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ABSTRACT Text data in the form of natural language is a valuable resource that contains domain-specific
information applicable to various applications. An example are electronic health records (eHR) offering
comprehensive insights into patients’ health histories, enabling knowledge extraction for clinical diagnosis
and treatment. In this paper, we study multi-label text classification (MLTC) of eHR data by introducing
two novel MLTC methods based on a threshold-learned convolutional neural network (CNN). We conduct
comprehensive comparisons with other multi-label models and binary relevance (BR). Importantly, we do
not only optimize the architecture of multi-label classifiers but also of the baseline BR model. As a result,
our findings indicate that the adaptive-threshold CNN (AT-CNN) and implicit-threshold CNN (IT-CNN)
provide a favorable approximation of a binary CNN (B-CNN) with the added benefit of improved runtime
efficiency. The latter is crucial when the number of classes grows larger because the runtime of classifiers
based on one-vs-rest mappings becomes increasingly prohibitive for such configurations.

INDEX TERMS Data science, multi-label classification, deep learning, natural language processing.

I. INTRODUCTION
Electronic health records (eHR) hold rich information about
patients. Such records contain diagnostic and biomedi-
cal notes from clinicians and nurses providing indispens-
able information for identifying proper treatment actions
of patients based on their health history [21], [48]. How-
ever, going manually through thousands of potentially long
records is a time-consuming process requiring large amounts
of resources. For this reason, there is an urgent need for an
automatic procedure that can exploit the increasing number
of eHR by turning them into a form of ready information that
can inform subsequent clinical tasks. In order to approach this
problem natural language processing (NLP) can be used and
many remarkable results have been achieved on diverse tasks.
For instance, NLP has been used for disease classification [2],
[33], [43], [44], [50], disease events prediction [6], [57], and
medical information extraction [17], [18], [46].
An important task for analyzing eHR data is text classifi-

cation [3], [27], [32], [42], which is also the main objective
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of this paper. While the primary use of eHR in the clinic
is for a particular patient, analyzing a large corpus of eHRs
from thousands of patients can lead to the identification of
population-specific properties that may inform our under-
standing of disorders beyond the individual patient. It is this
latter purpose for which text classification of eHRs is of
primary use. Conceptually, approaches behind text classifi-
cation can be categorized into three different groups: binary
classification, multiclass classification and multi-label clas-
sification. For multiclass classification, only one label can be
assign to an instance within a set of available labels whereas
each label is mutually exclusive. When the number of classes
is two this becomes binary classification. In contrast, for
multi-label classification, more than one label can be assigned
to an instance [12]. Multi-label classification is also the focus
of this paper.

While multi-label classification is an intriguing concept,
it’s practical realization is far from trivial and widely under-
explored. A traditional approach for multi-label text classifi-
cation is binary relevance (BR) [4]. This approach transforms
a multi-label learning problem into multiple (corresponding
to the same number as the classes) binary classifications. That
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means for each class, a classifier is trained as ‘‘one-versus
the rest’’. This type of approach is favoured by many and
considered the most intuitive way for dealing with multi-label
classification problems [52].

On a downside, the BR approach makes the assumption
that each class is independent from the others. Hence, possi-
ble relations between classes are not explored but suppressed
by neglecting dependencies which might carry exploitable
information [55]. For example, it is known that a patient
that has obesity is more likely to have heart disease, and
people that have anxiety usually are accompanied by depres-
sion. Such health examples show that most of the time
disorder classes appear in pairs or even high-order class-
combinations. On the other hand, some diseases could be
mutually exclusive. Either of those examples contradicts the
assumption of the independence of classes underlying the
BR models. Looking at correlations between class labels
allows to divide approaches into three categories. First-order
approaches deal only with one label individually, hence, they
do not consider a label dependency. Binary relevance is an
example of a first-order approach. In contrast, second-order
approaches incorporate pairwise correlations between labels
whereas higher-order approaches consider even more rela-
tions between labels.

In order to overcome the limitations of first-order
approaches using binary classifiers, it has been suggested
to form chains by stacking multiple binary classifiers in a
specific chaining order [40]. Such algorithms organize the
chain structure according to prior knowledge and information
including label-dependencies. Commonly, each subsequent
classifier is built upon the predictions of preceding ones,
hence, forming an approach that is able to utilize high-order
label-dependencies. Unfortunately, the complexity of classi-
fier chains grows exponential with the number of classes.
Also, the first few predictions play essential roles as the
captured label-dependencies formed by the chain structure
will largely depends upon the early predictions.

Another category is algorithm adaptation that modifies tra-
ditional binary classifiers to make them fit directly to multi-
label problems. Examples therefor are, multi-label k-Nearest
Neighbors [54], multi-label Decision Trees [7] and Rank-
ing Support Vector Machines [11]. However, most of the
algorithm adaption methods remain inferior, especially to
modern deep learning based methods, as they are limited to
modelling only first- or second-order label dependencies.

Importantly, in recent years deep learning [13] approaches
have been widely applied to problems of text classifica-
tion demonstrating impressive improvements over traditional
methods. Examples for deep learning architectures are con-
volutional neural networks (CNN) [14], [23], [25], [37] and
recurrent neural networks (RNN) [17], [29], [47]. Further
novel architectures are provided by transformer models, e.g.,
BERT [9] and elmo [39]. Regarding multi-label classifi-
cation, neural network models do not need to transform
the multi-label problem into binary problems because their

architectures should allow to learn labels and capture label-
dependencies in higher layers [34].

In this paper, we study multi-label text classification
and introduce two new deep learning models based on a
multi-label CNN architecture called implicit-threshold CNN
(IT-CNN) and adaptive-threshold CNN (AT-CNN). Specif-
ically, we design dynamic learning thresholds to select the
output labels for different samples regarding different labels.
In addition, we compare our proposed architectures with a
binary relevance CNN architecture to examine the capability
as well as the scalability of our thresholdsmulti-label learning
models. For our analysis, we use annotated data from the
MIMIC-III database [15] containing 1610 free-text structure
notes that are divided into 10 different phenotypes.

This paper is organized as follows: In the next section,
we review related multi-label learning methods from the liter-
ature. In the Methods section, we discuss all methods we use
for our analysis and introduce two novel methods. Further-
more, we discuss word embedding methods to transform raw
text into numeric distributed representations. In the Results
section, we presents our experimental discovers. Specifically,
we study: (1) Optimization of CNNs, (2) Model compari-
son between eight models for various error measures. (2)
Difficulty levels of multi-label classification by introducing
noise levels. (3) Subclass classifications of the top performing
multi-label CNNs and B-CNN trained on all sub-class com-
binations. (4) Time complexity of the runtime of the methods.
In the Discussion section, we connect our results to findings
from the literature and interpret our findings. Finally, this
paper finishes with concluding remarks.

II. RELATED WORK
In this section, we review related work in more detail. This
will later enhance our discussion when comparing such
approaches with the results from our models.

Backpropagation for Multilabel Learning (BP-MLL) [53]
is considered the first attempt to solve a multi-label classi-
fication task by a neural network architecture. The method
utilizes a pair-wise loss function that incorporates label-
occurrence information into the training. This learning frame-
work was further improved by [34] where they compensated
limitations of the pair-wise loss by using cross entropy which
showed faster convergence. In addition, they used a Relu
activation function and applied drop-out in their training.
Both techniques are very common in training neural net-
work making their architecture a popular neural network
framework for multi-label classification for its simplicity and
effectiveness [28]. Typically, neural network multi-label clas-
sification models include a learning module and a prediction
module. The learning module transforms input sequences
into vectors of features by a specific feature learner which
can be any type of neural network architectures such as
a CNN, RNN, or BERT. The prediction module will pass
the learned features into an one-layer-perceptron where the
number of nodes corresponds to the output labels. This gives
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a confidence score for each class whereas high scores indicate
relevant classes and low scores indicate irrelevant classes. For
given scores, a threshold function is applied to select the best
classes. The threshold function can either be learnt [10], [34]
or set to a fixed value.

Despite the superior performance of neural networks over
conventional machine learning methods for multi-label clas-
sification, vanilla neural network structures somehow still
neglect label correlations during the training. For this reason,
recently, more effort has been placed on this investigating
how to better incorporate label-dependencies into neural net-
works. It is interesting to note that for image processing,
the paper by [26] proposed a novel neural network structure
embeddedwith a label-decisionmodule. Following this work,
in [10] a modified framework for classifying biomedical text
data was introduced using also a label-decision module for
predicting the number of true labels per sample. Hence, this
module acts as a threshold function over the ranking scores
produced by the prediction module to select the best combi-
nation of labels.

A novel way to address multi-label classification has been
introduced by SGM (sequence generation model for multi-
label classification) [49] by making it a sequence generation
problem. Specifically, SGM adapts a Bidirectional LSTM
(BiLSTM) sequential model along with attention to the text
sequences. The learned features are used to predict each label
individually using a specific chaining order and the next
prediction of the label is conditioned on the previous one.
Additionally, SGM uses a global-embedding as one memory
mechanism to capture all the preceding label information
at a current time-step to alleviate the punishment of wrong
predictions from early time-steps. This is important because
incorrect early predictions are most likely to result in a suc-
cession of wrong predictions in later time-steps, which is
known to be a source of bias effecting the sequential chaining
prediction structures. It has been shown that SGM is better
in modeling label-dependencies compared to other network
architectures including conventional BR, vanilla CNN, CNN-
RNN [49].
In [51] a deep learning based method has been intro-

duced that incorporates second-order label-occurrence infor-
mation into the network. The label-occurrence information is
mapped into vectors multiplied by the feature vectors learned
by the feature extractors. In this way the network learns about
the label-dependencies. They showed that their architecture
can be embedded into many popular feature extractors such
as CNN, RNN or BERT, and their results demonstrated that
networks embedded with such a structure outperform vanilla
versions. This indicates the large potential of utilizing label-
dependencies which have not been fully utilized by most
modern neural network architectures.

Another method introducing a novel idea is MAGNET
(Multi-label text classification using attention based graph
neural network) [36]. This method leverages a graph attention
mechanism for label correlations. Using prior knowledge of

the label-occurrences to build up a graph attention network
allows their model to learn high-order dependencies. As fea-
ture extractors they use BERT and BiLSTM in combination
with label features extracted by a graph attention network.
They showed that their model is able to learn both higher-
level contextual meaning of documents as well as correlations
between labels. Also their model obtained competitive results
compared with several state-of-the-art models and different
multi-label classification benchmark datasets.

Interestingly, Ma et al. [30] argued that most current
approaches for multi-label classification are not capable to
distinguish between similar labels, and are thus failing to
capture semantic label correlations. To improve upon this
they proposed a label-specific dual graph neural network
(LDGN) [30]. LDGN uses a BILSTM as feature learner
and an attention mechanism to generate label-specific vec-
tors. The network is capable of modeling label-dependencies
from the input documents by combining label-occurrencies
with label-specific vectors into a graph convolutional net-
work, where the final output can capture correlations between
labels. As a result they outperformed several state-of-
the-art models which are designed also to capture label
dependencies.

Lastly, Zhang et al. [56] introduced auxiliary prediction
tasks for multi-label learning in addition to the classifica-
tion of the labels to improve the performance of multi-label
classification. Their method is based on a BERT architecture,
combining text and label embedding representations to form
an additional label co-occurrence prediction task. Further-
more, they use the outcome from a prediction as feedback to
enhance the multi-label learning of the method. Their results
showned that it is a top-performing method for the AAPD
dataset, and also very competitive on RCV1-V2 dataset.

III. METHODS
In this section, we discuss all methods and data we use in this
study.

A. CONVOLUTIONAL NEURAL NETWORK
The ideas behind different variants of neural networks is to
learn unique types of representative features. For instance,
a convolutional neural network (CNN) aims to learn regional
features from adjacent inputs using different sizes of filters.
By stack multiple filters on top of each other, more distant
features are jointly learnt to extract more abstract features
from larger regions. The most significant advantage of a
CNN is to significantly reduce the number of parameters
needed for building a network, as the neurons are not fully
connected from its previous inputs, the inputs can be viewed
as a plane, and the filter scans the input thoroughly with a
specific window size and step size, where each step results in
locally connected weights with the neurons within the region.
As a result, the number of connected weights required are
significantly reduced.
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Let us consider an input of 2 dimensions I ∈ R2×50

going through a fully connected layer of 100 neurons. Then
the number of weights needed for a full connection layer is
10, 000, however, if we use a filter of window size 2×2, using
a horizontal step of 1 to cross all the local regions of the input,
this results in a total of 196 weights only. Usually one would
assign multiple filters with different length sizes to tackle all
the possible regional features, nevertheless a CNN is much
more efficient than traditional neural network architectures.

The first well-known convolutional neural network was
Imagenet [24] whichwas originally proposed for dealingwith
computer vision problem and showed leading performance
by a considerably large margin over traditional methods, its
special way of handling inputs agree with the property of
images, where spatial features are very region specific, using
filter to highlight these regional features and feed them into
a chain of filters to extract more abstract representations
greatly help the network to distinguish between different
patterns in the image and learn to recognize different objects.
Later researches found that CNN can also be used to handle
textual input in a 2-D manner to consider combinations of
different length of words to help the network to understand
meanings [23]. In our study, we extend a CNN architecture
by adding and learning thresholding mechanisms (described
in the next section).

For the word embedding, we use word2vec [31] a widely
used word embedding method [19] to transform all words
to unique vector representations. The method is quite fast
allowing to obtain the embeddings efficiently.

B. THRESHOLD LEARNED CNN
In this section, we discuss the structure of our novel models,
called AT-CNN and IT-CNN. Both models are based on a
basic feature learner CNN extended by multi-label threshold
functions added to the basic feature learner.

The base CNNwe use for all models has a structure similar
as in [23] and [50]. This structure is illustrated in Fig. 1(a).
Let x denote the input, raw texts will be divided into differ-
ent tokens with represents an unique symbol, first layer of
the network will accept these tokens and convert them into
vectors, each token will be xi ∈ R50, i = [1, 2, 3, . . . n] and
n is the maximum number of tokens of the input sample and
we use the embedding size of 50 in our experiments, after
which multiple convolutional filters of varying window sizes
will be applied to the input with step size of 1 to go across
the entire input to extract abstract features, convolutional
filters of window size N × 50 will extract features from
the corresponding N -gram from word embedding of size 50,
a collection of features resulted one filter is called feature
map, hence filter of N × 50 with a step 1 will result in
feature maps of size n− N + 1, additionally, one can assign
multiple filters with the same window sizes to the input,
though with the same size the parameters within each filter
can be different, thus enabling different filters with the same
window size to extract different types of features from same

region of the input, after convolutional layer we wil have a
collection of feature mapsC = [C1,C2,C3 . . . . . .Cm], Cm ∈

Rn−N+1 and m is the total number of different filters, as a
rule of thumb, a convolutional layer is commonly followed
by a pooling layer, as we know a feature map containing a
number of features, pooling operation usually select more
essential features from each feature map by taking either the
maximum, average, or minimal values, in our experiment,
we use a maximum pooling to extract only 1 feature with
the maximum value from each feature map, hence the final
feature representation f ∈ Rm is learned through CNN.
The learned features can be used to perform a classifi-

cation task using either a binary or multi-label framework.
The label-decision structure is based on [34] where cross-
entropy, dropout and an advanced optimizer were added to
the learning process, see Fig. 1(b). Label-decision modules
can be categorized as binary and multi-label modules. Both
of them utilize a fully-connected layer that takes the learned
features as input and output the number of labels. The binary
module has only two neurons at the output layer whereas the
multi-label module has as many neurons as classes whereas
each of the neurons indicates a confidence scores for the
corresponding class.
For the multi-label module, one needs to select the thresh-

old for making the final prediction of the class, which is
usually a scalar value between 0 and 1. A lazy way would
be to set a constant value of 0.5 as the global threshold
for all the classes, however, this is generally a poor choice
especially when the number of classes is high [35]. Usually,
it is better to search for an optimal threshold for obtaining
a better performance, even though this is usually non-trivial.
In general, a dynamic threshold that can adjust their values
according to different classes has been studied and shown to
be more accurate than a constant value [10], [20].
In this paper, we propose and study two threshold functions

as extension of a CNN.We call the resulting models AT-CNN
and IT-CNN. Specifically, the first model uses an adaptive-
threshold (AT), which utilizes adjusted binary confidence
scores as the threshold for the multi-label classes. It operates
by predicting each label individually based on the learned fea-
tures. These predicted scores are then concatenated to form a
threshold vector, which is used to select the positive labels
from the predictions of the multi-label module. The second
models uses as threshold function an implicit-threshold (IT)
that predicts the number of positive classes and selects the
top-k best scores from the multi-label module. It functions
as an individual network, trained and optimized concurrently
with the basic feature learner during the training process.
The structure of both threshold functions can be seen in the
Fig. 1(c).
In this study, we will use the following notation for the

models:
1) Binary-CNN (B-CNN): This model utilizes binary

classification.
2) Multi-label CNN (M-CNN): This network incorporates

a multi-label module with a fixed threshold.
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FIGURE 1. The base network architecture of the feature learner that utilizes a CNN [23], [50] is illustrated in part (a). The
label-decision module for binary and multi-label learning is shown in part (b). Part (c) shows two thresholding functions we use to
extend the base CNN (in (a)) for learning a multi-label classifier. Left: Implicit-threshold (IT) function leading to an IT-CNN. Right:
Adaptive-threshold (AT) function leading to an AT-CNN.

3) Implicit-threshold CNN (IT-CNN): This refers to the
multi-label CNN with Implicit-threshold.

4) Adaptive-threshold CNN (AT-CNN): This model
employs Adaptive-threshold in the multi-label CNN.

C. DATA
For our study, we use the discharge summaries extracted
from the MIMIC-III database. MIMIC-III stands for Medical

Information Mart for Intensive Care [22], which is a freely
accessible database that contains de-identified clinical data
collected from more than 53, 000 hospital admissions for
adult patients gathered from year 2001 to 2012. The data
were collected at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts (USA). The MIMIC-III database
contains a variety of patient records including structured,
controlled vocabulary data such as laboratory notes, ICD
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codes, and free-form texts such as progress notes, discharge
summaries, and reports of electrocardiogram/imaging stud-
ies. In our study we focus on the free-form texts of discharge
summaries containing the most informative clues for patient
phenotyping [41].

The annotated discharge summaries are from [15].
They annotated 1610 discharge summaries from MIMIC-III
dataset, where 415 discharge summaries from patients being
a frequent flyer in the ICU (>=3 ICU visits within 365 days),
and 313 random selected discharge summaries from the later
visits of above frequent flyers. Additionally, 882 random
discharges summaries were selected from those patients who
are not ICU frequent flyers, yielding 1610 summaries from
1297 unique patients.

All the 1610 discharge summaries were annotated into
10 different phenotypes. For this several annotators of domain
experts were used. It was ensured that each phenotype was
labelled at least twice by different annotators to guarantee
the most reliable label quality. In case of an uncertain pheno-
type, a senior clinician annotator decided on the final label.
The frequencies from all 10 phenotypes ranges from 126 to
460 cases.

In order to measure the degree of agreement on the labels
between different annotators, Cohen’s Kappa [8] was pro-
vided. Let A denotes the number of samples both annotators
agree on phenotype 1, B denotes the number of samples
annotator 1 labeled phenotype 1 while annotator 2 labeled
phenotype 2, C denotes samples annotator 1 labeled pheno-
type 2 while annotator 2 labeled phenotype 1, and D denotes
samples both annotators agree on phenotype 2, then one can
define:

P0 =
A+ B

A+ B+ C + D
(1)

P1 =
A+ B

A+ B+ C + D
·

A+ C
A+ B+ C + D

(2)

P2 =
C + D

A+ B+ C + D
·

B+ D
A+ B+ C + D

(3)

Based on these, Cohen’s Kappa measure K can be defined as:

K =
P0 − P1 + P2
1 − P1 + P2

(4)

Cohen’s Kappa is a scalar measure between 0 and 1 that
indicates the degree of agreement between two annotators
who classified N samples into C different categories. The
higher the value ofK is themore agreement in the annotations
while lower values indicate conflicting classification requir-
ing attention by by a senior annotator. The frequency of labels
and the Cohen’s Kappa measures for all 10 phenotypes used
in this study are shown in Fig. 2.

D. EVALUATION MEASURES
Measures for evaluating multi-label classification prob-
lems can be grouped into two categories. (1) Sample-
based measures: Such measures compare a predicted vector
ys[y1, y2, y3 . . . yc], with the true vector ŷi[ŷ1, ŷ2, ŷ3 . . . ŷc],
where s represents an individual sample and c is the total

number of classes. An example for such a measure is F-
sample (defined below). (2) Label-based measures: Rather
than considering each sample individually, label-based mea-
sures compare a predicted sub-class vector from all sam-
ples against true sub-class vector. In this case, we compare
a predicted vector yc[y1, y2, y3 . . . yn] with the true vector
ŷc[ŷ1, ŷ2, ŷ3 . . . ŷs], where c represents an individual label and
s is the total number of samples. For this type of measure,
we use F-micro and F-macro.

In general, a F-score takes the TP (true positives), TN (true
negatives), FP (false positives) and FN (false negatives) into
account and gives a scalar value which presents the evaluation
of the model. In a multi-label scenario, one needs to use
the aggregated F-score which includes F-micro, F-macro and
F-sample according to different types of aggregations used.
The definition for F-score, F-micro, F-macro and F-samples
are provided as follows:

F-score =
(1 + β2)tps

(1 + β2)tps + fps + β2fns
(5)

F-micro =

∑C
c=1(1 + β2)tpc∑C

c=1(1 + β2)tpc + fpc + β2fnc
(6)

F-macro =
1
C

C∑
c=1

(1 + β2)tpc
(1 + β2)tpc + fpc + β2fnc

(7)

F-samples =
1
S

S∑
s=1

(1 + β2)tps
(1 + β2)tps + fps + β2fns

(8)

here C is the total number of different classes and S is the
total number of samples. For our analysis we are setting β =

1 corresponding to the F1-score.
In this study, we use F-micro, F-macro, F-sample for eval-

uating multi-class classification, and the F-score for binary
classes. F-scores presents a harmonic mean of precision and
recall and β is a trade-off parameter (we use 1 in all our
analyses) for false-negatives and false-positives. F-scores are
commonly used in evaluating multi-label classification tasks.

In addition to the F-scores discussed above, we also use
the Hamming loss. In general accuracy gives the percentage
between correctly predicted labels and all the labels for binary
problem, however under multi-label scenario each sample
receive multiple labels, in this case the accuracy can be
calculated either by using the exact match where all the labels
from one sample have to match the true labels, or using frac-
tional match where each label is compared to the true label
individually, the later style is refereed as hamming accuracy,
hamming loss is defined by 1−hammingaccuracy. Hence,
the Hamming loss can be viewed as an alternative accuracy
measure for the multi-label scenario. In Eqn. 9, we show how
to obtain the Hamming loss. Here N is the number of total
samples and C is the number of classes, ⊕ denotes the XOR
operation and ŷ(i)j , y(i)j correspond to the predicted label j and
true label j from sample i,

Hamming Loss =
1
NC

N∑
i=1

C∑
j=1

ŷ(i)j ⊕ y(i)j . (9)
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FIGURE 2. Overview of the used data from the MIMIC-III database. The numbers correspond to frequencies and Cohen’s Kappa scores for the
10 phenotypes used in this study. Cohen’s Kappa scores are shown on top of the bars while the y-axis corresponds to the frequencies (middle of
the bars) of the phenotypes.

E. EXPERIMENTAL SETTING FOR THE MODELS
In this section, we describe practical aspects of our analy-
sis. For our study, we use python 3.9 and the PyTorch [38]
package to build our networks. For C-BERT we used the pre-
trained network provided by [1]. For the numerical analyses,
the data is split into three parts: 70% for training, 10% for
validating and 20% for testing.

1) PREPROCESSING
We adopt the same processing procedure as in [50]. Raw
texts were cleaned to remove stop words and symbols by
using predefined rules. The cleaned input is converted into
individual tokens, paddings are added to the tails of the input
texts to ensure equal lengths for all the inputs. Overall, this
results in 1610 samples with a total length of 5572 and a
total vocabulary size of 48848. The embedding dimension
is 50 learned with word2vec [31] using the all discharge
summaries of MIMIC-III as corpus.

2) Binary-CNN
For training the binary CNN (B-CNN), we use convolutional
filters of window of [1×1, 1×2, 1×3, 1×4, 1×5], each group
of filter window has 100 different filters, forming 500 feature
maps. We use softmax as the last activation function to a logit
output of the network and cross-entropy as the loss function.
For this, we train 10 different classifiers for 10 different
classes, using one-vs-rest learning framework.

3) MULTI-LABEL CNN
For training the multi-label CNN (M-CNN), we use convolu-
tional filters of window length equal to [1 × 1, 1 × 3, 1 × 4,
1×5]. For each filter window group we use 500 filters adding
up to a total of 3000 feature maps. A sigmoid function is
used as the last activation function and binary cross-entropy is
used as the loss function. In the testing phase, a thresholding
function with a constant value of 0.5 is applied to make a
decision about the classes.

4) IMPLICIT-THRESHOLD CNN
For the Implicit-Threshold CNN (IT-CNN), we use the same
setup as for the Multi-label CNN but we replace the thresh-
olding function with a network that is capable of learning
the number of positive classes for each sample. The structure
is similar to [10], however, we employ a network with a
two-layer MLP with 512 and 256 neurons respectively. The
network takes the learned features as the inputs and outputs
the number of positive classes for each sample. Losses from
the two networks are aggregated and the two networks are
trained simultaneously using one forward and backward pass.
In the testing phase, the prediction of the additional network is
used to select the top-k scores from the output of the original
network to select the final classes.

5) ADAPTIVE-THRESHOLD CNN
Also the Adaptive-Threshold CNN (AT-CNN) inherits the
same setup from the Multi-label CNN while the thresholding
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function is replaced with learned adaptive thresholds. In addi-
tion to the prediction for all classes at the final layer from
M-CNN, binary predictions for each class is also performed,
and the prediction scores from the binary predictors are
concatenated to form a vector that represents the numeric
thresholds for each class. Each sample will learn its own
threshold vector during training, and in the testing phase these
thresholds are compared against the output scores from the
last layer of the model to select the positive classes.

6) CLINICAL-BERT
For comparisonwith the abovemodels we use Clinical-BERT
(C-BERT) [1].We use the variant ‘‘Bio-Discharge-Summary-
BERT’’ which was pre-trained on all discharge summaries
from MIMIC-III. The model was further fine-tuned on our
dataset using a multi-label framework with a threshold of 0.5.

7) MAGNET
Another baseline model is MAGNET [36], which is LSTM-
based, designed for the classification of multi-label tasks.
We use the same model as in [36] using our setup and pre-
trained word embeddings.

8) SGM
SGM [49] is another LSTM-based multi-label learning
method we use for a baseline comparison. We use the model
from [49] provided on github using our setup and the same
pre-trained word embeddings. The results are obtained with-
out global embeddings.

9) LACO
LACO [56] is a recently introduced multi-label learning
method based on a BERT architecture. LACO also implicitly
utilizes label correlation information to enhance the perfor-
mance on multi-label learning tasks and outperforms many
strong baseline methods by a large margin on several bench-
mark datasets. We use Bio-Clinical-Bert as the pre-trained
BERTmodel for LACO. Furthermore, we apply a similar pre-
processing procedure on the data as for all other methods.

IV. RESULTS
In the following, we present the results of our analysis. First,
we study the optimization of the CNNmodels. Then we com-
pare the performance of different methods with each other
for the 10 class multi-label classification problem. Thereafter
we study the influence of the difficulty level and the number
of classes on the performance of multi-label classification.
Finally, we investigate the time complexity of the best per-
forming classifiers.

A. OPTIMIZATION OF CNNs
In this section, we discuss the process of optimizing our
CNN-based methods. Specifically we investigate how differ-
ent parameters affect the performances of all the CNN-based
methods.

In Figure 3, we show the performances of B-CNN, AT-
CNN, IT-CNN and M-CNN in dependence on the number of
filters used per window size (see Figure 3 column (a)) and in
dependence on the filter window sizes (see Figure 3 column
(b)). For the number of filters, we start at 100 and increase
the size at each step by 100 up to a size of 600. For the filter
window sizes, we study six setting given by [1 × 1, 1 × 2,
1 × 3, 1 × 4, 1 × 5].
As one can see in the Fig. 3, B-CNN is a very stable regard-

less of the parameter settings and shows only a decreased
performance for too small filter window sizes. In contrast,
all of the multi-label learning models are strongly influenced
by a low number of filter maps and small filter window
sizes. Furthermore, when the number of filter maps and filter
window sizes are too large, the performance starts to decay
indicating an overfitting effect.

Based on this and other analyses (not shown), we select
the optimal parameters for each model for the following
analysis. That means all models used in the following, have
been optimized with respect to the parameters of the models.
We want to highlight that this includes the baseline model
B-CNN which is the only model that transforms the multi-
label problem into multiple binary classifications.

B. MODEL COMPARISON
In this section, we study a 10-class multi-label clas-
sification problem and compare the performance of
8 models: Binary CNN (denoted B-CNN), Multi-label
CNN (denoted M-CNN), Implicit-Threshold Multi-label
CNN (denoted IT-CNN), Adaptive-Threshold Multi-
label CNN (denoted AT-CNN), Clinical-BERT (denoted
C-BERT)) MAGNET, SGM and LACO. The data for
this analysis are from the MIMIC-III database where the
10 classes correspond to 10 disease phenotypes of patients.
Among all models, the B-CNN is the only classifier utilizing
a binary learning framework by learning individual classifiers
as one-vs-rest, whereas the other 7 architectures are based on
a genuine multi-label learning framework. As performance
measures, we use F-micro, F-macro, F-sample and the Ham-
ming Loss. For estimating these scores and the standard errors
we use a 10-fold cross validation (CV).

The results of this analysis are shown in Table 1. From
the table one can see that the B-CNN has the top scores for
all three F-score types, but for the Hamming loss the AT-
CNN is best. Interestingly, C-BERT, MAGNET and SGM
have the worst F-score performances. A reason why the two
LSTM-based models (MAGNET and SGM) do not perform
well could be the small sample size of our data because it
is known that LSTM models have difficulties fitting such
data. In contrast, CNN-based methods can efficiently learn
the most important combinations of phrases that contribute to
a certain phenotype. For the threshold multi-label CNNs, the
AT-CNN outperforms IT-CNN on the F-micro and F-macro
score by 3.3% and 2.2% respectively. For the Hamming
loss the difference is even larger corresponding to 18%.
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FIGURE 3. Optimization of the parameters for B-CNN, AT-CNN, IT-CNN and M-CNN. Column (a) shows the impact of the number of filters used
per window size, starting from 100 with an increment of 100, to 600. Column (b) shows the impact of filter window size on the performance,
starting from window size of 1 × 1 then adding larger window sizes.

Interestingly, F-sample of the IT-CNN is almost as good as
for the B-CNN.

Due to the fact that C-BERT, MAGNET and SGM are the
worst performing models, we do not consider these in the
following because they add nothing to our analysis. Interest-
ingly, despite the fact that LACO uses contextualized word
embeddings and an enhanced multi-label learning frame-
work, it shows a very similar performance to M-CNN which
means it under-performs. For this reason, we also do not
consider LACO in the following analysis.

In Fig. 4, we show more detailed results by providing the
classification scores for the 10 underlying phenotypes corre-
sponding to the 10 classes of the classification task. From this
figure it is interesting to note that while the B-CNN (thick
line) has the best overall score (see Table 1), for the class
‘‘Cancer’’ and ‘‘Depression’’ this is not the case. Instead, AT-
CNN performs better. Furthermore, it is interesting to remark
that the most difficult class (having the lowest F-score) for
B-CNN andAT-CNN is ‘‘Pain’’ while for ‘‘Lung’’ we observe
the largest difference between the multi-label learning classi-
fiers (AT-CNN, IT-CNN and M-CNN) and B-CNN.

In order to highlight the differences between the B-CNN
and the best other classifier, we added bar plots to Fig. 4.
These bars correspond to 1F between the best perform-
ing multi-label classifier (AT-CNN, IT-CNN and M-CNN)
and B-CNN for the corresponding phenotype. Importantly,
the color of the bar indicates the best performing classifier.
While a positive score indicates a better performance of
B-CNN a negative score indicates a better performance of

the corresponding multi-label learning classifier. As one can
see, AT-CNN is in 7 out of the 10 cases the best multi-label
classifier and in the remaining three cases IT-CNN performs
best. In summary, this demonstrated that both AT-CNN and
IT-CNN outperform M-CNN.

C. DIFFICULTY LEVELS OF CLASSIFICATION
In order to further explore the capabilities of the multi-label
classifiers against the B-CNN, we study these models using
simulated data by varying the difficulty level of the classi-
fication. In order to do this, we generate simulated datasets
by randomly flipping a certain portion of labels. In this way
we change the percentage of positive and negative labels,
which means we are essentially adding noise into the data.
This allows us to control the difficulty level of the classifi-
cation problem by using simulated data based on the original
data. Using this procedure, we generate 5 different simulated
datasets corresponding to 5 different percentages of label
flips. The percentages range from 90% to 50% with a 10%
interval corresponding to 5 different difficulty levels.

The results of this analysis can be seen in Fig. 5. It is
interesting to note that for all randomizations, AT-CNN
and IT-CNN outperform again M-CNN. Furthermore, the
distance between AT-CNN, IT-CNN and the B-CNN is in
general small but does not change much with increasing
noise levels. Interestingly, there are cases where IT-CNN has
slightly higher F-sample values than B-CNN; (figure on the
right-hand-side in Fig. 5). Furthermore, we notice that the
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TABLE 1. Results for B-CNN, AT-CNN, IT-CNN, M-CNN, C-BERT, MAGNET, SGM and LACO for the Hamming loss, F-micro, F-macro and F-sample (standard
error in brackets). The results in bold highlight the best performance for each error measure. A ‘‘+’’ indicates that the higher the score the better whereas
a ‘‘−’’ indicates the lower the score the better.

FIGURE 4. Results for B-CNN (thick line), AT-CNN, IT-CNN, and M-CNN for individual classes corresponding to ten phenotypes. The bar
plots indicate 1F between B-CNN and the best performing other classifier (see color for the classifier and y-axis on the right).

standard error increases with increasing percentages of the
label flips (left to right). This is reasonable, since the noise
level increases form left to right.

Due to the fact that the AT-CNN and IT-CNN outperform
always the M-CNN, we study in the following only the AT-
CNN, IT-CNN and the B-CNN.

D. SUBCLASS CLASSIFICATIONS
Next, we study the influence of the number of classes on the
classification performance. Specifically, for our dataset we

select all combinations of classes for the 10 phenotypes and
perform a classification analysis for each. In total this allows
to generate

10∑
n=2

(
10
n

)
= 1013 (10)

different datasets whereas each binomial coefficient
(10
n

)
gives the number of subclasses that can be formed drawing
n classes from 10. For each of these 1013 combinations we
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FIGURE 5. Performance of the classification models trained with simulated data using label-randomizations of 90%, 80%, 70%, 60%, and 50%. The
performance is measured using F-micro (left), F-macro (middle) and F-sample (right).

perform an analysis similar to the previous sections, i.e., using
10-fold CV for estimating various error measures.

In Fig. 6 (a), we show the results for B-CNN, AT-CNN and
IT-CNN for 1013 different datasets. Thesemodels correspond
to the different subclasses one can form ranging from 10 to
2 classes (from left to right). Each of these corresponds to a
n-class classification problem. The y-axis in Fig. 6 (a) indi-
cates the F-micro scores, while the x-axis shows the different
models trained on different combinations of the classes. The
results are ordered by the scores of the AT-CNN per number
of subclasses from highest to lowest values and the results
for the B-CNN and IT-CNN are plotted using the same order.
This explains the smoothly decaying lines for AT-CNN while
the results for B-CNN and IT-CNN are jagged.

One can see that the B-CNN outperforms the AT-CNN
and IT-CNN for almost all models. However, there are two
interesting observations. First, the difference between those
classifiers is usually small and in the percentage range. Sec-
ond, the B-CNN is not always the best model. In order to
quantify this observation we show in Fig. 6 (b) the (relative)
difference between the performances of the B-CNN and AT-
CNN and IT-CNN. That means for each model

1F-micro =
F-micro(B-CNN) − F-micro(CNN)

max
({
F-micro(B-CNN),F-micro(CNN)

})
(11)

is calculated and the results are sorted from lowest to highest
score. Here a negative score indicates a better performance
of AT-CNN or IT-CNN, while a positive score shows the

B-CNN is better. From Fig. 6 (b), one can see that there are
23 models for which the IT-CNN and 198 models for the AT-
CNN outperforms the B-CNN.

In Fig. 6 (c) and (d) we show the results of a similar analysis
for the F-macro score. Overall, the results are very similar to
the F-micro score in Fig. 6 (a) and (b) confirming the above
observations.

In order to compare the results between the subclasses,
we average the scores for each subclass. These results are
shown in Fig. 7. Here the bars correspond to the mean value
of the corresponding F-scores in Fig. 6 and the error bars are
the standard error. The standard error increases again for a
decreasing number of classes (left to right), similar to the
results in Fig. 6. Furthermore, also the values of the mean
F-scores seems to increase for AT-CNN and IT-CNN from
9 to 2 classes but not the B-CNN. To confirm this, we perform
a one-dimensional linear regression by considering the scores
for each of the 8 categories as a samples. As a result we
obtain the following slopes of linear regression models with
corresponding p-values (see Eqn. 12 to 17, as shown at the
bottom of the next page).

From these p-values, we can see that the slopes for the
AT-CNN and IT-CNN are significant for a significance level
of α = 0.05 while the slopes for the B-CNN are not signifi-
cant. This analysis confirms our qualitative observations.

Wewould like to remark that the number of classes can also
be seen as difficulty level of a classification. However, this
difficulty level is different to the one studied in the previous
section where we introduced essentially noise into the data
by flipping labels. In contrast, in this section no noise as
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such was introduced but the number of classes was varied
which increases the variability of the data for a decreas-
ing number of classes because the number of combinations
increases.

E. TIME COMPLEXITY
Finally, we compare the efficiency of the B-CNN with the
modified CNN models by studying their runtime. We do this
not only for the original 10 classification problem but also for
fewer classes to see if the number of classes has an influence
on this.

In order to study problems with less than 10 classes we
generate again new datasets by randomly selecting n classes
from the 10 available phenotypes. For a given n with 2 <

n ≤ 10 this results in
(10
n

)
different datasets. In total this

gives
10∑
n=2

(
10
n

)
= 1013 (18)

different datasets each corresponding to a n-class classifica-
tion problem.

The results for these datasets is shown in Fig. 8. Here the
x-axis shows all 1013 models from 10 to 2 classes and the y-
axis shows the corresponding runtime of the classifier models
in seconds.

Overall, one can see that the runtimes of the AT-CNN are
essentially the same regardless of the number of classes. The
results for the IT-CNN are almost identical to the AT-CNN,
for this reason we did not add them to Fig. 8. In contrast,
the B-CNN becomes slower with an increasing numbers of
classes. This behavior is reasonable since the binary CNN
performs more and more ‘‘individual’’ binary classifications
the larger the number of classes whereas for the AT-CNN
this remains constant. Importantly, for a 10-class classi-
fier (right-hand-side in Fig. 8) the difference between both
classifiers is more than a factor of 10. A linear regression
analysis for the runtimes of the B-CNN shows that the growth
is linear with a slope of β = 200.22 and a p-value of
p = 2e− 16.
Overall, these results demonstrate the need for finding a

substitute for a B-CNN because when we have a verly large
number of classes the conversion of a multi-label classifi-
cation problem into a binary multi-class classification prob-
lems is very inefficient and becomes even prohibitive in the
limit.

V. DISCUSSION
In general, strategies for multi-label classification can
be divided into two categories. The first transforms the
multi-label classification problem into multiple binary clas-
sifications resulting in many ‘‘one-vs-rest’’ comparisons
whereas the second predicts multiple labels simultane-
ously. Hence, the latter approaches are genuine multi-label
classifiers in the sense that they require a new learning
paradigm [12]. A very popular example of transformation-
based approaches is binary relevance, e.g., B-CNN whereas
threshold-based learners, e.g., M-CNN, AT-CNN or IT-CNN
are examples for the second category. It is important to note
that the first category does usually not use label dependency
information at all, while the second category utilize this infor-
mation either explicitly or implicitly in make the prediction
of the labels.

In order to obtain an informed assessment of our findings,
first, we discuss and summarize performance differences
between binary relevance methods and methods based on
multi-label learning from the literature. Such a comparison
can be divided into two categories by distinguishing the used
methodology for the binary relevance method: (I) BR based
on traditional methods and (II) BR based on deep learning
methods.

In Fig. 9, we show a summary of these results reported
in the literature. Specifically, the forest plot shows 1 Score
values between a proposed method and a BR model for
various studies. Specifically, the x-axis corresponds to 1

Score values where a positive value indicates a better per-
formance of the proposed multi-label classifier and a neg-
ative value means a better performance of the BR baseline
model. The multi-label classifiers used in these studies are:
CNN-RNN [5], DSRM-DNN [45], SGM [49], MAGNET
by [36], ML-NET [10], EncDec [35], LACO [56] and
JBNN [16].

An example for studying a binary relevance method based
on traditional machine learning methods is from [5]. They
used a BR model based on linearSVM as base classifier
and compared it with a CNN-RNN architecture. For the
dataset Reuters-21578 they found the CNN-RNN is inferior
to the BR model by 16% respectively 2.6% for F-macro and
F-micro. In contrast, for the dataset RCV1-v2, the BR model
was slightly worse by 0.4% for F-micro and for F-macro it
was 3.5% worse. They argued that the size of the dataset
greatly influences the performance of their model which is the

βFmicro(B-CNN) = −0.0004098, βFmacro(B-CNN) = 0 (12)

βFmicro(AT-CNN) = −0.0081840, βFmacro(AT-CNN) = −0.010379 (13)

βFmicro(IT-CNN) = −0.0068947, βFmacro(IT-CNN) = −0.007499 (14)

PFmicro(B-CNN) = 0.395, PFmacro(B-CNN) = 1 (15)

PFmicro(AT-CNN) = 7.66e− 07, PFmacro(AT-CNN) = 3.30e− 07 (16)

PFmicro(IT-CNN) = 0.000195, PFmacro(IT-CNN) = 3.29e− 05 (17)
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FIGURE 6. Results for different subclass classifications. (a) : Performance measured by F-micro for B-CNN, AT-CNN and IT-CNN.
(b): Shown is 1F -micro for the difference between B-CNN and AT-CNN and IT-CNN. (c): Performance measured by F-macro for
B-CNN, AT-CNN and IT-CNN. (d): Shown is 1F -macro for the difference between B-CNN and AT-CNN and IT-CNN.

reason why the BR model surpasses their CNN-RNN model
for rather small datasets. Du et al. [10] proposed ML-Net
which utilizes a document embedding and an additional label-
decision module. They compared their architecture also to a
SVM-based BR method for 3 different medical classification
tasks: Hallmarks of cancer classification, Chemical exposure
assessments andDiagnosis code assignment. The results from
all three tasks showed that ML-Net outperforms the BR
model for a F-sample score. Specifically, for the Hallmarks of

cancer (1580 PubMed abstracts with 10 classes) they found an
improvement of 13.8% over the BR, for the Chemical expo-
sure assessments (3661 PubMed abstracts with 32 classes)
there is a 3.8% improvement over BR, and for the Diagnosis
code assignment (22,815 samples with 7,042 classes from
MIMIC-III) there is a 7.7% better performance. Interestingly,
the BR model is superior for the latter two datasets, which
have many classes (>30) and large sample sizes (>3000),
when precision is used as a score.
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FIGURE 7. Mean F-micro and F-macro for the B-CNN, AT-CNN and IT-CNN for the results shown in Fig. 6. The error bars
correspond to the standard error.

FIGURE 8. Time complexity of the classification models. Shown are the running times for the B-CNN and AT-CNN. The x-axis shows the
number of classes and the y-axis the runtime in seconds.

The study by Wang et al. [45] compared their model
called DSRM-DNN (dynamic semantic representation model

and deep neural network) with a BR model based on a
SVM. The most significant improvement of DSRM-DNN
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FIGURE 9. Forest plot showing 1F score between a proposed method and binary relevance from various studies. The x-axis corresponds
to 1 Score whereas a positive value indicates a better performance of the proposed method and a negative value means better
performance of the BR baseline. The color indicates different measures (for F-Micro, F-Macro and F-Sample), and the index number from
the ‘Data’ column indicates the used dataset: (1) RCV1-v2, (2) Reuters-21578, (3) AAPD, (4) EUR-LEX, (5) Bookmarks, (6) Slashdot, (7) Toxic,
(8) Hallmarks of cancer, (9) Chemical exposure, (10) Diagnosis code assignments, (11) Ren-CECps.

over BR they found for the Reuters-21578 and EUR-Lex
data giving 25% and 15% improvement for the F-micro and
F-macro respectively. Yang et al. [49] used their sequence
generation model SGM for solving multi-label text classi-
fication problems. They tested their method for data from
RCV1-V2 and AAPD, and showed that the best performing
method is SGMwith 2.3% and 9.0% improvement over tradi-
tional BR for F-micro on RCV1-V2 and AAPD respectively.
Pal et al. introduced a graph based attention deep learning
architecture MAGNET [36] to explicitly incorporate label
dependency information. They reported the performance of
F-micro for their method against a traditional BR, showing
2.3%, 2.0%, 10.0%, and 6.4% improvement for F-micro
on data from Reuters-21578, AAPD, Slashdot and Toxic
respectively. Finally, Zhang et al. [56] proposed the method
LACO which utilizes BERT and label dependency informa-
tion. Their method showed the most competitive performance
with respect to F-score against other deep learning architec-
tures and a traditional BR. The results showed that LACO has
13.8% and 3.0% performance gain for F-micro on AAPD and
RCV1-v2 respectively.

Overall, from such studies one can see that a BR model
based on traditional machine learning techniques is still com-
petitive even in comparison with modern deep learning multi-
label based architectures. However, it should be emphasized
that such a comparison is not the best choice and below we
will return to this issue in more detail.

It is important to highlight that there are limited pub-
lications that offer comparisons for deep learning-based
Binary Relevance (BR) models. However, an example is [35]
where the performance of feedforward neural network-based
binary relevance, feedforward neural network label-powerset
and vanilla multi-label learning neural network [34] with
RNN and encoder-decoder (called EncDec) is compared for
data from Reuters-21578 and RCV1-v2. The results for the
Reuters-21578 data demonstrate a 2.6% and 11.9% better
performance for F-micro and F-macro respectively using
an encoder-decoder against BR, while for RCV1-v2, the
encoder-decoder is capable of improving over BR on F-micro
and F-macro by 5.5% and 13.9% respectively. He et al.
proposed a joint learning architecture to tackle multi-label
learning as binary learning in one network structure in which
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the network does not need to pre-define an extra thresholding
function but can utilize label-dependency information [16].
They compared their architecture (called JBNN) using a
binary transformed version and a multi-label learning version
with the same neural network infrastructure for an emotion
classification task using the Ren-CECps corpus. As a result,
they found 6.26%,2.5%,4.9%,4.8% and 2.1% improvement
over BR on the ranking loss, Hamming loss, one-error, cov-
erage and average precision respectively. Unfortunately, from
the provided description given in the proceeding papers,
it remains unclear if the results obtained by the NN-based
BR model from these studies are optimized to obtain the best
possible performance.

When comparing the results from the literature, as summa-
rized in Fig. 9, with our findings, we notice some differences.
While also we observe cases where genuine multi-label clas-
sifiers (e.g. AT-CNN or IT-CNN) are better than a BR model,
in general, the BR model is better. However, the difference
between the BR model and AT-CNN or IT-CNN is usually
within a few percentages (see Table 1, Fig. 4 and Fig. 6).
In order to sheet light on this, we use available methods from
the literature (discussed above) that reported a better perfor-
mance compared to (their) BR models, and included those in
our analysis. Specifically, we usedMAGNET [36], SGM [49]
and LACO [56]. Interestingly, from our analysis, we find that
MAGNET, SGM and LACO are not only worse than our BR
model but also our multi-label classifiers, i.e., AT-CNN and
IT-CNN (see Table 1). While LACO is better than MAGNET
and SGM, its performance is only comparable to M-CNN
which is still worse than AT-CNN and IT-CNN.

From these results follow two observations. First, the
results from the literature need to be interpreted with care
because the quality of the conducted research cannot be
verified. Second, even when the literature results are correct,
a qualitatively different dataset can lead to different results,
as demonstrated by our analysis (see Table 1). Overall, this
places our findings and the results from the literature into
perspective and underlines the following: (I) The analysis
of our datasets is difficulty - because otherwise MAGNET,
SGM and LACO would perform better. (II) The methods AT-
CNN and IT-CNN are performing well for our datasets and
in relation to the BR model. (III) AT-CNN and IT-CNN are
performing especially well compared toMAGNET, SGMand
LACO.

Methodologically, we would like to point out that our
study introduced two new methods by augmenting a CNN
with threshold functions. The reason for studying the influ-
ence of such threshold functions is that models utilizing a
constant threshold, such as M-CNN (also studied in this
paper), suffer from of lack of flexibility that usually translates
into a poorer performance. Importantly, by a comparison
of models with learned threshold functions, i.e., between
adaptive-threshold CNN (AT-CNN) or implicit-threshold
CNN (IT-CNN) and M-CNN, we could show that the perfor-
mance improves greatly because the learned thresholds can

adopt to characteristics from the data which influences the
decision of a prediction.

There is another point worth highlighting and that is the
use of label-dependency information. While the three models
MAGNET, SGM and LACO explicitly rely on such an infor-
mation, our methods, AT-CNN and IT-CNN, do not utilize
such an information in an explicit way. In fact, we inten-
tionally refrained from using this information to optimize
a multi-label classifier that extracts as much information as
possible from a dataset without label-dependency informa-
tion. Although, when designing the thresholding function we
use the information from labels to form the thresholds, the
way such information is utilized is considerably different as
inMAGNET, SGM or LACO. Considering this fact, it is even
more remarkable that both AT-CNN and IT-CNN outperform
MAGNET, SGM and LACO. If and how label-dependency
information could be fully utilized to improve our deep learn-
ing models is an interesting question that requires a thorough
analysis. For reasons of clarity, we want to add that also a
base CNN multi-label structure, as used in our study, can
still exploit label-dependency information to some extend,
however, in an implicit manner. Typically, this happens in
higher layers of the networks in a self-supervised fashion, i.e.,
it is not enforced from outside.

Regarding BRmodels, it is important to realize that there is
no unique choice for such a model but there are alternatives.
Specifically, for our analysis we tested different BR models
and as a result we found a CNN-based binary relevancemodel
to be most competitive. That means, we selected the best BR
model among a set of alternative candidates. In contrast, in the
literature the baseline BR models are either using SVMs or
basic feed-forward neural networks which are in most cases
too simple to deal with complex multi-label classification
tasks. Furthermore, from the literature it is unclear if the
decision for a particular BR model has been made based
on a comparative analysis with alternative BR models or if
the selection has been made imprudently. The latter includes
choices where the optimal BR model has not been chosen.
Hence, considering potential limitations of the used BRmod-
els when looking at the literature results in Fig. 9 one obtains
a different view regarding the interpretation of the observed
margins which are consistent with our interpretations above.

Overall, it is interesting to observe that despite the fact
that advanced variants of deep neural networks are showing
promising results for multi-label classification, BR models
are not obsolete. This is especially true when the number
of classes is moderate or small as in our study. Given the
linear increase in runtime over the number of classes of a BR
model, as shown in Fig. 8, the number of classes can even be
surprisingly large, scaling with the size of the available com-
puter cluster. Interestingly, we noticed a lack in the literature
studying such cases, i.e., differences between deep learning
based BRmodels and genuine multi-label classifiers for clas-
sification problems with a moderate number of classes. Based
on our findings, we think that an optimized BR model might
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be able to consistently compete with a genuine multi-label
classifier, when no explicit label-dependency information
is used. Unfortunately, this can only be studied for small
to a medium number of classes because a computational
analysis for a large number of classes becomes computa-
tionally prohibitive. However, maybe the more interesting
question is the following: Can a multi-label classifier with
label-dependency information systematically outperform an
optimized BR model for classification tasks with a moder-
ate number of classes? As discussed above, here it is very
important to emphasize ‘‘optimized’’ because selecting any
BR model does not lead to a fair comparison and a definite
answer to this question.

VI. CONCLUSION
In this paper, we study multi-label classifiers for text clas-
sification of electronic health records (eHR). We compare
deep learning based models for binary relevance (BR) and
genuine multi-label models, including two newly introduced
models AT-CNN and IT-CNN. As main results, we find the
following: First, a CNN-based BR model is overall best,
however, genuine multi-label methods using learned thresh-
olds, i.e., adaptive-threshold CNN (AT-CNN) and implicit-
threshold CNN (IT-CNN) are good approximations of the
prediction performance. Second, AT-CNN and IT-CNN per-
form better than previously publishedmethods on our dataset,
e.g., Clinical-BERT [1], MAGNET [36], SGM [49] and
LACO [56]. Third, the obtained results are robust for a
varying number of classes and various noise levels. Forth,
the runtime of AT-CNN and IT-CNN is much more efficient
compared to the BR model and the speed advantage for a
10 class classification task is over a factor of 10. Fifth, when
comparing BR models to genuine multi-label classifiers it is
important to optimize also the BRmodel because its choice is
not unique and many alternatives are possible. Otherwise the
comparison becomes unfair and non-representative. In gen-
eral, we suggest to use the same machine learning or artificial
intelligence model type for the BR model and the genuine
multi-label classifier when comparing their performance.

Overall, our findings are not only of methodological inter-
est, because we show that deep learning based multi-label
classifiers can benefit from well designed thresholding func-
tions, but provide also guidelines for the general comparison
between BR and multi-label models.
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