. While the M2D ViT pre-
trained model provides effective features, we think combining fea-
tures from different layers can improve the performance in this task.
We propose a multi-layer feature fusion method using learnable
layer-wise weights and validate its effectiveness in experiments and
an analysis of pre-trained model layers. Our approach achieves the
best ICBHI score of 60.68, 2.39 higher than the previous state-of-
the-art method.

Index Terms— Respiratory Sound Classification, ICBHI, Pre-
trained Model, Feature Fusion, Masked Modeling Duo

1. INTRODUCTION

Respiratory diseases have recently become the third cause of death
worldwide [1]. And due to the impact of the COVID-19 global pan-
demic, the need for diagnosing lung disease with efficient methods
with accuracy and lower work burden for physicians and medical
experts has been increasing. Respiratory sound classification is a
task to identify whether a breathing cycle of a recorded sound sam-
ple contains adventitious sounds related to potential disease in the
respiratory system. Conventional respiratory sound classification
requires medical experts to utilize stethoscopes to conduct ausculta-
tions for patients in person, which is highly demanding for hospitals
and other medical institutions [2].

International Conference on Biomedical Health Informatics
(ICBHI) Respiratory Sound Database [3] is a public database for de-
veloping the algorithms on respiratory classification tasks recorded
by microphones and electronic stethoscopes. The audio samples
in this dataset consist of respiratory cycles in variant lengths with
four kinds of annotations: normal, crackles, wheeze, and the combi-
nation of both anomalies. Crackles are discontinuous adventitious
sounds in breathing cycles and can be an early sign of cardiorespira-
tory conditions. At the same time, wheezes are continuous and mu-
sical sounds of anomaly, indicating the patient’s obstructive airway
conditions. The classification for these types of breath sounds can
be the basis for diagnosing or monitoring diseases such as asthma,
Chronic Obstructive Pulmonary Disease (COPD) [4], and pneumo-
nia. With the release of this dataset, more and more research atten-
tion has been drawn to the respiratory sound classification task and
further the automatic assistance for doctors’ diagnoses.

(a) Conventional (b) Proposed

Figure 1: Overview of the conventional method and the multi-layer
feature fusion workflow.

The sounds in the ICBHI dataset were recorded from various
positions and by many types of equipment, making distinguishing
different respiratory cycles difficult. Besides, the dataset scale is
limited. Until now, several previous studies have proposed mod-
els to tackle this task, and many novel structures or algorithms and
data augmentations have been introduced [5–11]. With the addition
of the limited dataset, pre-training visual models with large-scale
datasets have been widely used in ICBHI task [7–11].

The models from the self-supervised learning framework pre-
training on large-scale audio datasets have recently achieved com-
petitive performance in the image field and several audio tasks
[12–15]. In this study, we used pre-trained ViT [16] models from
the Masked Modeling Duo (M2D) framework [15] (M2DViT). We
adopted the M2DViT without changing the backbone configura-
tions, such as patch size and grid size.

While the features from the M2DViT can perform well in vari-
ous tasks, we expect to achieve even better performance by combin-
ing features from different layers to form effective representations
of audio samples. In this study, we explore the possibility of the
feature fusion available from the M2DViT layers for solving the
ICBHI task and propose methods for fusing effective features. We
experiment with our methods on the ICBHI task and validate the
effectiveness. In addition, we analyze the contribution of layer fea-
tures and show that the later layers contribute more.

In summary, the main contributions of this paper are as follows:
- Proposing to compose effective representations for the respira-

tory sound classification task using M2D layer features.
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- Conducting experiments with our multi-layer feature fusion
methods and comparing ours with the previous methods.

- Analyzing the performance of different layers of M2DViT and
their combinations in the respiratory sound classification task.

2. RELATED WORKS

2.1. Respiratory Sound Classification

Ever since the ICBHI2017 challenge and the release of the open
access dataset, researchers have trained and evaluated many deep
learning-based respiratory classifying methods to have better solu-
tions for this task. Early models like LungRN+NL [5] combine
ResNet-based architecture and mix-up augmentation method, and
then the attention mechanism was introduced with LungAttn [6].
The works after 2020 are widely presented with ImageNet [17] or
AudioSet [18] pre-training. And for RespireNet [8], the authors also
use a device-specified fine-tuning strategy to improve the perfor-
mance. The previous works are mainly based on ResNet structure
except for a recent work [11], which uses a simple CNN backbone
from PANNs [19] and contrastive learning with metadata strategy.
The self-supervised methods, such as contrastive learning, show
their validity in [11]. A concurrent work based on Audio Spectro-
gram Transformer (AST) [20] and contrastive learning with Patch-
Mix augmentation [21] shows that the pre-trained attention-based
model has the potential for better performance than other conven-
tional models.

2.2. Masked Modeling Duo

The adopted self-supervised learning framework of M2D [15]
is an effective method for general-purpose pre-training using a
masked prediction task. This method was originally inspired by
the Masked Autoencoder (MAE) [22] approach utilized in Masked
Image Modeling (MIM), along with the Bootstrap Your Own La-
tent (BYOL) [23] framework, which enables the direct acquisition
of latent representations through a target network.

In the two divided networks of M2D, the framework learns to
predict the output of the target network with the output of the online
network. At the same time, visible patches serve as input for the
online network, and masked patches for the target network. While
the online network weights are optimized to minimize the loss, the
weights of the encoder in target network ξ are updated based on the
exponential moving average (EMA) of the online network θ with a
decay rate τ .

M2D learns effective representations in the online encoder. Af-
ter training, only the trained parameter of the online encoder fθ is
transferred as a pre-trained ViT model, which we call M2DViT, for
downstream tasks. The M2DViT pre-trained weights are available
online1 and used in our experiments, which are pre-trained on Au-
dioSet [18]. Unlike previous works, we combine multi-layer feature
outputs.

2.3. Feature Fusion

The method of Feature Fusion was broadly proposed to deal with
multi-modal tasks [24, 25]. There are numerous approaches to ex-
tracting features from different levels of deep learning models. The
skip connection structure and multi-scale attention mechanism have

1https://github.com/nttcslab/m2d

Figure 2: The multi-layer feature fusion calculation flow. F0, T0,
and C are frequency bins, time frames, and channels in a spectro-
gram, respectively.

been widely used. For example, in the work, MS-CAM [26], an it-
erative attentional feature fusion method performs excellently in vi-
sion models. And for another instance, in the work of MFVT [27],
the authors proved that the fused features in the ViT-based model
are a potent strategy in the fine-grained visual categorization task.
Besides, in audio-related tasks, the multi-layer feature fusion serves
as a powerful method, as reported in [28]. The mechanism of multi-
layer feature fusion is similar to the skip connection essential for
convolutional networks such as ResNet [29] and DenseNet [30],
and various methods for connecting layers are proposed. The skip
connections encourage the networks to obtain semantic features
from the early layers of the model [31]. The fusion is usually
performed by operations of addition or concatenation with a fixed
weight of the features [29, 30].

3. METHODOLOGY

The encoder in M2DViT is based on the ViT backbone, consisting
of 12 transformer blocks as layers. The ViT first patchifies the input
mel-spectrogram and then processes it with a projection of a linear
layer, transferring the spectrogram into patch embeddings. Then
the fixed sinusoidal positional embedding is added to the input. The
multi-head attention is applied , followed by the MLP containing 2
linear layers with a Gaussian error linear unit (GELU) activation.
We denote the transformer blocks as transformer layers for simplic-
ity. The outputs from all transformer layers have the same shape,
and all the layer outputs are available for later use, such as classifi-
cation.

The conventional M2DViT, shown in Fig. 1(a), takes a spec-
trogram input, processes the input in the transformer layers, then
outputs the last layer feature z ∈ RB×T×D , where B is the input
batch size, T is the length of the sequence composed by encoded
spectrotemporal patches, and D is the embedded patch feature di-
mension. Then, only the output z is used afterward.
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One drawback of the conventional method is that the informa-
tion from different layers is not used as the representation for au-
dio [32]. The performance of the features from pre-trained ViT
layers can be imbalanced due to the structure and training met-
rics [28]. To address this problem, we introduce multi-layer feature
fusion methods to combine the layer features. We also use learn-
able layer-wise weights to balance layers with better performance
automatically, which is optimized as the training epoch proceeds.
Our approach enables arbitrary combinations of the layer features
as effective representations for later use.

The pipeline for multi-layer feature fusion is shown in
Fig. 1(b). And Fig. 2 shows the details of the feature calcula-
tion flow. The output features of all the layers can be defined as{
zi ∈ RB×T×D|i ∈ L

}
, where zi is the i-th layer output and L is

the number of layers.
Then, we calculate the multi-layer feature fusion z̃ as follows:

z̃ = concat({wizi|i ∈ Lfus}) (1)

where the concat is a function that concatenates features on the di-
mension of D, Lfus is the set of layer indexes of desired fusion, and
wi is a learnable layer-wise weight of the i-th layer in the fused fea-
ture. Note that the z̃ forms the shape of RB×T×DNLfus , where NLfus

is the number of the fused layers. As a result, the multi-layer feature
fusion enables us to utilize useful information in the features from
all the desired layers.

As a final operation, we apply temporal poolings to summarize
time-framed features in a feature vector:

z′ = mean(z̃) + max(z̃) (2)

where z′ ∈ RB×DNLfus is the final fused feature vector used as the
input for later use (e.g., classification) and mean/max are temporal
operations each. We follow [28] for the effective temporal pooling
operation.

4. EXPERIMENTS

We conducted experiments to validate our proposals. The follow-
ing sections explain the dataset (Section 4.1), evaluation metrics
(Section 4.2), and experimental setup (Section 4.3). Then we show
experimental results with vanilla M2DViT (Section 4.4) and results
with our proposals as well as previous studies (Section 4.5).

4.1. Dataset

ICBHI Respiratory Sound Database [3] consists of 920 annotated
respiratory audio samples recorded from 126 patient subjects of the
labs and hospitals in Portugal and Greece. The samples are offi-
cially split into a train set (539 samples, 60%) and a test set (381
samples, 40%). The database contains two sets of annotations. One
is for whether a cycle contains crackles, wheezes, or a combina-
tion of both, and some with no adventitious respiratory sounds. The
other is the annotation of the locations of the adventitious respi-
ratory sounds. In the 6898 respiratory cycles, whose lengths vary
from 0.2s to 16.2s, 1864 contain crackles, 886 contain wheezes,
and 506 contain both crackles and wheezes. The others are normal
ones. The chest locations from which the recordings were acquired
are also provided. Noise levels in some respiration cycles are high,
which simulates real-life conditions. The recordings were collected
using heterogeneous equipment, and their duration ranged from 10s
to 90s. The average time duration of the cycles is 2.7s, and the total
length is 5.5h.

Method Masking ratio r Sp Se Sc

M2DViT 0.6 71.59±2.64 43.25±1.60 57.42±0.79
0.7 75.78±5.84 39.51±4.64 57.64±0.86

Table 1: The ICBHI performance comparison between different
pre-training masking ratios of M2DViT.

4.2. Evaluation Metrics

The evaluation metrics in our experiments are adopted from the
original ICBHI2017 challenge, which is common in the previous
papers. There are three scores, sensitivity Se, specificity Sp, and
the average of these two metrics ICBHI score Sc. They are calcu-
lated as the following formulas:

Se =
Pc + Pw + Pb

Tc + Tw + Tb
(3)

Sp =
Pn

Tn
(4)

Sc =
Se + Sp

2
(5)

where Pc, Pw, Pb, and Pn are numbers of right prediction for the
cycles containing crackles, wheezes, both of the two adventitious
sounds and none of them. While Tc, Tw, Tb, and Tn are the total
numbers of four categories respectively.

4.3. Experimental Setup

We used an Adam optimizer with a learning rate of 1e-4 and weight
decay of 1e-4, cosine scheduled in the M2DViT model. The batch
size is set as 64. The classifier used in our study is a 4-class linear
classifier. The input spectrograms are patchified with a patch size of
(16, 16), and the grid size is (5, 38). The number of encoder embed-
ding dimensions is 768. The ViT-base pre-trained model consists of
12 transformer blocks with the same number of attention heads [16].
We fine-tuned all the pre-trained ViT model weights in 150 epochs
and used weighted cross-entropy as our training and evaluating loss.

We used the same ViT and training settings described above for
all the setups. For the adaptive weight for all layers, we initialized
them as all layers weighted the same value of 1.0 and updated them
after training every epoch. All our experiments run five times with
random seeds, and we provide statistics of results.

4.3.1. Preprossessing and Data Augmentation

We followed the basic experiments settings with [11], in which the
authors also used mel-spectrogram as input. Due to the dataset’s
recording conditions, the audio samples’ sampling rates vary in an
extensive range from 4 kHz to 44.1 kHz. We first resampled them
into a fixed sampling rate of 16kHz. And for different durations
of the samples, we ensure that all samples have the same desirable
length of 8s. For longer samples, we limited them to 8s from the
beginning of each clip. While for the shorter samples, we circularly
pad them until we get the standard length. Because most of the
respiratory cycles are shorter than 8s.

In this length of time, the model can compose representations
for most of the respiratory cycles. The spectrogram transform set-
tings in our experiments are the default in M2D. The samples are
converted into a time-frequency representation of a log-mel spec-
trogram with 80 mel filterbanks, a window length of 400, and a hop
length of 160. The minimum and maximum frequencies are 50 Hz
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Method Architecture Pre-training Fused Layers Layer-wise Results
dataset weights Sp Se Sc

LungRN+NL [5] ResNet - - - 63.20 41.32 52.26
LungAttn [6] ResNet - - - 71.44 36.36 53.90

Wang et al. [7] ResNeSt [33] ImageNet - - 70.40 40.20 55.30
RespireNet [8] ResNet34 ImageNet - - 72.30 40.10 56.20
ARSC-Net [9] ResNet - - - 67.13 46.38 56.76

Nguyen et al. [10] ResNet50 ImageNet - - 79.34 37.24 58.29
Moummad et al. [11] CNN6 [19] AudioSet - - 75.95 39.15 57.55

M2DViT

M2D ViT [15, 16]
masking ratio=0.7 AudioSet

- - 75.78±5.84 39.51±4.64 57.64±0.86

M2DViT-Fusion

(i) 5th & 12th Fixed (1.0 for all) 75.43±5.22 41.18±5.80 58.30±0.97
(ii) 5th & 11th Fixed (1.0 for all) 82.05±4.16 38.06±3.24 60.05±1.00

(iii) 4th & 7th & 10th Fixed (1.0 for all) 79.69±2.68 39.96±1.56 59.83±0.72
(iv) All Fixed (1.0 for all) 79.71±3.58 40.34±2.55 59.97±0.69
(v) All Learnable 79.48±4.99 41.87±4.27 60.68±0.49

Table 2: The overall comparison of ICBHI performance of our methods and the previous ones. Except for the last result with learnable
layer-wise weight, all fused layer features are of the fixed weight of 1.0. All the results are presented with the mean values and standard
deviations.

Figure 3: The learned layer-wise feature weights of the M2DViT-
Fusion model with the best ICBHI score Sc. The weights are the
average of best epochs from 5 runs and normalized to the sum of 1.

and 8000 Hz. Then the transformed spectrogram is normalized and
standardized into a mean value of 0.3690 and a standard deviation of
0.2550. We also used the augmentation method SpecAugment [34]
as in [11]. The mask sizes for time and frequency are 20 and 40,
while stripes are 2 for both time and frequency in SpecAugment.
We shuffled the train samples, masking the blocks of the frequency
and time steps with time-wrapping augmentation to encourage the
network to learn robust features from the spectrogram.

4.4. Experiments with Vanilla M2DViT

We first compared M2DViT weights pre-trained with masking ratios
of 0.6 and 0.7 by fine-tuning them without our proposals. Table 1
shows that pre-trained M2DViT with a 0.7 masking ratio (M2D
r=0.7) performs slightly better than M2D r=0.6, and the Sc of these
two options are almost identical. While the original M2D r=0.6
showed better results on Se, M2D r=0.7 weight was better on Sp.
The original M2D r=0.6 showed better results on the speech tasks,
and M2D r=0.7 was better on music tasks [15]. ICBHI with respira-
tory sounds is supposed to be more speech-like breathing noise [3].
Therefore, we used M2D r=0.7 in the following experiments.
4.5. Experiments with Proposals

We applied our multi-layer feature fusion methods with various
layer combinations, denoted as M2DViT-Fusion, and compared
them with the previous methods. Table 2 shows the results of
the best-performing layer combinations in the brute-force param-
eter search, and Fig. 3 shows the learned layer-wise weights in the
M2DViT-Fusion of the epoch with the best ICBHI score Sc. It is

worth noting that the representation dimensionality varies from D
in M2DViT to D × 2 in (i) and (ii), D × 3 in (iii), and D × 12 in
(iv) and (v). For the sake of experiment time constraints, we learned
layer-wise weights only when using all layers.

We find that the 11th layer would provide the most significant
features for the ICBHI task; Fig. 3 shows that the 11th is the best
for (v) in Table. 2 with all layer fusion with learnable layer-wise
weights, and the (ii) 5th & 11th layer fusion shows the best Sp re-
sult. Fig. 3 also shows a trend that the later layers perform better,
though the performance drops at the last layer.

We also found that learning the layer-wise weights is better than
the fixed weights, showing the effectiveness of the layer feature
weighting; while the results of (v) with learnable weights and (iv)
with fixed weights are highly overlapping.

Compared with the previous studies, (v) fusing all layers
with learnable weights shows the best average ICBHI score of
60.68±0.49, about 2 point improvement from Nguyen et al. [10],
with a score of 58.29. For the Sp, (ii) 5th & 11th shows the best
result of 82.05±4.16, more than 2 point improvement from Nguyen
et al., with a score of 79.34. However, for the Se, ARSC-Net shows
the best result of 46.38. Overall, we think the results validated the
effectiveness of our proposals.

5. CONCLUSION
We introduced a novel feature fusion method to the classifica-
tion task on the ICBHI dataset. And in the experiments, our
M2DViT-Fusion methods showed a better performance than the
vanilla M2DViT. The results proved that multi-layer feature fu-
sion is an effective way to extract effective audio representations,
including the proposed learnable layer-wise weight. In the layer
weight analysis, we also found the later layers contribute more. The
fine-tuned model got the best ICBHI score of 60.68 on the ICBHI
dataset, which is improved by 2.39 compared to the previous SOTA
method. While we exhibited improvements, the result would still
need further improvement for practical diagnosis assistance. Pos-
sible directions may include effective augmentation techniques and
new large-scale respiratory sound datasets to help models achieve
desirable performance in the future.
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ABSTRACT

The prediction of a sound event detection (SED) system may be rep-
resented on a timeline by intervals whose bounds correspond to on-
set and offset respectively. In this context, SED evaluation requires
to find all non-empty intersections between predicted and reference
intervals. Denoting by M and N the number of predicted events
and reference events, the time complexity of exhaustive search is
O(MN). This is particularly inefficient when the acoustic scene of
interest contains many events (typically above 103) or when the de-
tection threshold is low. Our article presents an algorithm for pair-
wise intersection of intervals by performing binary search within
sorted onset and offset times. Computational benchmarks on the
BirdVox-full-night dataset confirms that our algorithm is signifi-
cantly faster than exhaustive search. Moreover, we explain how
to use this list of intersecting prediction–reference pairs for the pur-
pose of SED evaluation: the Hopcroft-Karp algorithm guarantees an
optimal bipartite matching in timeO((M +N)3/2) in the best case
(all events are pairwise disjoint) and O((M +N)5/2) in the worst
case (all events overlap with each other). The solution found by
Hopcroft-Karp unambiguously defines a number of true positives,
false positives, and false negatives; and ultimately, information-
retrieval metrics such as precision, recall, and F -score.

Index Terms— Evaluation procedures, sound event detection.

1. INTRODUCTION

Given a sound category of interest, the task of sound event detection
(SED) aims to identify occurrences of this sound category within
an audio recording. SED systems are optimized to pinpoint each
instance of the target sound over the time axis. This is known as
“strong” labeling, as opposed to “weak” labeling which only re-
ports presence versus absence. In recent years, the renewed interest
for deep learning in SED has found many fruitful applications to
conservation biology, urban science, industry, and healthcare.

Evaluating the performance of an SED system is not so simple
as evaluating a classifier of acoustic scenes. Let us denote the pre-
diction of the system by x and the reference by y. We use symbols
∧, ∨, and ¬ for conjunction (AND), disjunction (OR), and negation
(NOT) respectively. With weak labels, x and y boil down to a sin-
gle bit, and may be compared with elementary logical operations:
(x ∧ y) for a true positive (TP), (x ∧ ¬y) for a false positive (FP),
and (¬x∧y) for a false negative (FN). The time complexity of this
evaluation is independent of the content of x and y, i.e., O(1).

The situation is different with strong labels since they are local-
ized in time and potentially repeated over multiple instances. For

∗VL is supported by CNRS grant CAPTEO, WeAMEC grant PETREL,
and Horizon Europe BioacAI.

†BM is supported by NSF award 1955357.

this matter, we may express the prediction x in terms of a list of M
time intervals over R: (x1, . . . ,xM ) = ([a1, b1], . . . , [aM , bM ]).
Each of these intervals represents a different predicted instance of
the target sound, with the lower and upper bound denoting sound
onset (start time) and offset (end time) respectively. Likewise, we
define the reference y as a list ofN intervals: y = (y1, . . . ,yN ) =
([u1, v1], . . . , [uN , vN ]). The evaluation procedure specifies a bi-
nary operator, later denoted by ≈, which determines whether a pre-
dicted interval xm may be matched to a reference interval yn. An
important example of such operator consists in checking whether
xm and yn have a non-empty intersection:

(xm ≈ yn) ⇐⇒
(
xm ∩ yn

)
̸= ∅

⇐⇒ (am ≤ vn) ∧ (bm ≥ un). (1)

The predicted number of events is equal toM and the true num-
ber of events is equal to N . Meanwhile, computing the number of
true positives (TP) is more challenging because it posits that each
interval cannot be matched more than once during evaluation. For-
mally speaking, we consider a graph G whose vertices are parti-
tioned into two subsets, x and y, and whose edges E correspond to
all interval pairs (xm,yn) satisfying Equation (1). We seek three
subsets X ⊆ x, Y ⊆ y, and Z ⊆ E of highest cardinal, under
the constraint that each vertex xm ∈ X and each yn ∈ Y must be
incident to at most one of the edges in Z . Hence, SED evaluation
comprises two stages:

1. Construct the full edge set

E = {(xm,yn) ⊆ X × Y | xm ≈ yn}, (2)

2. Identify a maximal subset Z ⊆ E such that each interval of
(x ∪ y) appears at most once. In mathematical terms:

∀xm ∈ x,∀xm′ ∈ x \ {xm}, ∀yn ∈ y, ∀yn′ ∈ y \ {yn},
(xm,yn) ∈ Z =⇒

(
(xm′ ,yn) ̸∈ Z

)
∧
(
(xm,yn′) ̸∈ Z

)
(3)

The second stage is efficiently solved by the Hopcroft-Karp algo-
rithm [1]. Meanwhile, our work focuses on the first stage: i.e., to
efficiently identify all candidate matchings. This problem is solv-
able in time O(MN) by comparing all pairs of intervals. However,
in SED settings which cover long time periods, the number of de-
tected intervals may range in the thousands, making the all-pairs
matching approach inefficient in practice.

The key observation is that most comparisons of the form
xm ≈ yn will evaluate to false and can be discarded in advance.
Indeed, if we know a lower bound b on the onset un of yn, then we
can conclude that any interval xm = [am, bm] such that bm < b
is necessarily disjoint from yn; and likewise if we know an upper
bound a on the offset vn such that am > a.
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In this article, we propose an algorithm for evaluating SED effi-
ciently; i.e., without examining all pairs. More precisely, our algo-
rithm implements maximum cardinal matching on interval bigraphs
[2], and has an asymptotic time complexity of

O
(
(M +N)(logM + logN) + |E|

√
M +N

)
. (4)

We begin by explaining why a greedy approach, in which all
intervals are visited once, is not guaranteed to return the optimal
number of true positives, and thus should not be used. Then, we
present the two stages of our algorithm: construction of the interval
bigraph and maximum cardinality matching. We discuss the use of
our algorithm since 2021 as part of Task 5 of the DCASE challenge
on few-shot bioacoustic event detection; and its connection with an
existing algorithm for efficient evaluation of sound event detection
in mir eval. We conclude with a performance benchmark on a re-
alistic use case, namely, automatic detection of avian flight calls in
the BirdVox-full-night dataset [3].

2. SUBOPTIMAL GREEDY ALGORITHM

Algorithm 1 Exhaustive search of matching pairs (xm,yn). The
length of E is an upper bound on TP. Complexity: O(MN).
E = list()
for m = 1 to M do

for n = 1 for N do
if xm ≈ yn then

append (xm,yn) to E
end if

end for
end for
return E

Algorithm 2 Greedy search of matching pairs (xm,yn). Lists X
and Y have the same length as Z and contain non-repeating ele-
ments only. This algorithm gives a lower bound on TP and should
not be used for SED evaluation. Worst-case complexity: O(MN).
Z = list()
X = list()
Y = list()
for m = 1 to M do

for n = 1 for N do
if (xm ≈ yn) ∧ (yn ̸∈ Y) then

append (xm,yn) to Z
append xm to X
append yn to Y
break

end if
end for

end for
return X ,Y,Z

At first glance, the evaluation of an SED system may seem easy.
Since the number of true positives (TP) involves non-disjoint pairs
between a prediction interval xm and a reference interval yn, one
could list those pairs exhaustively with a double loop, as in Algo-
rithm 1. Yet, this algorithm involves O(MN) comparisons and
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Figure 1: Top: exhaustive search (Algorithm 1) overestimates the
number of true positives (TP) of sound event detection, defined as
the maximum cardinality matching between prediction (blue) and
reference (orange). Center: greedy search (Algorithm 2) underesti-
mates TP. Bottom: our algorithm (Algorithm 3) returns the correct
value of TP. See Section 2 for details.

only produces an upper bound on TP, since the same interval may
appear in multiple pairs of the list E . A potential workaround con-
sists in defining a list X containing all the prediction intervals that
have been matched so far, and grow it as we traverse the list x; and
likewise for Y and y. By only admitting a new pair (xm,yn) if
xm does not already belong to X nor yn to Y , one guarantees that
each prediction interval is matched to at most one reference interval
and vice versa: see Algorithm 2. This is a form of “greedy” search:
it makes a locally optimal choice at each stage, yet is globally sub-
optimal. In this instance, the inner loop in Algorithm 2 consists in
looking for an unmatched reference interval (yn ̸∈ Y) such that
xm ≈ yn, given an unmatched prediction interval (xm ̸∈ X ).

Figure 2 illustrates the problem of SED evaluation between a
prediction of M = 4 intervals and a reference of N = 4 intervals.
The top row, in white, implements Algorithm 1 on this example,
yielding a list E of six pairs, each of the form (xm,yn). Greedy
algorithms, such as Algorithm 2, achieve this by traversing the list
E once, in a predefined order. In this way, they define a sublist Z ⊂
E , which is initialized as the empty list and grown progressively
until all pairs in E have been examined. The second, third, and
fourth rows in Figure 2 show instances of such greedy algorithms,
with variations in priority: i.e., based on earlier onset time am, on
later offset time bm, or on greatest overlap (as done in MIREX). We
observe that, even though these greedy algorithms differ in terms of
pairing sublist Z , both of them leave one prediction event and one
reference event unmatched. Hence, they evaluate the prediction as
yielding three TP, one FP, and one FN.
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Yet, all the greedy algorithms mentioned above are suboptimal.
Indeed, in Figure 2, there exists a matching which yields four TP
and no FP nor FN: see bottom row. In the next section, we present
an algorithm which finds this optimal solution in polynomial time.

3. MAIN CONTRIBUTION

Our proposed method comprises two stages: construction of the in-
terval bigraph G = (x ∪ y, E) and maximum cardinality matching.
For the first stage, we write a custom iterative algorithm which is
based on dichotomic search: see Algorithm 3. For the second stage,
we reuse the algorithm of Hopcroft and Karp for maximum cardi-
nality matching of bipartite graphs [1]. The novelty of our method
resides in the faster construction of the set of edges E in the first
stage, by exploiting the temporal logic of intervals in Equation 1.

Algorithm 3 presents our main contributions, i.e., the fast con-
struction of the edge set E . We begin by sorting predicted off-
sets (b1, . . . , bM ), yielding a permutation σ satisfying bσ(1) ≤
. . . ≤ bσ(M). Thanks to divide-and-conquer algorithms such as
quicksort, this operation incurs an average-case time complexity of
O(M logM). Likewise, we sort reference onsets (u1, . . . , uN ),
yielding a permutation ϕ satisfying uϕ(1) ≤ . . . ≤ uϕ(N) with
average-case O(N logN) time complexity. Then, we initialize
two integers n and µ, pointing to the first element of ϕ and σ
respectively. We define the partial list of sorted predicted offsets
L = (bσ(µ), . . . bσ(M)) and increment µ by the index of the first el-
ement in L exceeding uϕ(n). Since L is already sorted, this element
may be found via binary search, whose number of comparisons is
logarithmic in M in the worst case.

After having updated µ, we store the set {σ(µ), . . . , σ(M)} at
the entry ϕ(n) of a set-valued array S. We increment n by one and
repeat the operation of dichotomic search over the list L with the
new value uϕ(n). We halt this procedure as soon as uϕ(n) exceeds
bσ(M): indeed, for greater values of n, S(ϕ(n)) is known to be
empty. By construction, each set S(ϕ(n)) contains all the indices
of the predicted events whose offsets happen after the onset of the
reference event ϕ(n). Formally:

S(ϕ(n)) =
{
1 ≤ σ(m) ≤M | bσ(m) ≥ uϕ(n)

}
=

{
1 ≤ m ≤M | bm ≥ un

}
(5)

The latter formula in the equation above is obtained after applying
inverse permutations σ−1 and ϕ−1 to indices m and n respectively.
Going back to Equation 1, we observe that (xm ≈ yn) implies
(m ∈ S(n)) but the converse is not necessarily true. However,
if (m ∈ S(n)) for some pair (m,n), a necessary and sufficient
condition for (xm ≈ yn) is (am ≤ vn). Thus, we propose to
refine each set S(n) by intersecting it with the set of all indices m
such that am ≤ vn.

We sort predicted onsets (a1, . . . , aM ), yielding a permutation
π which satisfies aπ(1) ≤ . . . ≤ aπ(M). Likewise, we sort ref-
erence offsets (v1, . . . , vN ), yielding a permutation ψ which satis-
fies vψ(1) ≤ . . . ≤ vψ(N). Similarly to σ and ϕ in the paragraph
above, these sorting operations incur a cumulated asymptotic cost
ofO(M logM+N logN) in the average case. We reset the integer
to n to N . We set µ to the maximum value of m such that aπ(m)

is below vψ(n). Thanks to sorting, this may be achieved by binary
search, whose worst-case complexity is O(logM). We update the
list S(ψ(n)) by intersecting it with (π(1), . . . , π(µ)). This inter-
section may be implemented efficiently with a hash table, as it does
not involve any numerical comparison. We decrement n by one and

naı̈ve proposed

graph MN (M +N)(logM + logN) + |E|
construction (Algorithm 3)

event matching 2|E| |E|
√
M +N

(Hopcroft-Karp)

Table 1: Upper bounds on the asymptotic time complexities of al-
gorithms for constructing non-disjoint interval pairs E (left column)
and maximum cardinality matching Z (right column) in the worst
case, up to a constant multiplicative factor. See Section 3 for details.

repeat the process until vψ(n) falls below aπ(1). Finally, we build E
incrementally by looping through every valuem ∈ S(n) for n from
1 to N and constructing the pair (xm,yn). In practice, since S(n)
has much fewer than M elements, the number of iterations in this
nested loop is typically much smaller than O(MN). Thus, most of
the computational cost of Algorithm 3 is spent in binary search.

Algorithm 3 Our algorithm lists all edges of an interval bigraph.
E ← ∅
S(1), . . . ,S(N)← ∅ {initialize list of matching indices}
σ ← arg sort(b1, . . . , bM ) {sort predicted offsets}
ϕ← arg sort(u1, . . . , uN ) {sort reference onsets}
n← 1
µ← 1
while uϕ(n) ≤ bσ(M) {up to last predicted offset} do
L← (bσ(µ), . . . , bσ(M)) {sublist of predicted offsets}
µ← µ+min

{
0 ≤ i ≤ (M − µ) |uϕ(n) ≤ Li+1

}
S(ϕ(n))← {σ(µ), . . . , σ(M)}
n← n+ 1

end while
π ← arg sort(a1, . . . , aM ) {sort predicted onsets}
ψ ← arg sort(v1, . . . , vN ) {sort reference offsets}
n← N
while vψ(n) ≥ aπ(1) {down to first predicted onset} do
µ← max

{
1 ≤ m ≤ µ | vψ(n) ≥ aπ(m)

}
S(ψ(n))← S(ψ(n)) ∩ (π(1), . . . , π(µ))
n← n− 1

end while
for n from 1 to N {for every reference event} do

for m ∈ S(n) {for every matching prediction} do
E ← E ∪ {(Im, Jn)} {include edge}

end for
end for
return E

As shown in Table 1, Algorithm 3 accelerates graph construc-
tion fromO(MN) toO(M logM+N logN+|E|). If the detector
is perfect (x = y) and if the reference consists of disjoint intervals,
one has M = N = |E|: under this important special case, the time
complexity of graph construction is O(N2) for exhaustive search
(Algorithm 1) versus O(N logN) for binary search (Algorithm 3).
Furthermore, the complexity of event matching is 2N for exhaustive
search versus N

√
N for Hopcroft-Karp. The interest behind our

contribution is that N logN , unlike N2, is dominated by N
√
N ;

thus, after replacing Algorithm 1 by Algorithm 3, the cost of graph
construction is asymptotically negligible, and most of SED evalua-
tion is spent in event matching.
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4. PRACTICAL CONSIDERATIONS

4.1. Selecting pairs based on intersection-over-union ratio

We have implemented Algorithm 3 as part of the official evalua-
tion toolkit1 of the DCASE challenge task on “Few-shot bioacoustic
event detection” [4]. This task was inaugurated in 2021 and main-
tained through 2022 and 2023. As part of the challenge rules, we
have stated that, in order to be considered a valid matching, an in-
terval pair (xm,yn) should not only overlap but also have at least
50% of intersection-over-union ratio (IoU). This is a refinement of
Equation 1 in the criterion xm ≈ yn. To accelerate the construc-
tion of the bipartite graph G, we run Algorithm 3 as a prefiltering
stage and then evaluate IoU explicitly on all non-disjoint pairs.

4.2. Interoperability with sed eval

Running Algorithm 3 in conjunction with Hopcroft-Karp yields a
maximal matching Z for G. The set cardinal of Z corresponds to
the number of true positives (TP) of the detector. From this number,
we deduce the following information-retrieval metrics:

Precision =
TP

TP + FP
=
|Z|
M

, (6)

Recall =
TP

TP + FN
=
|Z|
N
, (7)

F1-score =
2

(Precision)−1 + (Recall)−1 =
2|Z|

M +N
, (8)

which are already in widespread use in the DCASE community
thanks to the sed eval toolbox [5]. While sed eval relies on ex-
haustive search (Algorithm 1) for graph construction, we rely on
Algorithm 3. For event matching, both sed eval and our implemen-
tation rely on the Hopcroft-Karp algorithm, as made available by
the SciPy toolbox. Therefore, our implementation returns the same
output as sed eval while being more computationally efficient.

4.3. An important special case: evaluating onset detection

Algorithm 3 generalizes another algorithm, implemented under the
name of “ fast hit windows” in mir eval v0.5 and later [6]. In com-
bination with Hopcroft-Karp, this other algorithm serves to evaluate
sound onset detection efficiently. For future reference, we present
its pseudocode in Algorithm 4. The premise of Algorithm 4 is that
a predicted onset am may be matched to a reference onset un if and
only if they are within a certain time lag δ of each other. Formally:

(am ≈ un) ⇐⇒ |am − un| ≤ δ
⇐⇒ (un ≥ am − δ) ∧ (un ≤ am + δ) (9)

Like Algorithm 3, Algorithm 4 begins by sorting reference on-
sets, which incurs an O(N logN) time complexity. Then, for ev-
ery predicted onset um, it performs binary search over the sorted
list of reference onsets (uϕ(1), . . . , uϕ(N)), while accounting for
the maximum admissible lag δ. This later stage incurs a time com-
plexity of O(M logN); hence, the time complexity of Algorithm
4 is O((N + M) logN). Note that, if there are many more pre-
dicted onsets than reference onsets (N ≫ M ), the algorithm may
be accelerated by a factor (logN/ logM) by swapping the roles of
prediction and reference.

1Source code: https://github.com/c4dm/dcase-few-shot-bioacoustic.
The metrics module implement functions slow intersect (Algorithm 1) and
fast intersect (Algorithm 3).

Algorithm 4 An efficient evaluation algorithm for sound onset de-
tection, as implemented in the mir eval v0.5 and later.
E ← ∅
ϕ← arg sort(u1, . . . , uN )
for m from 1 to M do
nmin ← min {1 ≤ n ≤ N | uϕ(n) ≥ am − δ}
nmax ← max {1 ≤ n ≤ N | uϕ(n) ≤ am + δ}
for n from nmin to nmax do
E ← E ∪ (am, uϕ(n))

end for
end for
return E

5. EXAMPLE APPLICATION

To evaluate the speed of exhaustive search (Algorithm 1) versus our
algorithm (Algorithm 3), we evaluate a deep convolutional network
for automatic detection of avian flight calls on an audio recording
from the BirdVox-full-night dataset [3]. This audio recording lasts
for roughly 11 hours and has been annotated by an expert ornithol-
ogist. The reference y contains N = 9113 events. We set the
threshold of the convnet detector to a value such that the prediction
x contains M = 2N = 18226 events.

In the Python programming language, Algorithm 1 takes 65±1
seconds to find all matching pairs between x and y on a personal
computer (2.3 GHz Quad-Core Intel Core i7). On the same com-
puter, Algorithm 3 returns the same output within 11.7 ± 0.1 sec-
onds. Beyond the raw comparison, we note that the speed could be
improved further by resorting to a high-performance compiler such
as Numba. We should also keep in mind that, in practice, comput-
ing the area under the precision–recal curve (AUPRC) requires to
recompute the bipartite graph G for many values of the detection
threshold, including low values when M ≫ N . Furthermore, SED
evaluation is typically performed over several initializations of the
system and across several hyperparameter choices, as in [7]. Hence,
the gain in speed by switching from Algorithm 1 to Algorithm 3 be-
comes significant when conducting a full-scale benchmark.

6. CONCLUSION

With this article, we have stressed the difficulty of making SED
evaluation both correct and computationally efficient, by pointing
out the shortcomings of greedy methods and of exhaustive search.
We have presented an algorithm evaluating sound event detection,
which generalizes an evaluation algorithm for onset detection in
mir eval. Our theoretical analysis and speed benchmark on a long-
duration audio recording demonstrate the interest of this algorithm.
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ABSTRACT

While there is the saying of two heads are better than one,
having multiple opinions brings the problem of finding a common
ground. For data, multiple annotator opinions are usually aggre-
gated into a single set of labels, regarded as the ground truth. With
this ground truth, classification models can be trained in a super-
vised way to learn the annotated data categories. Finding a suitable
aggregation for multiple annotator opinions is the topic of research
in many domains. In this work we investigate the use of raw data
obtained from multiple annotators with various levels of reliability,
to train a model for audio classification. The model sees all the indi-
vidual annotator opinions and learns the categories without the need
of aggregating the information. The results show that using a fully-
connected layer that models individual annotators, it is possible to
leverage the data distribution and learn to classify sounds without
the need for aggregation of labels.

Index Terms— audio tagging, multi-annotator, crowd layer.

1. INTRODUCTION

Identifying what sounds are present in an audio clip can be used in
multiple applications such as surveillance [1], environment moni-
toring [2], health care monitoring [3] or music tagging [4] among
others. The most simple definition for this task is audio tagging in
which a classifier aims to identify the active sounds in a clip, given
a set of classes it has been trained to recognize. The effectiveness
of supervised machine learning heavily depends on the availability
of good quality and extensive labeled datasets. A way to establish a
good quality of the data is to have an expert annotate it carefully. At
the same time, having a unique expert annotating everything will,
in practice, teach the classifier to behave like this specific expert.
However, some experts may disagree on the categories in the data,
which creates the problem of establishing the ground truth based on
multiple expert opinions, which is a time-consuming and expensive
way to annotate data, and brings the additional problem of finding
the common ground.

A simple and often used alternative is to have multiple annota-
tors that are not necessarily experts on the task [5]. By using the
knowledge of crowds it is possible to dispose of the experts, re-
ducing the cost. Applying the same principle, to reduce annotation
time, each non-expert annotator sees a subset of the data, which re-
sults in an sparse annotation, where a single annotator does not have
to see all the data, but still each instance is annotated by more than

This work was supported by Academy of Finland grant 332063 “Teach-
ing machines to listen”. The authors wish to thank CSC-IT Centre of Sci-
ence Ltd., Finland, for providing computational resources.

one annotator. To obtain large amounts of annotated data, crowd-
sourcing has been used as a convenient solution [6, 7], despite its
obvious drawbacks of uncontrolled data quality.

Several works in different domains have attempted to study how
to best utilize the information and learn from multiple annotators.
In [8] the competence of a large pool of annotators, who partially
annotate the same data, is estimated. The method, called MACE
- Multi-Annotator Competence Estimation, uses an unsupervised
model that learns from redundant information and is able to identify
the trustworthy annotators and predict the correct underlying labels.
The drawback of the method is that needs a specific data structure
and careful selection of parameters. In [9] authors proposed selec-
tion of an optimal subset of annotators from a pool of workers. They
studies three real-world datasets: question-answering dataset; dis-
ambiguity dataset and image dataset. However, in the case of a large
number of annotators, the computational demands of such combi-
natorial procedures are notably high. A simpler approach is to allow
multiple annotators to verify and make corrections of previously an-
notated data, although not always successfully; for example, in [10]
the authors mention that even with five curation stages there was
almost never a consensus among annotators.

Selecting subsets or aggregating opinions requires a pre-
processing step controlled by design choices and parameters which
entangle the interpretation of the final results for the task at hand.
In previous work, we used MACE to aggregate annotator opinions
for crowdsourced audio tags [11], and observed that it produces a
larger amount of labels than the majority vote approach.

In this work, we perform a systematic study of how the deep
learning model itself can cope with the multiple opinions instead of
providing it with the single, aggregated, label per training item, for
the task of audio tagging. We include both simple and state-of-the-
art architectures trained for audio tagging, and investigate if aggre-
gation brings any advantage in training. We follow the setup of the
crowd layer proposed by Rodriges et. al. [12], a fully-connected
layer that learns from the crowd. The authors show how this ap-
proach works for multiple tasks, e.g. binary classification, multi-
class classification and regression. In [13], the authors model indi-
vidual annotators, weighting them differently based on the experts
reliability in a network, “doctor net”, modeling medical doctors.
However, Rodriges et.al. show that the crowd layer outperforms the
“doctor net” approach, albeit on a different dataset collected using
MTurk. Here we investigate the effect on performance of the crowd
layer, in addition to training with labels generated by MACE, and
training directly with the raw data.

The paper is organized as follows: Section 2 introduces the
multi-annotator dataset and explains the crowd layer implementa-
tion and how it is used in this work; Section 3 presents the audio
tagging systems tested and introduces the combinations of aggre-
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gation considered; it also includes an analysis of the results, and
discussion of the benefits of using a crowd layer instead of label
aggregation methods; finally, Section 4 presents conclusions and
future work.

2. LEARNING FROM MULTI-ANNOTATOR DATA

In [11] we presented a study of annotator and annotations relia-
bility for crowd-sourced audio tags for real-life acoustic scenes1.
We showed that the aggregation of the multi-annotator labels using
annotator competence estimation and true label prediction through
MACE produces a plausible and trustable ground truth. We ob-
served that by gradually eliminating the less trustworthy annotators
from the aggregation, the level of inter-annotator agreement in the
predicted aggregated labels gradually improved. Nonetheless, dis-
carding annotators should be limited to the outliers only, in order to
retain as much information and opinions as possible.

When annotating real-world data and aggregating the informa-
tion, it is not possible to evaluate the correctness of the resulting la-
bels. However, we conducted a subsequent study that included syn-
thetic data, and observed that the labels produced through MACE
aggregation are faithfully representing the ground truth [14], with
an 86% F-score, (97% precision and 77% recall), much better than
the typical majority vote aggregation (68% F-score, with 98% pre-
cision, 52% recall). We therefore consider the labels produced us-
ing MACE a sufficiently accurate representation of reality, and use
them as reference in the evaluation of the classifiers.

2.1. Dataset

The dataset used in our experiments is the MATS (Multi-Annotator
Tagged Soundscapes) data, published with the study in [11]. It is
a subset of TAU Urban Acoustic Scenes 2019 [15], consisting of
audio from three acoustic scenes (airport, public square, and park).
The audio clips are 10 seconds long, and some of them are con-
secutive segments of one long recording from a single location. A
total of 133 annotators, students taking an audio signal processing
course, annotated a randomly assigned set of 131 files each, such
that each audio clip was annotated by five different annotators. The
complete details about the data annotation process and its postpro-
cessing is explained in [11]. The unbalanced nature of the MATS
dataset can be observed based on the numbers from Table 1, with
the most dominant sounds in the data being related to human pres-
ence and traffic.

For the experiments, we partition the data into training, vali-
dation and test sets following the DCASE 2019 Task 1 split that
respects the location ID of the original recordings, ensuring that all
clips of the same long recording are placed into one single subset
(training, validation or test). The partitioning results in sets contain-
ing 1772 clips for training; 762 for validation and 1099 for test.

2.2. Crowd layer

A general-purpose crowd layer was proposed in [12], which allows
training of neural networks directly using the labels produced by
multiple annotators. The authors showed that the model is able to
capture the reliability and biases of different annotators, achieving

1The MATS (Multi-Annotator Tagged Soundscapes) dataset is available
at https://doi.org/10.5281/zenodo.4774959

class labels MACE majority vote

adults talking 2728 2190
footsteps 1853 828
traffic noise 1580 634
birds singing 979 648
children voices 917 446
music 152 69
announcement/speech 148 73
siren 98 37
dog barking 84 25
announcement/jingle 35 8

Table 1: Statistics of class labels in the data used for experiments
resulting from combining the multiple annotations

state-of-the-art results for three different tasks. In this study, we
used the author’s code2 and adapted it from TensorFlow to PyTorch.

We use the PaSST model [16] and extend it with the crowd layer
for the purpose of our study. The PaSST architecture is first ex-
tended with a fully-connected layer for the multilabel classification
of the ten sound classes. Then the crowd layer is added as the very
last layer, having as inputs the actual classification layer. The crowd
layer learns to map the probabilities of the classification layer to the
raw labels, assumed to being capable of capturing the bias and re-
liabilities of the annotators. The classification layer of the network
becomes a shared layer among the annotators, a bottleneck that dur-
ing training receives adjusted gradients from the different opinions,
aggregates them and backpropagates to the rest of the network.

Given the output of a model denoted as σ, the activation of
the crowd layer for each of the annotators r can be defined as
ar = fr(σ), fr being the annotator-mapping function. The orig-
inal publication proposes a few different implementations of the
annotator-mapping function, ranging from a matrix function with
per-class biases to a single vector function without bias. In this
work, we considered the more simplistic implementation, and use
the linear transformation of the input, without per-class bias. The
layer is defined in the following equation:

fr(σ) = wr ⊙ σ, (1)

where w is the annotator specific vector. The raw annotation is
sparse, with only five opinions per clip in a large pool of annotators,
therefore it is not necessary to propagate information from all out-
puts; a mask is used to set to zero the gradient contributions of the
missing labels (corresponding to annotators that did not provide an
opinion to the current clip).

Two different scenarios involving PaSST models are used: one
that uses PaSST only to produce embeddings, which are used as in-
put of a simpler model with a fully connected layer; and another one
in which the weights of the entire PaSST architecture are fine-tuned
during training. Once the model has been trained, the crowd layer
is removed, and the remaining architecture is used as a classifier on
the test set, with the weights of the model expected to have learned
the true distribution of the classes. Note that, to evaluate the model
performance, the labels of the test set were processed using MACE,
as described in the previous subsection.

2https://github.com/fmpr/CrowdLayer
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MACE Majority Vote
Model setup Macro-F1 Micro-F1 mAP (95% CI) Macro-F1 Micro-F1 mAP (95% CI)

mel CNN
baseline 32.51% 72.40% 0.41 (0.39, 0.43) 26.95% 63.94% 0.30 (0.29, 0.32)
raw 29.13% 65.60% 0.40 (0.38, 0.41) 26.93% 63.03% 0.29 (0.27, 0.30)
crowd 35.13% 73.99% 0.41 (0.39, 0.43) 30.33% 62.06% 0.31 (0.27, 0.35)

PaSST emb

baseline 47.03% 79.51% 0.61 (0.56, 0.65) 51.37% 69.75% 0.63 (0.50, 0.77)
raw 38.73% 64.14% 0.61 (0.57, 0.65) 47.02% 72.87% 0.59 (0.54, 0.65)
weighed 46.18% 71.79% 0.60 (0.56, 0.64) 49.15% 71.01% 0.58 (0.53, 0.64)
crowd 51.42% 80.38% 0.62 (0.58, 0.67) 60.12% 69.77% 0.65 (0.52, 0.79)

PaSST baseline 45.73% 79.42% 0.67 (0.62, 0.71) 51.28% 73.68% 0.68 (0.55, 0.81)
crowd 53.15% 77.19% 0.69 (0.65, 0.74) 63.21% 73.79% 0.68 (0.58, 0.78)

Table 2: Comparison of the different considered setups, evaluated against MACE and majority vote aggregated reference.

Figure 1: Class-wise F1-score comparison for the PaSST emb systems with different training setups, evaluated against MACE labels.

2.3. Baseline systems

To evaluate the suitability of the crowd layer we test it under dif-
ferent conditions, in order to observe its effect independently of the
used model and features. We use as a baseline system a CNN with
three convolutional layers, each followed by batch normalization
and ReLu activation layer, denoted as mel CNN. This system is a
typical multiclass classification system having ten output neurons
(for the ten classes to be classified). It is trained using the MACE
aggregated labels as targets, and a feature representation consisting
of mel energies calculated using a window size of 2048 samples
with a hop length equivalent to 20 ms, and 64 mel filter banks, with
the lower and upper frequencies set to 50 and 14kHz. We train the
same system with the raw labels, by considering each clip as an
independent data point which we provide to the network with the
labels provided by one annotator. In practice, this means that one
audio clip is provided to the network five times, with five label sets
as available from the annotators pool. We denote this training setup
as “raw”. The same architecture is also trained using the crowd
layer, hence denoted by “crowd”. We use similar baselines also for
the PaSST architecture, indicated as PaSST emb (using PaSST only
to produce the embeddings feature representation) and PaSST (full
training of the entire network).

3. EXPERIMENTAL SETUP AND RESULTS

The evaluation of the systems is done by calculating standard au-
dio tagging metrics. The macro-average and micro-average metrics

(Precision, Recall and F1-score) and the Mean Average Precision
(mAP) are calculated for each system against the reference labels
obtained using MACE and against a second set of reference labels
obtained using majority vote. The results are presented in Table 2
and include the 95% confidence interval for mAP, calculated using
the jackknife estimation method.

3.1. Aggregate or separate: performance evaluation

The baseline system mel CNN obtains the lowest performance
when trained with the aggregated target labels, among the three
training setups. Its performance decreases considerably in terms of
F1-score when training with the raw data, indicating that the train-
ing pairs likely contain incorrect or contradictory labels which are
presented as targets to the same audio clip, creating fluctuations in
the loss function. On the other hand, the crowd layer successfully
uses the redundant information to correct for the labeling errors, no-
ticeable in particular in the macro-F1 performance; micro-average
F1-score and mAP do not change significantly, which seems to in-
dicate better performance for minority classes. The trend is seen
in both evaluation procedures, though, based on our experience and
previous work, we trust more the MACE labels as a reference.

Using the PaSST embeddings with the aggregated targets brings
a considerable improvement in performance, which is further in-
creased when using the crowd layer. Similar to the simple CNN,
using raw data in the training is detrimental, while the crowd layer
brings a significant boost to the class-wise scores. As an additional
experiment, we investigate the use of annotator competence as ad-

108



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

MACE Majority Vote
Model P R F1 P R F1

PaSST emb baseline 80.61% 49.91% 57.98% 56.97% 66.33% 58.50%
PaSST emb crowd 89.97% 54.43% 62.57% 66.50% 74.30% 64.64%

PaSST baseline 95.60% 55.32% 66.25% 64.42% 74.51% 67.06%
PaSST crowd 94.81% 53.44% 66.82% 66.04% 76.37% 70.20%

Table 3: Macro-averaged metrics calculated for the training data for PaSST architectures, with and without the crowd layer .

Figure 2: Class-wise F1-score comparison for the PaSST systems in baseline and crowd layer training setups, evaluated against MACE labels.

ditional information in the raw data training setup. Here, we calcu-
late the competence estimates for each annotator from the training
data using MACE, and multiply the network target vector (binary
indicators of class presence) of each annotator by its competence.
This results in a weighted target information, which can be seen as
a form of data augmentation. The method, denoted as ”weighted”
in Table 2, brings a significant improvement compared to the raw
labels training scenario, but does not outperform other setups.

A detailed analysis of the class-wise F1-scores can be seen in
Figure 1: only the system trained with the crowd layer is able to
identify all 10 classes. The performance is quite similar between
baseline and crowd layer setups for the classes with higher number
of examples, but the less represented classes show large fluctuation
depending on the training setup. Here we can observe the advantage
of using the competence-weighted augmentation, which is benefi-
cial for the announcement speech and siren classes, but inconsistent
over the entire set of classes. The smallest class, announcement
jingle, is only detected in the crowd layer training case.

The best macro F1-score and MAP among all experimental
setups is obtained with the fine-tuning of the entire PaSST archi-
tecture, including the classification layer and the crowd layer. In
this setup, the model is initialized with the pretrained weights and
trained for 30 epochs with the MATS data. Note that micro-F1 is
higher when evaluated against the majority vote reference, which
contains a lesser amount of labels, according to [14]. An illustration
of the class-wise F1-scores is shown in Fig. 2, with classes arranged
in order of their size. We can clearly see that the crowd layer net-
work has better performance for the under-represented classes, even
though the MACE aggregation is designed to override the majority
vote result if a minority of the annotators are highly reliable [8].
This shows that no matter how sophisticated aggregation method is
used, the loss of information from the separate labels to the aggre-
gate ones may have a significant effect on the task where the data
under discussion are used.

3.2. Learning distributions

To study how the crowd layer learns the label distribution, we cal-
culate the macro-average metrics against the training data for the
PaSST systems (baseline and crowd training setup). The results,
presented in Table 3, show that the crowd layer helps the network
learn to mimic somewhat the distribution of the MACE labels, more
in the setup that uses embeddings. Continuing to train the whole
network instead of just extract embeddings from the pretrained net-
work is, as expected, a better way to learn the distribution of the
training data. Moreover, the very similar values of the metrics show
that the crowd layer does not lead to overfitting either. When clas-
sifying the training data, the scores against the majority vote aggre-
gates are generally better than against the MACE aggregates, but
this is due to the smaller amount of labels to compare, which is
reflected in a high recall. On the other hand, the precision of the
models is considerably higher for the MACE aggregation, showing
more robustness of the model in its predictions.

4. CONCLUSIONS

Performance of supervised models rely on the quality of the anno-
tated data, which can be obtained from multiple annotators to avoid
bias and leverage information from multiple annotators. In this
work, we investigated different methods to use the multiple opin-
ions, training different audio classifiers with aggregated or separate
labels. In our experiments, letting the model learn from multiple
annotators using a simple crowd layer had the best performance.
By adding this linear transformation to the model, we can avoid the
manual intervention into the dataset, and remove the influence of the
aggregation method on the model performance. However, a ques-
tion remains on the scalability of the approach, with extreme com-
binations like binary classification (single neuron) and large number
of annotators (e.g. thousands) requiring closer examination.
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ABSTRACT

Sound Event Classification (SEC) for fault detection of bearings in
rotating machinery has recently shown good results. Bearing fault
detection via microphones has advantages over the more traditional
accelerometer-based solutions, in terms of ease of sensor deploy-
ment, non-intrusiveness and hardware cost. These novel SEC meth-
ods often use deep learning (DL), which require large amounts of
labeled data. As events of faulty bearings are rare in practical sce-
narios, it can be time consuming to manually find and label exam-
ples of faults. Rather than labeling a complete dataset, active learn-
ing (AL) methods present the expert labeler with unlabeled samples
that are expected to be the most informative in the learning process.
This way the most interesting samples are labeled first, which al-
lows to only annotate a subset of the dataset, while still retaining
(close to) maximal accuracy. In this work a novel data set, that con-
tains acoustic data from accelerated life time tests for bearings, is
used to investigate the performance of two AL methods in terms
of classification accuracy and number of additionally selected and
annotated examples.

Index Terms— Active learning, Fault detection, Bearing mon-
itoring, Transfer learning

1. INTRODUCTION

An important part in industrial applications is rotating machinery.
Rolling Element Bearings (REB) are a common element in this ma-
chinery and most system failures can be attributed to these REB [1].
It is important to detect faults in these REB to prevent critical fail-
ures and this is most commonly done based on vibration analysis
[2], however research has also been done towards using sound sig-
nals for REB fault detection [3]. Various data-driven approaches,
usually Deep Learning (DL) based, have been investigated for the
purpose of REB fault detection in the last few years. As these ap-
proaches are data-driven, and often based on DL, large amounts of
data are required to train the associated models. For vibration anal-
ysis acquiring this data requires an accelerometer to be attached di-
rectly to the REB, which is not always trivial, especially in complex
machines. By using a microphone this can be done without needing
direct contact, making the data acquisition process easier, and it has
been shown that using sound signals for fault detection is a promis-
ing alternative to vibration analysis [4, 5, 6, 7]. However, even if a
lot of data can be acquired, the process of annotating this data re-
mains time and cost intensive. Active Learning (AL) methods have
been developed to reduce this cost by only annotating samples that
are the most informative for learning algorithms [8, 9]. The focus

of this work will be to use sound signals captured by a microphone
in combination with AL methods for fault detection in REB.

In literature AL methods have already been used for fault detec-
tion in industrial applications. In [10] an extension of the entropy
measure of model uncertainty was used to select the most informa-
tive samples to train a model that was learned on a data set with
isolated and compound faults for REB fault detection. A combina-
tion of entropy and complexity was used in [11] to select samples
for fault diagnosis in a gearbox showing a better performance using
this combination. AL was applied to cellular networks in [12], with
a comparison of 3 uncertainty based sampling methods, demonstrat-
ing their effectiveness. In [13] it is mentioned that using a single
criterion strategy might not be stable and a new criterion is pro-
posed that combines multiple commonly used criteria. A best ver-
sus second best uncertainty metric was used in [14] in combination
with label propagation and ensembles to improve the performance
of bearing fault diagnosis using a small training set.

The previously discussed works use vibration signals as data.
However, as mentioned earlier, this work will focus on using sound
signals. To the best of our knowledge, in the literature no prior
work regarding AL for REB fault detection using sound is found.
Nonetheless, AL in combination with sound has shown promising
results in other fields. In [15] AL methods were evaluated using 2
synthetic sound event datasets for sound event detection and it was
shown that training while keeping the original training set along
with the annotated samples resulted in a better performance. A com-
bination of AL and semi-supervised learning methods was used in
[16] on a total of 3 datasets containing sound data for gender iden-
tification, speaker identification, and emotion detection. In [17] an
alternating certainty sampling method was proposed where some-
times samples with high confidence were chosen instead of low
confidence to improve the robustness against incorrect annotations.
This method was evaluated on an urban sound dataset.

To compare AL methods a novel and unique accelerated bearing
life time test dataset is used. It contains data captured using an
accelerometer and 2 microphones. To the best of our knowledge,
there is no public dataset that contains sound signals from bearing
life time tests, as there are for vibration signals, e.g. IMS [18].

The rest of this paper is structured as follows. In Section 2
the AL methods that will be compared are explained. A detailed
description of the experimental setup is given in Section 3, this in-
cludes the dataset, the preprocessing, the architecture and learning
parameters of the models, and a description of the performed exper-
iments. The results of the experiments are discussed in Section 4.
Finally, conclusions and future work are given in Section 5.

111



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

2. ACTIVE LEARNING

In this section the (AL) methods that will be used in the experiments
are discussed.

2.1. Uncertainty sampling

The first method, which is commonly used for AL, is based on se-
lecting the samples for which the model predictions are most uncer-
tain. For a classifier this often means that these samples are located
close to the decision boundary. A simple yet commonly used metric
to quantify predictive uncertainty is the information entropy,

H(X) = −
k∑

i=1

pilog(pi), (1)

where X is the sample under evaluation, k is the amount of classes,
and pi is the estimated posterior probability for the i − th class
as predicted by a classifier. In this work a Convolutional Neural
Network (CNN) is used to provide the probabilities for each class,
the model will be described in Section 3.3.

2.2. Hybrid sampling

To avoid sampling multiple similar samples that have high predic-
tion uncertainty the sampling criterion can be augmented with a
novelty metric. The latter is referred to as hybrid sampling. In this
way there is a potential to further decrease the annotation cost [8].
The Semi-Supervised Detection of Outliers (SSDO) [19] algorithm
is used to calculate the novelty metric. This algorithm is based on k-
means, but does not only take into account the distance to a cluster
center, but also the size and relative position of the considered clus-
ter. Formally, the hybrid sampling strategy is defined as follows:

S(X) = H(X) + αN(X), (2)

where N(X) is the score obtained by SSDO for a sample X and
α is a hyperparameter that balances both individual scores. Both
scores have ranges H(X) ∈ [0, 1] and N(X) ∈ [0, 1]. The sample
X with the highest S(X) is then selected as the most interesting.

3. EXPERIMENTAL SETUP

This section describes the dataset that was used in the experiments,
as well as the preprocessing that was performed on the data, the
model architecture and associated learning parameters that were
used, and finally the performed experiments.

3.1. Dataset

This work uses a novel data set, collected by Flanders Make, that
consists of data collected from multiple accelerated bearing life time
tests. Data was collected using an accelerometer, a microphone in-
side the safety cover of a setup, and a microphone outside the cover,
hereafter called the internal and external microphone, respectively.
The setup can be seen in Figure 1, with the placement of both the
internal and external microphone. The accelerometer was attached
directly to the bearing housing. All sensors captured data with a
sampling frequency of 50 kHz. A total of 64 accelerated life time
tests, or runs, were performed. For each bearing a small indent was
created on the inner races (IR) using a Rockwell-C indenter. The
lifetime was further accelerated by applying a radial load of 9 kN.
The test was stopped when either the stopping criteria of 20g peak
vibrations was reached or the test had to be stopped due to safety
concerns, e.g. overheating. The life time tests were performed with

Figure 1: The microphone setup used in the bearing life time tests.

varying settings, e.g. fixed or varying rpm, and other setups running
next to the test setup. It was also determined that the various life
time tests not only resulted in inner race faults, but also in outer race
and ball faults or in some cases it was considered as not faulty. The
experiments in this work use a subset of this dataset, more specif-
ically the data captured by the external microphone from only the
runs with an inner race fault, with no additional running setups, and
a fixed rpm during the run. Note that this rpm can vary between
runs, e.g. 1800 rpm for one run and 2000 rpm for another. In to-
tal the considered subset contains 10 runs that match these criteria.
The same setup was already used in previous works for accelerom-
eter based fault detection [20].

In addition to the captured data, two sets of ground truth la-
belling are also provided. It should be noted here that this labelling
is not based directly on the physical state of the bearing, but based
on analysis of the data captured by either the accelerometer or the
internal microphone. Using this labelling the moment in time pf
where the bearing starts having faulty behavior is determined. Data
prior to pf is then considered as healthy and data after pf is con-
sidered faulty. As there are two sets of labelling, pf is determined
separately for each.

3.2. Preprocessing

In this work the raw audio data is first transformed to log mel spec-
tra. This transformation is done using a window and hop size of 1s.
A total of 64 mel filterbanks are then extracted. This leads to an
input frame with shape (64,10), as each audio fragment is 10s long,
which can then be passed to the models. As the data consists of
multiple different runs, each run is separately standardized, using a
running mean and standard deviation, to have, approximately, zero
mean and unit variance. For the CNN the input frames are used
directly, while for SSDO the mean and standard deviation for each
filterbank are calculated over 10s and then stacked, resulting in a
128 dimensional feature vector.

After this preprocessing the data is split into 3 parts: 1) a train-
ing run that will be used to train an initial model, 2) a sampling set
that will be used to sample points from, and 3) a test run that will
be used to assess the generalization performance of the model. This
split is done in a leave-one-run-out scheme, meaning that there will
be 10 folds, as there are 10 available runs, with a single run in each
test set. From the remaining 9 runs one is chosen as the training run
and the other 8 are used as the sampling set. In this training run data
is taken so that the amount of healthy and faulty samples is roughly

112



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

equal. More specifically, this is done by taking all the data after
pf and taking the same amount of data directly prior to pf . Then
a maximum of 100s of data from the start of the run is also added.
From the training run 20% will be used as validation.

3.3. Model architecture and learning parameters

The CNN model used in this work consists of 3 convolutional
blocks, using 64, 64, and 32 filters, respectively, 2 fully connected
blocks, both using 20 neurons, and a final fully connected layer
as output. A single convolutional block is a sequence of a convo-
lutional, batch normalization [21], maxpooling, and dropout [22]
layer. The fully connected block contains the same sequence with-
out the maxpooling. The leaky ReLu activation function was used
for all layers, except the final layer, which uses a softmax activa-
tion. The filters in the convolutional layers are all size (7,7) and
move with a stride of 1 in each direction. The maxpooling layers
use a (2,2) window and move with a stride of 2 in each direction.
All dropout layers use the default drop rate of 0.5.

A model was trained using the data described in Section 3.2 to
serve as starting point for the AL methods. This model was trained
for 100 epochs with the Adam optimizer [23] and a learning rate
of 1e−3. If the validation loss did not improve for 10 consecu-
tive epochs, the learning rate was halved. The weights were further
regularized by the L2 norm with a factor (λ) of 5e−6. All hyperpa-
rameters were empirically tuned independently from the test data.

The SSDO model, used for the hybrid sampling, was fitted us-
ing a contamination factor of 1e − 3, meaning that 0.1% of the
training data is considered as novel. The amount of clusters used by
the algorithm is set to 5% of the amount of training data.

3.4. Experiments

In this work a comparison of AL methods will be made to inves-
tigate the model performance on an independent test set in terms
of the employed number of additionally annotated examples. For
this purpose, the same experiment was repeated twice, once with
labels based on information from the internal microphone (YMic)
and once with labels based on the accelerometer (YAcc).

3 methods were compared to each other: 1) random sampling,
where samples are chosen at random to annotate, this will serve as
a baseline method , 2) uncertainty sampling, which uses the pre-
diction probabilities of the CNN to determine what samples to an-
notate, as described in Section 2.1, and 3) hybrid sampling, which
further incorporates a novelty metric, as described in Section 2.2.
To evaluate the methods, first an initial CNN model was trained on
the data from a single run that is available in the training partition,
as described in Section 3.3. Next a first sample is selected for anno-
tation using the considered sampling strategy. After the annotation,
the sample was added to the training set and the CNN model was
updated for 20 epochs and, if the hybrid sampling method was be-
ing used, the SSDO method was refitted. This process was repeated
200 times for each sampling method.

To quantify the performance the F1 score was used as a metric.
The faulty class is considered to have a positive label. As the leave-
one-run-out scheme was used, the mean and standard deviation of
this metric are computed over the folds. However, it was noticed
that the standard deviation was similar across the results, ranging
from 0.15 to 0.2, hence it will not be shown for reasons of clarity.

4. RESULTS

In this section first the results of the experiment where the YMic

were used will be discussed. Thereafter, the same experiment is re-

Figure 2: The F1 score comparison of the considered AL methods
and the baseline on the test set in steps of 40 annotated samples
using YMic.

peated but this time with YAcc. For both experiments the F1 score in
terms of the additionally annotated samples, ranging from 0 to 200,
will be tracked. As a baseline, the F1 score of a model trained using
the full set of training samples (on average around 15000 samples)
for 100 epochs was added.

4.1. Microphone labels

The F1 scores attained by the CNN model on the test set using the
AL methods described earlier and YMic are shown in Figure 2. It
can be seen that, while hybrid sampling does not perform as well
with low amounts of annotated samples, both uncertainty and hy-
brid sampling outperform both random sampling and the baseline
when respectively 80 and 160 samples are additionally annotated.
This indicates that by using AL the amount of samples that need to
be annotated can be significantly reduced, in this work by around
75 times or more. The difference between random sampling and
uncertainty and hybrid sampling can likely be attributed to the sam-
ple selection. By inspecting these samples it can be seen that data
around pf for the various runs in the sampling set is chosen sig-
nificantly more for uncertainty sampling, and to a lesser extent for
hybrid sampling, while random sampling follows a more even dis-
tribution across the entire set, as is to be expected. This is empir-
ically verified and will be discussed in Section 4.3. By choosing
samples around pf the model can learn a boundary between what
is healthy and faulty. However, as there is a domain shift to the
unknown bearing, it is expected that, while the boundary is likely
to be improved, it will not be a perfect match. The lower perfor-
mance of hybrid sampling up to 120 samples, could potentially be
due to a smaller similarity between chosen samples increasing the
complexity of the data in comparison to the other methods.

4.2. Accelerometer labels

The results attained on the test set when using YAcc are shown in
Figure 3. It can be seen that these results are similar to the results
attained using YMic, with increasing F1 scores when more sam-
ples are annotated. Uncertainty sampling also slightly surpasses the
baseline with 80 annotated samples. However, it does stagnate, and
even performs slightly worse, afterwards. The difference between
the 3 methods is smaller compared to the labels based on the micro-
phone, especially towards higher amounts of annotated samples. It
can be seen that hybrid sampling once again performs worse with
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Figure 3: The F1 score comparison of the considered AL methods
and the baseline on the test set in steps of 40 additionally annotated
samples using YAcc.

up to 80 annotated samples. This is likely due to the same reasons
as explained earlier. Additionally, as the accelerometer is expected
to detect changes earlier, and thus pf for YAcc is slightly earlier
than pf for YMcc, the samples around pf have an increased similar-
ity, which will cause less of these samples to be chosen, as they will
have a lower novelty metric. This possibly results in a too rough de-
cision boundary with a worse performance as a consequence. The
overall worse performance can likely also be attributed to the dif-
ference in pf and corresponding labels. With YAcc the distribution
of the healthy and faulty data is expected to overlap more. From the
moment the accelerometer signals are starting to change the sound
signals might still be very similar. This makes the problem more
difficult with worse performance as a consequence.

4.3. Sample selection

As mentioned earlier, it was noticed that uncertainty, and to a lesser
extent hybrid, sampling selected a significant amount of samples
around pf of a run. To illustrate this, an experiment was performed
where only a single run was available in the sampling set and 50
samples, selected using uncertainty and hybrid sampling, were an-
notated following the same process as described in Section 3.4. The
log mel spectrum of the specific run and a histogram of the selected
samples is shown in Figure 4. It can be seen that uncertainty sam-
pling selected 28 samples within 100 samples of pf while 20 were
selected, within the same group of samples, by hybrid sampling,
indicating that indeed a significant amount of samples are selected
around pf by uncertainty, and to a lesser extent hybrid, sampling.
Furthermore, it is indicated that samples are also selected with a
larger selection by hybrid sampling, around noise events that pop-
up in the healthy data, e.g. around 5000s or 500 samples, which
would cause the model to learn the data is healthy, regardless of
the disturbing noise events. This could have also contributed to the
improved performance of AL compared to random sampling.

5. CONCLUSION AND FUTURE WORK

In this work we compared two AL methods, more specifically un-
certainty and hybrid sampling, and a random sampling baseline
method to evaluate the performance with regards to generalization
to an unknown bearing when additional samples from known bear-
ings are annotated. This was done using a novel dataset that con-
tains accelerated bearing life time tests with data captured from an

Figure 4: The log mel spectrum of the sampling run (top) and a his-
togram, with bins of 100 samples, of the selected samples (bottom)
by uncertainty and hybrid sampling. The red line indicates pf .

accelerometer, a microphone inside a safety cover, and a micro-
phone outside the safety cover. Labels were provided based on the
microphone inside the safety cover and based on the accelerometer.

It is indicated that, for the labels based on the microphone inside
the safety cover, both AL methods outperform random sampling
and also outperform the baseline that uses all data. Furthermore,
the uncertainty sampling method does show a better performance
compared to hybrid sampling. This is likely due to more samples
being selected in the close vicinity of pf . When looking at results
for the labels based on the accelerometer, the difference between the
methods is not as clear. However, uncertainty sampling still shows
the best performance, also attaining a score similar to the baseline.
The hybrid sampling method does not perform as well, likely due to
smaller novelty metric between points near pf , as the accelerometer
can detect the fault earlier than the microphone. The results on both
sets of labels indicate that it is possible to attain a similar, or better,
performance to a method that does not use AL, while the amount of
annotated samples was reduced by a factor of around 75.

In future research we will include different faults, e.g. outer
race faults, into the experiments. We will also investigate the com-
bination of label propagation with the AL methods.
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ABSTRACT 

Sound event detection (SED) is one of tasks to automate function 
by human auditory system which listens and understands audito-
ry scenes. Therefore, we were inspired to make SED recognize 
sound events in the way human auditory system does. Spectro-
temporal receptive field (STRF), an approach to describe the 
relationship between perceived sound at ear and transformed 
neural response in the auditory cortex, is closely related to recog-
nition of sound. In this work, we utilized STRF as a kernel of the 
first convolutional layer in SED model to extract neural response 
from input sound to make SED model similar to human auditory 
system. In addition, we constructed two-branched SED model 
named as Two Branch STRFNet (TB-STRFNet) composed of 
STRF branch and baseline branch. While STRF branch extracts 
sound event information from auditory neural response, baseline 
branch extracts sound event information directly from the mel 
spectrogram just as conventional SED models do. TB-STRFNet 
outperformed the DCASE baseline by 4.3% in terms of thresh-
old-independent macro F1 score, achieving 4th rank in DCASE 
Challenge 2023 Task 4b.1We further improved TB-STRFNet by 
applying frequency dynamic convolution (FDYConv) which also 
leveraged domain knowledge on acoustics. As a result, two 
branch model applied with FDYConv on both branches outper-
formed the DCASE baseline by 6.2% in terms of the same metric. 

Index Terms— Sound event detection, STRF, Audito-
ry scene analysis, Human auditory system, auditory neural 
response 

1. INTRODUCTION 

Sound event detection (SED) is a task for recognition of sound 
event class and their corresponding time onset and offset [1-4]. 
SED is closely related to human auditory perception, in that 
recognizing sound events and their respective time information is 
essential for the understanding of surrounding acoustic context. 
Therefore, we were inspired to improve SED by exploiting find-
ings from auditory scene analysis (ASA), a field that aims to 
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translate complex acoustic scene into auditory perception repre-
sentations within human brain [5]. As sound passes through each 
part of auditory system, it is transformed into meaningful neural 
responses by which the auditory cortex can comprehend the 
perceptual meaning through several steps [6]. The processes 
include nonlinear amplification, frequency analysis, transfor-
mation from vibration into electric signal and higher-order neural 
computation [7-8]. While aforementioned steps are widely stud-
ied and applied to various audio and speech processing works [9-
11], the transformation of sound stimulus into auditory cortical 
neural response is still not entirely comprehended and remains as 
the subject of ongoing research [12-14].  

One approach to simulate the process of transformation 
from sound stimulus to auditory cortical neural response is to use 
spectro-temporal receptive field (STRF). STRF is defined as 
descriptive linear function which predicts primary auditory cor-
tex (A1) cell response for given time-frequency representation of 
the sound [15, 16]. To estimate STRF, several methods such as 
spike-triggered average [17], boosting [18] and machine-learning 
method such as SVM [19] have been applied to experimental 
data. Observation on A1 cell response and estimated STRF has 
revealed that A1 cells have modulation-reactive characteristic 
that they are easily activated by ripple stimulus which is tempo-
rally and spectrally modulated signal [20]. Such spectro-temporal 
modulation are known to mediate analysis of sound such as 
speech so that we can obtain the sound intelligibility [21]. In Chi 
et al [20], STRF is constructed considering such reactive charac-
teristic to dynamic modulation so that STRF captures the spectro-
temporal modulation. While some works used the constructed 
STRF on deep learning applications to extract perceptually im-
portant characteristic [22-24], STRF is yet to be applied on SED 
to the best of our knowledge. 

We applied STRFNet proposed by Vuong et al [22], which 
uses STRF as a convolution kernel in the first convolutional layer 
of the convolutional neural network (CNN) to imitate the neural 
response of primary auditory cortex (A1), on SED. However, 
STRFNet concentrates on extracting modulation property that it 
is not sufficient to extract various information within sound. To 
tackle the limitation, we propose two-branch model named as 
Two Branch STRFNet (TB-STRFNet). While STRF branch 
extracts the neuroscience-inspired dynamic modulation infor-
mation using STRF kernel, baseline branch uses conventional 
convolution to extract the complementary time-frequency infor-
mation which would not be captured by STRF branch. In addi-
tion, we apply frequency dynamic convolution (FDYConv) on 
TB-STRFNet to further improve the performance. While 
STRFNet is inspired by auditory neural response to the sound, 
FDYConv is inspired by the physical nature of time-frequency 
sound representation. FDYConv was shown to perform the best 
when applied on on both branches of TB-STRFNet. Joint appli-
cation of TB-STRFNet and FDYConv significantly improved 
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performance over TB-STRFNet, proving compatibility between 
two methods as well as the importance of considering domain 
knowledge. 

2. PROPOSED METHODS 

2.1. STRF construction 

We adopted STRF construction method by Chi et al [20], where 
STRF design is abstracted considering particular physiological 
A1 cell characteristic. Since A1 cell response can be predicted 
with convolution of sound spectrogram and STRF, STRF should 
reflect the A1 cell response property. There exists observation on 
physiological data that A1 cell response is effectively elicited by 
spectro-temporally modulated ripple [25, 26]. Ripple is defined 
as a spectro-temporally modulated signal which has temporally 
varying sinusoidal spectrum along log frequency spacing [27]. 
Given that A1 cell’s modulation-reactive property, STRF needs 
to be constructed to capture the spectro-temporal modulation. 
STRF design in Chi et al [20] is a function of both spectral and 
temporal modulation parameters, which are scale (Ω) and rate (ω) 
respectively. Scale represents neurons’ reaction on range of 
spectral modulation, while rate represents neurons’ reaction on 
range of temporal modulation. Spectrally and temporally various-
ly tuned neurons could be explained by different combinations of 
scale and rate values. 

Fig. 1 (a) represents constructed STRF examples for varying 
scale and rate settings. X-axis and Y-axis represent time and 
logarithmic frequency range respectively. STRF is always cen-
tered at its center frequency (CF). As 1 CF represents the center 
frequency, 2 CF and 0.5 CF are double and half of its center 
frequency respectively. STRF frequency range lies on 2 octaves 
from 0.5 CF to 2 CF. In fig. 1 (a), scale increases from left col-
umn to right column, while rate increases from top to bottom row. 

Spectral spacing of ripples is narrower in higher scale while it is 
wider at lower scale. This illustrates that STRF is narrowly tuned 
to its center frequency at higher scale while it is broadly tuned at 
lower scale. Temporal spacing of ripple is narrower in higher rate 
while it is wider in lower rate. This reflects the characteristics of 
STRF which is more reactive to impulsive stimulus with higher 
rate while more reactive to prolonged response time with higher 
rate. Therefore, the scale variation shows that scale reflects the 
neural frequency tuning property, while the rate variation shows 
that rate reflects the neural temporal response property. 

STRF has upward and downward direction as shown in fig. 
1 (b). While upward direction STRF captures increasing spectral 
component as time passes, downward STRF captures decreasing 
spectral component as time passes. Both directions of modulation 
have to be considered to effectively capture the perceptual mean-
ing of the sound. Note that fig.1 (a) is illustrated as downward 
STRFs just for consistency. 

2.2. STRFNet 

Constructed STRF has been used as a kernel of the first convolu-
tional layer to tackle several audio-related tasks [22, 23]. We also 
use this method to verify the effectiveness of STRF on SED. In 
fig. 2 (a), the architecture of the baseline model used in this work 
is depicted. Baseline model is composed of six convolution 
blocks in series followed by two Bi-directional gated recurrent 
unit (GRU) layers and two fully connected layers. “ConvBlock” 
in fig. 2 consists of 2D convolutional layer, batch normalization, 
ReLU activation and 2D maxpool. STRFNet architecture is 
shown in fig.2 (b), where STRFConv layer is added in front of 
the baseline model. STRFConv uses 64 different STRFs as con-
volutional layer kernels, where 32 STRFs are for upward direc-
tion modulation and the other 32 STRFs are for downward direc-
tion modulation. Instead of directly training the convolution 

 
Figure 1. STRF examples with (a) varying scales (Ω) and rates (ω), (b) upward and downward direction. 
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Figure 2: Architectures of (a) baseline model, (b) STRFNet and (c) Two-Branch STRFNet (TB-STRFNet). 

kernel as in the conventional convolutional layers, STRFConv 
trains scales and rates corresponding to the channels of the kernel 
and then produce kernels using trained scales and rates, thus it is 
lighter than conventional convolutional layers in terms of the 
number of parameters. In this work, 32 sets of scales and rates 
are trained in STRFConv to construct 32 upward and downward 
sets of STRF. 

2.3. TB-STRFNet 

STRF kernel only extract spectral and temporal modulation from 
the sound, while other characteristics of time-frequency patterns 
within sound would be required for recognition of sound events. 
In addition, STRF kernel has large kernel size of 50 by 48 and 
can capture only monotonic modulation form. To compensate 
such limitations of STRFConv, we propose two-branch model 
composed of STRF branch and baseline branch, and named as 
TB-STRFNet. STRF branch is taken from STRFNet while base-
line branch is taken from the baseline model with additional 2D 
convolutional layer before the CNN structure as shown in fig. 2 
(c).  

Both branches take the identical input which is mel-
spectrogram. The STRF branch captures the neuroscience in-
spired spectro-temporal modulation information from the mel 
spectrogram. On the other hand, baseline branch consists of a 2D 
convolutional layer and six convolution blocks. Since STRF 
branch applies large kernels to extract modulation-related sound 
information, we expect the baseline branch to extract comple-
mentary information using small kernels by focusing on detailed 
time-frequency patterns. Extracted features from two branches 
are concatenated to combine separately extracted information. 
Concatenated feature map would go through the remaining layers 
with the same procedure as the baseline model. 

2.4. STRF with frequency dynamic convolution 

To further improve the performance of STRFNet and TB-
STRFNet, we experimented on application of frequency dynamic 
convolution (FDYConv) on those models. FDYConv is proposed 
to tackle the problem that 2D convolutional layer applies transla-
tional equivariance on the frequency dimension while the fre-
quency dimension is shift-variant [9]. This is also related to 
human auditory system in that it can distinguish frequency-wise 
translation. Thus FDYConv make sense with the idea of making 
SED models function similar to human auditory system. To test 
compatibility of FDYConv with STRFNet, we replaced all con-
volution layers in STRFNet by FDYConv and named as STRF-
FDYNet. In addition, we applied FDYConv on TB-STRFNet to 
further improve the performance. We replaced convolution layers 
by FDYConv in baseline branch only, STRF branch only, and 
both branches of TB-STRFNet and named as TB-STRF-
FDYNet1, TB-STRF-FDYNet2, and TB-STRF-FDYNet3, re-
spectively. FDY replaced only convolution layer in convolution 
blocks for each branch of models, so that first layer of each 
branch is not FDYConv just as in the original implement of 
FDYConv [9]. 

3. EXPERIMENTAL DETAILS 

3.1. Implementation Details 

MAESTRO Real dataset is composed of 49 audio clips with 
duration of 3 to 5 minutes and sampling rate of 44.1 kHz [28]. 
Mel-spectrogram is used as input feature with 8,820 hop length, 
17,640 window length and 64 mel-bin. For training, epoch num-
ber is 150, batch size is 32, mean-square error for loss function 
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and Adam optimizer are used. 5 cross-fold validation setup is 
used for stable overall evaluation. 

3.2. Other SED models for comparison 

For comparison, various models are adopted. DCASE baseline 
model is provided by DCASE Challenge 2023 Task4 subtask B 
baseline [29]. It has simple model architecture with three CNN 
layers, one Bi-directional GRU, followed by two fully connected 
layers. Other than the DCASE baseline model, the models with 
other methods are based on the baseline model in fig. 2 (a). 
Temporal dynamic convolution (TDYConv) [11] and frequency 
dynamic convolution (FDYConv) [9] are dynamic convolution 
models whose CNN kernel is weighted with time-wise attention 
and frequency-wise attention respectively. Each temporal and 
spectral axis-wise attention is extracted from the convolution 
input. TDY-CRNN and FDY-CRNN are applied in this work to 
compare the performance with STRF-based models, as they also 
function similar to human auditory perception and show decent 
performances. For both TDY-CRNN and FDY-CRNN, dynamic 
convolutional layer replaced all convolutional layers of the 
baseline except for the first layer.   

3.3. Evaluation Metrics 

Macro-average F1 score with optimum threshold (F1MO) is used 
for main evaluation metric of DCASE 2023 Task 4 subtask B 
[30, 31]. By finding the best threshold which is most fit to cer-
tain task, the metric can provide more accurate system evalua-
tion and reduce the need of manual threshold optimization. For 
comparison of model performance, the performance of each 
model is averaged by 10 sessions, in that 5 cross-validation 
procedure is performed for one session. 

4. RESULTS AND DISCUSSION 

SED performance of various models discussed in this paper are 
listed Table 1. For performance of single branch models, TDY-
CRNN fails to outperform the baseline model. Since the models 
apply bi-GRU which considers sequential information between 
time frames, TDY-CRNN did not improve much compared to the 
baseline. On the other hand, FDY-CRNN which releases transla-
tional equivariance of frequency dimension showed significant 

improvement. STRFNet which captures the spectro-temporal 
modulation information, performed worse than the baseline. As 
we expected, large kernel size of STRF missed the detailed time-
frequency information and lead to lower performance. However, 
joint application of STRFConv and FDYConv has further im-
proved the performance of FDY-CRNN. Considering that 
STRFConv worsen the performance of baseline while enhance 
the performance of FDY-CRNN, there exists a synergy between 
STRFNet and FDYConv. The synergy seems to be due joint 
application of two methods consistent to principles by human 
auditory system.  

TB-STRFNet which aims to capture detailed time-frequency 
information while extracting spectro-temporal modulation infor-
mation, outperformed the baseline and the other single branch 
models. To verify the effect of increased model size, we con-
structed TB-baseline, which is consist of two baseline branches. 
While TB-baseline has almost the same number of parameters 
with TB-STRFNet, TB-STRFNet outperforms TB-baseline. 
Since TB-baseline outperforms the baseline, increased model size 
has affected the model performance. However, considering that 
application of STRFConv on single branch model has worsened 
performance, positive effect by STRFConv on TB-STRFNet is 
apparent. STRF effectively extracts additive information from the 
mel-spectrogram which is helpful to discriminate the event class 
and its time onset/offset in two branch architecture. In addition, 
we interpret that TB-STRFNet outperforms TB-baseline because 
different role of TB-STRFNet branches efficiently extract the 
various information from the input sound stimulus. Proposed TB-
STRFNet is submitted to DCASE Challenge 2023 Task 4b and 
achieved 4th rank outperforming DCASE baseline by 4.3% [32]. 

All three models with join application of FDYConv and TB-
STRFNet outperformed TB-STRFNet. Since both FDYConv has 
improved both baseline model and STRFNet, it is effective 
whether STRFConv is applied or not. In addition, TB-STRF-
FDYNet2 applying FDYConv on STRF branch performed better 
than TB-STRF-FDYNet1 applying FDYConv on the baseline 
branch. This proves the synergy between STRFConv and FDY-
Conv again, as they perform better when applied together than 
when applied separately. TB-STRF-FDYNet3 performed the best, 
improving the baseline by 6.2%. This again proves that methods 
consistent to human auditory systems are effective on SED and 
using them together even results in great synergy. 

5. CONCLUSION 

In this work, we applied STRF as a convolutional layer kernel on 
SED to build SED model functioning closer to human auditory 
system. While STRFNet performed not as good as the baseline 
model, TB-STRFNet outperformed the baseline and showed the 
effect of extracting spectral and temporal modulation information 
on SED. Furthermore, reflecting frequency-varying perceptual 
property of auditory system, we applied FDYConv together with 
STRF. The superior performance of STRF-FDYNet and TB-
STRF-FDYNet3 proves that a physiologically consistent deep 
learning methods enhance SED performance. For future works, 
we suggest to consider further physiological A1 cell response 
properties. STRF has dynamic property that STRF is known to be 
dependent to input sound stimulus [33]. Thus, we may construct 
the dynamic STRF based model which consider such dynamic 
STRF property. 

Table 1: Performance on various SED models.  

Model Params F1MO(%) 
DCASE baseline [29] 0.38M 42.91 

baseline 2.22M 43.76 
TDY-CRNN 7.01M 43.57 
FDY-CRNN 7.01M 44.06 

STRFNet 2.25M 43.19 
STRF-FDYNet 7.24M 44.33 

TB-baseline 4.08M 44.28 
TB-STRFNet  4.08M 44.75 

TB-STRF-FDYNet1 9.06M 44.81 
TB-STRF-FDYNet2 9.06M 45.16 
TB-STRF-FDYNet3 14.05M 45.55 
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ABSTRACT
Knowledge Distillation (KD) is a widespread technique for

compressing the knowledge of large models into more compact
and efficient models. KD has proved to be highly effective in
building well-performing low-complexity Acoustic Scene Classi-
fication (ASC) systems and was used in all the top-ranked sub-
missions to this task of the annual DCASE challenge in the past
three years. There is extensive research available on establishing the
KD process, designing efficient student models, and forming well-
performing teacher ensembles. However, less research has been
conducted on investigating which teacher model attributes are bene-
ficial for low-complexity students. In this work, we try to close this
gap by studying the effects on the student’s performance when using
different teacher network architectures, varying the teacher model
size, training them with different device generalization methods,
and applying different ensembling strategies. The results show that
teacher model sizes, device generalization methods, the ensembling
strategy and the ensemble size are key factors for a well-performing
student network.

Index Terms— Acoustic Scene Classification, Knowledge
Distillation, CP-Mobile, Patchout FaSt Spectrogram Transformer
(PaSST), CP-ResNet

1. INTRODUCTION

The objective of Acoustic Scene Classification (ASC) involves la-
beling an audio clip with a corresponding scene. The DCASE23
challenge’s [1] Low-Complexity Acoustic Scene Classification task
focuses on utilizing the TAU Urban Acoustic Scenes 2022 Mobile
development dataset (TAU22) [2]. This dataset comprises one-
second audio snippets from ten distinct acoustic scenes. In an at-
tempt to make the models deployable on edge devices, a complexity
limit on the models is enforced: models are constrained to have no
more than 128,000 parameters and 30 million multiply-accumulate
operations (MMACs) for the inference of a 1-second audio snip-
pet. Among other model compression techniques such as Quan-
tization [3] and Pruning [4], Knowledge Distillation (KD) [5–7]
proved to be a particularly well-suited technique to improve the per-
formance of a low-complexity model in ASC.

In a standard KD setting, a low-complexity model learns to
mimic the teacher by minimizing a weighted sum of hard label loss
and distillation loss. While the soft targets are usually obtained by
one or multiple possibly complex teacher models, the distillation
loss tries to match the student predictions with the computed soft
targets based on the Kullback-Leibler divergence.

Jung et al. [8] demonstrate that soft targets in a teacher-student
setup benefit the learning process since one-hot labels do not reflect

the blurred decision boundaries between different acoustic scenes.
Knowledge distillation has also been a very popular method in the
DCASE challenge submissions. For example, Kim et al. [9] apply
KD using a pretrained teacher. Further, [10] and [11] employ KD to
train a low-complexity network on the predictions of a more com-
plex one. Schmid et al. [12] use KD to train a low-complexity CNN
on a teacher ensemble consisting of five PaSST [13] models.

To enhance generalization across recording devices, Kim et al.
propose a modified version of MixStyle [14] called Freq-MixStyle
[12, 15]. This method normalizes each frequency band and denor-
malizes it with mixed frequency statistics of two different samples.

Another method for improving the device generalization is De-
vice Impulse Response Augmentation [16] which was introduced
by Morocutti et al. It convolves audio signals with impulse re-
sponses of vintage microphones to increase the recording device
variety in the training phase.

In this work, we study the effects of training a low-complexity
network on the predictions of a single teacher or a teacher ensem-
ble. We experiment with different network architectures, model
sizes and device generalization methods to create the single teacher
model that leads a student to perform best on the validation set.
Additionally, we analyze the effect of combining teacher models
with different network architectures, sizes, or device generalization
methods.

2. NETWORK ARCHITECTURES

We experiment with three different teacher networks that were
shown [17] to perform well as a teacher for the task of ASC.
The architectures consist of two receptive-field regularized [18]
convolutional neural networks (CNNs): CP-ResNet [19] and CP-
Mobile [17], as well as a Transformer model: Patchout faSt Spec-
trogram Transformer (PaSST) [13].

2.1. CP-Mobile

CP-Mobile (CPM) [17] is an efficient architecture optimized for
ASC. This architecture is designed to be less complex than CP-
ResNet by factorizing convolution operations, such as in Mo-
bileNets [20, 21] and EfficientNets [22], while maintaining impor-
tant properties that were shown to be important for ASC tasks, such
as the regularized receptive field [18, 19].

In the following experiments, the student model has the CPM
architecture with the following configuration: 32 base channels, an
expansion rate of 3 and a channels multiplier of 2.3. The details
of the CPM architecture are described in [17]. In short, these at-
tributes control the scale of the network: the base channels repre-
sent the width of the first few blocks of the network; the channels
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multiplier determines the expansion in the number of channels as
the network gets deeper (i.e. the number of channels in the last con-
volutional blocks is the number of channels of the previous blocks
multiplied by channels multiplier); the expansion rate determines
the number of channels in the depthwise convolution. The resulting
model consists of almost 128K parameters and 29 million multiply-
accumulate operations (MMACs).

We choose CPM as a student model since the architecture is de-
signed for low-complexity ASC and has been shown to outperform
CP-ResNet in previous work [17]. In addition, we experiment with
using a scaled-up version of CPM as a teacher model for KD. To
scale up the network, we increase the width via the base-channels
hyperparameter.

2.2. CP-ResNet

CP-ResNet (CPR) [18, 19] is a receptive-field regularized CNN
which has been shown to be very successful for ASC in previous
editions of the DCASE ASC challenge [1, 2, 23, 24]. Therefore, we
also use this network as a teacher model. We use the number of base
channels to scale up the network in order to create teacher models
with different sizes, similar to the procedure outlined for CPM.

2.3. PaSST

The Patchout faSt Spectrogram Transformer (PaSST) [13] is a
complex, self-attention-based model, which is pre-trained on Au-
dioSet [25] and consists of 85M parameters. The pre-trained model
can be fine-tuned to achieve state-of-the-art performances on multi-
ple downstream tasks, including ASC [13]. Additionally, PaSST
models have proven to be excellent teachers for low-complexity
CNNs [12, 26, 27]. Therefore, we also experiment with PaSST as a
teacher model.

3. KNOWLEDGE DISTILLATION

We train our student model on the pre-computed predictions of the
teacher model or teacher ensemble in addition to the one-hot en-
coded labels, similar to [27]. Training the student model on the soft
labels of the teacher (ensemble) results in the student model learn-
ing blurred decision boundaries and establishing important similar-
ity structures between classes. The loss is given in Equation 1 and
consists of the hard label loss Lt and distillation loss Lkd. The la-
bel and distillation loss are weighted using the factor λ. The student
and teacher logits are denoted by zs and zt, while y stands for the
hard labels. τ is a temperature to control the sharpness of the proba-
bility distributions created by the softmax activation δ. Ll indicates
the Cross-Entropy loss and the Kullback Leibler divergence is used
as distillation loss Lkd.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (1)

As suggested in [5], we multiply the distillation loss by τ2 since
the magnitudes of the gradients produced by the soft targets scale
as 1/τ2. This ensures that the relative contributions of the hard and
soft targets remain roughly unchanged if the temperature used for
distillation is modified.

3.1. Experimental Setup

We train the teacher models as well as the student models on the
TAU22 [2] dataset with the shifted crops dataset augmentation de-
scribed in [17]. Regarding Knowledge Distillation, we use the val-
ues of 0.02 and 2 for λ and temperature τ , respectively.

For device generalization (DG) we experiment with Freq-
MixStyle (FMS) [12,15] and Device Impulse Response (DIR) aug-
mentation [16] and the combination thereof. FMS is configured by
two parameters: αfms determines the shape of the Beta distribu-
tion used to randomly draw mixing coefficients, and pfms specifies
the probability of whether it is applied to a batch or not. Similar
to FMS, DIR is guided by a probability pdir that determines the
augmentation strength by specifying the proportion of samples to
augment.

The configurations used for FMS and DIR are adapted for each
architecture. Results in [16] show that PaSST performs best with
αfms = 0.4, pfms = 0.4 and pdir = 0.6 whereas CPR achieves
the highest validation accuracy using αfms = 0.3, pfms = 0.8
and pdir = 0.4. While our experiments found that CPM teachers
perform well using the same configuration as used for CPR, setting
αfms, pfms and pdir to 0.3, 0.4 and 0.6 when training the student
network results in higher validation accuracy. More details about
our experimental setup are reported in [17].

4. SINGLE MODEL TEACHER

In this section, we compare the performance of different teachers
and evaluate the performance of students trained on the predictions
of different teacher models using KD. We experiment with using
a single CPM, CPR or PaSST model as the teacher and a low-
complexity CPM as the student.

4.1. Scaling the Teacher

To investigate the effect of training the student on teachers of differ-
ent complexity, we scale CPM and CPR by increasing the number
of base channels, which modifies the width of the network. We test
the effect of scaling the teacher only on CPM and CPR since we use
a pre-trained PaSST model.

We trained CPM and CPR models in five different complex-
ity configurations such that their number of parameters is approxi-
mately 128K, 450K, 1M, 4M and 8M. Since the number of param-
eters of CPM and CPR does not scale equally when increasing the
base channels, we selected the number of base channels for each
size and architecture individually. We used 32, 56, 88, 168 and 232
base channels for CPR and 32, 64, 96, 184 and 264 base channels
for CPM.

All different configurations are evaluated over three runs and to
ensure that our experiments are independent of each other, we train
one student on each of the three teachers.

Additionally, we apply a combination of Freq-MixStyle and
Device Impulse Response augmentation to all student as well as
all teacher models. From now on, we will refer to the combination
of DIR and FMS as DIRFMS.

Table 1 shows that for the teacher, CPM outperforms CPR
in each complexity configuration. Additionally, even the smallest
variant of CPM achieves a higher validation accuracy than PaSST,
which has several orders of magnitude more parameters.

However, the students trained on CPM perform worse than the
ones trained on CPR for each size of teacher. Furthermore, the stu-
dents trained using PaSST as a teacher outperform the best students
trained on a CPR variant by only 0.05%. While the teacher with
450K parameters works best for CPR, the variant with 128K pa-
rameters makes the best CPM teacher.

In short, the results show that the right scale of a CNN teacher
can improve the performance of the students by more than 1%. Fur-
thermore, smaller CNNs can be better teachers, even if the larger
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CPR CPM PaSST
T S T S T S

Te
ac

he
r

si
ze

128K 60.28 63.94 62.66 63.70 - -
450K 62.05 64.60 62.81 62.48 - -
1M 62.58 63.99 63.92 62.76 - -
4M 62.74 63.51 64.28 62.43 - -
8M 63.28 63.43 64.62 62.83 - -
85M - - - - 62.20 64.65

Table 1: Validation accuracy of different teacher networks, and a
student model trained on these. T and S denote the performance of
the teacher and student, respectively. While the teacher networks
vary in architecture and size, the student model is always a CPM
model with 128k parameters. All results are averages over three
independent runs and the last 4 epochs of training.

teachers outperform the smaller ones. Finally, having a different ar-
chitecture for teacher and student improves the performance of the
student.

4.2. Effect of Device Generalization Methods

Table 2 presents the impact of the device generalization (DG) meth-
ods DIR, FMS and DIRFMS. For studying the effects of these meth-
ods, we use the teacher variations with 128K and 450K parameters
for CPM and CPR, respectively, since these teacher models result
in the best performing student models, as shown in Section 4.1.

CPR CPM PaSST
T S T S T S

Validation Accuracy

DIRFMS 62.05 64.60 62.66 63.70 62.20 64.65
DIR 57.34 62.47 57.23 61.57 61.64 64.39
FMS 60.99 63.40 61.18 63.66 61.08 64.56
NO AUG 54.13 62.74 53.15 62.47 59.39 63.76

Unseen Accuracy

DIRFMS 56.95 60.43 57.92 59.20 58.73 61.03
DIR 49.30 56.74 48.62 55.54 57.91 60.90
FMS 54.94 58.91 54.92 58.76 57.57 61.00
NO AUG 44.75 56.70 43.94 56.21 54.08 59.60

Table 2: Validation accuracy of teacher networks trained using dif-
ferent DG methods, and a student model trained on the correspond-
ing teacher predictions. T and S denote the performance of the
teacher and student, respectively. The CPM teacher has 128K pa-
rameters, the CPR teacher has 450K parameters. While the teacher
network varies in architecture and used DG method, the student is
always a CPM model with 128k parameters trained with DIRFMS.
All results are averages over three independent runs and the last 4
epochs of training.

The results in Table 2 show that FMS, DIR and/or DIRFMS
boost both the performance of the teacher models as well as the per-
formance of the student models significantly. The results show that
there is a clear effect of these methods on the validation accuracy.

Moreover, this effect tends to be even higher on the unseen accu-
racy. Applying DIRFMS results in the best validation and unseen
accuracy, outperforming DIR and FMS. We define unseen accuracy
as the accuracy on the subset of the validation set that consists of
samples of devices not present in the training set. Consistent with
the findings in [16], FMS, DIR and DIRFMS have less effect on the
performance of PaSST, compared to CPR or CPM.

5. ENSEMBLE TEACHER

Previous work [17] shows that training the student on the predic-
tions of multiple teacher networks is a highly effective method to
improve the accuracy of the student in the KD framework. This
effect is even more significant when ensembling different architec-
tures or models trained with different device generalization meth-
ods. In this section, we will experiment with different ensemble
configurations and show their effect on the low-complexity student.
We ensemble different models by averaging their logits.

CPR CPM PaSST

size of teacher 128K 450K 128K 450K 85M

1 teacher 63.94 64.60 63.70 62.48 64.65
3 teacher 64.53 64.36 63.97 62.77 64.81

Table 3: Validation accuracy of student models trained on the
predictions of either one or three teacher models which apply
both Freq-MixStyle and Device Impulse Response augmentation
(DIRFMS). The highest accuracy per architecture and per number
of teacher is marked bold. For CPR and CPM, the teacher models
consist of either 128K or 450K parameters. All results are averages
over three independent runs and the last 4 epochs of training.

5.1. Ensembling Teachers with Identical Training Setup

This section presents experiments about ensembling different mod-
els that use the same training setup but different seeds. More pre-
cisely, we ensemble different models that share the same architec-
ture, complexity and DG methods. The goal is to test if the averaged
logits of multiple teacher models are better soft targets for training
the student model.

Since the results in Table 2 indicate that DIRFMS has the most
positive effect on the students for all teacher architectures, we eval-
uate the performance of students learning from a teacher ensemble
trained with DIRFMS. Additionally, we choose to test the training
of the student on the teacher ensembles with two different complex-
ity configurations of the CPR and CPM teachers. Due to the fact
that CPR performs best with 450K and CPM with 128K parame-
ters, we select these two complexity levels to evaluate the teacher
ensembling on both architectures.

As the results in Table 3 show, the CPR teacher with 128K pa-
rameters outperforms the variant with 450K parameters when using
an ensemble of three teachers. Further, the variant with 128K pa-
rameters also works best for the CPM teacher, outperforming the
450K-parameters variant by 1.2%. When we train the students on
the averaged logits of three PaSST models, the validation accuracy
of the student increases slightly by 0.16%, compared to using only
one PaSST teacher. However, PaSST outperforms the other archi-
tectures, with CPM performing worse than CPR.
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Teacher Ensemble Variations

Teacher Architecture

CPR ✓ ✗ ✗ ✓ ✓ ✗ ✓

CPM ✗ ✓ ✗ ✗ ✓ ✓ ✓

PaSST ✗ ✗ ✓ ✓ ✓ ✓ ✗

Device Generalization Methods

DIR + FMS 64.25 62.35 64.47 - - - -
DIRFMS + DIR 64.21 63.45 64.63 - - - -

DIRFMS 64.53 63.97 64.81 65.19 65.09 65.15 64.66
DIRFMS + FMS 64.74 63.76 64.89 65.81 65.12 64.67 64.67
DIRFMS + DIR + FMS 64.10 63.76 65.16 65.39 65.18 64.85 64.03

Table 4: The accuracy of the student model being trained on a teacher ensemble. The teacher ensembles differ in the combination of
architectures and the combination of DG methods. A mark indicates that three models of the corresponding architecture are included in the
ensemble. All results are averages over three independent runs and the last 4 epochs of training.

5.2. Ensembling Teachers Trained with Different DG Methods

In this section, we experiment with combining models with the
same architecture but trained using different DG methods in order
to create a better teacher ensemble. We choose 128K parameters
as the teacher complexity for CPR and CPM, since this complex-
ity performs best when combining multiple models, as shown in
Table 3. We evaluate the effect of training the student on these
teacher ensembles and compare the results with the performance of
the students trained using the DIRFMS teacher ensemble described
in Section 5.1. All evaluated teacher ensembles contain three mod-
els for each included DG method. This implies that the different
ensembles stated in the left part of Table 4 contain between 3 and 9
models.

The results in Table 4 indicate that including teachers
trained using DIRFMS in the ensemble is essential for ev-
ery architecture, since the ensembles DIRFMS+FMS, DIRFMS
and DIRFMS+DIR+FMS perform best for the CPR, CPM and
PaSST architecture, respectively. Including the DIR teacher
in the DIRFMS+FMS ensemble only increases the performance
of students trained on the predictions of PaSST models. The
best-evaluated ensemble of only one architecture is the PaSST
DIRFMS+DIR+FMS ensemble, increasing the accuracy by 0.35%
compared to the previously best PaSST DIRFMS ensemble.

5.3. Ensembling Teachers with Different Architectures

In this section, we experiment with ensembling different architec-
tures motivated by the assumption that different architectures can
learn different features and aspects of the training data and there-
fore ensembling them would result in a more robust model.

We test each combination of CPR, CPM and PaSST using the
combinations of DG methods, which performed best on single ar-
chitecture ensembles. It is worth noting that the teacher ensemble
size depends on the number of used architectures and DG methods.
It can therefore range from 6 (2 architectures x 1 DG method x 3
models) to 27 (3 architectures x 3 DG methods x 3 models).

The results in Table 4 clearly show that the teacher ensembles
consisting of CPR and PaSST models result in the best-performing
students. Adding CPM models to ensembles of CPR and PaSST
models worsens the performance of the students for all evaluated
DG configurations. More precisely, ensembling CPM and CPR

does not lead to performance improvement, and neither does en-
sembling CPM and PaSST.

Regarding the DG methods, ensembling teacher models trained
with DIRFMS and FMS results in the best student performance for
the CPR and PaSST combination, creating the best-evaluated en-
semble with 65.81% validation accuracy of the student.

6. CONCLUSION

In this work, we show that low-complexity CNNs like the CPM
learn more important features from Transformers or relatively small
CNNs compared to large CNNs when using Knowledge Distilla-
tion. Additionally, we show that applying Device Impulse Re-
sponse (DIR) augmentation, Freq-Mixstyle (FMS) and especially
the combination thereof (DIRFMS) to the teacher models signifi-
cantly boosts the performance of the teachers and the students. The
effect of these DG methods is even more noticeable on the unseen
accuracy, compared to the total validation accuracy. Surprisingly,
it turns out that the performance of the student does not necessar-
ily improve with the scale of the teacher. For example, ensembling
smaller teacher networks can be more beneficial than ensembling
bigger ones. Furthermore, we show that the performance of the stu-
dent improves when the teacher architecture is different than the
student architecture. For example, when using PaSST or CPR to
train CPM. In contrast, the low-complexity CPM student performs
worse when it is trained on any higher complexity variation of the
same architecture. Additionally, the predictions of PaSST and CPR
complement each other, resulting in better student performance. Fi-
nally, using an ensemble of CPR and PaSST trained either using
DIRFMS or FMS results in our best student, which has an accuracy
of 65.81% with 128K parameters and 32 million MACCS, outper-
forming the much larger CPR, CPM and PaSST models.
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ABSTRACT

Deep learning has been widely used recently for sound event de-
tection and classification. Its success is linked to the availability of
sufficiently large datasets, possibly with corresponding annotations
when supervised learning is considered. In bioacoustic applications,
most tasks come with few labelled training data, because annotating
long recordings is time consuming and costly. Therefore supervised
learning is not the best suited approach to solve bioacoustic tasks.
The bioacoustic community recasted the problem of sound event
detection within the framework of few-shot learning, i.e. training
a system with only few labeled examples. The few-shot bioacous-
tic sound event detection task in the DCASE challenge focuses on
detecting events in long audio recordings given only five annotated
examples for each class of interest. In this paper, we show that
learning a rich feature extractor from scratch can be achieved by
leveraging data augmentation using a supervised contrastive learn-
ing framework. We highlight the ability of this framework to trans-
fer well for five-shot event detection on previously unseen classes in
the training data. We obtain an F-score of 63.46% on the validation
set and 42.7% on the test set, ranking second in the DCASE chal-
lenge. We provide an ablation study for the critical choices of data
augmentation techniques as well as for the learning strategy applied
on the training set. Our code is available on Github.1

Index Terms— Contrastive learning, representation learning,
transfer learning, few-shot learning, bioacoustic sound event detec-
tion.

1. INTRODUCTION

Sound Event Detection (SED) is the task of recognizing sound
events, including determining their onsets and offsets, as well as
recognizing them. SED has many applications in bioacoustics such
as monitoring of biodiversity, studying animal behavior and iden-
tifying species. Automatic bioacoustic SED provides significant
value in our understanding of animal populations and their interac-
tions, as well as individuals and their behaviors. Standard SED sys-
tems leverage supervised learning as well as semi-supervised learn-
ing (DCASE Challenge Task 4) and have shown strong results in the
recent years [1, 2, 3]. Numerous works focused on bird vocalization
due to availability of large bird sound datasets [4, 5]. BirdNet [6]
is a notable work for bird monitoring, able to identify nearly one

This work was co-funded by the AI@IMT program and the company
OSO-AI.

1: https://github.com/ilyassmoummad/dcase23_
task5_scl

thousand bird species. The approach involves training a model in
a supervised fashion using a vast dataset comprising over one mil-
lion labeled bird recordings, using extensive data-preprocessing and
data augmentation techniques.

However, such a large scale data collection for training systems
is not always feasible in bioacoustics. The challenge lies not only in
obtaining annotations but also in acquiring the audio samples them-
selves (e.g. for rare species or fields that are difficult to reach). As a
consequence, bioacoustics SED is considered as a collection of nu-
merous small-data problems, each requiring specialized systems for
their individual solutions. Thus, the community of bioacoustics re-
casted bioacoustic SED as a few-shot learning (FSL) problem [7, 8].

FSL is a machine learning problem where a model has to learn
to adapt to new classes of data unseen during training with only
few labeled samples. FSL is adapted for many applications where
acquisition or annotation is expensive or time consuming. The an-
nual challenge on detection and classification of acoustic scenes and
events (DCASE) organized a third edition for the task of few-shot
bioacoustic sound event detection. This task focuses on SED in a
FSL setting for mammal and bird vocalizations. The goal is to cre-
ate a system that learns from five exemplar vocalizations (shots) to
detect instances of these vocalizations in test audio recording.

Prototypical networks (ProtoNets) [9] were proposed as a base-
line to solve the FSL problem of detecting animal sound events
in the DCASE challenge [8]. ProtoNets, a meta-learning frame-
work, have been state-of-the-art FSL audio systems in the recent
years [10, 11]. The goal of meta-learning training is to develop
models that can quickly adapt to new tasks with minimal data by
simulating the test scenario within the training process. In Com-
puter Vision, simple transfer learning methods have been shown
to outperform meta-learning methods in FSL [12, 13] in several
datasets such as MiniImageNet and TieredImagenet, in which case
the domain shift between the training data and the few shot gener-
alization is small enough. Here, we propose to test transfer learning
to solve FSL problems for the bioacoustic SED [8].

As the generalization capability of the feature extractor is cru-
cial for efficient transfer learning, we propose to train a model using
the supervised contrastive learning framework (SCL) [14]. Numer-
ous contrastive learning methods have been proposed in the self-
supervised learning (SSL) literature [15, 16, 17], but the fundamen-
tal concept of pulling together positive pairs and pushing apart neg-
ative pairs remains the same across these approaches. The posi-
tive pairs consist of similar samples, while negative pairs consist
of dissimilar samples. The selection of these pairs can be achieved
through various means, such as data augmentation techniques [15]
and/or utilizing class labels as in done in SCL [14]. The representa-

126



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

Hyperparameter 
search

Training Validation

Binary Classifier System

P
ro

vi
de

d
ev

en
ts

O
ut

pu
t

Test

Binary Classifier System

P
ro

vi
de

d
ev

en
ts

O
ut

pu
t

Figure 1: Overview of the proposed framework

tions learned using this framework have shown competitive transfer
learning performance with SSL and cross-entropy (CE) learning on
a variety of downstream tasks in vision [14]. In audio, the works
of Moummad et al. [18] and Nasiri et al. [19] have demonstrated
strong generalization capabilities of SCL.

Following the training of the feature extractor using SCL on
the training set, the learned model is transferred to the validation
set to conduct hyperparameter search. The optimal hyperparameter
setting determined from this process is then employed on the test
set for evaluation. In summary, our contribution revolves around the
proposition of employing supervised contrastive learning to train a
feature extractor that can be transferred to new few-shot bioacoustic
sound event detection tasks.

2. METHOD

This section provides a comprehensive overview of the methodol-
ogy employed in this study (Figure 1). Firstly, we present the SCL
framework utilized for pre-training a good feature extractor model.
Secondly, we describe the data augmentation techniques employed
to enhance the diversity and robustness of the learned features. Fi-
nally, we detail our transfer learning strategy for adapting the pre-
trained model to effectively tackle novel tasks.

2.1. Supervised Contrastive Learning

SCL consists in learning an embedding space in which the samples
with the same class labels are close to each other, and the sam-
ples with different class labels are far from each other. Formally, a
composition of an encoder f and a shallow neural network h called
a projector (usually a MLP with one hidden layer) are trained to
minimize the distances between representations of samples of the
same class while maximizing the distances between representations
of samples belonging to different class. After convergence, h is
discarded, and the encoder f is used for transfer learning on down-
stream tasks. The supervised contrastive loss (SCL) is calculated as
follows:

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

s∈S(i)

exp (zi · zs/τ)
(1)

where i ∈ I = {1...2N} is the index of an augmented sam-
ple within a training batch, containing two views of each orig-

inal sample. These views are constructed by applying a data
augmentation function A twice to the original samples. zi =
h(f(A(xi))) ∈ RDP where DP is the projector’s dimension.
P (i) = {p ∈ I : yp = yi} is the set of indices of all positives in the
two-views batch distinct from i sharing similar label with i. |P (i)|
is its cardinality, S(i) = {s ∈ I : s ̸= i}, the · symbol denotes the
dot product, and τ ∈ R+∗ is a scalar temperature parameter that
controls the penalty strength on hard negative samples.

2.2. Data Augmentation

Data augmentation is crucial for learning a good feature extractor
as advocated by the SSL literature [15, 14, 16, ?]. To this end, we
adopt several augmentation modules derived from the audio repre-
sentation learning domain [17, 20, 21]. The following augmenta-
tions are sequentially applied in the prescribed order and are itera-
tively employed twice on the same data, with the exception of spec-
trogram mixing, which is exclusively applied to a single view (based
on our experimental findings, this configuration demonstrated supe-
rior performance). To demonstrate the significance of each augmen-
tation technique, an ablation study is conducted in the subsequent
section.

– Spectrogram mixing: we add background sounds using ran-
dom samples from the same batch. The mixing follows: x̂1 =
αx1 + (1− α)x2. where x̂1 is considered as a view of x1 and
x2 is a random sample from the batch.

– Frequency shift: we approximate frequency shift by shifting
the spectrogram upwards by few bands.

– Random crop: we crop a patch from the spectrogram along the
time axis.

– Spectrogram resize: this augmentation is applied after the crop
to restore the spectrogram to its original size.

– Power gain: we attenuate the power of the spectrogram by mul-
tiplying it with a coefficient sampled uniformly between 0.75
and 1.

– Additive white Gaussian noise: we add a small additive white
Gaussian noise to the view

2.3. Transfer Learning

After training the feature extractor, we transfer the model to the val-
idation and test tasks. Each audio file is treated independently as a
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separate SED problem (as the challenge rules specify). We extract
the features of the five positive annotated prototypes (shots) indi-
cating the occurrence of the event of interest. We select intervals
preceding the positive events as for the negative prototypes indicat-
ing the absence of the event. We train a binary classifier on these
two prototypes using cross-entropy loss. The encoder layers can
be either frozen or fine-tuned. We use a sliding window along the
audio file (starting from the end of the fifth positive shot) to select
queries for making predictions. The class activity is determined in-
dependently in each query window using the classifier. The onsets
and offsets decision is made based on the precise moment when the
label for the window transitions from a negative class to a positive
class and from a positive class to a negative class, respectively.

3. EXPERIMENTS

3.1. Data

The bioacoustic few-shot sound event detection DCASE task devel-
opment set consists of a training set and a validation set, for more
details we refer the reader to the description of the task in 2022 [8]
as these sets did not change from the previous edition.

3.1.1. Training

We train our system on the official training set. We select all the
positively annotated segments within each audio file. We compute
Mel spectrogram features with a FFT of size 512, a hop length of
128, a number of mels of 128 and a sampling rate of 22.05 kHz.
Each positive annotated segment from the training set is chunked
into patches of length 200 ms with 100 ms overlap. We apply min-
max normalization on each patch.

3.1.2. Validation and test

For each audio file, we extract the first five positively annotated
segments. The duration of these segments varies due to the wide
range of animals and classes covered by the dataset. Following the
approach proposed by Tang et al. [22], we determine the window
length based on the mean duration of the events in the file. To
compute Mel spectrogram features, we employ identical parame-
ters and normalization technique as those used during the training
phase. The shift size equals to half of the window length to predict
the class for each query window along the remaining duration of the
audio.

3.2. Model

We use a ResNet [23] consisting of three blocks, each comprising
three convolutional layers. The feature maps of these convolutions
have sizes of 64, 128, and 256, respectively. Following each con-
volutional layer, we apply batch normalization and a leaky rectified
linear unit (ReLU) activation function. Max pooling operations are
performed after each block. Specifically, we employ a 2x2 kernel
for the first and second blocks, while for the third block, we use a
1x2 kernel. This choice is made to preserve frequency information
by avoiding excessive pooling of the frequency bands, as suggested
by Hertkorn [24].

To ensure consistent output dimensions despite varying input
lengths, we incorporate adaptive max pooling at the end of the net-
work. This pooling operation is configured to yield a desired output
size of (8, 1), resulting in a latent vector of size 8 x 256 = 2048. A

MLP projector is added, consisted of a hidden layer with a dimen-
sion of 2048 and an output layer with a dimension of 512.

3.3. Training details

3.3.1. Data augmentation

The spectrogram mixing coefficient α is sampled from a β(5, 2)
distribution. The frequency shift size is uniformly sampled be-
tween 0 and 10. The crop size (i.e. how much total duration is kept
from the original audio) in the Random crop augmentation is uni-
formly sampled between 60% and 100%. Power gain augmentation
is achieved by multiplying the mel spectrogram with a coefficient
uniformly sampled between 0.75 and 1. The additive white Gaus-
sian noise is incorporated by adding noise with a mean of zero and
a variable standard deviation, which is uniformly chosen between 0
and 0.1.

3.3.2. Training and evaluation

We train our model from scratch on the training set using SCL
framework with a temperature τ = 0.06 using SGD optimizer with
a batch size of 128, a learning rate of 0.01 with a cosine decay
schedule, momentum of 0.9, and a weight decay of 0.0001 for 50
epochs. After training, we discard the MLP projector and transfer
the encoder to the validation and test sets by training a linear binary
classifier on the pretrained representations. In this phase we used
random resized crop along the time axis with a crop size ranging
from 90% to 100% of the original size. We submitted four distincts
systems to the challenge : freezing all pretrained layers (Frozen), or
finetuning the last, two last and all layers (FineTune-1, FineTune-2
and Finetune-3). We optimize our systems using Adam optimizer
with a learning rate of 0.01 for 20 epochs for the first system, and
40 epochs with a learning rate of 0.001 for the others. The selection
of these hyperparameters is based on evaluation conducted on the
validation set.

3.4. Results

The performance of our four systems on the validation set is pre-
sented in Table 1. For PB dataset, where events are short (therefore
only few patches are available, because we divide longer events
into multiple chunks), the first system outperforms the others, in-
dicating that fine-tuning degrades the performance when only few
positive patches are present. Conversely, for the HB dataset, where
events tend to be longer, the third and fourth systems outperform the
others. This indicates that finetuning a greater number of layers is
advantageous when more positive patches are present. The second
system demonstrates satisfactory performance across all datasets,
outperforming the other systems across all datasets with a max F1
score of 63.46%. It is important to note that our results on the val-
idation set exhibit significant variability, primarily attributed to the
instability of our proposed cross-entropy adaptation strategy. We
acknowledge this limitation and plan to address it in future work.

Table 2 displays the performance scores of our systems on the
test sets. Remarkably, the ranking order of these systems on the test
set aligns with that observed on the validation set. This consistency
further validates the robustness and generalizability of our models
across different datasets.
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Table 1: Performance of different systems on the validation set; freezing all layers, fine-tuning one, two or all three layers.

System Precision Recall F1-score HB ME PB
Pr Re F1 Pr Re F1 Pr Re F1

Frozen 71.41 55.19 62.26 77.14 81.57 79.29 65.45 69.23 67.28 72.64 36.17 48.29
FineTune-1 73.93 55.59 63.46 82.95 82.32 82.63 67.69 84.61 75.21 72.72 33.33 45.71
FineTune-2 72.90 55.14 62.79 79.73 89.72 84.43 74.60 90.38 81.73 65.57 31.06 42.19
FineTune-all 67.08 51.58 58.32 81.20 91.38 85.99 58.75 90.38 71.21 65.00 27.65 38.80

*We highlight in bold the best scores for each metric

Table 2: F-score on the test sets of the different submissions
F-score

Frozen 35.6% (35.3 - 36.0)
FineTune-1 42.7% (42.2 - 43.1)
FineTune-2 38.3% (37.9 - 38.7)
FineTune-all 34.4% (33.9 - 34.8)

*with 95% confidence interval

3.5. Ablation study

Table 3 presents our ablation study on data augmentation. Ad-
ditionally, Table 4 compares pre-training methods : SCL, cross-
entropy training (CE), and the self-supervised training method Sim-
CLR [15], which has the same formula as SCL but without positive
label pairs. We perform these studies on the validation set using the
first system Frozen, where we freeze all layers, as it better captures
the impact of the pre-training strategy. We use the same hyperpa-
rameter setting described in 3.3 for all experiments except for CE
training where we use a learning rate of 0.0001 after thorough ex-
ploration. Additionally, we modify the training duration for Sim-
CLR, extending it to 100 epochs. This adjustment is made to ac-
count for the longer training requirements typically associated with
self-supervised approaches. To ensure reliable results, we trained
the model five times on the training set and conducted five evalua-
tions for each run, resulting in a total of twenty-five runs per exper-
iment.

Table 3: Ablation of Data augmentation on the validation set
DA removed Mean [Min, Max]
Frozen (with all DAs) 56.47 [49.37, 62.39]
- Spectrogram mixing 56.59 [47.99, 64.65]
- Frequency shift 58.60 [49.73, 66.18]
- Time stretch 55.68 [49.20, 62.83]
- Power gain 56.02 [47.04, 63.01]
- Additive noise 59.04 [52.68, 67.47]

*Best score is highlighted in bold

The analysis presented in Table 3 indicates that certain data
augmentation techniques have a negative impact on the model’s
performance. Surprisingly, these effects were not evident during
the challenge submission due to the limited number of experiments
conducted at that time. Notably, the data augmentation setting that
yielded the highest score was the setting without the additive white
Gaussian noise to the spectrogram. This finding suggests that this
particular augmentation strategy was either enforcing an invariance
that is not beneficial for the downstream task at hand, or that the
task becomes hard given the small size of the training dataset.

We can observe from the results of Table 4 that SCL consis-

tently outperforms both SimCLR and CE frameworks for transfer
learning. The superior performance of SCL highlights its efficacy
in capturing discriminative features. These findings emphasize the
importance of incorporating SCL as a powerful framework for ad-
vancing feature representation learning, particularly for enhancing
transferability in downstream tasks.

Table 4: Ablation of the pretraining methods on the validation set
Method Mean [Min, Max]

CE 51.96 [43.013-57.42]
SimCLR 50.89 [39.28-57.41]

SCL 56.27 [49.37, 62.39]
*Highest F-score is highlighted in bold

4. DISCUSSION AND PERSPECTIVES

In this study, we have provided a comprehensive description of a
simple approach for bioacoustic few-shot sound event detection.
We have detailed the methodology behind the systems we devel-
oped and submitted for the DCASE 2023 challenge task five. Our
approach involves pretraining a feature extractor using supervised
contrastive learning and data augmentation on the training set, fol-
lowed by training binary classifiers on positive and negative proto-
types for each audio file in the validation/evaluation sets. We pro-
posed four systems. The first system, which utilized a linear clas-
sifier on frozen representations, demonstrated the robustness and
transferability of the learned features. When fine-tuning the last
layer (the second system) or the last two layers (the third system),
the performance is increased. However, our current adaptation strat-
egy, involving training classifiers on available shots, showed perfor-
mance instability. We also note the gap in performance between the
validation and the test sets. HB validation dataset is made of con-
trolled lab recordings, which may make the detection easier, while
PB recordings are in the wild with noisy background. Settings of
the test set are more close to PB than HB [25]. To address the limi-
tation and instability of our approach, future work will explore more
effective adaptation techniques such as meta-learning. Notably, the
winning systems in the 2022 and 2023 editions of the DCASE bioa-
coustic few-shot sound event detection challenge (Tang et al. [22];
Du et al. [26]) employed a frame-level approach, offering a higher
time resolution capability compared to our window-level approach.
Exploring the frame-level approach, as well as a proposal-based ap-
proach [27] for detecting variable length temporal regions of inter-
est, which has not been previously investigated in this task, will be
considered for future research. Combining representation learning
(meta-learning, self-supervised learning, or supervised learning) is
a promising direction for learning useful representation leveraging
knowledge from large data, that can transfer well to new tasks.
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ABSTRACT
In this paper, we propose a method for incremental learning of
two distinct tasks over time: acoustic scene classification (ASC)
and audio tagging (AT). We use a simple convolutional neural net-
work (CNN) model as an incremental learner to solve the tasks.
Generally, incremental learning methods catastrophically forget the
previous task when sequentially trained on a new task. To allevi-
ate this problem, we propose independent learning and knowledge
distillation (KD) between the timesteps in learning. Experiments
are performed on TUT 2016/2017 dataset, containing 4 acoustic
scene classes and 25 sound event classes. The proposed incremental
learner first solves the ASC task with an accuracy of 94.0%. Next, it
learns to solve the AT task with an F1 score of 54.4%. At the same
time, its performance on the previous ASC task decreases only by
5.1 percentage points due to the additional learning of the AT task.

Index Terms— Incremental learning, independent learning,
knowledge distillation, acoustic scene classification, audio tagging

1. INTRODUCTION

The natural learning system of humans incrementally learns new
concepts over time without forgetting the previously learned ones.
This process of learning is known as continuous, incremental, or
lifelong learning. In contrast, deep learning-based systems have the
ability to learn a task efficiently, but fine-tuning the same system
with a new task tends to override the previously acquired knowl-
edge. This leads to a phenomenon of deteriorating performance
on previously learned tasks known as catastrophic forgetting. De-
veloping a robust system that should not degrade its performance
significantly on previous tasks as new tasks are added is currently a
pursued problem in many domains.

Most of the studies reported in the literature on incremental
learning operate on images, e.g. object detection [1, 2], image clas-
sification [3, 4], and semantic segmentation [5, 6]. A few works re-
port on incremental learning of audio such as environmental sound
classification (ESC) [7, 8], audio captioning [9], and fake audio de-
tection [10]. However, these methods are restricted to solving an
initial base task followed by N incremental tasks of the same prob-
lem (e.g. ESC). In addition, these methods were designed to have
the same number of classes in the incremental tasks, an assumption
that does not hold in practical scenarios. Furthermore, most of these
methods use a small portion of data from the previous task during
the training of the system on current task data and employ complex
postprocessing methods to alleviate catastrophic forgetting [11].

In this work, we propose an incremental learning method to
solve distinct tasks over time: acoustic scene classification (ASC)

This work was supported in part by Academy of Finland grant 332063
“Teaching machines to listen”. The authors wish to thank CSC-IT Centre of
Science Ltd., Finland, for providing computational resources.
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Figure 1: Incremental learning of distinct tasks: acoustic scene clas-
sification (ASC) and audio tagging (AT). Our incremental learner
learns acoustic scene classes initially (blue units) and sound event
classes incrementally (red units). After the learning process of each
task, a learner is evaluated on classes of all tasks learned so far.

and audio tagging (AT) (see Fig. 1), to simulate the scenario of
new information becoming available at a later time for the same
audio material. In this case, the incremental learner first learns the
acoustic scenes and then learns more detailed characterization of
the acoustic content of the scene, i.e. the sound events active in the
given acoustic scene. When learning the sound event classes, the
same audio material is used, but the acoustic scene labels are no
longer available in the learning process.

The proposed work is based on the class incremental approach
[12] and uses a single classifier to learn both acoustic scenes and
sound events rather than using a separate classifier for each task, as
done in [13]. Using the same classifier makes the problem more
challenging, because acoustic scene and sound event classes com-
pete in a single classifier. In comparison [13] employs information
on the task identity to get output from a specific classifier at the pre-
diction step. Inspired by different incremental learning methods for
image classification [3, 4, 12–14], we propose a simple CNN-based
incremental learner to solve distinct tasks over time.

The main contributions of this work are summarized below.
• We design an independent learning (IndL) mechanism that allows

a classifier to learn different tasks effectively.
• We combine IndL with Kullback-Leibler (KL) divergence-based

distillation loss to learn new sound events while preserving the
knowledge of acoustic scene classes.

• We conduct experiments on both two-step ASC-AT and three-
step ASC-ASC-AT incremental setups to analyse the behavior of
the proposed incremental learner over time.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed framework for incremental learning of acoustic
scenes and sound events tasks. Section 3 presents the different ex-
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periments that compare incremental learning with multi-task learn-
ing and separate models for the same tasks. Finally, conclusions
and future work are given in Section 4.

2. INCREMENTAL LEARNING

In our incremental learning setting, a set of ASC and AT tasks
{τ0, τ1, . . . , τt} is presented to a learner sequentially in incremen-
tal time steps t. The isolated task τt = {(xτt

i ,yτt
i )|1 ≤ i ≤ m}

presented at time step t is composed of input features xτt
i and cor-

responding one-hot (for ASC) or multi-hot (for AT) ground truth
label vectors yτt

i ∈ {0, 1}Ct . Ct denotes the number of classes
in tasks up to and including task τt. The two distinct ASC and AT
tasks use the same audio clips but none of the tasks share the class
labels. Specifically, the learner does not have access to labels of
the τ0 while learning the τ1. Typically, this class imbalance makes
the learner’s predictions biased to focus on the classes in the current
task and catastrophically forget the classes of the previous task.

In this work, our goal is to build a learner Pτt , which can solve
all the tasks learned so far. A learner Pτt is a deep network that
includes a feature extractor Fτt

θ (parameterized by weights θ) and a
fully connected layer Fτt

ϕ (parameterized by weights ϕ) for classifi-
cation. Output logits of the network on a given input x are obtained
by o(x) = Fτt

ϕ (Fτt
θ (x)).

Generally, incremental learners learn to solve one initial base
task followed by similar incremental tasks, for example like the
setup in [7] where the initial task was learning 30 sound classes,
then learning sets of 10 sound classes in incremental time steps for
the same classification task. However, in this work, we solve dis-
tinct incremental tasks: single-label ASC and multi-label AT. We
experiment with two scenarios. In the first scenario, the learner
solves ASC in an initial step (τ0 = ASC) and AT in the next time
step (τ1 = AT) as depicted in Fig. 1 (hereafter referred to as ASC-
AT task). In the second scenario, the learner solves ASC in an initial
step (τ0 = ASC), and ASC and AT in subsequent incremental time
steps (τ1 = ASC and τ2 = AT, hereafter referred to as ASC-ASC-
AT).

2.1. Incremental ASC-AT learning

In the initial time step t = 0, a learner Pτ0 learns Fτ0
ϕ to classify

the acoustic scene classes of a task τ0. Pτ0 is trained using cross-
entropy loss LCE computed using softmax σ over logits o as:

LCE = −
C∑

k=1

yτ0
k · log(σ(ok)), (1)

In the incremental time step t = 1, a new learner Pτ1 is initial-
ized by previous learner Pτ0 . The classifier Fτ1

ϕ of Pτ1 is extended
to learn sound event classes of a task τ1 by adding new output units.
The output logits of Pτ1 comprise o = {oold,onew}. oold and
onew denote the logits of acoustic scene classes and sound event
classes respectively. We propose an independent learning process
(IndL) through which the entire Pτ1 is trained using separate losses
for oold and onew logits (see Fig. 2).

A binary cross-entropy loss LBCE is computed using sigmoid

τ 0 = ASC τ 1 = AT

LBCE → onew

LKD → oold

Figure 2: Incremental ASC-AT learning; the different losses are
calculated on logits of the previous ASC task and logits of the new
AT task separately at the incremental time step t = 1.

σ over logits of the novel acoustic event classes onew only:

LBCE = −
Ct∑

k=Ct−1+1

yτ1
k · log(σ(onew

k ))

+ (1− yτ1
k ) · log(1− σ(onew

k )), (2)

where Ct−1 denotes the number of classes up to and excluding task
τ1. This independent learning of weights ϕ of Fτ1

ϕ of the novel
sound event classes from previous acoustic scene classes is meant
to reduce the catastrophic forgetting. To be more specific, IndL
allows Pτ1 to learn from Eq. (2) using only the onew logits of the
sound event classes, while oold logits of the acoustic scene classes
are handled separately. This independence of the two tasks is also
evident in the different loss functions per task (LCE vs LBCE).

A distillation loss LKD is computed using Kullback-Leibler di-
vergence (DKL) between oold logits of current Pτ1 learner and out-
put logits of previous frozen P̂τ0 learner:

LKD = DKL(v̂||v), (3)

where v = σ(o
old

T
) denotes the oold logits of Pτ1 and v̂ =

σ( P̂
τ0 (x)
T

) denotes the logits of P̂τ0 . The σ is the softmax and T

is the temperature hyperparameter to smooth the LKD . The LKD

acts as a forgetting constraint that penalizes the change concerning
the output of the previous learner. Specifically, the learner Pτ1 pre-
serves the knowledge about the previous ASC task using LKD and
continues to learn the new AT task using LBCE . Therefore, Pτ1 is
trained using combined loss as:

L = LBCE + λLKD, (4)

where λ denotes the weight of the loss which we adaptively set
to Ω

√
Ct − Ct−1/Ct as per the recommendation of [14]. Ω is a

constant. Ct−Ct−1 denotes the number of new sound event classes.

We use two more techniques reported in the literature for in-
cremental learning of images. One is, that the learning rate (LR) is
reduced in incremental time steps, as done in [3]. This was shown to
improve the transfer of knowledge from the old to the new learner
and mitigate the adverse effect of imbalanced data in incremental
time steps. Another is the use of cosine normalization in the clas-
sifier Fτt

ϕ [14]. It was observed that the magnitudes of the weight
and bias of the previous and current classes in Fτt

ϕ are significantly
different. Cosine normalization restricts the values of input distri-
butions to [−1, 1] and eliminates the bias that arises due to the mag-
nitude difference.

2.2. Incremental ASC-ASC-AT learning

In this case, the learner Pτ0 learns to solve an additional ASC task
using LCE at the initial time step t = 0. In the incremental time
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τ 0 = ASC τ 1 = ASC τ 2 = AT

LBCE → onew

LKD → oold

Figure 3: Incremental ASC-ASC-AT learning; the different losses
are calculated on old ASC and new AT logits separately at an incre-
mental time step t = 2.

step t = 1, Pτ1 continues to learn a new ASC task in the absence
of the old ASC task’s data. Specifically, the two ASC tasks do not
share audio clips nor scene classes. In the incremental time step
t = 1, LCE is computed independently using softmax σ over logits
of the new acoustic scene classes onew only, as per Eq. (1) and
LKD is used to hold the knowledge of old acoustic scenes, as per
Eq. (3). Pτ1 is trained using combined loss as:

L = LCE + λLKD (5)

In the incremental time step t = 2, Pτ2 learns the AT task (us-
ing LBCE) by preserving the knowledge of all old acoustic scenes
(using LKD) as per the description given in 2.1 and illustrated in
Fig. 3. For the AT task, the learner uses the same audio clips as the
ASC task at t = 1.

3. EVALUATION AND RESULTS

3.1. Datasets

For ASC-AT, we use acoustic scenes and corresponding sound
events from TUT 2016/2017 dataset [15, 16]. The dataset contains
192 minutes of audio recordings. Task 0 is composed of four acous-
tic scenes: home, residential area, city center, and office. Task 1
is composed of 25 sound events: bird singing, brakes squeaking,
breathing, etc. Complete details about the data can be found in [15].

For ASC-ASC-AT, we use TUT Acoustic Scenes 2017 [17] and
TUT 2016/2017. Task 0 is composed of 11 acoustic scenes: beach,
bus, cafe/restaurant, car, forest path, grocery store, library, metro
station, park, train, and tram. Tasks 1 and 2 are the ASC and AT
from the previous experiment. The learner is trained and tested on
official development and evaluation splits of the datasets in each
step.

3.2. Implementation details

Input features in each time step are 40-dimensional log mel-band
energies obtained from each audio segment in 40 ms frames with
50% overlap. The network architecture of the feature extractor FTt

θ

includes three convolutional blocks, each consisting of two 3 × 3
convolutional layers, with batch-normalization and ReLU nonlin-
earity applied to each convolutional layer. 2× 2 average pooling is
applied to each convolutional block, and 20% dropout is applied af-
ter each average pooling to avoid overfitting. The number of feature
maps of convolutional blocks is set to {16, 32, 64}. The flattened
output of the last convolutional block is considered as the input to
the cosine normalized fully-connected layer Fτt

ϕ , whose number of
output units is equal to the number of classes in each time step.

The learner’s network is trained using the SGD optimizer [18]
with a momentum of 0.9 and a mini-batch size of 100 for 120
epochs. The initial learning rates for task 0 and incremental task(s)

t = 0 t = 1
Method KD Task 0: Task 1: Task 0:

ASC (Acc) AT (F1) ASC (Acc)

ASC - 94.0 - -
AT - - 53.0 -
Joint
ASC-AT - 72.0 50.4 -

Incremental
ASC-AT ✗ 94.0 54.4 84.1 (9.9↓)

Incremental
ASC-AT ✓ 94.0 54.4 88.9 (5.1↓)

Table 1: Incremental ASC (4 classes) and AT (25 classes) with and
without KD, compared to individual and joint learning of tasks with
a similar architecture. The value within () denotes the forgetting
amount; ↓ indicates that lower is better.

are set to 0.1 and 0.01 respectively. CosineAnnealingLR [18] sched-
uler is used to update the optimizer in every epoch. Other hyper-
parameters: T and Ω are empirically set to 2 and 5 respectively.

3.3. Baseline systems and evaluation metrics

The performance of the proposed incremental ASC-AT system is
compared with the individual ASC, AT, and joint ASC-AT baseline
systems. The same network architecture as the incremental ASC-
AT system is used in all the baseline systems for fair comparison.
Individual ASC and AT systems solve only the ASC or AT task,
respectively. A joint ASC-AT system is a multi-task system that is
trained for ASC and AT tasks at the same time using cross-entropy
loss and binary cross-entropy loss respectively, as proposed in [19].
The performance on ASC and AT tasks is evaluated using accuracy
and F1 score (using a threshold of 0.5), respectively.

3.4. ASC-AT results

The experimental results provided in Table 1 compare the perfor-
mance of the proposed incremental ASC-AT system with baseline
systems. The learning of ASC and AT tasks at the same time as
joint ASC-AT results in an overall performance lower than ASC and
AT learned separately in different systems. Particularly, the accu-
racy of the ASC side in joint ASC-AT is significantly worse. This is
also true with existing ASC-sound event detection (SED) multi-task
models [16, 19].

On the other hand, the proposed incremental ASC-AT method
can solve ASC and AT tasks with an accuracy of 84.1% (for the
system without KD) and an F1 score of 54.4% respectively. The
performance on the ASC task at the incremental time step is re-
duced by 9.9 percentage point (p.p.) as compared to the initial time
step. Surprisingly, we see a small increase in the F1 score of the
AT task as compared to the individual AT system. We hypothesize
that this is due to the incremental learner already pre-trained using
very relevant acoustic content (but different classes) in the initial
time step, which may generate richer feature representations for the
AT task. We observe that using KD is more efficient for preserv-
ing the knowledge of the previous task. The incremental ASC-AT
system with KD outperforms the system without KD, having an av-
erage accuracy of 88.9% on the previous ASC task with only 5.1
p.p. reduction in performance.
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Ablation setting t = 0 t = 1 t = 2
Task 0: Task 1: ASC (Acc) Task 2: Task 0 and 1: ASC (Acc)

IndL KD LRs ASC (Acc) Overall Task-wise AT (F1) Overall Task-wise

✓ ✓ {0.1, 0.1} 65.3 40.0 Task 0: 34.6 (30.7↓)
Task 1: 54.9 53.0 38.8 Task 0: 32.9 (32.4↓)

Task 1: 54.7 (0.2↓)

✓ ✓ {0.01, 0.01} 68.1 50.1 Task 0: 54.3 (13.8↓)
Task 1: 38.7 53.0 49.1 Task 0: 53.3 (14.8↓)

Task 1: 37.3 (1.4↓)

✓ ✓ {0.001, 0.001} 49.1 37.2 Task 0: 23.4 (25.7↓)
Task 1: 77.0 43.0 34.0 Task 0: 17.7 (31.4↓)

Task 1: 75.2 (1.8↓)

✓ ✓ {0.01, 0.001} 68.1 49.3 Task 0: 57.7 (10.4↓)
Task 1: 25.9 46.0 48.3 Task 0: 56.9 (11.2↓)

Task 1: 24.1 (1.8↓)

✓ ✓ {0.1, 0.01} 65.3 53.8 Task 0: 54.6 (10.7↓)
Task 1: 53.1 53.0 52.2 Task 0: 53.3 (12↓)

Task 1: 49.1 (4↓)

✗ ✗ {0.1, 0.01} 65.3 26.4 Task 0: 0.1 (65.2↓)
Task 1: 85.0 53.0 23.2 Task 0: 0.1 (65.2↓)

Task 1: 80.4 (4.6↓)

Table 2: Incremental ASC-ASC-AT with and without independent learning (IndL) and knowledge distillation (KD) using different LR com-
binations in initial and incremental steps with Task 0: 11 classes, Task 1: 4 classes, Task 2: 25 classes. For t = 1 and t = 2 the overall ASC
accuracy represents performance over all 15 scene classes, and separate task-wise accuracy is provided (over the 11 classes of Task 0 and over
the 4 classes of Task 1).
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Figure 4: Confusion matrices w/ (a) and w/o (b) KD and IndL for
ASC-ASC incremental learning (Task 0 to Task 1 of Table 2). Red
lines separate the regions of new and old classes.

3.5. ASC-ASC-AT results

The experimental results for the ASC-ASC-AT scenario are pre-
sented in Table 2 and demonstrate the effectiveness of independent
learning of acoustic scenes (as oold,onew) from tasks 0 and 1. Note
that ASC-ASC tasks use different audio recordings, in contrast to
ASC-AT using the same audio recordings with different labels.

As an ablation study, we experiment with a few combinations
of LR, using the same and reduced LR in incremental tasks. Re-
sults show that the use of the same LR (0.1, 0.01, or 0.001) in ini-
tial and incremental time steps makes the learner either fail to learn
new acoustic scene classes effectively (showing high-stability) or
significantly forget the old acoustic scene classes (showing high-
plasticity). This situation is also known as the stability-plasticity
dilemma of a learner between new and old knowledge. Using a LR
of 0.1 or 0.01 in all the steps does not affect the performance of AT
task; LR 0.001 seems not suitable to solve either task, while 0.01
seems to be best for the initial ASC. Based on the results in Table 2,
the combination using a LR of 0.1 and 0.01 provide a best balance
between stability and plasticity, with a similar performance on the
two ASC tasks at both t = 1 and t = 2.

Looking at learning with or without IndL, we observe a large
difference in forgetting between tasks. A learner without IndL

learns from Eq. (1) using all logits o (combination of oold,onew)
and class labels yτ1 . Because when learning the incremental ASC
task 1, the learner does not have access to the data (xτ0 ,yτ0) of
previous ASC task 0, the values of the task 0 targets in yτ1 are
zero. This makes the learner forget the old acoustic scene classes
because it sees no examples of them. Hence, the amount of forget-
ting reached 65.2 p.p. and accuracy dropped to almost zero on the
acoustic scene classes of task 0 at time step 1 (last row in Table 2).
In contrast, IndL of ASC task 1 with KD achieves an accuracy of
54.6% on the acoustic scene classes of task 0, with only a 10.7 p.p.
forgetting. The two cases are illustrated in Fig. 4: without KD and
IndL the network mostly predicts new classes (Fig. 4b), while using
KD and IndL rebalances the output (Fig. 4a).

It is worth noting that the F1 score of the AT task at t = 2
is unaffected and it remains at 53.0%, the same as the individual
AT system. This is because the AT task is always learned indepen-
dently of acoustic scenes due to a different loss function, and takes
advantage of a previous model trained on highly relevant acoustic
material, even though the class information differs. This suggests
that an independent learning mechanism is a suitable approach for
learning all the tasks.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented incremental ASC-AT and ASC-ASC-AT
systems to solve distinct tasks over time. Results show that the per-
formance of the ASC-AT system is close to the individual ASC and
AT systems and outperforms joint ASC-AT learning with a simi-
lar size architecture. Independent learning of previous and current
tasks with knowledge distillation significantly decreased the prob-
lem of catastrophic forgetting. In the presented setup, the AT task
is always independent of the ASC task; hence, learning these tasks
would not much disturb the performances of one another irrespec-
tive of their order (whether ASC-AT or AT-ASC). Future work in-
cludes more detailed ablation studies of the different choices used
to reduce forgetting and to improve overall performance, such as the
order, size and type of the incremental tasks, and the use of cosine
normalization.
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ABSTRACT

We explore on various attention methods on frequency and channel
dimensions for sound event detection (SED) in order to enhance
performance with minimal increase in computational cost while
leveraging domain knowledge to address the frequency dimension
of audio data. We have introduced frequency dynamic convolution
(FDY conv) in a previous work to release the translational equiv-
ariance issue associated with 2D convolution on the frequency di-
mension of 2D audio data. Although this approach demonstrated
state-of-the-art SED performance, it resulted in a model with 150%
more trainable parameters. To achieve comparable SED perfor-
mance with computationally efficient methods for practicality, we
explore on lighter alternative attention methods. In addition, we
focus on attention methods applied to frequency and channel di-
mensions. Joint application Squeeze-and-excitation (SE) module
and time-frame frequency-wise SE (tfwSE) to apply attention on
both frequency and channel dimensions shows comparable perfor-
mance to SED model with FDY conv with only 2.7% more train-
able parameters compared to the baseline model. In addition, we
performed class-wise comparison of various attention methods to
further discuss various attention methods’ characteristics.

Index Terms— sound event detection, computationally effi-
cient, attention, frequency dimension, channel dimension

1. INTRODUCTION

Sound event detection (SED), which aims to recognize a target
sound event class and corresponding time localization within a
given audio clip, has potential to be applied in various applications
such as automation, robotics and monitoring [1, 2, 3]. In order to
recognize and locate sound events, we need strong pattern recogni-
tion tools. Recent advances in deep learning (DL) methods brought
significant progress in SED [2, 3]. While most works directly ap-
plied DL methods from other domains to SED without modification,
few works adapted DL methods to SED by thoroughly analysing
unique characteristics of audio data and sound events.

Frequency dimension has to be carefully considered when ap-
plying DL methods on audio-related DL applications. It is shown
by previous works that methods considering frequency dimension
significantly improved SED performance [4, 5, 6]. SED has been
heavily relying on convolutional recurrent neural networks (CRNN)

This work was supported by the Institute of Civil Military Technology
Cooperation funded by the Defense Acquisition Program Administration
and Ministry of Trade, Industry and Energy of Korean government under
grant No. UM22409RD4, and Korea Research Institute of Ships and Ocean
engineering a grant from Endowment Project of “Development of Open Plat-
form Technologies for Smart Maritime Safety and Industries” funded by
Ministry of Oceans and Fisheries(PES4880).

based architectures [2, 3]. 2D convolution in CRNN assumes shift-
invariance on both time and frequency dimensions thus enforces
translational eqauivariance on both dimensions [4]. However, fre-
quency is a shift-variant dimension where the same pattern sounds
different when translated along the frequency dimension. At the
same time, frequency exhibits loose shift-invariance within short
frequency range thus slight pitch-shift does not harm auditory per-
ception much. Thus frequency dimension is a delicate yet essential
component to be considered for audio domain.

In a previous study, we introduced frequency dynamic convo-
lution (FDY conv) to release translational equivariance by 2D con-
volution on the frequency dimension of 2D audio data to consider
its shift-variant characteristic [4]. While FDY conv showed impres-
sive performance on SED, it added 150% more parameters to the
model. However, in order to apply SED on various real applica-
tions, we might need to implement SED on devices with limited
specifications. Thus, there is a need for computationally efficient
SED methods which is lighter but as competent as current state-of-
the-art models. To address this limitation and improve the practical-
ity of SED models, we explore various lighter attention methods to
enhance SED performance more efficiently. We aim to achieve this
by addressing the frequency and channel dimensions, since those
are two emphasized dimensions in audio domain [4, 6, 7]. Thus we
experiment with various attention methods on frequency and chan-
nel dimensions. The main contributions of this work are:

1. We explore various alternative attention methods which are
computationally efficient for practicality, while considering
channel and frequency dimensions to consider unique char-
acteristics of audio domain.

2. Joint application of squeeze-and-excitation (SE) and pro-
posed time-frame frequency-wise SE (tfwSE) to re-weight
both channel and frequency dimensions shows comparable
performance to state-of-the-art method while only adding
model parameters by 2.7%.

3. We discuss the characteristics of various attention methods
on SED to provide further insights for practical implementa-
tion.

The official implementation code is available on GitHub1.

2. METHODS

While frequency dynamic convolution (FDY conv) showed state-
of-the-art performance and have been widely adopted on SED
[6, 8, 9, 10, 11, 12], it adds considerable number of trainable pa-
rameters to the networks due to multiple basis kernels [4, 13].

1https://github.com/frednam93/lightSED
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Figure 1: An illustration of frequency-wise Squeeze-Excitation.

Thus there remains a need for sufficiently well-performing model
with fewer parameters for practical applications. Since FDY conv’s
strength comes from attention mechanism which selectively focus
on important elements of the input, we explore other alternative at-
tention methods to achieve comparable performance.

2.1. Variants of Squeeze-and-Excitation

One alternative computationally efficient attention method widely
used is squeeze-and-excitation (SE) [14]. It has been widely ap-
plied to various CNN-based models for its light yet powerful perfor-
mance. SE module is composed of squeeze operation and excitation
operation. Squeeze operation averages output of 2D convolution on
two dimensions except channel to obtain squeezed intermediate rep-
resentation. Excitation operation applies two successive fully con-
nected (FC) layers to obtain attention weights representing relative
importance of each channel. The channels of convolution output is
re-weighted by multiplying the attention weight [14]. When applied
to 2D audio data, squeeze operation is applied to the convolution
output by:

zc =
1

F × T

F∑
f=1

T∑
t=1

xcft (1)

where zc is intermediate representation after squeeze operation on
c-th channel and xcft is the output by preceding 2D convolution
with channel index c, frequency index f and time index t. F and T
are frequency and time dimension sizes of 2D convolution output.
The excitation operation is composed of two FC layers as follows:

s = σ(W2δ(W1z)) (2)

where s is attention weight, also known as scale, which is multi-
plied to the output of preceding convolution. z is the intermediate
representation vector. Both span channel dimension of size C. W1

and W2 are FC layers, δ refers to ReLU activation and σ refers to
sigmoid function.

To apply attention-based re-weighting on frequency dimension,
Thienpondt et al. proposed frequency-wise Squeeze-Excitation
(fwSE) which applies SE on frequency dimension instead [15].
Thus, instead of pooling time and frequency dimensions, fwSE
pools channel and time dimensions during squeeze operation as fol-
lows:

zf =
1

C × T

C∑
c=1

T∑
t=1

xcft (3)

The following excitation operation is the same as (2), just that two
FC layers are applied on frequency dimensions instead. Then, ob-
tained attention weight for each frequency bin is multiplied to corre-
sponding frequency components of the preceding convolution out-
put. Fig. 1 illustrates the fwSE mechanism.

Figure 2: An illustration of time-frame frequency-wise Squeeze-
Excitation on one time frame. tfwSE applies this procedure for ev-
ery time frames.

Since frequency component varies over time, we propose time-
frame fwSE (tfwSE) which applies fwSE on every time frames of
input instead of time-averaged input. Thus, tfwSE only pools chan-
nel dimension in squeeze operation and then applies excitation op-
eration on every time frames. The squeeze operation on time frame
t can be expressed by following equation:

zft =
1

C

C∑
c=1

xcft (4)

where zft is intermediate representation after squeeze operation.
Then excitation is applied on frequency dimension on each time
frame as follows:

st = σ(W2δ(W1zt)) (5)

where st is scale on time frame t and zt is the intermediate repre-
sentation vector corresponding to time frame t, both spanning chan-
nel dimension. Opposed to fwSE by Thienpondt et al. which ap-
plies frequency-wise attention weights evenly over time-dimension
by referring to representative averaged information of the con-
volution output, proposed tfwSE applies frequency-wise attention
weights for each time frame by referring to each individual con-
tents within corresponding time frame [15]. While this could in-
crease computation of excitation operator (fwSE applies excitation
on one z per audio clip, while tfwSE applies excitation on T zt per
audio clip), it could help generalizing excitation operation on many
time frames. The mechanism of tfwSE is illustrated in Fig. 2. This
method was previously applied by our submission on detection and
classification of acoustic scenes and events (DCASE) 2022 chal-
lenge task 3 as well, showing its performance [16]. Similarly, we
could apply original SE on each time frame as well. We named it as
time-frame SE (tSE). Note that this is not a time-wise version of SE
like fwSE, as we do not apply SE by pooling channel and frequency
dimensions during squeeze to leave time dimension. Instead, we
pool frequency dimension only and apply SE on every time frame
in similar way shown in Fig. 2.

2.2. Channel-Frequency Attention Methods

Li et al. [7] proposed C2D-Att for speaker verification which ap-
plies 2D convolution to obtain attention weights for both channel
and frequency dimensions simultaneously. C2D-Att first pools time
dimension by averaging, and then apply two consecutive 2D con-
volution modules to channel and frequency dimensions by intro-
ducing additional channel dimension which is increased to 8 and
then back to 1. This results in channel-frequency attention weights
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which are multiplied to channel and frequency dimensions of pre-
ceding 2D convolution output. C2D-Att improves the speaker ver-
ification performance compared to fwSE by re-weighting channel
and frequency dimensions simultaneously [7].

However, considering that channel dimension in CNN is per-
mutable dimension where the convolution module’s advantage cap-
turing locality does not matter, it needs further verification if 2D
convolution is the best option to apply channel and frequency at-
tention on CNN. While CNN in C2D-Att applies 2D convolution
kernel which finds local pattern across frequency and channel di-
mension, locality matters on frequency dimension only. Therefore,
we experiment on joint application of attention on frequency and
channel separately, without considering the locality of channel di-
mension using SE. To apply SE on two dimensions independently,
we apply SE and tfwSE in series.

3. EXPERIMENTAL SETUPS

3.1. Model Architecture

The model architecture is based on CRNN model, composed of
seven convolution layers followed by two bidirectional gated re-
current unit (GRU) then a FC layer. On the strong predictions, we
apply class-wise median filter as post processing. In this work, the
model using FDY conv replaced all 2D convolution except the first
one. SE and C2D-Att modules are inserted after the activation and
before the average pooling within the convolution blocks. They are
applied on all convolution layers except the last layer in this work.
It is because Hu et al. has shown that SE module applies almost
constant attention weights at the last layer thus it merely affects the
model [14].

3.2. Implementation Details

The overall implementation details follow the previous work [4],
which could be referred on the official implementation code of
which link is provided in the section 1. The experiments in this work
are based on domestic environment sound event detection (DESED)
dataset [3]. DESED is composed of synthesized strongly labeled
dataset, real weakly labeled dataset and real unlabeled dataset for
training and validation. For test, real validation dataset, which is
strongly labeled, is used. We do not use any external dataset. We
trained each model with single NVIDIA RTX Titan GPU. For the
results listed in this paper, the metrics are based on the best score
among total 24 models from 12 separate training runs.

DESED is composed of 10 second audio data with 16 kHz sam-
pling rate. We extract mel spectrogram as the input feature for SED
model. The settings for mel spectrograms are as follows: 2048
points for number of fft, 256 points for hop length, Hamming win-
dow for windowing function, and 128 mel bins. Data augmenta-
tion methods applied are frame shift [3], mixup [17], time masking
[18] and FilterAugment [5]. Applying heavy data augmentation is
crucial for training SED where real strongly labeled data is scarce
[19]. As we use three levels of datasets, strongly labeled/weakly
labeled/unlabeled dataset, we apply mean teacher to leverage unla-
beled dataset [3, 20]. We apply FilterAugment with different ran-
dom parameters on student and teacher model to train SED model
robust against FilterAugment.

Table 1: Performance and computational cost comparison between
the baseline, frequency dynamic convolution and various frequency
and channel attention methods on DESED real validation dataset.

models params time PSDS1 PSDS2 CB-F1
baseline 4.428M 3h 34m 0.409 0.641 0.520
+FDYconv 11.061M 6h 08m 0.446 0.673 0.525
+SE 4.537M 3h 49m 0.435 0.654 0.525
+tSE 4.537M 3h 52m 0.416 0.643 0.526
+fwSE 4.439M 3h 49m 0.411 0.634 0.522
+tfwSE 4.439M 3h 50m 0.415 0.638 0.509
+C2D-Att 4.429M 3h 53m 0.434 0.659 0.539
+tfwSE +SE 4.548M 4h 04m 0.437 0.650 0.532
+SE +tfwSE 4.548M 4h 06m 0.442 0.657 0.526

3.3. Evaluation Metrics

Main evaluation metric employed in this study is the polyphonic
sound detection score (PSDS) [21], which considers the intersec-
tion between predictions and ground truth to decide if prediction
is correct. PSDS also accounts for cross triggers induced by other
sound events in the audio. PSDS utilizes area under curve (AUC)
- receiver operating characteristic (ROC) curves, enabling compari-
son of sound event detection (SED) performances without the need
for threshold optimization. In DCASE Challenge 2021, 2022 and
2023 Task 4, two variations of PSDS (PSDS1 and PSDS2) are uti-
lized to evaluate SED systems [3]. PSDS1 places emphasis on pre-
cise time localization by limiting tolerance for intersection criteria,
while PSDS2 prioritizes accurate classification by penalizing cross
triggers more. Additionally, we use collar-base F1 score (CB-F1)
[22] for class-wise performance comparison, as PSDS cannot be
obtained for single sound event. Both PSDS and CB-F1 are ranged
between zero and one, and value closer to one indicates better SED
performance.

4. RESULTS AND DISCUSSION

4.1. Comparison of Attention Modules

Table 1 shows performance and computational cost of SED mod-
els with various frequency-wise and channel-wise attention meth-
ods. Computational costs are described by the number of trainable
parameters representing model size and training time representing
computational efficiency. Note that we aim to achieve computa-
tional efficiency as close to the baseline as possible and much less
than FDY conv. For comparison, SED model with FDY conv is
listed in table 1 as well. Note that the results for FDY-CRNN dif-
fer from the results in previous paper due to minor changes in set-
ting. When we compare the performance of SED model with SE
variants, we can observe that conventional SE definitely outper-
forms the baseline. On the other hand, fwSE only slightly out-
perform the baseline for PSDS1 while their PSDS2 is worse than
the baseline. Considering that SE is proposed to re-weight channel
dimension and each channel is independent from each other while
frequency depends on other frequency bins, re-weighting appears
to be more effective on channel dimension than on frequency di-
mension. In addition, considering the parameter increase in the
model, SE has increased model size significantly more thus it in-
volved more computational resource to the model. While SE has
increased model size by ∼2.5%, fwSE has increased the model size
by ∼0.25%. Proposed tfwSE is slightly better than fwSE in terms
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Figure 3: Box-plot of class-wise collar-base F1 scores by multiple models on DESED real validation dataset.

of both PSDS1 and PSDS2. On the other hand, tSE only slightly
outperforms the baseline and performs worse than SE. While re-
weighting frequency dimension on each time frame has improved
frame-wise sound event classification of SED, this effect seems to
be not so significant. One explanation to this could be the effect
of bi-GRU which processes time-varying information. Likewise,
temporal dynamic convolution which applies time-adaptive kernel
performed worse than FDY conv on SED [23, 4]. On the other hand,
tSE failed to improve SE. Re-weighting a dimension separately on
each time frame was not as effective on channel dimension.

Results for methods applying attention simultaneously on chan-
nel and frequency dimensions, C2D-Att and joint applications of SE
and tfwSE, are also listed in Table 1. C2D-Att shows descent perfor-
mance comparable to SE, with less parameters compared to SE. In
addition, joint application of SE followed by tfwSE shows improve-
ment over SE. While joint applicatoin of SE after tfwSE shows sim-
ilar performance to SE, we could still conclude that application of
attention methods simultaneously on channel and frequency dimen-
sions are effective. Furthermore, the combination of SE and tfwSE
achieves comparable results to FDY conv in terms of PSDS1, reach-
ing 99.1% of the PSDS1 by the model with FDY conv. Considering
that high PSDS2 scores can be easily achieved using weakSED [19],
we could regard that this model performs nearly as well as model
with FDY conv. An interesting discovery is that while tfwSE de-
grades PSDS2 for the baseline model, the joint application of tfwSE
after SE enhances PSDS2 compared to the model with SE alone.
Moreover, considering that SE + tfwSE outperforms C2D-Att for
PSDS1, 2D convolution considering locality of 2-dimensional pat-
terns along frequency-channel dimensions is not as effective as sep-
arate consideration of channel and frequency dimensions. However,
C2D-Att has advantage over SE + tfwSE in terms of the number of
parameters which is increased by very small amount.

4.2. Class-wise Performance Comparison

In Fig. 3, class-wise collar-based F1 scores on multiple models are
shown as box-plot. Each box-plot is composed of class-wise F1
scores by 24 models from 12 separate training runs. Consistent to
table 1, SE performs better than fwSE and tfwSE on many classes

in Fig. 3 as well. SE performed better than fwSE and tfwSE did
on alarm/bell ringing, cat, dish, dog and speech while it performed
worse on electric shaver, frying and vacuum cleaner. It seems that
SE is stronger on transient and non-stationary sound events while it
is weaker on quasi-stationary sound events, similar to FDY conv
[4]. That is to say, while fwSE and tfwSE re-weight frequency
dimension to address frequency dimension, they are stronger on
quasi-stationary sound events than on non-stationary sound events.
SE + tfwSE shows similar tendency with SE, but slightly better
performance in general. Thus SE + tfwSE perform relatively bet-
ter on non-stationary sound events and relatively worse on quasi-
stationary sound events as well. C2D-Att also shows similar ten-
dency with SE but it shows better performance on electric shaver
and vacuum cleaner. Note that PSDS is an intersection-based score
while the box-plots are based on collar-based score, there are slight
discrepancy between table 1 and Fig. 3.

5. CONCLUSION

In conclusion, we experimented on various frequency and channel
attention methods to enhance SED performance while minimizing
computational cost. The study addressed the challenge of effec-
tively addressing the frequency dimension of audio data by leverag-
ing attention methods. The attention methods demonstrated com-
parable performance to the previous approach of FDY conv, while
reducing the computational cost and improving practicality. In addi-
tion, we performed class-wise performance of the attention methods
to further analyze the characteristics of SED models with different
attention methods. Future research could aim to optimize the pro-
posed attention methods by applying them jointly with FDY conv
either to push the performance even more or to find balance between
computational cost and the performance.
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ABSTRACT 

Machine learning methods, and deep networks in particular, often 

underperform on data which lies outside the training distribution. 

Changes to the data distributions (known as domain shift) are par-

ticularly prevalent in bioacoustics, where many external factors 

can vary between datasets, although the effects of this are often not 

properly considered. This paper presents a benchmark for out of 

distribution (OOD) performance based on the detection of hump-

back whales in underwater acoustic data. Several humpback whale 

detectors from the literature are implemented as baselines, along 

with our own detector based on a convolutional neural network 

(CNN). Then, a set of unsupervised domain adaptation (UDA) al-

gorithms are compared. Results show that UDA can significantly 

improve OOD performance when few distinct sources of training 

data are available. However, this is not a substitute for better data, 

as negative transfer (where the adapted models actually perform 

worse) is commonly observed. On the other hand, we find that 

training on a variety of distinct sources of data (at least 6) is suffi-

cient to allow models to generalise OOD, without the need for ad-

vanced UDA algorithms. This allows our model to outperform all 

the baseline detectors we test, despite having 10,000 times fewer 

parameters and 100,000 times less training data than the next-best 

model. 

Index Terms— Unsupervised domain adaptation, domain 

shift, passive acoustic monitoring, humpback whale detection 

1. INTRODUCTION 

Passive acoustic monitoring (PAM) forms a major part of marine 

mammal conservation. Acoustic surveys are an effective and non-

invasive means to further our understanding of species-wise geo-

graphic distributions, migration patterns and feeding grounds, 

monitor ecosystem health, and help to mitigate the impacts of hu-

man activity. Automated analysis of survey data can improve our 

ability to achieve these goals, whilst substantially reducing the 

manual effort required [1]. 

An ideal solution to this end would be an off-the-shelf tool 

which can be easily deployed on any new data and identify all the 

vocalising species present (and indeed, any other relevant acoustic 

event). We argue a major obstacle exists to achieving this sort of 

generalisation ability that particularly affects PAM, but is seldom 

properly considered. This is the fact that dataset biases [2] in PAM 

are unusually large compared to other areas of machine learning 

research (consider, for example, ImageNet [3]: sourced by 

 
* Thanks to BAE Systems and the Engineering and Physical Sciences Research Council for funding. 

trawling images from the Internet, this may be a more representa-

tive sample of the “set of all possible images” for which it is a 

surrogate). This increases the likelihood of a mismatch between 

the data distributions of a model’s training set and the data it then 

encounters when deployed (known as domain shift), violating the 

i.i.d. assumption and potentially causing significant reductions in 

performance on new data. 

We support the view that shortcut solutions, in which the 

training distribution contains spurious correlations between clas-

ses which do not transfer to new data, are the primary cause of 

shift-induced performance drops in real-world problems [4]. If 

these patterns have lower descriptive complexity than the intended 

solution, models will preferentially use them to “cheat” on a task. 

This is a significant complication, as the learning bias for simpler 

solutions is a huge part (but not all) of what makes generalisation 

possible in the first place (in particular, it helps prevent overfitting). 

Although a form of data leakage, the introduction of shortcut so-

lutions is oftentimes simply unavoidable when constructing da-

tasets, so we believe these are better thought of as an integral part 

of the learning problem, rather than mere developer oversight. 

Thus, our first aim is to design experiments that create more 

realistic testing scenarios for PAM algorithms. We can do this by 

ensuring the training and test sets never contain any domain over-

lap, to better mimic the distributional shifts which may occur “in 

the wild” (we call this the OOD testing setup). 

What exactly constitutes a “domain” in this context we keep 

deliberately abstract; the primary aim is to confine any covariate 

which may cause shortcuts to a single domain. For example, in one 

data source we use [5], separate tapes are often digitised into a 

single master recording, so these are considered a single domain 

even if the original tapes were collected in different locations or 

years. As we are only testing on OOD samples, the fact that some 

domains have examples collected in different conditions, resulting 

in shortcuts within a single domain, is inconsequential (we also 

argue this happens unavoidably anyway). 

Our second aim is to identify best practices for maximising 

OOD performance in these scenarios. Unsupervised domain adap-

tation (UDA) has previously been used to tackle domain shift 

across many areas of wildlife monitoring [6], including PAM [7], 

[8]. For marine mammal PAM, domain shifts have been shown to 

result in reduced performance [9], and basic supervised finetuning 

has been used to adapt models to new environments [10]. However, 

to our knowledge, UDA is unexplored in this context. Thus, in this 

paper, a range of UDA algorithms from the literature are applied 

to a test problem of humpback whale detection. 

The UDA literature is dominated by the distribution align-

ment approach, which aims to minimise the distance between the 
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feature distributions of the source and target domains. The crux of 

this approach is finding how to estimate this distance reliably using 

only samples from the distributions. Two main approaches exist: 

kernel methods, which embed the distributions in a reproducing 

kernel Hilbert space (RKHS) [11]–[15]; and adversarial training, 

pioneered by [16] and the current basis for practically all state-of-

the-art methods. Various extensions to the original “domain adver-

sarial neural network” (DANN) formulation have followed the 

better-known literature on generative adversarial networks, such 

as with the introduction of the cycle-consistency loss [17], condi-

tional adversarial training [18] and the Wasserstein objective [19]. 

As a final note, we call attention to subsequent analyses of 

existing UDA (and, more broadly, domain generalisation) algo-

rithms in new contexts, on additional, perhaps more realistic, da-

tasets, or averaged across many tasks, which have failed to repro-

duce or report much-reduced benefits compared to their original 

publications [6], [8], [20], [21]. Thus, we also consider that testing 

existing algorithms on new data helps contribute to the bigger pic-

ture of how effective or useful these methods actually are. 
In summary, in this paper, we compare 8 UDA algorithms on 

a novel benchmark of OOD humpback whale detection. We also 

analyse the effect of varying the number of domains used to train 

the base model. 

2. DATA 

Humpback whale (Megaptera novaeangliae) calls are perhaps the 

most studied of all marine mammal vocalisations, and also what 

non-biologists usually mean when they talk about “whale song”. 

The complex nature of the song, its population-level variability, 

and the fact that humpbacks are found in a wide range of environ-

ments all over the world make for an attractive (i.e., challenging) 

OOD problem. Additionally, the large body of previous work 

means many acoustic datasets already exist online and there are 

several well-established baselines to compare our approach to. 

We construct a dataset consisting of approximately 100 

minutes of audio, labelled as either humpback whale (HW) or non-

humpback whale (NHW), from 13 distinct sources. Most of these 

sources already contain both HW and NHW examples, although 

some have only a single class; these are paired together so that 

every domain has examples from both classes, for a total of 9 do-

mains. 

Most data was downloaded from freely available sources 

online: the Watkins Marine Mammal Sound Database (which in-

cludes locations in the Caribbean, North Atlantic and Antarctica) 

[5], the Pacific Islands Passive Acoustic Network [22], the Aus-

tralian National Mooring Network [23], the Hawaiian Islands Ce-

tacean and Ecosystem Assessment Survey [24] and moby-

sound.org; the remaining data was recorded in Madagascar in an 

in-house collection project [25]. 

Samples were handpicked to create a diverse, representative, 

and challenging learning problem, covering a wide range of non-

target underwater acoustic events, geographic locations, recording 

methods and environments. All audio was resampled to 8 kHz, alt-

hough two domains have original sample rates of 4 and 6 kHz, so 

do not contain higher-frequency information – we just consider 

this an additional characteristic of the learning problem to be over-

come. Some exemplar spectrograms are shown in Figure 1. 

We use the same audio pre-processing pipeline as Allen et al. 

[26]: mel spectrograms are generated using 100 ms FFT windows  

 

 

Figure 1: Some exemplar spectrograms of sounds in the dataset (4 

kHz bandwidth, time axis scales variable). Top row: sperm whale 

clicks, pilot whale clicks, seal vocalisations. Second row: minke 

whale boings, right whale calls in strong vessel noise, electrical 

interference. Third row: dolphin whistles, dolphin creaks, right 

whale calls. Bottom row: three humpback whale calls. 

 

 

Figure 2: Total number of spectrogram images in the dataset, by 

class and domain. 

 

with 50% overlap, normalised with per-channel energy normalisa-

tion [27], then split into 3.92 s analysis frames with 50% overlap. 

This results in 3,150 total spectrogram images, measuring 64 by 

128 pixels. The number of images is broken down by class and 

domain in Figure 2. 

Extracting a single value from the literature for what consti-

tutes “acceptable” performance for this task is difficult. Helble et 

al. [28] state that any automated detector should perform at or 

above the level of a trained human analyst, although even this 

benchmark varies greatly based on the call’s SNR, the nature of 

the background noise, as well as the human in question. However, 

based on values in [28], and without wishing to get too lost in the 

details, we consider a balanced accuracy of 87% to be the bare 

minimum required for this task, and anything above 90% to be 

good. 
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3. DETECTORS 

A simple CNN is designed with 4 convolutional layers and one 

dense layer. The convolutional layers each have 3 by 3 kernels, (2, 

2) stride, 16 filters and RELU activations, with 7,154 trainable pa-

rameters total. Batch normalisation was found in testing to deteri-

orate OOD performance, reproducing findings in the literature 

[20], so is not used. Training is performed using the Adam opti-

miser with an initial learning rate of 0.001 and a batch size of 32, 

for 500 iterations. 

In addition to empirical risk minimization (ERM) (that is, the 

standard training paradigm with no adaptation), 8 UDA algorithms 

are compared: 

• Principal component analysis (PCA) 

• Correlation alignment (CORAL) [29] 

• Geodesic flow kernel (GFK) [30] 

• Transfer component analysis (TCA) [11] 

• Joint distribution alignment (JDA) [12] 

• Transfer joint matching (TJM) [13] 

• Manifold embedded distribution alignment (MEDA) [14] 

• Scatter component analysis (SCA) [15] 

 

The CNN is first trained normally on the source domain data. The 

UDA algorithms are then applied to the activations of the final 

convolutional layer. Finally, a new dense layer is trained on the 

transformed source domain features. For the methods based on di-

mensionality reduction (all but CORAL), the output dimension is 

set to 8. The whole process is repeated 5 times to reduce the influ-

ence of parameter initialisation and provide a measure of the un-

certainty for the results. 

In addition to the shallow UDA algorithms listed above, var-

ious types of deep adversarial UDA [16], [18], [19] were also at-

tempted, but failed to work, and are not included in these results. 

Other than the notorious difficulties that come with adversarial 

training (e.g., mode collapse), we also suspect that these methods 

require larger amounts of data than is available in our application, 

which may explain why they failed in this case. 

3.1. Baselines 

We also implement 3 baseline detectors for this task: 

1) Allen et al. [26], a ResNet-50 [31] architecture (25.6 M 

parameters) trained on 187,000 hours of data from a single PAM 

program [22]. The decision threshold is set to the average of all the 

optimal thresholds stated in the paper (a different threshold is used 

per site), at 0.13. One domain of our dataset contains data overlap 

with the training set for this model, so we do not include it when 

calculating the average test accuracy for this baseline. 

2) YAMNet [32], a MobileNet-V1 [33] architecture (3.7 M 

parameters) trained on AudioSet [34], a broad ontology of 527 

classes of audio events drawn from YouTube. In particular, we are 

counting detections of the class “Whale vocalisation”. The training 

data for this class consisted of around 20 minutes of audio from 

129 videos, most of which upon inspection are humpback whales. 

3) Template matching, via cross-correlation of spectrograms 

[35]. For each test sample, a 2D correlation is performed with each 

humpback call training sample and the highest correlation value is 

taken as the recognition score. The nontarget training samples are 

unused. The decision threshold is chosen based on tests on a held-

out subset of training data, and is set to 0.2. 

 

Figure 3: Average balanced accuracy across all domains for each 

algorithm. Error bars denote standard error in the mean. 

4. RESULTS 

First, the algorithms and baselines are compared using leave-one-

domain-out cross-validation – that is, the model is trained using 

data from all but one domain at a time. The performance measure 

used is balanced accuracy, equal to the mean of the true positive 

rate and true negative rate, and averaged across all domains. The 

results are shown in Figure 3, where the error bars denote standard 

error in the mean across the repeats (note, the baselines do not have 

error bars). 

Our tests show that no UDA algorithm exceeds ERM by a 

significant margin – at most 0.2 percentage points for MEDA. This 

reproduces recent findings on OOD generalisation from the litera-

ture [6], [8], [20], [21] – where the ERM baseline has been de-

scribed as “frustratingly strong” [20]. It is clear that, in this case, 

the diversity of the training data makes a far larger difference than 

the learning algorithm, with our best models significantly outper-

forming the Allen et al. [26] baseline, despite having 10,000 times 

fewer parameters, 100,000 times less training data and no pre-

trained backbone. A total of 4 algorithms, including ERM, exceed 

the 87% accuracy criterion. Template matching also performs sur-

prisingly well, although this is rather dependent on the domain be-

ing tested. 

What is perhaps most striking is how often UDA actually re-

duces performance when it is applied – a phenomenon known as 

negative transfer [36]. Some algorithms completely destroy the 

model’s predictive power (e.g., JDA) and every algorithm under-

performs ERM in at least one domain. This behaviour has been 

observed consistently throughout our work on UDA – not least for 

the adversarial methods. We suspect that a bias exists in com-

monly used UDA benchmarks which may, in particular, explain 

why our application of UDA fails to reproduce the massive im-

provements on ERM often seen elsewhere. This is that the distri-

bution alignment is often performed on features from a pretrained 

backbone (usually ResNet-50) which has already “seen” target do-

main samples. The biased feature distributions then make the 

alignment task far easier than if no such pretraining is available. 

Otherwise, the phenomenon of modal misalignment (also called 

false alignment [36], essentially analogous to overfitting) is far 
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more prevalent. Extending the current UDA setup (where all train-

ing domains are pooled together and considered a single “source” 

domain) to multi-source UDA has previously been proposed to al-

leviate this difficulty [36], and will be investigated in future work. 

4.1. How many training domains are needed? 

The previous section showed that, given an abundance of training 

domains, no UDA algorithm significantly outperforms ERM. 

However, the question arises: when training domains are limited 

(as can easily happen in PAM, particularly for rare species), can 

UDA compensate for the lack of diversity in the training data? 

In this section, the number of training domains is varied from 

1 to 8. The domains that are not used for training are used for val-

idation. This is done across at least 3 cross-validation folds, subject 

to the training set being large enough (we use a cut-off of at least 

500 instances). The average balanced accuracy across all valida-

tion folds and domains, along with standard errors, is shown in 

Figure 4. 

It can be seen that UDA is increasingly beneficial as fewer 

training domains become available. With a single training domain, 

SCA provides 14 percentage points improvement over ERM, alt-

hough it is not a complete substitute for better data. Having at least 

6 training domains appears to be a necessary and sufficient condi-

tion for achieving maximal performance on this dataset: it is the 

point where the performance of most algorithms no longer in-

creases, as well as the point where UDA no longer significantly 

improves on ERM. 

The fact that OOD accuracy does not clearly increase mono-

tonically with the number of training domains (for example, there 

is a definite drop for most algorithms in going from 4 to 5 domains) 

suggests that, as found in [37], the design of the dataset, including 

the relative abundance of each domain, is an important factor, and 

naively combining as much data as possible may not be the best 

strategy. This will be investigated further in future work. 

5. CONCLUSION 

This paper presented a novel benchmark for OOD generalisation, 

namely the cross-dataset detection of humpback whales in PAM 

data. A total of 8 UDA algorithms, applied to a simple CNN de-

tector, were tested on this benchmark, as well as 3 existing base-

line detectors. It was shown that large domain shifts exist between 

data from different PAM projects, resulting in significant under-

performance OOD if training data from only one domain is used. 

However, training on a variety of distinct sources of data (at least 

6) is sufficient to allow models to generalise OOD, without the 

need for advanced algorithms. In cases where limited training do-

mains are available, UDA can be used to recover a large part of 

the shift-induced performance drop. 

Although some algorithms may exceed ERM on average, no 

algorithm consistently outperforms ERM every time, highlighting 

the challenges still faced in achieving reliable, trustworthy OOD 

generalisation. Being able to predict which algorithms will work 

in a particular domain would be a significant step towards achiev-

ing this goal – for example, the best model could then be dis-

patched automatically using a specialty-aware ensemble [38]. As 

of yet, no pattern appears to exist, although this will be investi-

gated further in future work. 
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ABSTRACT

Few-shot bioacoustic event detection consists in detecting sound
events of specified types, in varying soundscapes, while having ac-
cess to only a few examples of the class of interest. This task ran
as part of the DCASE challenge for the third time this year with
an evaluation set expanded to include new animal species, and a
new rule: ensemble models were no longer allowed. The 2023 few-
shot task received submissions from 6 different teams with F-scores
reaching as high as 63% on the evaluation set. Here we describe
the task, focusing on describing the elements that differed from pre-
vious years. We also take a look back at past editions to describe
how the task has evolved. Not only have the F-score results steadily
improved (40% to 60% to 63%), but the type of systems proposed
have also become more complex. Sound event detection systems
are no longer simple variations of the baselines provided: multiple
few-shot learning methodologies are still strong contenders for the
task.

Index Terms— Few-shot learning, bioacoustics, sound event
detection

1. INTRODUCTION

Bioacoustic event detection, the identification of animal vocal-
izations within specific timeframes, shares many similarities with
sound event detection (SED) in varying contexts like urban set-
tings [1] or secured spaces [2, 3]. Nonetheless, bioacoustics poses
a unique set of challenges due to the varied recording conditions
and diverse animal vocalizations [4]. This makes it an exciting and
complex domain within machine learning, with several specialized
sub-disciplines focused on different animals. Recent advances in
supervised deep convolutional neural networks (CNN) have poten-
tial for enhancing feature detection.

However, their supervised nature necessitates extensive, well-
categorized acoustic event data and hundreds of annotated exam-
ples per class. Gathering this data can be an uphill battle, consid-
ering the uneven distribution of species, the labor-intensive nature
of audio annotation, and the variable taxonomy based on the use
case [5]. The limitations of a supervised sound event detection sys-
tem become more prominent when extrapolating techniques used in
speech to other animal sounds. This complexity arises from the dif-
ferences in sound duration, interest units, and the context in which
the sounds are made. Crucially, understanding the commencement
and termination times of animal sounds is vital to community ecol-
ogy, shedding light on various patterns of communication and influ-
ence among species [6]. Unlike speech science with its relatively
limited granularity, bioacoustic studies operate at multiple levels,
from coarse classification of species to fine distinction of individ-
ual call types. Moreover, the diversity in recording equipment used
for animal sounds, from far-field to underwater, adds another layer
of complexity, transforming bioacoustic event detection into a col-
lection of small-data problems, each requiring specialized systems.
This fragmentation, although useful for species classification tasks,
impedes the practical application of deep learning in bioacoustics
and life sciences more broadly [5].

To address these challenges, this DCASE task proposes a uni-
fied approach for bioacoustic event detection across the various sub-
domains, aiming to mitigate the problems associated with data ac-
quisition, annotation, and the fragmentation in computational bioa-
coustics. Hence, we compiled a unique ensemble of 14 small-scale
datasets, each between 10 minutes and 10 hours long and derived
from distinct sources, representing different application contexts.
Breaking from the norm of training individual machine learning
systems for each dataset, the idea is to develop a single, versatile
system capable of identifying sound events across various datasets,
with event categories specified at ”query time”. Additionally, dur-
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Dataset mic type # audio files total duration # labels # events

Training set

BV: BirdVox-DCASE-10h fixed 5 10 hours 11 9026
HT: Hyenas various 5 5 hours 5 611
MT: Meerkats animal mounted 2 70 mins 4 1294
JD: Jackdaws mobile 1 10 mins 1 357
WMW: Western Mediterranean Wetlands Birds various 161 5 hours 26 2941

Validation set HB: Humbug mosquitoes handheld 10 2.38 hours 1 712
PB: Polish Baltic Sea bird flight calls fixed 6 3 hours 2 292
ME: Meerkats animal mounted 2 20 mins 2 73

Evaluation Set
CHE: Transfer-Exposure-Effects birds fixed 18 3 hours 3 2550
DC: BIOTOPIA Dawn Chorus birds fixed 10 95 mins 3 967
CT: Coati handheld 3 48 mins 3 365
MS: Manx shearwater birds fixed 4 40 mins 1 1087
QU: Dolphin quacks animal mounted 8 74 mins 1 3441
MGE: Chick calls birds fixed 3 32 mins 2 1195
CHE23: Transfer-Exposure-Effects Frogs fixed 16 40 mins 1 798
CW: Cow moos fixed 4 56 mins 1 293

Table 1: Summary of dataset characteristics.

ing an evaluation on an audio file, the system is provided with the
initial five instances of the desired sound event. This approach em-
ploys a machine learning paradigm known as ”few-shot learning”
(FSL) [7, 8], where the aim is to construct precise models using less
training data. In this context, FSL is explored using N-way-k-shot
classification, where N and k represent the number of classes and
the examples per class, respectively. Upon training with the first
five occurrences of an event, the system effectively detects subse-
quent instances of the same event.

Our hypothesis is that bioacoustic event detectors can be trained
using available bioacoustic datasets and then generalized to new tar-
gets using a few examples at the time of deployment.

2. DATASETS

When the DCASE challenge begins, each task releases its own de-
velopment set, consisting of a training and validation sets. Partic-
ipants must use this dataset to develop and validate their systems.
As the challenge enters the evaluation phase, the evaluation set is
released and participants apply their developed systems and out-
put the predictions which are then used to calculate the final rank-
ing scores. These datasets are organised in subsets that represent
different acoustic sources and were gathered here with the specific
purpose of broadening the targeted species. A summary of the main
characteristics is presented in Table 1. Overall there are 8 sets focus-
ing on bird species, 5 sets of mammal vocalisations (one of which
underwater), 1 set of flying insect sounds (HB) and 1 set of amphib-
ian calls (CHE23).

For the Few shot bioacoustic task, the training set is multi-label,
since the provided annotations contain more than one class of inter-
est. However, both validation and evaluation sets are single label,
meaning that each audio file is annotated only for a single class of
interest. While events of other classes are present these are not an-
notated and should not be predicted by the systems.

Also, the split between training, validation and evaluation sets
does not follow the common supervised learning approach, since
the classes in the validation and evaluation sets may overlap or not
with the classes in the training set. This is designed so that examples
of the target classes we want to detect are only provided as the 5
shots.

Given the few-shot setup of this task, each audiofile of the eval-
uation set is accompanied only with the annotations for the 5 initial
events of the class of interest. The datasets used on the 2023 edi-
tion of the task remain the same as in previous edition (thoroughly
described in [5]), but the evaluation set has been extended with two
new subsets of data: Cow moos (CW) and frog croakings (CHE23).

Cow moos (CW): This dataset contains 4 audio files of about
15 minutes each recorded on a Cow’s farm in Catalonia, Spain. An
ambient microphone connected to a Zoom H5 recorder was hung
on the ceiling of a yard with multiple cows. Cow vocalizations
were recorded and manually labelled by researchers from La Salle
Campus Barcelona and AWEC Advisors S.L. in the framework of
the projects CowTalk and CowTalk-Pro.

Transfer-Exposure-Effects Frogs (CHE23): This dataset
is part of the same project which originated the CHE dataset,
data were collected using unattended acoustic recorders (Song-
meter 3) in the Chornobyl Exclusion Zone (CEZ) to capture the
Chornobyl soundscape and investigate the longterm effects of the
nuclear plower plant accident on the local ecology. The CHE23
dataset consists in 16 audiofiles of varying lengths annotated for
frog croaking events, however many other calls of other species are
present throughout the recordings. The annotations were produced
by Helen Whitehead using Raven Pro 1.6.

Finally, teams are allowed to use certain external datasets and
pretrained models. These were selected based on two criteria: They
must be open access and classes do not overlap with the evaluation
target classes. The complete list of allowed datasets and pretrained
models can be accessed in the DCASE challenge task page [11].

3. BASELINES AND EVALUATION METRICS

The benchmarks and evaluation metrics remain identical to those
established in the 2022 rendition of the task [9]. The associated
code can be procured from the GitHub repository1.

The few-shot bioacoustic sound event detection task adopts
two baselines: 1) Template matching, and 2) Protoypical networks.
Template matching represents a common practice in the bioacous-
tics domain. The overall approach consists in taking each of the

1https://github.com/c4dm/dcase-few-shot-bioacoustic
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Team name Best
submission

Eval set:
F -score %

Val set
F -score % Main characteristics

Du NERCSLIP 2 63.78 75.6 Multitask learning; Frame-level embeddings;
Voice activity detection

Moummad IMT 2 42.72 63.46 Contrastive learning learns an Embedding space;
fine-tuning encoder on both positive and negative events;

XuQianHu NUDT BIT 3 42.5 63.94 prototypical network, Delta MFCC and PCEN;
Squeeze Excitation blocks

Gelderblom SINTEF 2 31.10 36.6 Encoder based on BEATs; prototypical network.
Jung KT 3 27.12 81.52 Prototypical network trained with a negative-based loss
Wilkinghoff FKIE 4 16.00 62.64 Embeddings learnt with temporal dimension;

template matching with Dynamic warping.
TM baseline - 14.89 3.37 Template matching baseline as in [9]
proto baseline - 2.92 28.45 Prototypical network baseline as in [9]

Table 2: F-score results per team (best scoring system) on evaluation and validation sets, and summary of system characteristics. Systems are
ordered by higher scoring rank on the evaluation set. These results and technical reports for the submitted systems can be found on task 5
results’ page [10].

5 initial examples as templates and cross-correlate each template
with the remaining audiofile. Events are predicted by selecting
time frames where the cross-correlation values surpasses a defined
threshold. Prototypical networks [7], on the other hand are trained
through episodic learning and employ a 5-way-2-shot classification
model in our case. Each prototype represents a coordinate in vector
space, calculated as a mean of the coordinates of the 5 samples.
Training comprises a Support set of 5 labelled samples from each
class, while the remaining samples form the Query set. A class
prototype is computed via an embedding function with learning
parameters. Distances are optimised, and the network training cre-
ates a general representation where similar sounds are closer. In
this way, the future data points are labelled using nearest-neighbour
algorithms.

The systems are evaluated based on how well they predict
events on the evaluation set. The metric used combines intersection
over union and bipartite graph matching algorithms to select the
best matches between the predicted events and ground truth events.
After the matching phase, we count the number of true positives
(TP) , false positives (FP), and false negatives (FN), which are then
used to calculate precision, recall and F-score. The systems are
ranked using the event based F-score value. The task description
and details are provided in [5].

In this year’s task, a distinctive modification has been intro-
duced in the evaluation procedure. The use of ensemble models
was no longer allowed. The objective behind this rule is to incen-
tivise the development of truly general models, rather than a simple
fusion of completely independent models.

4. RESULTS

The third edition of the few-shot bioacoustic event detection task
received participation of 6 teams, with a total of 22 submitted sys-
tems. The overall F-scores for the best submission per team are
presented in Table 2 together with the main characteristics of the
respective systems, and the results on each dataset of the evaluation
set are presented in Fig. 1.

The winning submission is by the same team that won the pre-
vious edition of this task, namely, Du NERCSLIP. The system im-
proves on the last year’s submission, [12] by including their frame-
level embedding system into a multi-task learning architecture. The

new system now includes Target Speaker Voice Activity Detection
as one of the branches. This system achieved 63% F-score which
is an increase from the best F-score from last year, that was aprox.
60%. Observing Fig. 2, it is possible to observe the improved re-
sults on individual datasets for this team compared to the last year’s
system (columns Du22 and Du23). This shows that the described
modifications are responsible for the considerable increase in the
overall F-score.

Furthermore, an intriguing observation when looking at the F-
scores per dataset in Fig. 1, is that overall systems performed ex-
tremely well on the CW dataset, but not the winning submission.
Indeed the performance of Du NERCSLIP’s system on CW dataset
is similar to the performance on the QU dataset, which is considered
to be an extremely difficult case due to its very short events.

Moummad IMT implemented a system based on Contrastive
Learning, a method to learn an embedding space that maximises the
distinction between positive events and negative events. During the
evaluation stage, the encoder is further fine-tuned on the 5 positive

2https://dcase.community/challenge2022/
task-few-shot-bioacoustic-event-detection-results

Figure 1: F-Score results of best system for each team and base-
lines. Systems are ordered from least to highest scoring rank on the
evaluation set and indicated by the name of main author.
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Figure 2: Comparison of the maximum F-score achieved by each team for the datasets used in both 20222 and 2023. The results for each year
are distinguished by different colors.

examples provided and on selected negative examples for each au-
diofile. The final predictions are then the result of a simple binary
classification in this embedding space.

XuQianHu NUDT BIT largely improved upon the Prototyp-
ical Network baseline by including squeeze/excitation (SE) blocks
into the encoder part of the network. The idea behind this is to
create an adaptive mechanism that assigns different weights to dif-
ferent channels of the feature map, by predicting their importance.
The system also adopts the negative sample search mechanism pro-
posed by Liu et al. on the previous edition of the task [13], which
is designed to improve the learning of the negative prototypes. Also
following from Liu et al submission, the input features employed
are Delta MFCC and PCEN.

Gelderblom SINTEF followed the Prototypical Network ap-
proach, but use the BEATs pretrained model as encoder. BEAT
stands for Bidirectional Encoder representation from Audio Trans-
formers released by Microsoft for audio tokenisation and classifica-
tion. In their submission, the authors explore how useful this model
is to represent bioacoustic data and compare the embeddings pro-
duced by the pretrained model with the embeddings produced after
a few epochs of fine-tuning on the ECS-50 dataset [14].

Jung KT combines Contrastive Learning and Prototypical Net-
works. This addresses the problem that the high imbalance between
positive samples and negative samples creates in the learning of the
prototypes. They propose a novel negative-based prototypical loss
function that is used in a fine-tuning stage of the pipeline and drives
the system to maximise the positive to negative samples distance
and minimise the distance between negative samples.

Wilkinghoff FKIE adopts template matching and dynamic
time warping applied to embeddings trained with temporal reso-
lution. The embedding model is trained to predict both class and
temporal position of the sound event.

Observing the results spanning the two-year period (see Fig. 2),
it is evident that each dataset presents unique challenges for various
algorithms. Notably, the QU dataset consistently proved to be dif-
ficult for all participating teams across both years. Certain aspects,
which are not fully discussed here, have had an important impact in

the performance of these systems. We highlight data augmentation
and post processing techniques adapted to the task which have been
fundamental to achieve a good score. A comprehensive analysis
and discussion of these aspects can be read in [5].

5. CONCLUSION

The 2023 edition of the few-shot bioacoustic event detection task re-
ceived some very innovative systems that reflect the state-of-the-art
in few-shot learning. We especially underscore the introduction of a
novel technique, such as contrastive learning, making its initial en-
try in the history of the task’s execution. Contrastive learning in the
audio domain has seen increasing success and seems like a promis-
ing approach for the few-shot problem. Also of note is the quality
of the evaluation set gathered this year. The dataset now extends
to 3 different taxonomic groups: mammals, birds and amphibians,
which is a good indicator of the variety of challenges faced in the
bioacoustics domain. Moving forward we would be interested in
analysing how exactly the characteristics of the different datasets
impact each system and be able to understand if a single general
model is indeed capable of predicting many different classes based
on such few examples. The work in [5] started to tackle these ques-
tions, and while it is still not clear, the improving results on succes-
sive editions of this task indicate that the few-shot setting is a way
to go.
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ABSTRACT

This work presents a text-to-audio-retrieval system based on pre-
trained text and spectrogram transformers. Our method projects
recordings and textual descriptions into a shared audio-caption
space in which related examples from different modalities are close.
Through a systematic analysis, we examine how each component of
the system influences retrieval performance. As a result, we iden-
tify two key components that play a crucial role in driving perfor-
mance: the self-attention-based audio encoder for audio embedding
and the utilization of additional human-generated and synthetic data
sets during pre-training. We further experimented with augmenting
ClothoV2 captions with available keywords to increase their vari-
ety; however, this only led to marginal improvements. Our system
ranked first in the 2023’s DCASE Challenge, and it outperforms
the current state of the art on the ClothoV2 benchmark by 5.6 pp.
mAP@10.

Index Terms— Natural-Language-Based Audio Retrieval,
PaSST, ChatGPT

1. INTRODUCTION

Natural-language-based audio retrieval revolves around ranking au-
dio recordings based on their relatedness to textual descriptions.
Current state-of-the-art methods in this domain are based on the
dual-encoder approach which converts both recordings and textual
descriptions into high-level representations and then aligns them
within a shared audio-caption space. The ranking of candidate au-
dios is carried out by measuring their distance to the textual de-
scriptions in the shared embedding space. The dual-encoder setup
has been widely adopted in audio retrieval systems [1–4], because
it permits fast ranking and the use of pre-trained audio and text em-
bedding models. CNN architectures pre-trained on AudioSet [5]
are the most common audio encoders and large transformer mod-
els, such as BERT [6] and RoBERTa [7], are the most popular text
encoders. Recently, Mei et al. [8] managed to set a new state-of-
the-art performance on ClothoV2 [9] by introducing WavCaps [8],
a large dataset with synthetic captions.

In this work, we elaborate on our findings in the context of sub-
task 6b of the 2023 DCASE challenge, which is concerned with
natural-language-based audio retrieval. Our method is also based on
the dual-encoder method but differs from previous methods in three
central aspects: firstly, we use an audio spectrogram transformer
called PaSST [10] instead of CNN14 [5] for audio embedding be-
cause PaSST outperforms CNN14 on AudioSet [11] and other rel-
evant audio benchmarks [12]. PaSST employs Patchout [10] dur-
ing training, which increases training speed and memory efficiency

while at the same time acting as a regularizer. Swapping CNN14
for PaSST improves the retrieval performance significantly, as we
will show in Section 3.3. Secondly, we pre-train our models on Au-
dioCaps [13] and WavCaps [8], two large audio captioning datasets
with human-generated and synthetic captions, to alleviate the data
scarcity problem. Using these large datasets to pre-train the mod-
els results in significantly better retrieval performance, as we will
show in Section 3.1. And thirdly, we take advantage of the avail-
able metadata associated with each audio recording and augmented
the captions during training by generating additional captions using
the available keywords and the GPT3.5-turbo API, also known as
ChatGPT. This augmentation method successfully reduces overfit-
ting during fine-tuning but only results in a minor performance im-
provement (see Section 3.5). Our implementation and the keyword-
augmented captions are available in our GitHub repository1.

2. METHOD

Our model uses separate audio and caption embedding networks,
denoted as ϕa(·) and ϕc(·), respectively, to embed pairs of spectro-
grams and descriptions {(ai, ci)}Ni=1 into a shared D-dimensional
space such that representations of matching audio-caption pairs are
close. This behavior is achieved by contrastive training, which
makes the embeddings of matching audio-caption pairs (ai, ci)
more similar while pushing the representations of mismatching
pairs (ai, cj;j ̸=i) apart. The agreement between audio ai and de-
scription cj is estimated via the normalized dot product in the shared
embedding space:

Cij =
ϕa(ai)

T · ϕc(cj)

∥ϕa(ai)∥2 ∥ϕt(cj)∥2

The similarity matrix C ∈ RN×N holds the agreement of matching
pairs on the diagonal and the agreement of mismatching pairs off-
diagonal. We train the system using the NT-Xent [14] loss, which is
defined as the Cross-Entropy (CE) between the ground truth and the
posterior over the text queries and the audio recordings; the ground
truth is given by the identity matrix I ∈ RN×N :

L =
1

2 ·N

N∑
i=1

CE(Ci∗, Ii∗) + CE(C∗i, I∗i)

1https://github.com/OptimusPrimus/dcase2023_
task6b
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Instruction GPT3.5-turbo’s Response

I will give a description of an audio recording and tags associated with the
audio recording. Generate 5 audio captions describing the sound event.
Each audio caption should be one sentence with less than 20 words. Use
grammatical subject-verb-object sentences. Do not include names of cities,
countries, and persons. Do not include the time. Do not include recording
device names. Do not write introductions or explanations. Do not use
“heard” or “recorded”. Start each output sentence with its index.
’A person is making noise by tapping their fingernails on a solid surface.’
[dull, metal]

1. The sound of nails tapping on a metal surface is heard.
2. Fingernails are producing a dull sound when tapped.
3. A person is tapping their nails on a solid, metal surface.
4. The noise of someone tapping their fingernails is audible.
5. Nails are rhythmically tapping on a hard metal object.

Table 1: Example query fed to GPT3.5-turbo to augment a ClothoV2 caption (in blue) with the available keywords (in orange; query inspired
by WavCaps [8]). The response is a list of rephrased captions, some of which take the keywords into account (highlighted in orange).

2.1. Audio Embedding Models

We choose the Patchout faSt Spectrogram Transformer (PaSST)
[10] to convert audio recordings into a compact, high-level vector
representation because it achieves state-of-the-art results on mul-
tiple audio classification benchmarks [15] while keeping memory
and computational complexity low compared to the vanilla audio
spectrogram transformers [16]. PaSST uses ImageNet [17] pre-
trained parameters from a vision transformer [18,19] and fine-tunes
them on AudioSet [11] for general-purpose audio tagging. The
relatively low computational and memory footprint is achieved by
dropping patches from the input sequence. This procedure, called
Patchout [10], additionally regularizes the model during training.
We conducted experiments with PaSST models that take audios
of up to ten seconds in length as input and extract overlapping or
non-overlapping patches of size 16 × 16 from the input spectro-
gram. Pre-trained PaSST models are available on GitHub2. We
additionally experimented with two convolutional neural networks
pre-trained on AudioSet, namely CNN10 and CNN14 [5]. These
models can handle inputs of arbitrary length, so we directly input
up to 30 seconds long audio instead of cutting them into shorter
segments. Table 2 gives an overview of all audio embedding mod-
els used in our experiments.

patch
stride

patch
out

input
length (s)

AS
mAP

number
params

CNN10 - - 30 38.0 6.3M
CNN14 - - 30 43.1 81.8M

PaSST-L 10× 10 4; 50 10 45.9 41.8M
PaSST-N 16× 16 2; 15 10 46.8 86.2M
PaSST-S 10× 10 4; 50 10 48.6 86.2M
PaSST-S20 10× 10 4; 80 20 47.4 86.2M

Table 2: Overview of the audio embedding models compared in our
experiments. The first section shows CNNs from [5]. The second
section summarizes PaSST variants [10].

2.2. Sentence Embedding Models

We compared five different sentence embedding models: bert-
small, bert-base, bert-large, roberta-base, and roberta-large. All

2https://github.com/kkoutini/passt_hear21

models are bi-directional self-attention-based sentence encoders
that underwent self-supervised pretraining on the BookCorpus [21]
and WikiText datasets [22]. BERT- and RoBERTa-based models
differ in the masking strategy used during training: the former was
trained using 10 fixed masks for each sentence, while the latter used
new, dynamically generated masks in each forward pass. For both
models, we selected the output vector that corresponds to the class
token as sentence embedding. The parameter counts for bert-small,
bert-base, bert-large, roberta-base, and roberta-large are around 29,
110, 345, 123, and 354 million, respectively.

2.3. Shared Audio-Caption Space

The audio and text embeddings generated by the encoders are in-
tegrated into a shared audio-caption space by using a simple lin-
ear projection that maps the embedding models’ output to a size of
1024. Initial experiments suggested that using a non-linear projec-
tion (e.g., a multilayer neural network) does not significantly im-
prove performance.

2.4. Datasets

Our final models were trained in two steps on multiple datasets.
First, we performed pretraining on ClothoV2, AudioCaps, and Wav-
Caps. The resulting models were then further finetuned on a cus-
tom, augmented version of ClothoV2 (called ClothoV2 GPT be-
low), which also takes into account the available meta-data associ-
ated with each audio file.

2.4.1. ClothoV2

ClothoV2 [9] contains 10-30 second-long audio recordings and cap-
tions that are between 8 and 20 words long. The development
set’s training, validation, and test split suggested by the organizers
contains 3840, 1045, and 1045 recordings, respectively, and each
recording is associated with five human-generated captions. The
leaderboard evaluation split used for the final system ranking con-
tains 1000 audio recordings and 1000 captions. We used the valida-
tion split to monitor the generalization performance and report the
performance on the test split in Section 3.

2.4.2. AudioCaps

AudioCaps [13] contains 51, 308 audio recordings taken from Au-
dioSet and one human-written caption for each of them. Each audio
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audio
embedding

segment
length (s) overlap text

embedding finetune GPT-
augment mAP@10 R@1 R@5 R@10

PaSST-N 10 ✗ bert-small ✗ ✗ 32.98 21.45 48.71 62.05
PaSST-N 10 ✗ bert-base ✗ ✗ 35.22 23.07 51.48 65.36
PaSST-N 10 ✗ bert-large ✗ ✗ 35.78 23.75 52.27 65.57
PaSST-N 10 ✗ roberta-base ✗ ✗ 35.12 23.02 51.89 65.26
PaSST-N 10 ✗ roberta-large ✗ ✗ 36.65 24.26 53.89 66.87

CNN10 30 ✗ bert-base ✗ ✗ 23.72 14.18 36.59 49.21
CNN14 30 ✗ bert-base ✗ ✗ 28.06 17.86 40.82 54.56
PaSST-L 10 ✓ bert-base ✗ ✗ 33.47 21.67 49.24 63.16
PaSST-N 10 ✗ bert-base ✗ ✗ 35.22 23.07 51.48 65.36
PaSST-S 10 ✓ bert-base ✗ ✗ 32.83 20.90 48.82 62.60

PaSST-N 10 ✗ roberta-large ✓ ✗ 38.00 25.51 55.06 68.56
PaSST-N 10 ✗ roberta-large ✓ ✓ 38.56 26.07 55.27 69.30

[20] CNN14 30 - all-mpnet-base-v2 ✗ ✗ 22.20 13.00 34.30 48.00
[8] CNN14 30 - bert-base ✓ ✗ 32.95 21.41 47.77 62.10

Table 3: Text-to-audio retrieval performance on the ClothoV2 test set for different combinations of language and audio embedding models
(sections one and two, respectively). The impact of additional fine-tuning on ClothoV2 and ClothoV2GPT is shown in section three. Section
four shows results from the DCASE baseline system [20] and the current state of the art [8] (values based on WavCaps’s GitHub repository).

recording has a duration of 10 seconds, and the captions are, on
average, 9.8 words long. We concatenated the training, validation,
and testing split of AudioCaps into one large dataset and used it for
pretraining.

2.4.3. WavCaps

WavCaps [8] is a weakly-labeled audio-caption dataset that con-
tains 403, 050 audio recordings of varying length collected from
FreeSound, BBC Sound Effects, SoundBible, and a strongly labeled
subset of AudioSet [23]. Each audio file is associated with a syn-
thetic audio caption that was created by instructing the GPT3.5-
turbo model to extract relevant sound events from metadata and
output a single-sentence description. The generated captions are,
on average, 7.8 words long. The authors demonstrated the useful-
ness of these synthetic captions by successfully using the dataset for
audio retrieval, audio captioning, and text-based sound generation.

2.4.4. ClothoV2 GPT

Each audio recording in the ClothoV2 dataset is associated with ad-
ditional metadata consisting of the file name, a list of keywords, a
username, and a web URL. We took advantage of the additional in-
formation and used GPT3.5-turbo to augment the human-generated
captions with the available keywords. To this end, we instructed the
model to take the keywords into account and rephrase the available
captions. We generated five new captions for each caption in the
training set, resulting in 96, 000 additional captions. Table 1 gives
an example query and the resulting augmented captions: GPT3.5-
turbo successfully combined the description and the keywords into
five varying descriptions with similar content; four of these contain
the provided keywords. We will refer to this augmented version of
ClothoV2 as ClothoV2 GPT. The generated captions are available
in our GitHub repository.

2.5. Preprocessing

To allow batched processing of recordings of varying lengths, we
extracted random 30-second snippets from those audio recordings

that are longer than 30 seconds and zero-padded shorter record-
ings to the maximum duration in the current batch. The resulting
waveforms were converted to 128-bin log-MEL spectrograms us-
ing a 1024-point FFT (32ms) and hop size of 320 (10ms). The
spectrograms were centered and whitened with the approximate
global mean and standard deviation before feeding them into the au-
dio embedding model. The input sentences were pre-processed by
transforming all characters to lowercase and removing punctuation.
The resulting strings were tokenized with the WordPiece tokenizer,
padded to the maximum sequence length in the current batch, and
truncated if they were longer than 32 tokens.

2.6. Training

We pre-trained the models on AudioCaps, WavCaps, and the train-
ing set of ClothoV2. Both embedding models were jointly opti-
mized using gradient descent with a batch size of 64. We used
the Adam update rule [24] for 16 epochs, with one warmup epoch.
Thereafter, the learning rate was reduced from 2 × 10−5 to 10−7

using a cosine schedule. The hyperparameters of the optimizer were
set to PyTorch’s [25] defaults. We further used structured patchout
as a regularizer during training with hyperparameters depending on
the audio length and patch extraction (see Table 2). Finetuning on
ClothoV2 GPT was done in a similar manner as pretraining but only
for five epochs with a maximum learning rate of 8× 10−6. During
the finetuning procedure, a caption was swapped with one of its five
GPT-augmented versions with a probability of 0.3.

3. RESULTS

The performance of different audio and sentence embedding mod-
els is summarized in Table 3. The combination of PaSST-N and
roberta-large, pre-training on all data sets, and fine-tuning with GPT
augmentation outperforms the current state of the art [8] based on
bert-base and CNN14 by 5.6 pp. mAP@10. In the following sec-
tions, we analyze our method in detail to identify each component’s
impact on the overall performance.
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3.1. Pre-training Data Sets

ClothoV2 is relatively small compared to captioning data sets in the
image domain; to further enhance the performance, we additionally
leveraged AudioCaps and WavCaps. In this section, we investigate
the impact of the additional pre-training data sets on the final per-
formance. To this end, we used PaSST-N and bert-base and trained
them on different combinations of the three sets. We report the
results in terms of mAP@10 on ClothoV2’s test set in Table 4. Pre-
training on WavCaps or ClothoV2 results in similar performance
of around 27 mAP@10; pretraining exclusively on AudioCaps is
roughly 6 pp. worse. Surprisingly, adding AudioCaps to WavCaps
did not further improve the result; however, adding ClothoV2 to
WavCaps or AudioCaps yielded improvements of 6.8 and 9.6 pp.,
respectively. The best result overall was achieved by combining all
three data sets.

AudioCaps WavCaps ClothoV2 mAP@10

✓ ✗ ✗ 21.01
✗ ✓ ✗ 27.62
✗ ✗ ✓ 27.28

✓ ✓ ✗ 27.13
✗ ✓ ✓ 34.42
✓ ✗ ✓ 30.64

✓ ✓ ✓ 35.22

Table 4: Ablation study on the effect of pre-training data sets.

3.2. Text Embedding Models

We assumed that larger sentence embedding models would lead to
better retrieval performance. To test this hypothesis, we experi-
ment with three variants of BERT and two variants of RoBERTa.
The results are summarized in the first section of Table 3. Larger
BERT sentence encoders indeed performed better (compare bert-
small, bert-base, and bert-large), and a similar trend can be observed
for RoBERTa (compare roberta-base and roberta-large). The best
overall results were achieved by utilizing roberta-large.

3.3. Audio Embedding Models

We likewise assumed that using a self-attention-based architecture
would lead to further improvements. To test this assumption, we
compared two convolutional architectures (CNN10 and CNN14)
to three recent spectrogram tansformers (PaSST-L, PaSST-N, and
PaSST-S); section two of Table 3 summarizes the results. Scaling
up the audio embedding model from CNN10 to CNN14 yielded
an improvement of 4.3 pp. mAP@10. Switching from CNN14
to PaSST-N further improved the mAP@10 by 7.1 pp. PaSST-S,
which extracts overlapping spectrogram patches and performs bet-
ter on AudioSet, surprisingly did not further improve the retrieval
performance over PaSST-N. This inconsistency could be due to a
suboptimal patchout configuration.

3.4. Audio Context Length

PaSST uses a learnable positional encoding with a fixed length of 10
seconds and consequently cannot handle longer audio segments. To
deal with the up to 30-second long audio recordings in ClothoV2,
we cut longer waveforms into shorter segments, embedded each
segment separately, and averaged the resulting embeddings over

time to obtain a single vector representation. To investigate the im-
pact of the segment length, we conducted experiments by splitting
the recordings into 2, 5, 10, and 15 seconds long snippets. We used
PaSST-S20 for those experiments, an architecture similar to PaSST-
S, but with a positional encoding for audios of up to 20 seconds in
length. The results are given in Figure 1. While a longer context is
advantageous performance-wise, it also comes at the price of higher
computational cost (which grows quadratically with the input size).
We find that PaSST’s default maximum input length of ten seconds
strikes a good balance.

Figure 1: Performance of PaSST-S20 for different audio lengths.

3.5. Fine-Tuning

We further investigated the impact of additional finetuning on the
target data sets. To this end, we continued training (as described in
Section 2.6) on the training split of ClothoV2 with and without GPT
augmentation. The results are given in the third section of Table
3. Finetuning on ClothoV2 without GPT augmentation further im-
proved the pre-trained model by 1.3 pp. mAP@10. When finetuned
with GPT-Augmentation, overfitting was slightly reduced, and the
model improved by 1.9 pp. mAP@10. A similar advantage for the
GPT-augmented data set can be observed for the hidden test set of
the 2023’s DCASE Challenge.

4. DISCUSSION & CONCLUSION

This work presented a dual-encoder system for automatic audio re-
trieval, achieving state-of-the-art results on the ColthoV2 bench-
mark. The results of our experiments attribute the considerable per-
formance gains to two factors: firstly, the additional data sets with
human-generated and synthetic captions, and secondly, the audio
spectrogram transformer, which scaled better with the additional
data compared to convolutional neural networks. Augmentation of
the captions with the additional keywords reduced overfitting dur-
ing finetuning; however, it did not significantly improve retrieval
performance. One possible explanation for this is that each record-
ing in the ClothoV2 training set is associated with five different
captions, which are likely to contain the most relevant keywords al-
ready; adding further captions increases the variety only marginally.
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ABSTRACT

We propose a competitive Foley sound synthesis system based

on available components and fine-tuned on a target dataset. We

reuse a text-to-audio pre-trained model composed of a latent dif-

fusion model (LDM), trained on AudioCaps, a variational auto-

encoder (VAE), and a vocoder. We fine-tune the LDM on the de-

velopment dataset of the DCASE 2023 Task 7 to output a latent rep-

resentation conditioned on the target class number. The VAE and

vocoder are then used to generate the waveform from the latent rep-

resentation. To improve the quality of the generated samples, we uti-

lize a post-processing filter that selects a subset of generated sounds

to match a distribution of target class sounds. In experiments, we

found that our system achieved an average Fréchet audio distance

(FAD) of 4.744, which is significantly better than 9.702 produced

by the baseline system of the DCASE 2023 Challenge Task 7. In

addition, we perform ablation studies to evaluate the performance

of the system before fine-tuning and the effect of sampling rate on

the FAD.

Index Terms— Foley sound synthesis, conditional sound gen-

eration, latent diffusion, Fréchet audio distance

1. INTRODUCTION

Foley sound synthesis is the task of generating sound effects added

to multimedia content to enhance the perceptual audio experience.

Originally developed for cinema and television, it was conducted

by skilled artisans using elaborate manual techniques and is named

after Jack Donovan Foley, one of their pioneers [1]. Interestingly,

Foley sound effects are perceived as more authentic than their real

counterparts captured in live recordings [2]. The potential of dig-

ital signal processing for sound synthesis was recognized early,

as exemplified by the famous Karplus-Strong algorithm [3]. The

recent deep learning revolution has brought the realism levels of

digital sound synthesis to new levels, in particular for speech [4]

and music [5, 6, 7]. A few works have focused specifically on

Foley sound synthesis either with video-guidance [8, 9], or with-

out [10, 11, 12, 13]. We can also mention some niche applications

like synthesizing cricket sounds as test signals for perceptual exper-

iments [14].

Recently, text-to-audio sound generation based on diffusion

models has gained traction. Following a methodology introduced

for images [15], AudioLDM [16] has demonstrated impressive con-

ditional sound generation quality. AudioLDM is composed of a la-

tent diffusionmodel (LDM), a variational autoencoder (VAE), and a

neural vocoder. The LDM is conditioned on a text prompt through a

Contrastive Language-Audio Pretraining (CLAP) embedding. The

latent representation is provided by the VAE which has learned to

encode a mel-spectrogram into a compressed latent space. The neu-

ral vocoder is based on HiFi-GAN [17], and decodes a waveform

from the mel-spectrogram into an uncompressed waveform. Tango

[18] has been proposed to enhance the text prompting functional-

ity of AudioLDM using an instruction-tuned large language model

(LLM) instead of the CLAP embedding.

Due to this rising interest in general sound generation, a new

related task was added to the DCASE 2023 Challenge to stimulate

research about this challenging problem. Task 7 [19], aptly called

Foley sound synthesis, requires participants to build a Foley sound

generation model for seven sound classes: dog bark (�����������), footstep

(�), gunshot (����������), keyboard (�����), moving motor vehicle (����), rain

(��), and sneeze/cough (����). The system is then used to produce 100

samples that are first evaluated in terms Fréchet audio distance. In

a second stage, a subjective evaluation based on quality, accuracy,

and diversity of the samples is conducted. Although text prompt-

ing models such AudioLDM or Tango have shown to be effective

in fine-grained guidance for audio generation, using them for class

conditional generation requires prompt engineering and trial and er-

ror. In addition, existing public models have been trained for the

generation of 10 s long samples at 16 kHz, while the challenge calls
for 4 s samples at 22.05 kHz.

We propose a pragmatic solution to this problem by combining

available components to obtain a high quality Foley sound synthe-

sis system. We modify an existing implementation of Tango1 to

enable sound-class-based guidance instead of text prompting. The

class-conditioned LDM is trained using the development set of the

DCASE 2023 Challenge Task that contains between 600 and 800

sounds of each of the classes. We initialize the model with a pre-

trained model of Tango, which was trained with AudioCaps [20]

dataset and Flan-T5 [21] LLM. The conditioning part based on Flan-

T5 is replacedwith a simple linear embedding layer to realize sound-

class-based conditioning. Moreover, we propose a post-processing

filter that selects a subset of generated samples to match a distribu-

tion of the target sound class. The post-processing filter adopts a

greedy backward selection strategy that iteratively drops a sample

to achieve the minimum Fréchet audio distance (FAD). Our exper-

iments show that our system significantly outperforms the baseline

system provided by the task organizers in terms of FAD. Audio sam-

ples produced by the system are available online2.

2. BACKGROUND

Our system, like AudioLDM [16] and Tango [18], is based on the

LDM originally proposed for image generation [15]. The LDM op-

erates in the latent-space generated by a VAE pre-trained on mel-

spectrograms. The generated mel-spectrograms are inverted into

waveforms using the neural vocoder HiFi-GAN [17].

1https://github.com/declare-lab/tango
2http://www.robinscheibler.org/dcase23t7-samples/
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Figure 1: System overview. The audio generation pipeline (left) has three elements. The core is a latent diffusion model (LDM) with class-

conditional embeddings (Emb.). We use pre-trained variational-autoencoder and HiFi-GAN vocoder for the reconstruction. The samples

produced are then filtered during post-processing (right) by greedy and Metropolis-Hastings optimization.

2.1. Latent Diffusion Models

The LDM transforms a sampled Gaussian noise ZN ∈ RC×T
r
×F

r

into a latent representation Z0 through N reverse diffusion steps

with a UNet-based neural network. T is the number of mel-

spectrogram frames, F is the number of mel-filter bins, C is the

number of channels in latent space, and r is the compression level
of VAE. The neural network receives a L-length sequence of d-
dimensional embedding vectors E ∈ RL×d transformed from the

sound class indices through a linear embedding layer. The condi-

tioner E is fed into the network through the cross-attention mecha-

nism.

Given the latent featureZ0, the corresponding class embedding

vectorE, and random isotropic Gaussian noise ε̄ ∈ RC×T
r
×F

r , the

neural network is trained to minimize the following loss function L
on the basis of the theory of denoising diffusion probabilistic mod-

els [22]:

L = Eε̄,Z0,n

[
‖ε̄− ε(

√
ᾱnZ0 +

√
1− ᾱnε̄,E, n; θ)‖22

]
, (1)

ᾱn =

n∏
n′=1

αn′ , (2)

αn = 1− βn, (3)

where ε(·, ·, ·; θ) is the neural network that outputs the estimated

noise of the same shape as Z0. The variable βn is the variance of

the Gaussian distribution in the forward process.

Classifier-free guidance [23] can be used to boost the fidelity

of the sound class. Using this technique, the backward process to

obtain Zn−1 from Zn can be written

Zn−1 =
1√
αn

(
Zn −

βn√
1− ᾱn

ε̃n

)
+ σnε̃n (4)

ε̃n = wε(Zn,E, n; θ) + (1− w)ε(Zn,O, n; θ), (5)

where σ2
n is the variance of the Gaussian distribution in the reverse

process, respectively. The symbolO represents the all zero embed-

ding vector used for unconditional inference, and w is a parameter

of the guidance scale. Note that, to accelerate the sampling speed

at inference time, denoising diffusion implicit models (DDIM) [24]

sampling is used.

2.2. Variational autoencoder and neural vocoder

AVAE is used to compress a mel-spectrogramM ∈ RT×F into the

latent space parametrized by mean and variance µ, σ ∈ RC×T
r
×F

r .

The VAE is composed of a stack of CNN-based encoders. In the

submitted system pipeline, the latent Z0 produced by the LDM is

fed into the decoder of VAE to reconstruct a mel-spectrogramM .

To reconstruct a waveform x ∈ RT ′
from a mel-spectrogram

M given by the VAE, the generator of HiFi-GAN [17] can be used,

where T ′ is a length of the waveform. The module repeatedly up-

samples themel-spectrograms by a transposed convolution followed

by multi-receptive field fusion (MRF). The MRF is composed of

residual blocks, where each block processes the inputs by convolu-

tions of multiple kernel sizes and dilations to capture the temporal

feature by various receptive fields.

3. PROPOSED SYSTEM OVERVIEW

An overview of our submitted system is depicted in Fig. 1. Our

system adopts a similar pipeline with Tango [18], where a latent

generator based on LDM, a latent-to-mel decoder using VAE, and a

mel-to-wav vocoder are cascaded. Our LDM accepts a sound class

index c as a conditioner instead of a text prompt. We use pre-trained

VAE and HiFi-GANmodels used in AudioLDM [16] to reconstruct

a waveform from the latent representation. After the audio genera-

tion pipeline, a post-processing filter is employed to drop irrelevant

samples to match the distribution of a target sound class. In the fol-

lowing subsections, we describe our implementation of themodules.

3.1. Sound-class-based Conditioning

When training, we initialize our model with a pre-trained check-

point of Tango. The checkpoint is designed to receive a sequence

of embedding vectorsE from the Flan-T5 text encoder. We replace

the text encoder with a linear embedding layer that projects a sound

class index c into a d-dimentional vector. Unlike Tango, we jointly
train the conditioner with the main network of LDM. Although the

cross-attention mechanism for conditioning accepts a sequence of

embedding vectors, which is designed to accept a text sequence, we

use a single target class embedding vector as E ∈ R1×d in this

work.

3.2. FAD-oriented Post-processing Filter

The quality of the samples produced by the system, while accept-

able, can be improved by over-generating and filtering. For this

task, a target sample quality metric is necessary. The FAD metric

used in the challenge is an obvious choice. The FAD is computed as

follows. First, VGGish [25] embeddings of both the reference and

generated samples are computed. The embeddings are computed

for segments of 16,000 samples with half-overlap. This produces

10 embedding vectors per 4 s of generated audio. We note that the
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challenge abuses the metric a little bit since the VGGish model was

trained on 16 kHz data, while the challenge uses 22.05 kHz. The

mean µ and covariance matrixΣ of the embedding vectors of both

reference and generated audio are computed and their Fréchet dis-

tance [26] is

FAD(µr,Σr,µg,Σg) =

‖µr − µg‖2 + tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
. (6)

To obtain P samples, we first generate Q samples, with Q > P .
Then, we first reduce the number of samples by greedy selection.

We start with the set of all Q samples, denoted S = {1, . . . , Q}.
At each iteration, we remove sample k whose absence decreases the
FAD most, i.e.,

k = argmin
`∈S

FAD(µr,Σr, µ̄
(S−`)
g , Σ̄

(S−`)
g ), (7)

where µ̄
(S−`)
g and Σ̄

(S−`)
g are the mean and covariance matrix, re-

spectively, after removing the `th sample. Then, we update S ←
S − {k}, where ”−” here is the set difference operator. We repeat

until the size of S is P , or no sample can be removed without the
FAD increasing.

If we still have more than P samples, we apply the Metropolis-

Hastings (MH) algorithm [27] to find a good sub-set of P elements.

We initialize the algorithm by uniformly sampling at random 100

subsets of P samples and picking the one with lowest FAD. At each

iteration of the algorithm, we randomly swap two samples. We first

pick at random one of the current P samples. Then, we pick one of

the discarded samples with probability inversely proportional to the

embedding distance to the first sample. We swap the two samples

and evaluate the FAD. If it decreases, we accept the change. If it

increases, we only accept the change with a small probability that

decreases over time with a linear schedule. Otherwise, we reject

the change. The subset with the lowest FAD over all iterations is

returned by the algorithm.

We note that such a filtering system allows to achieve an ar-

bitrarily small FAD, at the cost of generating an increasingly large

number of samples. In our final system where P = 100, we set
Q = 200 to strike a balance between FAD performance and gener-

ation time.

4. EXPERIMENTS

4.1. Effect of Sampling Rate on FAD

Our generative model operates at 16 kHz and thus requires upsam-
pling to 22.05 kHz to match the dataset. This means that the fre-
quency band from 8 kHz to 11.025 kHz will be empty. We test the

effect of this by downsampling the development dataset to 16 kHz
and then back up to 22.05 kHz. Table 1 shows the FAD of the de-

velopment dataset, i.e., computed with test set as reference3, before

and after this operation. The FAD increases by less than 1, which

seems acceptable for our purpose. The effect varies by class, and

surprisingly the FAD decreases for the rain class.

3The mean vector and covariance matrix of the VGGish embeddings of
the test set were provided by the task organizers for the purpose of computing
the FAD with respect to the hidden test set.

Table 1: Fréchet audio distance (FAD) of the development dataset

under several selection procedure and sampling frequencies. The

column full is the full development set. 100 random indicates that

we chose at random a 100 samples from each class. The result at

different stages of the post-filtering a under optimization. The latter

is further divided into the result of the greedy optimization, which

may have more than 100 sample, the random initialization of MH

(+rand.), and the final MH stage.

class full 100 random optimized (22 kHz)
22 kHz 22 kHz 16 kHz greedy† +rand. +MH

����������� 1.144 1.883 2.954 0.609 0.802 0.793

� 2.072 2.388 3.846 0.715 0.862 0.837

���������� 2.606 3.036 4.368 0.667 0.899 0.887

����� 2.772 3.210 3.067 0.441 0.460 0.460

���� 4.324 5.426 7.950 1.210 1.281 1.281

�� 3.007 3.624 3.423 0.783 0.902 0.902

���� 0.400 0.768 1.367 0.188 0.268 0.265

avg. 2.332 2.904 3.854 0.660 0.782 0.775
† More than 100 samples

4.2. FAD-based Post-filtering

We evaluate the post-filtering described in Section 3.2 on the devel-

opment dataset of the DCASE 2023 Task 7. We evaluate the FAD

at different stages of the post-filtering pipeline and show the results

in Table 1, under the optmized column. We see that the greedy stage

is very effective and reduces the FAD to 23.5% of the random se-

lection. However, there may still be more than 100 samples at this

stage. Selecting 100 samples out the ones selected by the greedy ap-

proach increases slightly the FAD by about 0.22 points. The effect

of the MH algorithm is not always effective, but can further reduce

the FAD by up to 0.03 points in the best case.

4.3. Foley Sound Synthesis

4.3.1. Models and Hyperparameters

HiFi-GAN and VAE: We used pre-trained checkpoints of HiFi-

GAN and VAE used in [16]. The HiFi-GAN model was trained

with AudioSet [28]. All the training data were segmented or padded

into 10 seconds and resampled to 16 kHz, i.e., T ′ = 160, 000.
Each audio sample was transformed into a 64-dimMel-spectrogram

(F = 64) with a window length of 1024, and a hop length of 160.

The number of frames T was 1024 by padding 24 frames to avoid

further padding with downsampling operations in VAE and LDM.

The VAE model was trained with AudioSet [28], AudioCaps [20],

Freesound 4, and BBCSFX 5. The compression level r was 4, and
the number of channels C was 8.

Baselines: We use two baselines. 1) The challenge baseline sys-

tems [19], itself based on [12]. It uses a VQ-VAE for compres-

sion to latent space and HiFi-GAN for signal reconstruction. For

latent generation, it uses an auto-regressive model based on Pixel-

SNAIL [29]. This model operates at 22.05 kHz. 2)We also evaluate

the direct use of Tango [18] for the task. We condition the genera-

tion on text prompts designed for each of the target classes — �����������:

“A dog barking”, �: “Footsteps”, ����������: “Gun shot”, �����: “Typing

4https://freesound.org/
5https://sound-effects.bbcrewind.co.uk
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Table 2: Fréchet audio distance (FAD) with baseline and our sys-

tems. ’raw’ indicates the systemwithout the FAD filter, i.e., the first

100 samples from the audio generation pipeline were used. ’filtered’

indicates our submitted system with the FAD filter.

class baseline Tango ours

[19] [18] raw filtered

����������� 13.411 6.031 5.835 3.816

� 8.109 11.889 11.209 8.227

���������� 7.951 8.082 5.790 3.427

����� 5.230 11.014 3.698 2.758

���� 16.108 14.636 11.440 6.837

�� 13.337 8.550 7.031 5.399

���� 3.770 9.450 3.658 2.741

avg. 9.702 9.450 6.952 4.744

a keyboard”, ����: “motor vehicle moving”, ��: “Heavy rain”, and

����: “woman sneezing.” Since Tango produces 10 s long samples at
16 kHz, we truncate them to 4 s and upsample to 22.05 kHz.
Proposed System: We initialized our LDM using a checkpoint

of Tango 6. The model used the conditioning vector dimension

d = 1024. The initial checkpoint was trained with AudioCaps [20].
For fine-tuning, we used the DCASE2023 Task7 development set.

Since the audio data were sampled at 22.05 kHz and segmented in

four seconds, we resampled them to 16 kHz and padded them into

10 seconds. We set N = 1000 forward diffusion steps for fine-

tuning. Our LDM was fine-tuned with the AdamW optimizer with

an initial learning rate of 3e-5 and a linear decay learning rate sched-

uler. We fine-tuned the model for 100k training iterations, with an

effective batch size of 42 using seven A100 GPUs. In the inference

phase, we used DDIM [24] for 100 sampling steps and a classifier-

free guidance scale of w = 3. As our model produces a 10-second
audio segment at a 16 kHz sampling rate, we extracted the first four-

second segment and resampled it to 22.05 kHz to fit the challenge

rule.

Post-processing: For each sound class, we generated Q = 200
samples with the aforementioned audio generation pipeline. Then

the FAD filter is applied to reduce the number of samples to P =
100.

4.3.2. Results

Table 2 shows FAD of the baselines and our system with respect to

the evaluation set. First, we observe that the Tango model, which

was trained on a much larger dataset, but did not include the Task

7 development set, performs slightly better than the baseline. This

shows the effectiveness of a large, diverse dataset. It is likely that

further prompt engineering would improve the result. The improve-

ment seems to come from large reductions of FAD on the dog bark

and rain classes. We note that both the baseline and Tango could be

improved by the post-filtering, which we did not try.

Our fine-tuned model conditioned on class embeddings per-

forms better accross the board, with the exception of footstep, where

the baseline is better. However, informal listening tests revealed the

samples to be of good quality regardless. We also point out that the

keyboard class nearly saturates the lower bound FAD of 100 random

6https://huggingface.co/declare-lab/tango

samples of the development set at 16 kHz (see Table 1). We also see

that the moving motor vehicle class is fairly difficult, as suggested

by the FAD of this class in the development set.

With the FAD filter, the FADs were significantly reduced re-

gardless of the sound classes. Specifically, we achieve a reduction

of 32% of the average FAD compared to the raw outputs. The re-

sults demonstrate that the proposed audio generation pipeline can

generate class-specific audio samples with sufficient diversity, and

that the proposed FAD filter can select a subset of them with the

statistics of the target sound class.

5. CONCLUSION

We proposed a system based on class-conditioned latent diffusion

model for the DCASE2023 Task7: Foley sound synthesis. We ef-

ficiently make use of existing models that we adapt to the task and

pair with some signal processing for adaptation and output filtering.

We fine-tune pre-trained model for text-to-audio generation on the

development set of Task 7, and modifies its conditioning mecha-

nism to use class embedding vectors. Our post-filtering system uses

greedy and global optimization to select a set of samples match-

ing the statistics of the target evaluation set and decrease the FAD.

We found this technique very successful. However, we also noticed

during preliminary experiments that the audio quality of samples se-

lected this way did not always match the FAD score obtained. This

highlights the importance of generating good samples in the first

stage of the system. Overall, our submission system achieved sig-

nificantly better FAD scores than both the challenge baseline and an

out-of-the-box text-to-audio model.

An important aspect that is yet to be understood is how to lever-

age unlabelled data for pre-training, since training sets for sound

effects may be small depending on the target class.

6. REFERENCES

[1] S. Pauletto, “Foley performance and sonic implicit interac-

tions,” in The Body in Sound, Music and Performance: Stud-

ies in Audio and Sonic Arts, L. O Keefe and I. Nogueira, Eds.

Abingdon, Oxon: Routledge, 2023.

[2] L. M. Heller and L. Wolf, “When hybrid sound effects are bet-

ter than real recordings,” Proc. Meet. Acoust., vol. 46, no. 1,

p. 050002, May 2022.

[3] K. Karplus and A. Strong, “Digital synthesis of plucked-string

and drum timbres,” Computer Music Journal, vol. 7, pp.

43–55, 1983.

[4] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A survey on neural

speech synthesis,” July 2021, arXiv:2106.15561 [cs, eess].

[5] C. Hernandez-Olivan and J. R. Beltrán, “Music Composition

with Deep Learning: A Review,” in Advances in Speech and

Music Technology: Computational Aspects and Applications,

ser. Signals and Communication Technology, A. Biswas,

E. Wennekes, A. Wieczorkowska, and R. H. Laskar, Eds.

Cham: Springer International Publishing, 2023, pp. 25–50.

[6] A. Agostinelli, T. I. Denk, Z. Borsos, et al., “MusicLM: Gen-

erating music from text,” Jan. 2023, arXiv:2301.11325 [cs,

eess].

[7] M. Pasini and J. Schlüter, “Musika! Fast infinite waveform

music generation,” in Proc. ISMIR, Bengaluru, IN, Dec. 2022.

159



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

[8] S. Andreu and M. Villanueva Aylagas, “Neural Synthesis

of Sound Effects Using Flow-Based Deep Generative Mod-

els,” Proc. AAAI Conf. Artif. Intell. Interact. Digit. Entertain.,

vol. 18, no. 1, pp. 2–9, Oct. 2022.

[9] S. Ghose and J. J. Prevost, “AutoFoley: Artificial synthesis of

synchronized sound tracks for silent videos with deep learn-

ing,” IEEE Trans. Multimedia, vol. 23, pp. 1895–1907, June

2021.

[10] A. Barahona-Rıos and S. Pauletto, “Synthesising knocking

sound effects using conditional WaveGAN,” in Proc. 17th

Sound and Music Computing Conference, Torino, IT, June

2020.

[11] S. Li, L. Zhang, C. Dong, et al., “FastFoley: Non-

autoregressive Foley Sound Generation Based on Visual Se-

mantics,” inMan-Machine Speech Communication, ser. Com-

munications in Computer and Information Science, L. Zhen-

hua, G. Jianqing, Y. Kai, and J. Jia, Eds. Singapore: Springer

Nature, 2023, pp. 252–263.

[12] X. Liu, T. Iqbal, J. Zhao, et al., “Conditional sound generation

using neural discrete time-frequency representation learning,”

in Proc. MLSP, Oct. 2021, pp. 1–6.

[13] S. Pascual, G. Bhattacharya, C. Yeh, J. Pons, and J. Serrà,

“Full-band general audio synthesis with score-based diffu-

sion,” in Proc. ICASSP, Rhodes, GR, June 2023, pp. 1–5.

[14] M. Oliveira, V. Almeida, J. Silva, and A. Ferreira, “Analysis

and re-synthesis of natural cricket sounds assessing the percep-

tual relevance of idiosyncratic parameters,” in Proc. ICASSP,

Rhodes, GR, June 2023, pp. 1–5.

[15] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-

mer, “High-resolution image synthesis with latent diffusion

models,” in Proc. IEEE ICCV, 2022, pp. 10 684–10 695.

[16] H. Liu, Z. Chen, Y. Yuan, et al., “AudioLDM: Text-to-

audio generation with latent diffusion models,” arXiv preprint

arXiv:2301.12503, 2023.

[17] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative ad-

versarial networks for efficient and high fidelity speech syn-

thesis,” in Advances in Neural Information Processing Sys-

tems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and

H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.

17 022–17 033.

[18] D. Ghosal, N. Majumder, A. Mehrish, and S. Poria, “Text-to-

audio generation using instruction tuned LLM and latent dif-

fusion model,” arXiv preprint arXiv:2304.13731, 2023.

[19] K. Choi, J. Im, L. Heller, et al., “Foley sound synthesis at the

DCASE 2023 challenge,” arXiv preprint arXiv:2304.12521,

2023.

[20] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Gen-

erating captions for audios in the wild,” in Proceedings of the

2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), Minneapo-

lis, Minnesota, June 2019, pp. 119–132.

[21] H. W. Chung, L. Hou, S. Longpre, et al., “Scaling

instruction-finetuned language models,” arXiv preprint

arXiv:2210.11416, 2022.

[22] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilis-

tic models,” Advances in Neural Information Processing Sys-

tems, vol. 33, pp. 6840–6851, 2020.

[23] J. Ho and T. Salimans, “Classifier-free diffusion guidance,”

arXiv preprint arXiv:2207.12598, 2022.

[24] J. Song, C. Meng, and S. Ermon, “Denoising diffusion

implicit models,” in Proc. ICML, 2021. [Online]. Available:

https://openreview.net/forum?id=St1giarCHLP

[25] S. Hershey, S. Chaudhuri, D. P. W. Ellis, et al., “CNN archi-

tectures for large-scale audio classification,” in Proc. ICASSP,

New Orleans, LA, USA, Mar. 2017, pp. 131–135.

[26] D. C. Dowson and B. V. Landau, “The Fréchet distance be-

tween multivariate normal distributions,” Journal of Multi-

variate Analysis, vol. 12, no. 3, pp. 450–455, Sept. 1982.

[27] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, “Equation of state calculations by fast

computing machines,” The Journal of Chemical Physics,

vol. 21, no. 6, pp. 1087–1092, June 1953.

[28] J. F. Gemmeke, D. P. Ellis, D. Freedman, et al., “Audio Set:

An ontology and human-labeled dataset for audio events,” in

Proc. ICASSP. New Orleans, LA, USA: IEEE, 2017, pp.

776–780.

[29] X. I. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel, “Pix-

elSNAIL: An improved autoregressive generative model,” in

Proc. ICML. PMLR, July 2018, pp. 864–872.

160



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

DISTILLING THE KNOWLEDGE OF TRANSFORMERS AND CNNS WITH CP-MOBILE

Florian Schmid1, Tobias Morocutti2, Shahed Masoudian1, Khaled Koutini2, Gerhard Widmer1,2

1Institute of Computational Perception (CP-JKU), 2LIT Artificial Intelligence Lab,
Johannes Kepler University Linz, Austria

{florian.schmid, tobias.morocutti, shahed.masoudian}@jku.at

ABSTRACT

Designing lightweight models that require limited computational
resources and can operate on edge devices is a major trajectory in
deep learning research. In the context of Acoustic Scene Classifica-
tion (ASC), the DCASE community hosts an annual challenge on
low-complexity ASC, contributing to the research on Knowledge
Distillation (KD), Model Pruning, Quantization and efficient neural
network design. In this work, we propose a system that contributes
to the latter by introducing CP-Mobile, a lightweight CNN architec-
ture constructed of residual inverted bottleneck blocks and Global
Response Normalization. Furthermore, we improve Knowledge
Distillation by showing that ensembling CNNs and Audio Spectro-
gram Transformers form strong teacher ensembles. Our proposed
system improves the results on the TAU Urban Acoustic Scenes
2022 Mobile development dataset by around 5 percentage points in
accuracy compared to the top-ranked submission for Task 1 of the
DCASE 22 challenge and achieves the top rank in the DCASE 23
challenge1.

Index Terms— CP-Mobile, Receptive Field Regularization,
Patchout FaSt Spectrogram Transformer (PaSST), CP-ResNet,
Knowledge Distillation, Device Impulse Response augmentation,
Freq-MixStyle

1. INTRODUCTION

The task of Acoustic Scene Classification (ASC) is to assign a scene
label to an audio clip. The Low-Complexity Acoustic Scene Classifi-
cation task of the DCASE 23 challenge [1] is based on the TAU Ur-
ban Acoustic Scenes 2022 Mobile development dataset (TAU22) [2],
consisting of 1-second audio clips, each belonging to one of 10 dif-
ferent acoustic scenes. Audio clips are recorded by three real de-
vices and six simulated devices, including three simulated devices
that are not included in the train split, making device generalization
an important and challenging task. The challenge further introduces
limits on the model size (128 kB) and the computational complex-
ity in terms of multiply-accumulate operations (30 million MACs).
Systems are ranked according to class-wise averaged accuracy, con-
sumed MACs for the inference of a 1-second audio clip, and the
model size, encouraging participants to design models with a good
performance-complexity trade-off.

ASC Architectures: Convolutional Neural Networks (CNNs)
are well-established models to tackle low-complexity ASC and
dominated the leaderboard in previous editions of the challenge [1–
3]. Common practice is to regularize the receptive field of
CNNs [4, 5], which has been shown to improve the generalization

1Source Code: https://github.com/fschmid56/cpjku_
dcase23

performance. Particularly successful implementations of receptive-
field regularized CNNs (RFR-CNNs) include BC-ResNet [6, 7]
and CP-ResNet [8–10]. Recently, Audio Spectrogram Transform-
ers achieved competitive results on multiple downstream tasks
in the audio domain, including the Patchout FaSt Spectrogram
Transformer (PaSST) [11] achieving state-of-the-art results on the
TAU Urban Acoustic Scenes 2020 Mobile development dataset
(TAU20) [2].

Efficient Model Design: A substantial amount of prior work
exists on making conventional CNNs more efficient by factorizing
convolution operations. In this regard, MobileNets [12, 13] and Ef-
ficientNets [14], introduced in the vision domain, have been suc-
cessfully adapted to the audio domain [15, 16]. MobileNets and
EfficientNets are based on inverted bottleneck blocks and inspire
CP-Mobile, introduced in Section 3.

Model Compression Techniques: Besides designing efficient
architectures, model compression techniques such as Parameter
Pruning [17, 18], Quantization [19, 20] and Knowledge Distillation
(KD) [21, 22] are popular to reduce a system’s complexity further.
Quantization to 8-bit precision was forced by the DCASE 22 chal-
lenge [1] rules, Parameter Pruning has been successfully applied
to ASC systems [6, 9, 23], and KD has been the most successful
technique in previous editions of the challenge with the top 3 teams
using KD in the DCASE 22 and 23 challenges [1].

Device Generalization Methods: Many different approaches
have been applied to counter the distribution shift caused by the
unseen devices at test time. In this regard, Domain Adaptation
has been used to force device-invariant representations extracted by
the model [8, 24]. Other approaches tried to train device transla-
tors [6], change the sampling frequency of devices [7], or remove
device-specific information by normalization [25]. An augmenta-
tion technique called Freq-MixStyle (FMS) [25,26] lead to the best
performance on unseen devices in the DCASE 22 challenge, which
recently has been paired with device impulse response (DIR) aug-
mentation to boost the performance further [27].

In this work, we propose a new ASC system, outperforming
the top-ranked system in the DCASE 22 challenge by 5% accuracy
on the TAU22 development dataset and achieving the top rank in
the DCASE 23 challenge. The main contribution of our ASC sys-
tem is twofold: 1) we achieve a new state-of-the-art teacher model
performance by ensembling Audio Spectrogram Transformers and
CNNs trained with different FMS and DIR settings, and 2) we in-
troduce CP-Mobile, an efficient, factorized CNN that can distill the
knowledge of the large teacher ensemble under low-complexity lim-
its. We introduce the teacher ensemble in Section 2, CP-Mobile in
Section 3 and connect them in the KD setup described in Section 4.
The results are presented in Section 5, including a detailed ablation
study assessing the components of our system.
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2. TEACHER ENSEMBLE: PASST AND CP-RESNET

Audio spectrogram transformer models such as PaSST [11] are
purely self-attention-based models, making them excellent at cap-
turing the global context of an audio clip. PaSST has been shown to
be a good teacher model for low-complexity CNNs [10,16,26]. CP-
ResNet (CPR) [4], however, is a RFR-CNN that gradually builds
local features covering a spatially restricted size before applying a
global pooling operation.

Experiments in [26] and [16] show that high-performing en-
sembles can be achieved by ensembling PaSST models trained with
varying FMS [25,26] and model configurations. To further increase
the diversity of predictions in the ensemble, we experiment with
including models trained with DIR augmentation [27] and CPR
models. We follow the model configurations and training proto-
cols used in [27] and use a CPR with 128 base channels, resulting
in a model with approximately 4M parameters. We finetune the Au-
dioSet [28] pre-trained PaSST, consisting of 85M parameters, on the
TAU22 dataset, using a structured patchout of 6 on the frequency di-
mension. In addition to the training protocol of [27], we augment
TAU22 by adding shifted crops of the reassembled 10-second audio
clips, as proposed in [29]. PaSST and CPR models are trained in 4
different configurations: 1) using no device generalization method,
2) using DIR, 3) using FMS and 4) using the combination of DIR
and FMS. Hyperparameters for DIR and FMS are chosen according
to [27] and set to α = 0.4, pFMS = 0.4 and pDIR = 0.6 for PaSST
and to α = 0.4, pFMS = 0.8 and pDIR = 0.4 for CPR. The results
for the teacher ensembles are presented in Section 5.1.

3. STUDENT MODEL: CP-MOBILE

In this section, we introduce CP-Mobile (CPM), a novel efficient
architecture for ASC. The goal is to maintain beneficial properties
from CPR [4,5], such as the regularized receptive field, while reduc-
ing the complexity and factorizing convolution operations, such as
in MobileNets [12, 13] or EfficientNets [14]. Given that the teacher
ensemble consists of multiple millions of parameters, an important
point is to increase the student model’s capacity to be able to distill
as much knowledge as possible from the teacher ensemble to the
student, even in a low-complexity setting.

Input Operator Stride

256 x 64 x 1 Conv2D@3x3, BN, ReLU 2 x 2
128 x 32 x BC/4 Conv2D@3x3, BN, ReLU 2 x 2

64 x 16 x BC CPM Block S 1 x 1
64 x 16 x BC CPM Block D 2 x 2
32 x 8 x BC CPM Block S 1 x 1

32 x 8 x BC CPM Block T 2 x 1
16 x 8 x BC*CM CPM Block S 1 x 1

16 x 8 x BC*CM CPM Block T 1 x 1

16 x 8 x BC*CM² Conv2D@1x1, BN
16 x 8 x CLS Avg. Pool

Table 1: CP-Mobile Architecture: Input: frequency bands x time
frames x channels; Conv2D@KxK: Conv2D with kernel size KxK;
BC: Base Channels; CM: Channels Multiplier; CPM Block S/D/T:
Standard/Downsampling/Transition; CLS: Number of Classes

First, we factorize all 3x3 convolution operations in CPR into
a pointwise expansion convolution, a depthwise convolution and a
pointwise projection convolution and obtain residual inverted bot-
tleneck blocks (referred to as CPM blocks in the following). We
replace the max pool operations with strided convolutions to down-
sample the spatial dimensions. All shortcut paths that require
an additional pointwise convolution are removed and the strided
input convolution is split into two separate strided convolutions
to reduce the computational burden when operating on the high-
dimensional input spectrograms. We experiment with Relaxed In-
stance Frequency-wise Normalization [25], SubSpectral Normal-
ization [30] and Global Response Normalization (GRN) [31] in-
tegrated into different positions in the CPM blocks. While substan-
tial improvements for multiple normalization and position combi-
nations can be achieved, using GRN after adding the shortcut and
before the final ReLU activation leads to the highest performance
gain.

Table 3 shows the architecture of CPM. CPM’s complexity
scales in four dimensions: number of blocks (depth), number of
base channels (BC), network width modified using the channels
multiplier (CM) and expansion rate of inverted bottlenecks (EXP).
The depth of the network and the strides determine the receptive
field of the model. The overall spatial downsampling factor and the
position of the strided convolutions are inspired by the max pooling
layer positions in the low-complexity CP-ResNet in [10]. Experi-
menting with CPM models of varying depths, we find that using 6
CPM blocks creates a suitable receptive field size.

Figure 1: CPM blocks: (1) Transition Block (input channels ̸= out-
put channels), (2) Standard Block, (3) Spatial Downsampling Block
(S denotes stride)

Figure 1 depicts the structure of a CPM block consisting of two
pointwise and a depthwise convolution. The depthwise convolution
operates on the expanded channel representation, which has the size
of the number of block input channels times the scaling factor EXP.
We differentiate between Transition, Standard and Spatial Down-
sampling blocks (CPM blocks T, S, D). CPM block T increases the
channel dimension, uses no residual connection and can be used
with a strided depthwise convolution. CPM blocks S and D have
matching input and output channel dimensions and use a residual
connection. CPM block D uses average pooling with a kernel size
of 3 and a stride of 2 on the shortcut path to match the spatial di-
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mensions of the block output. GRN [31] is applied before the final
ReLU activation. GRN calculates a normalization value Ni for each
channel, where ||Xi|| is the L2-norm of channel i:

Ni =
||Xi||∑C

c ||Xc||/C
(1)

The normalization values Ni are used to calibrate the channel
responses, including two trainable parameters γ and β and a resid-
ual connection: X̂i = γ ∗Ni ∗Xi + β+Xi. GRN was introduced
in [31] to increase the feature diversity across channels. The main
consideration for using GRN in CPM is to avoid feature redundan-
cies in models with restricted capacity.

4. KNOWLEDGE DISTILLATION SETUP

Similar to [16], CPM is trained on the one-hot encoded labels and
the pre-computed predictions of the teacher ensemble described in
Section 5.1. Compared to the hard labels, the teacher soft labels de-
scribe blurred decision boundaries and establish important similar-
ity structures between classes. The loss, consisting of a combination
of hard label loss Ll and distillation loss Lkd, is given in Equation
2. λ is a weight that trades off label and distillation loss, zS and zT
are student and teacher logits, y denotes the hard labels and τ is a
temperature to control the sharpness of the probability distributions
created by the softmax activation δ. Ll is the Cross-Entropy loss
and Kullback-Leibler divergence is used as distillation loss Lkd.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (2)

4.1. Experimental Setup

Preprocessing: For training the student models, the raw audio is
downsampled to 32 kHz and Mel spectrograms with 256 frequency
bins are computed. Short-Time Fourier Transformation is applied
with a window size of 96 ms and a hop size of 16 ms. Increasing
the window size from 64 to 96 ms and applying a 4096-point FFT
leads to a slight improvement compared to [10], as shown in Table 4
(large FFT window).
Training: CPM student models are trained for 75 epochs on the
TAU22 dataset with the shifted crops dataset augmentation de-
scribed in [29]. We use a batch size of 256, Adam optimizer [32]
and a learning rate scheduler that increases the learning rate to its
peak value until epoch 7 and linearly decreases it from epoch 25
to 67 to 0.5% of the peak value. The peak learning rate varies for
models of different sizes and is listed in Table 3. For device gener-
alization, we use FMS [25, 26] and DIR augmentation [27] and set
the hyperparameters α = 0.4, pFMS = 0.4 and pDIR = 0.6. For
KD [21], setting τ = 2 and using a high weight on the distillation
loss with λ = 0.02 turned out beneficial.

5. RESULTS

Below, we give the results of the teacher ensembles, analyze the per-
formance of CPM models scaled to different complexity levels and
offer a detailed ablation study of our system’s main components.

5.1. Teacher Ensemble Results

Table 2 lists CPR and PaSST models trained with different DIR and
FMS configurations and the accuracies achieved by individual mod-
els and the respective ensembles. Rows starting with Configs spec-
ify the combination of PaSST and CPR models or models trained

with different FMS and DIR settings. The models in the Configs
ensembles are chosen randomly from the pool of available mod-
els, such that each config, indicated by the superscript, is equally
represented. All ensembles are created by averaging the logits of
the individual models and # specifies the number of models in the
ensemble.

Besides the known fact [27] that device generalization via FMS
and DIR improves the accuracy substantially compared to the base-
lines (1 and 5), two important observations can be made:

1) Training with different device generalization methods leads
to models with varying device expertise, increasing the ensemble’s
diversity. Therefore, ensembles consisting of models trained with
different settings for FMS and DIR outperform ensembles consist-
ing of models trained with the same configuration. This effect is
more dominant for CPR, where the setting Configs: 2,3,4 improves
by 0.74% accuracy over the CPR4 configuration, even though the
individual models that make up the ensemble score on average
1.24% lower in accuracy compared to the CPR4 setting.

2) The ensemble’s diversity is further extended to different
views on the data. CPR focuses on building local features while
PaSST models the global context. Independent of the device gen-
eralization method, ensembling PaSST and CPR leads to a substan-
tial performance improvement with the ensembles Configs: 1,5 and
Configs: 4,8 outperforming the individual models that make up the
ensemble by around 5% accuracy.

Model Config Ensemble
Model FMS DIR Acc. # Acc.

CPR1 ✗ ✗ 56.40±0.18 3 57.47
CPR2 ✗ ✓ 58.96±0.21 3 60.06
CPR3 ✓ ✗ 62.27±0.22 3 63.22
CPR4 ✓ ✓ 62.56±0.33 3 63.74
Configs: 2,3,4 61.32±1.67 3 64.48

PaSST5 ✗ ✗ 59.48±0.64 3 60.99
PaSST6 ✗ ✓ 61.55±0.05 3 62.51
PaSST7 ✓ ✗ 61.08±0.38 3 62.06
PaSST8 ✓ ✓ 62.19±0.15 3 63.28
Configs: 6,7,8 61.82±0.40 3 63.37

Configs: 1,5 57.48 2 62.52
Configs: 4,8 62.40 2 67.30
Configs: 2,3,4,6,7,8 61.49±1.30 12 68.16

Table 2: Results of the teacher models CPR and PaSST and the re-
spective ensembles on TAU22 [2]. The Model Config section indi-
cates the configuration and the average accuracy and standard devi-
ation of individual models. The Ensemble section lists the ensemble
size (#) and the accuracy achieved by the ensemble.

For building the final teacher ensemble, we exploit both obser-
vations. Configs: 2,3,4,6,7,8 is constructed of 6 CPR and 6 PaSST
models, each including 2 models using DIR, 2 using FMS and 2
using DIR and FMS. Constructing even larger ensembles does not
improve the accuracy considerably. This final ensemble achieves
an accuracy of 68.16%, leading to an improvement of approxi-
mately 5.3% accuracy compared to the PaSST-only teacher ensem-
ble used in the top-ranked submission for the DCASE 22 challenge
(62.82%) [10]. We generate the predictions for the TAU22 develop-
ment set and the added shifted crops [29], average the logits of the
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12 models and reuse them to train our CPM students.

5.2. Student Models at Different Scales

Table 3 shows CPM models with different model scaling hyperpa-
rameters BC, CM and EXP, as introduced in Section 3. We find
that the number of base channels BC should be adapted to the re-
quired complexity level, e.g., models below 10k parameters achieve
the best performance with BC=8, while models with BC=32 work
best for models above 50k parameters. While small accuracy im-
provements can be achieved when scaling up CM and EXP, the
performance quickly saturates for values larger than 2. To achieve
the best performance, the learning rate needs to be increased for
smaller models.

All accuracies presented in Table 3 are based on models quan-
tized to 8-bit precision. The Quantization Aware Training [20]
applied to CPM models is detailed in [29]. Our smallest model
outperforms the DCASE baseline system [1] by almost 10% accu-
racy while requiring only around 12% of the model size and 5%
of MACs. The largest CPM model presented achieves an accuracy
of 63.21%, improving the accuracy by around 4% compared to the
top-ranked system [10] of the DCASE 22 challenge [1] while being
more than two times smaller in terms of model size and requiring
around 50% of the number of MACs.

Model BC,CM,EXP,LR Size (B) MMACs Acc.

CPM 8,2.1,1.7,0.003 5,722 1.58 52.61±1.25

CPM 16,1.5,1.75,0.003 12,310 4.35 58.42±0.51

CPM 24,1.5,1.9,0.002 30,106 9.64 61.77±0.54

CPM 32,1.7,1.9,0.001 54,182 16.80 63.21±0.44

DCASE BL. [1] 46,512 29.23 42.9±0.77

Table 3: BC, CM and EXP are model scaling hyperparameters
introduced in Section 3 and LR denotes the learning rate. Model
Size is given in Bytes after quantization and MMACs specifies mil-
lion multiply-accumulate operations required for the inference of a
1-second audio clip. The presented accuracies are reported in terms
of the mean and standard deviation of 3 independent runs.

5.3. Ablation Study

Table 4 presents an ablation study of our system using a CPM
with scaling factors BC=32, CM=2.3 and EXP=3, resulting in a
model with 127k parameters and 29 million MACs. Removing one
component at a time, the results reveal that KD, and even more, the
new CPM architecture, are the dominating performance factors. In
the following, the results are analyzed in detail.
CPM: The setting ”- CP-Mobile” indicates the use of the low-
complexity CP-ResNet used in the top-ranked submission for
DCASE 22 [10] integrated into our setup. CPM outperforms CPR
by 4.54% in accuracy while the two models are of comparable
complexity, demonstrating the increased model capacity of CPM to
distill knowledge from the teacher ensemble. GRN is an integral
part of the CPM blocks, improving accuracy by 1.53% and the
residual connections are also an important factor accounting for an
increase of 1% in accuracy.
KD: KD is an important component of our system, increasing the
accuracy by 3.41%. However, using no KD, CPM still performs
only 0.31% worse in accuracy than the best single teacher model
(CPR4) while having only 3.2% of its parameters, underlining the
efficiency of CPM. Excluding the PaSST or CPR models from

the teacher ensemble leads to a drop in accuracy of 0.81% and
1.22%, respectively, showing that the student benefits from the
performance gain of ensembling Transformers and CNNs but can
not fully exploit the large improvement of the teacher ensemble.
Device Generalization: The results underline that the combination
of DIR and FMS to tackle device generalization works best and us-
ing no device generalization method leads to a severe performance
drop (-1.87% accuracy). In particular, the ability to generalize
to unseen devices suffers with the unseen accuracy dropping by
4.18% in terms of accuracy when neither DIR, nor FMS is used.
Augmentation and Preprocessing: Using a larger FFT window
size compared to the setup used in [10] and applying the shifted
crop dataset augmentation introduced in [29] improves the system’s
performance slightly.

System Accuracy Acc. Diff Unseen Acc.

Our Proposed System 65.66±0.88 Ref. Val. 61.68±1.15

- CP-Mobile 61.12±0.44 -4.54 57.45±0.63

- GRN 64.13±0.58 -1.53 60.51±0.88

- Residual Connections 64.65±0.23 -1.01 61.07±0.38

- KD 62.25±0.41 -3.41 56.72±0.23

- PaSST teachers 64.85±0.21 -0.81 60.70±0.51

- CP-ResNet teachers 64.44±0.37 -1.22 61.19±0.68

- DIR 64.74±0.33 -0.92 59.99±0.23

- FMS 65.15±0.36 -0.51 60.05±0.59

- DIR, FMS 63.79±0.39 -1.87 57.50±0.64

- large FFT window 65.29±0.04 -0.37 61.68±0.34

- Shifted Crops 65.28±0.11 -0.38 61.73±0.07

Table 4: Ablation Study of our proposed setup using CPM (127k
params, 29 million MACs) and removing one component at a time.
Acc. Diff. specifies the difference in accuracy compared to the
full system and Unseen Acc. is the accuracy on devices unseen
during training. All accuracies are reported in terms of the mean
and standard deviation of 3 independent runs.

6. CONCLUSION

In this work, we propose a system that advances the state of the
art in low-complexity Acoustic Scene Classification with two main
contributions: Firstly, we improve Knowledge Distillation by form-
ing teacher ensembles consisting of CNNs and Transformers trained
with Freq-MixStyle and Device Impulse Response augmentation.
Secondly, we introduce an efficient CNN architecture, CP-Mobile,
with residual inverted bottleneck blocks and Global Response Nor-
malization. CP-Mobile can be scaled down to a size of 5.7 kB while
still beating the DCASE baseline system by almost 10 % in accu-
racy. Finally, we assess the importance of our system’s compo-
nents in a detailed ablation study and confirm the high impact of
CP-Mobile and Knowledge Distillation. The proposed system out-
performs the top-ranked approach for the DCASE 22 challenge by
more than 5% in terms of accuracy on the TAU22 development set.
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ABSTRACT

Acoustic Scene Classification poses a significant challenge in the
DCASE Task 1 TAU22 dataset with a sample length of only a single
second. The best performing model in the 2023 challenge achieves
an accuracy of 62.7% with a gap to unseen devices of approximately
10%. In this study, we propose a novel approach using Inverse Con-
trastive Loss to ensure a device class invariant latent representation
and a better generalization to unseen devices. We evaluate the inter-
action of this contrastive learning approach with impulse response
augmentation and show the effectiveness for suppressing device re-
lated information in the encoder structure. Results indicates that
both, contrastive learning and impulse response augmentation, im-
proves generalization to unseen devices. Further the impulse re-
sponse dataset should have a balanced frequency response to work
effectively. Combining contrastive learning and impulse response
augmentation yields embeddings with least device related informa-
tion, but does not improve scene classification accuracy when com-
pared to augmentation alone.

Index Terms— acoustic scene classification, contrastive learn-
ing, device impulse response, augmentation, passt, transformer

1. INTRODUCTION

Acoustic Scene Detection plays a vital role in various applications,
such as hearing aids [1], smart homes [2], hands-free telephony and
biological signal analysis [3]. The objective is to classify an acous-
tic scene into several, pre-defined, classes, enabling the application
of algorithms under varying conditions. For example, the noise sup-
pression and beamforming in hearing aids uses different approaches
for a closed room and open-space [1]. With significant progress in
recent years, especially with the introduction of data-based models,
the DCASE Challenge [4] Task 1 for Acoustic Scene Classification
(ASC) attracts a great number of contributions. Recently the focus
shifted to resource-aware methods with complexity constraints [4].

One difficulty of low-complexity inference is generalization to
unseen devices. The TAU Urban Acoustic Scenes 2022 Mobile
dataset [5] poses a considerable challenge with an inference length
of only a single second. Furthermore the data is heavily imbalanced
towards one recording device. The discrepancy between record-
ing devices arises due to variations in microphone characteristics,
frequency responses and other device-specific (possible non-linear)
factors that influences the signal captured. The TAU22 dataset con-
tains audio recorded with three real devices (A: Soundman OKM II

The International Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universität Erlangen-Nürnberg and Fraunhofer IIS.

Classic/Studio A3, B: Samsung Galaxy S7, C: GoPro Hero5 Ses-
sion) and three simulated devices (S1-S3). Further three unseen
devices (S4-S6) are artificially generated for the testing dataset, em-
phasizing the importance of generalization to unseen devices. The
dataset is heavily biased towards device A with 62.5% of all sam-
ples, while the remaining 8 devices contain only 37.5% of data.

We evaluate the interaction of contrastive learning and device
impulse response augmentation. For our challenge submission [6]
we used contrastive learning to improve device generalization. We
show that combining both suppresses device related information in
the model embedding better, than just using each method individu-
ally. We estimate the influence on classification performance for a
state-of-the-art Transformer model with the TAU22 dataset.

By applying Inverse Contrastive Learning (ICL) [7] to the prob-
lem we encourage the model to learn device invariant representa-
tion. We use two device impulse response (DIR) datasets for aug-
mentation. The first contains recordings of 66 vintage microphone
impulse responses [8]. The second dataset is generated from 25
professional microphones recorded at different angles and distances
[9], amounting in a total of 8138 DIRs.

We first discuss in Section 2 related work when dealing with
heavily imbalanced datasets. This includes resampling methods,
invariance learning and data augmentation. In our method part, Sec-
tion 3 and Section 4, we discuss how contrastive learning helps to
improve generalization ability and the differences between both de-
vice impulse response datasets. In the final Section 5 we explain our
experiments, the outcomes and discuss implications for training.

2. RELATED WORK

2.1. Data Imbalance Resampling

The problem of device generalization is part of the broader issue
of imbalanced training. A common countermeasure is oversam-
pling of under-representated groups [10] to duplicate minority class
samples. On the other hand, undersampling of over-represented re-
moves considered samples during training epochs [11]. These tech-
niques create therefore a more balanced training set and prevent the
model to be biased for the majority class. The DCASE ASC dataset
is characterised by a stark bias towards a single device (more than
60% of total data, where 16% would be uniformly distributed). Un-
dersampling would prolong training time for the model until the
whole dataset is seen at least once.

Another possibility (for avoiding duplicating excessively when
oversampling) is synthetic minority oversampling, where new sam-
ples are generated by interpolating between existing minority
classes [12]. Freq-MixStyle [13] is an instance of this approach by
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mixing frequency statistics of spectrograms, which shows a good
generalization performance. Also Adaptive Synthetic Sampling
[14] weights likelihood of samples by difficulty and generates mi-
nority classes that are harder to learn more often.

2.2. Invariance Learning

The concept of learning invariant representations is closely related
to data imbalance in the sense that both address biases in datasets.
While data imbalance focuses on unequal distributions in samples,
learning invariant representations aims to extract features that are
robust to variations introduced by factors in the data. In both cases
the aim is reducing the impact of biases and promote generalization.

One example of invariance learning is the Generative Adversar-
ial Network (GAN). An adversarial discriminator infers the device
class during training and promotes learning invariant embeddings.
The generator and discriminator are trained in tandem, where the
generator creates realistic looking audio samples [15].

Other invariance learning methods extend contrastive learning
to self-supervised settings. As reported in [16], an online model
tries to predict the representation of a target model with an aug-
mented view. This makes representation invariant in view differ-
ences and can be applied without any labels of data.

2.3. Data Augmentation

Data augmentation helps to manage imbalanced datasets by in-
creasing the diversity and quantity of samples, therefore improv-
ing generalization ability of the model and reducing risk of over-
fitting. Common examples are SpecAugment [17] introducing ran-
dom freq/temporal masking and warping, pitch shifting [18], time
stretching and noise injection [19] into the data samples.

A simple, yet effective, method for generalizing to new devices
is impulse response augmentation. In our case we convolve our
training data with measured or simulated device impulse response
to create a more diverse and realistic dataset. For ASC the generated
data makes the training more robust and resembles a more realistic
inference environment. To model non-linear effects, dynamic range
compression [20] can simulate the microphone characteristics.

3. CONTRASTIVE LEARNING

The goal of contrastive learning is to find a latent representation
where positive pairs are grouped together, while negative pairs are
separated. Originally introduced for supervised learning [21], it re-
cently finds extensions to unsupervised and self-supervised settings
[22, 23] and application to audio [24]. In our dataset, we have de-
vice classes available making supervised methods possible.

In our approach, positive samples are selected from different
device classes, and should exhibit a greater similarity on average
compared to negative samples. Negative samples are from the
same device class and the training process should maximize their
dissimilarity. This method is used in ICL to find more mode-
collapse robust latent representations, compared to approaches us-
ing Kullback-Leibler divergence or Maximum-Mean Discrepancy
[7]. ICL utilizes a loss function defined as follows

LICL = E
(z,c)∼p(z,c)
(ẑ,ĉ)∼p(ẑ,ĉ)

[1(c = ĉ)f(z, ẑ) + 1(c ̸= ĉ)g(z, ẑ)] (1)

L = LCE + λICLLICL (2)

with asymmetric penalties for positive and negative samples

g(z, ẑ) = d2Z(z, ẑ) (3)
f(z, ẑ) = exp((α− dZ(z, ẑ))/β), (4)

where the threshold α and barrier strength β defines the extent to
which latent similarity for the same device classes are penalized.
The linear combination with the default cross-entropy loss term LCE

is controlled by λICL. The distance dZ(·, ·) is the ℓ2 norm for all our
experiments. We discuss the selection of barrier parameters α, β in
our experiments described in Sec. 5.2.

The objective of ICL is to make training invariant to unwanted
variables in the dataset. It can be used to address biases and con-
founding effects related to demographical variables [25, 26], for
example age, gender, income etc. This helps mitigate biases and
ensures correct model inference without unwanted side-effects.

In our case, we employ a Transformer model [27] as the en-
coder structure to project a spectrogram into a lower-dimensional
embedding. The encoder is expected to learn meaningful and ro-
bust representations that can be utilized for the downstream task of
acoustic scene classification. Data augmentation plays a crucial role
in training a good generalizing encoder. Furthermore, it can also
improve the impact of contrastive learning in two ways, as shown
in Sec. 5.4. First, augmentation leads to more device classes, which
gives the contrastive learning more positive and negative samples
for training. Second, the augmented device classes share some de-
vice characteristics with neighbouring classes. This makes the neg-
ative sampling more difficult, forcing the model to use a variety of
device specific traits in the data. In our case the device of an acous-
tic scene sample is altered with an additional DIR.

4. DEVICE IMPULSE RESPONSES

In this section, we provide a description of two different datasets
of microphone impulse responses that are used for augmenting the
ASC TAU22 training set. Their characteristics are quite different.

The first dataset contains recordings of 66 vintage microphones
produced by the MicIR project [8]. They are recorded in a booth
with the swept-sine method. The source is placed in approximately
20-30cm distance from the microphone. Due to different room re-
flections, the recordings should not be considered as free-field. As
seen in Fig. 1 the vintage DIRs have a frequency dependent vari-
ability and pronounced low-pass behaviour for frequencies above
10 kHz. Between the 1 kHz and 10 kHz region the data follows
a narrow band in 0.1 to 0.9 quantiles with 20% of data in a wider
20dB variation.

The second dataset contains DIRs of 25 microphones for multi-
ple angles and distances, and is henceforth called Multi DIRs. Inci-
dent angles are varied from 0° to 355° in steps of 5° and at source-
to-microphone distances of 0.5m, 1.25m and 5m. The microphone
is rotated with a computer-assisted turntable. The microphone char-
acteristics include omnidirectional, cardioid, supercardioid and bi-
directional polar patterns. The set is quite varied, due to different
microphone transduction types (condenser, moving-coil, ribbon),
single/dual and small/large diaphragms, and end/side address de-
signs.

The distribution of frequency responses (see Fig. 1 for Multi
DIRs) shows a more frequency independent variability of responses
when compared to the Vintage DIRs. Further a smaller dip for fre-
quencies above 10 kHz distorts the training data distribution less
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Figure 1: Microphone Frequency Responses for 100% ( ), 80%
( ), 50% ( ) of all data and mean ( ) values.

and avoids an inference mismatch. Finally the 0.1-0.9 quantile is
wider and exposes more variations to the model during training.

When looking at a specific example (the Røde NT2-A cardioid
microphone) over variations in incident angle, a rich pattern can be
seen in Figure 2. It follows the characteristics of a cardioid micro-
phone polar pattern, with a deep notch at 180°. This shows a large
variability for even a single microphone characteristic.

5. EXPERIMENTS

We evaluate the tandem setting of contrastive learning and DIR aug-
mentation with the TAU22 [5] dataset split to 139,970 samples for
training, 29,680 samples for validation and 29,680 samples for test-
ing. They are recorded at a sampling rate of 44.1 kHz in 12 different
European cities and 10 acoustic scenes. We first describe how we
set-up our model for all our training sessions. Then the specifics of
ICL and DIR augmentation are explained and their effects on device
invariance and scene classification discussed.

5.1. PaSST Model

We extract Mel-scaled spectrograms with 128 bands from audio
subsampled to 32 kHz sampling rate. Individual windows have a
length of 800 samples and an overlap of 320 samples. We apply a
logarithmic transformation to normalize the feature distribution.

We use the Patchout faSt Spectrogram Transformer (PaSST)
[27, 28] as our encoder structure and a single feed-forward layer
for classification. The transformer has a patch size of 16, depth
of 12 and 12 heads. Furthermore, the embedding dimension is 768,
where the classifier projects the final embedding to 10 scene classes.
To speed up training, we apply patchout along frequency axis with
a rate of 6 patches similar to the PaSST model [27].

To avoid overfitting and improve generalization, the dataset is
augmented in the following ways. We merge recordings to 10s snip-
pets and extract randomly sliding windows of 1s during training.
We also apply independent frequency masking for 48 bins and do
time masking for 24 windows and use randomized frequency cutoff
of up to 500Hz. With this we follow the training approach described
in PaSST [27], but we do not use mixstyle augmentation to compare
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Figure 2: Frequency Responses of the Røde NT2-A cardioid micro-
phone for angles 0° ( ) to 180° ( ) recorded at a distance of
50cm.

augmentation and contrastive learning properly. We apply an Adam
optimizer with the same settings as in our challenge submission [6].
An initial learning rate of 0.00042 is gradually reduced on plateau
with a patience of 10 epochs and factor of 0.5. We operate the op-
timizer at β = (0.957, 0.9514) and ϵ = 0.038. Each configuration
is trained three times for 250 epochs with a batch-size of 64 and we
use the best performance in our results.

5.2. Inverse Contrastive Loss

We apply a inverse contrastive loss during training to make clas-
sification invariant to device characteristics. The augmented term
penalizes latent distances of same device classes. This implies a
tradeoff when choosing the hyperparameters for training. The expo-
nential term (see Equation 4) acts as a barrier function for a shifted
threshold α, where the strength is controlled by β (with indicator
function in limit β → 0). We choose β = 1 for all our experiments
and perform grid search for suitable hyper-parameters which results
are shown in Table 1. Even though the variables are not indepen-
dent, we grid-searched them separately. We first fix λICL = 10 to
observe the effect of thresholding on the performance. It exhibits a
slight decrease in performance when increasing to α = 0.2, while
a more drastical degradation when increasing further. Therefore we
conclude with this value for the remaining of our experiments. The
loss weight λICL does not have such a drastic effect on the perfor-
mance, but increasing too much decreases performance by 2% ac-
curacy. We choose λICL = 0.5 as a conservative measure. The ac-
curacy improved on the validation dataset compared to λICL = 0.1,
indicating a positive effect of ICL.

5.3. Impulse Response Augmentation

For DIR augmentation, we use two dataset sources [8, 9]. We re-
sample both to 32kHz sampling rate. Further, we window the Multi
DIRs dataset [9] to 1024 samples with a Kaiser window (β = 2).

With this, we train an IR generator, similar to the FAST-RIR
[29] diffuse room impulse generator. The model is conditioned on
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α LogLoss Acc. [%] λICL LogLoss Acc. [%]
0.0 1.265 51.72 0.1 1.139 56.87
0.2 1.270 51.28 0.5 1.100 58.32
0.4 1.313 50.34 1.0 1.113 58.52
0.8 1.331 49.02 3.0 1.139 56.87
1.5 2.166 21.60 6.0 1.183 56.30

Table 1: Results for different α and λICL values. We fixed λICL =
10.0 for the α search and α = 0.2 for the λICL search. Based on the
results we choose α = 0.2, λICL = 0.5 for further experiments.

Method Accuracy [%]
PaSST 82.04
+ ICL 65.65
+ Multi DIRs 41.08
+ ICL + Multi DIRs 17.53

Table 2: Device classification accuracy results for the embedding of
a PaSST model with different generalization methods (see Sec 5.4).
Lower accuracy indicates better invariance to device class.

the microphone characteristics (1) directivity (2) transducer (3) di-
aphragm properties and angle/distance in cartesian coordinates in
total of 12 variables. We train the generator in the same GAN frame-
work as the original method with a final MSE of 0.00527. Unfor-
tunately the approximately 8000 samples of Multi DIR are not suf-
ficient for training a microphone impulse response model. We see
good generalization for varying incident angles, but not for source
distance and new synthetic device classes. Applying the generator
to our ASC model gives only a best log-loss of 1.56 and we drop it
therefore for our next comparison.

5.4. Device Related Latent Information

As an additional study we measure the device related information
during training. We create a separate device classifier with the same
capacity as the acoustic scene classifier and train it with the default
Adam optimizer until convergence. Since the device class is imbal-
anced, we use a balanced cross-entropy term as our loss measure.

The results in Table 2 are evaluated on the validation set for
the 6 devices of the training set. Because the device occurrence is
balanced, random guess is set at 1/6.

The use of contrastive learning does not lower device accuracy
as much as impulse response augmentation. A possible explanation
for this is that we can use augmentation aggressively, while use of
contrastive learning has a negative effect on training (see Table 1).
Further augmentation adds variability to the dataset and does not
necessarily inhibit the primary task.

Interestingly, combining augmentation and contrastive learning
reduces device accuracy further to the points of random guess. This
indicates, that the latent space for acoustic scene classification does
not have device-related information. When looking at the final re-
sults in Table 3, on the other hand, the results are still biased to-
wards the more common devices. To illustrate, see that the acoustic
scene classifier benefits from a robust latent representation. Even
though we have minimized device related information the encoder
still generalizes the spectrogram for the majority class better. To
mitigate this effect we would have to resample to even class distri-
bution, for example with synthetic augmentation (see related work
in Sec. 2). Another possibility is that the device classify is too shal-
low to model the benefiting factors for the scene classification, even
though they have the same capacity.

5.5. Acoustic Scene Classification Results

As the final experiment we train the PaSST model with the illus-
trated four different settings for device generalization. We see a
large gap of 0.3 log-loss between real devices and simulated/unseen
devices in Table 3 for the vanilla PaSST model - with device A best
performing of 1.012 log-loss.

The vintage DIR augmentation improves the performance for
unseen devices, but degrades that of real devices. This gives a worse
overall performance. The multi angle DIR dataset on the other
hand improves performance for all three device families, with the
largest improvement in unseen devices of approximately 0.1 log-
loss. When applying contrastive learning we see a similar effect,
but not as pronounced as the impulse response augmentation. Fur-
ther the performance for real devices suffer slightly.

Finally combining impulse response augmentation with con-
trastive learning improves performance slightly, compared to con-
trastive learning alone. On the other hand, it does not improve per-
formance when comparing to Multi DIRs augmentation alone.

6. CONCLUSION

To summarize, contrastive learning makes latent space invariant to
device classes and improves generalization. To that effect, impulse
response augmentation works better, but best device invariance is
achieved by combining both methods. The Multi DIRs shows a
greater variability and less bias for frequency responses and works
better for data augmentation when compared to the Vintage DIR. In
the final ASC experiment, contrastive learning improves log-loss,
but is outperformed by applying proper data augmentation alone.
Nevertheless, contrastive learning can be advantageous compared
to domain specific augmentation, especially when the training is
only affected by data imbalance and not by unseen classes or no
effective augmentation technique is available.

Method Real Devices Simulated Devices Unseen Devices Overall
A B C Avg. S1 S2 S3 Avg. S4 S5 S6 Avg.

PaSST 1.012 1.266 1.070 1.116 1.371 1.492 1.326 1.396 1.401 1.36 1.509 1.423 1.181
+ Vintage DIRs 1.082 1.360 1.212 1.218 1.462 1.449 1.361 1.424 1.343 1.289 1.557 1.396 1.212
+ Multi DIRs 0.979 1.221 1.090 1.097 1.347 1.427 1.318 1.364 1.277 1.302 1.425 1.334 1.139

+ ICL 1.021 1.297 1.074 1.131 1.375 1.465 1.325 1.388 1.284 1.364 1.467 1.372 1.167
+ ICL + Multi DIRs 1.030 1.190 1.139 1.096 1.372 1.412 1.318 1.367 1.302 1.327 1.474 1.368 1.156

Table 3: Log-loss validation performance of the proposed methods on the TAU Urban Acoustic Scenes 2022 Mobile dataset [5] with provided
split. The PaSST model is trained for three different seeds and best performance is picked. The validation results are grouped into real devices
(A, B, C), simulated devices (S1, S2, S3) and unseen devices (S4, S5, S6) and averaged values given to compare device families.
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ABSTRACT

Current audio classification models have small class vocabularies
relative to the large number of sound event classes of interest in the
real world. Thus, they provide a limited view of the world that may
miss important yet unexpected or unknown sound events. To ad-
dress this issue, open-set audio classification techniques have been
developed to detect sound events from unknown classes. Although
these methods have been applied to a multi-class context in audio,
such as sound scene classification, they have yet to be investigated
for polyphonic audio in which sound events overlap, requiring the
use of multi-label models. In this study, we establish the problem
of multi-label open-set audio classification by creating a dataset
with varying unknown class distributions and evaluating baseline
approaches built upon existing techniques.

Index Terms— Open-set, multi-label, audio classification,
dataset

1. INTRODUCTION

Audio classification (AC), the machine listening task of identify-
ing sound events in an audio recording, has typically been studied
as two task variants, i.e. multi-class AC, where the input record-
ings are expected to contain only one event, and multi-label AC,
where the input recordings may contain multiple overlapping sound
events. Real-world audio recordings in typical urban, domestic or
environmental settings often contain multiple sound sources of an-
throphony, biophony, and geophony, and thus, are better modeled
as a multi-label AC task.

Multi-label AC is a common machine listening task that has
been applied to various scenarios such as urban sound data [1], ev-
eryday environments [2], and music [3]. Much of this work how-
ever assumes a small fixed class vocabulary, a closed-set task, which
does not reflect real-world scenarios. Everyday sound scenes con-
sist of sources drawn from hundreds if not thousands of classes de-
pending on the class granularity of interest, and people are con-
stantly exposed to novel classes, e.g., those from new or uncommon
technology and animal vocalizations. To the “ears” of these models,
unknown sound classes simply do not exist or — possibly worse —
are confused with known classes. This limited class vocabulary size
can be attributed to the cost and difficulty of annotating large-scale
audio datasets. However, the result of this barrier is a limited view
of the acoustic world by AC models that may miss important yet un-
expected or unknown sound events, hindering machine listening’s
transformative potential.

One solution to this problem is to build models with a dy-
namic vocabulary that can be updated in a lightweight manner with-
out having to retrain the model from scratch. An example of this

∗This work is partially supported by NSF award #1955357

approach is few-shot classification [4], which is often formulated
within a meta-learning framework where a model can learn a new
class from a small ‘support set’ of examples [5]. Prior work has ap-
plied this to tasks such as instrument recognition [6], multi-label au-
dio classification [7], and multi-label drum transcription [8]. How-
ever, this method still requires the user or researcher to supply a
support set for unseen or novel classes [7], and thus, such super-
vised approaches are only useful if you know what you are hoping
to find and have examples of it. In many situations — e.g., urban
noise monitoring, audio accessibility, bioacoustic monitoring — it
is the rare events and unexpected events that are arguably the most
important to detect, i.e., the machine listening equivalent of a “black
swan event” [9]. To this end, we focus on detecting the presence of
unknown classes in addition to known classes, referred to as open-
set modeling.

Open-set modeling has seen research interest in the image do-
main for several years [10, 11], but it has only more recently
gained interest in the audio domain and been applied to tasks such
as domestic sound classification [12], acoustic scene classification
[13, 14], and the related yet distinct task of anomalous sound detec-
tion [15]. However, all of these tasks are binary or multi-class AC
— to the best of our knowledge, open-set modeling has not been
applied to multi-label AC.

As in [12, 10], we define known known (KK) classes as known
(i.e., in-vocabularly) classes seen during training and inference,
known unknown (KU) classes as unknown (i.e., out-of-vocabulary)
classes seen during training and inference, and unknown unknown
(UU) as unknown classes seen only at inference. A fourth category,
unknown known (UK) classes, are classes in which only semantic
or metadata information is available in the absence of discrete la-
bels — this category is not considered in this work. We collectively
refer to KU and UU as unknown classes, and KK as known classes.

We define multi-label open-set AC (MLOS) as the task of as-
signing between 0 and |KK| + 1 class labels to an audio record-
ing, where |KK| is the cardinality of the set of known classes and
+1 refers to the label indicating the presence of an unknown sound
class. Thus, an MLOS model needs to both estimate which known
classes are present as well as decide whether at least one unknown
class is present. This is in contrast to multi-class open-set AC mod-
els which assign only 1 of |KK|+1 class labels to an audio record-
ing.

In this paper, we (1) establish the problem of MLOS, (2) in-
troduce a new dataset with varying unknown class distributions to
investigate this problem, and (3) evaluate baseline approaches com-
prised of combinations of existing machine listening techniques.

2. DATASET

Prior open-set AC datasets are either multi-class [12] or focused on
binary anomalous sound detection [16]. In order to establish the
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MLOS task, we are interested in exploring the effects of polyphony,
and levels of “openness” while working with a large class vocab-
ulary. While few-shot datasets like FSD-MIX-CLIPS [7] meet the
polyphony criteria, they do not have varying levels of “openness”
nor dataset variants where different classes are assigned to the KK,
KU and UU categories. As in [17], we define “openness” as

O∗ = 1−
√

(2× Ctr) / (Ctr + Cte), (1)

where Ctr = |KK∪KU| is the number of classes seen during train-
ing and Cte = |KK ∪ KU ∪ UU| the number of classes seen during
testing. Thus, for larger Ctr , we assign lower values of openness.

To this end, we develop a new dataset of synthetic soundscapes
using open-set criteria. As in FSD-MIX-CLIPS, we use a subset
of FSD50K where each clip has a single ‘present and predominant’
label, i.e., the labeled sound event is the only type of sound present
with the exception of mild background noise [18]. This gives us
7600 source events from 89 classes, each between 0.5s and 4s in
duration. We use only the leaf node labels according to the Audioset
ontology [19]. Hereafter we refer to this subset of FSD50K as the
source dataset.

First, we split the classes into 5 subsets of 18 classes each (ex-
cept for one subset with 17 classes), and from these subsets, we
create 10 variations of class assignments into KK, KU, and UU as
shown in Table1 — 5 with a low degree of openness and 5 with a
high degree of openness, i.e. no KU classes. The openness coeffi-
cients are O∗ = 0.05 or 0.06 for low openness (Ctr = 72 or 71)
and O∗ = 0.13 or 0.14 for high openness (Ctr = 54 or 53).
For each class assignment variation i, we generate an intermediate
dataset called ‘Open-Set Soundscape-i’ (OSS-i), consisting of 10s
44.1kHz synthetic soundscapes using Scaper [20] — 200k train-
ing, 30k validation, and 30k test with no source overlap between
splits. The training and validation sets are synthesized from only
the known class subsets, e.g. in dataset variant 1, from L1-L4 in the
low openness case and H1-H3 in the high openness case (Var. 1 in
Table 1). In both openness cases, the test set is synthesized using
all the subsets. Additionally, we also create a small tuning valida-
tion set using all the subsets for hyperparameter tuning, ensuring no
example overlap with the test set.

In each OSS-i, we maintain the class distribution of the source
dataset as closely as possible while enforcing a minimum of 200
examples per class. Each soundscape has one to four overlapping
source sound events in the foreground, which we place between 0 to
9s in the soundscape. We augment each source with pitch shifting
(-2 to +2 semitones) and time stretching (by a factor of 0.8 to 1.2).
We use uniform random sampling for all augmentations during gen-
eration.

For each OSS-i dataset variant, we generate a dataset of 1s clips
by centering a window on each event in the 10s soundscape and
labeling a class as present if it overlaps with this window. This
yields 10 datasets (5 high, 5 low openness) with ∼500k clips each.

We refer to this as the Open-Set Tagging (OST) dataset and use
it to train and evaluate our models. Both OSS and OST datasets are
publicly available 1.

3. MODELS

In this study, for the sake of brevity we focus on the high openness
MLOS task, as it is the more challenging scenario. Therefore in the
following we use Dk to denote the set of known classes seen during

110.5281/zenodo.7241704

Openness Low High
Subset L1 L2 L3 L4 L5 H1 H2 H3 H4 H5
Var. 1 KK KK KK KU UU KK KK KK UU UU
Var. 2 UU KK KK KK KU UU KK KK KK UU
Var. 3 KU UU KK KK KK UU UU KK KK KK
Var. 4 KK KU UU KK KK KK UU UU KK KK
Var. 5 KK KK KU UU KK KK KK UU UU KK

Table 1: Class splits for high and low openness dataset variations

training, and Du for the set of unknown classes seen only during
inference.

In this section, we present five baseline models, two of which
use oracle sources as a way of further exploring the limitations of
these approaches.

3.1. Multi-label

Given a multi-label input example x, the classifier C generates a
logit vector v = C(x) ∈ RN , where N := |Dk| i.e. KK classes
present during training. To estimate whether the input contains a
class in Dk, we take the indices above a threshold λ, i.e. {j : vj >
λ; j ∈ [0, N − 1]}.

Our baseline approach to the MLOS task is to run inference
using a standard multi-label classifier. Then, to predict the unknown
class we use the open-set decision criteria discussed later in this
section.

The classifier consists of two stages. The first stage is a frozen
OpenL3 encoder pre-trained on the environmental subset of Au-
dioset [21], which has shown competitive performance across a va-
riety of audio and music classification tasks in the NeurIPS HEAR
2021 challenge [22]. The encoder input is a 256 frequency bin log-
melspectrogram input, with output embeddings of dimension 6144.

The second stage is a multi-layer perceptron (MLP) with five
dense layers. Each layer consists of 1024 units and ReLU activa-
tion. The number of output units depends on the number of classes
in the dataset variant, i.e. |Dk| classes. This system is depicted in
Figure 1.

The multi-label classifier output has sigmoid activations and is
trained using binary cross-entropy loss. Instead of using a thresh-
old in our experiments, we used an overly-optimistic oracle strat-
egy, picking the m sources with the highest logits, where m is the
polyphony from the ground-truth data. We use the checkpoint with
the best validation loss for evaluation.

3.2. Combinatorial multi-class

In order to isolate the effect of multi-label training, we include a
‘combinatorial multi-class’ model. Here we map each unique label
combination in the OST training set to a class ID, effectively creat-
ing a multi-class model training setup. While OST has around 8000
unique class combinations, we note that this approach would lead
to a ‘combinatorial explosion’ and may be infeasible as the number
of classes and unique combinations increase.

Apart from a categorical cross-entropy loss function and differ-
ent number of output layer units, we use the same architecture and
training setup as described in Section 3.1.

3.3. Source estimates multi-class PIT

Since prior work on open-set AC has been in the multi-class setup,
we include a model with a universal source separation front-end
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Figure 1: Multi-label model consisting of a pre-trained frozen
OpenL3 embedding network and a MLP classifier.
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Figure 2: Source estimates multi-class PIT model consisting of a
separation network and multi-class classifier trained using a permu-
tation invariant loss. The separation network is trained separately
using MixIT, then its weights are frozen as the classifier is trained.

module to convert the MLOS task to a set of multi-class open-set
classification tasks and leverage existing approaches for these sub-
tasks. Related prior work successfully used such a universal source
separation pre-processing step to improve classification precision
in multi-label closed-set birdsong classification [23]. A separation
model generates source estimates for a multi-class classifier that
generates predictions. We hypothesize that the separation model
will also improve performance on the MLOS task, particularly on
unseen known class combinations (which could be misclassified by
an open-set model as unknown if estimated as a whole) and for clips
with high polyphony. However, this approach does come with the
risk of error propagation from the separation model to the classifier
caused by poor source estimates.

Given an input example x, the separation model S generates
eight source estimates si. Using m of these eight source estimates
as input, the multi-class classifier C generates logits vi = C(si) ∈
RN for each source si, where again N := |Dk| , and we use
the class with the max logit as our known class prediction for that
source, i.e. argmax(vi).

The separation network is a TDCN++ model trained on unla-
beled polyphonic mixtures using mixture invariant training (MixIT)
[24]. As the authors of [23, 24] note the importance of training
MixIT on the target domain for quality source estimates, we train
from scratch on data from all variants of the OST dataset for 1M
steps and use the checkpoint with the best validation performance.
Estimating the number of actual sources from the 8 fixed outputs is
a challenging task and a potential failure point. In this paper, we opt
for an overly optimistic scenario and use an oracle pruning strategy
for testing. We pick the m source estimates with the highest en-
ergy, where m is the number of ground-truth sources. We follow
this protocol both during training and inference. An existing risk of
this approach is that the chosen source estimate may only contain
background for input examples with low SNR. Additionally, this
protocol may be sub-optimal if the model over-separates, especially
in examples with low polyphony.

The multi-class classifier has the same architecture as in Section
3.1 , and is trained using a permutation invariant cross-entropy loss
[24]. Since the label assignment is only available at the clip level,

we generate a prediction for each source estimate and compute the
total loss for m! label-source combinations. The best match that
minimizes the total loss is used to update the model weights. We
use the suffix permutation invariant training (PIT) to denote that a
model is trained this way. The model is depicted in Figure 2.

3.4. Oracle sources multi-class PIT

In order to understand the effects of error propagation due to the
separation network, we train a model with a perfect separation
model, i.e. with the oracle sources. These oracle sources when
re-combined yield the OST clips used to train the multi-label classi-
fier model. We use the same model and training setup as in Section
3.3.

3.5. Oracle sources multi-class model

A key limitation of PIT is that it does not guarantee accurate source-
label matching during training. In order to further isolate the effect
that PIT may have on performance, we evaluate a reference multi-
class model with the same architecture trained with oracle sources
using standard cross-entropy loss. Given our modeling choices, this
serves as an expected upper bound in terms of performance, as it is
a true multi-class model.

3.6. Open-set decision criteria

We evaluate two simple open-set decision criteria that have been
used previously in multi-class open-set studies. Here, we use these
techniques both in the multi-class and multi-label configurations,
however, the latter would suffer from false positives in scenarios
with no activity or background noise events.

The first approach is softmax thresholding, where the maximum
softmax probability (MSP) is compared against a threshold δ [25]–
where a model predicts unknown if it is below and known otherwise.
Let ŷ be the classifier output for models without separation, e.g.
ŷ = sigmoid(v), and ŷo ∈ {0, 1} the open-set prediction, with 0
and 1 denoting a known and unknown class prediction respectively,
then

ŷo =
{
1 if max(ŷ) < δ; else 0 (2)

For PIT models and the oracle sources multi-class model, we predict
unknown if any of the m source estimates contain an unknown class:

ŷo =
{
1 if max(ŷi) < δ, for i ∈ [0,m− 1]; else 0 (3)

where ŷi is the classifier output for a source estimate.
The second approach is Openmax [26], which aims to correct

‘overconfident’ model predictions when the example is less likely to
belong to the training distribution of the predicted class. Openmax
re-weights the logit vector by penalizing the top α ranked logits
using models of the training distribution tail for each class. The
class-specific models are parameterized by the Weibull distribution
tail size τ and logit rank limit α. It also computes an unknown class
probability pu based on the degree of recalibration needed, which is
then appended to the updated classifier output. We refer the reader
to [26] for further details.

For models without separation, we compute the updated clas-
sifier output ŷw using the re-weighted logit vector vw, e.g. ŷw =
sigmoid(vw). Then, similar to Equation 2–

ŷo =
{
1 if max(ŷw) < δ ormax(ŷw) = pu; else 0 (4)
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Accuracy (SD)
MSP Openmax

Multi-label 57.4 (2.9) –
Source estimates PIT 54.3 (3.0) –
Oracle sources PIT 59.7 (4.7) 61.3 (3.0)
Combinatorial multi-class 59.1 (1.5) –
Oracle sources multi-class 61.1 (3.8) 61.2 (3.8)

Table 2: Unknown detection results using maximum softmax prob-
ability thresholding (MSP) and openmax. All results are accuracy
averaged over the five dataset variants, with standard deviations in
parentheses.

For models with separation we apply this re-weighting and thresh-
olding protocol to vi, the source estimate logit vectors.

We tune δ, τ , and α on the tuning validation set using Optuna,
a Python package for efficient hyperparameter optimization [27],
and use hyperparameters from the trial that maximizes unknown
detection accuracy.

4. EVALUATION

We evaluate the models separately on closed-set classification and
unknown detection. For the former, we evaluate the model only
on examples without unknown classes. For the latter, we evaluate
the models on all examples at the clip level for a binary classifica-
tion task. We present the unknown detection results in Table 2 and
closed set classification results in Table 3.

From Table 2, we note that the multi-label model is worse than
the oracle sources multi-class model. In this dataset, every example
has at least one source, however, in scenarios where no event may be
present we expect this gap to be larger, as the multi-label model may
generate more false positives during silence or background noise
events.

Combinatorial multi-class is only slightly worse than oracle
sources multi-class. While this is an interesting finding, there are
two key limitations. This model does not scale well as the num-
ber of classes increases, leading to the ‘combinatorial explosion’
issue [28]. Furthermore, this dataset follows the imbalanced source
dataset distribution making certain known classes more likely than
others, meaning that the model does not encounter new class combi-
nations in the test set, leading to an optimistic view of its unknown
detection accuracy. We expect this model to perform poorly in sce-
narios with unseen combinations of known classes, potentially gen-
erating false positives.

Oracle sources PIT does better than the multi-label model by
about 4%, which suggests that a perfect universal source separa-
tor could improve performance on this task. However, the gap is
smaller than expected, potentially due to false positives caused by
overconfident model predictions [26]. We see some evidence of
this in Table 2 where Openmax accuracy for the oracle sources
PIT model is better than its MSP accuracy, suggesting that this
model is falsely overconfident for examples containing unknown
class events.

We also note that oracle sources multi-class is better than oracle
sources PIT by about 2%– since they are both trained on the same
data, the difference must be due to PIT.

Finally, source estimates PIT is not as good as the oracle
sources PIT model, and in fact, performs worse than the multi-label
model. This indicates that more research may be needed for univer-

Micro F1 Macro F1 mAP
Multi-label 0.449 (0.01) 0.349 (0.02) 0.400 (0.02)
Source Estimates PIT 0.407 (0.01) 0.332 (0.01) 0.347 (0.01)
Oracle Sources PIT 0.511 (0.02) 0.461 (0.04) 0.501 (0.04)
Oracle sources multi-class 0.581 (0.01) 0.541 (0.01) 0.590 (0.01)

Table 3: Closed-set classification results on 53 or 54 classes, de-
pending on the dataset variant. All metrics are averaged over the
five dataset variants, with standard deviations in parentheses.

sal source separation models to be useful in this task. Some prior re-
sults suggest that training the classifier together on the input mixture
and source estimates may improve closed-set classification [23], but
it remains to be seen whether this translates to unknown detection
where the model needs to separate out unknown class events as well.

We notice similar trends in closed-set classification (Table 3)
as in unknown detection MSP accuracy. The multi-label model as
well as the oracle sources PIT model perform significantly worse
than the oracle sources multi-class model, which is in line with the
expectation of multi-label classification being a more challenging
task. Oracle sources PIT does better than the multi-label model,
which suggests that a perfect source separation model would be
useful. Lastly, the overall modest performance of the oracle sources
multi-class model on both closed- and open-set tasks suggests that
better audio representations are also needed to improve perfor-
mance.

5. DISCUSSION AND CONCLUSION

In this work, we introduced the multi-label open-set audio classi-
fication (MLOS) task and developed a synthetic dataset with vary-
ing unknown class distributions. We then presented several baseline
models using combinations of existing machine listening techniques
and evaluated their performance on known class and unknown class
metrics.

We show that MLOS is a challenging task that existing ap-
proaches alone cannot adequately solve. In our study, we find that a
perfect source separation model may be useful for MLOS, but fur-
ther research is needed for universal source separation models to
provide similar improvements in open-set classification.

While we see some interesting results, some other questions
were raised, such as how unseen known class combinations might
affect unknown class detection, particularly for the multi-label and
combinatorial multi-class models. We plan to evaluate this by vary-
ing vocabulary and dataset size to control the ratio of seen and un-
seen known class combinations in the test set.

Moreover, we consider here a simplistic data scenario where
there is always at least one sound present. We plan to investigate
how the inclusion of background event classes would affect some
of the models discussed here, such as the multi-label and source
estimates multi-class PIT.

By sharing the dataset and these baseline results, we hope to
invite further interest from the community to this under-explored
area of research.
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ABSTRACT

Slow or fast third-octave bands representations (with a frame
resp. every 1-s and 125-ms) have been a de facto standard for urban
acoustics, used for example in long-term monitoring applications.
It has the advantages of requiring few storage capabilities and of
preserving privacy. As most audio classification algorithms take
Mel spectral representations with very fast time weighting (ex. 10-
ms) as input, very few studies have tackled classification tasks using
other kinds of spectral representations of audio such as slow or fast
third-octave spectra.

In this paper, we present a convolutional neural network ar-
chitecture for transcoding fast third-octave spectrograms into Mel
spectrograms, so that it could be used as input for robust pre-trained
models such as YAMNet or PANN models. Compared to training a
model that would take fast third-octave spectrograms as input, this
approach is more effective and requires less training effort. Even
if a fast third-octave spectrogram is less precise both on time and
frequency dimensions, experiments show that the proposed method
still allows for classification accuracy of 62.4% on UrbanSound8k
and 0.44 macro AUPRC on SONYC-UST.

Index Terms— Convolutional Neural Network (CNN), Gener-
ative algorithm, third-octave spectrogram, Mel spectrogram, Urban
soundscape

1. INTRODUCTION

In recent years, various sound source classification models have
gained recognition for their robustness. Among them, YAMNet
[1] and PANNs [2] pre-trained models have emerged as powerful
models capable of predicting the presence of more than 500 sound
sources, thanks to their training on the extensive Audioset database
[3]. These models are widely recognized as among the most ef-
fective sound source classification models available and use Mel
spectral representations with a frame every 10-ms as input .

IEC 61672-1 [4] standardizes the measurement of fast (125-
ms) and slow (1-s) third-octave spectral representations, which have
been used in several noise monitoring applications [5, 6, 7, 8, 9, 10].
Fast third-octave spectrograms offer several advantages over Mel
spectrograms for long-term monitoring applications. First, they
make recordings unintelligible and thus preserve privacy, as demon-
strated by Gontier et al. [11]. Moreover, they are more lightweight,
with a bit rate approximately 138 times lower than that of 16bits,
32kHz, mono waveform recordings and about 30 times lower than
that of Mel recordings (see table 1 for precise references).

Gontier et al. [12] addressed multi-label classification tasks in
urban environments using a Convolutional Neural Network (CNN)
directly trained on third-octave spectrograms. While their model
showed good performance on the Cense Lorient dataset [8], it lacks
robustness on other third-octave recorded datasets. This limita-
tion arises partly from training the model on highly homogeneous
datasets. Pre-trained models such as YAMNet and PANNs, on the
other hand, have shown robustness in a variety of sound source clas-
sification tasks. Unfortunately, these models are trained on Mel
spectrograms with 10-ms frames, and can only consider the cor-
responding Mel representation as input.

To enable the direct use of those pre-trained models with other
types of spectrograms such as fast third-octave ones, we present in
this paper a transcoding method that converts fast third-octave spec-
trograms into Mel spectrograms. This transcoding operation is done
using a CNN module learned with a teacher-student approach that
leverages the pre-trained models’ outputs to reconstruct Mel spec-
trograms. While this study focuses on a specific fast third-octave
representation, we believe that the proposed method can be adapted
to any kind of spectral representation. Section 2 reviews prior work
on the transcoding task. Sections 3 and 4 outline our model archi-
tecture and training method. In section 5, we evaluate the perfor-
mances of the transcoder. Generated audio and open source code
are available online. 1

2. RELATED WORK

To the best of our knowledge, no work is available for the task
at hand in audio processing specifically. In computer vision, sev-
eral methods have been proposed to address the task of convert-
ing one set of features to another set of features (feature transla-
tion) [13, 14]. A pseudo-inverse can be employed to retrieve a Mel
spectrogram from a fast third-octave spectrogram and temporal in-
formation can be interpolated. This would result in a blurred Mel
spectrogram, which could be seen as analogous to a noisy image
in a denoising paradigm. Auto-encoding methods [15], adversarial
methods [16], and diffusion methods [17] have been used in super-
resolution and denoising tasks.

In contrast to previous works, our goal is to obtain generated
Mel spectrograms that can achieve similar output class distributions
as the original Mel spectrogram when processed by the pre-trained
model used for training the transcoder.

1Companion website: https://github.com/modantailleur/
paperSpectralTranscoder
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3. METHODS

3.1. Spectral representations

In this study, we selected the Lorient Cense project fast third-octave
calculation method [8] which involves computing 29 third-octave
bands within the frequency range of 20Hz to 12,5kHz, using a rect-
angular 125-ms temporal window.

It is worth noting that YAMNet and PANNs models require Mel
spectrograms as input, but the spectrograms used by these classifiers
differ slightly from each other (as shown in Table 1). Therefore,
we present two different transcoders in the subsequent sections to
match the input requirements of each pre-trained model.

spectral representation Mel Third-Octave
origin PANN YAMNet Cense Lorient
sample rate 32kHz 16kHz 32kHz

window size 1024
(32ms)

400
(25ms)

4096
(128ms)

fft size 1024
(32ms)

512
(32ms)

4096
(128ms)

hop size 320
(10ms)

160
(10ms)

4000
(125ms)

window hann hann rectangular
frequency bins 64 64 29
min frequency 50Hz 125Hz 20Hz
max frequency 14kHz 7,5kHz 12,5kHz
mel normalisation slaney - -
mel formula slaney htk -
log offset 1.0 0.001 19.95
bit rate 103kb/s 100kb/s 3,71kb/s

Table 1: Differences between PANN (ResNet38) and YAMNet Mel
spectral spectrograms, and Cense third-octave spectrograms

3.2. Model

The proposed CNN transcoder model, consists of two parts: a PINV
transcoder and a Convolutional Neural Network (CNN) (see Figure
2). The PINV transcoder presented in figure 1 first reconstructs
the full-band spectrogram from the third-octave spectrogram using
a pseudo-inverse method. Then, it performs time-axis interpola-
tion to match the time dimension of the target Mel spectrogram.
Finally, the log Mel filterbank is applied to the full-band spectro-
gram, resulting in a roughly predicted Mel spectrogram. This PINV
transcoder conveniently matches the target Mel spectrogram dimen-
sions, and is adaptable to various undersampled spectral data.

The CNN part then refines the Mel spectrogram by adding
residual information to it (see figure 2). The CNN architecture,
which is identical to the one used by Lagrange et al. [18], is fully
convolutional and has several layers, each employing rectified linear
units (ReLU) activations. In the following sections, we refer to our
transcoder, which is trained on pre-trained models’ output logits, as
CNN trained on logits (or CNN-logits).

3.3. Teacher-student approach

We take a teacher-student approach to train our CNN model in or-
der to generate a Mel spectrogram by taking into account the output
of YAMNet or PANNs pre-trained classifiers (see figure 3). We
selected the ResNet38 PANN model, which has 73,783,247 param-
eters, as it is the most performing model to date that uses Mel spec-
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Figure 1: PINV transcoder architecture, to recover a 1s sample
PANN Mel spectrogram from a 1s sample fast third-octave spec-
trogram
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Figure 2: CNN transcoder architecture, to recover a 1s sample
PANN Mel spectrogram from a 1s sample fast third-octave spec-
trogram
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Figure 3: PANN CNN transcoder trained with a teacher-student ap-
proach (CNN-logits) using the Binary Cross-Entropy (BCE) loss
function

trograms as input [2]. We also consider the well-established YAM-
Net classifier which has a lower number of parameters: 3,740,425.
PANNs and YamNet parameters are not updated during the CNN
transcoder training, reducing computational complexity and ensur-
ing broader applicability to pre-trained classifiers using similar Mel
spectrogram inputs.

4. EXPERIMENTAL PROTOCOL

4.1. Data

The dataset used for training and evaluating our models is the TAU
Urban Acoustic Scenes 2020 Mobile dataset [19]. This dataset con-
sists of 10-second audio clips from 10 different acoustic scenes,
namely airport, indoor shopping mall, metro station, pedestrian
street, public square, street with a medium level of traffic, travel-
ing by tram, traveling by bus, traveling by an underground metro,
and urban park. The dataset includes recordings from multiple de-
vices that overlap in the given development subset. As the evalu-
ation dataset has not been released yet, we use only the develop-
ment subset for training and evaluating our models. To ensure non-
overlapping data, we use only data from device A, which provides
29h20 of audio. We randomly split the development subset into
training (75%), validation (12.5%), and evaluation (12.5%) sets. All
audio files are normalized based on the maximum absolute value.

177



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

4.2. Baselines

In this study, we compare the performance of the CNN-logits
transcoder with the performance of a reference PINV transcoder
(as shown in Figure 1), which does not require any learning.

In addition, we explore an alternative training method that is
solely based on the Mean Squared Error (MSE) loss between the
generated Mel spectrogram and the ground truth spectrogram, with-
out relying on a teacher-student approach. This transcoder will be
referred to as CNN trained on mels (or CNN-mels) in the subse-
quent sections.

To further evaluate the performance of our proposed teacher-
student approach, we compare it with other teacher-student meth-
ods that are not explicitly designed for transcoding fast third-octave
spectrograms into Mel spectrograms (see figure 4). Specifically,
we retrain the PANN and YAMNet models, as well as efficient
nets (efficient net b0 with 4,682,059 parameters and efficient net
b7 with 65,135,455 parameters) [20], using pseudo-inverted Mel-
spectrograms as input with the method illustrated in Figure 1. In
the subsequent sections, we will refer to these retrained models as
PANN-1/3-oct, YAMNet-1/3-oct, Effnet-b0, and Effnet-b7.
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Figure 4: Classifier trained with a teacher-student approach, to
match PANN outputs

4.3. Training procedure

Both types of training methods, i.e., with and without teacher-
student approach, employ Adam optimizer [21] during optimiza-
tion.

For the CNN architecture, we have conducted experiments with
varying kernel sizes, numbers of layers, dilations, numbers of chan-
nels, and learning rates. Only the models with parameters leading
to the best loss are presented in the subsequent sections.

All the models are trained for 200 epochs, with a batch size of
64, leading to 2,472,000 iterations. We checked empirically that
convergence is reached for all models.

4.4. Metrics

To assess the performance of the proposed methods, we introduce
the Prediction to Prediction accuracy on First Class (PtoPa-FC) met-
ric, and calculate it on our evaluation subset of the TAU Urban
Acoustic Scenes 2020 Mobile dataset. This metric measures the
accuracy of the pre-trained model that uses transcoded Mel spec-
trograms as input in predicting the same first class as that of the
pre-trained models that use ground truth Mel spectrograms as input.
However, it should be noted that this metric only provides informa-
tion regarding the accuracy of the first predicted class. Therefore,

we also analyze the KL-divergence between the distribution of the
two predictions vectors. All predictions are based on 10-second au-
dio excerpts.

To further evaluate the effectiveness of our models, we subject
them to testing on two additional annotated datasets: SONYC-UST
[22] and UrbanSound8K [23]. However, the output classes of the
pre-trained PANN and YAMNet models do not correspond exactly
to the target classes of these datasets. To address this issue, we pro-
pose to augment the pre-trained models with two additional fully
connected layers that have an intermediate size of 100. These lay-
ers are trained on the training subset of SONYC-UST and evalu-
ated on the test subset, and we employ cross-validation for Urban-
Sound8K as recommended by the authors. The objective of the
fully connected layers is to aggregate the 527 (or 521) input classes
of the pre-trained models into the 8 (or 10) target classes of Urban-
Sound8K or SONYC-UST datasets, respectively. Importantly, we
only train the additional fully connected layers, and the pre-trained
models are not re-trained during this process. We apply a threshold
of 0.5 for the multi-label task of SONYC-UST, and we consider the
class with the highest output value as present for UrbanSound8K
multi-class classification task. We found that our proposed method
outperforms a manual aggregation method similar to the one pro-
posed by [24], which gave poorer results on both datasets using our
models.

5. RESULTS

Table 2 summarizes the performance of the methods on the TAU
Urban Acoustic Scenes 2020 Mobile dataset. The parameter tun-
ing procedure mentioned in section 4.3 identify a CNN model with
a kernel size of 5, no dilation, 64 channels, and 5 layers, trained
with a learning rate of 10−3. This model contains 192,961 parame-
ters, which represents 0.26% of PANN’s and 5.2% of YamNet’s to-
tal number of parameters. Our CNN-logits model outperforms the
baseline models for PANN, achieving a PtoPa-FC of 89.3% and a
lower KL-divergence than the baselines. When YAMNet is used as
the target classifier, our CNN-logits model achieves a higher PtoPa-
FC than the other models. Notably, the KL-divergence of our model
is higher than that of the YAMNet-1/3-oct model. This suggests that
while its predicted first class is closer to that of YAMNet, the over-
all distribution of predictions across all classes is further away from
the ones of the pre-trained model.

The classification results of PANN and YAMNet models on
the SONYC-UST and UrbanSound8k datasets using both original
and transcoded Mel spectrograms as input are shown in Table 3.
The state-of-the-art macro-AUPRC for a model that is fully trained
on the SONYC-UST dataset is reported between 0.49 and 0.65
[22, 25]. In contrast, the best accuracy achieved on the Urban-
Sound8k dataset is 90% [26]. Despite not being specifically trained
on these datasets, the PANN model using ground truth Mel spectro-
grams as input still achieves fairly good results, albeit not outper-
forming state-of-the-art models. PANN models that use transcoded
Mel spectrograms as input have a 18.6% decrease in accuracy com-
pared to when a ground truth Mel spectrogram is used. This is
promising, as fast third-octave spectrograms contain much less in-
formation both on frequency and time dimensions. In contrast, us-
ing the transcoder for YAMNet resulted in a much more significant
drop in accuracy.

The CNN-logits method performed less effectively when used
with YAMNet. YAMNet is smaller and less accurate than the
ResNet38 PANN model, as evidenced by its lower performance
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Figure 5: Mel spectrograms of a 1s file from the evaluation dataset, using different transcoding methods.

classifier teacher-student model MSE (mels) ↓ KL divergence (logits) ↓ PtoPa-FC % ↑ training time

PANN

No PINV 12.43 0.014438 0.4 -
CNN-mels 10.14 0.013945 0.5 -

Yes

CNN-logits 18.56 0.000734 89.3 14456s
PANN 1/3 oct - 0.000792 83.7 31702s
Effnet-b0 - 0.008994 69.4 11157s
Effnet-b7 - 0.006117 76.8 39653s

YAMNet

No PINV 3.23 0.032255 0.8 -
CNN-mels 0.2 0.013405 0.1 -

Yes

CNN-logits 1.39 0.001863 85.1 5073s
YAMNet 1/3 oct - 0.000919 83.3 4667s
Effnet-b0 - 0.005072 75.1 11153s
Effnet-b7 - 0.003189 79.3 39701s

Table 2: Performance of the different models on TAU Urban Acoustic Scenes 2020 Mobile evaluation subset using pre-trained models
predictions

input spectrogram Mel transcoded Mel
classifier PANN YAMNet PANN YAMNet
accuracy on Ur-
banSound8k 81.0 % 75.5 % 62.4 % 42.7 %

mAUPRC on
Sonyc-UST .52 .48 .44 .34

Table 3: Performance of the different models on UrbanSound8k and
Sonyc-UST. Bold values indicate the best scores achieved by clas-
sifiers using either ground truth Mel spectrograms as input (left), or
Mel spectrograms transcoded from third-octave spectrograms.

on the multi-label and multi-class classification tasks in the Ur-
banSound8k and SONYC-UST datasets. Consequently, the coarser
output logits of YAMNet compared to PANN suggest that the fea-
ture vector of size 521 produced by YAMNet may not be as relevant
for spectrogram reconstruction.

The CNN-logits method produces spectrograms that are more
realistic and less blurry than those obtained using the CNN-mels
and PINV baselines (as shown in Figure 5). This can be attributed to
the fact that by minimizing the MSE between the two spectrograms,
the algorithm tends to produce results that are closer to the ground
truth in terms of average pixel-to-pixel distance but leads to globally
blurry results. Conversely, by training on a set of 527 (or 521) high-
level features, the neural network has more degrees of freedom and
is not constrained to be as close to the ground truth spectrogram. As
shown in Table 2, this is reflected in the lower MSE for the CNN-
mels model than for the CNN-logits model.

6. CONCLUSION

In this study, we proposed a teacher-student approach to learning
a transcoder whose task is to transform any spectral representation
into a Mel spectrogram, for being used as input of pre-trained clas-
sifiers such as PANN and YAMNet models. This technique demon-
strates a relatively high accuracy of 62.4% and macro AUPRC of
0.44 on UrbanSound8k and SONYC-UST, respectively, despite the
limitations of a third-octave spectrogram in terms of temporal and
frequency resolution.

However, one limitation of this method is that a new transcoder
must be trained for each Mel spectral representation, in order to
adapt to its different possible parameters (number of Mel bins, hop
size, sample rate, etc...). To address this limitation, future research
could explore reconstructing the audio entirely from a fast or slow
third-octave spectral representation, which would allow the usage
of any pre-trained classifier, including the state-of-the-art PANN
model Wavegram-Logmel-CNN, which utilizes information on both
time-domain waveforms and log Mel spectrograms.

Very interestingly, our experiments show empirically that pre-
dicted Mels using a loss built on logits do not only allow effective
prediction but also results in Mels that have far better time / fre-
quency structure.
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AUDIO DIFFERENCE CAPTIONING
UTILIZING SIMILARITY-DISCREPANCY DISENTANGLEMENT
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ABSTRACT

We proposed Audio Difference Captioning (ADC) as a new exten-
sion task of audio captioning for describing the semantic differences
between input pairs of similar but slightly different audio clips.
The ADC solves the problem that conventional audio captioning
sometimes generates similar captions for similar audio clips, fail-
ing to describe the difference in content. We also propose a cross-
attention-concentrated transformer encoder to extract differences by
comparing a pair of audio clips and a similarity-discrepancy dis-
entanglement to emphasize the difference in the latent space. To
evaluate the proposed methods, we built an AudioDiffCaps dataset
consisting of pairs of similar but slightly different audio clips with
human-annotated descriptions of their differences. The experiment
with the AudioDiffCaps dataset showed that the proposed methods
solve the ADC task effectively and improve the attention weights
to extract the difference by visualizing them in the transformer en-
coder.
Index Terms: audio difference captioning, contrastive learning,
crossmodal representation learning, deep neural network

1. INTRODUCTION

Audio captioning is used to generate the caption for an audio
clip [1–10]. Unlike labels for scenes and events [11–15], captions
describe the content of the audio clip in detail. However, conven-
tional audio captioning systems often produce similar captions for
similar audio clips, making it challenging to discern their differ-
ences solely based on the generated captions. For instance, suppose
two audio clips of heavy rain are input into a conventional caption-
ing system. The system will generate a caption describing the con-
tent of each, like “It is raining very hard without any break” and
“Rain falls at a constant and heavy rate”1 as illustrated in Fig. 1(a).
The difference, such as which rain sound is louder, is difficult to
understand from the generated captions in this case.

To address this problem, we propose Audio Difference Caption-
ing (ADC) as a new extension task of audio captioning. ADC takes
two audio clips as input and outputs text explaining the difference
between two inputs as shown in Fig. 1. We make the ADC clearly
describe the difference between the two audio clips, such as “Make
the rain louder,” which describes what and how to modify one au-
dio clip to the other in the instruction form, even for audio clips
with similar texts. Potential real-world applications include ma-
chine condition and healthcare monitoring using sound by caption-
ing anomalies that differ from usual sounds.

The ADC task has two major challenges: different content de-
tection and detection sensitivity. Since the difference between a pair
of audio clips can be classes of contained events or an attribute, such

1These captions were taken from the Clotho dataset [2]

Model
First audioFirst audio

Second audio

It is raining very hard 
without any break

Rain falls at a constant 
and heavy rateModel

(a) Audio captioning (conventional)
First audioFirst audio

Second audio

(b) Audio difference captioning (ours)

Make the rain louderModel

Figure 1: Conceptual diagram of conventional audio captioning and
audio difference captioning. Audio difference captioning describes
the difference between pair audio clips, while conventional audio
captioning describes the contents of each.

as loudness, the ADC needs to detect what difference to describe.
When the difference lies in an attribute, the ADC needs to be sensi-
tive enough to detect the magnitude of the attribute, such as rain is
hard or moderately shown in the example in Fig. 1.

To handle these challenges, the ADC should extract features of
difference based on the cross-reference of two audio clips. These
features should carry enough information to differentiate critical at-
tributes such as loudness. A typical choice of a feature extractor
could be pre-trained models to classify labels [16–18]. However,
these models learn to discriminate sound event classes, learning
what is common while ignoring subtle differences such as raining
hard or quietly unless the class definition covers that.

To meet the requirements of the ADC mentioned above, we pro-
pose (I) a cross-attention-concentrated (CAC) transformer encoder
and (II) a similarity-discrepancy disentanglement (SDD). The CAC
transformer encoder utilizes the masked multi-head attention layer,
which only considers the cross-attention of two audio clips to ex-
tract features of difference efficiently. The SDD emphasizes the dif-
ference feature in the latent space using contrastive learning based
on the assumption that two similar audio clips consist of similar and
discrepant parts.

We demonstrate the effectiveness of our proposals using a
newly built dataset, AudioDiffCaps, consisting of two similar but
slightly different audio clips synthesized from existing environmen-
tal sound datasets [11,15] and human-annotated difference descrip-
tions. Experiments show that the CAC transformer encoder im-
proves the evaluation metric scores by making the attention focus
only on cross-references. The SDD also improves the scores by
emphasizing the differences between audio clips in the latent space.
Our contributions are proposals of (i) the ADC task, (ii) the CAC
transformer encoder and SDD for solving ADC, (iii) the AudioD-
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iffCaps dataset, and (iv) demonstrating the effectiveness of these
proposals.

2. AUDIO DIFFERENCE CAPTIONING

We propose ADC, a task for generating texts to describe the differ-
ence between two audio clips. ADC estimates a word sequence w
from the two audio clips x and y.

The general framework to solve ADC includes three main func-
tions: audio embedding, audio difference encoding, and text de-
coding. Audio embedding calculates two audio embedding vec-
tors from two audio clips, respectively. Audio difference encod-
ing captures the difference between two audio embedding vectors.
Text decoding generates a description of the differences from cap-
tured differences. Audio embedding and audio difference encoding
require approaches specific to ADC. In particular, difference en-
coding is the function unique to audio difference captioning. This
function requires a model structure to capture the subtle differences
between two audio clips, unlike conventional audio captioning that
captures the content of a single audio clip. Moreover, the sensitiv-
ity to the subtle difference between two similar audio clips is also
necessary for audio embedding. The pre-trained audio embedding
models widely used for conventional environmental sound analysis
tasks are often trained for classification tasks and are suitable for
identifying predefined labels. Consequently, the outputs of these
pre-trained audio embedding models are not sensitive to the sub-
tle differences between audio clips with the same label. Therefore,
learning to emphasize the differences between similar audio clips in
the latent space is necessary when applying pre-trained audio em-
bedding models to the ADC.

3. PROPOSED METHOD

Based on the above discussion, we propose the ADC system il-
lustrated in Fig. 2. Our system consists of an audio feature ex-
tractor (red), difference encoder (blue), text decoder (green), and
similarity-discrepancy disentanglement (purple).

3.1. Audio feature extractor
The audio feature extractor uses a pre-trained audio embedding
model to calculate audio embedding vectors. Two audio clips x and
y are the input, and the audio embedding vectors corresponding to
the clips X ∈ RH×Tx and Y ∈ RH×Ty are the output, where H
is the size of hidden dimension, Tx is the time length of X , and Ty

is the time length of Y

3.2. Difference encoder
The difference encoder extracts information about the differences
between the two audio clips from audio embedding vectors X
and Y . To extract difference information efficiently, we utilize
a cross-attention-concentrated (CAC) transformer encoder as the
main function of the difference encoder. The CAC transformer
encoder utilizes the masked multi-head attention layer, allowing
only mutual cross-attention between two audio clips by the atten-
tion mask illustrated in the upper right of Fig. 2.

The detailed procedure is as follows. First, special tokens that
indicate the order of the audio clips X ∈ RH×1 and Y ∈ RH×1

are concatenated at the beginning of X and Y , respectively. Next,
these two sequences are concatenated to make the input of the dif-
ference encoder Z like Z = [X ,X,Y,Y ]. Then, positional en-

coding P is applied to Z. Finally, P(Z) is input to CAC trans-
former encoder to obtain the output Ẑ = [X̂ , X̂, Ŷ, Ŷ ].

3.3. Text decoder
The transformer decoder is utilized as a text decoder like as [5].
The text decoder calculates word probability from the output of the
difference encoder Ẑ.

3.4. Similarity-discrepancy disentanglement
The similarity-discrepancy disentanglement (SDD) loss function
is an auxiliary loss function aimed at obtaining a difference-
emphasized audio representation. When there is an explainable dif-
ference between two audio clips, these clips consist of similar and
discrepant parts. To introduce this hypothesis, we design contrastive
learning to bring similar parts closer and keep discrepant parts. We
propose two types of implementations that apply SDD to the in-
put of the difference encoder Z or the output of it Ẑ, as shown in
Fig. 2, and call the former and latter implementations early and late
disentanglement, respectively.

We explain the procedure in the case of early disentanglement.
Note that the case of late disentanglement only replaces Z with Ẑ.
First, Z is split along the hidden dimension and assigned to similar
and discrepant parts like in the upper left illustration of Fig. 2. If
Z ∈ RH×(Tx+Ty+2), Z is split into similar part ZS and discrepant
part ZD like

ZS = [XS,XS,YS,Y S] ∈ R(H/2)×(Tx+Ty+2), (1)

ZD = [XD,XD,YD,Y D] ∈ R(H/2)×(Tx+Ty+2). (2)

Then, the SDD is performed by LSDD = LS + LD, where

LS = SymInfoNCE(Φ([XS,XS]),Φ([YS,Y S])), (3)
LD = PairCosSim(Ψ([XD,XD]),Ψ([YD,Y D])), (4)

SymInfoNCE is the symmetric version of the InfoNCE loss used
in [19], PairCosSim is the cosine similarity for each correct
data pair, Φ and Ψ are embedding networks consisting of the
bidirectional-LSTM and average pooling, and LSDD is the final
value of the SDD loss function. That is, the SDD loss function
views [XS,XS] and [YS,Y S] as similar parts and brings them
closer by using LS and views [XD,XD] and [YD,Y D] as dis-
crepant parts and keeps them apart by LD.

The entire loss function L is the weighted sum of cross-entropy
loss for word prediction LCE and the SDD: L = LCE + λLSDD,
where λ is a weighting parameter.

4. EXPERIMENT

Experiments were conducted to evaluate the proposed CAC trans-
former encoder and SDD loss function. We constructed the Au-
dioDiffCaps dataset consisting of pairs of similar but slightly dif-
ferent audio clips and a human-annotated description of their differ-
ences for the experiments.

4.1. AudioDiffCaps dataset
The constructed AudioDiffCaps dataset consists of (i) pairs of sim-
ilar but slightly different audio clips and (ii) human-annotated de-
scriptions of their differences.

The pairs of audio clips were artificially synthesized by mixing
foreground event sounds with background sounds taken from exist-
ing environmental sound datasets (FSD50K [15] and ESC-50 [11])
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First audio

Second audio

“Amplify the barking”
Difference caption

Cross entropy loss

Upper feature

Lower feature

Early disentanglement
Late disentanglement

Audio embedding

Order token
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transformer encoder

Transformer decoder

Split
Embedding Net
(Discrepant part)
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Embedding Net
(Similar part)
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InfoNCE loss
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Switch

Consider attention
Ignore attention

Pre-trained
audio embedding

Similarity-discrepancy disentanglement loss

Figure 2: Model architecture of our proposed method. The cross-attention-concentrated transformer encoder uses an attention mask illustrated
in the upper left. The similarity-discrepancy disentanglement is conducted by symmetric InfoNCE loss and pairwise cosine similarity. The
input to them is either the input or output of the cross-attention-concentrated transformer encoder.

using the Scaper library for soundscape synthesis and augmenta-
tion [20]. We used the same mixing procedure as our previous
work [21]. Data labeled rain or car passing by in FSD50K was
used as background, and six foreground event classes were taken
from ESC-50 (i.e., data labeled dog, chirping bird, thunder, foot-
steps, car horn, and church bells). Each created audio clip was 10
seconds long. The maximum number of events in one audio clip
was two, with 0-100% overlap (no overlap-range control applied).
Each foreground event class had 32 or 8 instances in the devel-
opment or evaluation set, respectively. Similar to previous work,
we focused on the three types of difference: increase/decrease of
background sounds, increase/decrease of sound events, and addi-
tion/removal of sound events. The development and evaluation sets
contained 5996 and 1720 audio clip pairs, respectively. (That is,
development and evaluation sets contained 11992 and 3440 audio
clips.)

The human-annotated descriptions were written as instruction
forms explaining ”what and how” to change the first audio clip to
create the second audio clip. In the preliminary study, we found
that declarative sentences, in some cases, tend to use ordinal num-
bers such as “First sound is louder than second sound”. Since these
cases do not express what the actual difference is, the AudioDiff-
Caps dataset uses instruction forms with a fixed direction of change
from the first audio clip to the second one, e.g., ”Make the rain
louder” 2 . A wider variety of descriptions explaining the same
concept, such as declarative sentences, should be included in fu-
ture works. The presentation order of the pair to the annotator was
randomly selected. Annotators were five naı̈ve workers remotely
supervised by an experienced annotator. Each pair of audio clips
in the development set had between 1 and 5 descriptions (a total of
28,892) while each pair in the evaluation set had exactly five de-
scriptions assigned to it (a total of 8600).

4.2. Experimental conditions
We used 10% of the development set for validation. The opti-
mizer was Adam [22]. The number of epochs was 100. We
used the BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr [23],
SPICE [24], and SPIDEr [25] as evaluation metrics. They were
also used for conventional audio captioning [26].

We used BYOL-A [27], a pre-trained audio embedding model,
as the audio feature extractor in our ADC implementation, and we
fine-tuned the BYOL-A throughout experiments. The transformer

2The dataset is available at https://github.com/nttcslab/au
dio-diff-caps.

encoder and decoder used the official implementation of PyTorch.
The number of layers was 1. The hidden size was 768. The num-
ber of heads was 4. The activation was RELU. The dimension of
the feedforward layer was 512. The dropout rate was 0.1. For the
attention mask of the transformer encoder, we compared two types;
one with the proposed cross-attention mask and the other without a
mask. The text decoder used the teacher forcing algorithm during
training and the beam search algorithm [28, 29] during inference.
The value of λ was empirically set to 0, 0.5, 1.0, or 2.0.

4.3. Results
The results of evaluation metrics are shown in Table 1, where bold
font indicates the highest score, “Mask” and “Disent.” indicate the
attention mask utilized in the transformer encoder and input of SDD
loss function, respectively. When the CAC transformer encoder was
evaluated by comparing the two lines above, the proposed method
had superior or equivalent scores to the conventional method in all
evaluation metrics. There was no significant difference in the eval-
uation metrics related to the degree of matching with single-word
references, such as BLEU-1. One likely reason is that the scores
above a certain level can be obtained by outputting words in arbi-
trary sentences, such as “a” and “the” in these metrics. In contrast,
the scores of BLEU-4, ROUGE-L, CIDEr, and SPIDEr, affected by
the accuracy of consecutive words, were improved using the pro-
posed cross-attention mask. Therefore, the proposed cross-attention
mask was thought to make the feature extraction of differences more
efficient and simplify the training of the text decoder. As a result,
phrase-level accuracy was improved.

The effect of SDD was verified from the results of the second
to eighth lines. The results in (a) and (b) were the conventional
transformer without cross attention mask or SDD loss and the CAC
transformer without SDD loss (λ = 0) Ones from (c) to (h) were
the result when using early/late disentanglement. Since the scores
of BLEU-4, ROUGE-L, CIDEr, and SPIDEr improved under all
conditions comparing (b) and others, the SDD loss function was
effective for the audio difference captioning task. The improvement
in the case of late disentanglement (f), (g), and (h) was remarkable,
and the results obtained the best scores in all evaluation metrics
with late disentanglement. In other words, it was essential to use
the information to be compared to decompose the similar part and
the different parts in the feature amount space. That corresponds to
the difference determined depending on the comparison target.

Fig. 3 shows one of the evaluation data and estimated caption
and attention weight of the transformer encoder from each system.
The leftmost colomn is the Mel-spectrogram of the two input audio
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Table 1: Results of evaluation metrics
ID System Mask Disent. BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE SPIDEr

(a) Baseline N/A N/A 67.1 31.7 24.3 56.9 82.7 19.5 51.1
(b) CAC transformer Cross N/A 67.0 33.4 25.2 59.5 90.2 19.5 54.9

CAC transformer
(c) w/ Early SDD (λ = 0.5) Cross Early 67.0 33.7 25.3 59.6 91.8 19.4 55.6
(d) w/ Early SDD (λ = 1.0) Cross Early 66.8 32.2 25.3 59.3 91.7 19.5 55.6
(e) w/ Early SDD (λ = 2.0) Cross Early 66.9 33.5 25.3 59.6 92.8 18.7 55.8

(f) w/ Late SDD (λ = 0.5) Cross Late 70.3 39.2 26.4 61.6 97.6 21.3 59.4
(g) w/ Late SDD (λ = 1.0) Cross Late 69.9 38.3 26.3 61.5 96.3 21.2 58.7
(h) w/ Late SDD (λ = 2.0) Cross Late 69.9 39.5 26.3 61.3 97.1 22.6 59.9

First audio

Second audio

Reference caption:
increase the pitch and volume 
of the dog barks

Output caption:
increase the volume of and thunder
the bird the the

Output caption:
amplify the rain and the and 
thunder thunder the the

Output caption:
amplify the sound of the dog

(a) Baseline (b) Cross-attention-concentrated 
transformer

(h) Cross-attention-concentrated 
transformer 

w/ Late disentanglement(λ=2.0)

B
ar

k
B

ar
k

Figure 3: Examples of output caption and attention weights. The leftmost row was the Mel-spectrogram of two audio clips and one reference
caption. The three on the right were the attention weights of the transformer encoder and the output caption.

clips and one of the reference captions. The three on the right are
the attention weight of the transformer encoder and output caption,
where the attention weight shows the average of multiple heads.
The audio clips on the left and above the weights correspond to the
input and memory of the transformer, respectively. The area col-
ored pink and yellow on the weights corresponds to the dog bark-
ing. Since there was a difference in the loudness of the dog barking
between the two clips, the attention was expected to focus on areas
where pink and yellow overlap to extract the difference.

First, in (a), since the attention weight was not constrained, it
was also distributed widely to areas other than the above compared
with the other two. On the other hand, the attention weights of
(b) and (h) concentrated on areas where pink and yellow overlap
since the attention of the same input and memory was unavailable.
Comparing (b) and (h), while the attention of the part containing
the barking of the dog in the memory was large at any time-frame
in (b), more attention was paid to the pink and yellow overlapping
areas where both input and the memory contain the barking of the
dog in (h). Since the late disentanglement required that similar and
discrepant parts be retained in the output of the transformer encoder
calculated using these attention weights, it was thought that the late
disentanglement induced attention to be paid to the part where there
was a difference when comparing the two sounds instead of paying
attention to the parts that are likely to exist the difference compared
with the distribution of training data, such as a dog barking.

5. CONCLUSION

We proposed Audio Difference Captioning (ADC) as a new exten-
sion task of audio captioning for describing the semantic differ-
ences between similar but slightly different audio clips. The ADC
solves the problem that conventional audio captioning sometimes
generates similar captions for similar but slightly different audio
clips, failing to describe the difference in content. We also pro-
pose a cross-attention-concentrated transformer encoder to extract
differences by comparing a pair of audio clips and a similarity-
discrepancy disentanglement to emphasize the difference feature
in the latent space. To evaluate the proposed methods, we newly
built an AudioDiffCaps dataset consisting of pairs of similar but
slightly different audio clips and a human-annotated description of
their differences. We experimentally showed that since the attention
weights of the cross-attention-concentrated transformer encoder are
restricted only to the mutual direction of the two inputs, the dif-
ferences can be efficiently extracted. Thus, the proposed method
solved the ADC task effectively and improved the evaluation metric
scores.

Future work includes utilizing a pre-trained generative lan-
guage model such as BART [30] and applying a wider variety of
audio events and types of differences.
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ABSTRACT

Attention mechanisms have been widely used in a variety of sound
event detection (SED) tasks, owing to their ability to build interde-
pendencies among channels or spatial locations. The existing state-
of-the-art (SOTA) architectures and attention modules incorporated
in SED have a high computational cost in terms of the number of
parameters. To address this issue, we propose a lightweight mod-
ule utilizing triplet attention on an inverted residual network (IRN)
referred to as an inverted residual triplet attention module (IRTAM)
for replacing the standard 2D convolutional neural network. The
IRTAM captures cross-dimensional interdependencies using the ro-
tation operation followed by residual transformations with a three-
branch structure embedded in IRN. On DCASE 2022 Task 4 valida-
tion set, the proposed lightweight module improves the performance
of the baseline by 34.1% in terms of polyphonic sound event detec-
tion score and achieves SOTA results with only 27.6% parameters
of the baseline.
Index Terms: sound event detection, low-complexity, triplet atten-
tion, inverted residual network

1. INTRODUCTION

Sounds help in better understanding our surroundings and in detect-
ing environmental changes. The ability to recognize and classify
sound events in our surroundings is inherent in the human body.
The sound event detection (SED) systems automate this process to
detect the sound events to mark their corresponding onset and offset.
It has important practical applications as well as theoretical signif-
icance and has been applied to audio surveillance in environments
such as smart-homes, cities, and monitoring biodiversity.

Real-world audio recordings frequently contain numerous over-
lapping sound occurrences. Recent advances in predicting and
recognizing these overlapping events have shifted from traditional
methods like Gaussian mixture models [1], hidden Markov mod-
els [2], and support vector machines [3] to advanced deep learning
techniques. The recent success of convolutional recurrent neural
networks (CRNNs) [4] and transformer [5] structures have achieved
state-of-the-art (SOTA) results in the field of SED. These modern,
cutting-edge structures demand high computing resources that are
beyond the capacity of many embedded and mobile applications.
Therefore, reducing the number of parameters in a SED model al-
lows the method to be fit for systems with limited resources while
also decreasing the training time.

Most of the previously built systems [6, 7] proposed the use of
depthwise separable convolutions and showed the system’s effec-
tiveness with reduced parameters. Another way to target an effec-
tive low-complexity SED system is to use attention mechanisms [8].
In human perception, attention refers to the process of selectively

concentrating on parts of the given information while ignoring the
rest. This mechanism aids in the refinement of perceived infor-
mation while preserving its context. In the case of deep learning
systems with a basic building block as the 2D convolutional layer,
filters capture local spatial patterns along all input channels and gen-
erate feature maps jointly encoding the time-frequency and channel
information.

Several works have been aimed at capturing either spatial or
channel attention, done by building dependencies among channels
or weighted spatial masks for spatial attention. One such promising
approach is a component called the squeeze and excitation (SE) [9]
block, which can be seamlessly integrated into the convolutional
neural network (CNN). This SE block removes the spatial depen-
dency by using global average pooling to learn a channel-specific
descriptor, which is then used to rescale the input feature map to
highlight only useful channels. The SE block was succeeded by
the convolutional block attention module (CBAM) [10], which em-
phasized the importance of providing robust representative attention
by combining spatial and channel attention. This method of com-
bining spatial attention and channel attention improved the perfor-
mance compared to the SE block. However, most attention modules
add substantial computational overhead, and stacking these com-
plex modules usually ignores the interdependence between spatial
dimensions and channel dimension of the input feature.

In this work, we devote to incorporating cross-dimensional in-
teraction while computing attention weights to provide rich feature
representations for low-complexity SED systems by a novel inverted
residual triplet attention module (IRTAM) that uses a three-branch
structure, where each branch is responsible for aggregating cross-
dimensional interactive features. We summarize the major contri-
butions of this work as follows:

• Inspired from MobileNetV2 [11], we propose to incorporate an
inverted residual network (IRN) with a linear bottleneck to re-
place the standard 2D convolution block. The IRN makes the
SED model suitable to be deployed for real-time applications
on low computational devices.

• We propose to introduce a triplet attention [12] module into the
IRN at a negligible computational overhead to effectively learn
cross-dimensional interaction. The attention module is made
up of three branches, each of which is responsible for capturing
the cross-dimensional interaction between the input’s spatial
dimensions and channel dimension.

We consider the two-stage system developed by [13–15] for the de-
tection and classification of acoustic scenes and events (DCASE)
2022 Task 4 participation for the studies in this work. We also used
data augmentation and adaptive post-processing techniques to in-
crease the robustness of the developed system.

186



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

2. SOUND EVENT DETECTION SYSTEM

2.1. Baseline

The baseline [16] architecture, adopted from the DCASE Task 4
Challenge 2022, is a CRNN that combines a CNN and a recurrent
neural network (RNN). The CNN block is composed of 7 layers,
each with 16, 32, 64, 128, 128, 128, and 128 filters. The kernel
size for each convolutional layer is 3× 3 and each layer is followed
by a Gaussian error linear unit activation and batch normalization.
For frequency and temporal pooling, the average pooling layer is
employed, and its sizes are [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1,
2], [1, 2]], respectively. The RNN block is made up of two layers
of 128 bidirectional gated recurrent units (Bi-GRUs), resulting in a
total of 1.1M parameters. After the RNN block comes the attention
pooling layer, which is the product of multiplying a linear layer with
softmax activations and a linear layer with sigmoid activations. The
baseline employs the mean-teacher (MT) model, which updates the
teacher model’s weights using an exponential moving average from
the student model.

2.2. Inverted residual network (IRN)

Taking inspiration from MobileNetV2 [11], we propose to incor-
porate IRN to replace the standard 2D convolutions, as depicted
in Figure 1 (a). The proposed replacement has a distinct property
that allows the network expressiveness (encoded by expansion lay-
ers) to be separated from its capacity (encoded by bottleneck in-
puts). Further, it allows lightweight model implementation for low-
computational embedded systems. The block uses depthwise sepa-
rable convolutions to replace the fully convolutional operations with
a factorized version to split the standard convolution into two sepa-
rate layers. The block performs three separate convolutions. First, a
pointwise convolution is used to expand the low-dimensional input
feature map to a higher-dimensional space. Followed by a depth-
wise convolution, achieving spatial filtering. Finally, the spatially
filtered feature map is projected back to a low-dimensional sub-
space using another pointwise convolution. Figure 1 (a) shows the
residual link between low-dimensional feature maps.
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Permute Permute
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Figure 1: The proposed architectures (a) IRN with attention module
(b) triplet attention module for SED.

2.3. Triplet attention

We propose to incorporate an effective channel attention module,
namely, triplet attention [12], into the IRN. The cross-dimensional
interaction is captured by this parameter-free attention mechanism,
which may be integrated into other standard networks. In traditional
ways of computing channel attention, there is a significant loss of
spatial information as the input tensor is spatially decomposed into
one pixel per channel by employing global average pooling. This
leads to a loss of interdependence between the channel dimension
and spatial dimension on these single pixels. Further, as the channel
attention and spatial attention in [9] are computed independently of
each other, the relationship between the two is not considered. To
address this issue, we propose capturing cross-dimensional interac-
tion with no dimensionality reduction by adding triplet attention to
the IRN for SED applications.

The triplet attention is composed of three parallel branches,
built to capture dependencies between the (C, F), (C, T), and (F, T)
of the input feature, where C, F, T represent the channel, frequency,
time feature maps, respectively. Two of the branches capture the
cross-dimension interaction between the channel dimension C and
either the spatial dimension F or T. The last, final branch resembles
CBAM, which is used to build spatial attention. For each branch,
the input is permuted as shown in Figure 1 (b), and then it is passed
through Z-pool. The Z-pool layer reduces the zeroth dimension to
two by concatenating average pooling and max pooling across that
dimension. This helps to retain a rich representation while shrinking
the depth, resulting in less computational requirement. The opera-
tion of Z-pool is as follows:

Z -pool(x ) = [MaxPool0d(x), AvgPool0d(x)] (1)

where 0d is the 0th-dimension along which the operation is applied
and x is the input tensor. The resultant from the Z-pool is passed
through a standard convolutional layer of kernel size 7 × 7, fol-
lowed by batch normalization. The attention weights are generated
by passing the tensor through a sigmoid function and are applied
to the input tensor for the respective branch. The resulting output
is then rotated back to its original state to retain the original input
shape. The results of all three branches (y1, y2, y3) are aggregated
with straightforward averaging as given below:

y =
1

3
(y1 + ȳ2 + ȳ3) (2)

where ȳ2 and ȳ3 represents the 90◦ clockwise permutation to retain
the original input shape of (C × T × F).

2.4. Proposed architecture

We employed the IRN described in Section 2.3 to replace the stan-
dard 2D CNNs, which results in a smaller amount of parameters.
The triplet attention module was plugged in after the depthwise sep-
arable convolution in the IRN, as shown in Figure 1 (a). This newly
generated module is referred to as IRTAM, which enables the acqui-
sition of more blended cross-dimensional feature information. The
updated architecture has the same number of layers, but the size of
the feature map in each module is reduced to 16, 32, 64, 64, 64, 64,
and 64, respectively. The updated architecture consists of 2 layers
of Bi-GRU with 64 hidden units, resulting in a total of 304k param-
eters for the entire model compared to the 1.1M parameters in the
baseline. In summary, the updated architecture with the proposed
replacement has 27.6% of the parameters of the baseline.
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Table 1: Summary of DCASE 2022 Task 4 development set.
Clips Description
10,000 Synthetic strongly labeled data
3,470 Real strongly labeled data (external set)
1,578 Real weakly labeled data
14,412 In-domain unlabeled data
1,168 Real strongly labeled validation data
2,500 Synthetic strongly labeled validation data

3. EXPERIMENTAL SETUP

3.1. Dataset

In our experiments, we used the DCASE 2022 Task 4 dataset, which
is identical to the DCASE 2023 Task 4A dataset and consists of 10-
second audio clips extracted from AudioSet or constructed using
isolated sound events to simulate a domestic environment. The split
for the development training set is reported in Table 1. Additionally,
the public evaluation (“YouTube” evaluation) collection consists of
692 YouTube clips.

3.2. Pre-processing

The audio clips are first re-sampled at 16 kHz to a mono channel.
They are then segmented using a window size of 2048 samples with
a hop length of 256 samples. The spectrograms of segmented wave-
forms are extracted using the short-time Fourier transform. Then,
log-mel spectrograms are created by using mel-filters in the fre-
quency domain of 0 to 8 kHz, followed by a logarithmic operation.
Silence is used to pad the clips that are less than 10-seconds long.

3.3. Two-stage system for SED

We incorporate the two-stage system developed by [13–15] for
DCASE 2022 Task 4 participation, depicted in Figure 2. In this sys-
tem, Stage-1 focuses on audio-tagging (AT), whereas Stage-2 im-
proves SED by using the reliable pseudo-labels generated by Stage-
1. To extract the embeddings in Stage-1, we used a CNN-14-based
pre-trained audio neural network [17] as the feature extractor. The
embeddings extracted are fed into the Bi-GRU, which has 2 lay-
ers with 1024 hidden units. Stage-1 is trained using a strongly la-
beled set converted into weak predictions referred to as a weakified
set, a weakly labeled set, and an unlabeled set with 64 mel-bins, to
improve AT performance, as shown in Figure 2. Additionally, the
AT system (Stage-1) predicted unlabeled set and employed those as
pseudo-weak labels in Stage-2 training with 128 mel-bins. In Stage-
2, we used the proposed lightweight architecture with 304k param-
eters described in Section 2.4. It is trained on a pseudo-weakly la-
beled set in addition to the strongly labeled and the weakly labeled
set in a supervised manner. In training, the weak and pseudo-weak
sets were merged. Both strongly and weakly labeled samples were
assigned a weight of 1 using the baseline system’s loss functions.

Strongly
Labeled

Weakly Labeled

Unlabeled

Weakified
Labels

Low complexity
Model

PANNs

Strongly
Labeled

Weakly Labeled

Pseudo Weak

Stage-1 Stage-2

Figure 2: Two-stage system, with Stage-1 focusing on AT and
Stage-2 focusing on SED.

3.4. Training process

For all experiments, the batch size is 48 (1/4 strong set, 1/4 weak set,
1/2 unlabeled set). We employed the Adam optimizer with a max-
imum learning rate of 0.001 and a learning rate ramp-up over the
first 50 epochs of the optimization process. A total of 100 epochs
are used to train Stage-1, and 200 epochs are used to train Stage-2.
The weak training data was used to generate a 90% training set and
a 10% validation set. Then the validation is performed on the 10%
held-out weak subset and on the strongly labeled synthetic valida-
tion set. The system was built with PyTorch Lightning and trained
on an NVIDIA Quadro RTX 5000 GPU.

3.5. Additional methods

We used several data augmentation techniques to artificially gen-
erate more data and improve the model’s robustness during the
training in both stages. We employed time-masking [18], frame-
shifting, mixup [16], and Gaussian noise addition in Stage-1 and
time-masking, frame-shifting, mixup and frequency-masking [18]
in Stage-2. We also adopted adaptive post-processing [19] in all
the experiments, where the median filter window sizes are different
for each event category, calculated heuristically based on the vary-
ing length of each event in real life. Furthermore, for each class,
we used probability value correction [20], in which we multiplied
the probability generated by the model by a magnification factor to
correct the probability to a maximum value of 1. For inference tem-
perature tuning as in [21] a temperature factor of 2.1 is employed.
In our final developed system, we also used the external set released
by DCASE 2022 Task 4 organizers during training, with each stage
employing MT and interpolation consistency training (ICT) [22] to
utilize the unlabeled training data.

3.6. Evaluation metric

In our studies, we used polyphonic sound event detection scores
(PSDS) [23] introduced in the DCASE 2022 Task 4 as a perfor-
mance metric to evaluate the systems. The PSDS is more resistant
to labeling subjectivity, allowing for the interpretation of both the
ground truth and the detection of temporal structure. It computes
a single PSDS using polyphonic receiver operating characteristic
curves, allowing for comparison regardless of the operating point.
Furthermore, it can be customized for a variety of applications, en-
suring that the desired user experience is achieved. As a result,
it overcomes the limitations of traditional event F-scores based on
collars. We compute the PSDS in our studies using two different
scenarios that emphasize different system properties. Scenario-1
requires the system to respond quickly to event detection, focus-
ing on the temporal localization of the sound event. Scenario-2, on
the other hand, focuses on preventing class confusion rather than
reaction time. The greater the values for PSDS1 and PSDS2, the
better for both scenarios. Notably, the PSDS metric employed here
adheres to the DCASE 2022 Task 4 protocol and differs from the
threshold-independent PSDS used in DCASE 2023 Task 4A.

4. RESULTS AND ANALYSIS

4.1. Proposed IRTAM

We consider the two-stage framework described in the previous sec-
tion for our studies with low-complexity SED systems.
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Table 2: Performance comparison showing the importance of the
proposed method on DCASE 2022 Task 4 validation set.

System PSDS1 PSDS2 #Parameters

Baseline 0.351 0.552 1.1M

IRN 0.343 0.519 301k

IRN + SE 0.359 0.521 442k

IRN + CA 0.419 0.694 333k

IRN + Triplet Attention (IRTAM) 0.440 0.708 304k
+ data augmentation 0.446 0.702 304k
+ external set 0.457 0.712 304k
+ ICT 0.471 0.710 304k
+ median filtering 0.480 0.727 304k
+ probability correction 0.483 0.728 304k

First, in Stage-2 used for inference, we replace the standard
2D CNNs in the baseline with the proposed IRN described in Sec-
tion 2.3, resulting in a reduction of parameters from 1.1M in the
baseline to 301k. From Table 2, we observe a minor degradation in
the performance with a decrease in PSDS1 from 0.351 to 0.343 and
in PSDS2 from 0.552 to 0.519 owing to the reduction in the number
of parameters. Following our proposed design, we next incorporate
an attention module in the IRN after the depthwise separable convo-
lution layer to assist the model in learning the frequency-dependent
patterns and feature interdependencies between channels and time-
frequency locations.

We are also interested in comparing the performance of the pro-
posed IRTAM (IRN + triplet attention) with widely popular SE
attention and another recent method, namely, coordinate attention
(CA) [24] incorporated in IRN. From Table 2, we observe that the
SED performance increases with the introduction of both SE and
CA modules. However, on comparing their performance to our pro-
posed IRTAM, we find that IRN with triplet attention (IRTAM) per-
forms better than both the other attention modules considered. It is
also observed that the increase in the number of parameters for IR-
TAM is very negligible compared to that with SE and CA. Thus,
these studies show the effectiveness of the proposed low-complexity
IRTAM module, specifically due to the introduction of triplet atten-
tion, for capturing cross-dimensional interaction in SED models.
Further, we show the contribution of each additional method dis-
cussed in Section 3.5 to apply on the proposed developed system to
achieve the final PSDS1 of 0.483 and PSDS2 of 0.728 on the valida-
tion set, giving a 34.1% increase compared to the baseline in terms
of both PSDS metrics.

4.2. Ablation study on triplet attention branches

With the use of a three-branch structure, we verify that it is impor-
tant to capture the cross-dimensional interaction between (T, F), (T,
C), and (C, F). In Table 3, we compare the results when each branch
is turned on, represented by the combination given in each row, to
analyze the influence of the branches in the triplet attention mod-
ule. As can be seen, the findings corroborate our understanding that
individual and pair branch interaction is inferior to the performance
of triplet attention, which involves all three branches being active.

4.3. System comparison

To further assess the efficacy of the proposed module, the system is
also compared with the top-ranked single (without ensemble) sys-
tems submitted to DCASE 2022 Task 4. In Table 4, the scores for

Table 3: Ablation study to show the gain of each branch in the triplet
attention on DCASE 2022 Task 4 validation set, where (x,y) is the
interplay between dimensions x and y to compute attention weights
and aggregated average.

Branch Interaction PSDS1 PSDS2 #Parameters

(F,T) 0.420 0.643 304k

(C,T) 0.410 0.614 304k

(C,F) 0.424 0.657 304k

((F,T), (C,T)) 0.480 0.723 304k

((F,T), (C,F)) 0.468 0.716 304k

((C,T), (C,F)) 0.459 0.730 304k

((F,T), (C,T), (C,F)) 0.483 0.728 304k

Table 4: Comparison with top-ranked single systems (without en-
semble) from DCASE Task 4 2022 on the validation set.

System PSDS1 PSDS2 #Parameters

Ebbers-UPB-task4 [25] 0.505 0.807 15.4M

Proposed 0.483 0.728 304k
Zhang-UCAS-task4 [26] 0.459 0.672 11M

Kim-GIST-task4 [27] 0.455 0.670 1M

Dinkel-XiaoRice-task4 [28] 0.425 0.644 37M

the other systems are directly taken from their cited technical re-
ports released in the challenge. The proposed low-complexity sys-
tem surpasses systems with large parameters and gets close to the
top-ranked system, which has 15.4M parameters while having just
304k parameters. We also note that the proposed attention module
is network-independent and can be employed in any model to re-
place standard convolutions with the IRTAM block. Furthermore,
on the public evaluation set, the final system with the proposed IR-
TAM achieved a PSDS1 of 0.488 and a PSDS2 of 0.720, in contrast
to the baseline system having a PSDS1 of 0.387 and a PSDS2 of
0.592.

5. CONCLUSION

In this work, we proposed an inverted residual network with triplet
attention as a module referred to as IRTAM to replace the stan-
dard 2D convolutional neural networks for SED applications. The
proposed low-complexity attention module was designed to capture
cross-dimensional interaction with minimal computational over-
head. To show the effectiveness of the developed lightweight archi-
tecture employing IRTAM, we considered the DCASE 2022 Task
4 dataset for the studies. Our findings demonstrated the efficacy
of incorporating cross-dimensional interaction in SED applications
by improving the baseline by 34.1% and significantly outperform-
ing some other attention modules in both aspects of the PSDS met-
ric. Furthermore, our ablation study validated the relevance of cap-
turing cross-dimensional interaction using a three-branch structure
and showed overall effectiveness by achieving comparable results to
systems with a large number of parameters. It is also worth noting
that the proposed system contains only 27.6% of the baseline pa-
rameters, making the model suitable for low-complexity SED appli-
cations. We intend to extend the proposed IRTAM to larger model
sizes in the future.
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ABSTRACT
The learning of sound events often depends on data that is man-
ually labeled by human annotators. In this study, we explore the
use of soft labels for sound event detection (SED), which takes into
account the uncertainty and variability in human annotations. To
address the challenges posed by uncertain or noisy labels, we pro-
pose a weighted soft label (WSL) loss function. This loss function
effectively emphasizes reliable annotations while mitigating the in-
fluence of less confident or noisy labels. Additionally, we introduce
auxiliary tasks into a multi-task learning (MTL) framework, which
helps to leverage the shared information between the tasks and im-
proves the overall performance of the model. Furthermore, we ex-
plore the usage of pretrained models and various front-end feature
extraction methods. Experimental results on the MAESTRO-Real
dataset introduced in the DCASE 2023 Task 4B demonstrate a sig-
nificant improvement of 14.9% in the macro-average F1 score with
optimum threshold per class compared to the challenge baseline
model on the validation set, highlighting the effectiveness of our
proposed system.

Index Terms— sound event detection, soft labels, multi-task
learning, acoustic scenes, weighted loss

1. INTRODUCTION

The primary aim of sound event detection (SED) is to autonomously
identify and extract significant information from audio recordings,
enabling the detection of specific events or activities. SED holds
immense potential to augment diverse domains, leading to enhanced
safety, convenience, and efficiency. It already plays a critical role in
a wide range of applications, including surveillance systems [1, 2],
acoustic monitoring [3], smart-homes [4–6], and human-computer
interaction.

The lack of labeled training data presents a notable challenge
in SED. The process of collecting and annotating extensive audio
datasets with labeled sound events is time-consuming and demand-
ing. The scarcity of annotated data impedes the training of accurate
models and limits their performance. As a result, researchers are ex-
ploring alternative techniques such as employing soft-labeling train-
ing methods and transfer learning to mitigate this issue. Soft labels
provide a representation of the degree of presence or confidence for
specific sound events in each audio segment or frame, in contrast to
hard labels that assign binary labels (e.g., 0 or 1). By incorporating
confidence scores, soft labels effectively capture the uncertainty and
variability associated with sound events, facilitating more nuanced
analysis and decision-making processes.

In addition to soft-label generation, researchers are also investi-
gating transfer learning as a means to enhance SED. Transfer learn-
ing enables the utilization of knowledge acquired from pretrained

models on different but related tasks. Instead of training a model
from scratch on a specific SED task, transfer learning allows the
model to benefit from the learned representations and features of
a pretrained model. Previous works have shown the effectiveness
of using the features from pretrained models like pretrained audio
neural networks (PANNs) [7–9], audio spectrogram transformers
(ASTs) [10], and bidirectional encoder representation from audio
transformers (BEATs) [11], trained on a large dataset. The models
are fine-tuned using their learned features, customized to the spe-
cific SED task at hand, leading to improved performance.

Sound events occurring in nature are typically intricately linked
with acoustic scenes. An acoustic scene encompasses the auditory
environment in which sound events occur, reflecting the distinc-
tive combination of various sound sources, background noise, and
spatial characteristics. Understanding and analyzing sound events
within their corresponding acoustic scenes play a pivotal role in
SED and related applications. For instance, in the acoustic scene
“cafe” the sound events “coffee machine” and “cutlery and dishes”
are likely to occur, whereas the sound events “bird singing” and
“wind blowing” occur infrequently. On the basis of these previous
methods, [12] has proposed methods of SED that take into account
acoustic scene information in an unsupervised manner. [13,14] have
proposed scene classification methods considering sound events us-
ing Bayesian generative models. Similarly, the methods proposed
in [15, 16] focus on the joint analysis of acoustic scenes and sound
events using neural network models based on multi-task learning
(MTL). Such MTL-based methods leverage the existing knowledge
and reduce the need for manual labeling, thus effectively addressing
the challenge of data scarcity.

The detection and classification of acoustic scenes and events
(DCASE) 2023 edition has recently introduced a new subtask,
4B [17], which aims to explore the potential benefits of incorporat-
ing soft labels in improving performance. In our study, we extend
the idea of integrating soft labels into the training procedure of SED
models. Our investigation specifically revolves around the utiliza-
tion of soft labels using this newly released dataset in the DCASE
2023 Task 4B dataset [18]. This dataset was specifically designed
for exploring the estimation of strong labels through crowdsourc-
ing. It consists of 49 real-life audio files captured from 5 distinct
acoustic scenes, accompanied by their corresponding annotation
outcomes. To effectively leverage the soft-level probabilities pro-
vided in the dataset, we propose a novel weighted soft label (WSL)
loss function that mitigates the impact of less confident or noisy la-
bels. Moreover, we delve into the integration of two auxiliary tasks
within an MTL framework to enhance the effectiveness of the SED
model. To further improve the model’s capabilities, we also explore
the utilization of pretrained models and different front-end methods
for feature extraction.
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Table 1: Categorization of acoustic events into different acoustic scenes for the MAESTRO-Real dataset.
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Cafe/Restaurant ✓ ✓ ✓ ✓ ✓ ✓

City center ✓ ✓ ✓ ✓ ✓ ✓

Grocery store ✓ ✓ ✓ ✓ ✓ ✓

Metro station ✓ ✓ ✓ ✓ ✓ ✓

Residential area ✓ ✓ ✓ ✓ ✓ ✓

Acoustic scene

Acoustic event

2. PROPOSED METHODS

2.1. Multi-task learning (MTL) framework

Conventionally, acoustic scenes and sound events have been treated
as separate entities in most methods. However, in reality, acoustic
scenes play a crucial role in shaping the perception and interpreta-
tion of sound events by providing a contextual backdrop. Recog-
nizing the significance of this relationship, we aim to leverage it to
gain valuable insights that can enhance SED methods. In this study,
we leverage the five acoustic scenes available in the DCASE 2023
Task 4B dataset, and provide a summary of the sound events that
take place in these acoustic scenes, as shown in Table 1.

From the table, it is evident that certain sound events, such as
“shopping cart” occur exclusively in a specific acoustic scene and
are not present in any other acoustic scene. Similarly, the sound
event “bird singing” is only observed in residential areas and not in
any other acoustic scene. Additionally, we notice that some events,
like “footsteps” and “children voices” are common across multiple
acoustic scenes. As a result, we propose an additional task of clas-
sifying the acoustic environment associated with a sound event as
either indoor (I) or outdoor (O). This classification helps to differ-
entiate the surroundings in such sound events. We present two addi-
tional tasks related to acoustic scenes: (1) categorizing the acoustic
scene for each frame where a sound event takes place, termed acous-
tic scene classification (ASC), and (2) determining whether each
frame’s sound event occurs indoors or outdoors, known as acoustic
environment classification (AEC). As depicted in Table 2 the acous-
tic scenes associated with the sound events are separated into five
different classes. Additionally, we determined whether the acoustic
scenes were indoors (I) or outdoors (O) based on their respective
environments. To enhance the performance of the SED model, we
integrate the information from these two auxiliary tasks into the pri-
mary SED branch.
Table 2: Classification of the 5 acoustic scenes into different scene
labels and environment labels.

Acoustic scene Scene label Environment Environment label
Cafe/Restaurant A indoor I
City center B outdoor O
Grocery store C indoor I
Metro station D indoor I
Residential area E outdoor O

In order to capture low-level features that can benefit all three
tasks, we design the network to share certain common layers. These
shared layers facilitate the extraction of features that are relevant to
all tasks. Previous studies in [19] have demonstrated that leveraging
knowledge from easier tasks can improve the performance of harder
tasks. In our case, we consider SED as the most challenging task,
followed by ASC, and finally AEC. Therefore, we anticipate that
the two auxiliary tasks will contribute to improving the SED perfor-
mance. To conduct the joint training with these two tasks, we use a
combined loss function LMTL, which is the weighted loss function.
It can be expressed mathematically as

LMTL = α× LSED + β × LASC + γ × LAEC (1)

where α, β, and γ are the trade-off factors that regulate the weighted
loss. By adopting an MTL framework with joint training, we benefit
from the fact that once the MTL-based model is trained, the auxil-
iary branches can be removed from the model architecture. During
inference, only the single SED branch is utilized, ensuring that the
number of parameters remains the same as that of a single SED
branch.

2.2. Weighted soft label (WSL) loss

The DCASE 2023 Task 4B baseline uses mean-square error (MSE)
loss, to teach the system to predict outputs as close as possible to
the provided soft activity indicators instead of binary as described
below:

MSE =
1

N

N∑
i=1

C∑
j=1

(yij − pij)
2 (2)

where N represents the total number of samples, C is the number
of classes, yij is the ground truth soft label for sample i and class j,
and pij is the predicted value for sample i and class j. We extend
this loss function to incorporate weights derived from the proba-
bilities assigned to the soft labels by the annotator. Our proposed
weighted soft label (WSL) loss function assigns varying importance
to each prediction based on its associated probability, as described
below:

WSL =
1

N

N∑
i=1

C∑
j=1

yij · (yij − pij)
2 (3)

where yij also acts as the weight assigned to the soft label for sam-
ple i and class j. Higher weight is given to predictions with higher
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probabilities, indicating a higher level of confidence in those pre-
dictions. This weighted approach allows the model to focus more
on accurately predicting instances with higher probabilities while
considering the uncertainty associated with softer labels. As a re-
sult, the model can learn to optimize its performance by prioritizing
predictions based on their probability-weighted importance, leading
to improved accuracy and robustness.

3. ARCHITECTURE

3.1. Baseline

The baseline system [17] for DCASE 2023 Task 4B adopts the con-
volutional recurrent neural network (CRNN) architecture with a lin-
ear output layer. The convolutional neural network (CNN) compo-
nent of the model consists of three layers, each featuring 128 fil-
ters. A kernel size of 3 × 3 is applied to each convolutional layer,
followed by the activation function rectified linear unit and batch
normalization [20]. Frequency and temporal pooling are performed
using a max pooling layer with sizes of [[1, 5], [1, 2], [1, 2]], re-
spectively. To mitigate overfitting, a dropout rate of 0.2 is applied
after each layer. This is followed by the recurrent neural network
(RNN) block, consisting of a single layer of 32 bidirectional gated
recurrent units (Bi-GRUs) [21].

3.2. Proposed architecture

In this study, we incorporate large-scale PANNs [7] into our ap-
proach due to resource limitations. The PANNs have been pre-
trained on the extensive Audioset dataset, which consists of 5000
hours of audio spanning 527 sound classes. By leveraging the pre-
existing knowledge encoded in these pretrained models, we aim to
replace the CNN component of the baseline model with PANNs,
thereby benefiting from their learned representations and features.
The PANNs architecture comprises 6 convolutional blocks, with
each block consisting of 2 convolutional layers using a 3× 3 kernel
size. In our study, we investigate the extraction of embeddings after
each convolutional block within the PANNs model. These embed-
dings are subsequently inputted into a single-layer Bi-GRU contain-
ing 256 hidden units. The complete CRNN model, encompassing

Feature Extraction

Input Audio Signal

PANNs

Embeddings

GRU GRU GRU

LSED LASC LAEC

CNN

RNN

Figure 1: The proposed MTL framework with PANNs along with
three parallel Bi-GRUs for different tasks.

both the PANNs and Bi-GRU components, is unfrozen and trained
throughout the experimentation process. Additionally, to include
the two supplementary tasks outlined in Section 2.1, we uphold
the CNN component as the shared element across all tasks. Fur-
thermore, we integrate distinct Bi-GRUs and output layers for each
distinct task, as depicted in Figure 1, each sized at (200 × 17),
(200 × 5), and (200 × 2) for the SED, ASC, and AEC branches,
respectively.

4. EXPERIMENTAL SETUP

4.1. Dataset

This study utilizes the multi-annotator estimated strong
(MAESTRO)-Real dataset [18] released for the DCASE 2023
Task 4B. The dataset comprises 49 real-life audio files captured
from 5 distinct acoustic scenes and includes corresponding an-
notation outcomes. The total duration of the dataset amounts to
189 minutes and 52 seconds. The audio files are a subset of the
TUT Acoustic Scenes 2016 dataset and encompass five acoustic
scenes: cafe/restaurant, city center, grocery store, metro station,
and residential area. Each scene consists of 6 classes, with some
classes being common across all scenes, resulting in a total of
17 classes as presented in Table 1. The dataset consists of the
following components: (1) audio recordings comprising the 49
real-life recordings, each ranging from 3 to 5 minutes in length,
and (2) soft labels representing estimated strong labels with a time
resolution of 1s obtained through crowdsourced data, with values
ranging between 0 and 1 indicating the certainty of the annotators.
The soft labels follow a format that includes the start time, end
time, textual label, and a corresponding value indicating the soft
label for each event class within the given segment. For example:
“2 3 car 0.9”, “2 3 footsteps 0.7”, and so on.

4.2. Feature extraction and training

For the baseline system [17], a batch size of 32 is employed, and the
input features are mel-band energies extracted using a hop length of
200 ms and 64 mel filter banks. Additionally, we explored differ-
ent front-end feature extraction techniques such as mel-frequency
cepstral coefficient (MFCC), linear frequency cepstral coefficient
(LFCC), and constant-Q transform (CQT) to replace the log-mel
spectrogram. The DCASE 2023 Task 4B dataset is organized ac-
cording to a 5-fold cross-validation setup, where around 70% of the
data per class is allocated for training, and the remaining portion is
dedicated to testing. To optimize the training process, we employ
the Adam [22] optimizer, with an initial learning rate of 0.001. The
training process is executed over a total of 150 epochs, utilizing the
computational power of the Nvidia RTX A4000.

4.3. Evaluation

In this study, we utilize the macro-average segment-F1 score
(F1MO) under the optimum threshold [23] as our primary evalu-
ation metric. It is calculated over 1s segments, following the same
approach as the DCASE 2023 Task 4B challenge. The F1MO score
considers the best F1 score per class achieved with a class-specific
threshold. Additionally, we report the micro-average F1 score
(F1m), micro-average error rate (ERm), and macro-average F1
score (F1M ) calculated over 1s segments using a decision threshold
of 0.5 applied to the system output.
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5. EXPERIMENTAL RESULTS

In this part, we present outcomes of the proposed methods, includ-
ing ablation studies on the DCASE 2023 Task 4B validation set.

5.1. Architecture with feature extraction

We first present the outcome in Table 3 obtained for the baseline as
reported by the organizers of the DCASE 2023 Task 4B. The base-
line incorporates the log-mel spectrogram with the configuration
specified in Section 4.2. Subsequently, we substitute the baseline
architecture with the proposed architecture described in Section 3.2,
which utilizes PANNs. When using PANNs, we extract the embed-
dings after the 6th block. Our observations show that employing
PANNs with log-mel spectrogram alone enhances the F1MO score
from 42.8 to 45.4 as represented in Table 3. The following analysis
compares various commonly employed feature extraction methods
discussed in Section 4.2. Our findings reveal that the MFCC-based
feature extraction method outperforms the log-mel spectrogram uti-
lized in the baseline, as well as the LFCC and CQT front-ends. It
improves the F1MO score for the 6-blocks-based PANNs to 46.5
from 45.4. Having determined MFCC as the chosen feature ex-
traction method, we proceed to explore the layer from which we
extract the embeddings. We decrease it from the 6th Block to the 3rd

Block and conduct experiments accordingly. Through this analysis,
we discover that extracting embeddings after the 4th Block yields
the most significant improvement in the F1MO score, increasing it
from 46.5 to 48.2.

5.2. WSL loss function

Once we determine that the highest score is achieved by extracting
embeddings after the 4th Block, we introduce the WSL loss func-
tion, as outlined in Section 5.2. The loss function prioritizes the
learning of well-defined patterns while minimizing the influence
of ambiguous or noisy instances. Consequently, this enhancement
leads to an improvement in the F1MO score, increasing it from 48.2
to 48.9.

5.3. MTL framework

To enhance our system, we introduce the MTL framework compris-
ing two auxiliary branches in addition to the primary SED branch.
In an ablation study, we compare the performance of the proposed
system (PANNs+WSL) by incorporating different MTL branches.
Initially, we integrate only the ASC branch with the SED branch

Table 3: Comparison of performance, showing the impact of archi-
tectural changes and variations in feature extraction methods.

System Blocks Feature ERm F1m F1M F1MO

Baseline - Log-mel 0.487 70.34 35.83 42.8

PANNs 6 Blocks Log-mel 0.442 72.64 36.97 45.4

PANNs 6 Blocks CQT 0.493 67.53 31.84 42.0

PANNs 6 Blocks LFCC 0.447 71.5 31.75 46.0

PANNs 6 Blocks MFCC 0.415 74.18 34.33 46.5
PANNs 5 Blocks MFCC 0.410 75.1 37.21 48.0

PANNs 4 Blocks MFCC 0.408 76.74 39.42 48.2
PANNs 3 Blocks MFCC 0.470 73.5 39.35 46.2

Table 4: Illustration of performance improvement following the im-
plementation of the WSL loss function.

System Feature ERm F1m F1M F1MO

Baseline Log-mel 0.487 70.34 35.83 42.8

PANNs (4 Blocks) + WSL MFCC 0.416 75.61 38.60 48.9

Table 5: Ablation study for analyzing the contribution of each
branch.

System MTL ERm F1m F1M F1MO

Baseline - 0.487 70.34 35.83 42.8

PANNs (4 Blocks) + WSL SED + ASC 0.416 76.33 39.65 49.2

PANNs (4 Blocks) + WSL SED + AEC 0.412 76.29 40.85 49.0

PANNs (4 Blocks) + WSL SED + ASC + AEC 0.406 76.61 39.87 49.3

with (α=0.85, β=0.15, and γ=0). After tuning the weights in the
loss function, this configuration achieves the highest F1MO score
of 49.2. Next, we replace the ASC branch with the AEC branch
(α=0.85, β=0, and γ=0.15), which results in a F1MO score of 49.0.
Finally, we introduce all three branches, including the SED, ASC,
and AEC branches, with tuned hyperparameters (α=0.85, β=0.1,
and γ=0.05). This configuration yields the best overall score of
49.3, demonstrating the effectiveness of the MTL framework and
the impact of each auxiliary branch.

5.4. System comparison

Our experiments come to a close as we present the results of
comparing our system with other high-performing submissions for
DCASE 2023 Task 4B. Table 6 displays the reported performances
of the baseline system as well as other systems, sorted based on the
F1MO score. We observe that our system achieves a performance
comparable to other systems while demonstrating an improvement
of 14.9% over the baseline system. Additionally, it is worth not-
ing that our system outperforms the 3rd system [24] in all metrics
besides the F1MO score.

Table 6: Performance comparison of our proposed system with
other submissions in DCASE 2023 Task 4B.

System ERm F1m F1M F1MO

Xu-SJTU-task4b-3 [25] 0.246 86.13 57.91 69.85

Bai-JLESS-task4b-4 [26] 0.360 78.63 42.45 56.16

Liu-SRCN-task4b-2 [24] 0.430 72.90 28.80 49.70

PANNs (4 Blocks) + WSL + MTL (Ours) 0.406 76.61 39.87 49.30
Nhan-VNUHCMUS-task4b-1 [27] 0.450 72.43 37.32 46.71

Min-KAIST-task4b-1 [28] 0.445 72.78 36.12 45.81

Cai-NCUT-task4b-1 [29] 0.439 74.84 39.57 43.50

Baseline [17] 0.487 70.34 35.83 42.8

6. CONCLUSION

In this study, we present our methods for sound event detection
using soft labels introduced in DCASE 2023 Task 4B. We pro-
pose several novel approaches and demonstrate their effectiveness
through our findings. Firstly, we suggest using PANNs embeddings
and modifying the feature extraction process. Secondly, we propose
a weighted soft label (WSL) loss function. Lastly, we incorporate an
MTL framework with auxiliary branches for ASC and AEC tasks,
enhancing the performance of the primary SED task through joint
training. In the future, we intend to explore making task weights
adaptive rather than relying on hyperparameter tuning.
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ABSTRACT

Optical fiber sensing is a technology in which sounds, vibra-
tions, and temperature are detected using an optical fiber; especially
the sounds/vibrations-aware sensing is called distributed acoustic
sensing (DAS). DAS has the potential to capture various types of
sounds and/or vibrations in wide areas, e.g., the ground, the sea,
and a city area, in our everyday life. To precisely recognize the var-
ious types of events, e.g., whale calls, car horns, and wind, by DAS,
therefore two problems. First, there is little publicly available data
and few pretrained models for the various types of events. Second,
the signal-to-noise ratio (SNR) of DAS data is lower than that of
other sensor data, such as microphone data, because of optical noise
and low sensitivity of DAS. To tackle the lack of DAS data, we first
demonstrate a DAS simulation method where DAS observations are
simulated by exploiting a microphone simulation. We then propose
a method of event classification for DAS utilizing a pretrained au-
dio recognition model, where none of the DAS data are used for
training. Moreover, we advocate a class-level gated unit with the
pretrained model to overcome the poor classification performance
caused by the low SNR of the DAS data. In the proposed method,
class probabilities, which are the output of the pretrained model,
are employed for controlling priors of DAS, such as events of in-
terest or optical noise. Directly controlling the class probabilities,
which are non-black-box values, as priors enables us to utilize not
only a pretrained model but also powerful human knowledge. To
verify the performance of the proposed method, we conduct event
classification, where we simulate observed signals by DAS with the
ESC-50 dataset. Experimental results show that the accuracy of the
proposed method is improved by 36.75 percentage points compared
with that of conventional methods.

Index Terms— Optical fiber sensing, distributed acoustic sens-
ing, deep neural network, sound event classification

1. INTRODUCTION

Optical fiber sensing is the detection of sounds and/or vibrations
using an optical fiber [1, 2], which is known as distributed acoustic
sensing (DAS) or phase-sensitive optical time domain reflectom-
etry (ϕ-OTDR). Optical fiber sensing, including DAS, is superior
to other methods in terms of the scalability of the sensing area,
the electromagnetic resistance, and the usability of existing optical
fibers. Because of these features, DAS is widely used for various
applications, especially detecting vibrations, such as whale call de-
tection [3], structural health monitoring [4], seismic activity moni-
toring [5], border monitoring [6], and pole localization [7]. Owen et
al. [6] introduced the DAS-based system for distinguishing people,
vehicles, and flying objects. Waagaard et al. [8] proposed large-
scale sensing over 171 km using DAS. Ip et al. [1, 2] discussed the
use of telecom cables for sensing sounds and/or vibrations.

DAS

system

Sound/vibration

Laser

Optical fiber
Spatial sampling rate

Gauge length
Channel

Impurity
Backscattering

Figure 1: Overview of DAS system

Recently, deep neural networks (DNNs) have been in the spot-
light in the field of DAS [7, 9, 10, 11]. DNN-based methods require
a large amount of training data to achieve the high performance
of DAS. To alleviate this limitation, Zhao et al. [10] proposed a
data augmentation of DAS and its application to seismic data. Gen-
erative adversarial network (GAN)-based methods [11] have been
studied to produce training data and are designed for seismic appli-
cations.

DAS has two problems in the precise recognition of various
types of events, such as whale calls, dog barking, and footsteps.
First, there is little publicly available data and few pretrained mod-
els for analyzing various types of event classes in the field of
DAS. On the other hand, in communities where acoustic signal
processing and statistical methods have been studied for various
types of sounds [12], various types of dataset or pretrained model
[13, 14, 15] are available. Second, the signal-to-noise ratio (SNR) is
lower in DAS compared with methods using other sensors, such as
microphones. The lower SNR of DAS is caused mainly by optical
noise and the low sensitivity of DAS.

To address the lack of DAS data, we first demonstrate a DAS
simulation method where a simulator of microphones is utilized for
simulating DAS observations. We then propose an event classifi-
cation method of DAS using a pretrained audio recognition model
trained by microphone data. Moreover, we introduce a class-level
gated unit with the pretrained model to tackle the problem of the
low SNR of DAS data. In the proposed method, posteriors of the
pretrained model are employed to control prior information, i.e.,
events of interest or optical noise, which can be directly manipu-
lated by humans in the inference stage. The proposed gated unit
that directly controls the probabilities of event classes, which are
non-black-box values, enables us to utilize not only the pretrained
model but also human knowledge.
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Figure 2: Comparison of DAS and microphone

2. DISTRIBUTED ACOUSTIC SENSING

2.1. Principle of DAS

In DAS, a sensor captures the phase change of a Rayleigh backscat-
tering light wave. Figure 1 shows an overview of the DAS system.
The backscattering is triggered by a coherent laser that collides with
impurities in the optical fiber. The phase change of the backscatter-
ing is proportional to the optical fiber stretching [16], that is, sounds
or vibrations that propagate through the optical fiber.

In DAS, the stretching of the optical fiber is measured over the
gauge length (GL) L. The total phase change ∆ϕ in L [17] is

∆ϕ =

∫ L
2

−L
2

ϵ(x) dx, (1)

where ϵ(x) indicates the strain, that is, the observed sounds and/or
vibrations along the optical fiber, at position x of the optical fiber.
The point is that the observed signals depend on L. In general,
larger L suppresses optical noise, although it distorts the observed
signal of sounds or vibrations. An optical fiber sensor with GL of
L is also interpreted as a linear sensor array in Eq. 1 where the
directivity of the angle of a source signal and its distortion [18].
As can be seen in Fig. 1, arbitrary multiple sensing points can be
set along the optical fiber in accordance with a predefined spatial
sampling rate.

2.2. Difference between DAS and acoustical microphones

There are two main differences between DAS and microphones: op-
tical noise and GL. The differences make the SNR of DAS data
lower compared with that of microphone data. In the first differ-
ence, optical noise [19, 20], shot noise [2] is dominant because of
the randomness of photons. The second difference is the idea of the
gauge. A larger GL distorts signals observed by DAS. On the other
hand, a smaller GL, i.e., limL→0 ∆ϕ, approximates a point sensor
such as a microphone. As can be seen in Fig. 2, DAS data within
the GL is thus regarded as a microphone array where channels are
densely distributed. Note that the effects of the GL are evident in a
single channel of DAS data, unlike a microphone array.

3. PROPOSED METHOD

In this section, we first introduce a simulation method of DAS ob-
servation to address the lack of DAS evaluation data for analyzing
various types of events. Second, the event classification method for
DAS utilizing the pretrained audio recognition model and the class-
level gated unit are proposed.
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Figure 3: Overview of proposed method

3.1. DAS simulation utilizing microphone simulation

To simulate DAS, we employ multiple simulated microphones, i.e.,
a microphone array. This is because the sound propagation and the
GL are easily implemented using tools of a microphone array sim-
ulation, e.g., pyroomacoustics [21] where distance attenuation, re-
verberation, or directivity is easily simulated. We simply take an
average of signals observed by microphones of M channels.

s̃m′ =
1

M

M−1∑
m=0

sm. (2)

Here, s̃m′ ∈ RT indicates a DAS signal of the m′-th channel with
T temporal frames. sm ∈ RT denotes a signal captured by a mi-
crophone m of the array. The average of the multiple channels cor-
responds to L in Eq. 1. s̃m′ is distorted by the GL, i.e., no-delay-
and-sum operation. As an example referring to Fig. 2, there is a
single channel data value of DAS for each observed data of three
microphones (M = 3).

The signal detected by DAS is reportedly expressed as [22]

x = s̃m′ + n, (3)

where n ∈ RT represents the noise signal. x ∈ RT is the noisy
signal that is corrupted by the GL and the noise signal. When n is
the shot noise of optical noise, it follows the Gaussian distribution
N (µ, σ).

3.2. Event classification of DAS with pretrained audio recogni-
tion model and class-level gated unit

To precisely classify various types of events under a lower SNR
condition of DAS data, we propose the event classification method
of DAS with the class-level gated unit utilizing the pretrained audio
recognition model.
[Training stage] In the proposed method, only the data and pre-
trained model trained with the microphone data are used for the
training to tackle the lack of DAS data. Figure 3 shows an overview
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Figure 4: (a) Coordinates of simulation and (b), (c) results of preliminary experiments

of the proposed method. Given a pretrained audio recognition
model of the microphone, its deep feature extractor Emb : RT →
RD and the classification layer CL : RD → [0, 1]E are defined.
The posterior for event classes is then

P = CL
(
Emb(A)

)
|A=s, (4)

where T , D, and E represent the temporal length of an audio clip,
the number of dimensions of embedding, and the number of event
classes of the pretrained model, respectively. A denotes an arbitrary
signal. When the model is trained with the microphone data, sm |
∃m is used as A. Given two fully connected layers (FCs) FC1 :

RD → RE and FC2 : RE → RE′
, the class-level gated unit is

Z = FC2

(
FC1

(
Emb(B)

)
⊙ P

)
|B=s . (5)

⊙ and E′ indicate elementwise multiplication and the number of
target event classes of DAS, respectively. B denotes an arbitrary
signal. Equation 5 is similar to that of a gated linear unit (GLU)
[23]. In our method, gating is conducted on the probabilities of
event classes of the pretrained audio recognition model, which are
non-black-box values.
[Inference stage] In inference stages, DAS data x are used as A
and B in Eqs. 4 and 5, respectively. P can then be edited by human
interaction. Directly controlling the interpretable values, i.e., the
probabilities of event classes, enables us to utilize human knowl-
edge as an additional prior. Human knowledge can enhance the
classification performance with low SNR of DAS data since humans
have rich knowledge compared with pretrained audio recognition
models. For example, values of event classes of P unrelated to a
recording situation and/or events of interest can be directly masked
with zero or a small value:

P = (p0, . . . , pe, . . . , pE−1), (6)

where pe ∈ [0, 1] is the value of event e of the predefined event
classes for the pretrained model and can be directly set by a human.
Secondarily, A |A=n in Eq. 4 can be used for mitigating the optical

noise in the level of the class of the pretrained model in the inference
stages:

P = max
(
FC1

(
Emb(B)

)
−CL

(
Emb(A)

)
, 0

)
| B=x, A=n, (7)

where max(a, b) is a function that returns the larger value element
of vectors a and b in an elementwise manner. 0 represents the
E dimensional vector where all elements are zero. In Eq. 7, only
denoised probabilities of event classes are expected to be passed
through. In the inference stages, the softmax function is applied to
Z for obtaining the maximum value of the posteriors of the event
classes.

4. EXPERIMENT

4.1. Experimental conditions

[Simulation procedure] To simulate DAS observations, we fol-
lowed the procedure described in Sec. 3.1. We first simulated a
linear microphone array and a sound source, as shown in Fig. 4a,
using the pyroomacoustics toolbox [21]. By using pyroomacous-
tics, we can easily simulate the sound propagation and the idea of
the GL. The microphone array consists of 250 channels at intervals
of 1 cm. The observed signals of the channels are then averaged
using Eq. 2. M was set to 40 (L =40cm) or 250 (L =250cm)
in our experiment. Here, the center of the gauge with M = 40
matches those with M = 250. We finally obtained single channel
data of DAS from the signals observed by M microphones using
Eqs. 2 and 3. The signal of the sound source was omnidirectionally
propagated. In our experiments, we did not simulate any reverbera-
tions or revetments of the optical fiber. Moreover, for the shot noise
of optical noise, we use Gaussian noise ∼ N (0, 1) with variable
SNRs.

[Dataset, classification model, and acoustic feature] We used the
ESC-50 dataset [13] to evaluate the performance of our methods.
ESC-50 comprises 4,000 5-second audio clips with 50 event classes.
For the classification model, we used pretrained CNN14 in PANNs
[15]. PANNs were trained using AudioSet [14] where event classes
are organized in a hierarchy, i.e., ontology. In our experiment, Emb
and CL are those of CNN14 with the frozen parameters, where
D and E are set to 2,048 and 527, respectively. E′ is set to 50,
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Figure 5: Accuracy (%) of event classification for each target major
category with directly controlling gate

which is the number of classes in ESC-50. All clips are downsam-
pled to 32kHz in our experiment. As acoustic features, we used
64-dimensional log-mel energies calculated for every 1,024 sample
window and 320 sample hop sizes.

[Training and evaluation] We conducted the 5-fold cross-
validation with the ESC-50 dataset. In all experiments, we trained
the models using (M /2)th-channel signals of the microphone array
before all of the channels were averaged. Note that the (M /2)th
channel is located at the center of the microphone array. This is be-
cause we aim to reproduce the situation of the lack of DAS data. In
the inference stages, we used only the DAS simulation data, which
were averaged with Eqs. 2 and 3. In the training stages, the param-
eters of only FC1 and FC2 were updated by backpropagation using
Adam [24]. In all FCs, except for FC2, ReLU activation was used.

4.2. Experimental results

[Comparison between DAS and microphone data] We first con-
firm the amplitude spectrum of a chirp signal in the DAS and micro-
phone simulations. Figure 4b shows the 50-to-10,000Hz spectrum.
As shown in the figure, GL=40cm does not considerably distort the
signal compared with GL=250cm. Furthermore, in Fig. 4c, the
embedding vectors of DAS and microphone data obtained by Emb
of PANNs [15] are visualized by t-SNE [25]. As can be seen in
the figure, there is little difference between the distributions of the
microphone and DAS data of GL=40cm. Even when GL is set to
250cm, most of the embeddings of DAS are overlapped with those
of the microphone. The results prove that microphone data are sim-
ilar to DAS data except for optical noise, obtained using large-scale
pretrained audio recognition models.
[Event classification with controlling gate] In this experiment,
we directly control P to evaluate the performance of targeting an
event of interest. To conduct this experiment, we utilize the overlap
between the major categories of ESC-50 and the ontology of Au-
dioSet. In the major categories of ESC-50, we focus on “Animal,”
“Natural,” and “Human,” which correspond to “Animal,” “Natural
sounds,” and “Human sounds” of the AudioSet ontology. When
events in a major category of ESC-50 are targeted, pe in Eq. 6 is
set to 1; otherwise, 0. For example, when event classes of the major
category “Human” of ESC-50 are targeted, pe in Eq. 6 correspond-
ing to “Human sounds” of the AudioSet ontology is set to 1; oth-
erwise, 0. Figure 5 indicates the results of event classification with

Table 1: Accuracy (%) of event classification with denoising optical
noise

SNR [dB]
-5 0 5

GL [cm]
40 250 40 250 40 250

Conv. 18.90 15.65 39.00 32.00 59.00 48.45
w/ spectral 23.60 24.25 54.65 37.45 69.65 39.50subtract. [26]
w/ Wiener 21.35 16.65 34.15 23.90 47.35 32.20filter [27]

Prop. 32.45 27.55 51.95 40.05 64.50 51.50w/ Eq. 7

Eq. 6 in terms of each major category. “Conv.” indicates CNN14
[15] fine-tuned with ESC-50 of microphone data, where the last two
FCs were trained, as described in [15]. “Prop.” represents the pro-
posed method with directly controlled P . The results show that the
proposed method outperformed the conventional method in terms of
classification accuracy. In particular, our method improved the ac-
curacy of “Human” by 36.75 percentage points compared with that
of the conventional method under the condition of SNR= −5dB
and GL = 40cm. On the other hand, the “Natural” class is mis-
classified when using the proposed method under some conditions.
This is because the “Natural” class, e.g., wind or rain, possibly co-
occurs with other classes. In other words, the proposed method with
Eq. 6 might discard the information of co-occurrence among event
classes.
[Event classification with denoising] In this experiment, we evalu-
ated the denoising performance for event classification of DAS data
with optical noise signals. Note that none of the DAS data were
used for training models to simulate the lack of DAS data. We thus
employed non-machine-learning-based denoising methods for the
comparison. “Prop.” represents the proposed method where P was
produced by Eq. 7 with the optical noise n. Table 1 shows the
results of event classification with denoising optical noise. The re-
sults reveal that the classification performance is improved when
using the proposed method compared with the conventional meth-
ods. In particular, the more degraded signals, i.e., lower SNR and/or
larger GL, receive greater benefits from the proposed method with
Eq. 7. This is because the proposed method does not further distort
the signals distorted by the GL, unlike the conventional methods.
Moreover, the proposed denoising method can utilize the statistical
information of the pretrained model, unlike the conventional meth-
ods.

5. CONCLUSION

In this paper, we proposed the event classification of DAS data uti-
lizing the pretrained audio recognition model with the class-level
gated unit for accurately classifying various types of events under
low SNR conditions without DAS training data. In the proposed
method, the class-level outputs of the pretrained model, which are
non-black-box values, are employed for controlling priors of DAS
data, that is, the optical noise and/or events of interest. This enables
us to exploit not only the statistical information of the pretrained
model but also human knowledge. To evaluate the performance
of the proposed method, we conducted event classification where
signals observed by DAS were simulated with the ESC-50 dataset.
Experimental results show that the accuracy of event classification
by the proposed method is improved by 36.75 percentage points
compared with that of the conventional methods.
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A python package for audio room simulations and array pro-
cessing algorithms,” Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 351–
355, 2018.

[22] L. Jiajing, W. Zhaoyong, L. Bin, W. Xiao, L. Luchuan,
Y. Qing, Q. Ronghui, and C. Haiwen, “Distributed acoustic
sensing for 2d and 3d acoustic source localization,” Optics
Letters, vol. 44, no. 7, pp. 1690–1693, 2019.

[23] Y. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” Proc. Interna-
tional conference on machine learning (ICML), pp. 933–941,
2017.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” Proc. International Conference on Learning Rep-
resentations (ICLR), 2015.

[25] L. Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, pp. 1–
27, 2008.

[26] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement
of speech corrupted by acoustic noise,” Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 208–211, 1979.

[27] J. Lim and A. Oppenheim, “All-pole modeling of degraded
speech,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing (TASLP), vol. 26, no. 3, pp. 197–210, 1978.

200



Detection and Classification of Acoustic Scenes and Events 2023 21–22 September 2023, Tampere, Finland

AUDIO-CHANGE CAPTIONING TO EXPLAIN MACHINE-SOUND ANOMALIES

Shunsuke Tsubaki1 Yohei Kawaguchi2, Tomoya Nishida2, Keisuke Imoto1

Yuki Okamoto3, Kota Dohi2, Takashi Endo2

1Doshisha University, Faculty of Science and Engineering, Kyoto, Japan
2Hitachi, Ltd., Japan, 3Graduate School of Information Science and Engineering,

Ritsumeikan University, Kyoto, Japan

ABSTRACT

This paper defines the new problem of “audio-change captioning,”
which describes what has changed between two audio samples.
Conventional audio-captioning methods cannot be used to explain
such change, and conventional image-change-captioning methods
cannot explain the differences in audio samples. To address these
issues, we propose a neural-network model for generating sen-
tences that explain how a machine’s normal and anomalous sounds
changed in relation to each other. We also created a dataset called
MIMII-Change by annotating pairs of normal and anomalous sam-
ples extracted from MIMII-DG for each type of sound in machine-
operation sounds. The experimental results indicate that our model
with spatial attention architecture is effective for stationary sounds
because it is able to determine changes in global features, while our
model with Transformer Encoder architecture is effective for peri-
odic and sudden sounds because it is able to determine temporal
dependencies.

Index Terms— Automated audio captioning, Natural language
generation, Deep learning

1. INTRODUCTION

Automated audio captioning (AAC) [1] is one of the tasks that has
received particular attention in the field of environmental sound
analysis (ESA). The purpose of AAC is to automatically generate
textual descriptions (captions) of an audio signal. By represent-
ing an audio signal with captions, the relationship between acoustic
events and acoustic scenes in the audio signal and their respective
states can be described. AAC is expected to have practical appli-
cations in a variety of areas, such as assisting the hearing-impaired
to understand environmental sounds and analyzing sound in video-
based security surveillance systems. It can also be used for other
fields such as multimedia retrieval [2, 3]. The framework com-
monly used in AAC is the sequence-sequence encoder-decoder [4],
and like many natural-language-processing tasks, Transformer [5] is
the predominant model in AAC [6, 7, 8]. Several studies were con-
ducted to improve the performance of caption generation by provid-
ing additional information beyond the encoded audio-embedding
information to the text decoder [6, 9]. The utility of such semantic
guidance has been explored in image and video captioning, achiev-
ing better performance [10, 11].

While the purpose of AAC is to describe a single sound, in real-
world problem solving, it may be useful to compare two acoustic
signals and describe the changes between them. The anomalous
sound detection (ASD) [12] system for machine-operation sounds,
only informs about the presence of anomalies without specifying

what has changed and how. As a result, experts need to verify the
detection results and perform additional tasks to determine if repairs
are necessary and which components should be repaired. To sim-
plify this process and reduce the workload for experts, we propose
representing the differences between normal and anomalous sounds
using linguistic information. This approach allows for an efficient
analysis of anomalous machine operation sounds, enabling experts
to identify the specific changes and alleviate their burden.

Hence, we define the task of describing the change between two
audio signals as audio-change captioning, address the task of ex-
plaining anomalous sounds in machines, and introduce the task de-
scription and learning scheme. It should be noted that in this study,
the objective is not to classify anomalous sounds as in traditional
ASD, but rather to focus on expressing how they are anomalous.

Change captioning has already been studied in the image do-
main. It is used to describe what has changed between two image
scenes (before/after) using natural language. Jhamtani and Berg-
Kirkpatrick [13] used a pixel-difference-based approach to identify
regions of change between before and after images. Because im-
ages are assumed aligned and that there is always a change between
the two images, this approach cannot distinguish relevant changes
from distractors, which is data disguised as change such as view-
point changes. Therefore, to make it more useful for users, Park
et al. [14] created a model that distinguishes between distractors,
such as viewpoint change or lighting change, and semantically sig-
nificant changes such as object movement or change. The model
was made robust to distractors by using a dual-attention mechanism
to identify regions of change between images. Thus, while change
captioning has been studied in the image domain and various meth-
ods have been proposed, a pixel-difference-based approach, such
as Jhamtani and Berg-Kirkpatrick’s [13], is not considered effective
for the audio domain, which is time-series information. This study
is the first attempt at automated audio-change captioning.

We propose a neural-network model for generating change cap-
tions from two sounds. The aim is to generate a textual caption of
the changes between the audio files and that is as close as possi-
ble to the change caption given by a human for the same audio
file. As the suitable model architecture differs due to the sound-
occurrence interval or section, we divided sound types into three
categories in accordance with sound occurrence and used differ-
ent architectures for our model. We used Transformer Encoder,
which is effective in many AAC tasks, and spatial attention, which
is also considered effective [14], as model architectures. For sta-
tionary sound changes, we employed spatial attention, while for
periodic and non-periodic sounds, we employed Transformer En-
coder. In addition to the metrics used in Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) [15], i.e., BLEU [16],
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Figure 1: Our proposed audio-change captioning model to explain machine-sound anomalies

METEOR [17], CIDEr [18], and SPIDEr [19], we used Sentence-
BERT [20, 21], which is used to evaluate sentence-meaning agree-
ment. Since no suitable dataset for audio-change captioning existed,
we created the malfunctioning industrial machine investigation and
inspection (MIMII)-Change dataset, which is based on the malfunc-
tioning industrial machine investigation and inspection for domain
generalization (MIMII-DG) [22] which was created for anomalous
sound detection (ASD) that contains both normal and anomalous
sounds of five types of machine-operation sounds (bearing, fan,
gearbox, slider, valve). MIMII-Change consists of pairs of normal
and anomalous sounds, and each pair is annotated with the changes
between these sounds.

2. TASK DESCRIPTION

We now introduce the proposed neural-network model for gener-
ating change captions from two sounds. Like many models for
explanatory-sentence-generation tasks, it uses a network architec-
ture that encodes variable-length inputs into a fixed-dimension vec-
tor and uses this representation to ”decode” them into the desired
output sentence. Thus, we propose to directly maximize the proba-
bility of a correct description given two sounds using the following
formulation:

θ∗ = argmax
θ

∑
(Abefore,Aafter,W )

logp(W |Abefore, Aafter; θ), (1)

where θ are the parameters of our model, Abefore is an audio before
changing, Aafter is an audio after changing, and W is its correct de-
scription. Sentences are generally generated autoregressively from
the left (i.e. first word) to the right (i.e. final word). That is, at time
step t, the decoder predicts the posterior probability on the vocabu-
lary given the encoded acoustic feature, the start token w0, and the
previously generated words w1 to wn−1. Thus, p(W |Abefore, Aafter)
can be formulated as

logp(W |Abefore, Aafter) =

N∑
n=0

logp(wn|Abefore, Aafter, w0, ..., wn−1), (2)

where N is the length of sentence. Note that θ has been removed
for convenience. The description-generation process ends when a
stop token is generated or the maximum number of generation steps
is reached.

3. PROPOSED MODEL

3.1. Training scheme

To analyze the content of a sound clip, it is important to obtain a
valid feature representation of the sound clip. We first extract the
spectrogram then obtain embedding vectors Xall ∈ R(T∗2)×D by
using the encoder. This procedure can be formulated as

Xbefore, Xafter = E(Abefore, Aafter), (3)

where (Abefore ∈ RT×F , Aafter ∈ RT×F ) are the log mel-
spectrograms of “before” and “after” sounds, Xbefore ∈ RT×D and
Xafter ∈ RT×D are embedding vectors extracted by encoders E , T
is the number of time frames, F is the number of mel bins, and D
is the dimension of the latent embedding.

We then subtract Xbefore from Xafter to capture semantic differ-
ences in the embedding space. The resulting vector Xdiff is concate-
nated with Xbefore. This procedure can be formulated as

Xdiff = Xafter −Xbefore (4)

Xall = [Xbefore : Xafter : Xdiff], (5)

where [:] indicates concatenation.
We used Transformer Encoder [5] and spatial attention [14, 23]

as the audio encoders. Spatial attention consists of a two-layer con-
volutional neural network (CNN) and creates spatial-attention maps
abefore, aafter ∈ RT×F a from Abefore, Aafter. Thus, spatial attention
can localize the change areas between Abefore and Aafter and is valid
for image-change captioning [14]. For more information on this
model architecture, see Park et al.’s study [14].

The decoder predicts the entire caption using Xall. The <bos>
and <eos> tokens are added before and after the original caption to
indicate the beginning and end of the sentence, respectively. The de-
coder operates in a step-by-step auto-regressive decoding scheme:
at the first time step, <bos> is sent to the decoder, then at each
time step n, the decoder takes the output word wn−1 of the last
time step and generates word wn as the input word in the next
time step until <eos>. Finally, the decoder generates a sentence
S = {w1, ..., wN}, where wn is a word and N is the number of
words in the sentence. The entire model is trained end-to-end by
cross entropy loss. We use a standard transformer [5] as a decoder,
which consists of multi-head self-attention on the caption sequence
and multi-head encoder-decoder attention on the extracted feature
sequence. An overview of our proposed model is given in 1
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3.2. Category division

Machine-operating sounds include a variety of sounds, such as reg-
ularly occurring and suddenly occurring sounds, and the suitable
model architecture differs depending on the type of sound. Regard-
ing changes in regularly occurring sounds, it is considered impor-
tant to determine the changes in the global characteristics between
the two sounds, whereas it is considered important to determine the
temporal dependencies between the two sounds for changes in sud-
denly occurring sounds. Therefore, as proposed method, we divided
the sound types into three categories in accordance with the inter-
val of sound occurrence and interval between sound occurrences,
and MIMII-Change was created so that a single pair of normal and
anomalous sounds had three captions (see Section 4 for more de-
tails).

4. MIMII-CHANGE DATASET

Since there is no appropriate dataset to study audio-change caption-
ing, we created MIMII-Change. All sounds are single channel, 10 s
in duration, and down-sampled to 16 kHz. We utilized a test dataset
from MIMII-DG, consisting of five types of machine sounds (each
type consisting of 300 normal sounds and 300 anomalous sounds),
and created pairs by assigning one anomalous sound to one normal
sound. This resulted in a total of 1,500 pairs (300 pairs × 5 machine
types).

Three annotators compared the normal and anomalous sounds
of each pair and annotated the changes. The annotators were
instructed to always use onomatopoeia when describing sound
changes. This is because onomatopoeia, which is a character se-
quence for phonetically imitating a sound, are effective for describ-
ing diverse environmental sound features [24, 25]. Onomatopoeia
can be used to describe detailed changes, such as changes in the
pitch of a machine’s operating sound. The annotator also created
three captions for a pair in accordance with the three categories of
“stationary sound changes,” “periodic sound changes” and “non-
periodic sound changes.” This is because it is difficult to express all
changes in a single sentence, and from a model-learning perspec-
tive, it is undesirable for sentences to be redundant. Each of the
three categories is defined as follows: “stationary sound”: a single
sound that occurs continuously for more than about 5 s, “periodic
sound”: a sound that repeats (including intervals) for more than 5
s, and “non-periodic sound”: a sound that occurs multiple times
but has no periodicity or appears and disappears suddenly. To im-
prove learning efficiency, annotators provided captions according to
templates. Templates mean that, for example, a change in pitch is
always described as, “The pitch of ... became higher/lower.”

The 1.500 pairs were divided into two 75 and 25% segments,
which we call development and evaluation, respectively. All words
in the captions must be included in the development split, and there
should be no words that are only included in the evaluation split.
This prevents the presence of unused words in training (i.e. words
that only appear in development) and unknown words in evaluation
(i.e. words that do not appear in development). We also split the
data so that the word-occurrence frequency in development is al-
ways greater than that in evaluation. The number of data items,
words, and onomatopoeia after splitting of each category are as
listed in Table 1.

Table 1: Number of words of each category

onomatopoeia/other words Total

stationary 146 / 68 214
periodic 756 / 107 863

non-periodic 1,155 / 105 1,260

Table 2: Experimental conditions

Optimizer Adam [26]
Training epoch 100
Batch size 16
GPU GeForce RTX 3060

5. EXPERIMENTS

5.1. Evaluation metrics

To evaluate audio-change captioning, we used the conven-
tional rule-based evaluation metrics BLEU [16], METEOR [17],
CIDEr [18], SPICE [27], and SPIDEr [19]. Most conventional
rule-based metrics focus on n-gram or sub-sequence-based match-
ing between candidate and reference captions. CIDEr and SPICE,
proposed for image captioning, show better correlation with human
judgment in the captioning task. However, they cannot evaluate the
semantic similarity between sentences, and they have not yet been
able to resemble human evaluation [21]. To address this issue, we
used the model-based evaluation metric Sentence-BERT [20, 21].
Sentence-BERT can be used to obtain a fixed-length sentence-
embedding vector for input captions. The sentence embeddings are
then used to calculate similarities between candidate and reference
captions by calculating their cosine similarities. We also used the
phoneme error rate (PER) [28] to evaluate onomatopoeia correspon-
dence. Since each onomatopoeia is tokenized, it is not possible to
match onomatopoeia with similar constituent phonemes. For exam-
ple, “gagaga” and “gaga” would be evaluated as completely differ-
ent onomatopoeia. To address this issue, onomatopoeia were broken
down into phonemes according to a previous study [29], and sim-
ilarity was calculated between onomatopoeia in terms of the PER.
The PER is the “edit distance” between two phoneme sequences,
normalized by the length of target phonemes, and expressed us-
ing Eq. 6. Since the number of onomatopoeia appearing in dif-
ferent sentences may differ, we used the mean phoneme error rate
(MPER). The MPER is the average of PER of all combinations of
onomatopoeia in a sentence and expressed using Eq. 7, where N
is the number of phonemes in a reference caption, M is the num-
ber of phonemes in candidate caption, Rn is the n-th onomatopoeia
of a no reference caption, and Cm is the m-th onomatopoeia of a
candidate caption.

L(Rn, Cm) =

Repalcement Err. + Insertion Err. + Deletion Err.
Number of Target Phonemes

(6)

MPER =

N∑
n=1

M∑
m=1

L(Rn, Cm)

N ∗M (7)

Since the PER is calculated for all combinations of onomatopoeia,
it is not possible to evaluate onomatopoeia order correspondence,
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Table 3: Experimental results

model type (#model parameters) BLEU 3 BLEU 4 METEOR CIDEr SPICE SPIDEr Sentence-BERT MPER

Stationary
TraEnc. (10.8M) 0.616 0.542 0.427 0.969 0.340 0.655 0.793 0.281
SpaAttn. (0.9M) 0.669 0.601 0.441 1.086 0.365 0.726 0.796 0.266
PANNs+TraEnc. (82.6M) 0.659 0.583 0.436 0.933 0.381 0.657 0.791 0.251

Periodic
TraEnc. (10.8M) 0.464 0.387 0.390 0.946 0.255 0.601 0.725 0.338
SpaAttn. (0.9M) 0.426 0.354 0.402 0.881 0.249 0.565 0.727 0.380
PANNs+TraEnc. (82.6M) 0.383 0.306 0.369 0.729 0.213 0.471 0.689 0.362

Non-periodic
TraEnc. (10.8M) 0.413 0.339 0.427 1.864 0.373 1.118 0.728 0.327
SpaAttn. (0.9M) 0.328 0.269 0.411 1.441 0.304 0.873 0.678 0.321
PANNs+TraEnc. (82.6M) 0.346 0.284 0.392 1.434 0.331 0.882 0.682 0.365

so the MPER is used only as a metric to measure onomatopoeia
agreement in sentences. For example, the PER value of the can-
didate sentence “A changed to B” and the candidate sentence “B
changed to A” would be the same with respect to the reference cap-
tion “Changed from A to B.” Here, A and B are onomatopoeia.

5.2. Experimental setup

We used the 64-dimensional log mel-band energy as an acoustic
feature, which is extracted on the basis of a 64-ms frame length with
a 32-ms shift size. Other conditions are listed in Table 2. As this
paper presents the first methodology for audio-change captioning,
there are no previous results to compare the presented ones. For
that reason, several model architectures are compared to investigate
their effectiveness.
Transformer Encoder Transformer encoders can determine the
temporal dependencies of each input sequence. Therefore, it is con-
sidered effective for periodic and non-periodic sound with short
sound onset intervals. In this experiment, Transformer Encoder
with three layers and four multi-head attention was used.
Spatial attention Spatial attention [23] is an architecture based on
convolutional neural networks and it generates a spatial-attention
map by using the inter-spatial relationship of features. Spatial at-
tention differs from channel attention in that it focuses on where in-
formation is located and has been shown to be effective in locating
points of change [14]. In this experiment, spatial attention consist-
ing of a two-layer CNN was used. The spatial attention architecture
is able to determine global features, which may be effective for sta-
tionary sound.
Acoustic feature extraction with pretrained audio neural net-
works (PANNs) The effectiveness of transfer learning of pre-
trained models has been shown in many audio-related tasks. To con-
firm the effectiveness of pre-trained models, we used PANNs [30],
a pre-trained model for acoustic recognition, as a feature extractor.
Specifically, we used a pre-trained 14-layer CNN (CNN14). Acous-
tic features are extracted from the spectrogram by using PANNs, the
outputs Xbefore and Xafter is subtracted, and Xall, calculated in the
same manner as Eq. 5, is passed through an encoder.

5.3. Results

Table 3 lists the evaluation results for each version in each of the
three categories. All versions used Transformer Decoder as decoder

and had different encoders. TraEnc. denotes Transformer Encoder,
SpaAttn. denotes spatial attention.
Transformer Encoder vs. spatial attention As shown in Table 3,
Spatial attention performed best for “stationary sound changes.”
As shown in Table 1, the number of words for “stationary sound
changes” was 214, which is much smaller than the other categories.
For steady sound changes, it is considered important to capture the
change in the global features between two sounds. Therefore, spa-
tial attention, which has a relatively easy task difficulty and con-
sists of a two-layer CNN, was more effective. Transformer Encoder
was more effective for “periodic sound changes” and “non-periodic
sound changes” because the vocabulary was large and it is consid-
ered important to capture the temporal dependency between the two
sounds.
Validity of PANNs as feature extractor In all three categories,
there was no performance improvement due to feature extraction
with PANNs. This may be due to the fact that PANNs is trained
by solving audio tagging, so features are lost in MIMII-Change in
which all sounds are classified as machine-operation sounds.

Our experiments showed that different model architectures
were suitable for different categories of sounds with distinct charac-
teristics. Specifically, we found that using spatial attention was ef-
fective for the “stationary sound changes,” while using Transformer
Encoder was effective for the “periodic sound changes” and “non-
periodic sound changes.”

6. CONCLUSION

We defined a new problem, “audio-change captioning,” which de-
scribes what has changed between two audio samples and proposed
a neural-network model for generating sentences that explain how
a machine’s normal and anomalous sounds changed in relation to
each other. We also created the MIMII-Change dataset that is
based on MIMII-DG, annotated each type of sound, and investi-
gated the characteristics of audio-change captioning. Our experi-
ments showed that different categories of sounds with distinct char-
acteristics required different model architectures for optimal perfor-
mance. By utilizing models tailored to each category of sound, we
were able to achieve high accuracy by leveraging the specific fea-
tures of the sound.
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ABSTRACT

The well-being of animals holds significant importance in our soci-
ety. Apart from the ethical concerns, recent studies have highlighted
the correlation of animal growth, reproductive potential, and overall
productivity with animal welfare. In this context, the vocalizations
of cows have emerged as a valuable indicator of their well-being for
veterinary researchers, but gathering and labelling the vocalizations
for their in-depth study is time-consuming and labour-intensive. For
this reason, in this work, we present an acoustic event detection al-
gorithm that has been trained and validated with different setups
using acoustic data collected from two different farms. The experi-
mental set-up consists of a Convolutional Neural Network followed
by a post-processing stage for the detection of vocalizations, so
veterinary researchers can easily analyze them. The experimental
evaluation assesses the importance of selecting the convenient post-
processing and overlapping acoustic window for finding new vocal-
izations. Furthermore, the study evaluates the significance of using
data collected specifically from the same farm for acoustic event de-
tection, as opposed to employing data from a different farm. Results
show that by merging training data from different farms, including
the farm that is being evaluated, an F1 score of 57.40% and a recall
of 74.05% can be achieved.

Index Terms— Acoustic event detection, Cow vocalization,
Deep learning, Bioacoustics, Cow monitoring

1. INTRODUCTION

Animal welfare has gained significant importance in our society,
both for its ethical consideration and because it can affect animal
growth, reproductive potential, and overall productivity [1]. For this
reason, society is demanding welfare-monitoring methodologies
that do not affect the physical integrity of the animals [2]. Among
various animals, cows have gained particular attention from vet-
erinary researchers due to the potential insights that can be gained
from monitoring and interpreting their vocalizations (thus, avoiding
animal manipulation). This vocal information is key, as it can pro-
vide details about the animals’ conditions, such as pain, stress and
hunger, among others [3, 4].

In order to respond to this need, recent contributions in the
field have focused on developing algorithms for both automati-
cally detecting and classifying the vocalizations of cows [3, 5] and
analysing them for welfare monitoring [6, 7]. These automatic tech-

niques can help farmers, veterinarians and researchers to gain valu-
able insights into the conditions and well-being of cows. However,
most of these studies were conducted on single farms, which limits
the ability to evaluate the performance of the algorithm in various
environments and farm setups.

The work presented in this paper tackles this problem; that is,
it seeks to develop an algorithm that can detect cow vocalizations
in multiple farm environments. This research has been carried out
under the umbrella of the project “CowTalkPro: Desarrollo de un
Sensor de Sonido en vacas para evaluar la salud y el bienestar an-
imal” (in English: Development of a Sound Sensor in cows to as-
sess animal health and welfare.). Its interdisciplinary team is com-
posed of engineers from La Salle Campus Barcelona (Ramon Llull
University) and veterinarians and researchers from AWEC Advisors
S.L..

The CowtalkPro project aims to create a single sensor that can
be deployed in multiple farms—not only one—for real-time mon-
itoring of the welfare of cows. More specifically, this project is
concerned with three particular periods in the cows’ lives:

First, during the initial weeks of life, monitoring calves can help
support their health and, consequently, their wellbeing. If many
coughs are heard within a short period, it might indicate that there
are sick calves in the yard. For veterinarians and farmers, early
detection of respiratory illness in calves is crucial to avoid spreading
virus and because late treatment of such conditions could affect the
production of that cow in its adult life.

Second, during the dry-offs, which are transitional phases be-
tween milk production and their dry phase before the get insemi-
nated, cows may vocalize because they are experimenting pain or
discomfort. Detecting these feelings can help cows’ welfare by in-
dicating the need to apply pain mitigation actions.

Finally, monitoring cows vocalizations during calving may in-
form whether the cow needs the assistance of a farmer.

Therefore, the resulting sensor can benefit farmers, veterinar-
ians, and veterinary researchers interested in the assessment and
monitoring of cows welfare.

Prior to the development of the sensor, it is important to deter-
mine which vocalizations give important insight to determine ani-
mal well-being. This normally requires the collection and interpre-
tation of a significant number of cow vocalizations by the veterinary
researchers, which is a complex and time-consuming task. In order
to support this work, we have developed an automatic detector of
vocalizations over audio recordings. The algorithm takes an audio
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file recorded on a farm and detects two types of sounds: vocaliza-
tions and coughs.

At the current stage of the project, the algorithm, described in
this paper, focuses on detecting vocalizations for the veterinarian
researchers to analyse. More specifically, an acoustic event detec-
tion algorithm has been trained and validated using acoustic data
collected from two distinct farms, with the aim of improving its
adaptability and reliability in monitoring cow vocalizations in real-
world scenarios. The presented algorithm utilizes a Convolutional
Neural Network (CNN) as the primary detection model, which is
then followed by a post-processing stage to refine the results.

The experimental evaluation of our approach encompasses two
key aspects: on one hand, we investigate the significance of se-
lecting the appropriate post-processing techniques and overlapping
acoustic window for effectively detecting vocalizations. These pa-
rameters play a crucial role in uncovering new vocalizations that
might otherwise go unnoticed. On the other hand, we explore the
implications of using farm-specific data for acoustic event detec-
tion, as opposed to employing data from a different farm. This anal-
ysis allows us to assess the impact of dataset heterogeneity on the
algorithm’s performance.

The paper is organised as follows. Section 2 presents the ex-
perimental evaluation pipeline. Next, Section 3 details the obtained
results. Finally, the conclusions and future work are presented in
Section 4.

2. EXPERIMENTAL EVALUATION

This section provides an overview of the experimental evaluation
pipeline, which includes the following components: data collection
campaigns conducted in two farms, the utilization of a CNN-based
algorithm for automated vocalization detection, post-processing
techniques employed to determine the onset and offset of each vo-
calization, and the utilization of data from multiple farms to assess
the algorithm’s generalization capabilities.

2.1. Data collection

For the experimental evaluation, audio files recorded in two dif-
ferent farms have been used. The first farm is located in Girona
(Spain), and the second farm is located in Valencia (Spain). In both
cases, a similar recording setup was used. That is, a mains powered
audio recorder Zoom H5 [8] placed inside of a box, and connected
to an omnidirectional microphone via a long XLR wire (about 30
m). The microphone hung on the ceiling of the cows’ yard. An
example of set-up is shown in Figure 1. Two microphones were
placed on each farm. In Valencia, both microphones were in a big
yard for calves, with a separation of about 50 m between them. In
Girona, one microphone was over a calves yard and the other one
covered dairy cows at the dry-off period.

The hardware set-up was installed in the farm collecting contin-
uous data for about one year. Due to the limitation of the SD card
that can be placed on the Zoom recorder, which cannot hold more
than 32 GB, and using a sample rate of 44,100 Hz, each week, we
have recorded for about four days and a half. After that, the SD card
had to be manually replaced.

A small proportion of this audio data has been manually la-
belled and used for the experiments. Specifically, for this work, the
following audio files of 15 min each have been used:

• Girona: 40 audio files from cows and 79 audio files from
calves.

Figure 1: Installation of a microphone over the calves yard in
Girona.

• Valencia: 80 audio files from calves.

This makes a total of 199 files, which represent almost 50 hours
of labelled acoustic data. The annotation process was carried out by
two different annotators under the supervision of veterinary experts
using the Audacity software. The annotation taxonomy had two
different categories: vocalizations and coughs.

The test set was built with 20 audio files from Valencia, as this
farm has many more calves than Girona — and therefore more vo-
calizations per audio file.

The remaining audio files were chosen to be used as Training
set with different splits, to evaluate whether using data from dif-
ferent farms improves or impairs the metrics of the vocalizations
detection model explained in the following subsection.

Set Farm Vocalizations Coughs
Train Girona 2 289 1 107
Train Valencia 3 107 1 579
Total train Both 5 396 2 686
Test Valencia 1 756 129

Table 1: Amount of labels found in every dataset.

As it can be observed in Table 1, the test set contains 129 cough
instances and 1,756 vocalizations. This class imbalance is due to
the nature of the audio files, as cows tend to vocalize more than
cough, especially when they are not sick.
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2.2. Automatic detection of vocalizations

The model used to automatically detect the cow vocalizations is a
MobileNet [9] architecture. This model was chosen because its light
architecture could be applied in the future to real-time detection of
vocalisations on farms using low-cost devices (e.g., Raspberry Pi
[10]), as tested by a subset of the authors of this paper in other
domains [11], which is the final goal of the CowTalkPro project.

In all experiments, the MobileNet was trained for 15 epochs, us-
ing early stopping to obtain the best model (lowest validation loss)
out of the 15. As inputs of the CNN, spectrograms were used. In
line with previous studies [11], a window size of 1 second was se-
lected to sample the audio file for training.

The CNN was configured as a multilabel classifier, as there
might be more than one acoustic event present in a 1-second frag-
ment (e.g., one cow is vocalizing while another cow is coughing).
The two possible outputs of the model are vocalizations or coughs.

At the inference stage, the CNN was concatenated with a post-
processing algorithm, which is in charge of delimiting the starting
and ending point of every vocalization (on-set and off-set times). To
achieve this, at inference time, and contrarily to the training stage
(in which the audio files were split in windows of 1 second without
overlap), the audios were split in overlapping windows.

2.2.1. Post-processing technique

The selection of the overlap time plays a decisive role for an ac-
curate detection of vocalizations. For this reason, we present the
classification results for three different overlapping times: 0.1 sec-
onds, 0.25 seconds and 0.5 seconds. Figure 2 illustrates the different
overlapping times.

For this experiment, all the data except for the one selected as
test set was used for training, meaning that it incorporated data from
both farms.

The metrics were calculated using the “sed eval” - Evalua-
tion toolbox for Sound Event Detection [12]. More specifically,
segment-based metrics were used, with a configuration of a t collar
of 0.9 and percentage of length of 0.1. The first parameter is a toler-
ance with respect to the ground truth event duration, and the second
one is the percentage of the length within which the estimated offset
has to be in order to be considered a valid estimation.

2.2.2. Using data from different farms for training

After the previous experiment, and once a convenient post-
processing overlapping time was selected, another set of experi-
ments was carried out. In this case, the aim of the experiment was
to quantify how the training data affected the results.

Three training sets were configured, each one used for a differ-
ent experiment:

1. Experiment 1: Using the complete dataset of Girona (cows
and calves) and the 60 audio files from Valencia that were
not used as test set.

2. Experiment 2: Using only the dataset from Girona (cows
and calves). Therefore, in this experiment, the training set
consists of data recorded in a different farm than the one used
for testing.

3. Experiment 3: Using only the dataset from Valencia. This
means that the data used for training comes from the same
farm as the data used for testing.

Figure 2: Three different overlaps at inference time to detect vo-
calizations. On top, an overlap of 0.5 seconds, in the middle, an
overlap of 0.25 seconds, and in the bottom, an overlap of 0.1 sec-
onds.

The motivation behind doing these three experiments was to
evaluate whether incorporating data recorded in the same farm im-
prove the scores of the classifier.

3. RESULTS

3.1. Post-processing technique

Table 2 shows the results of the experiment regarding the overlap-
ping times. As it can be observed, selecting different overlapping
has a huge impact on results. While the F1-score is more or less
maintained (achieving its highest value with an overlap of 0.25 s),
the Precision and Recall vary substantially. The biggest overlap (0.5
s) results in higher Precision and lower Recall, while the smallest
overlap (0.1 s) results in lower Precision and higher Recall.

Having a more precise system means that the number of false
positive events is lower. Therefore, the presented results show that
a wider overlap filters more false positive events.

Analogously, having a system with a higher Recall suggests that
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Overlap F1-score Precision Recall
0.1 s 57.4% 46.87% 74.05%
0.25 s 61.7% 63.24% 60.24%
0.5 s 53.68% 77.74% 40.99%

Table 2: Precision, Recall and F1-score obtained by varying the
overlapping window for the vocalizations detection.

there are fewer false negative events (i.e., that fewer vocalizations
are missed). A smaller overlap, even if less precise, decrements the
number of vocalizations that are mistakenly confused by noise.

As the aim of the presented algorithm is to detect vocalisa-
tions that can be further analysed by AWEC veterinary experts, the
smallest overlap (0.1 s) was selected to detect all possible vocal-
isations, even if some of them are false positives that need to be
manually removed. Therefore, for the following experiments, the
post-processing stage was carried out with the overlap of 0.1 s.

3.2. Using data from different farms for training

Farm training data F1-score Precision Recall
Both Farms 57.4% 46.87% 74.05%
Girona 50.58% 41.51% 64.72%
Valencia 59.25% 54.16% 65.39%

Table 3: F1-score, Precision and Recall of the three experiments.

Three different set-ups were evaluated, using 20 audio files
recorded in Valencia as test set. As it can be seen in Table 3, the best
F-score (59.25%) is obtained in the experiment that contains only
audio files from Valencia. However, the highest Recall (74.05%)
was obtained when using audio files from both farms for training.

Nevertheless, the results obtained when using data from Girona
only are not very different from those in which Valencia audios are
used.

This leads to the conclusion that using audio data from the same
farm that is being evaluated is desirable, but not completely neces-
sary to have moderatly good results (note that there is a difference
of 8,67% of F1-score only between the best and the worst system).

4. CONCLUSIONS

This paper addresses the problem of automatically detecting the vo-
calizations of cows for further analysis by veterinary researchers, as
these vocalizations can be an indicator of their welfare.

The developed algorithm uses a lightweight deep learning ar-
chitecture that can run over a low-cost platform. Two experiments
have been conducted, using data collected from two different dairy
farms (Girona and Valencia) and manually labelling it.

The first experiment aimed at determining the optimal overlap
time for vocalization detection. It was observed that the chosen
overlap time correlated with the Precision and Recall metrics of the
system. The system with the highest Recall was achieved when
using the smallest overlapping time, resulting in more overlapped
windows.

The second experiment focused on assessing the model’s ability
to generalize and classify vocalizations from different farms. Mod-
erately improved results were observed when utilizing training data
collected from the farm under monitoring. In fact, the best result

(F-score of 59.25%) was obtained when using data solely from one
farm (the same one used for both training and testing). However, the
performance improvement was only 8.67% compared to the worst
result, which involved training with data from one farm and testing
on data from the other farm. These findings suggest that vocalisa-
tion detection generalisation is possible, even when operating in a
farm without previously recorded samples.

In future research, we plan to incorporate data from additional
farms to validate the conclusions drawn in this study in diverse en-
vironmental settings. In terms of the CowTalkPro project, once the
veterinary researchers have analyzed the automatic vocalizations
detected by the algorithm in multiple environments and the acous-
tic sensors are deployed in the farms, it will be necessary to study
how can the real-time system assist both veterinary researchers and
farmers to improve the welfare of cows.
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ABSTRACT

In this paper, a novel model training framework constituted by deep
mutual learning (DML) and knowledge distillation (KD) fine-tuning
is proposed for low-complexity acoustic scene classification (ASC).
The model training phase consists of two stages. In the first stage,
a ResNet38 teacher model pre-trained on AudioSet and three low-
complexity BC-Res2Net student models with different widths and
depths are involved in DML to enhance the teacher model perfor-
mance, and attain a well-initialized student model. In the second
stage, we utilize KD fine-tuning to teach this student model to learn
from the high-performing teacher model while maintaining the pre-
dictive performance of the teacher model. Experimental results
on TAU Urban Acoustic Scenes 2022 Mobile development dataset
demonstrate the effectiveness of the proposed framework as well as
its superiority over using KD alone under the same configurations.

Index Terms— Acoustic scene classification, deep mu-
tual learning, knowledge distillation fine-tuning, ResNet38, BC-
Res2Net

1. INTRODUCTION

Low-complexity acoustic scene classification (ASC) aims to clas-
sify a given recording into a predefined acoustic scene category by
a well-designed system. It has received increasing interest because
it enables deployment of classification systems on a wide range
of edge devices with limited computational capacity and memory
resources. This paper focus on the low-complexity ASC task in
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2023 challenge [1]. The low-complexity and generaliza-
tion requirements of this task are characterized by three key points:

P1. Audios were recorded by a variety of devices in different
cities, and synthetic data for several mobile devices was also
generated based on the recorded audio.

P2. The memory for model parameters must be capped at 128K,
regardless of the parameter type utilized.

P3. The computational consumption for a single inference must
be limited to 30 million multiply-accumulate operations
(MMACs).

For P1, augmentation schemes are frequently employed to en-
hance the generalization capacity of the system on recordings from
unseen devices [2, 3, 4]. For P2 and P3, most low-complexity ASC
approaches are based on model compression techniques and can be

This work was partially funded by the National Natural Science Foun-
dation of China under grant 61801133. ∗Corresponding author.

assorted into four classes, including feature selection [5, 6], pruning
[7, 8, 9], designing efficient network architectures [10, 11, 12] and
knowledge distillation (KD) [13, 14, 15]. KD has been widely uti-
lized to derive efficient and lightweight student models by training
them to emulate large and high-performing teacher models. Moti-
vated by the concept of KD, Zhang et al. [16] presented a model
training strategy called deep mutual learning (DML), in which mul-
tiple student models could learn collaboratively and teach each
other throughout the training process, aiding in discovering a wider
and more robust minima that generalized better to test data. The
DML strategy has been applied in various fields [17, 18] and proven
to be useful.

In this paper, we propose an effective model training framework
that consists of DML and KD fine-tuning, in which DML plays a
vital role in preparing both the teacher model and student model
for the following KD fine-tuning. As opposed to solely using stu-
dent models in [16], the proposed framework incorporates one pre-
trained teacher model and three student models of same type but
with different widths and depths during the DML stage.

The remainder of this paper is organized as follows. Section 2
describes the methodology for preprocessing and augmenting data
prior to input into models. In Section 3, the proposed model training
framework that consists of DML and KD fine-tuning is presented
to obtain a low-complexity ASC system. Section 4 describes the
experimental setup and presents the experimental results. Finally,
Section 5 concludes this study.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Data preprocessing

The dataset utilized for this task is the TAU Urban Acoustic Scenes
2022 Mobile development dataset [19]. It is derived from the TAU
Urban Acoustic Scenes 2020 Mobile development dataset by crop-
ping the original 10-second audio files into 1-second clips, and the
sampling rate was 44.1 kHz. We borrowed the CP-JKU scheme
from [20] and reassembled all the training audio into 10-second
segments according to the segment identifiers. Then the audio was
downsampled to 32 kHz.

2.2. Microphone Impulse Response and Augmentation

To enhance the diversity of training data and promote the general-
ization capability of the ASC model to various recording devices,
we simulate “new” recording devices by randomly convolving the
reassembled 10-second audio signals with the freely available mi-
crophone impulse responses (IRs) from the Microphone Impulse
Response Project (MicIRP) library [21] as suggested in [3]. Totally
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68 IRs of vintage microphones are utilized, which means synthetic
audio data that recorded by 68 “new” devices is included in the
training data. The probability of the audio in training dataset being
convolved with IRs is set as 0.5, in order to ensure both the orig-
inal audio and the simulated audio are fed into the model during
training.

Then each 10-second recording was randomly cropped into a 1-
second snippet and fed to the model in a single epoch. That is to say,
only one-tenth of the available data can be seen by the model, which
can increase the diversity of the training data to a certain extent as
well.

Furthermore, two kinds of data augmentation techniques are ap-
plied to the training data sequentially. The first one includes time
shifting and time-frequency masking operations. We randomly shift
an audio clip by a time interval shorter than 1 second forward. To
extract temporal and spectral features from the audio data, we ap-
ply short-time Fourier transform (STFT) to the shifted audio using
a Hanning window of size 2048 and a hop size of 1024 samples
for student models, and a Hanning window of size 800 and a hop
size of 320 samples for teacher model. Then mel filter banks are
applied with 256 mel bins for both student and teacher models, fol-
lowed by a logarithmic operation to obtain the log mel spectrograms
of the audio. Finally, we apply the time-frequency masking to the
log mel spectrograms, and the maximum size of each masking band
is set as 8 for the time domain and 40 for the frequency domain,
respectively. The application probability of both time shifting and
time-frequency masking is 0.7. The second kind of data augmenta-
tion techniques includes mixup [22] and mixstyle [23]. The weight
parameters of both mixup and mixstyle are chosen as α = 0.3, and
their application probabilities are 0.7 and 0.6, respectively.

3. MODEL TRAINING FRAMEWORK USING DML AND
KD FINE-TUNING

A novel framework that combines DML with KD fine-tuning is
proposed for model training. As shown in Fig. 1(a), three low-
complexity student models and a pre-trained teacher model are
employed in DML. The goal of DML is to further improve the
performance of teacher model and attain a well-initialized student
model. Then we utilize KD fine-tuning to transfer the knowledge of
the high-performing teacher model to the low-complexity student
model.

3.1. Deep Mutual Learning

DML trains two or more networks which are denoted as Model =
{model1, · · · ,modelN} simultaneously. In the proposed frame-
work, the number of networks N = 4. At each iteration, every
network learns from the other networks. Fig. 1 (b) illustrates the
schematic diagram of DML. Note that for convenience, Fig. 1(b)
only displays how model1, which is denoted as Init BC-Res2Net,
learns from other models. For the nth model, denoting its logit on
the mth category as znm, then its predicted soft probability on the
mth category can be calculated by comparing znm with the other
logits [13],

ŷn
m =

exp (znm/Tdml)∑M
j=1 exp

(
znj /Tdml

) , m = 1, · · · ,M, (1)

where M is the total number of categories, and Tdml is a tempera-
ture utilized to control the degree of smoothing of the soft probabil-
ity. When Tdml = 1, (1) degenerates into softmax operation.

The output probability distribution of the nth model can be
written as

Ŷ n
Tdml

= [ŷn
1 , · · · , ŷn

M ] , n = 1, · · · , N, (2)

and is passed to the other networks as a soft label. The soft label
loss of the nth model is computed as

Ln
soft =

1

N − 1

∑
1≤ l≤N

l ̸=n

KL
(
Ŷ n
Tdml

∣∣∣∣Ŷ l
Tdml

)
. (3)

The hard label loss of the nth model is obtained by cross-entropy.
Finally, the total loss of the nth model in the DML process is the
weighted sum of its hard label loss and soft label loss, i.e.,

Ln
dml = Ln

label + λdmlL
n
soft, (4)

where λdml is the weight of the soft label loss.
Note that DML does not require additional knowledge source

and it extracts knowledge directly through interactions among net-
works. It can effectively improve the performances of all networks
involved in learning. More importantly, the interactions among the
output soft labels of the models enable DML to avoid overfitting and
enhance the robustness of all the models. After the DML process,
a high-performing teacher model and a properly initialized student
model are obtained for the following KD fine-tuning.

3.2. Student Model

The student model employed in the proposed model training frame-
work is based on the Broadcast Residual Network (BC-ResNet)
[24]. BC-ResNet was a deep neural network developed for effi-
cient keyword detection, and it utilized both residual learning and
broadcast mechanism. In the student model employed in the pro-
posed framework, the ResNet part in BC-ResNet is replaced by
Res2Net [25], and the new model is referred to as BC-Res2Net
[26]. By adding small blocks of residuals to the original residual
cell structure, Res2Net can extract features within different recep-
tive fields and in multiple scales at a lower computational cost. In
addition, a simple but effective module called Residual Normaliza-
tion (ResNorm) is added to BC-Res2Net to reduce the system re-
liance on various devices [11].

Three student models with different widths and depths are uti-
lized in DML, including a BC-Res2Net with the number of chan-
nels C = 24, a wider BC-Res2Net with C = 80, which is de-
noted as BC-Res2Net wide, and a deeper BC-Res2Net named BC-
Res2Net deep, in which C = 24, and the number of BC-Res2Block
and ResNorm within each module is doubled. The purpose of
adding BC-Res2Net wide and BC-Res2Net deep to DML is to al-
low BC-Res2Net to learn specific information contained in deeper
and wider networks, thereby compensating for its limitations of
width and depth.

Denoting the number of Mel bins, and the number of time steps
as F and T , Table 1 shows the overall architecture of the employed
BC-Res2Net and the size of the output feature map in each block.

3.3. Teacher Model

We use ResNet38 trained by Kong et al. [27] on AudioSet [28]
as the teacher model. ResNet38 is a deep audio neural network
trained with 1.9 million audio clips and an ontology of 527 sound
classes. Residual networks help ResNet38 to alleviate the vanishing
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Ŷ 1
Tdml

||Ŷ 3
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Figure 1: Diagram of the proposed model training framework. (a) DML prepares both student model and teacher model for the following KD
fine-tuning. (b) Three BC-Res2Net student models and a pre-trained ResNet38 teacher model are involved in DML. For convenience, only
the process by which Init BC-Res2Net learns from other models is displayed. CE⃝ denotes the computation of cross-entropy.

Table 1: Architecture of BC-Res2Net as a student model.

Block Output Size
input (1, F, T )

ResNorm
Conv2D (5×5) (2C,F/2, T/2)

BC-Res2Block × 1
ResNorm, MaxPool(2,2) (C,F/4, T/4)

BC-Res2Block × 1
ResNorm, MaxPool(2,2) (1.5C,F/8, T/8)

BC-Res2Block × 3
ResNorm (2C,F/8, T/8)

BC-Res2Block × 3
ResNorm (2.5C,F/8, T/8)

Conv2D (5×5, Group = 2.5C)
Conv2D (1×1), Mean (4C, 1, 1)

Conv2D (1×1) (10)

gradient problem that commonly encountered in training very deep
networks. The large number of sound classes can provide a compre-
hensive representation of unique sounds. Therefore, ResNet38 has
demonstrated high accuracy rates in real-world sound classification
tasks.

3.4. Knowledge Distillation Fine-tuning

KD has been widely used in various fields as a model compression
tool. When training a student model, the probability distributions of
the teacher model’s predictions on the input audio samples, which
are also known as soft labels, are utilized as an additional target.
Therefore, KD allows the student model to imitate the output of the
teacher model as much as possible, leading to improved generaliza-
tion capacity and increased fitting speed of the student model.

For KD fine-tuning, we utilize the DML trained ResNet38 and
BC-Res2Net as the teacher model and the initialized BC-Res2Net
student model, respectively. Soft labels and soft label loss are calcu-
lated in a similar way to DML as expressed in (2) and (3). Denoting
the soft label loss of the student model in KD fine-tuning by Ldist,

the total loss in KD can be calculated by

Lkd = Llabel + λkdLdist, (5)

where λkd is the weight of the soft label loss.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Training Setup

The learning rate during the experiments is fixed at 1e-4 for individ-
ual training of both the student and teacher models in the process of
DML and KD fine-tuning1. Adam optimizer is utilized, and our ex-
perimental results indicate that the type of optimizer does not have
a significant impact on the outcomes.

For student model, the scale size in Res2Net is set as 4. During
DML and KD fine-tuning, the temperatures Tdml and Tkd are both
set at a medium value 3 to generate soft labels, ensuring that the la-
bels are smooth while not too much information is lost at the same
time. For weight of the soft label loss, λdml = 1 and λkd = 50.
This is due to the fact that in DML, each student model is trained
from scratch, and the purpose of DML is to promote the perfor-
mance of the pre-trained teacher model and obtain a well-initialized
student model. Therefore, we do not want a model to put great in-
fluence on another. However, in the KD fine-tuning, we hope the
student model to learn as much as possible from the representations
of the high-performing teacher model.

4.2. Results

The performances of our student model BC-Res2Net and teacher
model ResNet38 are evaluated on the test set provided by DCASE
2023 challenge and illustrated in Table 2. During the experiments,
we followed the official data partitioning principle [29].

It can be seen from Table 2 that mixstyle outperforms mixup
for both student model and teacher model, which means mixstyle
is more competent to enhance device generalization. What is more,
using the combination of DML and KD fine-tuning produces su-
perior results compared to using DML alone. Clearly, the training

1Source code is available at https://github.com/wsdragon2010/GZHU
DCASE2023 TASK1
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Table 2: Accuracy and log loss performances of student model and teacher model on test set under different configurations. BC-Res2Net has
a width of C = 24. “Conv IR” indicates whether the input audio is convolved with IRs in a certain probability. “Real”, “Seen” and “Unseen”
represent real devices, seen simulated devices and unseen simulated devices, respectively.

Model Configuration Acc. (%) Log LossConv IR Mixup Mixstyle DML KD Real Seen Unseen Overall

student
model

BC-Res2Net

% % % % % 63.71 48.17 36.90 49.59 2.586
! % % % % 66.99 55.73 45.45 56.05 1.581
% ! % % % 62.91 52.09 42.68 52.55 1.558
% % ! % % 65.40 55.34 47.05 55.93 1.289
! % ! % % 64.34 56.90 52.21 57.81 1.202
! % ! ! % 61.04 57.34 56.09 58.16 1.158
! % ! ! ! 65.67 60.50 54.61 60.26 1.131

teacher
model

ResNet38

% % % % - 70.30 52.28 44.61 55.73 3.442
! % % % - 74.07 61.14 58.24 64.48 1.645
% ! % % - 72.76 54.04 48.63 58.47 1.307
% % ! % - 74.15 61.04 56.81 64.00 1.544
! % ! % - 74.59 67.96 64.09 68.88 1.138
! % ! ! - 76.09 71.10 69.97 72.39 0.836

Figure 2: Accuracy of using KD alone with various λkd and Tkd,
comparing to the performance of the proposed framework.

framework that includes convolution with IRs, mixstyle, DML and
KD fine-tuning performs the best.

Fig. 2 illustrates the accuracy performance of the student model
by using KD alone with various values of weight parameter λkd at
different temperatures Tkd. By comparing with the performance of
the proposed framework while Tkd = 3, Tdml = 3 and λdml = 1,
it can be observed from Fig. 2 that regardless of the parameter tun-
ing, using KD alone can not pass the performance beyond our pro-
posed framework. Besides, experiments reveal that DML enables
the student model to converge more quickly with improved perfor-
mance during KD fine-tuning. Conversely, using KD alone tends to
result in unstable student performance and makes the model sensi-
tive to the weight parameter λkd, as shown in Fig. 2. This highlights
the necessity of DML. To summarize, the combination of DML and
KD fine-tuning provides a fast and effective way to improve the
performance of low-complexity ASC system.

To demonstrate the effectiveness of the proposed model train-
ing framework, we compare our student model BC-Res2Net with
the student model denoted as “RFR-CNN” that employed in [14],
and compare our teacher model ResNet38 with the teacher mod-

Table 3: Performance comparison of various student models and
teacher models.

Model Params MMACs Acc.
(%)

RFR-CNN [14], 2022 127,046 29.06 59.76
BC-Res2Net (Ours) 76,906 23.97 60.26

PaSST-Ensemble [15], 2023 - - 63.63
PaSST & CP-ResNet
Ensemble [15], 2023 - - 68.31

ResNet38 (Ours) 73,804,121 9,179.52 72.39

els referred to as “PaSST-Ensemble” and “PaSST & CP-ResNet
Ensemble” in [15]. Note that “PaSST-Ensemble” is the fusion of
6 different PaSST models, and “PaSST & CP-ResNet Ensemble”
uses the fusion results of 6 different PaSST models and 6 different
CP-ResNet models, while we utilize only one teacher model, i.e.,
ResNet38. As shown in Table 3, our student model outperforms
“RFR-CNN” by approximately 0.5% while having less parameters
and MMACs. Moreover, our teacher model exhibits an absolute ad-
vantage over the two teacher models in [15] by almost 4% in terms
of overall classification accuracy.

5. CONCLUSION

In this paper, we tackle with the low-complexity ASC task in
DCASE 2023 challenge. We present a novel model training frame-
work that consists of DML and KD fine-tuning. DML helps both
teacher model and student model prepare for the following KD
fine-tuning, then KD is used to compress the knowledge of a high-
performing ResNet38 teacher model into a low-complexity BC-
Res2Net student model in an optimal manner. Experimental results
demonstrate that DML plays a critical role in enhancing the final
performance of the proposed low-complexity ASC system. Next,
we aim to apply the proposed training framework to newer and
stronger models in an attempt to achieve even better performance.
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ABSTRACT
Sound event localization and detection (SELD) systems estimate
both the direction-of-arrival (DOA) and class of sound sources over
time. In the DCASE 2022 SELD Challenge (Task 3), models are de-
signed to operate in a 4-channel setting. While beneficial to further
the development of SELD systems using a multichannel recording
setup such as first-order Ambisonics (FOA), most consumer elec-
tronics devices rarely are able to record using more than two chan-
nels. For this reason, in this work we investigate the performance of
the DCASE 2022 SELD baseline model using three audio input rep-
resentations: FOA, binaural, and stereo. We perform a novel com-
parative analysis illustrating the effect of these audio input represen-
tations on SELD performance. Crucially, we show that binaural and
stereo (i.e. 2-channel) audio-based SELD models are still able to lo-
calize and detect sound sources laterally quite well, despite overall
performance degrading as less audio information is provided. Fur-
ther, we segment our analysis by scenes containing varying degrees
of sound source polyphony to better understand the effect of audio
input representation on localization and detection performance as
scene conditions become increasingly complex.

Index Terms— sound event localization and detection, sound
source localization, spatial audio, explainability

1. INTRODUCTION

Sound Event Localization and Detection (SELD) is the process of
estimating the direction-of-arrival (DOA) and class of sound events
over time, given an input audio signal. SELD systems can translate
well to a variety of real-world applications, including navigation
for autonomous systems and assistive robotic devices. SELD meth-
ods are rooted in traditional signal processing techniques for multi-
channel audio processing, such as Steered Response Power [1] and
acoustic intensity vectors [2]. For human-inspired audio record-
ings (e.g. binaural recordings), interaural time difference (ITD)
and interaural level difference (ILD) are commonly used to char-
acterize the direction of arrival of sounds [3]. However, these cues
alone have shown limitations in terms of localization accuracy in
real-world scenes that are particularly noisy, reverberant, or poly-
phonic [4–6]. Deep learning approaches were recently popularized
to address these challenges in the context of SELD tasks [7–11];
most systems still utilize signal processing-based features like gen-
eralized cross correlation (GCC) and Mel spectrograms but benefit
from automatic feature learning to improve robustness in difficult
scene conditions [7, 11–13]. For example, in [14], authors use a
CRNN architecture with magnitude and phase spectrograms from
multichannel audio to show accurate DOA estimation and multiple
sound source detection in reverberant conditions.

In the DCASE 2022 SELD challenge (Task 3), models were
evaluated using real multichannel sound recordings. Participants
had access to real recordings for development and could also use
additional synthetic or real data for training. The challenge oper-
ates in a multichannel setting, utilizing two formats of 4-channel
recordings: first-order Ambisonics (FOA) and a tetrahedral mic ar-
ray. We are interested in exploring the capabilities of current SELD
systems using more commonly found 2-channel microphone setups,
namely binaural and stereo, as typical consumer electronics devices
lack such complex 4-channel configurations.

There is little prior research quantifying the effect of using var-
ious audio input representations (i.e. 2 vs. 4-channel audio) for
SELD tasks in deep learning-based systems. In the psychoacous-
tics community, this effect is well-studied; it is known that there
is a general loss in spatial understanding between 4-channel au-
dio configurations (e.g. Ambisonics) vs. 2-channel configurations
(e.g. binaural or stereo). [15,16]. Humans can localize lateral sound
sources well in binaural and stereo settings, but front-back confu-
sion may increase without sufficient spatial information [3, 17, 18].
Further, perceiving the elevation of sound sources when listening to
stereo audio in particular has been shown to be very difficult, largely
due to the lack of interaural cues present in this recording configu-
ration unlike that of a binaural setup [16]. However, these phenom-
ena are underexplored in the context of deep learning-based systems
for SELD. In [19], authors compared sound event detection perfor-
mance using synthetic FOA, binaural, and monaural audio data in
a CRNN-based system. Our approach differs significantly in that
we provide a quantitative analysis of localization and detection per-
formance, we use a FOA dataset of real recordings in addition to
synthetic and decode these recordings to binaural, and lastly we in-
clude the stereo audio configuration as a point of comparison as this
is common in consumer electronics devices today.

In this work we present a novel comparative analysis of the
DCASE 2022 SELD baseline model across FOA, binaural, and
stereo audio input representations. To the best of our knowledge,
this is the first work quantifying the effect of these audio configu-
rations on both localization and detection performance in a deep-
learning based SELD system. We show that lateral sound source
localization remains fairly accurate in the 2-channel settings despite
an overall degradation in SELD performance, and provide an analy-
sis of performance in scenes of varying levels of polyphonic sound
source complexity.

2. PROBLEM FORMULATION

In this manuscript, we examine the problem of Sound Event Local-
ization and Detection (SELD) under different audio input represen-
tations: first-order Ambisonics (FOA), binaural, and stereo record-
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ings. In this context, detection refers to determining the number of
active sound sources per class over time, while localization aims at
identifying the azimuth and elevation angle for each of the active
sources over time. While Ambisonics recordings provide state-of-
the-art performance in SELD [20], in practical applications we hy-
pothesize that binaural and stereo recordings are more accessible.

We rely on the most popular framework used by participants in
the DCASE 2022 Challenge Task 3. A multichannel audio record-
ing is fed as input to a Convolutional Neural Network (CNN),
whose output is a 4-dimensional matrix arranged according to the
Multi-Activity Coupled Cartesian DOA (ACCDOA) format [21].
For a given class, time instant, and sound source index, the model
arrives at a three-dimensional vector (x, y, z) whose orientation
represents the direction of arrival of the sound, and whose inten-
sity is directly proportional to the likelihood of a sound of that class
being present at a given time.

First-order Ambisonics (FOA): FOA is a 4-channel, 3D audio
recording format. In FOA, each channel corresponds to a spherical
harmonic component representing a change in sound pressure in a
specific direction [22]. The channels W, Y, Z, X map to the omni-
directional, left-right, vertical, and front-back directions of sound
pressure change, respectively.

Binaural: The binaural recording technique aims to capture
3D audio in just two channels, ideally simulating the experience of
a human experimncing auditory cues. Binaural audio is typically
recorded using two microphones placed in the ears of a dummy
head (e.g. Neumann KU100), or synthesized using the head-related
transfer functions (HRTFs) of such a dummy head [23]. Binaural
recordings deliver immersive spatial sounds containing amplitude,
time and timbral differences of two channels vs. traditional stereo
recordings where only amplitude and time differences are available.

Stereo: In stereo recordings, two microphones are used to
capture the left and right audio channels independently. This dif-
fers from binaural recordings; in the binaural configuration the
goal is to simulate a human’s listening experience. Critically, in
a stereo setup, elevation differentiation cannot be perceived; binau-
ral recordings contain the filtering effect of the head, ear pinna, and
torso and this is not present in a stereo recording configuration [16].

3. EXPERIMENTAL SETUP

3.1. Datasets

Following the setup of the DCASE 2022 Task 3 challenge, we rely
on the STARSS22 dataset [24], together with a synthetic mixture
(SYNMIX) for baseline training1 provided by the organizers of the
challenge. The STARSS22 dataset is comprised of 121 record-
ings of various lengths of real sound scenes across 13 sound event
classes, with around 5 hours of audio recordings in 4-channel FOA
format and an interpolated tetrahedral microphone array. At the
time of this work, the evaluation set was not yet released, so we use
the “development” partition of train and test, consisting of 67 and 54
recordings, respectively. The dataset contains instances with up to
5 simultaneous sound sources, and up to 4 simultaneous sources of
the same class, though 2-source polyphony is much more frequent.

Due to the small size of the STARSS22 dataset, a base set
of synthetic data was also provided to participants (SYNMIX).
This data is synthesized using audio samples from FSD50k [25]
convolved with Spatial Room Impulse Responses from the TAU-
Nigens Spatial Sound Events 2020 [26] and 2021 [27]. The

1https://zenodo.org/record/6406873#.Y -SBuzMK2o.

dataset contains 1200, 1-minute synthesized FOA recordings across
classes mapped to the classes present in STARSS22, and maximum
polyphony of 2 sources.

Both datasets are annotated at 100ms resolution with labels
of sound source class, azimuth, and elevation as well as addi-
tional flags for overlapping sound events. The azimuth angles
ϕ ∈ [−180◦, 180◦], and elevation θ ∈ [−90◦, 90◦], with 0◦ at
front. Note that azimuth angles increase counterclockwise.

3.2. Input representations

To fairly compare the three multichannel audio representations, we
look at the problem of sound localization on the horizontal plane
only by removing the elevation component, thus fixing elevation to
0◦ in the ground truth. We train and test separately for each input
representation using the same acoustic scenes, simply replacing the
original FOA audio representation with binaural or stereo audio, as
per following procedures.

FOA → Binaural: To decode the original FOA audio from the
STARRS22 and synthetic datasets to binaural, we used the Binau-
ralDecoder plug-in from the IEM Plug-In Suite2. This decoder uses
pre-processed Neumann KU100 dummy head HRTFs via the mag-
nitude least-squares (MagLS) method proposed in [28]. We apply
this binaural decoding to all FOA audio used in training and testing,
yielding 2-channel binaural audio for our experiments 3.

FOA → Stereo: To convert our FOA audio to stereo, we used
a very simple translation: left = W + Y and right = W − Y ,
following [29]. Note that W is the omnidirectional signal and Y is
the first-order horizontal (left-right) component. An increase in air
pressure from left causes an increase in values of Y and an increase
in pressure from the right causes a decrease in values of Y . Because
of this, the simple translation above allows us to move easily from
FOA to left and right channels yielding 2-channel stereo audio.

3.3. Baseline model

The model used for our analysis is the DCASE 2022 Task 3 Base-
line model4. The architecture is similar to the CRNN-based model
initially proposed in [7], with extensions to accommodate simulta-
neous sources of the same class in the Multi-ACCDOA format [21].
The input to the model is the multichannel audio, segmented into
5-second chunks, yielding a sequence of 50 x 0.1 second frames.
In the FOA configuration, Mel spectrogram features are used to
capture frequency information and intensity vectors provide spa-
tial information. In the binaural and stereo settings, we modify the
model slightly to use Mel spectrograms and GCC features. GCC
features are commonly used in 2-channel localization settings to
capture Time Difference of Arrival (TDOA) information between
two microphones. Audio is resampled to 24kHz, and 64 Mel coef-
ficients are computed from an STFT on windows of 1024 samples
with a hop size of 480 samples. The model has 604.5K trainable
parameters. Models are trained for a multi-output regression task,
with a mean-squared-error loss, for 200 epochs using 1 RTX 8000
GPU, in batches of 64 samples with a learning rate of 10−3. The
model checkpoint with the lowest validation loss is selected.

3.4. Data augmentation via Audio Channel Swapping (ACS)

An initial exploration of the STARSS and SYNMIX datasets re-
vealed that the distribution of azimuth angles across sound sources

2https://plugins.iem.at/docs/plugindescriptions/#binauraldecoder.
3https://github.com/juliawilkins/ambisonics2binaural simple.
4https://github.com/sharathadavanne/seld-dcase2022.
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Figure 1: Normalized confusion matrices showing true vs. predicted quadrant of sources across audio configurations. The FOA model
performs near-perfect at distinguishing front and back sources, while front and back sources are commonly confused in binaural and stereo
settings. Quadrants of size 90◦ are defined based on the azimuth angle of a sound source: Front ∈ [−45◦, 45◦], Left ∈ [45◦, 135◦], Back
∈ [135◦,±180◦] ∪ [±180◦,−135◦], Right ∈ [−135◦,−45◦]

was largely imbalanced, with far more sound sources in the front
and right regions than in the left and back. Following [30], we
hypothesize that localization performance on the real test dataset
could be improved by balancing this distribution. To do so, we use
a data augmentation technique known as Audio Channel Swapping
(ACS) [31]. We perform 3 transformations involving azimuth to
simulate the rotation of sound sources by 90◦, 180◦, and 270◦. We
performed different permutations of swapping and negating the X
and Y of FOA channels directly. This simple augmentation strategy
not only quadruples our overall dataset size but more importantly
gives us a uniform distribution of azimuth angles. We show that this
augmentation has a significant impact on localization performance
in Table 1. Please refer to [31] for more details on ACS.

3.5. Evaluation metrics

We use the joint localization and detection metrics as defined by the
DCASE 2022 Task 3 SELD Challenge in our proceeding analysis.
The F-Score and error rate (ER) capture location-dependent detec-
tion. True Positives (TP) and False Positives (FP) are considered
with a tolerance 20◦ in the direction of arrival. Class-dependent lo-
calization error (LE) and localization recall (LR) measure localiza-
tion performance without considering the spatial threshold. See [32]
for more details on SELD metrics.

4. RESULTS

4.1. A baseline model for FOA input

Prior to evaluating the impact of different input representations,
we first assess the performance of a baseline model trained and
evaluated on FOA input using varied training data configurations.
The STARSS22 and SYNMIX dataset are both quite imbalanced in
terms of distribution of sound source across azimuth angles. As de-
scribed in Section 3.4, we use Audio Channel Swapping (ACS) to
mitigate this problem and balance the distribution at train time.

Table 1 reports results for 5 training data configurations: A:
training and evaluating only in azimuth using STARSS22 dataset;
B: adding SYNMIX dataset to A’s training; C: adding ACS aug-
mentation to B’s training, B+E : training and evaluating B in both
azimuth and elevation; C+E : training and evaluating C in both az-
imuth and elevation. Note that B+E and C+E help us to understand

the impact of removing elevation in the overall metrics. By com-
paring C+E and C, we see how removing elevation improves all
metrics, as one could imagine given less degree of freedom in the
predictions. Moreover, we see an improvement in the joint localiza-
tion and detection metrics across the board with the addition of the
augmented data. Hence, we use C as our reference configuration to
assess the impact of the input representation in proceeding sections.

Conf. SELD ↓ ER↓ F ↑ LE ↓ LR ↑

A 0.65 0.73 15.3% 53.7◦ 27%
B 0.47 0.62 34.5% 22.5◦ 51%
C 0.42 0.56 43.3% 16.9◦ 54.1%

B+E 0.53 0.70 27.3% 26.1◦ 47.5%
C+E 0.48 0.62 33% 22.7◦ 51%

Table 1: Results with FOA input across different configurations; A:
STARSS22; B: A + SYNMIX; C: B with ACS; B+E and C+E : B
and C are trained and evaluated using both azimuth and elevation.
Results are reported on the STARSS22 DCASE dev-test set. ↓ indi-
cates metrics that are better when value is lower, ↑ viceversa.

4.2. Comparing audio input representations

Table 2 reports results when changing input representation, mov-
ing from the highly-privileged FOA representation, to binaural, and
stereo audio. Our experiments show that as one moves from FOA
to binaural and stereo, overall SELD model performance degrades.
While this is to be expected because binaural and stereo audio are
not designed to capture full spatial audio, this is the first quantifi-
cation of deep learning-based SELD performance across these au-
dio input representations on real multichannel recordings lays the
groundwork for our deeper proceeding analysis.

4.3. Localization error by sound source quadrant

We are also interested in dissecting localization performance to un-
derstand where key success and failure points occur in terms of
sound source position and polyphonic scene conditions.

In Figure 1, we show a set of confusion matrices illustrating
the distribution of true quadrants of sound sources vs. predicted
quadrants across audio input representations. We segment the 90◦
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Input SELD ↓ ER ↓ F ↑ LE ↓ LR↑

FOA 0.42 0.56 43.3% 16.9◦ 54.1%
Binaural 0.50 0.67 33.9% 30.1◦ 49.2%
Stereo 0.60 0.76 21.7% 42.9◦ 38.8%

Table 2: Results for models trained using STARSS22 + SYNMIX
using ACS, with different audio input representations. Results are
reported on the STARSS22 DCASE development-test set. ↓ indi-
cates metrics that are better when value is lower, ↑ viceversa.

quadrants as follows, based on azimuth angle: Front ∈ [−45◦, 45◦],
Left ∈ [45◦, 135◦], Back ∈ [135◦,±180◦] ∪ [±180◦,−135◦],
Right ∈ [−135◦,−45◦]. Notably, using the FOA representation,
the model has near-perfect performance in terms of distinguishing
front vs. back sources. In the binaural setting, we see an increase in
front-back confusion, and in the stereo setting this error is glaring
as 48% of sources in the front are predicted in the back quadrant.
In fact, this is a well-studied topic in psychoacoustics related to the
cone of confusion phenomenon, which occurs when a sound source
is equidistant to both the left and right ears [33–35]. Thus, it is
difficult for the listener to distinguish whether a sound source is in
front or behind them. It is likely that our binaural model is affected
by this as well. Across audio input representations, the accuracy of
source detection in the left and right quadrants is fairly consistent,
showing reliability in terms of lateral sound source detection given
2- or 4-channel audio input.
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Figure 2: Average localization error across audio representations,
based on ground truth sound source quadrant position. Results are
normalized by number of instances of sound sources per quadrant.

In Figure 2, we analyze average localization error (LE) based on
the quadrant of the ground truth sound sources. In the FOA setting,
the difference of LE between the left, right, and back quadrants is
quite small, however the error for sources in the front is nearly dou-
ble that of the other quadrants. In the binaural setting, LE increases
in the front and back quadrants, approximately doubling that of the
FOA setting, though this increase is much less notable in the lateral
(left-right) regions. Further, in the stereo context, we find similar
trends but with overall poorer performance. The front and back
LE are over three times that of the FOA model, with less signifi-
cant degradation in the performance of the left and right quadrants.
Here, we crucially observe that despite the binaural and stereo mod-
els struggling to localize sources in the front quadrant in particular
compared to the FOA system, these 2-channel models are still able
to localize sources laterally quite well.

4.4. SELD performance in polyphonic conditions

The DCASE SELD challenge is unique in that the test dataset con-
tains real audio recordings with multiple overlapping sound sources.

Hence, investigating SELD model performance in complex poly-
phonic conditions can help us better understand how these systems
handle more complex scene conditions that are closer to reality. In
Figure 3, we analyze localization recall (LR) of the FOA, binaural,
and stereo models in the presence of 1, 2, 3, and 4 simultaneous
sources (this encapsulates both simultaneous sources of the same
or different classes). Note that approximately 56% of frames con-
tain 1 source, 31% contain 2, 10% contain 3, and 3% contain 4 or
more simultaneous sources, so we normalize by source count ac-
cordingly in Figure 3. We show that LR steadily decreases in all
audio configurations as the number of polyphonic sound sources in-
creases in Figure 3. The model struggles to detect the correct num-
ber of sources as the scene conditions become increasingly com-
plex, though proportionally the decrease in recall is relatively simi-
lar across audio contexts as polyphony increases.

Figure 3: Localization recall in multiple audio representations, seg-
mented by number of simultaneous sources in the test data and nor-
malized by number of sources satisfying each condition.

We also analyze localization error (LE) across polyphonic con-
ditions. Here we find that while on average LE increases as we use
less-informative audio representations (i.e. stereo), it is not a fully
monotonically increasing trend across polyphonic conditions. In
the FOA setting, the LE is similar regardless of level of polyphony.
In the binaural and stereo settings, there is a much larger spread
of LE across conditions, however not in a monotonically increas-
ing manner, e.g. in the stereo setting the average LE is 31.3◦ in the
occurrence of 3 overlapping sources vs. 46.1◦ for 2 sources. We hy-
pothesize that there are many interacting effects contributing to this,
including but not limited to class imbalance in different polyphonic
conditions, simultaneous sources of the same class, and the nature
of the LE metric as it does not take false negatives into account.

5. CONCLUSION

This work presents a novel comparative analysis of the DCASE
2022 SELD baseline model across first-order Ambisonics, binaural,
and stereo audio input representations. We show quantitatively that
while localization and detection performance decreases given less
informative audio representations, binaural and stereo-based SELD
models are still able to localize lateral sound sources relatively well.
These findings could be highly informative in the development of
applications such as an audio-visual navigation system equipped
with a stereo microphone configuration and a camera; if we are con-
fident in lateral source localization based on auditory cues, we can
lean more on visual cues for sources directly in front of the cam-
era. Future work in this space could entail an investigation into the
effect of sound source class or of overlapping sources of the same
class on localization performance across polyphonic conditions and
audio input representations.
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ABSTRACT
Sound Event Localization and Detection (SELD) is a task that in-
volves detecting different types of sound events along with their
temporal and spatial information, specifically, detecting the classes
of events and estimating their corresponding direction of arrivals at
each frame. In practice, real-world sound scenes might be com-
plex as they may contain multiple overlapping events. For instance,
in DCASE challenges task 3, each clip may involve simultaneous
occurrences of up to five events. To handle multiple overlapping
sound events, current methods prefer multiple output branches to
estimate each event, which increases the size of the models. There-
fore, current methods are often difficult to be deployed on the edge
of sensor networks. In this paper, we propose a method called Prob-
abilistic Localization and Detection of Independent Sound Events
with Transformers (PLDISET), which estimates numerous events
by using one output branch. The method has three stages. First, we
introduce the track generation module to obtain various tracks from
extracted features. Then, these tracks are fed into two transform-
ers for sound event detection (SED) and localization, respectively.
Finally, one output system, including a linear Gaussian system and
regression network, is used to estimate each track. We give the eval-
uation results of our model on DCASE 2023 Task 3 development
dataset.

Index Terms— Sound Event Localization and Detection,
Transformer, Linear Gaussian System

1. INTRODUCTION

Currently, applications in various fields, such as robotics and
surveillance, rely on Sound Event Localization and Detection
(SELD) technology. Therefore, conducting in-depth research on
this topic is crucial. Since 2019, DCASE has been hosting relevant
challenges that have significantly improved SELD systems [1, 2].

The first notable method in SELD is SELDNet [3]. However, it
is limited in dealing with multiple overlapping events from the same
class with different locations. To address this issue, EINv2 intro-
duced a new track-wise output format [4]. Since then, Permutation-
Invariant Training (PIT) has been utilized in SELD [5], which forms
part of the baseline system used in DCASE 2023 Task 3. However,
EINv2 still requires multiple output branches to estimate the corre-
sponding track, which increases the model’s size. Especially if the
number of overlapping events is higher than the number of output
branches, EINv2 cannot predict all events simultaneously. In other
words, some events might be ignored.

Figure 1: The new output branch for SELD. PS, LGS, and
FCN denote parameter-sharing, linear Gaussian systems, and fully-
connected networks, respectively.

Building upon previous work, this paper presents a novel three-
stage solution for SELD. First, in contrast to EINv2, we generate
different tracks from the extracted features prior to the attention
module. Second, we employ a transformer instead of a simple con-
volutional recurrent neural network (CRNN) in SELD. Third, we in-
troduce a linear Gaussian system to predict the Direction of Arrival
(DOA) from each track rather than relying on regression networks.
It is worth noting that in EINv2, the number of output branches is
double the number of tracks, as each track requires separate output
networks for DOA and SED predictions, respectively. If the number
of tracks is large, this can pose challenges for EINv2, whereas our
proposed model handles this efficiently.

In the following Section 2, we review the related work which
we used in our proposed method. Section 3 introduces the pro-
posed method in detail. Section 4 showcases the experimental re-
sults along with their corresponding analysis. The last section con-
cludes our contribution and future work.

2. RELATED WORKS

2.1. Trackwise output format

This format type is first introduced in [4]. It can be defined as:

Y Trackwise = {(ySED, yDOA|(ySED ∈ 1M×K
S , yDOA ∈ RM×3)} (1)

where ySED and yDOA are predictions for SED and DOA, respec-
tively, 1 denotes one-hot encoding, M is the number of tracks, K
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is the number of classes, S is the set of sound event classes, and
R

M×3 represents spatial information by Cartesian coordinates.
However, this format type can lead to a track permutation prob-

lem. In most cases, M ≪ K indicates that not all classes of sound
events happen in each frame. In other words, events are not con-
sistently predicted in fixed tracks. As a result, in the training pro-
cess, tracks do not know which ground truths are corresponded to
themselves correctly. To address this issue, permutation-invariant
training is employed as a solution.

2.2. Permutation-Invariant training

Permutation-invariant Training was first introduced for speaker sep-
aration in [5]. Let t denote the frame index. Given a frame-level
permutation set P(t), which consists of all possible prediction-label
pairs, ground truth labels are assigned based on the possible com-
binations within this set of pairs. The lowest loss is then used for
backpropagation. The PIT loss can be defined as follows:

LPIT = min
α∈P(t)

∑
M

{ℓSED
α (t) + ℓDOA

α (t)} (2)

where α is one of the possible prediction-label pair, ℓSED
α (t) and

ℓDOA
α (t) are SED and DOA loss, respectively.

2.3. Linear-Gaussian system

The linear Gaussian system represents a linear relationship between
variables, where the observed variables are corrupted by Gaussian
noise. This modeling approach has been widely utilized in various
tasks, including detection or tracking tasks. A simple linear Gaus-
sian system can be described by the following equation:

y = Hx+ ω (3)

where y represents the observed state, x represents the latent state
(which is hidden), H is the observation matrix, and ω represents
the observation noise. A more complex version of the linear Gaus-
sian system can refer to the Bayesian filters, involving parameter
optimization, such as Kalman Filter [6].

3. THE PROPOSED METHOD

In this section, we will discuss the proposed method in detail.
Firstly, we introduce parameter-sharing (PS) technology to enable
multi-task learning. Then, we discuss the network in three stages:
Feature Extraction, Transformer, and Tracks Estimation. At last, we
will give a summary of the proposed method’s structure.

3.1. Parameter-Sharing

Due to SELD involving both sound event detection and correspond-
ing localization, this task is considered a complex multi-task rather
than a single task. Therefore, joint SELD learning can benefit from
multi-task learning (MTL) [7]. Considering that SED and DOA
predictions have different noise patterns, a good representation F
can average the noise patterns from both sides. Additionally, cer-
tain features R in F may be easily obtained from one side (SED or
DOA) but difficult from the other side. MTL can aid in obtaining a
good representation F .

Parameter-sharing (PS) is a classical MTL method, including
soft PS and hard PS [8]. The comparison between soft PS, hard PS,

and no PS can be seen in [4]. Thanks to their work, in this paper,
we select soft PS directly. The cross-stitch is used for soft PS. Let
Dc, Dt, and Df denote the dimensions of feature maps, time steps,
and frequency, respectively. The learnable parameters are denoted
as δi,j ∈ R

Dc . From the original feature maps (xSED, xDOA), the
new feature map updated by cross-stitch is given as:

[x̂SED, x̂DOA]T = ∆[(xSED, xDOA)]T (4)

where x̂SED, x̂DOA ∈ R
Dc×Dt×Df is the new feature map, ∆ is a

matrix with the dimension of 2× 2 consisting the learnable param-
eters, and T means transpose operation.

3.2. Feature Extraction

The first stage, Feature Extraction, includes a CNN-based feature
extractor, the track, and the observation noise generation module.
The primary objective of this stage is to obtain feature embedding
and observation noise.

SELDnet introduces a three-layer CNN-based feature extractor,
but its simple structure is considered less sensitive to small-sized
features. Moreover, SELDnet didn’t provide extractors for SED
and DOA branches separately. As a result, it might ignore some
specific features R in F , as discussed earlier. Therefore, this sim-
ple extractor is not ideal for joint SELD learning. We adopted the
extractor from EINv2 [4] directly. Same we provide different in-
puts for SED and DOA extractors. Only the DOA extractor will be
applied observation noise generation module.

Afterward, we generate M tracks from feature embeddings,
where M is a fixed input value. Therefore, we design a fully-
connected network (FCN) to implement. First, two embeddings are
flattened. Then, a linear layer is designed to increase the dimension
M times. Last, we reshape the embedding and obtain M tracks.
Also, the cross-stitch method is applied to the FCN.

Considering that the linear Gaussian system (LGS) is only ap-
plied to the direction of arrival (DOA) branch, we solely adopt the
observation noise module for the DOA’s feature map. The obser-
vation noise module consists of a linear layer to convert the feature
map into the observation state noise dimension (2-D or 3-D, de-
pending on the requirements).

3.3. Transformer

The Transformer was first proposed in [9], and we adopted it for
handling temporal information. We design separate Transformers
for SED and DOA, similar to the previous stage. Considering Trans-
former requires input with positional information. Thus, we apply
a fixed absolute positional encoding on each track as follows:

Pt,2i = 0.1 sin (t/108i/Dc), Pt,2i+1 = 0.1 sin (t/108i/Dc),
(5)

where t represents the time step and i denotes the feature map index.
Then, the positional encoded features will be fed into the Trans-
former’s encoder. Each encoder layer contains 8 multi-head self-
attention structures, and the input embedding dim is 512. Between
each encoder layer, soft PS is applied to balance the gap between
SED and DOA’s representations. The entire Transformer consists
of two encoder layers.

3.4. Tracks Estimation

The last stage, Tracks Estimation, aims to estimate SED and DOA
in each track. In EINv2, each track has two FCNs to estimate SED
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and DOA. If there is more than one track, EINv2 needs to add more
FCNs to cover the additional tracks. For instance, if there are three
tracks, EINv2 will need 6 FCNs to cover all estimations. Differ-
ent from it, we design the re-useable estimation block to cover in-
puts from different tracks to estimate the SED and the DOA of each
track.

For SED estimation, we employ a regression method to obtain.
The transformer’s output is fed into FCN and activated by the sig-
moid function. As for the DOA estimation, we adopt the linear
Gaussian system (LGS) to calculate the posterior estimation. The
calculation process is as follows:

I = HEHT +No (6)

Here, I represents the innovation covariance matrix, H is the ob-
servation matrix as defined in Equation 3, E denotes the identity
matrix, and No is the output from the observation noise module.
The observation noise is obtained by passing the observation em-
beddings (with a dimension of 512) through a linear layer. This
projection maps the observation embeddings to the state embed-
ding, which has a dimension of 3. The posterior covariance matrix
Cp is then obtained as:

Cp = (E−1 + I)−1 (7)

where [·]−1 denotes the inverse operation. Next, the residual matrix
R is calculated as:

R = H(x−Bo) (8)

where x represents the state embedding transferred from observa-
tion embedding, and Bo is the bias in the observation model. Fi-
nally, the DOA estimation, also known as the posterior mean matrix,
is obtained as follows:

x̂DOA = CpE
−1 +R. (9)

3.5. PLDISET and loss function

In the previous section, we discussed Permutation Invariant Train-
ing (PIT) but did not provide detailed information about the loss
functions for sound event detection (SED) and direction of arrival
(DOA). In this subsection, we will explain the loss functions and
provide an overview of the PLDISET method.

We select Binary Cross Entropy (BCE) as the loss function for
the SED task, which is a classification task. It measures the cross-
entropy between the predictions and the labels for SED. For the
DOA task, the evaluation is based on the distance between the es-
timations and the ground truths. Since Cartesian coordinates are
introduced, we can use the mean squared error between two points
in Cartesian coordinates as the loss function for DOA.

To train the SELD model and optimize its performance in both
SED and DOA tasks, these loss functions are used. The overall loss
is computed by summing the individual losses for SED and DOA
with appropriate weights.

The overview of the PLDISET is depicted in Figure 2. For the
sound event detection (SED) task, we use log mel spectrogram as
the input feature. In the case of the direction of arrival (DOA) task,
both log mel spectrogram and intensity vector map are selected as
the input features.

4. EXPERIMENT AND EVALUATION

4.1. Dataset and data augmentation

The DCASE 2023 development dataset consists of multichannel
recordings of sound scenes captured in different rooms and envi-
ronments. The dataset includes temporal and spatial annotations
for prominent events belonging to a set of target classes. The to-
tal duration of the dataset is 7.5 hours. However, due to the lim-
ited size of the dataset, it is insufficient to train a competitive deep-
learning-based model. To overcome this limitation, we utilized the
simulation generator script provided by the DCASE 2022 challenge
to generate an additional 30 hours of recordings. The generated
dataset includes two versions: a noiseless version and a noisy ver-
sion.

4.2. Metrics

We use the DCASE challenge’s metrics to evaluate our method. The
evaluation metrics used in this challenge are based on true positives
(TP) and false positives (FP), taking into account not only correct
or wrong detections but also the proximity to a distance threshold
T ◦ (angular threshold in our case) from the reference. For this chal-
lenge, the threshold is set to T = 20◦. The details can be seen in
[10, 11, 12].

4.3. Hyper-Parameters

We apply the Fast Fourier Transform (FFT) on the recordings using
a 1024-point Hann window with a hop size of 600 points. To extract
the log-mel spectrogram from the FFT result, we select 256 mel
bands. Next, we segment the audio clips into chunks of a fixed
length of 4 seconds without overlapping. The intensity vector map
is obtained as well.

For model training, we utilize the AdamW optimizer for op-
timization. The initial learning rate is set to 0.0005 for the first
80 epochs and is then reduced to 0.00005 for the subsequent 10
epochs. During the finetuning of the model, the scheduler strategy
changes to use a learning rate of 0.0005 for the first 10 warm-up
epochs. Afterward, the learning rate is multiplied by 0.1 every 10
epochs. The weighted term for the Permutation Invariant Train-
ing (PIT) loss is selected as 0.5 for both the sound event detection
(SED) and direction of arrival (DOA) losses.

4.4. Baseline system

We evaluate our proposed method by comparing it to the baseline
system (SELDNet) provided by the DCASE challenge, which has
been widely used as a benchmark [3, 13, 14, 15]. The baseline
system extends the original SELDNet [3] by introducing multi-
head self-attention blocks, using the Multi-ACCDOA output for-
mat, and employing SALSA-lite features to handle multiple over-
lapping sound events. Furthermore, we add EINv2 for comparison
as well.

4.5. Evaluation

We compare the proposed method with the baseline and EINv2 in
three steps. First, we trained all three algorithms on the noiseless
dataset using respective default settings. Table 1 shows their perfor-
mances. On the SED task, PLDISET and EINv2 achieved similar
performance and much better than the baseline. As for the DOA
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Figure 2: Network Architecture of the PLDISET.

task, PLDISET is slightly lower than the baseline, with a minor
gap.

Table 1: Official metrics on the noiseless generated dataset

Methods ER20 F20 LECD LRCD

baseline 0.52 49.2 18.8 58.9
EINv2 0.36 55.7 11.3 79.8

PLDISET 0.35 56.1 19.1 58.1

Afterward, we finetuned the models from the first step on the
noisy datasets. The evaluation results on the test dataset are pro-
vided in Table 2. EINv2 performed best on both tasks. The pro-
posed method achieved similar results on the SED task and was not
far from the baseline on the DOA task.

Table 2: Official metrics on the noisy generated datasets

Methods ER20 F20 LECD LRCD

baseline 0.55 48.9 20.0 49.9
EINv2 0.38 52.5 13.1 75.2

PLDISET 0.38 52.1 21.5 47.1

In the last step, we evaluated those methods on the development
dataset of the DCASE Challenge 2023. We finetuned models from
previous steps on the training part. Table 3 demonstrates the results
on the evaluation set. The proposed method and EINv2 outperform
well on the SED task with an error rate of around 0.39. The perfor-
mance of PLDISET on the DOA task is close to the baseline.

Table 3: Official metrics on the DCASE development dataset

Methods ER20 F20 LECD LRCD

baseline 0.57 48.7 22.0 47.7
EINv2 0.38 53.3 14.5 72.4

PLDISET 0.39 52.6 23.6 47.4

The proposed method shows its advantages on the SED task in
the three comparisons, with the lowest error rate of 0.35 and the
highest of 0.39. Considering that some datasets consist of real-
world recordings that are more challenging than the simulated data,
the proposed method shows its excellent capability in handling the

SED tasks under different complex scenarios. As for the DOA task,
unlike other works, we adopt a probabilistic method for localization
instead of a regression-based approach. However, the PLDISET
method shows a gap in the DOA task compared to EINv2 and the
baseline. The possible reason for the disadvantage is the LGS may
result in lower accuracy in the DOA estimations due to inaccurate
prior information or an inappropriate model.

Compared to other works, one of the distinguishing features of
PLDISET is its ability to estimate all tracks using a single output
branch. For most methods, they require assigning output modules
for each track. But PLDISET can reuse the output module for each
track. The experimental results demonstrate that PLDISET per-
forms well in SED tasks, showing its strong ability to accurately de-
tect and classify sound events without multiple regression networks.
Although the localization ability may not be as refined as in some
other works, it still achieves satisfactory results. Overall, PLDISET
balances sound event detection and localization tasks well. Con-
sidering that the parameters of the LGS can be updated and con-
strained by certain rules, there are potential research prospects in
further exploring and refining this aspect. By improving the prior
information and refining the model, it may be possible to enhance
the accuracy of DOA estimations in the PLDISET method. Besides
that, PLDISET shows its prospects of extending into a tracking ver-
sion. In tracking problems, different numbers of targets appear in
each frame which is quite common. Currently, PLDISET reuses the
single output branch to cover all tracks, which can be improved to
handle different tracks input. In addition, temporal information can
be considered in the tracking problem. Therefore, some historical
information, such as the Kalman Filter decreasing the error by re-
gression in the transaction, can be used to adjust the LGS to improve
tracking accuracy.

5. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel network called PLDISET for
SELD. We design the new output branch to estimate all tracks rather
than create several branches for each track. The proposed method is
evaluated on three datasets by comparing the baseline and EINv2 to
show its advantages and potential. The source code and improving
work based on the proposed method for sound event tracking will
be released in the future.
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ABSTRACT
This paper explores grading text-based audio retrieval rele-
vances with crowdsourcing assessments. Given a free-form
text (e.g., a caption) as a query, crowdworkers are asked to
grade audio clips using numeric scores (between 0 and 100)
to indicate their judgements of how much the sound content
of an audio clip matches the text, where 0 indicates no con-
tent match at all and 100 indicates perfect content match. We
integrate the crowdsourced relevances into training and eval-
uating text-based audio retrieval systems, and evaluate the
effect of using them together with binary relevances arise
from audio captioning. Conventionally, these binary rele-
vances are defined by captioning-based audio-caption pairs,
where being positive indicates that the caption describes the
paired audio, and being negative applies to all other pairs.
Experimental results indicate that there is no clear benefit
from incorporating crowdsourced relevances alongside bi-
nary relevances when the crowdsourced relevances are bi-
narized for contrastive learning. Conversely, the results sug-
gest that using only binary relevances defined by captioning-
based audio-caption pairs is sufficient for contrastive learn-
ing.

Index Terms— Text-based audio retrieval, non-binary
relevance, crowdsourcing assessment

1. INTRODUCTION
Text-based audio retrieval, or text-to-audio retrieval, refers
to searching for audio clips with free text queries, which has
great potential in real-world applications, such as search en-
gines and multimedia databases. Early works [1, 2] have
mainly focused on methods of retrieving audio with care-
fully curated phrases (e.g., audio tags, onomatopoeic words).
With the availability of large audio-caption datasets (e.g.,
Clotho [3] and AudioCaps [4]) in recent years, increasing
attention has been drawn to developing methods for audio
retrieval using free-form text [5].

Most of the literature tackles text-to-audio retrieval with
cross-modal learning methods. Oncescu et al. [6] first estab-
lished benchmarks in this topic with an adapted text-to-video
retrieval model. With the recent success of large-scale pre-
trained audio models (e.g., PANNs [7]) and language models
(e.g., BERT [8]), pretrained models are widely used for text-
to-audio retrieval and fine-tuned on task-specific data to learn
joint representations of audio and text [5]. Besides, several
works [9, 10] explored training strategies for text-to-audio re-
trieval models. For example, Mei et al. [9] evaluated several
cross-modal learning objectives (e.g., InfoNCE loss [11]) in
the context of text-to-audio retrieval.

In aforementioned works [6, 9, 10], relevances of audio
to be retrieved are usually assumed to be binary, i.e., either
relevant or irrelevant, given a text query. For example, an
audio clip is relevant to a caption if and only if the cap-
tion thoroughly describes its sound content (i.e., their content
matches perfectly). Practically, due to the lack of annotated
non-binary relevances in existing datasets, binary relevances
defined by captioning-based audio-caption pairs are adopted
for system training and evaluation. Binary relevances are
positive for audio-caption pairs where the caption describes
the paired audio, and negative for all other pairs. This allows
producing large quantities of positive and negative examples
for contrastive learning in state-of-the-art systems [5].

As a caption might partially describe the sound content of
an audio clip, we explore grading audio-text relevances with
non-binary numerical scores. Specifically, we crowdsource
audio-text relevances graded on a scale of 0 to 100, where
0 indicates completely irrelevant (i.e., no content match at
all) and 100 indicates completely relevant (i.e., perfect con-
tent match). The main contributions of this work are: 1) we
crowdsource non-binary audio-text relevances for environ-
mental audio and its existing captions; 2) we integrate the
crowdsourced relevances into training and evaluating tex-
t-to-audio retrieval systems, and evaluate the effect of us-
ing them alongside binary relevances defined by caption-
ing-based audio-caption pairs; 3) we release all the data and
the crowdsourcing instructions to the research community to
allow others to explore non-binary relevances [12].

2. CROWDSOURCING ASSESSMENTS
This section presents the proposed method for crowdsourc-
ing audio-text relevances.

2.1. Crowdsourcing Pipeline
We crowdsource audio-text relevances on Amazon Mechan-
ical Turk (MTurk). Here we first introduce the terms used
in this work. A human intelligence task (HIT) represents
a single task that a crowdworker can work on. An assign-
ment is a copy of a HIT that is assigned to a crowdworker.
A worker answer is the submitted task result when a crowd-
worker completes an assignment.

Fig. 1 presents an overview of the crowdsourcing
pipeline. Audio clips and captions for relevance assessments
are combined to form HITs, each of which consists of five au-
dio clips and one caption. Every HIT is assigned to multiple
MTurk workers. Raw answers containing graded audio-text
relevances are collected and aggregated after workers com-
plete their assignments.
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HITs Aggregated Answer

MTurk Workers Raw AnswersAudio and Caption Data

TP

TN

C15

some birds chirp and a dog barksCaption

some birds chirp and a dog barks

some birds chirp and a dog barks

...
...

...

some birds chirp and a dog barks

some birds chirp and a dog barks

90 5 25 30 75

85 0 35 55 80

87 3 30 45 80

Figure 1: An overview of the pipeline for crowdsourcing relevance assessments.

Split #Captions #Audio
#TPs #TNs #C15s

development 200 200 200 3000
validation 200 200 200 3000
evaluation 200 200 200 3000

Table 1: Statistics of captions and audio clips selected for
crowdsourcing relevance assessments.

2.2. Audio and Caption Data
We select a subset of captions and audio clips from each split
in Clotho [3], with each subset containing 200 captions and
17 audio clips for each caption. Clotho crowdsources cap-
tions for each audio clip, and captions scored high by other
workers results to the final captions [3]. The audio clips se-
lected for each caption consists of one true positive clip (TP,
being completely relevant to the caption), one true negative
clip (TN, being completely irrelevant to the caption), and 15
relevance-unknown candidates (C15). Specifically, we select
audio clips corresponding to the captions in Clotho as TPs
and obtain TNs using low audio-caption similarity scores es-
timated by the baseline system in DCASE 2023 Challenge
Task 6B1 followed by human verification. For C15s, we
choose the top five clips with high audio-caption similarity
scores, together with another 10 randomly selected clips to
include audio clips having diverse relevances. Table 1 sum-
marizes the captions and audio clips for crowdsourcing rele-
vance assessments.

2.3. Crowdsourcing Task Setting
For each caption, five HITs are created, each of which is
assigned to several crowdworkers. Each HIT contains five
audio clips, which are provided for crowdworkers to assess
their individual relevance to the caption. The C15s of a cap-
tion are split into five batches of three C15s, with one batch
per HIT. The TP and TN clips are used for quality check after
crowdsourcing.

In each assignment, crowdworkers are asked to assign
numeric scores (between 0 and 100) to indicate their judge-
ments of how much the sound content in each audio clip
matches the given caption in that assignment. Inspired
by [13], we grade audio-text relevances on a scale of 0 to

1https://dcase.community/challenge2023/task-language-based-audio-
retrieval.

100, where 0 indicates completely irrelevant (i.e., no con-
tent match at all) and 100 indicates completely relevant (i.e.,
perfect content match). An initial value of 0 is set as the de-
fault relevance score for each audio clip. Crowdworkers are
required to listen to each audio clip entirely.

2.4. Quality Check
To collect high-quality answers, a quality check is conducted
before and after crowdsourcing. Worker requirements are set
up for selecting workers with high-quality work on MTurk
(e.g., workers with a HIT approve rate greater than 98%).
Besides, crowdworkers should pass a predefined qualifica-
tion test by correctly answering questions about identifying
the audio clip described by a given caption from three candi-
dates before they can accept our HITs (i.e., receiving assign-
ments).

With the fact that TPs are clearly more relevant than TNs
within the same assignment, the former should receive higher
scores than the latter. Let stp be the graded relevance of a TP,
and stn be the one of the TN within the same assignment.
Consistency verification on stp and stn is applied to check
and select worker answers at the worker level.

Let D = {Si | 1 ≤ i ≤ N} denote the set of N answers
submitted by a worker, where Si =

{
sitp, s

i
tn, s

i
c1, s

i
c2, s

i
c3

}
represents the i-th answer from the worker, and sc1, sc2, sc3
are the scores of the three C15 clips within the same assign-
ment. As mentioned above, a C15 can be either completely
relevant or irrelevant, or even partially relevant to a given
caption. For every Si ∈ D, we measure two random vari-
ables for the worker: X , which represents the difference of
stp and stn, and Y , which denotes the difference of every pair
of sc1, sc2, sc3. Intuitively, stp should be higher than stn by
more than what is expected by chance when sampling from
Y . For consistency verification on stp and stn, we therefore
require that X and Y should satisfy:

E(X) = E(stp − stn) ≥ E(Y ) + σ(Y ), (1)
where E represents the expected value and σ represents
the standard deviation across D (i.e., all answers from the
worker). If the inequality is not satisfied, D will be discarded
completely.

3. AUDIO-TEXT RELEVANCE SCORES
This section analyzes the crowdsourced relevances.
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Split #HITs #Workers #Answers
development 1000 109 6651

validation 1000 113 5064
evaluation 1000 118 6489

Table 2: Statistics of crowdsourced data.

3.1. Crowdsourced Raw Scores
Table 2 summarizes information about the crowdsourced
data after filtering the data based on the quality check. For
each HIT, answers were collected from at least five distinct
crowdworkers. In total, 18204 answers were crowdsourced
from 340 MTurk workers.

Fig. 2 presents the distribution of raw relevance scores
of TP, TN, and C15 clips. For TPs, approximately 60% of
relevance scores have a value of 100. For TNs, about 90%
of relevance scores are zeros, and over 98% of these scores
are less than 20. It indicates that most crowdworkers can
appropriately assess the relevances of TPs and TNs to a given
caption. For C15s, over 10% of relevance scores have a value
of 100, which indicates that some C15s are highly relevant to
a given caption. We notice that around 20% of relevance
scores of TPs are zeros, which shows the necessity of further
processing on the crowdsourced raw scores.

3.2. Aggregated Scores
The raw scores from different workers regarding the rele-
vance of an audio clip to a text query are aggregated by dis-
carding a maximum and a minimum score and then averaging
the remaining to produce a statistic that is robust to outliers.
Fig. 3 presents the distribution of aggregated relevance scores
of TP, TN, and C15 clips. After aggregating, the distribution
of relevance scores becomes more balanced, with fewer in-
stances of extreme or polarized judgements (e.g., scores of 0
and 100). Particularly, TPs exhibit a broader spectrum of rel-
evances (e.g., having scores spanning from 30 to 100) com-
pared to other clips. Over 99% of TPs have a score above
10, while about 99% of TNs have a score below 10. Around
30% of C15s have a score above 10, and roughly 10% have
a score above the mean score of TPs (i.e., s > 72).

4. EXPERIMENTS
This section reports experimental results of using the crowd-
sourced relevances for text-to-audio retrieval. Due to the lack
of established methods for using non-binary relevances for
training and evaluation, we binarize the crowdsourced rele-
vances.

4.1. Audio-Caption Pairs
Similar to previous studies [5], we tackle text-to-audio re-
trieval with contrastive learning. To obtain positive and
negative examples for contrastive learning, we binarize the
crowdsourced relevances (see 3.2) using the mean score of
TPs as an arbitrary threshold. Specifically, we obtain positive
audio-caption pairs by combining: 1) a caption with its high-
-graded C15 clips, which have a score above the threshold;

Split BiCrRel BiRel BiCrRel+BiRel
development 3890 2370 6260

validation 2560 1580 4140
evaluation 2440 1390 3830

Table 3: Number of positive audio-caption pairs in BiCrRel,
BiRel, and their combination (“BiCrRel+BiRel”).

2) the TP clip of a caption with the captions corresponding
to its high-graded C15 clips in Clotho; 3) the siblings (i.e.,
captions describing the same TP clip in Clotho) of a caption
with its high-graded C15 clips. All other audio-caption com-
binations are treated as negative pairs. The resulting positive
and negative pairs are referred to as content-matching pairs
with “Binarized Crowdsourced Relevances” (BiCrRel).

As a baseline, we created a subset of Clotho by select-
ing those audio-caption pairs of which the audio or the cap-
tion were part of BiCrRel, i.e., using the captioning-based
clip-specific audio-caption pairs from Clotho [3]. The se-
lected pairs are referred to as captioning-based pairs with
“Binary Relevances” (BiRel), which include the same audio
clips and captions as in BiCrRel. Table 3 summarizes infor-
mation about BiCrRel, BiRel, and their combination (“BiCr-
Rel+BiRel”). The development / validation / evaluation splits
are used for training / validation / evaluation, respectively.

4.2. Retrieval System
We experiment with the retrieval system proposed as the
baseline in DCASE 2023 Challenge Task 6B2, where a pre-
trained CNN14 [7] is employed as the audio encoder and
the Sentence-BERT (i.e., “all-mpnet-base-v2”) [14] is used
as the text encoder. This system is trained by optimizing the
InfoNCE loss [11] such that embeddings of the paired audio
and text are pulled together while those of the unpaired are
pushed far away.

Audio Encoder. The CNN14 [7], which is pretrained
on AudioSet [15], is employed as the audio encoder, with its
last linear layer discarded. An extra linear layer is added on
the top to generate 300-dimensional audio embeddings. The
audio encoder is fine-tuned during training.

Text Encoder. The Sentence-BERT [14], which is de-
rived from BERT [8] for the purpose of generating robust
sentence embeddings, is used as the text encoder. An ex-
tra linear layer is also added on the top to generate 300-
dimensional text embeddings. The Sentence-BERT is frozen
during training.

InfoNCE Loss. The InfoNCE loss [11] is a symmetric
cross-entropy loss, taking the form of

L = − 1

M

M∑
i=1

[log
exp(zii/τ)∑M
j=1 exp(zij/τ)

+ log
exp(zii/τ)∑M
j=1 exp(zji/τ)

],

(2)

2https://dcase.community/challenge2023/task-language-based-audio-
retrieval.
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Figure 2: Distribution of raw relevance scores of TP, TN, and C15 clips.

Figure 3: Distribution of aggregated relevance scores of TP, TN, and C15 clips.

where τ represents the temperature hyper-parameter, M de-
notes the number of audio-text pairs, and zij represents the
cosine similarity of the i-th audio embedding and the j-th
text embedding. It has been widely used to train cross-modal
retrieval systems [5].

Training Setup. The retrieval system is trained with
mini-batches consisting of 32 audio-text pairs from a devel-
opment split. An Adam optimizer with an initial learning
rate of 0.001 is adopted to optimize training. Learning rate
is reduced by a factor of ten once the validation loss does
not improve for five epochs. Training is terminated by early
stopping with a patience of ten epochs.

4.3. Evaluation Metrics
Retrieval performance is measured with recall at 10 (R@10)
on different evaluation splits. The R@10 is defined as the
proportion of relevant items among the top 10 results to all
the relevant items contained in the data and is averaged over
queries [5]. The more relevant items are within top 10 results,
the higher R@10 it is.

4.4. Results
Table 4 shows that training the system on BiRel leads to high
R@10 (e.g., 0.566 on BiRel), whereas training the system
on BiCrRel yields low R@10 (e.g., 0.478 on BiRel) and on
BiCrRel+BiRel results in intermediate R@10 (e.g., 0.509 on
BiRel). We conclude that the crowdsourced relevances do
not improve the performance from captioning-based audio-
caption pairs when they are reduced to binary relevances.
A possible explanation is that captions in Clotho are crowd-
sourced specifically to describe an exact audio clip, while the
crowdsourced relevances are graded based on their matching
content with a given caption (i.e., different underlying pur-
poses and criteria for generating captions and assessing rel-
evances). Besides, with the fact that each caption in BiRel

Training Data Evaluation Data
BiCrRel BiRel BiCrRel+BiRel

BiCrRel 0.357 0.478 0.407
BiRel 0.412 0.566 0.479

BiCrRel+BiRel 0.363 0.509 0.426

Table 4: Evaluation R@10 of text-to-audio retrieval with the
retrieval system trained on different pairs.

is annotated with one relevant audio clip while a caption in
BiCrRel can have several relevant audio clips, it makes text-
to-audio retrieval on BiCrRel more difficult and leads to a
decrease in R@10.

5. CONCLUSIONS
We explore grading audio-text relevance for text-based audio
retrieval via crowdsourcing assessments. We crowdsource
audio-text relevances graded on a scale of 0 to 100, where 0
indicates completely irrelevant and 100 indicates completely
relevant. We integrate crowdsourced relevances into train-
ing and evaluating text-to-audio retrieval systems, and eval-
uate the effect of using them alongside binary relevances de-
fined by captioning-based audio-caption pairs. Experimental
results show that the crowdsourced relevances do not posi-
tively contribute to the performance when they are reduced to
binary relevances, and using only binary relevances defined
by captioning-based audio-caption pairs is sufficient for con-
trastive learning.
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ABSTRACT

Foley sound generation aims to synthesise the background sound
for multimedia content. Previous models usually employ a large
development set with labels as input (e.g., single numbers or one-
hot vector). In this work, we propose a diffusion model based sys-
tem for Foley sound generation with text conditions. To alleviate
the data scarcity issue, our model is initially pre-trained with large-
scale datasets and fine-tuned to this task via transfer learning us-
ing the contrastive language-audio pretraining (CLAP) technique.
We have observed that the feature embedding extracted by the text
encoder can significantly affect the performance of the generation
model. Hence, we introduce a trainable layer after the encoder to
improve the text embedding produced by the encoder. In addition,
we further refine the generated waveform by generating multiple
candidate audio clips simultaneously and selecting the best one,
which is determined in terms of the similarity score between the
embedding of the candidate clips and the embedding of the target
text label. Using the proposed method, our system ranks 1st among
the systems submitted to DCASE Challenge 2023 Task 7. The re-
sults of the ablation studies illustrate that the proposed techniques
significantly improve sound generation performance. The codes
for implementing the proposed system are available at https:
//github.com/yyua8222/Dcase2023_task7.

Index Terms— Sound generation, Diffusion model, Transfer
learning, Language model

1. INTRODUCTION

The development of deep learning models has recently achieved re-
markable breakthroughs in the field of sound generation [1, 2, 3, 4].
Among various application domains of sound, Foley sounds, the
mimic of background sound, play a crucial role in enhancing the
perceived acoustic properties of movies, music, videos and other
multimedia content [5]. The development of an automatic Foley
sound synthesis system holds immense potential in simplifying tra-
ditional sound generation, which often involves intensive labour
work on sound recording and mixing.

Currently, many sound generation models [1, 6, 7] adopt an
encoder-decoder architecture, showing remarkable performance.
Liu et al. [7] utilize a convolutional neural network (CNN) encoder,
a variational autoencoder (VAE) decoder and a generative adver-
sarial network (GAN) vocoder. The encoder embeds the input fea-
ture (e.g., label) into latent variables and the decoder transforms this
intermediate information into mel-spectrogram which is then con-
verted to a waveform by the vocoder. Diffsound [6] utilizes text as
input and obtains the semantic features by using a contrastive lan-
guage image pre-training (CLIP) model [8]. AudioGen [4] further
improves the performance by using a pre-trained Transfer Text-to-
Text Transformer (T5) [9] to obtain text embedding, which is then
used to generate the waveform directly without using a vocoder.

Audio
Encoder

Text
Encoder

Audio Embedding Text Embedding

LDM LDM

Audio Text

Feature
Tokens

Feature
Tokens

Trainable Frozen

Pre-train Stage Fine-tune Stage

Tuning Layer

+

Figure 1: The training process of the LDM model. Audio Embed-
ding are applied for pre-train the LDM on large dataset, while text
embedding and an extra tuning layer are applied for fine-tune the
LDM on target dataset

This paper proposes a latent diffusion model (LDM) based
method for Foley sound generation. Our model follows the structure
of AudioLDM [1], an audio generation model that comprises a dif-
fusion model based encoder, a VAE based module for learning au-
dio prior, and a HiFi-GAN vocoder for waveform generation. Due
to the lack of training data for the sound generation task, we follow
the idea of pre-training [10, 11], by initially training all three models
on large-scale datasets such as AudioSet [12], AudioCaps [13] and
Freesound1, and then transferring them onto the target development
set. For inputs, the category labels are initially wrapped into rele-
vant texts (e.g., turning the label “Keyboard” into text “Someone us-
ing keyboard”) before they are passed into the contrastive language-
audio pre-training (CLAP) [14] for generating the text embeddings.
To learn the most suitable semantic features of each sound, an em-
bedding tuning layer is then added to text embedding for finding the
optimal embedding during the fine-tuning stage. As shown in Fig-
ure 1, we first use audio embeddings to pre-train the LDM model.
Then a tuning layer is introduced into the system, which is updated
via transfer learning along with the LDM module. For outputs, the
cosine-similarity score obtained in terms of the outputs and target
labels is used to select the best-related sounds from a pool of candi-

1https://freesound.org
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Figure 2: The overview of the system for both fine-tune stage and inference stage

date sound clips, which can improve the overall quality of the final
result. Through experiments and ablation studies, we observe that
the proposed techniques in our system can significantly improve the
model performance in both the relevance of generated sound and the
stability of the overall quality. Our system achieves a Fréchet audio
distance (FAD) score of 4.52 on the DCASE task 7 validation set,
significantly better than the baseline model with a FAD of 9.7.

The remaining sections of this paper are organised as follows.
Section 2 describes the overview of the proposed system. The
methodology of the network is explained in Section 3. Section 4
introduces the experimental setup. Results are shown in Section 5.
Section 6 summarizes this work and draws the conclusion.

2. SYSTEM OVERVIEW

Our proposed system is based on the widely used structure on sound
generation, which consists of an encoder, a generator, a decoder and
a vocoder. The system adopts the same structure as AudioLDM [1],
which used the CLAP [14] as the encoder and a latent diffusion
model as the generator.

As a cascade model, the decoder and vocoder are trained sepa-
rately and then built into the overall system with the trained param-
eters frozen when training the LDM model based generator. Instead
of directly using labels as the input, we employ a wrapping strategy
to generate text descriptions for each label as the initial mechanism
to enhance the semantic information of the input. For example, we
turn the label “Keyboard” into texts “Someone using keyboard”.
Then, we introduce an embedding tuning layer after the encoder in
order to produce a more suitable embedding for each sound.

During the generating stage, with the text input, the system ex-
tracts the text embedding using the CLAP model, and the LDM
model then generates the intermediate representation of the sound
feature, using the text embedding as a condition. Subsequently,
the mel-spectrogram can be decoded from the tokens by the VAE
decoder, which is then transformed into waveform by the GAN
vocoder. This system is then further improved with several tech-
niques:

• Transfer learning is introduced to boost the performance by
pre-training the model on larger datasets.

• A tuning layer is applied during the fine-tuning stage to find
the optimal embedding.

• Similarity score between the embedding of the generated out-

put and the target embedding is applied to select the best match
results among a group of waveform clips generated by the sys-
tem.

Detailed explanations of these methods are provided in following
section. The overall structure of the system is shown in Fig. 2.

3. PROPOSED METHOD

3.1. System structure

3.1.1. CLAP based encoder

We use the CLAP model to obtain the embedding of the input.
CLAP consists of a text encoder ftext that turns a text description
y into text embedding Ey and an audio encoder faudio that com-
putes an audio embedding Ex from audio samples x. The two en-
coders are trained with cross-entropy loss, resulting in an aligned
latent space with the same dimension De for both audio and text
embedding. Since most large audio datasets (e.g., AudioSet) only
provide audio-label pairs, we leverage the cross-modal information
provided by two encoders. Specifically, the system is pre-trained on
larger datasets with audio embedding and fine-tuned with text em-
bedding on the task development set. During the fine-tuning pro-
cess, the text embedding Ey is passed through a trainable linear
layer to find the optimal embedding feature for each class of sound.
Details of this mechanism are presented in Section 3.2

3.1.2. LDM based generator

Our system uses an LDM[15] to generate the intermediate latent
tokens, with the feature embedding (Ey or Ex) as the condition.
These tokens are then used by the VAE decoder to generate the mel-
spectrogram. During training, the LDM involves two processes: 1)
A forward process where the latent vector z0 is gradually turned
into a standard Gaussian distribution zN in N steps, with noise ϵ
added in each step. 2) A reverse process for the model to predict
the transition probabilities ϵθ of each step n, for reconstructing the
data z0 by removing the noise zN . The model is trained with a
re-weighted objective [16] as:

Ln(θ) = Ez0,ϵ,n||ϵ− ϵθ(zn, n,E)||22 (1)

where ϵθ is the Gaussian distribution predicted by LDM with cur-
rent state zn, current step n, and current condition E. During sam-
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pling, the model first generates random Gaussian noise as zN , and
then applies the denoising process by predicting the reverse transi-
tion probability and taking the E from CLAP as the condition.

3.1.3. VAE decoder & HiFi-GAN vocoder

We utilize a combination of a VAE decoder and a HiFi-GAN
vocoder to transform latent feature tokens into waveforms. Our ap-
proach involves training a VAE [17] to decode the latent feature
tokens into mel-spectrograms, and a HiFi-GAN [18] to generate
the corresponding waveforms. To achieve this, we initially convert
the waveforms into mel-spectrograms using the Short-Time Fourier
Transformation (STFT). The VAE is trained to compress the mel-
spectrograms, X , into a latent space vector z0, then reconstruct the
mel-spectrograms X̂ from the compressed representation. In par-
allel, we employ a HiFi-GAN to convert the mel-spectrograms X̂
into the corresponding waveform representations, denoted as x̂.

3.2. Practical issues

Transfer learning To deal with the issue of data scarcity, our sys-
tem takes advantage of a pre-trained model [10] by initially train-
ing all three models on extensive audio datasets, followed by fine-
tuning them on our development dataset. Specifically, the LDM
model undergoes its initial training phase using large-scale datasets
with audio embeddings as inputs, while the model is then trained on
the development dataset utilizing text embeddings.
Embedding tuning To first initialize the text embedding with more
semantic features, we apply some hand-picked text by extending the
label with some adjunct word (e.g., dogbark into a dog bark). We
then apply a tuning strategy to determine the optimal embedding of
each sound class. To implement this, we introduce a linear layer
L(x) with trainable parameters to fine-tune the text embedding be-
fore passing it to the LDM model. To guide this trainable layer with
only minor updates on the embedding, the parameters are initial-
ized with an identity matrix as weight, along with a Gaussian noise
as bias lb. Hence, the initial L(x) serves as an adding function of
input x and bias lb at the beginning of the training process. Then,
the system learns to update the parameter of both weight and bias
for optimal embedding during training. The embedding updated by
this linear layer is also used as the target embedding for the score-
selecting function discussed in the following section.
Score-based selection To improve the overall generation quality
and robustness, a scoring mechanism is applied to determine the
best matches among sampling results. Leveraging the fact that
CLAP provides embeddings in the same latent space for audio and
text, we utilize the cosine similarity between the output audio and
the target text. By comparing the FAD score of different groups
of output clips with different score-selecting thresholds, specific
thresholds are established for each class, allowing the system to
only selects the results surpassing these thresholds.

4. EXPERIMENTAL SETUP

4.1. Dataset

DCASE2023-T7 consists of a training set and an official evaluation
set with seven different classes of fully labelled urban sounds. Each
class has around 600 to 800 4-second sound clips in the training set
and exactly 100 clips in the evaluation set. We randomly partitioned
the training dataset into two subsets, with a ratio of 9 : 1 for training

and validation purposes, while the evaluation set was exclusively
used during the evaluation phase.
AudioSet is a large-scale dataset for audio research, which consists
a wide range of sounds. In detail, Audioset provides around 2.1
million 10-second audio with 527 classes of labels. Our system
uses AudioSet during the pre-training stage.
Freesound is a similar audio dataset with labels but with a non-
fixed length, ranging from one second to several minutes. To unify
the output length, all the sounds in Freesound are padded into a
10-second-long clip to match the data in Audioset.

By combining AudioSet and Freesound, we collected around
2.2M sounds in 22.05Khz for pre-training the LDM, VAE and GAN
models. By using the audio-embedding and mel-spectrogram as
input conditions, we only utilize the audio features to pre-train the
models, while label features are then used during fine-tuning stage
with the official training dataset.

4.2. Evaluation metrics

We apply the FAD [19] score as main evaluation metric. In detail,
FAD calculates the Fréchet distance F between a group of target
sound audio clip t and a group of generated sound audio clip r,
formed:

F = ||µr − µt||2 + tr(Σr +Σt − 2
√
ΣrΣt) (2)

where µ and Σ are the mean and covariance of Gaussian of the
embedding vector from each group extracted by VGGish [20].

4.3. Parameter setting

Both the decoder and vocoder are trained separately, then they are
integrated into the overall system with parameters fixed when train-
ing the LDM model. Initially, all three models are pre-trained using
AudioSet and Freesound from scratch and then fine-tuned with the
development set.

For the mel-spectrogram of 22.05kHz sounds, we set the win-
dow length as 1024 samples, the hop size as 256 and the number
of mel-filterbank as 80. The VAE is trained with a compression
level of 4, which encodes the mel-spectrogram into a latent vector
of 20 in the frequency dimension and 86 in the time dimension. The
length of the audio embedding Ex and text embedding Ey from the
CLAP encoder in Section 3.1 is 512. All the models are optimized
with Adam optimizer under an initial learning rate of 3.0 × 10−5,
with 3 epochs on the pre-training dataset and up to 1000 epochs
on the training set. We test the model (LDM-S) performance by
generating 100 clips per class and calculate the FAD score as the
evaluation metric for every 100, 000 step.

To investigate the influence of the input embedding features, we
employ a diverse set of labels and texts as embeddings for training
the model. In the case of embedding tuning, we begin by selecting
a specific set of text for providing the initial text embedding. Then,
we train the tuning layer along with the LDM model, guiding the
embedding towards the optimal value.

To further investigate the potential of the model on sound gen-
eration, we trained a larger LDM with a bigger CLAP model (LDM-
L) with the same training configurations. To balance the computing
complexity and the output quality, we trained this model on 16kHz
sounds and upsample it to 22.05kHz before output the results. For
the 16kHz mel-spectrogram, the hop size is decreased to 160 with a
mel-bin dimension of 64. The results of both models are shown in
the following section.
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System Dog Bark Footstep Gun Shot Keyboard Moving Motor Vehicle Rain Sneeze Cough
Baseline [7] 13.41 8.11 7.95 5.23 16.11 13.34 3.77

LDM-S 4.41 7.44 7.46 3.13 16.97 12.62 3.02
LDM-S+Pre 4.17 6.86 7.25 3.15 15.68 12.95 2.85

LDM-S+Pre+Text 3.84 5.66 6.66 3.48 14.35 12.62 2.12
LDM-S+Pre+Text+Filter 3.53 5.04 5.65 2.80 15.29 9.76 1.92

LDM-S+Pre+Text+Filter+Tuned 3.36 4.77 5.19 2.69 14.83 10.00 1.98
LDM-L+Pre+Text+Filter+Tuned 6.04 5.05 6.44 3.07 11.08 4.74 2.93

Table 1: The best results of each system on the DCASE2023-T7 evaluation set. LDM-S: model trained from scratch. Pre: model with
pre-training on large datasets. Text: using label-related text as input. Filter: applying the score-selecting function. Tuned: model with a
fine-tuned embedding. The score selection for motor sound is used with the text embedding of “ A moving motor ”.

5. RESULTS AND ANALYSIS

The performance of our system on DCASE2023-T7 validation set is
reported in Table 1. Most of our models outperform the baseline [7]
by a large margin in terms of FAD. The results obtained from dif-
ferent sizes of LDM highlight distinct strengths: LDM-S is better at
generating clear and distinct sounds like dog barks, footsteps, and
gunshots, whereas the larger model (LDM-L) demonstrates supe-
rior performance in handling complex sounds such as motor sounds
and rain sounds.
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Figure 3: Results of motor with different training embedding

Ablation studies are also conducted to investigate the effects
of each proposed technique. The experimental results in Table 1
demonstrate that transfer learning generally improves the system
performance in most cases with respect to the evaluation metrics.
Applying the embedding tuning strategy enables the system to op-
timize the embedding value for each class, which further improves
the performance. To validate the effectiveness of this embedding
tuning mechanism, we conduct several experiments with models
trained with different frozen text embeddings. All the models are
sampled under the same configuration for up to 20 times and the
results of motor sound are presented in the box chart of Fig. 3. It
can be observed that training without embedding tuning may yield
results with varying quality, ranging from the best FAD of around
12.5 to the largest score of up to 18. On the contrary, generating a
well-trained embedding value can contribute to more stable results.
This might be because the updated embedding during training can
provide more semantic information for both LDM denoising and
the waveform tuning process.

From Table 1, the utilization of the similarity score function sig-
nificantly enhances the overall performance, leading to improved
output quality in most scenarios. However, despite the improve-
ments observed in the majority of classes, we noticed that the gen-

Embedding Moving Motor Vehicle
Label 16.97
Motor 13.14

A moving motor 12.12
Sound of motor 12.87

Driving/motor/car 12.07
Tuned embedding 11.08
Audio embedding 8.88

Table 2: The best results on LDM-L with FAD on motor sounds be-
tween different score-selection. Embeddings indicate the text/label
value for training and similarity calculation.

eration quality of motor sounds did not exhibit a significant decrease
in FAD (best achieved 11.08). By operating several subjective eval-
uations (human evaluation), we find out that this might be because
most motor sounds consist of noise-like sounds and sound events
with distinct differences (e.g., driving sounds and engine sounds),
making it challenging for CLAP to identify and extract a single em-
bedding that aligns perfectly with all the target clips. To address
this issue and improve the correlation of the score function, we
introduced a multi-target-selection approach to replace the single
embedding score-selection. Specifically, we collected a set of au-
dio embeddings that demonstrated top feature correlation with the
training dataset and randomly selected an audio embedding for the
score-selection during each iteration. As the result presents in Ta-
ble 2, our system with multiple audio-embedding filters achieves a
notable FAD score of 8.88 for motor sounds.

6. CONCLUSION

This paper proposes a framework for small-domain Foley sound
generation. Our system leverages a diffusion-based model and ap-
plied several methods to enhance performance. On the input fea-
ture, our experiment shows that the input embedding can signifi-
cantly affect the overall quality. To alleviate this distinct gap be-
tween label and sound alignment, we proposed a trainable embed-
ding for tuning the embedding value. Our result indicates that an
improved embedding can further improve the quality and stability
of the model. For output, a score-selection strategy is utilized to se-
lect the best clip along with CLAP score similarity. The experimen-
tal result shows that our system can significantly improve over the
baseline network by a large margin. In the future, we will explore
more efficient and end-to-end methods for audio feature extraction
and fine-tuning.
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