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ABSTRACT

Heavy-duty mobile machines are an important part of the industry, and they are used
for various work tasks in mining, construction, forestry, and agriculture. Many of
these machines have heavy-duty, long-reach (HDLR)manipulators attached to them,
which are used for work tasks such as drilling, lifting, and grabbing. A robotic ma-
nipulator, by definition, is a device used for manipulating materials without direct
physical contact by a human operator. HDLR manipulators differ from manipula-
tors of conventional industrial robots in the sense that they are subject to much larger
kinematic and non-kinematic errors, which hinder the overall accuracy and repeata-
bility of the robot’s tool center point (TCP). Kinematic errors result from modeling
inaccuracies, while non-kinematic errors include structural flexibility and bending,
thermal effects, backlash, and sensor resolution. Furthermore, conventional six de-
grees of freedom (DOF) industrial robots are more general-purpose systems, whereas
HDLR manipulators are mostly designed for special (or single) purposes.

HDLRmanipulators are typically built as lightweight as possible while being able
to handle significant load masses. Consequently, they have long reaches and high
payload-to-own-weight ratios, which contribute to the increased errors compared
to conventional industrial robots. For example, a joint angle measurement error of
0.5◦ associated with a 5-m-long rigid link results in an error of approximately 4.4 cm
at the end of the link, with further errors resulting from flexibility and other non-
kinematic aspects. The target TCP positioning accuracy for HDLR manipulators is
in the sub-centimeter range, which is very difficult to achieve in practical systems.
These challenges have somewhat delayed the automation of HDLR manipulators,
while conventional industrial robots have long been commercially available. This is
also attributed to the fact that machines with HDLR manipulators have much lower
production volumes, and the work tasks are more non-repetitive in nature compared
to conventional industrial robots in factories.

Sensors are a key requirement in order to achieve automated operations and even-
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tually full autonomy. For example, humans mostly rely on their visual perception in
work tasks, while the collected information is processed in the brain. Much like hu-
mans, autonomous machines also require both sensing and intelligent processing of
the collected sensor data. This dissertation investigates new visual sensing solutions
for HDLR manipulators, which are striving toward increased automation levels in
various work tasks. The focus is on visual perception and generic 6 DOF TCP pose
estimation of HDLR manipulators in unknown (or unstructured) environments.
Methods for increasing the robustness and reliability of visual perception systems
are examined by exploiting sensor redundancy and data fusion. Vision-aided control
using targetless, motion-based local calibration between an HDLR manipulator and
a visual sensor is also proposed to improve the absolute positioning accuracy of the
TCP despite the kinematic and non-kinematic errors present in the system. It is
experimentally shown that a sub-centimeter TCP positioning accuracy was reliably
achieved in the tested cases using a developed trajectory-matching-based method.

Overall, this compendium thesis includes four publications and one unpublished
manuscript related to these topics. Two main research problems, inspired by the in-
dustry, are considered and investigated in the presented publications. The outcome
of this thesis provides insight into possible applications and benefits of advanced vi-
sual perception systems for HDLR manipulators in dynamic, unstructured environ-
ments. The main contribution is related to achieving sub-centimeter TCP position-
ing accuracy for an HDLR manipulator using a low-cost camera. The numerous
challenges and complexities related to HDLR manipulators and visual sensing are
also highlighted and discussed.
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1 INTRODUCTION

In robotic control and tool center point (TCP) positioning, it is typically required
that each joint is equipped with a high-precision sensor to measure the angle or the
linear position of the joint. For high-precision control, sensors with high accuracy
and repeatability are required. Especially in heavy-duty, long-reach (HDLR) manip-
ulators, even a small error per joint results in a considerable error at the TCP of the
serial chain kinematic structure. For example, a 0.5◦ orientation error of a 5-m-long
rigid link results in a 4.4-cm positioning error at the end of the link.

In HDLR manipulators, the number of actuator degrees of freedom (DOF) is
relatively high, meaning that the number of sensors per robotic manipulator is also
high. Combined with the fact that the joints are not uniform, requiring multiple
sensor sizes and mounting solutions, the overall cost and complexity of the sensor
system can become considerable. Furthermore, HDLR manipulators attached to
mobile machines work in harsh, unstructured environments, such as mines, forests,
and fields. Therefore, rugged sensors with high ingress protection ratings (i.e., IP67)
are required. In practice, the sensors must be dust- and waterproof.

1.1 Motivation

Mobile work machines represent a significant field of industry, and they come in
many different configurations and sizes with respect to their on-board roboticHDLR
manipulators. Figure 1.1 illustrates two examples of such HDLRmanipulators. The
first one is a HIAB articulated crane with an additional 3 DOF wrist. The sec-
ond one is used in mining, where HDLR manipulators range from approximately
10-15-m-reaching tunneling machines to small-scale 1-2-m-reaching surface drilling
platforms. The annual production volume for a specific machine type can be very
low. Therefore, these HDLR manipulators requiring relatively high precision, with
varying configurations, would benefit from sensor system solutions that reduce the
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manufacturing, assembly, and maintenance costs of these machines.
A typical HDLR manipulator attached to a mobile machine can have a payload-

mass-to-own-weight ratio of over 1:1. For example, the HIAB HDLR manipulator
in Figure 1.1 has a 4.7-m reach (without the wrist and the extensions) and weighs
445 kg, while the maximum payload is 600 kg. For comparison, conventional indus-
trial robots working in known (structured) environments typically have a ratio of
1:10 or smaller [1]. In addition, a key differentiation between HDLR manipulators
and conventional industrial robots is that the former often have prismatic joints for
extended reach, and they work in dynamic, unstructured environments.

Figure 1.1 i) (left) A HIAB HDLR manipulator that can be mounted to a vehicle for heavy lifting. ii)
(right) A Sandvik 8 DOF HDLR manipulator used in mining that can carry a heavy-duty
rock drill.

The traditional method of operating HDLRmanipulators is a human controlling
joint-specific valves to drive each joint separately. The more advanced method is con-
trolling the TCP directly instead of controlling individual joints [2]–[4], thus making
the operator’s work easier. Controlling the TCP requires a kinematic model of the
manipulator, which is commonly formulated using Denavit-Hartenberg (DH) pa-
rameters [5]. The forward kinematic formulation computes the TCP pose (3 DOF
position and 3 DOF orientation) variables using the joint states, hence requiring
joint sensors. Inverse kinematic computation allows the transformation of a desired
TCP pose into respective joint states, which is a prerequisite for control. Prevalent
commercial systems employ rigid-body-based kinematic models, which, especially in
the case of HDLR manipulators, results in significant errors at the TCP due to kine-
matic and non-kinematic errors. The kinematic errors include inaccuracies in the
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DH parameters, for example. The non-kinematic errors include structural deforma-
tions, backlash, thermal effects, and sensor resolution. In practice, the assumption of
rigidness is mainly valid for conventional industrial robots. For HDLR manipula-
tors, however, the assumption is invalid due to long reaches and high payload-mass-
to-own-weight ratios. From a control perspective, the TCP velocities of HDLR
manipulators are generally designed to be relatively slow so that the non-rigid struc-
tures are quasi-static.

Some HDLR systems employ flexibility compensation computations to obtain
more accurate TCP poses. However, compared to conventional industrial robots,
the resulting errors are still much larger. The consensus of original equipment man-
ufacturers (OEMs) in the heavy-duty machine industry is that for HDLR manipula-
tors, a +/-5 mm positioning accuracy and 0.1◦ orientation accuracy for the TCP are
desired. However, larger errors may also be allowed in the case of a very low-cost
sensing solution. The errors induce challenges with respect to TCP accuracy and
repeatability for HDLR manipulators. Presently, the errors are compensated for
by the human operator. For autonomous operations without a human-in-the-loop,
however, the TCP inaccuracies are a problem yet to be truly solved.

The heavy machinery industry is striving toward semi-autonomous and eventu-
ally fully autonomous machines capable of performing work tasks with minimal
human intervention. This requires new sensor solutions and algorithms to auto-
mate work tasks currently performed by human operators. Possible advantages of
increased automation levels include, for example, increased productivity, decreased
operation costs, increased safety, and reduced waste [6]. Overall, autonomy for
heavy-duty mobile machines is very much an emerging technical field. An overview
of the safety standards for autonomous machines in [7] reveals that existing standards
are directed to OEMs, whereas the worksite context (worksite operators or owners)
has not been considered.

The multidisciplinary challenge of developing autonomous, heavy-duty mobile
machinery is also discussed in [8]. As the authors state, sensing and perception are
major elements in developing such systems. For example, operations requiring task
flexibility and precision can be automated with the assistance of visual recognition
and decision making, as vision-based guidance systems allow the manipulator (or
machine) to vary their motion targets and achieve increased task flexibility. These
technologies require advanced computer vision algorithms, which is a broad techni-

19



cal field aiming to process and understand visual, real-world data so that appropriate
decisions can be made. Computer-vision-related topics include, for example, pose
estimation, object detection and tracking, and visual servoing (or vision-based con-
trol). Frameworks related to these topics have been somewhat well established for
conventional industrial robots on factory floors. To exploit visual measurements ob-
tained using a camera, for example, sensor calibration is required. For cameras, the
intrinsic calibration parameters represent a projective transformation from the 3D
camera frame (or coordinate system) into the 2D pixel coordinates. Additionally, the
extrinsic calibration parameters represent a rigid transformation from a 3D world
frame to the 3D camera frame. Resulting from dynamic, unstructured working en-
vironments, increased uncertainties, and errors in the control system, the associated
frameworks developed for conventional industrial robots are often not practical or
even feasible for HDLR manipulators. For example, camera-robot cooperation re-
quires estimating the extrinsic parameters between the sensor and the robot, which,
in structured factory set-ups, is typically achieved using a specific calibration object
with a predefined pattern, such as a checkerboard. The calibration procedure com-
monly requires taking images from different angles and distances while the calibra-
tion object is in view of the camera. While the intrinsic calibration can be performed
with similar methods, it can be done while the sensor is not attached to the manipu-
lator. Consequently, such delicate schemes for extrinsic calibration are not practical
for HDLR manipulators that work in dynamic, unstructured environments. Over-
all, the aim of this dissertation is to investigate advanced computer vision methods
for HDLR manipulators striving toward increased levels of automation.

1.2 Research Problems

This thesis was conducted under the Doctoral School of Industry Innovations (DSII)
at Tampere University. Thus, the research problems (RPs) originated from the in-
dustry partner company, Sandvik Mining and Construction Oy. The first RP sought
to develop a novel sensor system capable of 6 DOF TCP pose estimation. The sec-
ond RP sought to improve the TCP positioning accuracy of HDLR manipulators
using visual feedback.

RP-I: A novel sensor system capable of 6 DOF TCP pose measurement for
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HDLR manipulators
How feasible are cameras for observing and tracking the motion of HDLRmanipulators?
How can the reliability and robustness of visual sensing be improved in HDLR manipu-
lators?

RP-II: Vision-based control for precise TCP positioning of HDLR manipula-
tors
Can a low-cost camera be used to achieve precise (sub-centimeter) TCP positioning accu-
racy in HDLR manipulators?
What are the main challenges in realizing precise TCP control for HDLR manipulators
using visual sensing?

The publications in this thesis are a direct result of the given RPs: RP-I is addressed
in P-I through P-IV, and RP-II is addressed in P-V, while also utilizing the findings
in P-I and P-III.

1.3 Scope of Research

The overall scope of the research in this thesis is under the domain of HDLR ma-
nipulators in unstructured environments. Such robotic manipulators are attached
to mobile machines, are mostly driven with hydraulics, and can have up to 8 actu-
ator DOF. Individual joints of these mechanically complex manipulators are either
revolute or linear, with motion existing in both the vertical and horizontal planes.
Initially, no specific restrictions were set for the research with respect to the chosen
scientific approaches, sensors, sensor placements, or system costs.

In the scope of RP-I, the aim was to conduct research on novel sensing methods
for generic 6 DOF TCP pose estimation of HDLRmanipulators in unstructured en-
vironments. The novelty specification excluded the prevalent fine-mechanical joint
sensors, such as encoders and resolvers. Moreover, an inertial sensor network is very
challenging to realize because joints move in the horizontal plane. The possible ac-
curacy of radio detection and ranging (RADAR), including ultra-wideband (UWB),
was deemed insufficient. Different sensor types and technologies were examined, but
it became clear that non-contact visual sensing was the most interesting approach due
to the potential accuracy and task flexibility, and with visual perception being essen-
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tial for autonomous machines. The overarching ambitious goal is to eventually omit
the variety of embedded fine-mechanical joint sensors currently in use and to replace
them with a generalized sensor system suitable for all machine types.

In the scope of RP-II, the objective was to guide the TCP of an HDLR manipula-
tor accurately to an object of interest (OOI) using visual sensing. Related methods,
such as visual servoing and extrinsic calibration between a visual sensor and a robot,
have been well developed for conventional rigid-body industrial robots in factories.
However, such frameworks are not practical for non-rigid HDLR manipulators in
unstructured environments. Moreover, the desire was to utilize existing industry
standards, meaning that basic robotic modeling and control systems were applied.

In the scope of experimental validation, testing was to be performed using an
existing installation of a HIAB033 HDLR manipulator with an additional 3 DOF
wrist and 5-m reach, located in the Innovative Hydraulics and Automation (IHA)
heavy laboratory at Tampere University. For visual sensing solutions, commercial
off-the-shelf sensors were to be utilized. Thus, part of this research benefited from a
commercial OptiTrack motion capture system, borrowed from the Centre for Im-
mersive Visual Technologies (CIVIT) at Tampere University. Additionally, a low-
cost ZED/ZED2 stereo camera was utilized in this research. Moreover, real-time
capable methods for vision-based control were required. The experimental setup
with its main components is illustrated in Figure 1.2: A HIAB033 HDLR manip-
ulator with an additional 3 DOF wrist, a test wall for visual feature extraction, a
ZED2 stereo camera for visual odometry/simultaneous localization and mapping
(VO/SLAM), and an OptiTrack marker-based tracking system. In general, all of
the included publications take advantage of the same setup with some variations.
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Figure 1.2 The experimental setup used throughout the thesis.

1.4 Thesis Contributions

This section details the scientific contributions of each publication presented in this
compendium thesis.

P-I This publication investigates VO/SLAM for tracking the generic 6 DOF TCP
pose of an HDLR manipulator in unknown or, for the first time, confined spaces.
Offline data analysis was conducted using recorded real-time data, which demon-
strated that the VO/SLAM poses, using the eye-in-hand configuration, correspond
to the ground-truth encoder-based TCP poses in the tested cases. The initial results
provide insight to the potential usefulness of VO/SLAM for tracking the 6 DOF
TCP pose of non-rigid HDLR manipulators. Thus, P-I serves as a baseline for the
research in P-II through P-V.

P-II This publication extends P-I by proposing a redundant visual TCP pose mea-
surement for HDLR manipulators using marker-based tracking with an eye-to-hand
configuration. The rationale was that the eye-in-hand camera (VO/SLAM) provides
precision with partial sight of the environment, whereas the eye-to-hand (marker-
based tracking) has a more global sight of the environment with less precision due
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to increased view distance. Thus, in a well-designed system, the cooperative sens-
ing can be complementary. Offline data analysis based on recorded real-time data
demonstrated that the proposed visual sensor system can effectively track the TCP
pose in the measured cases. Similarly to P-I, the joint encoders were used to obtain
the ground-truth TCP poses.

P-III This publication focuses on the sensor system calibration problem in P-I and
P-II. The aim was to replace the basic iterative closest point (ICP) method used in P-I
and P-II with a more robust solution. An overall pipeline for camera-to-kinematic
calibration was proposed using coarse frame alignment followed by fine matching.
A comparative study between point set matching methods suggested that a method
utilizing full 6 DOF pose data during the registration process provides the most ac-
curate results, which is optimal for robotic applications where 6 DOF pose data is
readily available. A use case demonstrated the effectiveness of the calibration proce-
dure.

P-IV This publication examines the sensor fusion problem for redundant measure-
ments discussed in P-II. A real-time capable, model-free data fusion methodology is
proposed, for which the weight parameters of the signals are computed online using
sliding window (or sample) variances. Offline data analysis using recorded real-time
data demonstrated that the proposed system can increase the robustness and fault
tolerance of the overall visual sensor system.

P-V This publication investigates a problem, in which the objective was to drive the
tool of an HDLR manipulator to a visually detected OOI as accurately as possible.
Building on P-I and P-III, the pose error between the tool and an OOI is computed
directly in the image frame, while using motion-based local calibration to find the
extrinsic sensor-to-robot correspondence. Real-time experiments demonstrated that
sub-centimeter positioning accuracy was achieved in the measured cases using the
trajectory-matching-based calibration. This level of positioning accuracy is typically
not achieved with state-of-the-art HDLR manipulators due to their nonlinear char-
acteristics.

The author considers P-V as the main contribution of this dissertation, where sub-
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centimeter positioning accuracy was achieved for an HDLR manipulator using the
proposed methods.

1.5 The Author’s Contribution to the Publications

This section details the author’s contribution to the publications presented in this
thesis.

P-I The author wrote this paper and designed the methods and experiments for
validation. Dr. Mohammad M. Aref acted as an academic co-supervisor and gave
scientific insights. Sirpa Launis acted as the industrial supervisor, providing the re-
search problem and industrial insights. Prof. Jouni Mattila, the academic supervisor,
reviewed the paper and suggested improvements.

P-II The author wrote this paper, developed the conceptual visual sensor system,
implemented the vision-based systems, and designed the experiments for validation.
Dr. Pauli Mustalahti implemented the experimental manipulator’s basic control sys-
tem and assisted with the measurements. Sirpa Launis provided the research prob-
lem and industrial insights. Prof. Jouni Mattila reviewed the paper and suggested
improvements.

P-III The author wrote this paper, developed the overall pipeline for camera-to-
kinematic model calibration, implemented the pipeline, and designed the experi-
ments for validation (including the use case and comparative studies). Dr. Pauli
Mustalahti implemented the experimental manipulator’s basic control system and
assisted with the measurements. Sirpa Launis provided the research problem and
industrial insights. Prof. Jouni Mattila reviewed the paper and suggested improve-
ments.

P-IV The author wrote this paper, developed the data fusion method using sliding
window variance, implemented the fusion algorithm, and designed the experiments
for validation. Dr. Pauli Mustalahti implemented the experimental manipulator’s
basic control system and assisted with the measurements. Sirpa Launis provided the
research problem and industrial insights. Prof. Jouni Mattila reviewed the paper and
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suggested improvements.

P-V The author wrote the paper, developed the motion-based local calibration meth-
ods, implemented the algorithms related to visual sensors, and designed the experi-
ments for validation. Dr. Pauli Mustalahti implemented the experimental manipula-
tor’s basic control system and assisted with the measurements. Sirpa Launis provided
the research problem and industrial insights. Prof. Jouni Mattila reviewed the paper
and suggested improvements.

1.6 Outline of the Thesis

The introductory part of this compendium thesis is divided into five chapters. The
present chapter provides the basic information regarding the objectives and contri-
butions of the thesis.

Chapter 2 describes the state-of-the-art related to the topics of this dissertation.
Chapter 3 presents a summary of each individual paper presented in this compendium
thesis. Chapter 4 discusses the overall outcomes of the publications and their relation
to the RPs stated in Section 1.2. They are followed by a discussion of limitations
and challenges. Chapter 5 concludes the introductory part of this dissertation by
summarizing the thesis contributions, remaining challenges, and future work. The
structure of this thesis is outlined in Figure 1.3.
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2 STATE OF THE ART

This chapter reviews the state-of-the-art research related to the topics of this disser-
tation. First, sensor technologies for HDLR manipulators are reviewed. Second,
state-of-the-art methods related to visual sensing for HDLR manipulators are re-
viewed.

Research on visual sensing of HDLR manipulators is rather limited. Therefore,
some topics are partially presented from the point of view of autonomous vehicles
and conventional industrial robots. While frameworks developed for such systems
may not directly be practical for HDLR manipulators, they are still relevant in
the context of striving toward increased automation of HDLR manipulators via ad-
vanced perception systems.

2.1 Sensor Technologies for HDLR Manipulators

Similarly to conventional industrial robots, a possible sensing method of measuring
the joint states of HDLR manipulators is to use fine mechanical sensors embed-
ded into the mechanical structure. Typically, each joint of a robotic manipulator is
embedded with a fine mechanical sensor, which also requires additional protective
housing (IP67 rating for HDLR manipulators), mechanical coupling, and cabling
that are suitable for a given machine type. The sensors are either angular (embedded
between two revolute joints) or linear (embedded into a cylinder, for example). The
joint measurement is based on mechanical coupling between the sensing element and
the manipulator. This can be inconvenient with HDLR manipulators as replacing
such sensors is difficult, and the couplings, while having fine mechanical tolerances
for flexibility, can be subject to significant forces and moments. Thus, a large variety
of spare parts is required in case of breakdowns.

In recent years, several OEMs in the heavy-dutymachinery industry have adopted
inertial measurement units (IMUs) for estimating the joint states. IMUs measure
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three-axis accelerations and three-axis angular velocities. Instead of fine mechanical
sensors, IMUs are used to compute the joint angles to enable direct TCP control.
However, IMUs are subject to drifting, which requires compensation algorithms.
For joints moving in the vertical plane, this can be achieved using gravity as a refer-
ence. Consequently, IMUs can reliably measure joint angles in the vertical plane of
motion [9]. A three-axis magnetometer can also be used to compensate for the drift,
but this requires a homogeneous magnetic field, which is difficult to achieve indoors
or with close proximity to metallic structures [10]. Therefore, IMUs are mostly
suitable for HDLR manipulators in excavators and forestry machines, where most
of the joints move in the vertical plane. For example, excavator manipulators typi-
cally have 6 actuator DOF, with base rotation and tiltrotator in the horizontal plane.
Forestry machines typically have 4 actuator DOF with base rotation. The HDLR
manipulators utilized in the mining industry have up to 8 joints per manipulator,
several of which move in the horizontal plane. Thus, an IMU network with the cur-
rent knowledge is not a feasible solution for complex mining manipulators. These
state-of-the-art HDLR manipulators utilize joint sensors with mechanical couplings
to compute the TCP variables (typically 5 DOF in mining applications) for control
purposes, which is a requirement when designing drilling patterns, for example.

Some recent research has focused on methods related to sensing joint states or
the TCP of HDLR manipulators. A 2D laser scanner was utilized to estimate the
posture of a flexible forestry crane in [11]. Two scan targets were used, and the error
at the tip was reportedly less than 4.3 cm. In [12], a laser-scanner-based approach
is investigated to estimate the dipper pose of a mining shovel. The mean dipper po-
sitioning error is reported as 6.7 cm. In [13], an ultrasound time-of-flight ranging
method is used tomeasure the length of a telescopic boom, but the accuracy is not suf-
ficient for practical applications. Realizing the disadvantages of basing the control of
HDLR manipulators on joint sensors, little research has observed the TCP directly.
In [14], a UWB real-time location system is examined to estimate the pose of a crane.
However, the method was targeted for monitoring purposes only, as the accuracy
of a UWB-based system is approximately 10-30 cm. Thus, UWB is not feasible for
TCP pose estimation of HDLR manipulators because the target accuracy is in the
sub-centimeter range. In [15], the TCP of a large-scale manipulator is controlled
using absolute position feedback from a total station network. Sub-centimeter TCP
positioning accuracy is reported, but the system requires large space to operate and

30



a considerable investment in the sensors.
Vision-guided robotic systems are essential to enable autonomous operations for

intelligent machines, but analyzing the data requires advanced image processing. A
current trend is combining artificial intelligence (AI) with visual sensing, as reviewed
by [16]. The possibilities of AI-enhanced machine vision are also highlighted by
[17]. It is only logical that visual sensing needs to be accompanied by intelligent
computing in order to automate complex work tasks in challenging environments.
The opportunities for sensing systems in mining applications are examined by [18].
These studies tend to focus on the machine level, while little attention is given to the
robotic arms used for work tasks.

Some research has focused on automating individual work tasks. For example,
an early study [19] investigates vision-based control for mining applications. Other
studies include [20], which examines robotic explosive charging in mining. In [21],
robotic peg-in-hole assembly strategies are compared. The peg-in-hole task is closely
related to some work tasks in mining, as one of the main operations is drilling holes.
This is usually followed by inserting supportive rods or explosive charges into them.

Laser scanners are a common sensing method used in mines. They can be used
for various tasks: in [22], a machine learning approach is used to detect rock bolts.
In [23], applications utilizing point cloud data from laser scanners are reviewed for
underground mining. It is claimed that presently, the huge amount of data captured
with laser scanners is mostly processed off-site, which narrows the possible applica-
tions. UWB-based sensor networks for localization in mines are also investigated in
[24], [25], but the potential accuracy is seen as feasible only for navigation on the
machine level.

2.2 Visual Pose Estimation in Robotic Applications

This section presents state-of-the-art visual pose estimation from two perspectives.
The first one is egomotion, which aims to track the sensor’s pose with respect to the
environment. The second one aims to track an OOI in the image frame and estimate
its pose.
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2.2.1 Visual Odometry and Simultaneous Localization and Mapping

Visual odometry (VO) is used to estimate the egomotion of an object using a visual
sensor attached to it [26]. Specifically, the sensor’s pose trajectory is maintained based
on the perceived motion of the sensor. For example, a vehicle’s pose is estimated
based on the motion between two image frames obtained using a camera. The motion
itself is estimated using feature matching/tracking or optical flow techniques. As VO
estimates the egomotion incrementally, it is subject to drifting because eventually
the errors between computed frames start to accumulate. A comprehensive survey
on odometry, including VO and its variants, for autonomous navigation systems is
presented by [27].

In simultaneous localization and mapping (SLAM), a map is simultaneously built
and maintained while performing localization. Visual SLAM algorithms can be cat-
egorized into direct and indirect methods. Direct methods base the localization on
using the entire image and photogrammetry, whereas indirect methods are based on
features. Roughly, SLAM comprises a VO front-end and a back-end for the map-
ping. The typical structure of a SLAM system is illustrated in Figure 2.1. A map
can be used to refine the localization result to increase the accuracy when revisiting
an area or to re-localize with respect to the surrounding environment. In addition to
localization and mapping, state-of-the-art SLAM algorithms perform loop detection
and closure, which aims to detect if a specific area has been visited before. This is
useful for drift compensation in the VO front-end. For robotic control purposes,
however, possible discontinuities in the pose variables resulting from optimization
procedures are problematic.

Figure 2.1 Front-end and back-end in a typical SLAM system. The back-end can provide feedback to
the front-end for loop closure detection and verification. [28] ©2016 IEEE

Both VO and SLAM have attracted significant attention in recent years, as they
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are key technologies for autonomous machines and mobile robotics [29]. In this
thesis, the general term VO/SLAM is used to refer to algorithms capable of visual
localization. Currently, the most common applications for VO/SLAM are related
to navigation in unstructured or semi-structured environments, such as self-driving
cars on roads, heavy-duty machines at work sites, small robots (e.g., delivery) in
urban areas, and drones in the air. One of the current research directions in VO/S-
LAM is optimizing the algorithm for challenging scenarios, which often result in
drift errors, or even complete failure due to losing the tracked features, in the visual
pose estimation [30]. For example, image enhancement for improving VO/SLAM
performance in a challenging environment is investigated in [31].

Many algorithms have been proposed for (visual) SLAM, as evidenced by [28],
[32]–[34], and they can be categorized in many ways. A simple way is to differen-
tiate based on the sensing method used, such as monocular [35], [36], stereo [37],
RGB-D [38], inertial sensor enhanced [39], and laser scanner enhanced [40]. Sen-
sor fusion is employed to combine the data if there are many sensors, which then
requires extrinsic calibration between the sensors. Another differentiation method
is to consider the target application, as some algorithms are developed for drones,
which have different properties from ground-level machines. For example, drones
usually employ a monocular camera that weighs the least and requires the least space.
Several state-of-the-art SLAM algorithms are open-sourced for research purposes. A
recent survey performed an extensive comparison of the performance of existing
open-source visual SLAM algorithms [41]. The authors concluded that on average,
ORB-SLAM2 [42] and ORB-SLAM3 [39] provide the most reliable performance
for trajectory estimation. As revealed by their names, these algorithms use oriented
FAST and rotated BRIEF (ORB) [43] features for visual localization, which have
become popular due to their computational efficiency as binary features. Real-time
capability in VO/SLAM is essential, although features such as speeded-up robust
features (SURF) and scale invariant feature transform (SIFT) could provide a more
accurate result than the binary ORB features [44]. Most existing SLAM algorithms
can only guarantee almost global convergence. In [45], a gradient-based hybrid ob-
server for SLAM is proposed, ensuring global asymptotic convergence of estimation
errors to zero.
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2.2.2 Marker-based Tracking

In VO/SLAM, the main objective is to estimate the motion of the sensor itself.
In contrast, marker-based tracking focuses on tracking the motion of an OOI in
the image. Visual fiducial markers are commonly used as OOI in motion capture,
and they are either passive, reflectively passive, or active (e.g., LED-based). Several
high-end optical motion-capture systems exist in the market, including OptiTrack
(which is used in P-II and P-IV) [46], Vicon [47], Qualisys [48], and PhaseSpace
[49]. These systems mostly employ multiple cameras and markers (passive or active)
for full-body pose estimation of OOI, such as human actors, in room scale and at
high refresh rates. The visual pose estimation is based on triangulation by utilizing
overlapping 2D data obtained from multiple cameras. Although these advanced sys-
tems are highly effective at tracking visual fiducial markers even at long distances,
they require considerable investment, which is not optimal for industrial production
machines.

Researchers have developed several visual fiducial marker libraries dedicated to
robotics, augmented reality applications and camera calibration. These methods in-
clude ArUco markers (which are used in P-III and P-V) [50] and AprilTags [51],
which are commonly used (passive) fiducial markers in robotics research. Two ex-
amples of visual fiducial markers are illustrated in Figure 2.2.

Figure 2.2 i) (left) An ArUco marker. ii) (right) An infrared-reflective marker (OptiTrack).

Vision-based fiducial marker algorithms roughly comprise object detection and
pose estimation. In the case of ArUco markers, for example, the detection is based
on the square shape and the binary codification matrix in the middle, whereas the
pose estimation is based on the known side length and the four corners of the planar
marker. The pose estimation is formulated as a perspective-n-point (PnP) [52] prob-
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lem, in which the pose is computed by solving for the rotation and translation that
minimize the reprojection error from the known 3D-2D point correspondences. In
[53], the bucket tooth position of an articulated excavator was estimated based on
visual fiducial markers. The resulting absolute positioning error was claimed to be
under 2.5 cm, while many issues were identified for practical implementations. Some
researchers omit visual fiducial markers. Instead, the pose estimation is based on de-
tected parts of a manipulator [54]. Overall, an eye-to-hand pose estimation scheme
alone for HDLRmanipulators is unlikely to be sufficiently accurate or robust due to
occlusions and long view distances. However, an eye-to-hand system can provide a
good view of the manipulator and its surroundings, while visual fiducial markers are
repeatable targets that are not susceptible to drifting like VO-based pose estimation.

2.3 Sensor Fusion for Autonomous Machines

Sensor fusion involves fusing data obtained from different sensors, such as RADAR,
light detection and ranging (LIDAR), various cameras, and IMUs. In general, fusion
algorithms can be categorized into competitive, complementary, and cooperative
algorithms. The classification is dictated by the manner of fusing multiple sensor
signals into a fused signal. As discussed in [55], sensor fusion has a crucial role in
autonomous systems, and it is one of the fastest developing areas. The potential
benefits of data fusion are related to enhancing the data authenticity and availability
[56]. The authenticity includes, for example, improved confidence and reliability
and reduced ambiguity. The availability infers extending the spatial and temporal
coverages. Most of the research in sensor fusion has focused on autonomous vehicles,
which is basically synonymous with self-driving cars. The heavy-duty machinery
industry, in comparison, has such low production volume per machine type that the
research lags behind. The most significant difference is that heavy-duty machinery
operates in harsh, unstructured environments, which issues further challenges. On
the other hand, mobile machines typically work in closed-off areas instead of public
spaces (roads). This provides some potential advantages with respect to legislation.

Deep-learning-based sensor fusion for autonomous vehicle perception and local-
ization is surveyed in [57]. It was found that deep learning can significantly improve a
vehicle’s perception capabilities. Challenges are also highlighted, such as the require-
ment of vast amounts of training data. Further areas requiring improvement are
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related to harsh weather conditions, reliability, and repeatability, for example. Sen-
sor fusion technologies for autonomous vehicles are also examined in [58]. Before
data fusion, sensors have to be calibrated intrinsically, extrinsically, and temporally.
It is emphasized that current research focuses on offline calibration methods, for
which specific calibration targets are used. This type of system is very inflexible, and
the authors argue that further research on online and offline calibration methods in
sensor-to-sensor fusion is required. Some research on sensor fusion of small-scale
robotic arms also exists, for example, in [59], [60]. These methods utilize individual
joint sensors and dynamic models.

A Kalman filter is typically employed in the data fusion process by optimally
estimating the states to combine sensor data. Many studies have been undertaken re-
lated to Kalman filtering, such as [61]–[64]. As implied by state estimation, Kalman
filtering requires a model of the system states. For autonomous ground vehicles, rel-
atively simple motion models can be derived [65]. For robotic manipulators, motion
in complete 3D Cartesian space has to be considered. An early study [66] argues that
the key to intelligent fusion of disparate sensor data is having an effective model of the
system. Few research exists on direct fusion of continuous sensor signals, but it can
be based on signal statistics when a complete dynamic model of the system is difficult
to formulate. For example, data fusion of continuous signals is based on confidence-
weighted averaging in [67], where the weight parameters for individual signals are
specified by pre-determined confidence functions utilizing signal variances.

2.4 Vision-based Control in Robotics

This section briefly examines the state-of-the-art of vision-based control in robotics.
As research considering HDLRmanipulators on this topic is very limited, it is partly
discussed by referencing frameworks developed for conventional industrial robots.
Many of such frameworks are not practical for HDLR manipulators. The two main
topics of interest are extrinsic calibration and visual servoing, both of which also
relate to HDLR manipulators. However, especially the calibration problem im-
poses challenges for HDLR manipulators, as the most common methods involving a
known calibration object that acts as a world frame are practical mostly for stationary
industrial robots on factory floors.

Robotic manipulators with visual sensors can be divided into two categories: the
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so-called eye-in-hand and eye-to-hand systems. In eye-in-hand systems, the sensor is
situated near the end-effector of the robot, whereas in the latter the sensor is situated
in the environment. The two configurations are illustrated in Figure 2.3. The most
significant difference is that a camera in the eye-in-hand configuration is subject to the
same motion as the robot’s TCP. The motion is then estimated using visual feature
tracking or optical flow. In contrast, an eye-to-hand system observes the robot’s
motion within its workspace, thus requiring trackable OOI, such as visual fiducial
markers, attached to the robot. This imposes additional challenges, such as occlusion
and field-of-view issues, to track the robot’s pose.

Manipulator’s base 
coordinate system

End-effector’s (TCP)  
coordinate system

Visual sensor’s coordinate 
system

Manipulator’s base 
coordinate system

End-effector’s (TCP)  
coordinate system

Visual sensor’s coordinate 
system

Figure 2.3 i) (left) Eye-in-hand configuration. ii) (right) Eye-to-hand configuration.

2.4.1 Extrinsic Calibration between a Visual Sensor and a Robot

In the context of robotics, extrinsic calibration describes the rigid relationship be-
tween a visual sensor’s coordinate system and the robot’s coordinate system. De-
pending on the hand-eye configuration (eye-in-hand or eye-to-hand), the calibration
procedure involves computing one or more transformation matrices. After extrinsic
calibration, measurements in the sensor’s coordinate system can be expressed so that
the robot’s control system understands them. The most common solutions for hand-
eye calibration utilize a calibration object (i.e., a world frame) with easily detectable
geometric shapes, such as a checkerboard, a circlegrid, or visual fiducial markers
[68]–[71]. Moreover, it is required that the manipulator’s forward kinematic model
be available.
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Many algorithms for both hand-eye configurations have been proposed to solve
the extrinsic calibration problem, some of them solving the rotational and positional
components separately and some doing so simultaneously. In [72], a cooperative eye-
in-hand/eye-to-hand visual servoing scheme is examined. The rationale is that an eye-
in-hand camera provides precision with partial sight of the environment, whereas an
eye-to-hand system has a wider view of the environment but less potential accuracy
due to the increased view distance. Thus, in a well-designed system, the cooperative
sensing can be complementary. More recently, the inconvenience of being restricted
to specific calibration objects has been noted as some research exists on targetless cal-
ibration methods. For example, in [73], motion-based calibration for multi-modal
sensor extrinsics and timing offset estimation is presented, without requiring calibra-
tion objects. In [74], the hand-eye transform is estimated on a surgery robot using
a neural network to omit the requirement of a specific calibration object. A recent
overview on hand-eye calibration methods [71] also notes that the related technolo-
gies are developing toward high precision and intelligence, though much work is
required to identify the robot and camera parameters.

2.4.2 Visual Servoing

Visual servoing in robotics involves controlling the motion of a robotic system based
on visual feedback [75]. Methods of visual servoing are classified into position-based
(PBVS) [76], image-based (IBVS) [77], and hybrid systems [78]. In a PBVS system,
the control error is defined in Cartesian coordinates, and the control algorithm uti-
lizes the robot’s kinematic model along with camera calibration parameters. In an
IBVS system, the control law is defined in the image plane using image features di-
rectly. The relationship between the image plane and the robot is established using
an image Jacobian matrix, which describes a nonlinear mapping between the image
feature errors and the pose of the robot [79]. PBVS systems are more sensitive to
calibration errors, as well as more complex to implement. IBVS systems are more
robust against calibration errors, but a singularity in the image Jacobian can render
the controller unstable. Hybrid systems attempt to utilize the advantages of both
the PBVS and IBVS.

In general, PBVS systems are more suited for HDLR manipulators as the con-
trol structure is based on the Cartesian coordinates, enabling vision-based control
in the 3D Cartesian space. Thus, the pose of a target OOI is required to deter-
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mine the tool’s pose with respect to the OOI. However, the task of visual pose
estimation of application-specific OOI is challenging on its own. IBVS systems are
more suited to structured environments, where an industrial robot has only a spe-
cific OOI in the camera view and servoing in 2D space is sufficient. Most of the
research related to visual servoing is directed toward conventional industrial robots,
with few papers considering HDLR manipulators. One such study is [80], in which
a camera was attached near the tip of an HDLR manipulator and used for PBVS.
However, no explicit procedure for extrinsic calibration between the sensor and the
robot is described. Instead, a known location is assumed by approximating the sen-
sor’s displacement along two axes with reference to the forward kinematic model. In
practice, the visual sensor’s coordinate system is very difficult to estimate correctly
without proper calibration. In [81], an eye-to-hand configuration was used for visual
guidance of a heavy-duty rock-breaking manipulator. Specific markers for calibra-
tion purposes were distributed into the workspace and a considerable number of
measurements were conducted to estimate the extrinsic camera-to-robot calibration
parameters.
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3 SUMMARY OF PUBLICATIONS

This chapter provides a summary for each publication presented in this dissertation.

3.1 Summary of P-I: Application of Simultaneous Localization and
Mapping for Large-Scale Manipulators in Unknown
Environments

Development drilling is one of the basic operations in underground mining. It in-
volves mining tunnel networks, for which mobile machines with on-board HDLR
manipulators are utilized. A mining manipulator holds a heavy rock drill, and the
work area is a confined space within a tunnel, surrounded by walls of rock. This pa-
per investigates the application of VO/SLAM for tracking the generic 6 DOF TCP
pose of an HDLR manipulator in an unstructured environment. The focus is on a
preliminary examination for the feasibility and potential accuracy of VO/SLAM-
based TCP pose estimation in this type of application. Presently, OEMs use a for-
ward kinematic model with individual joint sensors to formulate the TCP pose,
which is subject to significant kinematic and non-kinematic errors accumulated along
the serial chain kinematic structure. The motivations behind developing alternative
sensing methods are also discussed, and a brief literature review on sensor technolo-
gies is presented.

Based on the literature review and the availability of open-source SLAM algo-
rithms, the feature-based ORB-SLAM2 Stereo algorithm was chosen for the exper-
iments. An experimental setup comprising an HDLR manipulator and a textured
test wall mimicking rocks for feature extraction were used to collect data. A low-
cost, off-the-shelf stereo camera was attached to the manipulator in the eye-in-hand
configuration. Figure 3.1 illustrates the camera placement and a view of detected
ORB features on the test wall.
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Figure 3.1 i) (left) ZED stereo camera in the eye-in-hand configuration. ii) (right) A view of detected
ORB features during SLAM. [Source: P-I]

The manipulator was moved around its workspace while the camera was pointing
toward the test wall. Simultaneously, the pose trajectory data of the TCP were ob-
tained using the visual stereo SLAM algorithm and a forward kinematic model with
joint encoders. The encoder-based TCP pose variables were assigned as the ground-
truths, and an iterative closest point (ICP) algorithm was employed for extrinsic cali-
bration between the SLAM-based and the encoder-based pose variables. Offline data
analysis was conducted, and the resulting comparative study demonstrates promis-
ing results with reasonable accuracy for the considered application. Specifically, the
extrinsically calibrated VO/SLAM-based pose variables represent the dynamic be-
havior of the TCP well when compared with the ground-truth poses. The method’s
limitations are also highlighted.

3.2 Summary of P-II: Redundancy-Based Visual Tool Center Point
Pose Estimation for Long-Reach Manipulators

This paper proposes a new visual sensor system concept for HDLR manipulators
in unstructured environments, in which an eye-in-hand/eye-to-hand cooperative
scheme is utilized. Specifically, the VO/SLAM-based TCP pose estimation approach
presented in P-I was extended to a more complete, conceptual visual sensor system
by incorporating a marker-based tracking module. For a robotic manipulator, a
visual fiducial marker provides a sufficient and repeatable target. The overall ratio-
nale is that a camera near the TCP (eye-in-hand) has a narrow view but is able to
provide more accurate pose estimates. On the other hand, a camera placed in the
environment (eye-to-hand), such as on the roof of a machine, has a wide view of
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the surroundings but less accurate pose estimation capability due to the increased
distance. The aim of the proposed conceptual visual sensor system was to increase
the robustness and fault tolerance of the vision-based TCP pose estimation scheme
via sensor redundancy and data fusion.

The experimental setup comprised the same system that was used in P-I, including
the state-of-the-art ORB-SLAM2 Stereo algorithm. For marker tracking, a high-end
commercial OptiTrack motion capture system was utilized. The experimental setup
is illustrated in Figure 3.2. The ground-truth TCP pose variables were obtained
using the forward kinematic model with joint encoders. The vision-based TCP pose
estimates were fused in a competitive manner using confidence weighted averaging,
which is a model-free method utilizing specified confidence functions to compute
the weight parameters. The proposed visual sensor system was studied in offline data
analysis by using offline-capable methodologies for the extrinsic calibration and the
data fusion, with recorded real-world data. Equal availability (same frequency) was
assumed for the pose estimates provided by each measurement method.

OptiTrack calibration frame

Test wall (decorative stones)

Analytical TCP

OptiTrack cameras

ZED stereo camera and reflective marker
X

Z

Y

Figure 3.2 The experimental setup for eye-in-hand/eye-to-hand cooperative visual TCP pose estima-
tion. [Source: P-II]

The experiments demonstrated that in the tested cases, the VO/SLAM module
with a narrow view was able to provide orientation signals with better quality. The
marker tracking module with a wider view suffered from minor deterioration in the

43



orientation measurements due to the increased distance from the observed target.
Overall, the results suggest that the state-of-the-art visual pose estimation methods,
directly observing the motion of the TCP, provide more accurate TCP poses in the
absolute coordinates compared to the rigid-body-based forward kinematic model and
joint encoders.

3.3 Summary of P-III: Probabilistic Camera-to-Kinematic Model
Calibration for Long-Reach Robotic Manipulators in Unknown
Environments

This paper follows P-I and P-II by focusing on developing a robust methodology
for on-site extrinsic camera-to-kinematic model calibration. The aim was to examine
point set matching methods and to replace the basic ICP algorithm utilized in P-I
and P-II with a state-of-the-art alternative. For this purpose, a probabilistic point
set matching method capable of utilizing the full 6 DOF pose data was applied.
Commonly, point set matching methods utilize only 3 DOF position data. Thus,
the rationale was that for robotic applications with full 6 DOF pose data available,
the matching result should benefit from the increased amount of data used in the
point set registration process.

The probabilistic 6 DOF point set matching method utilized a Gaussian mixture
model (GMM) to model positional uncertainties and a von Mises-Fisher mixture
model (FMM) to model orientational uncertainties. This hybrid mixture model-
based method was compared with two other point set matching methods utilizing
only the 3 DOF position data. The first method was a classic least-squares-based
method, while the second was the coherent point drift (CPD) algorithm, a proba-
bilistic method closely related to the applied 6 DOF hybrid mixture model method.
Specifically, they both share the GMM part, while the 6 DOF method is extended
with the FMM. The overall pipeline for camera-to-kinematic model calibration com-
prised coarse frame alignment and fine matching. Point set matching methods are
mostly guaranteed to converge to a locally optimal solution. Therefore, it was re-
quired that the point sets were roughly aligned based on the known initial TCP pose,
before running the point set registration for fine matching.

The methods in P-I and P-II were extended to a real-time setting instead of offline
data analysis, and arbitrary manipulator motions were used during the calibration se-
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quence instead of a predefined path. The camera was still pointed toward the test wall
for visual feature extraction. Pose trajectories were obtained using the ORB-SLAM2
Stereo algorithm and the joint encoders. A specific orientation magnitude correc-
tion was used to obtain comparable VO/SLAM-based orientation signals with the
encoder-based TCP pose data. The results demonstrate that the proposed pipeline
with 6 DOF data provide the smallest calibration errors, making it effective for
robotic applications. Finally, a simple use case of utilizing the camera-to-kinematic
calibration was executed by driving the image center to detected ArUco markers. An
example result is illustrated in Figure 3.3. The mean Euclidean distance errors were
in the sub-centimeter range, which can be considered excellent in this application.
However, the depth parameter was not included in the use case.

Figure 3.3 i) (left) The initial pose. ii) (right) The pose after driving the image center to a detected
marker. [Source: P-III]

3.4 Summary of P-IV: Model-Free Sensor Fusion for Redundant
Measurements Using Sliding Window Variance

The aim of this paper was to develop a real-time capable data fusion method for the
redundancy-based visual sensor system described in P-II. The conceptual design com-
prising VO/SLAM and marker-based tracking modules is illustrated in Figure 3.4.
The confidence-weighted, averaging-based method used in P-II is suitable for offline
data analysis. For real-time data fusion of continuous sensor readings, the use of
pre-specified confidence functions is not practical. Before fusion, the pose variables
also have to be extrinsically calibrated to a common frame, for which the pipeline
presented in P-III was used.
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Figure 3.4 The overall conceptual design for eye-in-hand/eye-to-hand cooperation: The Sandvik
DT912D single boom tunneling jumbo. [Source: P-IV]

The proposed model-free data fusion method was based on weighted averaging,
but the weights for each signal were computed using sliding window variance (or
sample variance) with N latest observations. The rationale is that the signal with
less variance is assumed to be of better quality, thus it is given a larger weight. The
window length Nwas updated after each individual sliding window so that the fusion
algorithm can react to dynamic changes in the signals. Updating the window length
N was conducted by using the largest absolute mean difference between redundant
signals. Having a specified window length implies that the system reacts to signal
changes with a slight delay. In the experiments, the longest window used was 4,000
samples (or 4 s). A simple method for transition smoothing was also presented,
which aimed to mitigate the effects of outliers.

Real-time experiments were conducted using the HIAB033 setup. The TCP pose
was estimated using the ORB-SLAM2 Stereo algorithm and the OptiTrack motion
capture setup. The objective was to maintain a reliable TCP pose measurement of the
HDLRmanipulator using the conceptual visual sensor system presented in P-II. The
6DOF pose trajectory data from the two independent, redundant visual sensors were
fused in an optimal manner in the sense that the variances of the fused signals were
minimized with respect to the input variances, computed over the current sliding
windows. The results demonstrated that the proposed data fusion methodology can
increase the overall robustness and fault tolerance of the visual sensor system. The
challenges of the proposed methods include having to detect and discard any grossly
faulty measurements before the fusion occurs, which implies relying on advanced
sensor self-diagnostics.
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3.5 Summary of P-V: Vision-Aided Precise Positioning for
Long-Reach Robotic Manipulators Using Local Calibration

This paper investigates motion-based sensor-to-robot calibration methods for vision-
based guidance of HDLR manipulators. The objective was to achieve precise (sub-
centimeter) absolute TCP positioning accuracy using a low-cost visual sensor. Com-
pared to conventional industrial robots, the error tolerances in the TCP position
are much larger. As previously highlighted, the existing extrinsic calibration frame-
works using specific calibration objects (e.g., checkerboards) are not practical for
HDLR manipulators in dynamic, unstructured environments. Thus, this paper pro-
poses motion-based calibration in a local plane, while the pose error between the
tool (TCP) and an OOI is computed directly from an image. Consequently, the
view of the tool and the OOI, along with the capability to estimate their poses, were
assumed. The presented methodology comprises orientation adjustment for align-
ing the tool and the OOI, as well as range adjustment, for which two methods are
proposed and compared. The first method is a line-equation-based method using a
circular calibration path. The second is a trajectory-matching-based method using
an asymmetric calibration path.

Real-time experiments were conducted using the HIAB033 setup, and a low-cost
ZED2 stereo camera was used for visual sensing in the eye-in-hand configuration.
ArUco markers were used to represent a tool and an OOI in the experiments. The
experimental setup is illustrated in Figure 3.5. Using motion-based local calibration,
the objective was to position the tool (the marker at the tip) in the middle of three
markers attached to the board. Open-loop visual control was employed by first look-
ing and then moving. The motivation was to avoid closed-loop visual control due to
robustness and occlusion issues. The line-equation-based range adjustment suffered
from accumulated errors and had considerable variation in the final tool position-
ing result. The trajectory-matching-based method was able to reliably achieve sub-
centimeter positioning accuracy, although two visual control inputs were required
in each measured case. The precise positioning was enabled by computing the pose
error between a detected tool and an OOI directly in the image frame, while using
highly accurate local calibration resulting from the trajectory matching. Such accu-
racy is typically not achieved with HDLR manipulators due to the kinematic and
non-kinematic errors present in the system. Moreover, the motion-based local cali-
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bration does not require external objects placed in the environment for calibration
purposes.

Figure 3.5 The experimental setup for motion-based local calibration and visual guidance of a HDLR
manipulator. [Source: P-V]

The challenges and limitations are also discussed. For a practical application, the
object detection and pose estimation have to be realized with application-specific pa-
rameters, which is a challenge. Further issues include lighting and sufficient textures
for VO/SLAM.
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4 DISCUSSION

This chapter discusses the publications and their outcomes in relation to the RPs.
The significance and validity of the overall results are discussed, along with limita-
tions and persisting challenges.

4.1 A Novel Sensor System Capable of 6 DOF TCP Pose
Measurement for HDLR Manipulators (RP-I)

How feasible are cameras for observing and tracking the motion of HDLRmanipulators?
How can the reliability and robustness of visual sensing be improved in HDLR manipu-
lators?

RP-I focuses on examining advanced visual sensingmethods for estimating the generic
6 DOF TCP pose of HDLR manipulators in unstructured environments. Notably,
HDLR manipulators are subject to structural deformations, which suggests that ob-
serving the TCP directly can provide a more accurate result in comparison to using
individual joint sensors with conventional rigid-body-based kinematic modeling. P-I
investigates the performance and feasibility of a state-of-the-art, feature-based SLAM
system, although the VO front-end is mainly utilized. Further experiments are re-
quired to determine if VO alone is sufficient or if the back-end of SLAM is required
for extended operation. While drift correction computations would likely be a re-
quirement for long-term operation, correcting the pose in a discontinuous manner
is not allowed for real-time TCP pose-tracking applications. The initial results of
P-I indicate that under sufficient conditions regarding lighting and available textured
surfaces, the method is capable of adequately tracking the 6 DOF TCP pose. P-II
extends the visual TCP pose estimation scheme of P-I into a more complete sen-
sor system by incorporating an eye-to-hand configuration. A marker-based tracking
system is utilized, as visual fiducial markers provide repeatable targets suitable for
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robotic manipulators. The rationale is that the eye-in-hand camera has a narrow
view of the surroundings but is able to provide more accurate TCP pose estimates.
The eye-to-hand system has a wider view of the surroundings but provides less accu-
rate TCP pose estimates due to the increased view distance.

Moreover, as discussed later, the eye-in-hand camera can be used for vision-based
control in auxiliary work tasks. The eye-to-hand camera system can also be used
for auxiliary tasks. Possible applications include detecting humans or obstacles in
the workspace, for example. Overall, P-I and P-II seek to address the first research
question of RP-I regarding the feasibility of visual TCP pose estimation for HDLR
manipulators in dynamic, unstructured environments. As discovered in P-II, both
of the visual TCP pose estimation methods appear to represent the dynamic motion
of the TCP more accurately than the TCP formulated using the rigid-body-based
forward kinematic model and joint encoders. This was expected due to the non-rigid
nature of HDLR manipulators, but it is problematic as the control system itself is
based on the less accurate forward kinematic TCP. Thus, the outcome is that based
on the results of P-I and P-II, visual TCP pose estimation based on both VO/SLAM
systems and marker-based tracking can provide highly accurate measurements in the
right conditions. Further challenges related to robotic control methods and long-
term performance of VO/SLAM are discussed later.

The second research question of RP-I is partially addressed in P-II via a pro-
posal of a visual TCP pose estimation scheme using redundant measurements. As a
non-contact sensing method, visual pose estimation includes many challenges with
respect to robustness and reliability. These challenges arise from occlusions, outliers,
and calibration parameters, for example. The second research question of RP-I seeks
to find measures to improve these aspects in the visual sensor system proposed for
HDLR manipulators in P-II. As a result, P-III examines a robust pipeline for the
camera-to-kinematic model calibration. A probabilistic point set matching method
capable of utilizing the full 6 DOF pose data, which is readily available in robotic
systems, is utilized for this purpose. The comparative results with added Gaussian
noise, along with the studied use case, suggest that this method provides the least
matching errors; however it still suffers from the same issues as all point set regis-
tration methods. Specifically, coarse frame alignment is required to minimize the
possibility of the point set matching algorithm converging to a local minimum. A
future development should be the formulation of a global solution for the coarse
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frame alignment.
To address the data fusion problem in P-II, P-IV proposes a real-time capable

method for fusing redundant sensor data using sliding window variances. The aim
of sensor fusion, along with redundant visual TCP pose estimation, is to increase the
system’s overall robustness, reliability, and fault tolerance. Thus, the fusion method
in P-IV is based on signal statistics, with the assumption that out of two redundant
signals, the one with less (sample) variance is of higher quality. Therefore, it is given
a larger weight parameter when forming the fused signal. As the method is solely
based on signal statistics, advanced sensor self-diagnostics would likely be required to
detect and discard grossly faulty measurements before the fusion occurs. P-IV also
presents a simple method for transition smoothing by predicting the next fused value
in a naïve manner by using linear interpolation, but a direction for future research
would be to increase the fusion algorithm’s capability to detect and handle outliers.
A downside of the data fusion method is that the signal variances are computed
over a sliding window of N samples, which infers that if a signal’s quality suddenly
changes, the fusion algorithm reacts with a delay. However, the experiments in P-IV
suggest that the window length N can be maintained as relatively short. Overall,
P-II through P-IV address the second research question of RP-I in the scope of the
visual sensor system examined in P-II.

The main result of P-I and P-II is a visual sensor system targeted for generic 6
DOF TCP tracking of HDLR manipulators, whereas P-III and P-IV propose real-
time capable methods for increasing the robustness and reliability of the visual sensor
system. Although based on experimental real-time measurements, the results pre-
sented in this dissertation were validated in a laboratory setting. Thus, implementing
the proposed methods into practical systems is a bridge yet to be crossed. Practical
implementations of vision-based sensing for HDLR manipulators face many chal-
lenges, of which the placement of the sensors is the foremost. HDLR manipulators
work in harsh conditions, which requires rugged sensors that can withstand those
conditions. Unfortunately, non-contact visual sensors are sensitive and easily dis-
turbed. It is also noteworthy that the proposed visual sensor system could contribute
to increasing the automation level and task flexibility of HDLR manipulators in ar-
eas other than just visual TCP pose estimation (RP-I). Other topics include vision-
aided control in auxiliary tasks, as discussed in P-V, along with object detection and
recognition in the workspace. Presently, some OEMs employ laser scanners in their
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HDLR manipulators, while the potential of computer vision paired with cameras is
not yet unlocked. Therefore, it is likely that camera-based systems are first adopted
to simple, auxiliary functions to which computer vision can add value.

4.2 Vision-based Control for Precise TCP Positioning of HDLR
Manipulators (RP-II)

Can a low-cost camera be used to achieve precise (sub-centimeter) TCP positioning accu-
racy in HDLR manipulators?
What are the main challenges in realizing precise TCP control for HDLR manipulators
using visual sensing?

For RP-II, the main objective is to accurately position the TCP of an HDLR ma-
nipulator to a visually detected OOI using a low-cost camera. Practical applications
related to this problem include, for example, tool swapping and positioning the tool
to pre-drilled holes. As previously discussed, hand-eye calibration methods devel-
oped for conventional industrial robots are not practical for HDLR manipulators in
dynamic, unstructured environments. To solve the extrinsic sensor-to-robot calibra-
tion problem, P-V proposes motion-based local calibration. Using the trajectory-
matching-based method, the rotation difference between the visual sensor’s frame
and the TCP frame can be computed with high accuracy. Then, the position error
between the tool and an OOI is computed directly from an image. The visual con-
trol input for the robotic system is obtained by applying the rotation transformation
to the position error. This enables the circumvention of numerous errors in the se-
rial chain kinematic model used to formulate the TCP for control purposes, along
with errors arising from nonlinearities. Combined with highly accurate local cali-
bration, minimizing the image-based position and orientation errors will, in theory,
position the tool at the target OOI. Some aspects related to robotic control, such
as joint constraints and singularities, are not in the scope of P-V. It should also be
highlighted that the aim is to maintain conventional rigid-body-based modeling and
control systems that are prevalent in the industry. In [82], it was found that nonlin-
ear model-based control methods produce the most advanced control performance
for (hydraulic) HDLR manipulators. However, as shown in P-V, such complex
controller structures may be averted by employing vision-based control for tasks
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requiring high precision.
While the formalism for motion-based local calibration is fully described in P-V,

the research also benefits from P-I, where the eye-in-hand configuration for visual
SLAM-based TCP pose tracking of an HDLR manipulator is initially deemed as
sufficiently accurate. The research also utilizes the findings of P-III, which attempts
to find the optimal method for robust pose trajectory matching in robotic applica-
tions. The experimental results presented in P-V demonstrate that sub-centimeter
positioning accuracy is reliably achieved in the tested cases using the trajectory-
matching-based method. As discussed, however, the performance relies of multiple
aspects, such as the VO/SLAM system, pose trajectory qualities, and small trajec-
tory matching errors. The line-equation-based method, while theoretically viable,
suffers from accumulated errors and does not perform reliably. The local calibration
also only holds in the local plane, in which the calibration is performed. Changing
the orientation of the tool requires another calibration, which can be cumbersome to
repeat depending on the application. Therefore, the outcome related to the first re-
search question of RP-II is that sub-centimeter absolute positioning accuracy can be
achieved for HDLR manipulators using a low-cost camera, which is regarded as the
main contribution of this dissertation. However, the success highly depends on the
setup and circumstances. Thus, further tests are required for practical applications
with more complex HDLR manipulators. It is shown in the laboratory experiments
that the camera frame and the TCP frame can be matched accurately using the ro-
tation difference. However, this is reliant on an accurate estimation of the visual
sensor’s egomotion, and the assumption that the kinematic TCP is accurate enough,
so that pose trajectory matching can be executed with small errors.

The line-equation-based method for range adjustment, especially, highlights the
challenges of realizing visual control. While the idea is simplistic, the errors accu-
mulate from various sources. These include camera placement and alignment, ori-
entation adjustment, and tracking the circular path. The limitations and challenges
related to the topics of this dissertation are discussed further below.

While P-V examines precise vision-aided control for HDLR manipulators, en-
abled by highly accurate alignment between the camera frame and the TCP frame,
using the eye-in-hand configuration, it should be mentioned that the results of P-II
and P-IV suggest that similar accuracy can be achieved with the eye-to-hand con-
figuration. However, degradation is to be expected, especially in the orientation
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signals, with increased view distances. As highlighted in P-II and P-IV, the quality
of the orientation signals can be improved to some extent with signal filtering. For
TCP control purposes, the eye-in-hand configuration is still perceived as much more
useful.

4.3 Limitations and Challenges

This section discusses the limitations and challenges faced in this dissertation. It also
aims to address the second research question of RP-II, which relates to highlighting
the main challenges in realizing vision-based control for HDLR manipulators.

4.3.1 Robustness and Reliability with Visual Sensors

Visual sensors are inherently non-contact sensors that provide a large amount of data.
Non-contact infers that the sensor element is not in direct physical contact with the
sensed target. An image contains a vast amount of information, but only a small part
of it is typically useful. Extracting the useful information, such as detecting an OOI,
can be challenging. In general, visual measurements are prone to challenges in ro-
bustness and reliability. These issues arise from the fact that visual measurements are
easily degraded due to various reasons, such as mechanical vibrations, water and va-
por, occlusions, and insufficient lighting. These challenges are highlighted forHDLR
manipulators working in dynamic, unstructured environments, which also require
the sensors to be rated for IP67 protection. While such rugged cameras can be real-
ized with increased manufacturing costs, the other discussed environmental factors
still pose significant challenges to visual sensing.

Regarding VO/SLAM systems, this dissertation does not consider long-term us-
age. VO/SLAM systems are prone to drifting and outliers that degrade the per-
formance after a longer period of continuous execution. As discussed, the SLAM
front-end provides real-time localization using VO, while the back-end of SLAM
handles mapping. In a confined workspace, it is theoretically possible to first map
the environment and then localize based on the map. Some features related to SLAM
systems, such as loop closing and global optimization, are not preferential if they im-
pose discontinuities on the real-time pose variables. However, as highlighted, VO
alone is subject to drifting, especially in long-term usage, which is not acceptable for
robotic control purposes. The research of this dissertation also makes the assump-
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tion that there are enough textured surfaces in the HDLR manipulator’s workspace
to utilize feature-based VO/SLAM systems. While this may be a fair assumption
for underground mines, other types of environments, such as construction sites or
forests, are not considered in the scope of this research. Even for undergroundmines,
VO/SLAM systems optimized to such environments are likely required. As high-
lighted in Section 2, one of the current research directions in VO/SLAM systems is
optimization for challenging scenarios.

4.3.2 Robotic Control

The scope of this dissertation involves generic 6 DOF TCP pose estimation, which
alone is not sufficient to realize complete manipulator control, as modern control
system frameworks also require information of the individual joint states. This work
examines direct TCP pose estimation using a visual sensor system, whereas the estab-
lished method is to formulate the TCP based on joint sensors and a rigid-body-based
forward kinematic model. As discussed, the assumption of rigidness in the mod-
eling deteriorates the TCP positioning accuracy and repeatability in HDLR ma-
nipulators due to the numerous kinematic and non-kinematic errors present in the
system. While the control of structurally flexible manipulators is a research field
of its own, robotic control methods in the industry are still closely dependent on
the rigid-body-based kinematic formulation and simple controller structures (e.g.,
Proportional-Integral-Derivative). As mentioned, it has been shown that nonlinear
model-based control methods can provide the most advanced control performance
for hydraulic HDLR manipulators. However, these methods are also based on rigid
bodies and have not (yet) been adopted to the industry. Control of flexible manipu-
lators is even more complex, and consequently, accounting for structural bending in
HDLR manipulators in the industry is mostly limited to static compensation com-
putations to enhance the rigid-body-based forward kinematic TCP accuracy.

To utilize predominant robotic control methods, the inverse kinematic relation
from the TCP to the manipulator’s base is required. For a system with direct TCP
pose estimation, this would involve estimating the individual joint states based on
the current TCP pose, which is not investigated within this research. The matter is
further complicated by the extrinsic sensor-to-robot calibration, which is discussed
below. An ultimate goal is to realize TCP control for HDLR manipulators, while
the individual joint sensors could be completely omitted to streamline the mechanical
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structure, at least for non-redundant manipulators.

4.3.3 Sensor-to-Robot and Sensor-to-Sensor Calibration

Themethods used in this dissertation take advantage of the joint encoders to compute
the rigid-body-based forward kinematic TCP and then use it for calibration and
ground-truth purposes, which remains another challenge. Point set matching is not
sufficient to solve the extrinsic sensor-to-robot calibration, when the individual joint
states (and thus, the kinematic TCP) is not available. The original idea was to use the
point set matching for initial calibration and then to use the visual sensor system to
track the dynamic motion of the TCP. The sensor-to-robot calibration issue is one
of the most fundamental challenges, which is a limiting factor in benefiting from
visual measurements in applications with HDLR manipulators. Consequently, the
proposed conceptual visual sensor system estimating the TCP pose may also be useful
as a secondary sensing system (joint sensors being the primary) in auxiliary tasks or
bending estimation, for example. As shown in P-V, there are potential benefits in
using the eye-in-hand configuration for visual control purposes. This can ultimately
be used to increase the automation level of HDLR manipulators, including task
flexibility.

This research takes advantage of a state-of-the-art motion capture system, which
provides the necessary multi-camera system calibrations, marker detection and pose
estimation. Therefore, the global poses of the markers, their IDs, and accurate track-
ing capabilities are readily accessible. The high performance is reflected in the cost
of the system, which is currently not realistic for commercial HDLR manipulators.
In-house development of similar high-end systems would be a challenging task, but
the results presented in this thesis demonstrate the potential of such a system. The
multi-camera system utilizes a reference world frame, which is required in view of
the cameras. Then, the marker poses are expressed with respect to the world frame.
Thus, the issue of extrinsic sensor-to-robot calibration persists also in the eye-to-hand
system as there is no straightforward manner to find the precise relation between the
set world frame and the base frame of the manipulator. As discussed, relevant cali-
bration frameworks developed for conventional industrial robots are generally not
practical for HDLR manipulators due to their nonlinear characteristics and harsh
working environments.
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4.3.4 Visual Object Detection and Pose Estimation

This work utilizes two types of visual fiducial markers for OOI detection and pose
estimation. In RP-I, the state-of-the-art marker-based tracking system utilizes reflec-
tive markers. In addition, ArUco markers are utilized to represent the tool and an
OOI for the vision-aided control system in RP-II. For a practical system, the ArUco
markers need to be replaced with application-specific OOI. Presently, state-of-the-art
visual object detection methods are mostly learning-based. Thus, solving the prob-
lem for application-specific OOI will likely require advanced learning-based methods
to detect different tools and target OOI in images.

Visual detection of a specific OOI in the camera’s view is only the first step. The
second step is visual pose estimation of the target OOI, which is a requirement for
accurate vision-based control purposes. The accuracy of visual pose estimation highly
depends on the quality of the OOI detection outcome. Compared to a planar ArUco
marker with 4 well-defined corners, for example, pose estimation of geometrically
complex OOI can be challenging to realize with sufficient accuracy. The results of
P-V show that precise tool positioning for HDLR manipulators can be achieved if
the poses of the tool and the target OOI can be accurately estimated.
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5 CONCLUSION

To conclude, the heavy machinery industry, including the TCP control of HDLR
manipulators, is taking steps toward increased levels of automation and autonomous
systems, which require new intelligent algorithms and sophisticated sensing solu-
tions. In order to automate work tasks of HDLR manipulators and increase their
task flexibility, a key challenge is replacing human vision and decision making with
sensors and computerized algorithms. This dissertation investigates the possibilities
of exploiting advanced visual sensing solutions for HDLR manipulators working in
unstructured environments.

In RP-I, the overarching objective was to estimate the generic 6 DOF TCP pose
of HDLR manipulators using visual sensing. The aim was to study the feasibility
of camera-based sensing for this purpose, and to examine methods for increasing its
robustness and reliability. P-I examines a state-of-the-art feature-based VO/SLAM
system for tracking the generic 6 DOF TCP pose of a HDLR manipulator in a
confined space. It also serves as a basis for the follow-up research. P-II proposes a
conceptual visual sensor system consisting of eye-in-hand/eye-to-hand cooperation,
with emphasis placed on increasing the robustness and reliability of the system via
sensor redundancy. P-III investigates the sensor system’s calibration problem and
utilizes a robust point set matching pipeline, taking advantage of the full 6 DOF
TCP pose data in the process. P-IV addresses the data fusion problem by proposing
a real-time capable data fusion method based on sliding window variances. Together,
P-I through P-IV seek to address RP-I by presenting a conceptual visual sensor sys-
tem utilizing eye-in-hand/eye-to-hand cooperation. However, as discussed, many
challenges related to control and calibration remain.

In RP-II, the main objective was to investigate vision-based sensing methods for
precise TCP positioning of HDLR manipulators. The aim was to utilize a low-cost
camera, while also examining the main challenges related to vision-based control of
HDLR manipulators. P-V proposes a methodology to enable precise TCP position-
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ing by computing the pose error between a tool and an OOI directly in the image
frame while using highly accurate motion-based local calibration to align the rota-
tion of the camera frame with the rigid-body-based forward kinematic TCP frame,
which is used for robotic control. For the tested cases in P-V, it is shown that sub-
centimeter accuracy is reliably obtained using the trajectory-matching-based method.
This level of accuracy is challenging to achieve withHDLRmanipulators due to their
nonlinear characteristics. Thus, RP-II is addressed by P-V, which is a result of the
developments in P-I and P-III.

Overall, the initially set RPs are successfully addressed within this dissertation,
and the results contribute toward realizing vision-based control for HDLR manipu-
lators. Five original papers are presented in this compendium thesis, with the main
contribution arising from P-V, in which sub-centimeter TCP positioning accuracy
is achieved for an HDLR manipulator using the developed methods.

The proposed methods in this dissertation were validated in a laboratory set-
ting and thus are mainly on a conceptual level. Therefore, further development
is required for practical implementations. While mobile machines with on-board
HDLR manipulators could benefit greatly from advanced computer vision systems,
harsh working environments issue many practical challenges related to robustness,
reliability, and fault tolerance. These challenges include lighting conditions, varying
surface textures, dust and vapor, water, sensor mounting positions, and mechanical
vibrations. Presently, advanced computer vision algorithms and camera-based vi-
sion are emerging fields for HDLR manipulators. Therefore, it is expected that the
first practical applications in the industry are related to automating relatively simple,
auxiliary tasks that can be performed under human supervision.

Related to RP-I, the ultimate future goal is to eventually omit the individual joint
sensors, which are currently used in mechanically complex HDLR manipulators,
completely. While visual TCP pose estimation (RP-I) may provide a solution for
this, controlling the manipulator remains a challenge as modern control systems
require knowledge of the joint states. Furthermore, the extrinsic sensor-to-robot
calibration in the long term remains a significant challenge. Related to RP-II, a
future desire is to utilize the proposed vision-aided control method using motion-
based local calibration for practical applications in the industry that require precise
TCP positioning. This requires further development of advanced vision-based OOI
detection and pose estimation methods to realize the application-specific parameters.
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Abstract—In this paper, we study the application of simulta-
neous localization and mapping (SLAM) for estimating the tool
center point (TCP) 6 degrees-of-freedom (DOF) pose of a large-
scale hydraulic manipulator without a priori knowledge of the
environment. We attach a stereo camera near the TCP of the
manipulator and perform SLAM by utilizing the open source
version of ORB-SLAM2. In offline experiments, the camera
frame and the TCP frame are extrinsically calibrated using an
iterative closest point search to match a point cloud of poses
from the SLAM module with a point cloud of ground-truth
TCP poses, which are obtained from joint encoder measurements
along with a kinematic model of the manipulator. The estimated
TCP trajectory provided by the SLAM is then compared to
the ground-truth TCP trajectory. These preliminary experiments
show that a pure visual SLAM algorithm can perform reasonably
well in this application scenario. Limitations and future work are
also discussed.

Index Terms—manipulators, simultaneous localization and
mapping, position measurement, rotation measurement

I. INTRODUCTION

Autonomous vehicles have been avidly studied in the past
decade, as the trend tends toward fully independently operating
systems. This includes a multitude of mobile, heavy-duty ma-
chines that utilize large-scale manipulators (also called booms)
to complete work tasks. In underground mining applications,
such manipulators are utilized in tunneling jumbos and drill
rigs, for example. Although these machines are currently
human operated, on-site or remotely via teleoperation, each
joint has a sensor so that the tool center point (TCP) of the
manipulator can be measured based on the joint states. This is
because knowledge of the TCP pose is essential for accurate
drilling, as it has a direct effect on the mining progress made
with each blast. The number of actuator degrees-of-freedom
(DOF) in these manipulators is typically up to 8, which
means that 8 sensors, including their waterproof enclosures,
associated cabling, and high-precision mechanical couplings,
add up to a significant bill of materials, and thus, the cost
per machine. Moreover, a single machine can have multiple

This work was funded by the Doctoral School of Industry Innovations
(DSII) of Tampere University.

booms. For instance, tunneling jumbos typically have one to
three drilling booms, which further add to the bill of materials
and motivate research for new, alternative TCP measurement
methods designed for this type of application.

Such methods have been explored for many similar appli-
cations in the literature. For example, in [1], a laser scanner
was used for end-effector tracking and joint variable extraction
of a heavy mining shovel’s dipper. In [2], a low-cost 2D
laser scanner was used to estimate the posture of a forestry
crane, with a reported average tip position accuracy of 4.3
cm. With scanner-based measurements, the sparsity of the
acquired point cloud becomes an issue at larger distances due
to the low spatial resolution of the sensor. A part detection-
based scheme for estimating the 2D pose of an excavator
was studied in [3]. The method used a database of synthetic
images comprising different parts of an excavator, which were
used to train part detectors. A single camera was then used
for extracting the skeleton of the excavator based on the
detected parts. The feasibility of a local positioning system
for loader cranes using wireless sensors was studied in [4].
The described method used inertial sensors for joint angle
measurements and an ultrasonic transducer for measuring the
length of a telescopic joint. In [5], a gravity-referenced joint
angle estimation scheme using three-axis linear accelerometers
and three-axis rate gyros was proposed, with reported joint
angle sensing errors of ±1 degree. An ultra-wide band (UWB)
based real-time location system for estimating crane poses
was studied in [6]. However, based on the UWB system error
alone, which was approximately 30 cm, the accuracy is not
sufficient for applications requiring precise positioning. In [7],
an optical marker-based end-effector pose estimation scheme
was presented for articulated excavators, with encouraging
initial results. Nonetheless, these sensing methods do not
particularly fit the present application of interest, as drilling
booms are typically complex structures (8 actuator DOF) with
considerable maximum lengths. The confined workspace also
restricts the placement of sensors, such as cameras, in the
environment around the machine.



A potential solution would be to place a camera directly
at the TCP and perform pose estimation based on visual
odometry or more advanced simultaneous localization and
mapping (SLAM) algorithms. SLAM has attracted consider-
able attention in the past few decades, as this technology is a
vital component of any autonomous vehicle: A machine cannot
operate independently unless it is aware of its location in
relation to the environment. Thus, the main objective of visual
SLAM is to constantly perform localization based on visual
feeds, while simultaneously building a map of the surround-
ings. Only recently have SLAM technologies showed signs
of advancing toward the levels of maturity and reliability that
are required for autonomous systems. Some areas, however,
such as fail-safe systems, are still relatively unexplored, as
discussed in a recent survey paper [8].
Numerous SLAM methods have been engineered over the

years, with previous ones surveyed in [9]. Some of the more
recent and most popular monocular schemes include DVO
[10] and SVO [11]. Stereo and RGB-D methods have also
been presented, for example, RTAB-MAP [12], in which the
authors also provided comparative results using many SLAM
algorithms available on ROS. A stereo SLAM method using
ORB [13] features and line segments was proposed in [14].
The rationale was that the inclusion of line segments improves
the performance in low-textured environments with planar
structures, where a low number of point features can be
extracted. The reported performance was similar to that of
ORB-SLAM2 [15], which is another SLAM method. ORB-
SLAM2 is fully based on ORB features, and can be used with
mono, stereo, or RGB-D input. The authors extended their
work to include inertial sensors in [16].
In this paper, inspired by the recent advances in SLAM

technologies in vehicle positioning, we study the application
and feasibility of SLAM in a much different setting. Specif-
ically, we apply SLAM to estimate the TCP pose of a large-
scale articulated crane in an unknown, confined space. The
motivation is that for mining manipulators underground, the
workspace area is typically small and confined, with walls
closing in on each direction. The laboratory-grade simulation
of such an environment is a test wall built from decorative
stones. We attach a low-cost stereo camera near the TCP of
an articulated heavy-duty crane so that the camera faces the
test wall. Based on the literature review and the availability
of state-of-the-art open source SLAM algorithms, we utilize
the feature-based ORB-SLAM21, which is a tried and tested
algorithm with excellent localization capabilities in varying
environments. To avoid the issue of scale ambiguity, stereo
vision is employed in the experiments. Data analysis is per-
formed by comparing ground-truth TCP poses, obtained using
joint encoders, with calibrated SLAM output poses. For offline
data analysis, the calibration between the SLAM poses and the
ground-truth poses is conducted using an iterative closest point
(ICP) algorithm.
The remainder of this paper is outlined as follows: In

Section II, a description of the application is provided; it is
followed by Section III, in which the experimental setup is
presented. In Section IV, the data analysis is presented with

1https://github.com/raulmur/ORB SLAM2

comparative results. Finally, in Section V, the conclusion is
provided.

II. SIMULTANEOUS LOCALIZATION AND MAPPING IN THE
PROPOSED APPLICATION

Development drilling, in which tunnel networks are formed,
is one of the basic operations in underground mining. Using
this as an example, the TCP of a drilling boom is typically
moved within an area resembling a rectangle that corresponds
to the profile of the tunnel being mined. Dozens of holes,
many meters in depth, are drilled inside the profile. The TCP
is driven from drilling point to drilling point in a pre-planned
manner, while during a drilling operation the current TCP
pose is maintained. As the TCP is moved within a small
area, with back-and-forth motions, it is possible to establish a
comprehensive local map with SLAM before even beginning
the drilling. This also suggests that loop detection and closing
features of SLAM can be highly useful in correcting any drift
in the pose estimates. Especially for the proposed application
of TCP pose estimation, it is desirable that the tracking can
be maintained at all times. Notably, heavy drilling induces
severe vibrations in the manipulator and the machine, which
could affect the tracking performance. In this case, having a
local map would be useful, as relocalization based on the map
can be instantly performed after a drilling operation, during
which the joint positions can be locked in place by the control
system. After the drilling plan is completed, explosive charges
are placed inside the drill holes, after which blasting occurs.
As the depth of a drill hole is measured in meters, any error
in the TCP’s pose will directly degrade the blasting result.
Regarding the desired accuracy in this type of application, the
rough target values for positioning and orienting are 1 cm and
1◦, respectively.
The SLAM we utilize in this work, ORB-SLAM2, is a

feature-based method that utilizes only ORB features, which
have quickly become a popular choice due to their computa-
tional efficiency and good invariance to viewpoint changes.
ORB-SLAM2 consists of three parallel threads: tracking,
local mapping, and loop closing. If the tracking is lost, the
system is capable of relocalization using a bag-of-words place
recognition module, which is based on DBoW2 [17]. A pure
localization mode is also available, in which the mapping and
loop closing features are disabled. Importantly, the system
applies bundle adjustment (BA) for optimization purposes at
various stages of the algorithm: for optimizing the camera’s
orientation and position by minimizing the reprojection error
between matched 3D landmarks and 2D key points in the
tracking thread (motion-only BA); for optimizing a window
of keyframes and points in the local mapping thread (local
BA); and after a loop closure for optimizing all keyframes
and points (full BA) [15]. The Levenberg-Marquardt method
used for optimization is implemented in [18].

III. EXPERIMENTAL SETUP

A. System Description

The manipulator we used for testing was a HIAB033, which
is a hydraulically actuated crane. The manipulator, illustrated
in Fig. 1, additionally had a spherical wrist with a gripper
attached to it, yielding a total of 6 active actuator DOF: rotate,
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Fig. 1. The figure illustrates the test setup, in which the manipulator was
positioned so that the stereo camera attached to the gripper faced the test
wall. The goal was to estimate the TCP pose of the manipulator based on
pure visual SLAM, which extracted the required features from the test wall.
The joints of the manipulator are labeled from 1 to 6, with the base coordinate
system also shown.

lift, tilt, and 3 DOF in the wrist. The manipulator also had two
extension cylinders, which were disabled during the tests. Each
active joint was instrumented with an incremental encoder.
The control system of the HIAB was a dSPACE DS1005

PPC controller board and a development PC, which ran in 3
ms sampling time. A Stereolabs ZED stereo camera was used
for visual measurements. The ZED was connected to a laptop
via its USB interface, and images were captured using ZED
SDK’s Matlab plug-in by using a UDP trigger signal, which
was established from the dSPACE development PC to the ZED
laptop. The UDP trigger signal was transmitted at 8 × 3 ms
time intervals, which was dictated by the time it took for the
ZED SDK to capture and save a pair of grayscale, 672× 376
resolution images. The trigger signal ensured that the image
data recorded with the laptop and the encoder data recorded
with dSPACE could be synchronized with each other.
For the SLAM experiments, a wall made out of decorative

stones was built. This was our laboratory-grade simulation
of a mine wall. The wall was 2.5 × 4 m in dimensions,
and the stones were cemented to the wall randomly,, albeit
they comprised some recurring shapes. Varying motions were
applied to the manipulator, and data was recorded using the
camera and the joint encoders. Then, the corresponding image
sequences were extracted from the data. Each sequence library
was then processed by the ORB-SLAM2 stereo algorithm,
which provided a pose sequence corresponding to each input
sequence. In the SLAM settings, the number of ORB features
was set to 2000, and the camera FPS was set to 41.6667,
according to the UDP trigger signal. Fig. 2 shows the ZED
stereo camera attached to the gripper of the manipulator, as
well as an example view of the detected ORB features from
the test wall.

B. Ground-truth TCP Pose

As a ground truth, or reference, measurement of the TCP
pose is required to evaluate the estimated SLAM poses, a
kinematic model of the manipulator was formulated. The states
of the six active joints, measured with encoders, were then
used with the forward kinematic model of the manipulator to

X

Z
Y

Fig. 2. The left image shows the stereo camera attached to the gripper.
The camera’s coordinate system is also shown. The right image displays an
example view of the detected ORB features during SLAM.

TABLE I
DH PARAMETERS USED FOR TCP POSE FORMULATION.

No. Joint αi ai θi di

1. Rotation π/2 a1 θ1 d1

2. Lift 0 a2 θ2 0

3. Tilt π/2 a1 θ3 + π/2 d3

4. Wrist 1 π/2 0 θ4 d4

5. Wrist 2 −π/2 0 θ5 0

6. Wrist 3 0 0 θ6 d6

formulate the TCP pose, which was used as the ground-truth
measurement.
Table I presents the Denavit-Hartenberg (DH) parameters

of the manipulator, which comprised an anthropomorphic
arm with a spherical wrist [19]. The exact parameters were
not used, as they were not available from the manufacturer.
Instead, the parameters were self-measured, and are presented
only symbolically here. The forward kinematic relationship
between the base and the analytical TCP of the manipulator
(see Fig. 1) was then formulated as follows:

1T6 = T1T2T3T4T5T6, (1)

where 1T6 denotes the transformation matrix between the base
frame and the TCP frame, and Ti, i ∈ {1, ..., 6}, was formu-
lated using the following general equation by substituting the
DH parameters of the ith joint:

Ti =




cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


 , (2)

where cos and sin are abbreviated as c and s, respectively.
The ground-truth TCP pose was then extracted from the 1T6

transformation matrix.

IV. DATA ANALYSIS

A. Extrinsic Calibration

As visual SLAM estimates the pose with respect to the
camera frame, calibration between the camera frame and the
ground-truth TCP frame is required to obtain comparable
results. In more detail, the transformation matrix between
the camera’s coordinate system (or frame) and the coordinate
system of the ground-truth TCP must be known, as the two are
not inherently aligned. This results from the ambiguous camera
attachment and the camera model. For the initial experiments
presented in this paper, we used only recorded data, which
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Fig. 3. A diagram illustrating how the comparative results were obtained
from the measurements.

permitted the use of the ICP algorithm [20]. In essence, the
SLAM pose trajectory is modified into a point cloud, which
is then matched to the respective ground-truth pose trajectory
point cloud by using an ICP search.
However, a weakness of the ICP is that it can provide

an erroneous fitting, while the mean error between the two
matched point clouds appears small. In attempt to avoid such
a scenario, the camera frame was first modified so that the
positive direction of each axis corresponded to that of the
ground-truth TCP frame. The second step was to use the ICP
to find the transformation matrix between the two frames.

B. Comparative Results

The performance of SLAM in estimating the TCP pose
was experimented with motions into different directions. The
TCP poses are expressed with respect to the base coordinate
system (see Fig. 1), and the manipulator was automatically
driven to the same initial TCP position before each experiment.
The initial poses between experiments had minor variances,
because P-control was used when the joints were driven.
The procedure for how the results were obtained is further
visualized in Fig. 3.
The first three experiments observed the orientation of the

TCP with respect to each axis, whereas in the fourth and
final experiment a longer trajectory with loops and multiple
laps was studied. In the results, black lines always represent
ground-truth variables obtained using encoder measurements
and forward kinematics, whereas red lines represent calibrated
SLAM estimates in each case. Furthermore, orientation is
expressed with XYZ Euler angles.
The camera frame was first aligned with the ground-truth

TCP frame using the ICP procedure described in the previous
subsection. Static biases with respect to the ground-truth
initial poses were also removed from the estimates. Table
II shows the root mean square errors calculated during the
ICP procedures. The errors are very small, implying that the
calibrated camera frame should closely match the ground-truth
TCP frame so that the poses are comparable.
In the first experiment, motion was applied only to the lift

joint (see Fig. 1) so that the TCP rotated about the Y-axis. The
resulting 6 DOF TCP pose is shown in Fig. 4, in which the
translational motions and the respective orientations in relation
to each axis are illustrated. The positional variables and
the Y-axis orientation demonstrate good matching with their
respective ground-truth measurements. The remaining two
orientation estimates from SLAM show larger amplitudes of
motion than their corresponding ground-truth measurements.

In the second experiment, motion was applied only to the
base rotation. In this case, the camera (and the TCP) moved
mainly in the depth direction along the Y-axis and around the
Z-axis of the base frame. The outcome is illustrated in Fig.
5. The results are similar to those of the first experiment: The
positional variables and the orientation of the main motion
axis show good matching with the ground-truth measurements,
while the other two orientations display larger motions.
In the third experiment, the goal was to rotate the TCP

around the X-axis by moving the second wrist joint. With the
present test setup, however, achieving rotational motion purely
around the X-axis was not possible due to the wrist’s structure.
The TCP was also lifted upward before the second wrist joint
was moved, which was to allow larger motion while the wall
is maintained in the camera’s view. The results are illustrated
in Fig. 6. As shown, the positional variables and the main
orientation match well in this case also. However, there are
slight differences in the remaining two orientation variables,
with the estimated angles displaying larger amplitudes.
For the fourth experiment, a TCP trajectory with multiple

loops and laps was designed so that the loop detection and
closing features of the SLAM algorithm could be tested.
The complete path is illustrated in Fig. 7, where the black
point cloud represents the ground-truth TCP trajectory. It
is compared with the red point cloud, which visualizes the
calibrated TCP trajectory obtained from SLAM. The first
rectangular part of the path in the XZ plane was completed 3
times, after which the TCP was moved closer to the wall along
the Y-axis. Then, the second rectangular part of the path in the
XZ plane was also completed three times. Finally, the TCP
was driven back to the initial position along the Y-axis. As
the results in Fig. 7 show, the multiple laps during each loop
in the XZ plane are barely visible in the point clouds and the
loops are also closed. The respective 6 DOF TCP pose during
the measurement is illustrated in Fig. 8. The results are in line
with the previous experiments; the positional variables match
well with the corresponding ground-truth measurements. The
orientations also match relatively well, albeit the estimated
angles show larger amplitudes of motion by a few degrees in
relation to their ground-truth measurement counterparts.
To sum up the results of the four experiments, ORB-SLAM2

performed surprisingly well in the tested cases. The mean
absolute errors of the TCP pose variables in each experiment
(1–4) are documented in Table III, where γx,y,z denote the
XYZ Euler angles. Respectively, the maximum absolute errors
are shown for each case in Table IV. The estimated orien-
tation angles generally demonstrated larger amplitudes than
the ground-truth measurements, which is expected to be at
least partly attributed to the flexibility of the manipulator. The
differences could also have followed from inaccuracies in the
DH parameters (namely, the angles) or in the calibration step.
Finally, this work considered only a laboratory setting. In

addition, a specifically designed test wall with a relatively
textured surface was used. As visual SLAM is completely
dependent on what the camera has in its view, the perfor-
mance is strictly tied to the environment. Thus, real-world
measurements from actual mines are required for further
experimenting. In this work, we also used a stereo camera
to avoid scale ambiguity, which is a well-known issue with



Fig. 4. Results from the first experiment, in which motion was applied only
to the lift joint. The black lines denote the ground-truth values obtained with
encoders, while the red lines denote the calibrated SLAM estimates.

Fig. 5. Results from the second experiment, in which motion was applied
only to the base rotation.

TABLE II
ICP ROOT MEAN SQUARE ERROR IN EACH CASE.

Experiment 1 2 3 4

RMS error 0.0032 (m) 0.0081 (m) 0.0038 (m) 0.0190 (m)

monocular systems. However, stereo implies that the system
has a minimum viewing distance required for reliable trian-
gulation of the 3D point features, which is not optimal for
confined spaces. A possible solution would be to switch to
monocular SLAM when the minimum distance is crossed,
while the scale is obtained using stereo data or another sensor.

Fig. 6. Results from the third experiment, in which motion was applied mainly
to the second wrist joint.

Fig. 7. In the fourth experiment, a longer TCP trajectory was experimented
with. The first rectangular part of the path in the XZ plane was completed
three times, after which the TCP was driven closer to the wall along the Y-
axis. Then, the second rectangular part of the path in the XZ plane was also
completed three times. Finally, the TCP was driven to the initial pose along the
Y-axis. The black point cloud illustrates the ground-truth poses obtained with
encoders, while the red point cloud illustrates the calibrated SLAM poses.

TABLE III
MEAN ABSOLUTE ERRORS IN EACH MEASUREMENT.

Fig. 4 Fig. 5 Fig. 6 Fig. 8

x (m) 0.0032 0.0033 0.0082 0.0338

y (m) 0.0003 0.0073 0.0027 0.0056

z (m) 0.0089 0.0038 0.0032 0.0133

γx (deg) 0.2746 0.3352 0.4306 0.8988

γy (deg) 0.1565 1.8851 0.4040 0.7108

γz (deg) 0.1312 0.3589 1.0950 0.4824

V. CONCLUSION

In this work, we studied the application and feasibility
of SLAM for estimating the TCP pose of a large-scale
manipulator in a confined, unknown environment. The SLAM



Fig. 8. Results from the fourth experiment.

TABLE IV
MAXIMUM ABSOLUTE ERRORS IN EACH MEASUREMENT.

Fig. 4 Fig. 5 Fig. 6 Fig. 8

x (m) 0.077 0.0098 0.0203 0.1317

y (m) 0.0015 0.0246 0.0097 0.0229

z (m) 0.0239 0.0116 0.0129 0.0492

γx (deg) 0.9166 0.8064 0.9014 2.6606

γy (deg) 0.3451 4.4364 0.8373 2.1485

γz (deg) 0.4268 0.9145 3.0922 1.4357

algorithm is a key part of the proposed application, in which
accuracy, robustness, and real-time performance are all highly
important. In the initial results presented in this paper, we were
mainly concerned about the potential accuracy. We found that
ORB-SLAM2 provided a relatively good performance in the
offline data analyses, in which we used an ICP algorithm to
extrinsically calibrate the camera. Based on previous research,
ORB-SLAM2 is also directly applicable in real time.
Regarding the calibration procedure, the results benefit from

running an automatic calibration algorithm by applying ICP
to the outputs of each individual experiment. This allowed the
effective fine-tuning of the extrinsic calibration parameters of
the camera for each test by comparison with the ground truth.
In the case of online tests and use of SLAM feedback for
control purposes without the ground truth, further investigation
of the system calibration is required for online estimation of
the extrinsic parameters.
Although the results were obtained specifically with ORB-

SLAM2, theoretically the SLAM algorithm itself should not
matter as long as the 6 DOF TCP pose can be reliably
estimated. To fully localize the TCP of a manipulator with
respect to the machine it is attached to, SLAM by itself is not
sufficient, as it estimates only the motion of the camera (or the
TCP) frame. In this work, the relationship between the frame
and the base frame of the manipulator was obtained from
ground-truth joint encoder measurements. For future studies,

the goal is to omit these sensors completely by developing an
alternative method for formulating this correspondence.
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J. Gonzalez-Jimenez, “Pl-slam: a stereo slam system through the com-
bination of points and line segments,” IEEE Transactions on Robotics,
2019.

[15] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[16] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.
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Redundancy-Based Visual Tool Center Point Pose Estimation for
Long-Reach Manipulators

Petri Mäkinen, Pauli Mustalahti, Sirpa Launis and Jouni Mattila

Abstract—In this paper, we study a visual sensing scheme
for 6 degree-of-freedom (DOF) tool center point (TCP) pose
estimation of large-scale, long-reach manipulators. A sensor
system is proposed, designed especially for mining manipu-
lators, comprising a stereo camera running a simultaneous
localization and mapping (SLAM) algorithm near the TCP
and multiple cameras that track a fiducial marker attached
near the stereo camera. In essence, the TCP pose is formulated
using two different routes in a co-operative (eye-in-hand/eye-to-
hand) manner using data fusion, with the goal of increasing the
system’s fault tolerance and robustness via sensor redundancy.
The system is studied in offline data analysis based on real-
world measurements recorded using a hydraulic 6 DOF robotic
manipulator with a 5 m reach. The SLAM pose trajectory
is obtained using the open source ORB-SLAM2 Stereo algo-
rithm, whereas marker-based tracking is realized with a high-
end motion capture system. For reference measurements, the
pose trajectory is also formulated using joint encoders and a
kinematic model of the manipulator. Results of the 6 DOF pose
estimation using the proposed sensor system are presented, with
future work and key challenges also highlighted.

I. INTRODUCTION

A. Motivation

Mobile working machines represent a significant field in
industry, and they come in many different configurations
and sizes with respect to their on-board manipulators. In
machines designed specifically for mining and construction,
the reach of these manipulators can range from approxi-
mately 10–15 m in 6 degrees-of-freedom (DOF) tunneling
machines to only 1–2 m in small surface drilling platforms.
The annual production volume for a specialized machine
type can be a few hundred units, while the volume for
some production variants can be as low as 1–10 units per
year. Therefore, these high-precision, low-volume robotic
manipulators call for innovative sensor system solutions that
reduce the manufacturing, assembly, and maintenance costs
of these machines. The current solution is to fit each joint
of a manipulator with a joint sensor, which also requires
additional protective housing, mechanical couplings, and ca-
bling that are suitable for the given machine type. Therefore,
many components are required to fit all the machine types
with mechanical precision sensing, which also results in an
overall high cost in the terms of the bill of materials (BOM).
The underlying goal of the present research is that all types
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of mining machines are equipped with a standardized sensor
system that is of low cost, easy to install, and scalable to
fulfill all requirements across the range of machine types.

Each manipulator should have a sensor system because the
6 DOF tool center point (TCP) pose of the manipulator must
be known. In mining machines, knowledge of the joint states
and the TCP pose is currently required to carry out automated
and semi-automated operations, as a high production rate is
very valuable. Due to this, tunneling jumbos, for example,
can have up to four drilling booms attached to the same
machine for parallel operations. Overall, the goal is to move
toward fully automated operations in these hazardous appli-
cations, as discussed in, for example, [1]. From a practical
point of view, the important factor is being able to accurately
measure and control the TCP pose that is expressed in
Cartesian work space with respect to a world frame. For this
purpose, methods other than the traditional kinematic chain
formulation with joint sensors could also be developed. Due
to the long reach and high payload-to-own-weight ratios of
these manipulators, the traditional method based on a serial
kinematic chain structure will always impose significant
errors at the end of the chain (the TCP) due to structural
flexibilities and calibration uncertainties. Thus, driving these
manipulators with external sensor systems, in GPS-denied
environments, is of great interest.

Compared to traditional industrial robots, large-scale,
long-reach manipulators are often under the radar in research.
Whereas an industrial (stationary) robot has a relatively
low payload-to-own-weight ratio and precision sensors at
each joint providing the manufacturer-quaranteed absolute
accuracy and repeatability for the TCP pose in Cartesian
space, large-scale manipulators have much higher payload-
to-own-weight ratios (e.g., one), with many applications
still operated manually, as no sensors are installed due to
the harsh working conditions and structural flexibilities that
distort the results if basic rigid-body kinematics are applied.
This situation is changing, however, as the automation level
of these manipulators is increasing, thus requiring sensors.
In forestry machines, for example, inertial sensors have
been recently introduced commercially to measure the joint
angles that are sensitive to gravity, making it possible for the
operator to control the TCP directly, instead of controlling
each individual joint of the manipulator. A method for
computing gravity-sensitive angles using inertial sensors was
introduced in [2].

In mining machines, sensors have long been present to
measure the joint states, as in this application the TCP pose is
required so that drilling plans can be effectively completed.



For example, an orientation error of 5◦ at the TCP, with
a drilling depth of 4 m, will result in a position error of
35 cm at the end of a drill hole. The accuracy of the drill
holes with respect to the drilling plan is crucial. In tunneling,
inaccurate drilling results in more drilled meters required,
along with more blastings required, which slows progress and
increases operation costs. Respectively, in long-hole drilling,
inaccurate drilling can lead to ore-loss or increased dilution
(waste rock) of the product. Overall, straight drill holes result
in a better total economy. As rough target values for accuracy
in these applications, the positioning error at the TCP should
be less than 1 cm and the orientation error less than 1◦,
respectively.

This paper is the new step after our previous research [3],
in which pure visual simultaneous localization and mapping
(SLAM)-based TCP pose estimation was studied. In this
paper, we extend toward a more complete sensor system
concept for the described application. Namely, marker-based
TCP pose tracking is combined with the SLAM module in an
attempt to obtain a more robust pose estimation. In essence,
this corresponds to the so-called eye-in-hand/eye-to-hand co-
operation, which is a method used for visual servoing, see
e.g. [4], [5]. In this work, the goal of the proposed solution
is to increase the system’s fault tolerance in the sense of
sensor redundancy, while having both measurements (marker
tracking and SLAM) available complement each other after
data fusion. For marker tracking, we used a commercial Opti-
Track motion capture system, which conveniently offered the
required functionality for measurements, such as calibration
and multi-camera tracking. Although such a high-end system
in commercial mining machines is unrealistic, lower-end
cameras are becoming more affordable and advanced, not
only the hardware but also software. Consequently, multi-
camera solutions with redundancy are becoming more viable
in cost-sensitive industry applications, and this paper is a step
toward this path. For SLAM, we used a Stereolabs ZED
camera along with the open source ORB-SLAM21 Stereo
algorithm [6]. A test case using a laboratory-installed 6
DOF hydraulic crane was designed for a simple practical
experiment to study the feasibility and challenges in realizing
the conceptual sensor system at full scale. The results of
the offline data analysis show that the main challenges lie
in the system’s calibration (for precise measurements) and
in control design. Further practical issues, such as model
development for kinematic calibration of flexible robots, are
beyond the scope of this study.

B. Brief Literature Review

Due to the harsh and highly varying environmental con-
ditions that large-scale mobile manipulators are exposed to,
a wide variety of sensor technologies have been explored.
For example, in [7] battery-powered wireless sensors were
applied for local positioning of a loader crane. Inertial
sensors were used to measure joint angles, and an ultrasound
time-of-flight sensor was used to measure the length of

1https://github.com/raulmur/ORB SLAM2

a telescopic extension boom. In [8], a laser scanner was
used with a customized iterative closest point algorithm to
estimate the joint angles.

A marker-based pose estimation method for articulated
excavators was presented in [9]. In this case, the camera
was installed in the surrounding environment, and several
challenges were brought up, such as occlusion and lighting.
Thus, a marker-based system is foreseen to work best as
an auxiliary sensing method. A marker-less method for
the same problem was later presented in [10], in which
a deep convolutional network human pose algorithm was
used. These studies have in common that they focused on
articulated manipulators that have joints only in the vertical
plane. Mining manipulators, however, typically also have at
least two joints in the horizontal plane, which complicates
the pose estimation problem significantly.

The rest of the paper is organized as follows: Section
II describes the proposed sensor system, whereas Section
III details the experimental setup for measurements. It is
followed by Section IV, which contains data analysis and
results. Finally, Section V concludes the paper.

II. CONCEPTUAL SENSOR SYSTEM FOR MINING
MANIPULATORS

Inertial sensors cannot be effectively utilized in mining
manipulators due to the presence of several horizontal joints
that are insensitive to gravity. As for visual sensing, such
systems are already utilized for collision avoidance [11].
The sensors are installed near the roof of the cabin of a
machine. Moreover, unlike with articulated cranes found
in, for example, excavators, in mining manipulators the
base of the manipulator is typically lower with respect to
the cabin, as shown in Fig. 1, giving natural elevation to
visual sensors installed near the roof. This results in fewer
occlusions that would result due to a part of the manipulator
blocking the TCP. However, as discussed in [9], pure marker-
based systems can be problematic to realize due to several
reasons, which suggests that additional sensors are required
for increasing accuracy and robustness.

In the previous study [3] we used SLAM to estimate the
TCP pose with good initial results. The idea was that the
surrounding mine walls provide enough features, and that
the operations conducted by these mining and construction
machines are controlled enough for SLAM to be viable. It is
also perceived that due to the length of these manipulators
(> 10 m), a sensor located near the TCP is required to
obtain precise measurements, which is supported by the
results of this paper. Thus, a sensor system resembling the
eye-in-hand/eye-to-hand co-operative scheme is studied in
this work. The SLAM module, located near the TCP of a
manipulator, can provide more precision in pose estimation.
The marker-based tracking module will be less accurate
due to the increased viewing distances, and thus, increased
uncertainties, but it will have a better view of the entire scene,
which could also be used for calibration and other assistive
operations, for example.



Fig. 1. A Sandvik tunneling jumbo with two drilling booms.
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Fig. 2. The experimental measurement setup. The goal was to track the TCP
pose of the manipulator by using i) SLAM (ZED stereo camera), in which
the tracked features were obtained from the test wall, and ii) marker-based
tracking, for which a high-end OptiTrack motion capture system was used.
For reference measurements, an analytical TCP of the manipulator was also
formulated based on forward kinematics and joint encoder measurements.
The world coordinate system is also shown.

III. EXPERIMENTAL SETUP

To study an application with the proposed sensor system
architecture and obtain initial results, a simple use case test
bed was designed. The system comprised the following main
components:

 A laboratory-installed hydraulic crane with accurate ref-
erence sensors and a dSPACE real-time control system.

 A Stereolabs ZED camera for SLAM, along with a
textured test wall for feature extraction.

 An OptiTrack motion capture system for marker-based
tracking.

The components are detailed further in the next subsections.

A. HIAB033 Hydraulic Crane with Additional 3 DOF Wrist

The target system was a hydraulic lorry crane, HIAB 033,
which was located at the heavy laboratory of the Innovative
Hydraulics and Automation research unit at Tampere Univer-
sity. The setup is presented in Fig. 2. The manipulator itself
had 3 active DOF (rotation, lifting, and tilting). A spherical
wrist was also attached at the tip of the structure, adding
another 3 DOF to the system. Each of the six active joints
was instrumented with an incremental encoder to obtain
precision measurements of the joint states.

B. SLAM Module

To estimate the TCP pose with SLAM, a Stereolabs
ZED camera was installed near the tip of the manipulator.
Grayscale images were captured at 24 ms intervals with
a resolution of 672 × 376 per lens and saved for offline
data analysis. As for the SLAM method, we utilized the
open source ORB-SLAM2 Stereo algorithm. For the textured
environment, from which the feature points for SLAM were
to be obtained, a 2.5× 4 m test wall was constructed using
decorative stones. The underlying goal was to simulate a
rock wall, as the target application of this research was
underground mining and construction.

C. Marker-Based Tracking Module

As this study was mainly concerned about a conceptual
sensor system, we used the most powerful systems available
to us. In this case, we used a commercial-off-the-shelf motion
capture system to realize high-performance marker tracking.
Three OptiTrack Prime 17W cameras were placed around the
base pillar of the manipulator: The idea is that the cameras
used for marker-based tracking are installed on top of the
cabin of a machine. An infrared-reflective (passive) marker
was then placed near the tip of the manipulator (next to
the ZED camera). Using OptiTrack’s Motive motion capture
software, the marker’s pose was tracked with reference to an
OptiTrack L-frame, which was placed next to the test wall
and in view of the cameras. With three cameras, the system
was able to effectively track the marker, although the boom
temporarily occluded the view of the third camera during the
measurements.

D. Data Flow

A general depiction of the data flow during the measure-
ments is presented in Fig. 3. The real-time control system
of the manipulator was a dSPACE DS1005 PPC controller
board, which used a 2 ms sampling period and recorded the
encoder and motion capture measurements. The OptiTrack
cameras were read using a dedicated laptop running Motive
software, from which the measured poses were transmitted
at a high frequency to the dSPACE development PC by using
Matlab and UDP. The ZED stereo image capture was also
realized with a dedicated laptop, which was synchronized
with the dSPACE development PC by sending a UDP trigger
signal from dSPACE to the dedicated laptop at a time interval
of 12× 2 ms. The synchronized image sequences were then
recorded on the dedicated laptop by using Matlab and the
ZED SDK.

E. Ground-Truth TCP Pose

To have a reference pose for the camera measurements,
a kinematic model of the manipulator was formulated. This
was then used with the encoder measurements to produce
the TCP pose based on the model.

Remark 1: Compared to our previous study [3], the
Denavit-Hartenberg (DH) parameters of the manipulator
were kinematically calibrated using a Sokkia NET05 total
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TABLE I
DH PARAMETERS OF THE MANIPULATOR. THE SYSTEM COMPRISED

AN ANTHROPOMORPHIC ARM IN COMBINATION WITH A SPHERICAL

WRIST.

Joint αi ai θi di

Rotation π/2 a1 θ1 d1

Lift 0 a2 θ2 0

Tilt π/2 a1 θ3 + π/2 d3

Wrist 1 π/2 0 θ4 d4

Wrist 2 −π/2 0 θ5 0

Wrist 3 0 0 θ6 d6

station. The resulting Cartesian average error in the calibra-
tion was reportedly less than 4 cm.
The symbolic DH parameters are presented in Table I. The
forward kinematic relationship between the base and the
analytical TCP of the manipulator (see Fig. 2) was then
formulated as follows:

BTtcp = TrTlTtTw1
Tw2

Tw3
(1)

where the transformation matrix from the base to the TCP
is denoted by BTtcp. Joint transformation matrices Ti, i ∈
{r, l,  , w1, w2, w3} are obtained using the following equation
by substituting the respective DH parameters for each joint:

Ti =




cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


 (2)

where s = sin and c = cos. Then, the TCP pose of the
manipulator is obtained from BTtcp.

F. Data Fusion of the TCP Pose Estimates

The logic for obtaining the TCP pose estimates based on
the available signals was designed as shown in Fig. 4. In
the scope of this work, it is assumed that each sensor is
either fully operational or not operational (binary), as self-
diagnostic systems would be required for more advanced
signal analysis. In the event that both TCP pose estimates
are available, a data fusion method, confidence-weighted
averaging [12], is adopted. This simple, model-free method
fuses measurements based on the estimated variance of the
measurement error. The advantage is that, assuming that
the errors between the sensors are independent and that the

Start

SLAM available

TCP pose estimation
(SLAM only)

TCP pose estimation
(MOCAP only)

Stop

NoYes
Marker tracking
also available

No
Yes

TCP pose estimation with
CWA (SLAM + MOCAP)

Marker tracking
available

Yes

No

Fig. 4. A chart illustrating the logic behind utilizing the two TCP pose
estimates. In the ideal case that SLAM and marker tracking (mocap) are
available, confidence-weighted averaging (CWA) is used for data fusion.

expected error equals zero, the variance of the fused output
is minimized. The fused 6 DOF TCP pose vector Xfused is
obtained as follows:

Xfused =
N∑

i=1

WiXi (3)

where N denotes the total number of observations (in this
case, SLAM and marker-based tracking), Wi is the weight
vector of the ith observation, and Xi is the 6 DOF TCP
pose vector of the ith observation. The weights are computed
based on the signal variances as follows:

Wi =
1

σ2
i

N∑

j=1

1

σ2
j

(4)

where σ2
i,j denotes the variance of a given signal.

Furthermore, if no TCP pose estimate is available, then
the manipulator is halted. Matlab Simulink’s Stateflow envi-
ronment was utilized in the experiments.

IV. DATA ANALYSIS

A. Calibration of the TCP Frame Correspondences

To obtain comparable results, calibration between the three
TCP frames (coordinate systems) is required. The SLAM
frame and the marker frame are to be transformed into the
analytical TCP frame, which served as the reference. For this
purpose, the iterative closest point (ICP) method [13] was
employed, which is suitable for offline experiments because
the entire pose trajectories from different sources can be
matched.

B. Signal Conditioning

The measured TCP orientations using marker-based track-
ing were conditioned with a geometric moving average
(GMA) filter [14] due to noisy data. The equation is given
as follows:

Sj = (1− α)Sj−1 + αsj , j > 0 (5)

where Sj denotes the geometric moving average (conditioned
signal) at time j, sj denotes the unconditioned signal at time
j, and 0 < α ≤ 1 denotes the weight coefficient. Note that
S0 is set to the initial value of a given signal. Furthermore,
α = 0.02 was used.



C. Comparison of Pose Trajectories

First, a test trajectory was designed for the manipulator
by using quintic path planning [15]. A rectangular-shaped
trajectory was completed three times, after which the TCP
was moved closer to the test wall. Then, the rectangle was
completed three times again. Finally, the TCP was moved
back to the initial position. The trajectories are shown in
Fig. 5, which illustrates the three TCP pose trajectories in
Cartesian space after point cloud matching using the ICP.
The black point cloud represents the analytical reference
trajectory, the red point cloud represents the SLAM output
poses, and the blue point cloud is associated with the
trajectory of the tracked marker. The respective root mean
square errors resulting from the ICP matching algorithm are
presented in Table II.

The 6 DOF TCP pose estimates are presented based on
the chart in Fig. 4. First, only the SLAM pose estimates
were used, with the resulting 6 DOF poses shown in Fig. 6.
Respectively, the 6 DOF poses from marker-based tracking
are shown in Fig. 7. The CWA-fused 6 DOF pose estimates
are shown in Fig. 8. The visual measurements in each case
were compared with the reference encoder data, with the
mean and maximum absolute errors documented in Table
IV and Table V. Red lines are associated with the SLAM
poses, blue lines denote the marker-based tracking, and
black lines represent the encoder computed data. As shown
by the measured results, the Cartesian position variables
track relatively well over the entire test trajectory, with the
mean errors ranging from less than a millimeter to a few
centimeters. The orientation variables, however, show less
consistent behavior as the amplitudes seize to match well
after the TCP is driven closer to the wall. It is suspected this
followed from calibration errors, as the uncertainties present
in the reference encoder setup and the calibration were
quite significant. Furthermore, the visual sensors provided
similar behavior, with especially the OptiTrack system being
perceived as capable of highly accurate measurements. This
emphasizes the challenge of obtaining an accurate 6 DOF
pose reference in large-scale, long-reach manipulators.

The two ICP calibrated optical measurements were also
compared with each other, see, Fig. 9. Here, the uncondi-
tioned marker orientations are also shown with light-blue
lines. The results demonstrate a strong correspondence be-
tween the SLAM poses and the marker poses. The mean and
maximum absolute errors between the optical measurements
were also documented in Tables IV-V.

It is evident that the visual estimates of the TCP pose
differ from the analytical TCP based on the kinematic
model, which suggests that transitioning from the optical
measurements to the joint space of the manipulator will
be challenging. Thus, alternative, external methods of con-
trolling these manipulators, instead of using the numerical
serial kinematic chain structure, should be explored. For the
offline data analysis, the weights of the data fusion were
obtained using the variances computed over the entire test
trajectory by using the encoder reference measurements as

Fig. 5. The pose trajectories after ICP registration and calibration. A
rectangular trajectory was first completed three times, after which the TCP
moved closer to the test wall and completed another three laps on a
rectangular trajectory. Finally, the TCP was moved back into the initial
position. The black point cloud represents the analytical TCP, the red point
cloud represents the SLAM TCP, and the blue point cloud represents the
tracked marker TCP.

TABLE II
ROOT MEAN SQUARE ERRORS RESULTING FROM THE ICP

ALGORITHM.

Coord. transf. SLAM→Analytical TCP Marker→Analytical TCP

RMS error 0.0371 [m] 0.0253 [m]

TABLE III
WEIGHTS USED IN THE CWA DATA FUSION.

Wi x y z γx γy γz

SLAM 0.2828 0.4728 0.1311 0.4767 0.6613 0.4948

Mocap 0.7172 0.5272 0.8689 0.5233 0.3387 0.5052

the ground-truth values. The weights used are presented
in Table III. As it shows, the marker-based tracking was
emphasized in fusing the positions which, in this case, was
logical due to the reduced ICP calibration error. The orienta-
tions were weighted quite evenly. However, the orientations
from the marker-based tracking module were GMA-filtered
before weights were computed. Consequently, the resulting
data fusion is, in this case, optimal in the sense that the
fused variance was minimized. However, for future online
experiments, a method for determining the weights in real-
time is required.

V. DISCUSSION AND CONCLUSION

This work presented a new sensor system concept de-
signed especially for large-scale, long-reach mining and
construction manipulators used underground, in which an
eye-in-hand/eye-to-hand co-operative scheme is utilized by



Fig. 6. The estimated 6 DOF TCP pose variables, when only SLAM
is available. The black lines denote the reference values using encoder
measurements, and the red lines denote the SLAM pose variables.

Fig. 7. The estimated 6 DOF TCP pose variables, when only marker-
based tracking is available. The black lines denote the reference values
using encoder measurements, and the blue lines denote the values from
marker tracking, with GMA-filtered orientations.

combining marker-based tracking with SLAM pose estima-
tion. The test case using a 6 DOF hydraulic manipulator, with
a reach of approximately 5 m, assumed equal availability
(same frequency) of the SLAM and marker poses. However,
it was shown that the SLAM camera, located near the TCP,
provided higher quality orientation measurements in relation
to the marker-based orientation measurements. In reality, it
is foreseen that the SLAM module is required to do the
majority of the work in the TCP pose estimation, as the
distances between the TCP and the base of the manipulator

Fig. 8. The estimated 6 DOF TCP pose variables, with signals from SLAM
and marker tracking fused with CWA. The black lines denote the reference
values using encoder measurements, and the magenta lines denote the pose
variables after data fusion.

Fig. 9. Comparison of the optically measured 6 DOF TCP poses (with
ICP calibration). The red lines are associated with SLAM, the blue lines
represent the marker-based tracking, and the light blue orientations denote
the unconditioned signals.

are quite large in actual mining manipulators, which will
degrade the accuracy of any marker-based tracking system. In
addition, occlusions will be a challenge in mining manipula-
tors that can rotate approximately 360◦. Thus, marker-based
tracking is likely to be more useful as a secondary sensor
module, which can be realized, for example, with the CWA
data fusion method by tuning the weights appropriately. The
utilization of marker-based tracking for calibration, and for
example, condition monitoring, should be explored in the



TABLE IV
MEAN ABSOLUTE ERRORS IN EACH CASE.

Fig. 6 Fig. 7 Fig. 8 Fig. 9

x [m] 0.0415 0.0262 0.0292 0.0216

y [m] 0.0052 0.0046 0.0044 0.0046

z [m] 0.0210 0.0081 0.0095 0.0142

γx [deg] 1.1221 1.0961 1.0924 0.2775

γy [deg] 0.6462 0.6429 0.6079 0.6423

γz [deg] 1.8541 1.8277 1.8171 0.6104

TABLE V
MAXIMUM ABSOLUTE ERRORS IN EACH CASE.

Fig. 6 Fig. 7 Fig. 8 Fig. 9

x [m] 0.1195 0.0615 0.0619 0.1457

y [m] 0.0288 0.0163 0.0214 0.0174

z [m] 0.0894 0.0318 0.0347 0.0815

γx [deg] 3.4733 3.5547 3.4241 3.1852

γy [deg] 1.8698 2.1864 1.3959 1.9344

γz [deg] 5.3777 7.1867 6.0092 2.7358

future.
Although the two visual sensor modules produced seem-

ingly high performance, the challenge lies in the numerous
uncertainties present in the system. These follow especially
from the calibration that, even in the case of offline data
analysis, resulted in relatively considerable errors. Further-
more, a new calibration method is required for future online
experiments. It is also perceived that the encoder setup used
for reference measurements may provide the least accurate
TCP pose measurement. Being able to match the visual pose
measurements to the analytical TCP pose is desirable in the
sense that to control the manipulator, knowledge of the joint
states is usually required, which could be achieved by using
an inverse kinematic model. In addition, although the applied
kinematic model is based on the rigidity assumption, these
types of long-reach manipulators are very flexible due to their
length and high payload-to-own-weight ratio. This flexibility
and the following non-rigid kinematics are also a central
research problem related to the TCP pose estimation in long-
reach manipulators, and solving this with external sensors is
a long-term goal of this research. Thus, alternative control
methods that are not directly based on the joint states should
be pursued.
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[11] T. Kivelä, J. Mattila, J. Puura, and S. Launis, “Redundant robotic
manipulator path planning for real-time obstacle and self-collision
avoidance,” in Int. Conf. Robotics in Alpe-Adria Danube Region.
Springer, 2017, pp. 208–216.

[12] W. Elmenreich, “Fusion of continuous-valued sensor measurements
using confidence-weighted averaging,” J. Vib. Control, vol. 13, no.
9-10, pp. 1303–1312, 2007.

[13] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in
Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–607.

[14] S. W. Roberts, “Control chart tests based on geometric moving
averages,” Technometrics, vol. 42, no. 1, pp. 97–101, 2000.

[15] R. N. Jazar, Theory of Applied Robotics - Kinematics, Dynamics, and
Control. Dordrecht, the Netherlands: Springer, 2010.



90



PUBLICATION

III

Probabilistic camera-to-kinematic model calibration for long-reach robotic
manipulators in unknown environments

P. Mäkinen, P. Mustalahti, S. Launis, and J. Mattila

In 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), 2022,
pp. 48–55

DOI: 10.1109/AMC51637.2022.9729259

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/AMC51637.2022.9729259




Probabilistic Camera-to-Kinematic Model
Calibration for Long-Reach Robotic Manipulators

in Unknown Environments
1st Petri Mäkinen
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Abstract—In this paper, we present a methodology for extrinsic
calibration of a camera attached to a long-reach manipulator in
an unknown environment. The methodology comprises coarse
frame alignment and fine matching based on probabilistic point
set registration. The coarse frame alignment is based on the
known initial pose and assists in the fine matching step, which
is based on robust generalized point set registration that utilizes
position and orientation data. Comparison with other methods
utilizing only position data is provided. The first 6 DOF point
set is obtained using a SLAM algorithm running on a camera
attached near the tip of a manipulator, whereas the second point
set is obtained using a kinematic model and joint encoders.
Real-time experiments and a use case are presented. The results
demonstrate that the proposed methodology is suited for the ap-
plication, and that it can be useful in operations requiring precise
visual measurements obtained near the tip of the manipulator.

Index Terms—robot vision systems, simultaneous localization
and mapping, iterative methods

I. INTRODUCTION

Visual sensors, such as different types of cameras and laser
scanners, have seen some significant technological advances
in hardware and software in the past decades. These types
of sensors are able to provide large amounts of information
related to the surroundings, which, due to more affordable and
increasing processing power, have been widely adopted in nu-
merous applications, especially in the manufacturing industry
in controlled factory environments. However, visual sensors
are challenging to utilize in harsh working environments, as
the sensors often lack the robustness and reliability required
in, for example, mobile work machines that do not operate
in strictly controlled environments. Despite this problem, the
current direction in the heavy-duty mobile machine industry
is toward autonomous systems, where an affordable percep-
tion system is essential. This calls for new technologies for

perception systems that perform in a robust manner under
uncertainties arising from inconsistent working environments
and the characteristics of robotic manipulators used in mobile
machinery, such as structural flexibility and actuator backlash.
The extrinsic camera calibration problem arises when in-

formation measured in a camera’s coordinate system needs
to be expressed with respect to another sensor’s coordinate
system. For example, mounting a visual sensor on a robotic
manipulator and using the sensor data for control purposes
requires determining the sensor’s position and orientation
in relation to the manipulator’s coordinate system, typically
defined by its set kinematic model and joint encoders. This
is known as the eye-in-hand calibration problem. Finding
this extrinsic calibration has been examined in, for example,
[1] and [2], where three separate methods were presented.
However, each method relied on a visible reference object
or point, which is problematic to realize outside controlled
environments, such as factories employing stationary industrial
robots. Few studies exist for large-scale manipulators working
in unstructured or unknown environments, where predefined
objects for extrinsic calibration are not practical or available.
Point sets, or point clouds, are a common method of

processing and visualizing 3D vision data. These point sets
can be used for several applications, such as map build-
ing, searching for and tracking known objects, or extrinsic
camera calibration by utilizing point sets obtained from two
sources. In point set registration, the goal is to find the
correspondence between a measured point set and a reference
point set. The correspondence between the two point sets
is described by a transformation comprising rotation and
translation components. Many methods exist for point set
registration; the most well-known is the iterative closest point
(ICP) algorithm [3] and its numerous variants. In [4], an ICP-



based method for extrinsic calibration of an eye-in-hand 2D
LiDAR sensor in unstructured environments was presented. A
small-scale industrial robot was used in the experiments. Other
types of more sophisticated algorithms utilizing 3 degrees of
freedom (DOF) position data have also been proposed, such
as coherent point drift (CPD) [5] that adopts a probabilistic
approach using a Gaussian mixture model (GMM). However,
in robotic applications, pose data (3 DOF position and 3
DOF orientation) are readily available. Until recently, point
set registration methods utilized only 3 DOF position data,
which may not be optimal for robotic applications, as half of
the available data is not utilized in the registration process.
However, a robust generalized point set registration method
was proposed in [6], which builds on the CPD algorithm
by incorporating orientation data via the von Mises-Fisher
mixture model (FMM) [7]. The resulting hybrid mixture model
(HMM) comprises a GMM for position data and an FMM
for orientation data, which is perceived as useful in robotic
applications especially due to the availability of 6 DOF pose
data.

This paper is a continuation of our previous research
[8], [9], in which new visual sensor system solutions were
investigated for long-reach robotic manipulators in unknown
environments, especially underground. In this paper, we focus
on the development of a robust, generalized methodology for
on-site extrinsic camera-to-kinematic model calibration in such
applications. Specifically, 1) an outline for optimal extrinsic
camera calibration for long-reach robotic manipulators in
unknown environments is presented, with 2) comparison to
other similar methods, and 3) real-time experiments with a
visual servo use case is discussed.

A two-step methodology is proposed, in which the first step
is coarse alignment of the camera frame (or coordinate system)
by utilizing a kinematic model of the manipulator and the
known initial pose. The second step is fine matching of pose
data sequences using robust generalized point set registration
[6], a method that benefits not only from position data but also
from orientation data and is robust against noise and outliers
that can be an encumbrance in visual measurements. For com-
parison, the fine matching step is also realized with the CPD
algorithm [5] and a least-squares-based estimation method [10]
that only utilize 3 DOF position data. It is assumed that the
intrinsic parameters of the camera are pre-calibrated. Real-
time experiments are presented using a laboratory-installed
hydraulic crane with 5 m reach. For fine matching, the pose
trajectory data are obtained using a camera located near the
tip of the manipulator, with a simultaneous localization and
mapping (SLAM) algorithm providing the pose estimates. A
kinematic model with joint encoders is used to obtain the
second set of pose trajectory data. After computing the optimal
extrinsic calibration matrix, we apply it to a use case of driving
the manipulator to a specific feature detected with the camera.
This type of operation is very common in mining and is
relatable to bolting, for example, in which supportive rods are
inserted into drill holes. In this paper, only a planar case was
examined, and ArUco markers [11] were used as the specific

features to detect.
The paper is organized as follows: In Section II, we describe

the methodology of 6 DOF pose trajectory registration; in
Section III, we present the experimental setup, which was
used in the real-time experiments; in Section IV, we present
the measurements and results; and finally, in Section V, we
conclude the paper.

II. METHODOLOGY

A. Coarse Frame Alignment

A coarse frame alignment between the camera frame and
the encoder-based tool center point (TCP) frame is required for
initialization. This alignment reduces the number of iterations
in the fine matching step, while also reducing the possibility
of the registration algorithm converging to local minima that
do not produce correct matching results.
The coarse frame alignment is performed based on the

known initial pose of the encoder-based TCP and applying
a rigid transformation to the camera frame to roughly align
the axes with the encoder-based frame axes. This step must
be carefully performed to avoid issues when employing Euler
angles.

B. Robust Generalized Point Set Registration

The fine matching of the 6 DOF point sets is based on
a probabilistic hybrid mixture model (HMM) [6], [12] that
utilizes position and orientation data. Specifically, a GMM is
used to model positional uncertainties, whereas an FMM is
used to model the orientation uncertainties. The optimal (rigid)
transformation between two point sets is solved iteratively
using the expectation-maximization (EM) algorithm [13]. The
notations used in the HMM formulation are as follows:

 M – Number of points in the encoder-based point set,
 N – Number of points in the SLAM-based point set,
 Y = [y1, ...,yM ] ∈ R3×M – encoder-based TCP position

vector set,
 Ŷ = [ŷ1, ..., ŷM ] ∈ R3×M – encoder-based TCP orien-

tation unit vector set,
 X = [x1, ...,xN ] ∈ R3×N – SLAM-based position vector

set,
 X̂ = [x̂1, ..., x̂N ] ∈ R3×N – SLAM-based orientation

unit vector set.

The encoder-based points in Y are considered the GMM
centroids, and the respective unit orientation vectors in Ŷ are
considered the mean directions of the FMM. The SLAM-based
points in X are generated by the GMM, and the respective
orientation unit vectors in X̂ are generated by the FMM. The
goal is to find the optimal rigid transformation (rotation and
translation) between the two pose trajectory data sequences
(X, X̂) and (Y, Ŷ). The probability density function of the
HMM is expressed as follows:

p(xn, x̂n) =
M+1∑

m=1

P (m)p(xn, x̂n|m), (1)



where
p(xn, x̂n|m) =

κ

(2πσ2)
3
2 2π(eκ − e−κ)

eκ(Rŷm)Tx̂n− 1
2σ2 ||xn−(Rym+t)||2 . (2)

The variance parameter of the GMM is denoted by σ2 ∈ R,
the concentration parameter of the FMM is denoted by κ,
(xn, x̂n), (ym, ŷm) denote arbitrary data points in the point
sets, and R ∈ SO(3) and t ∈ R3 denote the rotation and
translation transformations applied to (Y, Ŷ), respectively.
The assumption is made that the position and orientation data
are independent.

To account for noise and outliers in the SLAM-based pose
data, an additional uniform distribution is added to the model:

p(xn, x̂n|M + 1) =
1

N
(3)

with equal membership probabilities P (m) = 1
M assumed for

the GMM components. The complete HMM is now as follows:

p(xn, x̂n) = w
1

N
+ (1 − w)

M∑

m=1

1

M
p(xn, x̂n|m), (4)

where w ∈ [0, 1] denotes the weight of the uniform distribu-
tion. To find the optimal set of parameter estimates R, t, κ,
and σ2, the following negative log-likelihood function is to be
minimized:

E(R, t, κ, σ2) = −
N∑

n=1

log

M+1∑

m=1

P (m)p(xn, x̂n|m). (5)

The EM algorithm is used to obtain the parameter estimates in
an iterative manner. New parameters are found by minimizing
the complete negative log-likelihood function:

Q =

−
N∑

n=1

M+1∑

m=1

P old(m|xn, x̂n) log(P
new(m)pnew(xn, x̂n|m)).

(6)

Then, the encoder-based TCP data (Y, Ŷ) are transformed by
applying R and t. Ignoring constants independent of R, t, κ,
and σ2, (6) is reformulated as follows:

Q(R, t, κ, σ2) =
N∑

n=1

M∑

m=1

pmn

(
1

2σ2
||xn − (Rym + t)||2 − κ((Rŷm)Tx̂n)

)

+
3

2
NP log σ2 + NP log(eκ − e−κ)− NP log κ,

(7)

where pmn = P old(m|xn, x̂n), NP =
∑N

n=1

∑M
m=1 pmn. The

Bayes theorem is used to compute the posterior probabilities
pmn as follows:

P old(m|xn, x̂n) =
P (m)p(xn, x̂n|m)

p(xn, x̂n)
. (8)

According to the EM algorithm, the parameters R, t, κ and
σ2 are updated in an iterative manner until convergence.

The optimal translation t∗ is obtained by minimizing (7)
with respect to t, whereas the optimal rotation matrix R∗ is
obtained by minimizing (7) with respect to R, respectively.
The resulting solutions are as follows:

R∗ = V diag([1, 1, det(V T)])  T (9)
t∗ = µx −R∗µy, (10)

where the mean positional vectors for each point set are
defined as follows:

µx =
1

NP
XPT1, µy =

1

NP
YP1, (11)

P ∈ RM×N has elements pmn in (8), and 1 is a vector of ones.
The singular value decomposition (SVD) of H =  SVT is
used to obtain V and  , where H = H1 +H2, H ∈ R3×3

and
H1 = Y′PX′, H2 = ŶPX̂T. (12)

The matrices Y′ and X′ contain de-meaned positional data
y′m = ym − µy and x′n = xn − µx.
The variance parameter of the GMM is updated by mini-

mizing (7) with respect to σ2:

σ2 =

∑N
n=1

∑M
m=1 pmn(||xn − (Rym + t)||2)

3NP
. (13)

The concentration parameter (κ) of the FMM is updated using
two parts [7]. The first part r1 results from orientation error
and is computed as follows:

r1 =
1

Np

N∑

n=1

M∑

m=1

pmn(Rŷm)Tx̂n. (14)

The second part r2 is caused by positional error and is
computed as follows:

r2 =

∑N
n=1

∑M
m=1 pmnx

′
n
T
Ry′m∑N

n=1

∑M
m=1 pmn||Ry′m|| ||x′n||

. (15)

Then, κ is updated with κ = r(3 − r2)/(1 − r2), where r =
vr1 + (1 − v)r2, in which v = 0.5.
After successful convergence, the optimal calibration matrix

for fine matching is written as follows:

Tfm =

[
R∗ t∗

0 0 0 1

]
. (16)

During iteration, the algorithm was stopped if one of the
following conditions was met: σ2 < 10−6, |σ2

i+1−σ2
i | < 10−6,

or 100 iterations were reached. The maximum concentration
parameter was also set as κmax = 100 to avoid computational
issues.
The initial iteration parameters were set as follows: R =

I ∈ R3×3, t = 0, σ2
0 =

∑N
n+1

∑M
m+1||xn − ym||2/(3MN),

and κ = 1.
Finally, the extrinsic camera-to-kinematic model calibration

matrix is formulated as follows:

T = T−1
fmTcfaTslam, (17)
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Fig. 1. The experimental setup showing the manipulator, the ZED attached
to the claw, a test wall, and 12 ArUco markers placed in the workspace. The
base frame of the manipulator is also (roughly) shown.

where Tcfa ∈ R4×4 denotes the coarse frame alignment
homogeneous transformation matrix, and Tslam ∈ R4×4

denotes a single SLAM pose expressed with a homogeneous
transformation matrix.

C. Orientation Magnitude Correction

As the FMM employs orientation unit vectors, the computed
transformation matrix (16) cannot directly produce trans-
formed orientations with true magnitudes. This is resolved by
using the encoder measured magnitudes as references. The
mathematical expression is as follows:

θslamcorr =

{
θslam − |θslamf − θencf |, if θslamf > θencf

θslam + |θslamf − θencf |, else
,

(18)
where θ represents a current Euler angle, and θf denotes the
final value of the respective variable in a calibration data
sequence.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The main
components and systems as follows:

 HIAB033 hydraulic crane with an additional 3 DOF
wrist, and each joint was equipped with an incremental
encoder,

 ZED stereo camera running a SLAM algorithm,
 A dSPACE real-time control platform,
 A test wall comprising decorative stones to simulate a

mine and provide visual features,
 Markers attached to the wall acting as specific features.

A dSPACE DS1005 PPC controller board served as the real-
time control system, and a 2 ms sampling period was used in
the experiments.

TABLE I
DH PARAMETERS OF HIAB033 WITH A 3 DOF WRIST

Joint αi ai θi di
Rotation π/2 a1 θ1 d1
Lift 0 a2 θ2 0
Tilt π/2 a3 θ3 + π/2 d3

Wrist 1 π/2 0 θ4 d4
Wrist 2 −π/2 0 θ5 0
Wrist 3 0 0 θ6 d6

A. HIAB033 Hydraulic Crane With 3 DOF Wrist

A forward kinematic representation of the manipulator is
formulated using the Denavit-Hartenberg (DH) parameters,
which are presented in Table I in symbolic form. The rigid
transform from the base frame to the TCP frame, Tenc, is
formulated as follows:

Tenc = Tj1Tj2Tj3Tj4Tj5Tj6, (19)

where joint specific transforms Tji, i ∈ {1, ..., 6} are com-
puted with

Ti =




cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


 (20)

while applying the respective DH parameters for each joint.
Additionally, s = sin and c = cos.

B. Visual Measurements

A Stereolabs ZED stereo camera was used in the experi-
ments. It was installed near the tip of the manipulator, and the
ROS node provided by the manufacturer was used to publish
720p images.
For SLAM, the open-source version of ORB-SLAM2 Stereo

[14] was utilized. The algorithm ran in real time and the pose
data were transmitted to the dSPACE controller board via UDP.
A 2.5×4 m textured wall served as the main feature extraction
area for the SLAM algorithm, because the main focus of this
research is underground applications.
For detecting specific markers on the wall, the OpenCV

ArUco detection library was used. Twelve ArUco markers
were placed around the workspace of the manipulator, as in
Fig. 1.

C. Robot Control

Quintic polynomial path planning [15] was used to generate
trajectories, and a P-controller with a first-order time delay
(PT1 control) was used on the actuator level. The controller’s
transfer function is described as follows:

G(s) =
KP

τs + 1
. (21)

The time delay term (τ ) enables larger proportional gain (KP )
values, which reduces static positioning errors when driving
to a specific point.
Furthermore, the manipulator was constrained so that only

the first three joints (rotation, lift, and tilt) were used for
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Fig. 2. A simplified diagram of the experimental setup: The camera algorithms
were processed on a dedicated Linux PC running ROS and the desired camera
measurements were sent to the dSPACE real-time control PC via UDP. The
camera-to-kinematic model calibration was processed outside the 2 ms control
loop. The resulting extrinsic calibration matrix, computed using the two point
sets, was then updated in the main control system.

motion, whereas the wrist joints moved only to keep the
orientation of the wrist constant.

A simplified diagram of the experimental setup is shown in
Fig. 2, in which the orange blocks are related to the overall
system, whereas the yellow blocks are related to the use case
regarding the ArUco markers.

IV. MEASUREMENTS AND RESULTS

First, a calibration measurement was conducted, in which
the manipulator was arbitrarily moved around the workspace to
obtain pose data sequences using SLAM and encoder measure-
ments. The recorded data were used to compute the optimal
calibration matrix by first applying coarse alignment transform
to the SLAM-based pose data by using (17). Then, the coarse
frame aligned pose data were used for fine matching, i.e.,
point set registration with the encoder-based pose data by
using the robust generalized point set registration algorithm
(4)–(16). The three point sets (encoder-based, SLAM-based
with coarse frame alignment, and SLAM-based after fine
matching) are shown in Fig. 3. The black points represent
the encoder-based TCP position data, whereas the red point
sets represent the SLAM-based position data before and after
fine matching. The individual pose variables are presented in
Fig. 4, where the black lines denote the encoder-based pose
variables, and the red lines represent the calibrated SLAM-
based pose variables. As illustrated, the algorithm was able to
accurately match the pose trajectories resulting from arbitrary
motions. Two additional separate calibrations were performed,
using the same coarse frame alignment transform, for which
the results are shown in Fig. 5 and Fig. 6. The number of
iterations required for the fine matching varied between 20
and 25.

After each calibration, the manipulator was driven to 12 dif-
ferent ArUco markers that were placed around the workspace.
Monocular detection was employed by using the left lens of
ZED, and the middle of the image was treated as the TCP
that was to be driven to a marker center. An example image
of the left camera view is shown in Fig. 7. The metric distance

between the camera center and a marker center was computed
based on the known marker size from the image. Then, the
point distance was calibrated with the camera-to-kinematic
model calibration. Only the rotation part of (16) was required
to transform the camera reference to the kinematic frame,
meaning this use case does not suffer from the larger position
errors in the calibration. The Euclidean distance errors for
each marker, for each of the three calibrations, are documented
in Table II. The errors were measured from the images. The
average positioning error in each measurement was less than
1.0 cm, which is acceptable for this type of application. Only
planar results are presented, as the ZED camera was not able
to provide reliable depth measurements.

To compare the HMM-based 6 DOF point set registration
method with methods utilizing only 3 DOF position data, of-
fline data analysis was conducted for the three measurements.
Namely, the very similar CPD algorithm [5] employing a
GMM and a simple pairwise least-squares-based estimation
algorithm [10] were chosen for comparison purposes. The
coarse frame alignment and the orientation magnitude cor-
rection steps were performed identically in each case, with
only the fine matching step changing. Furthermore, to test
the robustness of the three algorithms, Gaussian noise was
injected to the X-axis position with varying signal-to-noise
ratios (SNR). The SNRs tested were 10, 20, and 30 dB. The
effect of added noise to the signal is illustrated in Fig. 8.
The root mean square errors (RMSE) for 3 DOF position
and 3 DOF orientation in each measured case are presented
in Tables III-V. As shown, despite the arbitrary motions
in each measurement, the resulting errors are very similar.
The position errors are on the centimeter range, whereas the
orientation errors are less than 2◦. The errors follow from
kinematic inaccuracies, for example, due to flexibility, which
makes perfect pose trajectory matching practically impossible.
The bending of the manipulator is witnessed especially in
the X-axis orientations estimated with the SLAM algorithm.
Visual measurements are also susceptible to outliers and errors,
however, they performed well in the experiments.

As seen from Tables III-V, minimal differences can be
found between the fine matching algorithms. When Gaussian
noise is added to the X-axis position signal, however, the
utilization of orientation data in the HMM appears to slightly
improve the matching result compared to the CPD, which only
incorporates position data via a GMM. We also experimented
by adding similar noise to the other signals, including orienta-
tions, which showed uniform results with the presented case.
However, to obtain the best result, the weight of the uniform
distribution in (4) should be tuned. Same values were used for
both the HMM-based method and the CPD. In the cases where
noise was added, the least-squares-based algorithm provided
the least accurate results. It is worth noting the least-squares-
based method required pairwise point sets, whereas the HMM-
based method and the CPD are able to process point sets that
do not match in length.



Fig. 3. For computing the calibration matrix, the manipulator was moved
arbitrarily around the workspace, while the pose trajectories were recorded
for point set registration. The black points represent the encoder-based point
set. The right side red points represent the coarse frame aligned SLAM-based
point set, whereas the left side red points represent the same SLAM-based
point set after fine matching using the HMM.

Fig. 4. The first calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

V. DISCUSSION AND CONCLUSION

In this paper, a methodology for camera-to-kinematic model
calibration was proposed, with camera-aided operations for
long-reach manipulators in unknown environments as moti-
vation. The goal of this method is to be able to perform
fast extrinsic camera calibration easily on the worksite, with
arbitrary manipulator motions and in unknown environments.
The methodology comprised coarse frame alignment based on
the known initial pose of the manipulator and fine matching
based on the robust generalized point set registration that
benefits not only from position data but also from orientation
data, which is perceived as optimal for robotic applications

Fig. 5. The second calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

Fig. 6. The third calibration data sequence pose variables: The black lines
denote the encoder-based pose variables, whereas the red lines denote the
calibrated SLAM-based pose variables.

that have complete pose data. Comparison with two other
methods utilizing only position data was conducted in offline
data analysis, with the results suggesting that utilizing both the
orientation and position data is most efficient. As the FMM
resolves orientation using unit vectors, a simple solution for
correcting the transformed orientation magnitudes using the
joint sensors present in the system was shown.
Real time experiments were conducted using a hydraulic



Fig. 7. The left image shows the initial pose of the camera, whereas the right
image shows a control result of driving the TCP (image center) to a specific
marker.

Fig. 8. Gaussian noise added to the X-axis position signal. The black line
denotes the raw signal, the green line denotes SNR 10 dB, the red line denotes
SNR 20 dB, and the blue line denotes SNR 30 dB.

TABLE II
EUCLIDEAN DISTANCE ERRORS BETWEEN THE IMAGE CENTER AND

MARKER CENTERS

Meas. 1 [m] Meas. 2 Meas. 3
ArUco#1 0.0085 0.0073 0.0082
ArUco#2 0.0075 0.0066 0.0095
ArUco#3 0.0047 0.0077 0.0031
ArUco#4 0.0052 0.0079 0.0072
ArUco#5 0.0063 0.0097 0.0095
ArUco#6 0.0077 0.0100 0.0083
ArUco#7 0.0103 0.0127 0.0096
ArUco#8 0.0108 0.0100 0.0110
ArUco#9 0.0104 0.0088 0.0104
ArUco#10 0.0105 0.0114 0.0102
ArUco#11 0.0114 0.0104 0.0112
ArUco#12 0.0065 0.0092 0.0083

Avg. 0.0083 0.0093 0.0089

TABLE III
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE FIRST MEASUREMENT

Fig. 4 data HMM CPD Least-Squares
Raw signals [m] 0.0331 0.0331 0.0332
Raw signals [deg] 1.1864 1.1864 1.1849
SNR 10 dB [m] 0.0337 0.0339 0.0340
SNR 10 dB [deg] 1.1894 1.1998 1.1867
SNR 20 dB [m] 0.0272 0.0273 0.0274
SNR 20 dB [deg] 1.1876 1.1882 1.1844
SNR 30 dB [m] 0.0259 0.0259 0.0260
SNR 30 dB [deg] 1.1858 1.1863 1.1848

manipulator with three moving joints. The results showed
that the proposed methodology was able to match the pose

TABLE IV
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE SECOND MEASUREMENT

Fig. 5 data HMM CPD Least-Squares
Raw signals [m] 0.0375 0.0375 0.0393
Raw signals [deg] 1.5895 1.5895 1.5926
SNR 10 dB [m] 0.0335 0.0351 0.0335
SNR 10 dB [deg] 1.5896 1.5896 1.5931
SNR 20 dB [m] 0.0286 0.0287 0.0289
SNR 20 dB [deg] 1.5925 1.5925 1.5932
SNR 30 dB [m] 0.0292 0.0292 0.0302
SNR 30 dB [deg] 1.5897 1.5897 1.5924

TABLE V
ROOT MEAN SQUARE ERRORS FOR 3 DOF POSITION AND 3 DOF

ORIENTATION IN THE THIRD MEASUREMENT

Fig. 6 data HMM CPD Least-Squares
Raw signals [m] 0.0287 0.0287 0.0296
Raw signals [deg] 0.9665 0.9665 0.9679
SNR 10 dB [m] 0.0239 0.0240 0.0248
SNR 10 dB [deg] 0.9663 0.9665 0.9678
SNR 20 dB [m] 0.0258 0.0259 0.0267
SNR 20 dB [deg] 0.9677 0.9680 0.9680
SNR 30 dB [m] 0.0239 0.0240 0.0248
SNR 30 dB [deg] 0.9663 0.9665 0.9678

variables sufficiently in each measured case. Inaccuracies in
the matching result were caused by, for example, the rigidity
assumption in the kinematic formulation. Furthermore, in the
use case, the results were promising for visually assisted
operations in applications involving long-reach manipulators
with uncertainties, as an acceptable average positioning error
was achieved. Some challenges include reliance on the perfor-
mance of the SLAM algorithm in the sense that the variables
may drift during the calibration sequence, for example. An-
other challenge is that if the camera and the kinematic TCP
are on different rotation axes, the two point sets cannot be
matched with good accuracy due to the camera’s offset.
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Abstract: In this paper, a model-free data fusion method for combining redundant sensor data is presented. The objective
is to maintain a reliable tool center point pose measurement of a long-reach robotic manipulator using a visual sensor
system with multiple cameras. The fusion method is based on weighted averaging. The weight parameter for each variable
is computed using the sliding window variance with N latest observations. After each sliding window, the window length
N is updated, and simple transition smoothing is included. For experimental validation, two sets of pose trajectory data
from redundant visual sensors were obtained: 1) using a camera located near the tip of a long-reach manipulator running
a simultaneous localization and mapping (SLAM) algorithm and 2) marker-based tracking with cameras located near
the base of the manipulator. For pose tracking, a fiducial marker was attached near the SLAM camera. The proposed
methodology was examined using a real-time measurement setup and offline data analysis using the recorded data. The
results demonstrate that the proposed system can increase the overall robustness and fault tolerance of the system, which
are desired features for future autonomous field robotic machines.

Keywords: Sensor Fusion, Machine Vision, Sensor Systems and Applications

1. INTRODUCTION

The heavy machinery industry is taking major leaps
toward electrification and autonomous systems. These
heavy-duty mobile machines require new intelligent al-
gorithms and sophisticated sensors [1] in order to work
independently in harsh environments, such as mines. A
variety of long-reach robotic manipulators are found in
such machines to perform various tasks related to min-
ing and heavy lifting, for example [2]. One of the key
challenges is replacing human vision and decision mak-
ing with sensors and computerized algorithms in order
to perform work tasks autonomously. For this purpose,
measurement information about the manipulator’s tool
center point (TCP) is typically required. The TCP pose
(3 degrees-of-freedom (DOF) position and 3 DOF ori-
entation) can be obtained using forward kinematics with
joint encoders. For a small-scale, ideal industrial robot,
an accurate forward kinematic model can be obtained.
However, this is not the case for long-reach manipula-
tors, as they have significant structural flexibilities that
are not considered by traditional rigid-body kinematics.
Consequently, visual servoing methods have been well
established for small-scale industrial robots. In contrast,
for long-reach manipulators working in unstructured en-
vironments, there are challenges with visual sensing re-
lated to camera calibration, view distance, field of view,
and occlusions, for example [3].

In an attempt to replace human vision in applications
striving toward autonomy, a wide variety of visual sen-
sors have been investigated, including radar technology
and optical methods, such as laser scanners and camera
systems [4]. Data provided by different proprioceptive
and exteroceptive sensors can be combined to obtain a
more accurate or robust picture of an observed system.

This process of combining sensor information is called
multi-sensor fusion, or simply sensor fusion. Based on
how sensor information is utilized, fusion methods are
usually classified as competitive, complementary, or co-
operative systems [5]. For sensor fusion, the Kalman
filter and its nonlinear variants are popular methods [6-
7]. Neural networks and fuzzy set theory have also been
investigated [8-9]. The most mature branch of sensor
fusion is perhaps related to self-driving vehicles, which
have been avidly examined [10-11] and with, for ex-
ample, Tesla Autopilot available for consumer vehicles.
These systems are built on deep learning algorithms, re-
quiring massive amounts of training data, which, scale-
wise, are not feasible for the low-volume heavy machin-
ery industry.

One of the previous studies on multi-sensor integration
[5] argued that the key to intelligent fusion of disparate
sensory information is to provide an effective model of
sensor capabilities. However, in some cases, finding a
sufficient sensor model may not be possible. Research on
such model-free sensor data fusion methods is very lim-
ited and restricted to simple, albeit potentially effective,
methods. For example, in [12], fusion was carried out us-
ing confidence weighted averaging. However, determin-
ing the confidence functions for weight computations in
dynamic, online scenarios has not been well established.

In this paper, we focus on combining continuous mea-
surements of the same variables from different sensors in
an attempt to increase the system’s robustness and relia-
bility. The fusion method is a statistical approach based
on confidence weighted averaging [12], with our contri-
butions including determining the weight parameters in
a dynamic manner using sliding window variance (sam-
ple variance) instead of a specified confidence function.
The sliding window length is updated after each individ-



ual window, and a simple approach for transition smooth-
ing is also presented. The proposed methodology was
investigated using a real-time setup comprising a long-
reach hydraulic manipulator. The objective was to esti-
mate the end effector’s pose with visual sensors [13]. The
first pose estimate was obtained using a camera running
a simultaneous localization and mapping (SLAM) algo-
rithm, with the camera attached near the tip of the ma-
nipulator. The second pose estimate was obtained using
marker-based tracking, with a fiducial marker attached
near the SLAM camera. Before sensor fusion was per-
formed, the pose variables were extrinsically calibrated
to a concurrent coordinate system according to [14].

The underlying motivation with this configuration is
that the SLAM algorithm has a narrow but accurate view,
whereas the marker-tracking cameras are placed on top
of a machine and provide a wider view but a less accu-
rate pose measurement. A conceptual example is shown
in Fig. 1. For this application, a marker provides a fixed
and repeatable target. Consequently, the visual sensors
are able to complement each other, but also provide the
necessary redundancy, as both sensing methods are sus-
ceptible to faulty situations. These include, for example,
marker occlusions and insufficient feature extraction for
SLAM.

C

C

SLAM

Marker tracking
TCP

Fig. 1. The overall conceptual design: The TCP is
observed using a visual sensor system comprising
marker tracking and SLAM modules. The Sandvik
DT912D single boom tunneling jumbo is shown as
an example.

The remainder of the paper is organized as follows:
The data fusion methodology is described in Section 2,
the experimental setup is detailed in Section 3, the re-
sults are discussed in Section 4, and finally Section 5 con-
cludes the paper.

2. METHODOLOGY

2.1 Data fusion using sliding window variance
A fused sensor signal can be formulated by taking the

weighted average of all the sensor signals that estimate
the same variable:

xF =
n∑

i=1

wixi, (1)

where xF is the fused signal, wi denotes the weight pa-
rameters, xi denotes the redundant sensor data, and n is
the number of sensors. The fused variance can be written

as

σ2
F =

n∑

i=1

wiσ
2
i , (2)

where σ2
F is the fused variance, and σ2

i denotes the input
signal variance.

To obtain the optimal fused measurement, the weight
parameters should be chosen so that the fused variance is
minimized, which can be achieved by solving the follow-
ing minimization problem:

argmin
wi

n∑

i=1

w2
i σ

2
i , (3)

with the sum of all weights wi equal to 1. Solving the
minimization problem results in the following equation
to compute the weights:

wi =
1

σ2
i

n∑

j=1

1

σ2
j

. (4)

Substituting Eq. (4) into Eq. (2) shows that for n ≥ 2, the
fused variance is always smaller than the input variances.

The variance for a given measurement signal is com-
puted over a sliding window of length N data points:

σ2
i =

1

N − 1

N∑

j=1

|xj − µi|2, (5)

where µi denotes the mean of xj over the sliding window
of N observations and is computed as

µi =
1

N

N∑

i=j

xj . (6)

Then, the sliding window variances are used to compute
the weight parameters using Eq. (4) for data fusion.

The rationale is that computing the weights based
on sliding window variances of redundant measurements
will emphasize better-quality signals, as it is expected
that a signal with less variance is more accurate. This de-
rives from the assumption that the measurements are re-
liable, and grossly faulty measurements are detected and
discarded before the data fusion procedure.

2.2 Updating the sliding window length
The length of the sliding window, denoted by N , is

updated at the end of each window, which is conducted
as follows:

N = kN max|µx1
− µxj |, (7)

where µx1
and µxj , j ∈ {2, ..., n} denote vectors of

the mean values of each sensor measurement, computed
over the entire current sliding window. The largest abso-
lute mean difference is used to compute the next window
length, and the coefficient kN is used to tune the win-
dow length to a desired scale. Note that N is rounded to
an integer value. The sliding window length should be
constrained between the minimum Nmin and maximum
Nmax values to avoid computational issues.



2.3 Transition smoothing
Raw sensor data can contain occasional outliers, or

some sensors may cease to operate, which requires
smoothly and safely transitioning the fused sensor signal
to exclude the unavailable sensor measurement. For this
purpose, we use a simple transition smoothing method.
The fused sensor signal x̂F is computed using the fol-
lowing condition:

x̂F,new =

{
xF if |x̂F,previous − x̂F,current| < ϵ

xFc rr otherwise
.

(8)
The error coefficient ϵ determines the limit after which
the transition smoothing is applied. If the absolute differ-
ence between the previous and current fused values is less
than the designated error coefficient, the next fused value
is computed normally using Eq. (1). If the condition is
not met, the next fused value is predicted in a naı̈ve man-
ner by using linear interpolation. A polynomial function
p(x) of k degree is written as:

p(x) = p1x
k + p2x

k−1 + ... + pkx + pk+1. (9)

Considering a first-order polynomial, the linear system
can be presented as follows:

[
 1 1
 2 1

] [
p1
p2

]
=

[
x̂F,previous

x̂F,current

]
, (10)

where { 1,  2} are time stamps dictating the rate of the de-
sired transition smoothing, and {p1, p2} are polynomial
coefficients to be solved. Then, the new corrected fused
value for the next time step is obtained using Eq. (9):

xFc rr = p1 ∗ ( 1 + Ts) + p2, (11)

where Ts is the sampling period.

3. EXPERIMENTAL SETUP

For validating the proposed model-free sensor fusion
pipeline, two sets of 6-DOF pose trajectories were ob-
tained from two redundant visual sensing methods. The
experimental system is illustrated in Fig. 2, and it
comprised a hydraulic manipulator, a stereo camera for
SLAM, and a motion capture system for marker tracking.

The real-time system controlling the hydraulic ma-
nipulator was a Beckhoff CX2030 industrial PC. During
the experiments, the manipulator was moved arbitrarily
around its workspace. All the measurement data were
collected by the Beckhoff PC to ensure time synchroniza-
tion.

3.1 SLAM module
A ZED2 stereo camera was attached near the tip of

the hydraulic manipulator. The camera was connected
to a dedicated Linux PC running ROS (the robot operat-
ing system), and 720p images were published using the
manufacturer-provided ROS node.

OptiTrack base frame

OptiTrack marker

ZED2 stereo camera

Test wall for SLAM feature extraction

OptiTrack cameras

Fig. 2. The experimental setup: The hydraulic manipula-
tor was moved arbitrarily around its workspace, and
two sets of 6-DOF pose trajectory data were obtained
using 1) the ZED2 stereo camera for SLAM and 2)
the OptiTrack motion capture system for tracking the
marker pose with respect to the OptiTrack L-frame.

For SLAM, we used the open-source ORB-SLAM2
Stereo1 algorithm [15]. The algorithm ran on the dedi-
cated Linux PC in real time using the images published
by the ZED2 ROS node, and the 6-DOF pose trajectory
data were transmitted to the Beckhoff industrial PC via
UDP (user datagram protocol).

3.2 Marker tracking module
The marker-tracking module comprised three Opti-

Track Prime 17W wide angle coverage cameras, a pas-
sive marker, and a base frame. The cameras were placed
on high pillars around the base of the manipulator. The
base frame (or OptiTrack L-frame) was placed in view
of the cameras, and the marker was attached near the tip
of the manipulator. The system then tracked the 6-DOF
marker pose with reference to the L-frame.

A dedicated laptop with OptiTrack’s Motive software
was used to set up the marker-tracking module. A MAT-
LAB plugin was configured to transmit the 6-DOF pose
trajectory data to the Beckhoff industrial PC.

3.3 Signal calibration
Sensor fusion requires variables that represent the

same information. A requirement before fusion is that
the measured variables are transformed from each sen-
sor’s local coordinate system to a common one [16]. For
pose estimates, this implies that the poses must be ex-
pressed with respect to a concurrent coordinate system.
This extrinsic calibration is defined as a rigid transforma-
tion, comprising a rotation matrix and a translation vec-
tor, from one coordinate system to another.

Obtaining this rigid relationship can be a challenging
task especially with field robotic systems due to the un-
structured and unknown environments. In this work, we
used a probabilistic point set matching-based methodol-
ogy [14] to find the transformation between the two visual
sensor coordinate systems. Specifically, the SLAM poses

1https://github.com/raulmur/ORB SLAM2



were calibrated to the OptiTrack’s base frame.

3.4 Real-time implementation
After the extrinsic calibration, the two pose measure-

ments were expressed in the same coordinate system and
fused according to the methodology detailed in Section
2. The error limit for transition smoothing in Eq. (8) was
computed using the maximum absolute errors resulting
from the extrinsic calibration as follows: ϵ = kϵϵcalib,
where kϵ is a multiplication factor used to tune the tran-
sition smoothing. The relevant parameters applied in the
experiments are shown in Table 1 and they were manually
optimized for the investigated application.

Table 1. Applied parameters.

Nmin Nmax kN kϵ  1  2 Ts

200 4000 30 ∗ 104 1.0 0 s 0.5 s 1 ms

The data fusion algorithm was initialized using the set
maximum window size, which took 4 s with the applied
parameters. Normal operation was commenced only after
the initialization. The sliding window was implemented
so that the overall window size was constant (the set max-
imum size), with the unused elements set to zero. The
variance and mean value Eqs. (5)–(6) related to each
measured variable were computed over the nonzero ele-
ments, with the length of the nonzero variables depending
on the current window size N .

In the case of noisy data, we suggest using a geomet-
ric moving average filter [17] before data fusion for im-
proved signal quality. The filter is formulated as follows:

Xi = (1 − α)Xi−1 + αxi, i > 0, (12)

where Xi is the conditioned output signal at time i, xi is
the unconditioned input signal at time i, and 0 < α ≤ 1
is the filter gain, for which a low value is advised. The
results presented in this paper, however, were unfiltered.

4. RESULTS AND DISCUSSION

The data fusion algorithm was tested online on the
real-time system, and data were recorded for further of-
fline data analysis. The results presented here were ob-
tained in MATLAB’s Simulink environment using the
recorded data. Three cases were studied: Case 1: normal
operation, Case 2: updating the sliding window length,
and Case 3: transition smoothing.

For Case 1, Figs. 3–6 illustrate the poses, weight pa-
rameters, variances, and sliding window lengths obtained
from the same measurement. In general, the red lines
denote SLAM signals, the green lines denote marker-
tracking signals, and the black lines denote fused sig-
nals. Fig. 3 shows the poses for which the positional
components of both measurements perform similarly.
Regarding the orientation measurements, the marker-
tracking signals were noisy, whereas SLAM provided

better-quality signals. Thus, the fused signals empha-
sized the orientations provided by the SLAM module.
The difference between the position and orientation mea-
surements is also demonstrated in the weight parameters
in Fig. 4: The position signals had similar qualities, re-
sulting in uniform weight parameter distributions. The
SLAM orientation measurements had better qualities in
the sense that the sliding window variances were smaller,
resulting in larger weight parameters for the SLAM ori-
entations. Note that the weight parameters were set to
zeros during the initialization, but during normal opera-
tion the total sum of the weights is equal to 1. The re-
spective signal variances are shown in Fig. 5. As dis-
cussed, the fused variances are always smaller than the
input variances as a result from Eq. (3). Finally, Fig. 6
illustrates the sliding window lengths for each variable.
As shown, the fusion algorithm was initialized with the
set maximum window length Nmax = 4000, after which
the lengths were updated after each sliding window ac-
cording to Eq. (7).

Fig. 3. Case 1: All six pose variables are shown. The
red lines are the SLAM signals, the green lines are
the marker-tracking signals, and the black lines are
the fused signals.

For Case 2, the goal was to demonstrate the impact of
the sliding window length on the fusion output. Figs. 7–9
show the fused poses for three instances: constant (min-
imum) sliding window length, constant (maximum) slid-
ing window length, and variable sliding window length
(same as in Case 1). For clearer visualization, at 30 s, the
SLAM position signals were artificially increased by 0.15
m, and the SLAM orientation signals were increased by
5◦. The left figures show the pose signals, and the right
figures show the respective sliding window lengths. On
the left, the red lines are the SLAM signals, the green
lines are the marker-tracking signals, and the black lines
are the fused signals. Fig. 7 shows the results when the
set minimum sliding window length of Nmin = 200 is



Fig. 4. Case 1: The weight parameters for each fused
signal at the given time stamps. The red lines repre-
sent the SLAMweight parameters, whereas the green
lines represent the marker-tracking weight parame-
ters.

Fig. 5. Case 1: Computed variances over the sliding win-
dow for each signal. The red lines are the SLAM sig-
nal variances, the green lines are the marker-tracking
signal variances, and the black lines are the fused
variances.

used. Applying a small window length for signals with
approximately equal variances results in poor fused sig-
nal quality, when the difference between the input sig-
nals increases. This is shown in the position signals. For
orientation signals with clearly different variances (due
to the noise level), the fused output strictly emphasizes

Fig. 6. Case 1: The sliding window lengths for each
signal at the given time stamps.

the better-quality SLAM orientation signal. However, the
small window length still induces some of the noise in
the fused output. Fig. 8 shows the same results, while
the set maximum window length of Nmax = 4000 is
used. In this case, the resulting fused signals are more
restrained. Finally, Fig. 9 shows the results for the vari-
able sliding window lengths. As illustrated, the window
lengths first float between the set minimum and maxi-
mum values. However, after the SLAM signals are artifi-
cially increased, the window lengths jump to the set max-
imum values. The difference compared with the previ-
ous case of using the set maximum window length is that
with variable lengths the computations can be performed
over a smaller number of elements. Moreover, as demon-
strated in Figs. 7–9 before the 30 s marks, the fused sig-
nals are slightly better with smaller window lengths due
to the small difference between the input measurements.
Thus, the absolute mean difference between the signals,
computed over the current sliding window, was chosen as
the basis for updating the window length in Eq. (7).

For Case 3, the aim was to assess the fusion algo-
rithm’s performance when a measured signal is lost, and
transition smoothing is required. Smoothing is applied to
avoid sudden, undesired changes with large amplitudes in
the fused output signal. The results are illustrated in Fig.
10, in which, at 30 s, the SLAM position signals were
again artificially increased by 0.15 m, and the SLAM ori-
entation signals were increased by 5◦, respectively. Then,
the SLAM measurement was switched off, after which
the fusion algorithm switched to utilize only the marker
tracking-based measurement. Then, the SLAM measure-
ment was switched back on, and the fusion algorithm
resumed to utilize both pose measurements. For com-
parison, the same procedure was repeated by switching
the marker tracking off and on. The red lines are the



Fig. 7. Case 2: A constant sliding window length of 200
was used: At 30 s, the SLAM position signals were
artificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

Fig. 8. Case 2: A constant sliding window length of 4000
was used: At 30 s, the SLAM position signals were
artificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

SLAM signals, the green lines are the marker-tracking
signals, the black lines are the fused signals with transi-
tion smoothing, and the magenta lines are the fused sig-
nals without transition smoothing. The switching time
 2 −  1 in Eq. (10) was 0.5 s, which dictated the de-
sired convergence time toward the available pose mea-
surement, and the “jump” occurs when the error coeffi-
cient ϵ in Eq. (8) is reached. As shown, the transitions

Fig. 9. Case 2: Variable sliding window lengths were
used: At 30 s, the SLAM position signals were ar-
tificially increased by 0.15 m, and the SLAM orien-
tation signals were increased by 5◦. The left figures
show the signals, and the right figures show the re-
spective sliding window lengths. On the left, the red
lines are the SLAM signals, the green lines are the
marker-tracking signals, and the black lines are the
fused signals.

are appropriately smoothed, and the effectiveness can be
tuned by adjusting the parameters.

Fig. 10. Case 3: At 30 s, the SLAM position signals
were artificially increased by 0.15 m, and the SLAM
orientation signals were increased by 5◦. The transi-
tioning of the fused signal is demonstrated when the
other measurement signal is lost. The red lines are
the SLAM signals, the green lines are the marker-
tracking signals, the black lines are the fused sig-
nals with transition smoothing, and the magenta lines
show the fused signals without transition smoothing.

The error coefficients have to be carefully set, as val-
ues that are too low will have a deteriorating effect on
the fusion output; the transition smoothing should enable
only when sudden, undesired changes occur in the input
measurements. However, values that are too large will



render the smoothing ineffective.

5. CONCLUSION

In this paper, we examined the problem of directly fus-
ing continuous sensor data in a real-time setting. The pre-
sented model-free pipeline is a statistical approach based
on weighted averaging, in which the weight parameters
are constantly updated using the sliding window vari-
ances of the respective signals to be fused. A method
for updating the window length was shown, along with a
simple transition smoothing design.

Results based on real-time experiments were pre-
sented: 6-DOF pose trajectory data from two indepen-
dent, redundant visual sensors were fused in an optimal
manner in the sense that the variances of the fused signals
were minimized with respect to the input variances, com-
puted over the current sliding windows. The experimen-
tal results demonstrated that the proposed methodology
can increase the system’s robustness and fault tolerance,
which are the desired features for future autonomous field
robotic machines.

Some challenges of this methodology include the lack
of a model, which makes the system rely more on so-
phisticated sensor self-diagnostics before fusion occurs,
so that faulty measurements are detected and discarded
before fusion is executed.

ACKNOWLEDGEMENT

This work was supported by the Doctoral School of
Industry Innovations (DSII) of Tampere University. This
work was also carried out with the support of the Cen-
tre for Immersive Visual Technologies (CIVIT) research
infrastructure, Tampere University, Finland.

REFERENCES

[1] T. Machado, D. Fassbender, A. Taheri, D. Eriksson,
H. Gupta, A. Molaei, P. Forte, P. K. Rai, R. Ghabch-
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