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ABSTRACT 

Muhammad Ali Gulzar: Detecting Epilepsy Seizure Using a Scream Detector 
Tampere University 

Master's Degree Programme in Information Technology 
October 2023

A vast amount of data is available which can be processed and provide useful information to 
each person in interest of their application. One of the dominating applications to use data is the 
medical field and in specific, detecting epileptic seizure. There are various symptoms that can 
declare that a patient is having a seizure. Some of the symptoms include twitching, loss of con-
sciousness or screaming. Detecting scream from patient’s whole night video is the main aim of 
this thesis. In recent years, seizure detection has been given much attention but this is an ex-
tremely challenging task due to lack of scream data available as well as mixture of dataset avail-
able. 

To solve this task, deep learning approach has been adopted. Convolutional neural network 
(CNN) model has been used to construct a scream classifier. Convolutional neural networks have 
the ability to extract features from the input data and learn the features. CNN has the capability 
to compute the data piece by piece using sliding window which gives the benefit of fast computa-
tion. Main focus of this thesis was to learn how different number of hidden layers as well as neu-
rons in these layers can benefit in making an accurate and stable scream classifier. Apart from 
that, it is analyzed how different datasets effect the learning as well as the output of applying the 
learned model on unseen data. Features for raw audio data were extracted using audio melbands. 
This feature is called melbands and are fed to the convolutional neural network. Moreover, effect 
of providing input data with different number of rows in analyzed. Lack of scream data makes it 
difficult to have an optimum scream classifier to be applied on patient’s videos. Multiple hidden 
layers are used in the model architecture. Dropout, normalization and Rectified Linear Unit (ReLu) 
technology have been used to generalize as well as improve the accuracy and stability of the 
model. Furthermore, the effect of various hyper-parameters on the results have been analyzed. 
The performance of the model is examined with respect to the input data as well as the configu-
ration of the model.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 
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1. INTRODUCTION 

There is vast amount of data available on-line in recent times and have ever growing im-
portance. Its importance has grown so immensely that it can be said that data is the new oil of 
the digital economy. Researchers and practitioners apply varied techniques and methods that 
can extract useful information from the raw data. Applications ranging from camera of a mobile 
phone to an artificial intelligence robot uses data to provide foremost experience. One of the major 
domains that uses data is the medical field. Applications ranging from detecting breast cancer to 
fatty liver diseases [1][2]. In addition to the mentioned applications, data is used to detect epileptic 
seizures.  
 
Epileptic seizure is a neurological disorder that affects people of all ages.  Epileptic seizure 

causes brain activity of a person to become abnormal. This leads to the person having seizures 
or periods of unusual behavior, perception and sometimes loss of awareness. Some of the few 
seizure types include tonic, clonic, myoclonic, atonic and tonic-clonic. In 2015, there were 3.4 
million people with epilepsy in the United States of America alone.  Per World Health Organiza-
tion, around 50 million people have epilepsy worldwide. Figure 1 shows the distribution of patients 
across United States of America as of 15 April 2020 provided by Centre for Disease Control and 
Prevention. 
 

 

 
 
 

Figure 1. Distribution of epilepsy patients in United States of America 
 
 
The foremost person gaining benefit to detect epilepsy seizures are the patients themselves. 

Early detection of seizures allows early rectification which leads to a higher probability of curing 
the disease in an accelerated time span. This benefit is the main reason that patients visits spe-
cialized doctors in the first place. The second person to gain benefit to detect epilepsy seizures 
using data are the doctors. Previously, cameras are installed in the room of the patient to record 
whole night videos. The doctors or nurses watch these videos to answer three main questions: 
At what time did the seizure occur; How long did the seizure last and what type of seizure did the 
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patient had. After gaining information to these questions, doctor or nurse would prescribe certain 
methods to the patient to eliminate epileptic seizures. However, using data, a new technique is 
developed in the digital economy to detect epileptic seizures. Previously installed cameras pro-
vide whole night videos. These videos are then used by computers to detect epilepsy seizures 
and provide answer to the three main questions which were before provided manually by a doctor 
or a nurse. 
 
As epilepsy is caused by abnormal activity in the brain, seizures can affect any part of the 

brain coordinates. This leads to different signs and symptoms of epilepsy which include temporary 
confusion, uncontrollable jerking movements of arms and legs, loss of consciousness or physic 
symptoms such as fear. Symptoms depend on the type of seizure. Most often, a person with 
epilepsy will have the same symptom each time he/she have a seizure. One of the physic symp-
toms include screaming which can be detected using data and machine learning. 
 
Machine learning have seen rapid advancement over time. Many renowned companies and 

research centers have adopted to use machine learning techniques and methods to improve their 
efficiency and productivity. Machine learning has remarkable breakthrough in deep-learning in 
recent times. Deep neural network is a representation of a human brain architecture which have 
shown extraordinary results on many complex problems. Some of the examples of the neural 
network are Recurrent Neural Network (RNN), Deep Belief Network (DBN) and Deep Feed For-
ward (DFF) [7]. In this work to detect epileptics seizures, I will be using Convolutional Neural 
Network (CNN). 
 
 

1.1 Problem Statement 

 
Research in detecting epileptic seizure include collecting data, refining raw data, extracting 

useful features and use an appropriate machine learning approach to detect the symptoms of the 
seizure. One approach is adopted to solve epileptic seizure: classifier to detect if it the audio is a 
scream or not. 
 

Classification of audio into scream and non-scream is difficult due to two main reasons: 
 
• Lack of data for scream audio. 
• Features of a scream can be corresponding to other sounds. 

One of the main problems is that there is a lack of data of scream audio files [8]. Data is the 
source of teaching neural networks to classify between a scream and non-scream audio. How-
ever, solving the issue of lack of data does not settle the situation. It could be that the features of 
the scream, that are used to train the neural network, are corresponding to other sounds around 
the room of the patient which can lead to incorrect detection of seizures. 
 
Despite of the limitations, challenge of this research is to have a machine learning model that 

correctly predicts the screams of patients having epileptic seizures with efficiency and accuracy. 
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1.2 Aim and Objectives 
 

Two main aims are being targeted: 
 
• Make a classification model that can detect if an audio is a scream or not with accuracy. 
• Improve the computation speed of detecting scream from whole night videos. 

For classification purpose, Convolutional Neural Networks is used to do achieve the aims. Its 
capabilities on performing machine learning on images are well known and explored. However, 
CNN have proved its efficiency and accuracy in various audio classifications problems [3]. CNN 
is made up of neurons with learnable weights. Each neuron in the CNN receives input values and 
takes a weighted sum over them. Finally, it is passed through an activation function and provides 
with an output. 
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2. FRAMEWORK AND DATASET 

This chapter contains the information about the framework and dataset used to train machine 
learning models and for experimentation in this thesis. 

2.1 Framework 

For scream detection classification task, Keras is used to develop deep learning models. Keras 
is a programming framework and neural network library written in python programming language.  
It is a compact library which focuses on fast experimentation and allow to easily develop applica-
tions that requires deep learning. With the help of Keras, it is easy to write custom building blocks 
with very few restrictions. Keras can run on top of Tensorflow as well as Theano. Tensorflow was 
first developed for internal use by Google Brain. It is a library which is used for machine learning 
applications such as neural networks. In Tensorflow, we can also easily define the architecture 
on which the code should execute; whether on CPU or GPU. Furthermore, it provides a wide 
range of mathematics library to easily compute complex problems using high level language such 
as C++ or Python. On the other hand, Theano is a library for rapid numerical computation using 
python programming language. Theano is developed by MILA group in University of Montreal. 
However, for this experiment, Tensorflow has been used to develop a scream detection model. 
One of the factors which shows the growing popularity of Tensorflow instead of Theano is the 
number of search done in Google for the term Tensorflow and Theano which is show in Figure 2 
and 3. 
 
 

 

 
 

Figure 2. Search trend for the term Tensorflow over the last 5 years worldwide 
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Figure 3. Search trend for the term Theano over the last 5 years worldwide 
 
 
Audio files in raw form are no use to the neural network. We need to provide certain features 

of the audio that the neural network can learn from. For this purpose, we used the pipeline func-
tionality which pass the audio files using ffmpeg package and extract audio melbands [35] using 
C++ code. Ffmpeg package is a software service which is used to handle video, audio and other 
multimedia files. It contains various features such as distortion, modulation, resampling and trim-
ming media files. On the other hand, melbands are coefficients that are derived from a type of 
cepstral (It is a result of mathematical transformation in the field of Fourier transform) represen-
tation of the audio clip [4]. 
 

2.2 Datasets 

There is a lack of dataset to train a neural network for scream detection. However, different 
techniques were adopted to provide enough data to the neural network to have a sustainable and 
accurate scream detection model. 
 

2.2.1 Mivia Dataset 
 
Mivia is a research lab at the University of Salerno which has expertise in Pattern Recognition 

and Computer Vision. Along with various research and publications, it provides public datasets in 
the field of audio analysis, biomedical image, graph and video analysis [5]. In the Mivia Audio 
Events Data section, there are various sounds but for this experiment, scream audio were used. 
There is a total of 6000 events which are equivalent to 7934,2 seconds of audio. In the documen-
tation of Mivia, they divided the 6000 events of scream to 4200 training set and 1800 testing set. 
However, it was compounded to be used as one single dataset for training due to the lack of 
scream audio data [36]. 
 

2.2.2 Noise Dataset 
 
As there is a lack of scream audio data, a new approach was adopted to enhance the dataset. 

An element called noise was developed using C++ code. It is an element which adds Gaussian 
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random noise to the data [6]. There are 2 parameters set for this element which affect the Gauss-
ian random noise; alpha which is the scale factor beta is the addition to the generated random 
number. 
 

2.2.3 Csaba Dataset 
 
Besides having scream audio data, there is a need for non-scream audio data to train a neural 

network for scream detection. For this purpose, we used CSIBE-RAW [37] dataset which include 
various common sounds such as baby cry, guitar and human speech. The format of the audio 
files is mono WAV with 16-bit depth and 44.1 kHz sampling rate. 
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3. RELATED WORK 

This has been considerable research done on detection and classification of audio events [9], 
[10], [11], [12], [13], [14]. One of the focus of research in audio detection is scream detection. 
Various techniques as well as datasets have been used to resolve this problem. Various applica-
tions require scream detection as well as research done on them such as: 
 
• Detection of scream and shouted speech in subway trains 
• Scream sound detection for acoustic surveillance applications 
• To monitor space including various environmental sounds and conversation voices 

 The following sections discusses old approaches for classification of scream classifier as well 
as difficulties obtained during the construction of a scream classifier. 

3.1 Scream Detection Difficulties 

Research demonstrates that the task of classifying an audio is not a straightforward task. In a 
research to make a scream and shouted speech classifier, the data is mixed. It means that the 
data contains occurrences belonging to different classes at the same time which is referred to as 
source separation problem in the research. To tackle this problem, some sort of pre-processing 
separation algorithm was required to have a useful dataset. 
 
  One of the problems in this research is insufficient information for differentiating scream 

and non-scream sounds. The individual frames do not contain ample information. As the research 
in using Support Vector Machine (SVM) classifier, individual frames of scream and non-scream 
sounds are highly overlapped in the feature space which will cause problems in this specific clas-
sifier. Furthermore, there is a lack of scream sound data available and cause imbalance between 
scream and non-scream sounds. For having a stable and accurate model, large dataset is always 
recommended but with an optimum level. 

3.2 Scream Detection Approaches 

 Various approaches have been adopted for detection techniques with many different combi-
nations of features and classifiers. Some of them include [14], [15], [16], [17], [18], [19], [20]: 
 
• Mel Frequency Cepstral Coefficient (MFCC) / melbands with Gaussian Mixture Model 

(GMM) 
• MFCC with Support Vector Machine (SVM) 
• MFCC with Hidden Markov Model (HMM) 
• MFCC with multiclass Adaboost 
• MFCC and other spectral features classified with GMM 
• MFCC and other spectral features classified with k-nearest neighbor (kNN) 
• MFCC and other spectral features classified with random forest 
• Gabor features classified with GMM 
• Gabor features classified with SVM 
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There are other features and classifiers used beside the ones mentioned above. All of them 
are categorized under machine learning approach. Machine learning approach is based on 
scream and non-scream classification. This approach is further divided into two categories: su-
pervised and unsupervised learning. Figure 4 shows the classification techniques used in the 
research. 

 

 

 

Figure 4: Scream classification techniques 
 

 

• Support Vector Machines (SVM): To enhance the power to distinguish between scream 
and non-scream sounds, a sound-event partitioning method (SEP) have been adopted. 
SEP method provides the functionality of extracting multiple acoustic vectors from a sin-
gle sound event. The experiment is based on 1000 sound events and after applying the 
SEP methods, Support Vector Machine (SVM) is used to classify between a scream and 
non-scream sound. This approach does not prefer the MFCC features to train a model 
which is due to, according to the research, provides 60% reduction in equal error rate 
(EER) when compared to using MFCC as features. SVM was also selected for its com-
putation efficiency [8]. 

 

• Neural Networks: Deep learning approach was adopted in detecting scream and shout-
ing sounds in a subway train [7]. In neural network approach, the Restricted Boltzmann 
Machines (RBM) was stacked into Deep Belief Network which in result was a final product 
of Deep Neural Network (DNN). RBM is a neural network with one layer of hidden units 
which have undirected connections with visible units. The interaction between visible and 
hidden units is through an Energy function as described below: 
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DBN are composed of stacked RBM which learn various correlations between the data. 
As it is a classification problem, at the DBN is converted to a DNN as DNN has the capability to 
model the frontier between different classes through a discriminative rule based on gradient de-
scent and error propagation. The data was divided into four categories of sound: Scream, shout, 
conversation and noise. This model used the MFCC features to train the model with the specifi-
cally using the 12th order of MFCC. 

3.3 Perceptron 

Perceptron is the mathematical representation of a biological neuron. In an actual neuron, 
when the strength of a signal exceeds a specific threshold, it produces a signal whereas percep-
tron base on the same principle. Perceptron is made up of four parts: 
 
• Input values 
• Weights 
• Net sum 
• Activation function 

  Each input is multiplied by a certain value called weight. Moving on, the weights of multiple 
inputs is summed together to represent the strength of the signal and an activation function is 
used to calculate the output value [22].  
 

 

 

 

Figure 5: Internal structure of an artificial neuron 
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If we analyze figure 5, inputs (x1, x2, …., n) and weights (w1, w2, …, y) are real numbers 
which can be both negative and positive. All input values are multiplied with their respective 
weights assigned and added together. The result that is obtained through the stage of addition, it 
is passed through an activation function. 

There are various activation functions available. One of the activation functions is a step-func-
tion. The following example fully demonstrates the workflow in a perceptron using a step-function 
activation function. A step function will deliver a result of 1 if it is above a certain threshold and 0 
if it less than the threshold value. Example: 
 

Input 1 (x1) = 0.4 and weight 1 (w1) = 0.5 
Input 2 (x2) = 0.2 and weight 2 (w2) = 0.1 
Threshold = 0.5 
 
Perceptron calculation with step function: 
 

(𝑥% ∗ 	𝑤%) + (𝑥' ∗ 	𝑤') = (0.4 ∗ 0.5) + (0.2 ∗ 0.1) = 0.22	 → 0 
 

As the signal strength (0.22) was less than the threshold (0.5), the result is 0. 

3.4 Neural Network 

A neural network can be considered as an artificial neural network that can receive, process 
and transmit information. In biological terms, it is made up of different cells and each cell perform 
a small part of computation of a bigger problem. Figure 6 shows a presentation of a neural network 
which consists of three layers: 

• Input layer: Input data is transmitted through this layer 
• Hidden layer: There can be multiple hidden layers between input and output layer and 

these layers perform computation on the input data provided through input layer. 
• Output layer: This is the final layer in the neural network that produces the final output 

from the processed data. 

 

Figure 6: A simplistic neural network representation 
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Input layer is the first layer in any neural network. It does not have any weights and biases 
values associated with them. It takes the input signal and passes them to the next layer for pro-
cessing. Each neuron in input layer should represent an independent variable that has some 
effect on the output of the neural network [23].  
 
  Hidden layer is also known as the middle layer. This layer performs different transfor-

mations to the input data with the help of an activation function. It extracts important features from 
the data that is provided from the previous layers or a layer. In a hidden layer, neurons are stacked 
vertically as shown in Figure 6. Figure 6 also demonstrates that there is one hidden layer in the 
neural network and the layer contains 2 neurons. When the task requires complex decisions, the 
usage of more than one hidden layer is recommended. However, it does not guarantee that in-
creasing the number of hidden layers will be proportional to the accuracy of the results. Further-
more, there is a certain extent of adding hidden layers at which point, the accuracy will become 
constant or even decrease. Beside the number of hidden layers, the number of neurons in the 
hidden layer also affect the quality of the neural network. Low number of neurons compared to 
the complexity of the task being solved will result in under-fitting. Similarly, excessive number of 
neurons in a neural network will result in over-fitting. 
 
  Output layer is the last layer in the neural network that receives the input from the last 

hidden layer. This layer provides the results in a desired amount. Figure 6 represents that there 
is one neuron in the output layer which will produce one single value as a final result. 
 

  Weights play an important role in the training of a neural network. The calibration of the 
weights is done during the training of the model and the calibration is achieved by repeating for-
ward and backward propagation. 

3.4.1 Deep Learning 
 
 

The works of perceptions from 1950 and multi-layer perceptron success are quite recent 
though the work was done several decades ago [42] [43]. There are many factors contributing to 
this phenomenon; the foremost being the accessibility of powerful computers. Now there is usage 
of graphical processing unit (GPU) instead of CPU for training machine learning models. Intro-
duction of dropout, ReLU and proper random initialization all contribute to the success [44].  
 
 In classical machine learning approach, the classification is performed in such a way that 
specific features are extracted from the data and then use a general-purpose classifier on top 
such as support vector machine (SVM) [45]. However, in complex problems, extracting good fea-
tures is difficult such as in computer vision [46]. 
 
 Due to the recent advancements, deep learning has solved many problems including dis-
cussed in the previous paragraph. A deep model has several hidden layers of computations that 
automatically discovers more complex features to be used. The number of perceived regions in 
a deep architecture increase almost exponentially with the number of parameters by learning and 
combining multiple levels of representation [47].  
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3.4.2 Forward Propagation 
 
 

In a neural network, the input layer provides the initial state of the data, propagates 
through the hidden layers and produce an output using an output layer. As discussed in section 
3.3, weights are assigned to each value; at the first phase of training, the weights are assigned 
randomly. In forward propagation, these set of weights are applied to the input data where it finally 
produces an output. This procedure can be repeated various times and the occurrence depends 
on the complexity level of the task. Figure 7 shows a neural network with forward propagation in 
which weights are assigned randomly. 
 

 
 

Figure 7: Weight assigning in forward propagation 
 
 

3.4.3 Backward Propagation 
 
When the forward propagation produces a result using random weights assigned, the result is 

then compared to the actual expected result to compute the error. To decrease the computed 
error, weights are propagated backwards by taking the derivative of the error according to each 
weight and subtracting the value from the specific assigned weight. Likewise, in forward propa-
gation, the computation occurs at each layer in backward propagation. Forward propagation is a 
part of backward propagation but it occurs before backward propagation but both works together 
[24]. 
 

3.4.4 Activation Function 
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Neurons produce a signal value when the input value is multiplied with its respective weight, 
add bias and add all the results together. The decision if the neuron should be activated or not is 
decided by the activation function using the signal value. Without an activation function, a neural 
network is simply a linear regression model. Activation function produces non-linear transfor-
mation of the input data and the result is sent to the next layer. 
 
There are various types of activation function including the three most common ones: 
 

• Step function: Step function is a simplistic logical function. In simple terms, if a certain 
value X is greater than the threshold value, is will be activated, otherwise not. Hence, it 
can be referred to as a threshold-based activation function. Figure 8 [25] shows that the 
output is 1 if the signal value is greater than the threshold value which is 0. On the con-
trast, the output is 0 if it is less than 0, again using the reference of the threshold value. 

 
 

 
 

Figure 8: Step function 
 
 
• Sigmoid function: Sigmoid function is non-linear in nature compared to step function. 

As shown in Figure 9, it has a S shaped curve and the output range is between 0 and 1.  
Furthermore, this function has the capability to bring the y-axis values to either end of the 
curve. This statement is supported by Figure 9 representation, as the y-axis values are 
very steep when the x-axis values are between -2 and 2 which means that any small 
change in x-axis values will result in a significant change in the y-axis. 
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Figure 9: Sigmoid activation function graph representation 
 
 

• ReLu function: ReLu (rectified linear unit) activation function can be easily understood 
by the following equation: 
 

𝑓(𝑥) = 	max	(0, 𝑥) 
 
  The input value is either 0 or the value itself. The condition that determines is that 
if the input value is negative, it will be zero otherwise the input value itself. Figure 10 
shows graph representation of ReLu but in reality, ReLu is non-linear in its nature. The 
output range of ReLu is from 0 to infinity, hence it not bounded. Furthermore, as it has 
simple mathematical operation, it is less expensive compared to other activation func-
tions. 
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Figure 10: ReLu function graph representation 
 

3.5 Convolutional Neural Network 

This chapter discusses the important features of Convolutional Neural Network (CNN) and its 
importance in today’s application. Furthermore, the comparison between human computation and 
learning power of neural networks is discussed. It is a human nature that no one starts to think 
about the problem statement or any situation from the start. Humans try to solve the problem in 
the best possible way with its previous knowledge. 
 
  Neural networks are splendid in image recognition task. However, if we consider that the 

image has large number of pixels that will be processed by the neural network, it would mean that 
the number of parameters for a neural network will increase. This situation will give arise to prob-
lems such as immense consumption of computational power and decrease in the performance of 
the neural network. That is why a simple neural network is not suitable for every case. Hence, 
Convolutional Neural Network is the most popular neural network that is used for image classifi-
cation applications. Instead of weights assigned to each pixel in an image, a CNN has just enough 
weights to analyse a small patch of an image. It is like reading a sentence with a magnifying glass; 
eventually you read the whole sentence but you look at only small patch of the sentence at a 
specific time. This leads to having fewer parameters in the neural network which significantly 
improves the training time as well as require less amount of data to train. 
 
Figure 11 illustrates the concept of computing an entire image piece by piece. The input layer 

provides data with dimensions 256 x 256. CNN can efficiently scan through the whole data chunk 
by chunk with a 5 x 5 window. The 5 x 5 window will slide through the whole image until the end. 
The sliding of the window usually occurs from left to right and top to bottom. Furthermore, it can 
be defined how fast the window should scan the whole data, defined by the term stride. As in 
Figure 11, if we set the stride 2, it would mean that the window 5 x 5 will slide 2 pixels every time 
until it spans the entire data. Hence, this is one of the main features that distinguishes CNN from 
other neural networks. 
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Figure 11: Convolutional process on a data 
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4. PROPOSED METHOD 

This section will explain the techniques used in this research to have a stable and accurate 
model to detect seizure from patient’s video. 

4.1 Audio Pre-processing 

Audio in its raw form cannot be used to train a neural network. For this purpose, feature of an 
audio, melbands are extracted from audio files. To achieve this target, third party packages such 
as ffmpeg and libXtract are used. The following subsections explain how each package is used 
to accomplish the point of reference. 

4.1.1 Audio Melbands Element 
 
LibXtract is a simple and lightweight library of audio feature extraction functions. This library 

is available for anyone to use and even manipulate the original functions; this term is often re-
ferred as Open Source. LibXtract can be used in programming languages such as C++, python 
or java but for this research, C++ was used to implement the function. An element called “audi-
omelbands” was implemented to extract melbands from raw audio files. Program 1 shows varia-
bles used in this element. Variables of the name melBands, frequency and volumeCutLevel can 
be passed as a parameter. Variable melBands are the amount of melbands we want to extract 
from an audio file whereas volumeCutLevel is a reference point where the data is set to zero if 
the mean of the audio melbands is less than the volumeCutLevel. 
 

1. struct AudioMelBandsElement::Private {   
2.   int melBands = 25;   
3.   int frequency = 48000;   
4.   double volumeCutLevel = 0;   
5.   std::uint32_t windowSize = 0;   
6.   std::unique_ptr<xtract_mel_filter> filterBank;   
7.   std::vector<std::vector<double>> filterData;   
8.   std::vector<double *> filterPointers;   
9.   double *hannWindow = nullptr;   
10.   std::vector<double> emptyMelData;   
11. };   

Program 1: Variables used in the element audiomelbands 
 
 
  Moving ahead, Program 2 shows the main function of the audiomelbands element. As it 
is shown on line 1, the name of the function is process, the input data as a parameter is a matrix 
as well as the output data and return a boolean if the function runs successfully.  Line 2 checks if 
the input data is in CV_32FC1 format. This format can be interpreted as 32 bit floats with 1 chan-
nel. Line 8 will execute another function, initLibxtract if the variable filterBank is false. By the name 
of the function it can be interpreted what the function will imply. It will simply initiate the libXtract 
library with the appropriate variables. From line 9 to 22, the function generates melbands for 
silence if the emptyMelData array is empty. As mentioned before, volumeCutLevel is used to set 
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the value of melbands to zero if the mean of the melbands if less than the variable volumeCut-
Level. Three variables are initiated with the name rawData, melData and secondMelData. Varia-
ble rawData is initiated with the same dimensions as the columns of the input data as shown on 
line 32. Finally, function called generateMelBands is executed to obtain the desired results. 
 

1. bool AudioMelBandsElement::pro-
cess(const cv::Mat &in, cv::Mat &out) {   

2.   if (in.type() != CV_32FC1) {   
3.     std::cerr << "Error: The AudioMelBands element ac-

cepts only CV_32FC1 data\n";   
4.     return false;   
5.   }   
6.    
7.   if (!p->filterBank) {   
8.     initLibxtract(uint(in.cols));   
9.     if (p->emptyMelData.empty()) { 
10.  
11.       std::uniform_real_distribution<float> distribution(-

0.001f, 0.001f);   
12.       std::mt19937 engine;   
13.       auto generator = std::bind(distribution, engine);   
14.       std::vector<double> emptyData(p->windowSize, 0);   
15.       std::vector<double> cloneMelbands;   
16.    
17.       std::generate_n(emptyData.begin(), p->windowSize, generator);   
18.       p->emptyMelData = generateMelBands(emptyData);   
19.       cloneMelbands = p->emptyMelData;   
20.       p->emptyMelData.insert(p->emptyMelData.end(), cloneMel-

bands.begin(), cloneMelbands.end());   
21.     }   
22.   }   
23.    
24.   if (checkVolumeCutLevel(in) && !p->emptyMelData.empty()) {   
25.     out = cv::Mat::zeros(1, int(p->emptyMelData.size()), CV_32FC1);   
26.     for (int i = 0; i < int(p->emptyMelData.size()); ++i) {   
27.       out.at<float>(0, i) = float(p->emptyMelData[i]);   
28.     }   
29.     return true;   
30.   }   
31.    
32.   std::vector<double> rawData(in.cols, 0);   
33.   std::vector<double> melData;   
34.   std::vector<double> secondMelData;   
35.    
36.   for (int i = 0; i < int(rawData.size()); ++i) {   
37.     rawData[i] = double(in.at<float>(0, i));   
38.   }   
39.    
40.   melData = generateMelBands(std::vector<double>(rawData.begin(), raw-

Data.begin() + p->windowSize));   
41.   secondMelData = generateMelBands(std::vector<double>(raw-

Data.end() - p->windowSize, rawData.end()));   
42.   melData.insert(melData.end(), secondMelData.begin(), second-

MelData.end());   
43.    
44.   out = cv::Mat::zeros(1, int(melData.size()), CV_32FC1);   
45.   for (int i = 0; i < int(melData.size()); ++i) {   
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46.     out.at<float>(0, i) = float(melData[i]);   
47.   }   
48.   return true;   
49. }   

Program 2: Main function “process” of the element audiomelbands 
 
 
Program 3 shows how the function generateMelBands is implemented. Line 9 shows the main 

function that is used from libXtract library; xtract_mfcc, to generate melbands of an appropriate 
audio file. My appropriate it means that it contains the data in CV_32FC1 format [34] and is not 
silent which is checked against the volumeCutLevel parameter. 
 

1. std::vector<double> AudioMelBandsElement::generateMel-
Bands(const std::vector<double> &samples) {   

2.   std::vector<double> windowedData(p->windowSize, 0);   
3.   std::vector<double> spectrumData(p->windowSize, 0);   
4.   std::vector<double> tempData(p->filterBank->n_filters, 0);   
5.   double userData[4] = { double(p->frequency) / p->win-

dowSize, XTRACT_MAGNITUDE_SPECTRUM, 0.0, 0.0 };   
6.    
7.   xtract_windowed(samples.data(), int(p->windowSize), p->han-

nWindow, windowedData.data());   
8.   xtract_spectrum(windowedData.data(), int(p->win-

dowSize), userData, spectrumData.data());   
9.   xtract_mfcc(spectrumData.data(), int(p->windowSize / 2), p->fil-

terBank.get(), tempData.data());   
10.   return tempData;   
11. }  
12.  

Program 3: Implementation of generateMelBands function 
 

4.1.2 Noise Element 
 
As mentioned in Chapter 2, noise dataset is generated through the usage of an element im-

plemented in C++ programming language. The main aim of this element usage is to generate 
more data to have a well-trained neural network that can provide satisfactory results on unseen 
data. My unseen data, it refers to the data that is neither used in training or testing and for this 
research, the unseen data is patient data having seizures. The implementation of this element is 
straight forward. Program 4 shows the variables as well as how the random gaussian noise [38] 
is generated. Function default_random_engine is used to create a generator that will create a 
random gaussian noise which will be further manipulated as show in program 5. 
 

1. struct NoiseElement::Private {   
2.   float alpha = 1.0f;   
3.   float beta = 0.0f;   
4.   float upperBound = 1.0f;   
5.   float lowerBound = 0.0f;   
6.   std::default_random_engine generator;   
7.   std::normal_distribution<float> distribution;   
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8. };   
9.    
10.   unsigned seed = std::chrono::sys-

tem_clock::now().time_since_epoch().count();   
11.   p->generator = std::default_random_engine(seed);   
12.   p->distribution = std::normal_distribution<float>(0.0f, 1.0f);  
13.  

Program 4: Variables used and generation of random gaussian noise implementation 
 
 

In most of the lines of the code in program 5, it performs a check on the data type of the 
input data so that it could return appropriate data but the addition of the noise is the same in every 
case. Line 7 shows that first the random number is generated which is then multiplied by the 
variable alpha and added to beta. This number is every number in the data. After having a data 
with gaussian noise added to it, it performs a lower and upper bound clamping which is shown on 
line 8. 
 

1. bool NoiseElement::process(const cv::Mat &in, cv::Mat &out) {   
2.    
3.   out = in;   
4.   for (int i = 0; i < out.cols; ++i) {   
5.     for (int j = 0; j < out.rows; ++j) {   
6.       if (out.type() == CV_32FC1) {   
7.         auto tempVal = out.at<float>(j, i) + (p->distribution(p-

>generator) * p->alpha + p->beta);   
8.         out.at<float>(j, i) = std::clamp(tempVal, p->lowerBound, p-

>upperBound);   
9.       } else if (out.type() == CV_64FC1) {   
10.         auto tempVal = float(out.at<double>(j, i)) + (p-

>distribution(p->generator) * p->alpha + p->beta);   
11.         out.at<double>(j, i) = static_cast<double>(std::clamp(tempVal,

 p->lowerBound, p->upperBound));   
12.       } else if (out.type() == CV_16SC1) {   
13.         auto tempVal = float(out.at<std::int16_t>(j, i)) + (p-

>distribution(p->generator) * p->alpha + p->beta);   
14.         out.at<std::int16_t>(j, i) = static_cast<std::int16_t>(std::cl

amp(tempVal, p->lowerBound, p->upperBound));   
15.       } else if (out.type() == CV_16UC1) {   
16.         auto tempVal = float(out.at<std::uint16_t>(j, i)) + (p-

>distribution(p->generator) * p->alpha + p->beta);   
17.         out.at<std::uint16_t>(j, i) = static_cast<std::uint16_t>(std::

clamp(tempVal, p->lowerBound, p->upperBound));   
18.       } else if (out.type() == CV_8SC1) {   
19.         auto tempVal = float(out.at<std::int8_t>(j, i)) + (p-

>distribution(p->generator) * p->alpha + p->beta);   
20.         out.at<std::int8_t>(j, i) = static_cast<std::int8_t>(std::clam

p(tempVal, p->lowerBound, p->upperBound));   
21.       } else if (out.type() == CV_8UC1) {   
22.         auto tempVal = float(out.at<std::uint8_t>(j, i)) + (p-

>distribution(p->generator) * p->alpha + p->beta);   
23.         out.at<std::uint8_t>(j, i) = static_cast<std::uint8_t>(std::cl

amp(tempVal, p->lowerBound, p->upperBound));   
24.       } else {   
25.         std::cerr << "Error: Unsupported type " << out.type() << std::

endl;   
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26.         return false;   
27.       }   
28.     }   
29.   }   
30.   return true;   
31. } 

Program 5: Main function of element noise 
 
 

4.1.3 Generating Melbands 
 

Section 4.1.1 and 4.1.2 introduced elements that was used to extract melband feature from 
raw audio files. In this section, it is addressed how these elements work together along with 
ffmpeg package. Package ffmpeg is used to read the audio file with multiple parameters. Ffmpeg 
is a leading multimedia framework able to decode, encode, transcode, mux, demux, stream, filter 
and play anything humans and machines have created. It supports the most obscure ancient 
formats up to the cutting edge. Program 6 shows a section of bash script to accomplish the desire 
target. Line 1 prints out a message of noise element parameters along with the name of the files 
it is going to perform the computation. Parameter “-i” indicates that this is the audio file to be read. 
After reading the audio file using ffmpeg, noise element is used to add noise to the data. In this 
section of the script, noise elements use parameter with alpha equal to 0.2 and beta to -0.1. 
However, apart from this section, there are two executions performed in this same audio file. First 
one is the simple extraction of melbands without any noise and the other one along with noise 
element with parameter alpha equal to 0.4 and beta to -0.2. After extracting melbands, line 8 write 
the result in an output file in csv format. 
 

1. echo "Extracting mel bands of file with alpha=0.2 beta=-
0.1 $filename"   

2. output_file="output.csv"   
3. ffmpeg -loglevel error -i ${filename} -f f32le -c:a pcm_f32le -

ar 48000 -ac 1 pipe:1 \   
4. | pipeline-launch input stride=6400 \   
5. ! cast width=1600 height=1 type=5 \   
6. ! noise alpha=0.2 beta=-0.1 lowerBound=0 upperBound=1 \   
7. ! audiomelbands melBands=25 \   
8. ! datawrite outputFile=${output_file} 

 
Program 6: Bash script to extract melbands using audiomelbands and noise element 

 

4.2 Model Architecture 

There are multiple ways to build neural network, by using multiple layers and different compo-
nents [40]. In this scream classifier task, we use Convolutional Neural Network (CNN). A CNN 
contains one or more than one convolutional layer. These layers can either be completely inter-
connected or pooled. Following are the components and layers used in building the model for this 
scream detection task. 
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4.2.1 Convolutional and Pooling Layer 
 
The word convolutional itself is the meaning; this layer performs convolving objects on one 

another. The convolutional layer is the core building block of CNN and carriers the main portion 
of the network’s computational load. The main objective of the convolution is to extract features 
such as edges and corners from the input data and in this task, melbands. As we go deeper inside 
the network, the network starts identifying more complex features. Convolutional layers perform 
dot product between two matrices where one matrix is the set of learnable parameters and the 
other matrix is the portion of an melband spectrum. At the end of the convolutional process, we 
have a featured matrix which less parameters compared to the actual input data as well as more 
clear features than the real one [41]. 
 
After every convolutional layer, there is a pooling layer. The purpose of this layer is to decrease 

the computation power required to process the melband data. It is achieved by decreasing the 
dimensions of the featured matrix further more. The dominant features are extracted from a re-
stricted amount of neighborhood. Figure 1 explains the procedure of pooling. The orange box is 
the input data and the highlighted part is the current state where the pooling computation will be 
performed, also known as pooling kernel. The blue box is the output data after pooling is per-
formed. There are two different types of pooling and each provides a different result: 
 

• Max-pooling: In this procedure, the maximum amongst all the values lying inside 
the pooling kernel is interpreted. Figure 12 is an example of max pooling. As we 
can see from the pooling kernel that the maximum amongst the values is 3, hence 
the result 3 is interpreted and given as an output data in blue box. 

 
• Average-pooling: As the name suggests, the average among the values inside 

the pooling kernel is the result in the output data. If average-pooling is performed 
in Figure 12 example, the result would be 11/9 instead of 3. 

 
 

 
Figure 12: Max Pooling procedure on a matrix 

 
 
 
 



23 

4.2.2 Batch Normalization 

Batch normalization is a method aimed at enhancing the overall accuracy and boosting the 
learning performance of neural networks [27]. The fundamental concept behind this approach 
involves normalizing the input of each layer by adjusting the standard deviation to '1' and the mean 
of the output activation to '0'. This normalization process is carried out on the output of each layer 
prior to applying the activation function, after which the resulting processed output is passed on to 

the subsequent layer. Advantages of batch normalization include: 

• Fast network training: Due to extra normalization calculation, each iteration for
training will be slower but the overall training will be faster.

• Easier weight initialization: It is a difficult process to assign weights when de-
veloping a deep neural network. Due to batch normalization, the initial starting
weight sensitivity is reduced.

• Add regularization: Batch normalization adds minor noise to the network which
enhances the learning capabilities of the neural network [28].

Figure 13 illustrates that batch normalization often helps in network training but this is not the 
case every time [29]. As we can see from the diagram, green and red lines have high accuracy 
value (y-axis) compared to the blue line. 

Figure 13: Accuracy results with and without batch normalization 
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4.2.3 Dropout Layer 
 
Dropout technique is used to avoid overfitting [26]. Learning the training data too well is called 

over-fitting. There is a problem during training when a model learns the features and detail to an 
extent that it impacts the performance negatively on unseen data. To tackle this obstacle, dropout 
layer is used to avoid over-fitting. During training on a specific layer half of the neurons are 
switched off. This process improves generalization because it forces the layer to learn the same 
features with different neurons. 
 

 
 
 

Figure 14: Neural network before and after dropout 
 
 
In Figure 14.a, all the neurons are connected to each other whereas in Figure 14.b, there is 

an indication of deactivated neurons. Dropout helps models to increase accuracy and generali-
zation better [26]. Figure 15 shows the effect of with and without dropout layer. Upon inspecting 
the Figure 15, we can see that classification error (y-axis) is decreasing with dropout layer.  
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Figure 15: Dropout effect on training of neural network 
 
 

4.2.4 Dense Layer 
 
Dense layer is the simplistic layer in the neural network. A dense layer is a fully connected 

layer [30]. It connects each neuron from the current layer to the neurons of the next layer. Dense 
layer is usually followed by a non-linear activation function such as softmax or sigmoid. Figure 16 
is the architecture of feed-forward network. The terminology, feed-forward, means no backward 
connections are allowed. In feedforward network, connections between nodes are only allowed 
from nodes in i-layer to i+1-layer. All arrows pointing in one direction and each neuron is densely 
connected to another neuron in the next layer. 
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Figure 16: Example of dense layer in neural network 
 

4.2.5 Network Topology 
 
The layers mentioned in the above sections are used to construct a convolutional neural net-

work for scream classifier task. Figure 6 shows the network architecture for this model. The model 
expects 50 melbands in each row. As the amount of training data incoming is unknown, the shape 
of the input tensor would be: 
 

(AMOUNT_OF_DATA_ROWS, 50,1) 
 
These tensors are provided to the Batch Normalization layer. From there, they are passed to 

the convolutional layer where it uses the relu activation function. The data is then passed onto 
pooling layer to dropout layer. From convolution to dropout, this process is repeated three times 
but with different parameters but the activation function, relu, stays the same over the whole net-
work. Before passing the data to the fully connected layer, it passes through a flatten layer. Flatten 
layer converts n dimensional matrix of features into a vector that can be fed to the dense layers. 
Dense layers or commonly known as fully connected layers performs it computation. In the first 
layer, relu activation function is used whereas in the second one sigmoid is used. Finally, the third 
dense layer uses softmax activation function which provides a classifier result of “0” if it is a non-
screaming data or “1” if it is a screaming data. 
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Hence, three dense layers have been used but there is no rule of thumb to find out efficient 
and reasonable network topology. It depends on the complexity of classification and the training 
data. However, one way to determine the number of layers is to add the layers until the test error 
is not improving.  
 
 

 
 

Figure 17: Model neural network topology 
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5. EXPERIMENTATION AND RESULTS 

This section will discuss the evaluation metrics that are used to calibrate the performance of 
the model at an optimum level and conduct hyper-parameter tuning. Parameters that express 
properties of the such as its complexity or how fast it should learn. Hyper-parameter is usually 
fixed before training. 

5.1 Hyper-parameters optimization 

 
  Number of hyper-parameters have noticeable effect on the computational and classifica-
tion performance in the training process. Some of the hyper-parameters are interdependent on 
each other which makes it a challenging task to find optimum hyper-parameters. Hence, tuning 
hyper-parameter is a time-consuming process as they require multiple experiments and repeti-
tions.  Unfortunately, even after multiple testing, results can be inconclusive and this can be 
caused due to various reasons such as overfitting tuning. Some of the hyper-parameters used in 
this research are discussed in the following sub-sections. 
 

5.1.1 Number of Neurons 
 
The number of neurons determine the learning capacity of the neural network. Using an un-

necessary number of neurons could lead to overfitting which will result in getting inaccurate result 
on unseen data. Furthermore, excessive number of neurons will also contribute to the poor per-
formance in training such as taking longer training time.  On the other hand, neurons less than 
the optimum level would result in under-fitting. Under-fitting is a term that describes a model which 
is not able to generalize to the new data as well have poor training statistics.  
 
There are various methods that are used to calculate the number of neurons to be used in the 

hidden layer of a neural network but these rules are not authentic in way that the neurons vary 
from problem to problem. One way to calculate the number of neurons is: 

 
• Number of neurons should be between the size of input and output layer 
• Number of neurons should be between two-thirds of input layer 
• Number of neurons should be less than double the size of the input layer 
 
n < INPUT_LAYER_SIZE * 2  
 
n = Number of neurons 
INPUT_LAYER_SIZE = size of input layer 

 
 
For this experiment, the following equation [31] was used to get a reasonable number of 

neurons for a start-up process but these changed over time during the whole research. 
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𝑁( =	
𝑁)

(𝛼 ∗	(𝑁! +	𝑁*))
 

 
 
𝑁! = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡	𝑛𝑒𝑢𝑟𝑜𝑛𝑠  
𝑁) = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑡𝑟𝑎𝑛𝑖𝑛𝑔	𝑑𝑎𝑡𝑎  
𝑁* = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑝𝑢𝑡	𝑛𝑒𝑢𝑟𝑜𝑛𝑠  
𝛼 = 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦	𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	2	𝑎𝑛𝑑	10  

 

5.1.2 Batch Size 
 
The purpose of the batch size is to evaluate how often the weights should be updated in the 

neural network. Objective function f is an average which is used over the whole batch of inputs. 
Intuitively, it can be deduced that large value of batch size the performance of the computation 
as well as it reduces variability of parameter over time.  
 

The logic behind the usage of batch size can be explained in simple terms. It defines the 
number of input samples propagated through the neural network at one. For example, in the 
training process, there are 800 training samples and the batch size parameter is set to 200. The 
algorithm behind the logic will take 200 input samples from the dataset and trains the neural 
network. In the next process, it will take further 200 input samples. This process will be repeated 
until there is no input sample available to train. 
 

Gradient descent is an algorithm used to calculate the coefficients or weights. It can be 
evaluated using Figure 1 that the mini-batch has abnormal activity when calculating the value for 
gradient descent. Furthermore, there is an even higher abnormal activity in the stochastic where 
the value of the batch size in stochastic is 1. After doing experimentation, the default value of 
batch size was set to 512. 

 
 

 
 

Figure 18: Effect on gradient descent using different batch size 
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As of today, we have very powerful machines that can perform computation at a great speed, 

using a large value batch size was not an issue in this research. The following discusses the 
advantages and disadvantages of using small number of batch size [32]: 
 
 

1. Advantages: 
 
a. Using a small batch helps to train the neural network quickly. 
b. If there is a problem of memory in the machine, low batch size could resolve this 

issue as it takes less memory to train lower number of samples. 
 

2. Disadvantages: 
 
a. It is harder to estimate the value of gradient descent using smaller batch size. 

 

5.1.3 Dropout Rate 
 
While using dropout layer which is explained in section 4.2.3, dropout rate is fixed to a value 

p for a specific layer in the neural network which will drop the number of neurons according to this 
particular value. Let us take an example. Dropout layer has neurons n = 1024 and p is set to 0.5. 
It means that 512 neurons will be dropped in this specific dropout layer. This can be verified by 
the following binominal equation where it is calculated that the probability of dropping 512 neurons 
is 0.025 [33]. 
 

𝑌 =	 , 𝑋!

%+',

!$%

	~	𝐵!(1024, 0.5) 

 
 

𝑃(𝑌 = 512) = 	V
1024
512 W	0.5

-%'	(1 − 0.5)(%+',/-%') 	≈ 	0.025 

 
 

Figure 19 shows the probability of dropping fix number of neurons (1024) with various 
values of p ranging from 1 to 10. The x-axis shows the number of neurons whereas the y-axis 
represents the probability of dropping neurons. Again, the dropout rate depends on the application 
it is being used. In this specific task, 0.2 was used in all three dropout layers. 
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Figure 19: Probability ratio of dropping out neurons 
 

5.2 Results 

 
  This section represents the distribution of dataset along with results obtained with different 
experiments conducted to have a reliable and stable scream classifier. There were various ex-
periments conducted but the three main prominent ones are discussed below. 

5.2.1 Dataset Distribution 

 
Figure 20: Percentage of dataset distribution in negative and positive sections 



32 

 

 
 
Figure 20 shows the distribution of dataset in terms of percentage. 14 percent of the dataset 

was dedicated to the scream audio section whereas 86 percent to the non-scream audio. The 
total number of samples were 60486 and in terms of numbers, there were 52022 samples as 
scream/positive and 8464 samples are non-scream/negative. Furthermore, 10 percent of the da-
taset was used as testing whereas 90 percent was used as training data. 

5.2.2 Experiment 1 
 

During this experiment, the model used csaba and mivia datasets. However, the following results 
were obtained when the trained model was executed on a test patient to detect seizures. 
 

 
Figure 21: Results obtained in Experiment 1 on test patient 
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Figure 22: Sensitivity and accuracy of model on test patient 
 
By observing figure 21 and figure 22, it could be implied that the model did not performed so 

well on the test data. Even though there is a high rate of true event hits, some of the hits were not 
screams. There is a very low value of precision, 39.3258 %, as it can be seen in figure 22.  
 

During this experiment, the false positives of the patients were observed. It can be seen from the 
videos that the false positives were alarm clock and snoring sounds. Due to this observation, 
sounds such as baby cry, alarm clock and snoring from the csaba dataset (non-scream) were 
transferred to the scream dataset. This distribution and training of the new model was conducted 
in Experiment 3. 
 

5.2.3 Experiment 2 
 
This experiment was conducted to see how effectively the model will operate if it is trained 

without the mivia dataset which contained 800 audio files of scream. However, this experiment 
was a complete failure and the model did not detect a single scream on full night videos of the 
test patient. 

5.2.4 Experiment 3 
 
As it was deducted in experiment 1 that the false positives in the test patient were snoring 

and alarm clock sounds, a new model was trained with a new dataset. Alarm clock sound, baby 
cry and snoring sounds were transferred to the scream audio dataset. Intuitively this would mean 
that the percentage of scream and non-scream dataset have some impact on it with a minor 
percentage increase in scream dataset where as a minor decrease in non-scream dataset. 
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Figure 23: Confusion matrix of the trained model on new dataset 
 
 
It can be seen from Figure 23 that the model performed relatively well on the new dataset. 

There is a huge decrease in the false positive values which account for only 1.35 percent or 28 
samples. 

 
 

Figure 24: Number of epochs against the loss rate 
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Figure 25: Number of epochs against the model accuracy 
 
 
From Figure 25, it is clearly visible that the accuracy of the model increased with decreasing 

rate. The model achieved an accuracy of 0.9015 at the 10th epoch. Whereas the Figure 7 supports 
the accuracy statistics. The loss rate also decreased with each epoch achieving stability between 
7 and 10 epochs.  
 
Figure 26 and Figure 27 shows immense improvements on testing the model on the patient. 

There was a huge increase in precision from 39.325% in Experiment 1 to 84.3750 in the latest 
experiment. The inclusion of the baby cry sounds helped a lot in increase of accuracy as well as 
stability in the new model. Upon inspection, it was concluded that the melbands of the baby cry 
and scream have similarities which helped in detecting screams on the test patient data. 
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Figure 26: Results obtained in Experiment 3 on test patient 

 
 
 

 
 

Figure 27: Sensitivity and accuracy of model on test patient 
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Table 1 shows the performance comparison between 2 main experiments conducted in this 
task to develop a scream classifier. 
 
 

 
Model 

 
Accuracy 

 
Scream dataset 

 
Non-scream 
dataset 

 
Experiment 1 

 
39.3258 

 
Mivia 

 
Csaba 

 
Experiment 3 

 
84.3750 

 
Mivia + (baby cry, 
alarm sounds and 

snoring) 

 
Csaba – (baby 

cry, alarm sounds 
and snoring) 

 
Table 1: Comparison of 2 different models 
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6. CONCLUSION 

 The difficulty of making a classifier depends on various factor; one of the major factors is 
the number of samples available to train a neural network. In this thesis, the capabilities of neural 
network have been demonstrated to have a scream classifier. The model was trained on three 
different types of datasets: 
 
• Csaba (non-scream) and Mivia (scream) [Dataset 1] 
• Csaba (non-scream), Mivia (scream), baby cry (scream), alarm clock (scream), snoring 

(scream) [Dataset 2] 

 
The model did not perform well on the dataset 1 as the false positives consisted of sounds 

such as snoring and alarm clock. Hence, these sounds were transferred from Csaba dataset to 
scream dataset as shown in dataset 2. However, there were other reasons for the model not 
performing too well which might include dropout ratio, number of neurons or even number of 
layers as there is no rule of thumb to figure out the optimum level. The model architecture was 
designed to take 30 rows of input data but this row could be changed every time a new model is 
been trained. Changing the number of rows of input data had minor effects on the results. Upon 
inspection, the optimum number of rows was found to be 30 which gave the best results on the 
test patient. If the number of rows was increased, the model produced invaluable results due to 
over-fitting. During experiment, neural network architecture size was increase and decreased to 
test the performance as the starting experiments were expensive in terms of time and resource 
consuming. Furthermore, variations of batch size and dropout value also effected the result. If 
there is a higher value of batch size, it was noticeable increase in the variance over each epoch. 
Ultimately, deeper networks need large amount of training and testing data to achieve good re-
sults along with having powerful CPU and GPU to perform faster computation. 
 

Further research in this thesis could place by taking the following steps: 
 
• Tuning of hyper-parameter will have significant improvement on the results. 
• Using Google Coral to increase the computation speed on the testing data as the testing 

data is full night videos of patients. 
• Testing the dataset on a regressor neural network instead of a classifier. A regressor will 

result in a numerical value ranging in between 0-1. Some experiments are already done 
with adding some convolutional and pooling layers to the existing neural network used in 
this thesis along with using sigmoid activation function instead of softmax. 

• Testing the trained model on more than one test patient. As only one test data could not 
guarantee that the trained model is a perfect one, it is better to test it on more than one 
test patient. 
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